

A problem-oriented approach

A Variable in Algebra

Early Draft [February 25, 2024]

Copyright, © Shiv Shankar Dayashru, 2023-24. All rights reserved.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Dedicated to my family and Free Software Community

Table of Contents

Preface 1
I Theory and Problems 1
1 Logarithm 1
1.1 Important Results 1
1.2 Important Formulas 1
1.3 Bases of Logarthims 3
1.4 Characteristics and Mantissa 3
1.5 Inequality of Logarithms 3
1.6 Expansion of Logarithm and Its Graph 3
1.7 Problems 4
2 Progressions 10
2.1 Arithmetic Progressions 10
2.2 Geometric Progressions 12
2.3 Harmonic Progressions 16
2.4 Relation between A.M., G.M. and H.M. 16
2.5 Problems 17
3 Complex Numbers 40
3.1 Imaginary Numbers 40
3.2 Definitions Related to Complex Numbers 40
3.3 Simple Arithmetic Operations 41
3.4 Conjugate of a Complex Number 41
3.5 Modulus of a Complex Number 42
3.6 Geometrical Representation 43
3.7 Vector Representation 45
3.8 Algebraic Operation's Representation 45
3.9 Three Important Results 47
3.10 More Roots 48
3.11 De Moivre's Theoremm 50
3.12 Some Important Geometrical Results 50
3.13 Problems 57
4 Polynomials and Theory of Equations 78
4.1 Polynomial Functions 78
4.2 Division of Polynomials 78
4.3 Remainder Theorem 78
4.4 Factor Theorem 79
4.5 Fundamental Theorem of Algebra 79
4.6 Identity Theorem 79
4.7 Rational Root Theorem 80
4.8 Vieta's Relations 81
4.9 Symmetric Functions 81
4.10 Common Roots of Polynomial Equations 81
4.11 Irreducabilty of Polynomials 81
4.12 Eisenstein's Irreducibility Criterion Theorem 81
4.13 Quadratic Equations 82
4.14 Rational Expression or Rational Function 83
4.15 Roots of a Quadratic Equation 83
4.16 Sum and Product of the Roots 84
4.17 Nature of Roots 84
4.18 Quadratic Expression and its Graph 85
4.19 Sign of a Quadratic Equation 85
4.20 Position of Roots 87
4.21 General Quadratic Equation in x and y 90
4.22 Equations of Higher Degree 90
4.23 Cubic and Biquadratic Equation 90
4.24 Transformation of Equations 91
4.25 Descartes Rule 91
4.26 Hints for Solving Polynomial Equations 91
4.27 Problems 92
5 Permutations and Combinations 113
5.1 Four Basic Counting Principles 113
5.2 Factorial of n 117
5.3 Permutation of Sets 117
5.4 Combination of Sets 119
5.5 Permutation of Multisets 119
5.6 Combination of Multisets 121
5.7 Some Important Indentities 121
5.8 Some Useful Results 122
5.9 Permutations with Repetitions 123
5.10 Combinations with Repetitions 123
5.11 Integral Solutions of Equations 124
5.12 Geometrical Applications of Combinations 124
5.13 Number of Divisors and Sum of Divisors 125
5.14 Exponent of Prime p in n ! 125
5.15 Inclusion-Exclusion Principle 126
5.16 Derangements 127
5.17 Problems 128
6 Mathematical Induction 147
6.1 Principle of Finite Mathematical Induction 147
6.2 Extended Form of Mathematical Induction 147
6.3 Problems 147
7 Binomials, Multinomials and Expansions 154
7.1 Binomial Theorem 154
7.2 Special Forms of Binomial Expansion 155
7.3 General Term of a Binomial Expansion 155
7.4 Middle Term of a Binomial Expansion 155
7.5 Equidistant Coefficients 155
7.6 Properties of Binomial Coefficients 156
7.7 Multinomial Theorem 156
7.8 Binomial Theorem for Any Index 157
7.9 General Term in Binomial Theorem for Any Index 157
7.10 General Term for Negative Index 158
7.11 Exponential and Logrithmic Series Expansions 158
7.12 Problems 158
8 Determinants 172
8.1 Minors 173
8.2 Cofactors 174
8.3 Theorems on Determinants 174
8.4 Reciprocal Determinants 177
8.5 Two Methods of Expansions 178
8.6 Symmetric Determinants 179
8.7 System of Linear Equations 179
8.8 Cramer's Rule 179
8.9 Use of Determinants in Coordinate Geometry 182
8.10 Product of Two Determinants 182
8.11 Differential Coefficient of Determinant 183
8.12 Problems 183
9 Matrices 200
9.1 Classification of Matrices 200
9.2 Algebra of Matrices 203
9.3 Properties of adjoint and inverse matrices 206
9.4 Solution of Simultaneous Linear Equations 208
9.5 Elementary Operations/Transformations of a Matrix 208
9.6 Echelon Form of a Matrix 209
9.7 Rank of a Matrix 209
9.8 Application of Matrices to Geometry or Computer Graphics 209
9.9 Problems 210
10 Inequalities 216
10.1 Strum's Method 216
10.2 A.M., G.M., H.M. and Q.M 217
10.3 Cauchy-Bunyakovsky-Schwarz Inequality 218
10.4 Chebyshev's Inequality 218
10.5 Surányi's Inequality 220
10.6 Rearrangement Inequality 221
10.7 Young's Inequality 224
10.8 Hölder's Inequality 224
10.9 Minkowski's Inequality 225
10.10 Convex and Concave Functions 226
10.11 Jensen's Inequality 229
10.12 Bernoulli's Inequality 235
10.13 Popoviciu's Inequality 235
10.14 Majorization 236
10.15 Karamata's Inequality 236
10.16 Muirhead's Inequality 237
10.17 Schur's Inequality 238
10.18 Symmetric Functions 239
10.19 Newton's Inequality 239
10.20 Maclaurin's Inequality 240
10.21 Aczel's Inequality 240
10.22 Carleman's Inequality 241
10.23 Sum of Squares(SOS Method) 241
10.24 Problems 245
II Answers 274
1 Logarithm 275
2 Progressions 296
3 Complex Numbers 358
4 Theory of Equations 412
5 Permutations and Combinations 475
III License 498
GNU Free Documentation License 499

Preface

This is a book on algebra, which, covers basics of algebra till high school level. It covers the most essential topics to take up a bachelor's course where knowledge of algebra is required. There is no specific purpose for writing this book. This is a book for self study and is not recommended for courses in schools and universities. I will try to cover as much as I can and will keep adding new material over a long period. I have no interest in writing a book in a fixed way which serves a university or college course as I have always loved freedom. Life, freedom and honor in that order are important.

Algebra is probably one of the most fundamental subjects in Mathematics as further study of subjects like trigonometry, coordinate geometry and rest all depend on it. That is the primary reason I have chosen it to be the first subject in mathematics to be dealt with. It is very important to understand algebra for the readers if they want to advance further in mathematics.

How to Read This Book?

Every chapter has theory. Read that first. Make sure you understand that. Of course, you have to meet the prerequisites for the book. Then, go on and try to solve the problems. In this book, there are no pure problems. Almost all have answers except those which are of similar kind and repetitive in nature for the sake of practice. If you can solve the problem then all good else look at the answer and try to understand that. Then, few days later take on the problem again. If you fail to understand the answer you can always email me with your work and I will try to answer to the best of my ability. However, if you have a local expert seek his/her advice first. Just that email is bad for mathematics.

Note that mathematics is not only about solving problems. If you understand the theory well, then you will be able to solve problems easily. However, problems do help with the enforcement of theory in your mind.

I am a big fan of old MIR publisher's problem books, so I emphasize less on theory and more on problems. I hope that you find this style much more fun as a lot of theory is boring. Mathematics is about problem solving as that is the only way to enforce theory and find innovtive techniques for problem solving.

Some of the problems in certain chapters rely on other chapters which you should look ahead or you can skip those problems and come back to it later. Since this books is meant for self study answers of most of the problems have been given which you can make use of. However, do not use for just copying but rather to develop understanding.

Who Should Read This Book?

Since this book is written for self study anyone with interest in algebra can read it. That does not mean that school or college students cannot read it. You need to be selective as to
what you need for your particular requirements. This is mostly high school course with a little bit of lower classes' course thrown in with a bit of detail here and there.

Prerequisite

You should have knowledge till grade 10th course. Attempt has been made to keep it simple and give as much as background to the topic which is reasonable and required. However, not everything will be covered below grade 10 .

Goals for Readers

The goal of for reading this book is becoming proficient in solving simple and basic problems of algebra. Another goal would be to be able to study other subjects which require this knowledge like trigonometry or calculus or physics or chemistry or other subjects. If you can solve 95% problems after 2 years of reading this book then you have achieved this goal.

All of us possess a certain level of intelligence. At average any person can read this book. But what is most important is you have to have interest in the subject. Your interest gets multiplied with your intelligence and thus you will be more capable than you think you can be. One more point is focus and effort. It is not something new which I am telling but I am saying it again just to emphasize the point. Trust me if you are reading this book for just scoring a nice grade in your course then I have failed in my purpose of explaining my ideas.

A lot of problems are given in the book for practice and you should try to solve all of these. Solutions are given to assist you for understading. However, use them as a last resort. Slowly more and more problems will be added. There are very easy problems which should be practiced to progress towards more difficcult problems.

Also, if you find this book useful feel free to share it with others without hesitation as it is free as in freedom.

Confession

I feel like an absolute thief while writing this book for nothing given in this book is mine. All of it belongs to others who did the original work and I have just copied shamelessly. I have nothing new to put in the book. This book is just the result of the pain I feel when I see young children wasting their life for they are poor. And therefore, this book is licensed under GNU FDL. Even if I manage to create few new problems it is still based on knowledge of other pioneers of the subject but perhaps that is how we are supposed to progress bit-bybit.

Acknowledgements

I am in great debt of my family and free software community because both of these groups have been integral part of my life. Family has provided direct support while free software community has provided the freedom and freed me from the slavery which comes as a package with commercial software. I am especially grateful to my wife, son and parents because it is their time which I have borrowed to put in the book. To pay my thanks from free software community I will take one name and that is Richard Stallman who started all this and is
still fighting this never-ending war. When I was doing the Algebra book then I realized how difficult it is to put Math on web in HTML format and why Donald Knuth wrote $\mathrm{T}_{\mathrm{E}} \mathrm{X}$. Also, $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ was one of the first softwares to be released as a free software.

Now as this book is being written using ConTEXt so obviously Hans hagen and all the people involved with it have my thanks along with Donald Knuth. I use Emacs with Auctex and hope that someday I will use it in a much more productive way someday.

I have used Asymptote, Metapost and Tikz for drawing all the diagrams. All of them are wonderful packages and work very nicely. Asymptote in particular is very nice for 3d-drawings and linear equation solving. Perhaps sometime in future all diagrams will be redrawn using Metapost. Metapost is equally powerful and it is closely integrated with $\mathrm{ConT}_{\mathrm{E}} \mathrm{Xt}$, which makes it default choice for making graphics. Earlier I started with Tikz because the book was written using Sphinx and there was no Asymptote or Metapost plugin but only Tikz. Later I found Asymptote to be better because it can solve linear equations. The problem with Asymptote is that because it uses $\mathrm{L}^{A} \mathrm{E} \mathrm{EX}$ so a huge installation of Texlive is needed. Metapost on the other hand comes with standalone distribution of ConT $\mathrm{E}_{\mathrm{E}} \mathrm{t}$.

I would like to thank my parents, wife and son for taking out their fair share of time and the support which they have extended to me during my bad times. After that I would like to pay my most sincere gratitude to my teachers particularly H. N. Singh, Yogendra Yadav, Satyanand Satyarthi, Kumar Shailesh and Prof. T. K. Basu. Now is the turn of people from software community. I must thank the entire free software community for all the resources they have developed to make computing better. However, few names I know and here they go. Richard Stallman is the first, Donald Knuth, Edger Dijkstra, John von Neumann after that. I am not a native English speaker and this book has just gone through one pair of eyes therefore chances are high that it will have lots of errors(particularly with commas and spelling mistakes). At the same time it may contain lots of technical errors. With time and revisiosn those errors will be removed.

Theory and Problems

Chapter 1 Logarithm

Definition: A number x is called the logarithm of a number y to the base b if $b^{x}=y$, where $b>0, b \neq 1, y>0$.

Mathematically, it is represented by the equation $\log _{b} y=x$ or $b^{x}=y$.

Notes:

1. The conditions $b>0, b \neq 1$ and $y>0$ are necessary in the definition of logarithm.
2. When $b=1$ suppose logarithm is defined, and we have to find the value of $\log _{1} y$. Let $\log _{1} y=x \Rightarrow 1^{x}=y \Rightarrow 1=y$.

If $\log _{1} 2$ is defined then $1=2$. So we see that $b=1$ leads to meaningless results. Similarly, it is true for $b \neq 1$.
3. Similarly if $y<0$, then $b^{x}=y$, which is meaningless as L.H.S. is positive while R.H.S. is negative.
4. Let the condition to be true when $b=0$. Thus, $0^{x}=y \Rightarrow 0=y$. Thus, if $\log _{0} 2$ is defined then $0=2$. Hence, our assumption leads to failure.
5. No number can have two different logarithms to a given base. Assume that a number N has two different logarithms x and y with base b. Then, $\log _{b} N=x$ and $\log _{b} N=y$
$\Rightarrow N=b^{x}$ and $N=b^{y}$
$\Rightarrow b^{x}=b^{y} \Rightarrow x=y$
6. When the number or base is negative the value of logarithm comes out to be a complex number with non-zero imaginary part.

Let $\log _{e}(-5)=x \Rightarrow \log _{e}\left(5 \cdot e^{i \pi}\right)=x\left(\right.$ In complex numbers $\left.e^{i \pi}=-1\right)$
$x=\log _{e} 5+i \pi$

1.1 Important Results

1. $\log _{b} 1=0$

Proof: Let $\log _{b} 1=x \Rightarrow b^{x}=1 \Rightarrow x=0$
2. $\log _{b} b=1$

Proof: Let $\log _{b} b=x \Rightarrow b^{x}=b \Rightarrow x=1$
3. $b^{\log _{b} N}=N$

Proof: Let $\log _{b} N=x \Rightarrow b^{x}=N \Rightarrow b^{\log _{b} N}=N$

1.2 Important Formulas

1. $\log _{b}(x . y)=\log _{b} x+\log _{b} y,(x>0, y>0)$

Proof: Let $\log _{b} x=m \Rightarrow b^{m}=x$. Similarly, $b^{n}=y$
$x y=b^{m+n}=b^{o}$ (say)
$m+n=o \Rightarrow \log _{b}(x . y)=\log _{b} x+\log _{b} y$
Corollary: $\log _{b}(x y z)=\log _{b} x+\log _{b} y+\log _{b} z$
If $x, y<0$, then $\log _{b}(x . y)=\log _{b}|x|+\log _{b}|y|$
2. $\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y,(x, y>0)$

Proof: Let $\log _{b} x=m \Rightarrow b^{m}=x$ and $\log _{b} y=n \Rightarrow b^{n}=y$
$\frac{x}{y}=b^{m-n}$ and $\log _{b}\left(\frac{x}{y}\right)=o \Rightarrow b^{o}=\frac{x}{y}$
$\Rightarrow m-n=o \Rightarrow \log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$
$\log _{b}\left(\frac{x}{y}\right)=\log _{b}|x|-\log _{b}|y|,(x, y<0)$
3. $\log _{b} N^{k}=k \log _{b} N$

Proof: Let $\log _{b} N=x \Rightarrow b^{x}=N$
Let $\log _{b} N^{k}=y \Rightarrow b^{y}=N^{k} \Rightarrow b^{y}=b^{k x} \Rightarrow y=k x$
$\Rightarrow \log _{b} N^{k}=k \log _{b} N$
4. $\log _{b} a=\log _{c} a \log _{b} c$

Proof: Let $\log _{b} a=x \Rightarrow b^{x}=a$
$\log _{c} a=y \Rightarrow c^{y}=a$
$\log _{b} c=z \Rightarrow b^{z}=c$
$b^{x}=a=c^{y}=b^{y z} \Rightarrow x=y z \Rightarrow \log _{b} a=\log _{c} a \log _{b} c$
Alternatively, we can also write it as $\log _{b} a=\frac{\log _{c} a}{\log _{c} b}$
5. $\log _{b^{k}} N=\frac{1}{k} \log _{b} N[b>0]$

Proof: From previous item we can infer that $\log _{b^{k}} N=\frac{\log N}{\log b^{k}}=\frac{1}{k} \log _{b} N$
$\log _{b^{k}} N=\frac{1}{k} \log _{|b|} N[b<0, k=2 m, m \in N]$
6. $\log _{b} a=\frac{1}{\log _{a} b}$

Proof: Let $\log _{b} a=x \Rightarrow b^{x}=a$
Also let $\log _{a} b=y \Rightarrow a^{y}=b=a^{x y} \Rightarrow x y=1$
$\Rightarrow \log _{b} a=\frac{1}{\log _{a} b}$

1.3 Bases of Logarthims

There are two popular bases for logarithms. Common base is 10 and another is e. When base is 10 , logarithm is known as common logarithm and when base is e, logarithm is known as natural or Napierian logarithm.
$\log _{10} x$ is also written as $\lg x$ and $\log _{e} x$ as $\ln x$.

1.4 Characteristics and Mantissa

Typically a logarithm will have an integral part and a fractional part. The integral part is called characteristics and fractional part is called mantissa.

For example, if $\log x=4.7$ then 4 is characteristics and .7 is mantissa of logarithm. If characteristics is less that zero then at times it is written with a bar above it. For example, $\log x=-5.3=\overline{5} .3$

As you can easily figure out the number of possitive integers having base b and characteristics n is $b^{n+1}-b^{n}$.

1.5 Inequality of Logarithms

If $b>1$ and $\log _{b} x_{1}>\log _{b} x_{2}$ then $x_{1}>x_{2}$. If $b<1$ and $\log _{b} x_{1}>\log _{b} x_{2}$ then $x_{1}<x_{2}$.

1.6 Expansion of Logarithm and Its Graph

The logarithm series is given below:

$$
\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots
$$

Figure 1.1 Graph of $\log 2$.
So we can see that rate of increment of logarithm function decreases. Rate of increment of logarithm function is given by $\frac{1}{x}$ at any point x, as we will learn when we study Calculus and derivatives.

1.7 Problems

1. Find the value of x, where $\log _{\sqrt{8}} x=\frac{10}{3}$.
2. Prove that $\log _{b} a \cdot \log _{c} b \cdot \log _{a} c=1$.
3. Prove that $\log _{3} \log _{2} \log _{\sqrt{5}} 625=1$.
4. If $a^{2}+b^{2}=23 a b$, then prove that $\log \frac{a+b}{5}=\frac{1}{2}(\log a+\log b)$.
5. Prove that $7 \log \frac{16}{15}+5 \log \frac{25}{24}+3 \log \frac{81}{80}=\log 2$.
6. Find the value of $\log \tan 1^{\circ}+\log \tan 2^{\circ}+\ldots+\log \tan 89^{\circ}$.
7. Evaluate $\log _{9} \tan \frac{\pi}{6}$.
8. Evaluate $\frac{\log _{a^{2}} b}{\log _{\sqrt{a} b^{2}}}$.
9. Evaluate $\log _{\sqrt{5}} .008$.
10. Evaluate $\log _{2 \sqrt{3}} 144$.
11. Prove that $\log _{3} \log _{2} \log _{\sqrt{3}} 81=1$.
12. Prove that $\log _{a} x \log _{b} y=\log _{b} x \log _{a} y$.
13. Prove that $\log _{2} \log _{2} \log _{2} 16=1$.
14. Prove that $\log _{a} x=\log _{b} x \log _{c} b \ldots \log _{n} m \log _{a} n$.
15. Prove that $a^{x}=10^{x} \log _{10} a$.
16. If $a^{2}+b^{2}=7 a b$, prove that $\log \left\{\frac{1}{3}(a+b)\right\}=\frac{1}{2}(\log a+\log b)$.
17. Prove that $\frac{\log a \log _{a} b}{\log b \log _{a} b}=-\log _{a} b$.
18. Prove that $\log (1+2+3)=\log 1+\log 2+\log 3$.
19. Prove that $2 \log (1+2+4+7+14)=\log 1+\log 2+\log 4+\log 7+\log 14$.
20. Prove that $\log 2+16 \log \frac{16}{15}+12 \log \frac{25}{24}+7 \log \frac{81}{80}=1$.
21. Simplify $\frac{\log _{9} 11}{\log _{5} 13} \div \frac{\log _{3} 11}{\log _{\sqrt{5}}} 13$.
22. Simplify $3^{\sqrt{\log _{3} 2}}-2^{\sqrt{\log _{2} 3}}$.
23. Find the least integer n such that $7^{n}>10^{5}$, given that $\log _{10} 343=2.5353$.
24. If a, b, c are in G.P., prove that $\log _{a} x, \log _{b} x, \log _{c} x$ are in H.P.
25. Prove that $\log \sin 8 x=3 \log 2+\log \sin x+\log \cos x+\log \cos 2 x+\log \cos 4 x$.
26. If $x=\log _{2 a} a, y=\log _{3 a} 2 a$ and $z=\log _{4 a} 3 a$ then prove that $x y z+1=2 y z$.
27. If a and b are the lengths of the sides and c be the length of the hypotenuse of a right-angle triangle and $c-b \neq 1$ and $c+b \neq 1$, prove that $\log _{c+b} a+\log _{c-b} a=2 \log _{c+b} a \log _{c-b} a$.
28. If $\frac{\log x}{y-z}=\frac{\log y}{z-x}=\frac{\log z}{x-y}$, then prove that $x^{x} y^{y} z^{z}=1$.
29. If $\frac{y z \log (y z)}{y+z}=\frac{z x \log (z x)}{z+x}=\frac{x y \log (x y)}{x+y}$, prove that $x^{2}=y^{y}=z^{2}$.
30. Prove that $(y z)^{\log y-\log z}(z x)^{\log z-\log x}(x y)^{\log x-\log y}=1$.
31. Prove that $\frac{1}{\log _{2} N}+\frac{1}{\log _{3} N}+\ldots+\frac{1}{\log _{1988} N}=\frac{1}{\log _{1988!} N}$.
32. If $0<x<1$, prove that $\log (1+x)+\log \left(1+x^{2}\right)+\log \left(1+x^{4}\right)+\ldots$ to $\infty=-\log (1-x)$.
33. Find the sum of the series $\frac{1}{\log _{2} a}+\frac{1}{\log _{4} a}+\ldots$ up to n terms.
34. If $\log _{4} 10=x, \log _{2} 20=y$ and $\log _{5} 8=z$, prove that $\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1$.
35. If $x=\log _{a} b c, y=\log _{b} c a, z=\log _{c} a b$, prove that $\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1$.
36. Prove that $\frac{1}{1+\log _{b} a+\log _{b} c}+\frac{1}{1+\log _{c} a+\log _{c} b}+\frac{1}{1+\log _{a} b+\log _{a} c}=1$.
37. Prove that $x^{\log y-\log z} y^{\log z-\log x} z^{\log x-\log y}=1$.
38. If $\frac{\log a}{y-z}=\frac{\log b}{z-x}=\frac{\log c}{x-y}$, prove that $a^{x} b^{y} c^{z}=1$.
39. If $\frac{x(y+z-x)}{\log x}=\frac{y(z+x-y)}{\log y}=\frac{z(x+y-z)}{x-y}$, prove that $y^{z} z^{y}=z^{x} x^{z}=x^{y} y^{x}$.
40. If $\frac{\log a}{b-c}=\frac{\log b}{c-a}=\frac{\log c}{a-b}$, prove that $a^{b+c} b^{c+a} c^{a+b}=1$.
41. If $\frac{\log x}{q-r}=\frac{\log y}{r-p}=\frac{\log z}{p-q}$, prove that $x^{q+r} y^{r+p} z^{p+q}=x^{p} y^{q} z^{r}$.
42. If $y=a^{\frac{1}{1-\log _{a} x}}$ and $z=a^{\frac{1}{1-\log _{a} y}}$, prove that $x=a^{\frac{1}{1-\log _{a} z}}$.
43. Let $f(x)=\frac{1}{1-\log _{e} x}, f(y)=e^{f(z)}$ and $z=e^{f(x)}$, prove that $x=e^{f(y)}$.
44. Show that $\frac{1}{\log _{2} n}+\frac{1}{\log _{3} n}+\frac{1}{\log _{4} n}+\ldots+\frac{1}{\log _{43} n}=\frac{1}{\log _{43}!n}$.
45. Show that $2\left(\log a+\log a^{2}+\log a^{3}+\ldots+\log a^{n}\right)=n(n+1) \log a$.
46. Find the number of digits in 12^{12}, without actual computation. [Given $\log 2=0.301$ and $\log 3=0.477]$
47. How many positive integers have a characteristics of 2 when base is 3 .
48. Prove that $\log _{a} x \log _{b} y=\log _{b} x \log _{a} y$.
49. If a, b, c are in G.P., prove that $\log _{a} x, \log _{b} x, \log _{c} x$ are in H.P.
50. How many zeros are there between the decimal point and first significant digit in 0.0504^{10} ? Given $\log 2=0.301, \log 3=0.477, \log 7=0.845$.
51. Find the number of digits in 72^{15} without actual computation. Given $\log 2=0.301$ and $\log 3=0.477$.

52 . How many positive integers have characteristics 2 when base is 5 ?
53. If $\log 2=0.301$ and $\log 3=0.477$, find the number of digits in $3^{15} \times 2^{10}$.
54. If $\log 2=0.301$ and $\log 3=0.477$, find the number of digits in 6^{20}.
55. If $\log 2=0.301$ and $\log 3=0.477$, find the number of digits in 5^{25}.
56. Solve $\log _{a}\left[1+\log _{b}\left\{1+\log _{c}\left(1+\log _{p} x\right)\right\}\right]=0$.
57. Solve $\log _{7} \log _{5}(\sqrt{x+5}+\sqrt{x})=0$.

Solve the following equations:
58. $\log _{2} x+\log _{4}(x+2)=2$.
59. $\log _{x+2} x+\log _{x}(x+2)=\frac{5}{2}$.
60. $\log (x+1)=2 \log x$.
61. $2 \log _{x} a+\log _{a x} a+3 \log _{a^{2} x} a=0$. Given $a>0$.
62. $x+\log _{10}\left(1+2^{x}\right)=x \log _{10} 5+\log _{10} 6$.
63. $x^{\frac{3}{4}\left(\log _{2} x\right)^{2}+\log _{x} 2-\frac{5}{4}}=\sqrt{2}$.
64. $\left(x^{2}+6\right)^{\log _{3} x}=(5 x)^{\log _{3} x}$.
65. $(3+2 \sqrt{2})^{x^{2}-6 x+9}+(3-2 \sqrt{2})^{x^{2}-6 x+9}=6$.
66. $\log _{8}\left(\frac{8}{x^{2}}\right) \div\left(\log _{8} x\right)^{2}=3$.
67. $\sqrt{\log _{2}(x)^{4}}+4 \log _{4} \sqrt{\frac{2}{x}}=2$.
68. $2 \log _{10} x-\log _{x} 0.01=5$.
69. $\log _{\sin x} 2 \log _{\cos x} 2+\log _{\sin x} 2+\log _{\cos x} 2=0$.
70. $2^{x+3}+2^{x+2}+2^{x+1}=7^{x}+7^{x-1}$.
71. $\log _{\sqrt{2} \sin x}(1+\cos x)=2$.
72. $\log _{10}\left[198+\sqrt{x^{3}-x^{2}-12 x+36}\right]=2$.
73. If $\log 2=0.30103$ and $\log 3=0.47712$, solve the equation $2^{x} 3^{2 x}-100=0$.
74. $\log _{x} 3 \log _{\frac{x}{3}} 3+\log _{\frac{x}{81}} 3=0$.
75. $\log _{(2 x+3)}\left(6 x^{2}+23 x+21\right)=4-\log _{(3 x+7)}\left(4 x^{2}+12 x+9\right)$.
76. $\log _{2}\left(x^{2}-1\right)=\log _{\frac{1}{2}}(x-1)$.
77. $\log _{5}\left(5^{\frac{1}{x}+125}\right)=\log _{5} 6+1+\frac{1}{2 x}$.
78. $\log _{100}|x+y|=\frac{2}{1}$ and $\log _{10} y-\log _{10}|x|=\log _{100} 4$.
79. $2 \log _{2} \log _{2} x+\log _{\frac{1}{2}} \log _{2}(2 \sqrt{2} x)=1$.
80. $\log _{\frac{3}{4}} \log _{8}\left(x^{2}+7\right)+\log _{\frac{1}{2}} \log _{\frac{1}{4}}\left(x^{2}+7\right)^{-1}=2$.
81. $\log _{10} x+\log _{10} x^{\frac{2}{1}}+\log _{10} x^{\frac{1}{4}}+\ldots$ to $\infty=y$ and $\frac{1+3+5+\ldots+(2 y-1)}{4+7+10+\ldots+(3 y+1)}=\frac{20}{7 \log _{10} x}$.
82. $18^{4 x-3}=(54 \sqrt{2})^{3 x-4}$.
83. $4^{\log _{9} 3}+9^{\log _{2} 4}=10^{\log _{x} 83}$.
84. $3^{4 \log _{9}(x+1)}=2^{2 \log _{2}(x+3)}$.
85. $\frac{6}{5} a^{\log _{a} x \log _{10} a \log _{a} 5}-3^{\log _{10} \frac{x}{10}}=9^{\log _{100} x+\log _{4} 2}$.
86. $2^{3 x+\frac{1}{2}}+2^{x+\frac{1}{2}}=2^{\log _{2} 6}$.
87. $(5+2 \sqrt{6})^{x^{2}-3}+(5-2 \sqrt{6})^{x^{2}-3}=10$.
88. For $x>1$, show that $2 \log _{10 x} x-\log _{x} .01 \geq 4$.
89. Show that $\left|\log _{b} a+\log _{a} b\right|>2$.
90. Solve $\log _{0.3}\left(x^{2}+8\right)>\log _{0.3} 9 x$.
91. Solve $\log _{x-2}(2 x-3)>\log _{x-2}(24-6 x)$.
92. Find the interval in which x will lie if $\log _{0.3}(x-1)<\log _{0.09}(x-1)$.
93. Solve $\log _{\frac{1}{2}} x \geq \log _{\frac{1}{3}} x$.
94. Solve $\log _{\frac{1}{3}} \log _{4}\left(x^{2}-5\right)>0$.
95. Solve $\log \left(x^{2}-2 x-2\right) \leq 0$.
96. Solve $\log _{2}^{2}(x-1)^{2}-\log _{0.5}(x-1)>5$.
97. Prove that $\log _{2} 17 \log _{\frac{1}{5}} 2 \log _{3} \frac{1}{5}>2$.
98. Show that $\log _{20} 3$ lies between $\frac{1}{2}$ and $\frac{1}{3}$.
99. Show that $\log _{10} 2$ lies between $\frac{1}{4}$ and $\frac{1}{3}$.
100. Solve $\log _{0.1}\left(4 x^{2}-1\right)>\log _{0.1} 3 x$.
101. Solve $\log _{2}\left(x^{2}-24\right)>\log _{2} 5 x$.
102. Show that $\frac{1}{\log _{3} \pi}+\frac{1}{\log _{4} \pi}>2$.
103. Without actual computation find greater among $(0.01)^{\frac{1}{3}}$ and $(0.001)^{\frac{1}{5}}$.
104. Without actual computation find greater among $\log _{2} 3$ and $\log _{3} 11$.
105. Solve $\log _{3}\left(x^{2}+10\right)>\log _{3} 7 x$.

106 . Solve $x^{\log _{10} x}>10$.
107. Solve $\log _{2} x \log _{2 x} 2 \log _{2} 4 x>1$.
108. Solve $\log _{2} x \log _{3} 2 x+\log _{3} x \log _{2} 4 x>0$.
109. Find the value of $\log _{12} 60$ if $\log _{6} 30=a$ and $\log _{15} 24=b$.
110. If $\log _{a} x, \log _{b} x$ and $\log _{c} x$ are in A.P. and $x \neq 1$, prove that $c^{2}=(a c)^{\log _{a} b}$.
111. If $a=\log _{\frac{1}{2}} \sqrt{0.125}$ and $b=\log _{3}\left(\frac{1}{\sqrt{24}-\sqrt{17}}\right)$ then find whether $a>0, b>0$.
112. Which one is greater among $\cos \left(\log _{e} \theta\right)$ and $\log _{e}(\cos \theta)$ if $e^{-\frac{\pi}{2}}<\theta<\frac{\pi}{2}$.
113. If $\log _{2} x+\log _{2} y \geq 6$, prove that $x+y \geq 16$.
114. If a, b, c eb three distinct positive numbers, each different from 1 such that $\log _{b} a \log _{c} a-$ $\log _{q} a a+\log _{a} b \log _{c} b-\log _{b} b+\log _{a} c \log _{b} c-\log _{c} c=0$.
115. If $y=10^{\frac{1}{1-\log x}}$ and $z=10^{\frac{1}{1-\log y}}$, prove that $x=10^{\frac{1}{1-\log z}}$.
116. If n is a natural number such that $n=p_{1}^{a_{1}} p_{2}^{a_{2}} p_{3}^{a_{3}} \ldots p_{k}^{a_{k}}$ and $p_{1}, p_{2}, p_{3}, \ldots, p_{k}$ are distinct primes, then show that $\log n \geq k \log 2$.
117. The numbers $3,3 \log _{y} x, 3 \log _{z} y, 7 \log _{x} z$ form and A.P. then prove that $x^{18}=y^{21}=z^{28}$.
118. Prove that $\log _{4} 18$ is an irrational number.
119. If $x, y, z>1$ are in G.P. then prove that $\frac{1}{1+\ln x}, \frac{1}{1+\ln y}, \frac{1}{1+\ln z}$ are in H.P.
120. Find the value of $\log _{30} 8$, if $\log _{30} 3=a$ and $\log _{30} 5=b$.
121. Find the value of $\log _{54} 168$, if $\log _{7} 12=a$ and $\log _{12} 24=b$.
122. If $a \neq 0$ and $\log _{x}\left(a^{2}+1\right)<0$ then find the interval in which x lies.
123. If $\log _{12} 18-a$ and $\log _{24} 54=b$, prove that $a b+5(a-b)=1$.
124. If a, b, c are in G.P., show that $\log _{a} x, \log _{b} x, \log _{c} x$ are in H.P.
125. If $a, a_{1}, a_{2}, \ldots, a_{n}$ are in G.P. and $b, b_{1}, b_{2}, \ldots, b_{n}$ in A.P. with positive terms and also the common difference of A.P. and common rations of G.P. are positive, show that there exists a system of $\operatorname{logarithm}$ for which $\log a_{n}-b_{n}=\log a-b$ for any n. Find the base of this system.
126. If $\log _{3} 2, \log _{3}\left(2^{x}-5\right)$ and $\log _{3}\left(2^{x}-\frac{7}{2}\right)$ are in A.P., find the value of x.
127. Prove that $\log _{2} 7$ is an irraational number.
128. If $\log _{0.5}(x-2)<\log _{0.25}(x-2)$, then find the interval in which x lies.

Chapter 2
 Progressions

There are three different progressions: arithmetic progression, geometric progression and harmonic progression. We start this chapter with arithmetic progression or A.P.

2.1 Arithmetic Progressions

Consider sequences like $1,2,3,4, \ldots$ or $-1,-2,-3,-4, \ldots$ or $1,3,5,7, \ldots$ or $a, a+d, a+2 d, \ldots$
These sequences increase or decrease with a common difference. When quantities increase or decrease with a common difference they are said to be in Arithmetic Progression. The common difference can be found by subtracting any term of the series that follows it. For example for the first series it is 1 and for the last it is d.

Consider the series $a, a+d, a+2 d, a+3 d, \ldots$
Simple observation tells us that 1st term is a, 2nd term is $a+d$, the 3 rd term is $a+2 d$ and hence the nth term will be $a+(n-1) d$. These terms are typically written as $t_{1}, t_{2}, t_{3}, \ldots, t_{n}$.

2.1.1 nth Term of Arithmetic Progression

Following above discussion, we can clearly say that the nth term of an arithmetic progression is given by $t_{n}=a+(n-1) d$, where a is called the first term and d the common difference.

$$
\begin{equation*}
t_{n}=a+(n-1) d \tag{2.1}
\end{equation*}
$$

2.1.2 Sum of an Arithmetic Progression

Let S_{n} represent the sum of first n terms of an arithmetic progression, then we can write.

$$
S_{n}=a+(a+d)+(a+2 d)+\cdots+[a+(n-2) d]+[a+(n-1) d]
$$

Writing the terms in reverse order we have

$$
S_{n}=[a+(n-1) s]+[a+(n-2) d]+\cdots+(a+d)+a
$$

Adding term by term, we get

$$
\begin{gather*}
2 S_{n}=[2 a+(n-1) d]+[2 a+(n-1) d]+\cdots \text { to } n \text { terms } \\
2 S_{n}=n[2 a+(n-1) d] \\
S_{n}=\frac{n}{2}[2 a+(n-1) d] \tag{2.2}
\end{gather*}
$$

We also see that $S_{n}=\frac{n}{2}\left(t_{1}+t_{n}\right)$
We also see that if a series is

$$
\begin{equation*}
1+2+3+\cdots+n=\sum_{i=0}^{n} i=\frac{n(n+1)}{2} . \tag{2.3}
\end{equation*}
$$

2.1.3 Arithmetic Mean

When three quantities are in arithmetic progression the quantity in the middle is known to be arithmetic mean of the other two. For example, if a, b, c are in A.P., then b is said to be arithmetic mean of a and c. In general, it is written $b=\frac{a+c}{2}$. This can be examined further.
Let $b=a+d$, then $c=a+2 d$. Clearly, $b=\frac{a+c}{2}$.
It is also possible to insert n numbers between any two numbers such that all of them are in A.P. Consider two numbers a and b in between which we want to insert n numbers such that they are in A.P. Clearly, b will become $n+2$ th term of A.P. Let common difference be d then we can write $b=a+(n+1) d \Rightarrow d=\frac{b-a}{n+1}$. Now all the n arithmetic means can be deduced. Let those be $m 1, m 2, \cdots, m_{n}$ then $m_{1}=a+\frac{b-a}{n+1}, m_{2}=a+\frac{2(b-a)}{n+1}, \cdots, m_{n}=a+\frac{n(b-a)}{n+1}$.

First A.M. $=a+d=\frac{a n+b}{n+1}$
Second A.M. $=a+2 d=\frac{a(n-1)+b}{n+1}$
nth A.M. $=a+n d=\frac{a+n b}{n+1}$

$$
\begin{equation*}
A_{n}=\frac{a+n b}{n+1} \tag{2.4}
\end{equation*}
$$

Suppose there are n terms of an A.P., then the arithmetic mean of those n terms is given by $\frac{t_{1}+t_{2}+\cdots+t_{n}}{n}$.

2.1.4 Deducing Number of Terms

We know that $S_{n}=\frac{n}{2}[2 a+(n-1) d]$. Say S_{n}, a and d are known and we have to evaluate n. This being a quadratic equaion will have two roots for n. If the results are positive and integral then there is no problem in interpreting the results. In some cases for a negative root a suitable interpretation can be given.

Example: How many terms of the series $-8,-6,-4, \cdots$ must be added for the sum to be 36 ?
$\frac{n}{2}[-16+(n-1) 2]=36 \Rightarrow n^{2}-9 n-36=0 \Rightarrow n=12,-3$
If we take 12 terms of the series, we have $-8,-6,-4,-2,0,2,4,6,8,10,12,14$. The sum of these terms is 36 and sum of last three terms is also 36 which is represented by $n=-3$.

2.1.5 Properties of an A.P.

1. If a fixed number is added to or subtracted from each item of a given A.P., then the resulting is also an A.P., and it has the same common difference as that of the given A.P.
2. If each term of an A.P. is multiplied or divided by a non-zero fixed constant then the resulting sequence is also an A.P. The common difference is multiplied or divided by the same factor.
3. If $a_{1}, a_{2}, a_{3}, \ldots$ and $b_{1}, b_{2}, b_{3}, \ldots$ are two arithmetic progressions then $a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+$ b_{3}, \cdots are also in A.P.
4. If we have to choose three unknown terms in an A.P. then it is best to choose them as $a-d, a, a+d$.
5. If we have to choose four unknown terms in an A.P. then it is best to choose them as $a-3 d, a-d, a+d, a+3 d$.
6. In an A.P., the sum of terms equidistant from the beginning and end is constant and is equal to the sum of first and last term.
7. Any term of an A.P., except the first, is equal to half the sum of terms which are equidistant from it:

$$
\begin{gathered}
a_{n}=\frac{1}{2}\left(a_{n-k}+a_{n+k}\right), k<n, \text { and for } k=1 \\
a_{n}=\frac{1}{2}\left(a_{n-1}+a_{n+1}\right)
\end{gathered}
$$

8. $t_{n}=S_{n}-S_{n-1}, n \geq 2$
9. If $t_{n}=p n+q$ i.e. a linear expression in n then it will form an A.P. of common difference $p=t_{n}-t_{n-1}$ and first term $p+q$. For example, if $t_{n}=3 n+4$, then it is an A.P. of common difference 3 anda the first term as 7 .
10. If $S_{n}=a n^{2}+b n+c$ i.e. a quadratic function in n, then the series in an A.P. where $a=2 a$, twice the coefficient of n^{2}.

2.1.6 Sum of Squares and Cubes and More

We observe that

$$
\begin{gather*}
i^{3}-(i-1)^{3}=3 i^{3}-3 i+1 \Rightarrow \sum_{i=1}^{n}\left[i^{3}-(i-1)^{3}\right]=3 \sum_{i=0}^{n} i^{2}-\frac{3 n(n+1)}{2}+n \tag{2.5}\\
n^{3}=3 \sum_{i=0}^{n} i^{2}-\frac{3 n(n+1)}{2}+n \Rightarrow 3 \sum_{i=0}^{n} i^{2}=n^{3}+\frac{3 n(n+1)}{2}-n \\
\sum_{i=0}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{2.6}
\end{gather*}
$$

Following in a similar fashion, we can show that

$$
\begin{equation*}
\sum_{i=0}^{n}=\left\{\frac{n(n+1)}{2}\right\}^{2} \tag{2.7}
\end{equation*}
$$

More powers can be evaluated in a similar fashion.

2.2 Geometric Progressions

A succession of numbers is said to be in geometric progressions or geometric sequence if the ratio of any term and the term preceeding it is constant throughout. This constant is called common ratio of the G.P.

Example: 1, 2, 4, 8, 16, \ldots
Here, $\frac{t_{2}}{t_{1}}=\frac{t_{3}}{t_{2}}=\ldots=2$.
Also, $1,3,9,27, \ldots$ are in geometric progression whose first term is 1 and common ratio is 3 .
Also, $2,-4,8,-16, \ldots$ are in geometric progression whose firts term is 2 and common ratio is -2 .

2.2.1 Properties of a G.P.

1. If the each term of a G.P. be multiplied by a non-zero number, then the sequence obtained is also a G.P.

Proof: Let the given G.P. be $a, a r, a r^{2}, a r^{3}, \ldots$
Let k be a non-zero number, the sequence obtained by multiplying each term of the given G.P. by k is $a k, a r k, a r^{2} k, a r^{3} k, \ldots$

Clearly, the series is in G.P. with the same common ratio as previous ratio i.e. r.
Again, dividing each term of G.P. $a, a r, a r^{2}, a^{3}, \ldots$ we obtain the sequence $\frac{a}{k}, \frac{a r}{k}, \frac{a r^{2}}{k}, \ldots$
It is clear that this new sequence is also a G.P., whose common ratio is r.
2. The reciprocals of the terms of a G.P. are also in G.P.

Proof: Let the G.P. be $a, a r, a r^{2}, \ldots$, the sequence whose terms are reciprocals of this G.P. is $\frac{1}{a}, \frac{1}{a r}, \frac{1}{a r^{2}}, \cdots$

It is clear that this sequence is in G.P., whose first term is $\frac{1}{a}$ and common ratio is $\frac{1}{r}$.

2.2.2 Sum of the First n Terms of a G.P.

Let a be the first term and r be the common ratio of a G.P. and S_{n} be the sum of its first n terms

Case I: When $r \neq 1$

$$
\begin{gathered}
S_{n}=a+a r+a r^{2}+\cdots+a r^{n-2}+a r^{n-1} \\
r S_{n}=a r+a r^{2}+\cdots+a r^{n-1}+a r^{n}
\end{gathered}
$$

Subtracting, we get $(1-r) S_{n}=a-a r^{n}=a\left(1-r^{n}\right)$

$$
\therefore S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{a\left(r^{n}-1\right)}{r-1}
$$

Case II: When $r=1$
$S_{n}=a+a+\cdots+a=n a$ and this G.P. is also an A.P. whose common difference is 0.

2.2.3 Sum of Infinite Terms of a G.P.

If $|r| \geq 1$ then sum would be $\pm \infty$. However, if $|r|<1$ then sum would be finite.

We have obtained that $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
We see that as n approaches ∞, r^{n} will approach 0 . Thus, $S_{\infty}=\frac{a}{1-r}$

2.2.4 Recurring Decimals

Recurring decimals are a very interesting and nice example to demonstrate the infinite G. P. and the value can be obtained by the formula derived in previous section. Consider a recurring decimal $\dot{7}$.

$$
\begin{gathered}
. \dot{7}=.777777 \ldots \text { to } \infty \\
=.7+.07+.007+.0007+\cdots \\
=\frac{7}{10}+\frac{7}{100}+\frac{7}{1000}+\cdots \\
=\frac{7}{10}+\frac{7}{10^{2}}+\frac{7}{10^{3}}+\cdots \\
=7\left(\frac{1}{10}+\frac{1}{10^{2}}+\frac{1}{10^{3}}+\cdots\right) \\
=\frac{7}{9}
\end{gathered}
$$

2.2.5 Geometric Mean

Like arithmetic means; we also have geometric means. Say two numbers a and b are in G.P. and x is a geometric mean between them then by definition a, x, b will be in G.P. Then,

$$
\begin{gathered}
\frac{x}{a}=\frac{b}{x} \\
\Rightarrow x^{2}=a b \Rightarrow x=\sqrt{a b}
\end{gathered}
$$

If $G_{1}, G_{2}, \ldots, G_{n}$ are n geometric means between two numbers a and b, then $G_{1} G_{2} \ldots G_{n}=$ $(\sqrt{a b})^{n}$

Proof: b is the $n+2$ nd term. Thus, $b=a r^{n+1}$ where common ratio is r.
Thus, $G_{1}=a r, G_{2}=a r^{2}, \cdots, G_{n}=a r^{n}$
$G_{1} G_{2} \ldots G_{n}=a^{n} r^{1+2+\cdots+n}=a^{n} r^{\frac{n(n+1)}{2}}$
$=\sqrt{(a b)^{n}}$
If $a_{1}, a_{2}, \ldots, a_{n}$ are n positive numbers in G.P. then their geometric mean is given by $G=$ $\left(a_{1} a_{2} \ldots a_{n}\right)^{\frac{1}{n}}$

Thus, first G.M. $=a r=a\left(\frac{b}{a}\right)^{1 /(n+1)}$
Second G.M. $=a r^{2}=a\left(\frac{b}{a}\right)^{2 /(n+1)}$
nth G.M. $=a r^{n}=a\left(\frac{b}{a}\right)^{n /(n+1)}$

2.2.6 Notes

1. Odd number of terms in a G.P. should be taken as $\cdots \frac{a}{r^{2}}, \frac{a}{r}, a, a r, a r^{2}, \cdots$
2. Even number of terms in a G.P. should be taken as $\cdots, \frac{a}{r^{5}}, \frac{a}{r^{3}}, \frac{a}{r}, a r, a r^{3}, a r^{5}, \cdots$
3. If $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b-2, \ldots, b_{n}$ be two G.P. of common ratios r_{1} and r_{2} then $a_{1} b_{1}, a_{2} b_{2}, a_{3} b_{3}, \ldots$ and $\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, \frac{a_{3}}{b_{3}}, \cdots$ also form G.P., where common ratios will be $r_{1} r_{2}$ and $\frac{r_{1}}{r_{2}}$ respectively.
4. Let $a_{1}, a_{2}, a_{3}, \ldots$ be a G.P. of positive terms, then $\log a_{1}, \log a_{2}, \log a_{3}, \ldots$ will be an A.P. and vice-versa.

Let a be the first term and r be the common ratio of the G.P. then $a_{i}=a r^{i-1}$. Now $\log a_{i}=\log a+(i-1) \log r$ which represents i th term of an A.P. with first term as $\log a$ and common difference $\log r$.

Conversely, let us assume that $\log a_{1}, \log a_{2}, \log a_{3}, \ldots$ are in A.P. then $a_{i}=x^{a+(i-1) d}=$ $x^{a} x^{i-1 d}$ where x is the base of the logarithm. This shows that $a_{1}, a_{2}, a_{3}, \ldots$ will be in G.P., whose first term is x^{a} and whos ecommon ratio is x^{d}.
5. Increasing and decreasing G.P.

Case I: Let the first term a be positive. Then if $r>1$, then it is an increasing G.P. but if $0<r<1$ then it is a decreasing G.P.
case II: Let the first term a be negative. Then if $r>1$, then it is a decreasing G.P. but if $0<r<1$ then it is an increasing G.P.

2.2.7 Arithmetico Geometric Series

If the termms of an A.P. are multiplied y corresponding terms of a G.P., then the new series obtained is called an Arithmetico-Geometric series.

Exmaple: If the terms of the arithmetic series $2+5+8+\cdots$ are multiplied with the corresponsing terms of the geometric series $x+x^{2}+x^{3}+\cdots$ then the resulting arithmeticogeometric series is $2 x+5 x^{2}+8 x^{3}+\cdots$

2.2.8 Sum of n terms of an Arithmetico-Geometric Series

Let $a_{1}, a_{2}, \ldots, a_{n}$ be an A.P. and $b_{1}, b_{2}, \ldots, b_{n}$ be a G.P. Let d be the common difference of the A.P. and r be the common ratio of the G.P. Also, let $a=a_{1}$ and $b=b_{1}$, then

$$
\begin{gathered}
S_{n}=a b+(a+d) b r+(a+2 d) b r^{2}+\cdots+[a+(n-1) d] b r^{n-1} \\
r S_{n}=a b r+(a+d) b r^{2}+(a+2 d) b r^{3}+\cdots+[a+(n-1) d] b r^{n} \\
\Rightarrow(1-r) S_{n}=a b+d b r+d b r 62+\cdots+d b r^{n-1}-[a+(n-1) d] b r^{n} \\
=a b+\frac{d b r\left(1-r^{n-1}\right)}{(1-r)-[a+(n-1) d] b r^{n}}
\end{gathered}
$$

$$
S_{n}=\frac{a b}{1-r}+\frac{d b r\left(1-r^{n-1}\right)}{(1-r)^{2}}-\frac{[a+(n-1) d] b r^{n}}{1-r}(r \neq 1)
$$

If $|r|<1$, then $\lim _{n \rightarrow \infty} r^{n}=0$, therefore, sum of an infinite number of terms of an arithmeticogeometric series is given by

$$
S_{\infty}=\frac{a b}{1-r}+\frac{d b r}{(1-r)^{2}}
$$

2.3 Harmonic Progressions

Consider an A.P. then an H.P. is formed by terms given by reciprocal of terms of the A.P. respectively. So if the terms of A.P. are $a_{1}, a_{2}, \ldots, a_{n}$ then terms of H.P. are given by $\frac{1}{a_{1}}, \frac{1}{a_{2}}, \cdots, \frac{1}{a_{n}}$.

When we study H.P. and its properties we do that by studying the properties of the corresponding A.P.

2.3.1 Harmonic Means

Numbers $H_{1}, H_{2}, \ldots, H_{n}$ are said to be the n H.M. between two numbers a and b, if $a, H_{1}, H_{2}, \ldots, H_{n}, b$ are in H.P. For example, $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ are the H.M. between 1 and $\frac{1}{5}$ because $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$ are in H.P.

Let a and b be the two given quantities and H be the H.M. between them. Then a, H, b will be in H.P.
$\therefore \frac{1}{a}, \frac{1}{H}, \frac{1}{b}$ will be in H.P.
$\frac{1}{H}-\frac{1}{a}=\frac{1}{b}-\frac{1}{H} \Rightarrow H=\frac{2 a b}{a=b}$
Let $H_{1}, H_{2}, \ldots, H_{n}$ be the n H.M. between two given quantities a and b, and d be the c.d. of the corresponding A.P. Then $a, H_{1}, H_{2}, \ldots, H_{n}, b$ will be in H.P.
$\therefore \frac{1}{a}, \frac{1}{H_{1}}, \frac{1}{H_{2}}, \cdots, \frac{1}{H_{n}}, \frac{1}{b}$ will be in A.P.
$\frac{1}{b}=t_{n+2}=\frac{1}{a}+(n+1) d \Rightarrow d=\frac{a-b}{a b(n+1)}$
$\therefore \frac{1}{H_{1}}=\frac{1}{a}+d \Rightarrow H_{1}=\frac{a b(n+1)}{a+n b}$
$H_{2}=\frac{a b(n+1)}{2 a+(n-1) b}$
$H_{n}=\frac{a b(n+1)}{a n+b}$

2.4 Relation between A.M., G.M. and H.M.

Let a and b be two real, positive and unequal quantities and A, G and H be the single A.M., G.M. and H.M. between them respectively.

Then, $A=\frac{a+b}{2}, G=\sqrt{a b}, H=\frac{2 a b}{a+b}$
$A H=a b=G^{2}$ and thus A, G, H form a G.P.
Similarly it can be probve that $A>G>H$
For equal a and b, it can be easily verified that $A=G=H$

2.5 Problems

1. If nth term of a sequence is $2 n^{2}+1$, find the sequence. Is this seuquence in A.P.?
2. Find the first five terms of the sequence for which $t_{1}=1, t_{2}=2$ and $t_{n+2}=t_{n}+t_{n+1}$.
3. Write the sequence whose nth term is $3 n+5$.
4. Write the sequence whose nth term is $2 n^{2}+3$.
5. Write the sequence whose nth term is $\frac{3 n}{2 n+4}$.
6. Write the first three terms of sequence defined by $t_{1}=2, t_{n+1}=\frac{2 t_{n}+1}{t_{n}+3}$.
7. If nth term of a sequence is $4 n^{2}+1$, find the sequence. Is this sequence an A.P.?
8. If nth term of a sequence is $2 a n+b$, where a, b are constants, is this sequence an A.P.?
9. Find the 5th term of the sequence whose first three terms are $3,3,6$ and each term after the second is the sum of two preceding terms.
10. Consider the sequence defined by $t_{n}=a n^{2}+b n+c$. If $t_{1}=1, t_{2}=5$ and $t_{3}=11$ then find the value of t_{10}.
11. Show that the seuquence $9,12,15,18, \ldots$ is an A.P. Find its $16^{\text {th }}$ term and the general term.
12. Show that the sequence $\log a, \log (a b), \log \left(a b^{2}\right), \log \left(a b^{3}\right), \ldots$ is an A.P. Find its nth term.
13. Find the sum to n terms of the sequence $\left\langle t_{n}\right\rangle$, where $t_{n}=5-6 n, n \in N$.
14. How many terms are there in the A.P. $3,7,11, \ldots, 407$?
15. If a, b, c, d, e are in A.P. find the value of $a-4 b+6 c-4 d+e$.
16. In a certain A.P. 5 times the 5 th term is equal to 8 times the 8 th term, then prove that 13th term is zero.
17. Find the term of the series $25,22 \frac{3}{4}, 20 \frac{1}{2}, 18 \frac{1}{4}, \cdots$ which is numerically smallest positive number.
18. A person was appointed in the pay scale of Rs. $700-40-1500$. Find in how many years he will reach the maximum of the scale.
19. Find the A.P. whose 7 th and 13th terms are respectively 34 and 64 .
20. Is 55 a term of the sequence $1,3,5,7, \ldots$? If yes, find which term it is.
21. Find the first negative term of the sequence $2000,1995,1990, \ldots$
22. How many terms are identical in two arithmetic progressions $2,4,6,8, \ldots$ up to 100 terms and $3,6,9, \ldots$ up to 80 terms.
23. Find the number of all positive integers of 3 digits which are divisible by 5 .
24. Is 105 a term of the arithmetic progression $4,9,14, \ldots$?
25. Find the first negative term of the sequence $999,995,991, \ldots$.
26. Each of the series $3+5+7+\cdots$ and $4+7+10+\cdots$ is continued to 100 term. Find how many terms are identical?
27. If m times the m th term of an A.P. is equal to n times the nth term, find its $(m+n)$ th term.
28. If a, b, c be the p th, q th and r th terms respectively of an A.P., prove that $a(q-r)+$ $b(r-p)+c(p-q)=0$.
29. Find the number of integers between 100 and 1000 that are divisible by 7 and not divisible by 7 .
30. If a, b, c be the p th, q th and r th terms respectively of an A.P., prove that $(a-b) r+$ $(b-c) p+(c-a) q=0$.
31. The sum of three numbers in A.P. is 27 and the sum of their squares is 293 . Find the numbers.
32. The sum of four integers in A.P. is 24 and their product is 945 . Find the numbers.
33. If the p th term of an A.P. is q and the q th term is p, find the first term and common difference. Also, show that $(p+q)$ th term is zero.
34. For an A.P. show that $t_{m}+t_{2 n+m}=2 t_{m+n}$.
35. Divide 15 into three parts which are in A.P. and the sum of their squares is 83 .
36. Three numbers are in A.P. Their sum is 27 and the sum of their squares is 275 . Find the numbers.
37. The sum of three numbers in A.P. is 12 and the sum of their cubes is 408 . Find the numbers.
38. Divide 20 into four parts which are in A.P. such that the product of first and fourth is to product of second and third is $2: 3$.
39. The sum of three numbers in A.P. is -3 and their product is 8 . Find the numbers.
40. Divide 32 into four parts which are in A.P. such that the ratio of product of extremes to the product of means is $7: 15$.
41. If $(b+c-a) / a,(c+a-b) / b,(a+b-c) / c$ are in A.P. then prove that $1 / a, 1 / b, 1 / c$ are also in A.P.
42. If $a, b, c \in R+$ form an A.P., then prove that $a+1 / b c, b+1 / c a, c+1 / a b$ are also in A.P.
43. If a, b, c are in A. P., then prove that $a^{2}(b+c), b^{2}(c+a), c^{2}(a+b)$ are also in A.P.
44. If a, b, c are in A.P., then prove that $\frac{1}{\sqrt{b}+\sqrt{c}}, \frac{1}{\sqrt{c}+\sqrt{a}}, \frac{1}{\sqrt{a}+\sqrt{b}}$ are also in A.P.
45. If a, b, c are in A.P., then prove that $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ are also in A.P.
46. If $(b-c)^{2},(c-a)^{2},(a-b)^{2}$ are in A.P. then prove that $\frac{1}{b-c}, \frac{1}{c-a}, \frac{1}{a-b}$ are also in A.P.
47. If a, b, c are in A.P. then prove that $b+c, c+a, a+b$ are also in A.P.
48. If a^{2}, b^{2}, c^{2} are in A.P. then prove that $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P.
49. If a, b, c are in A.P., show that $2(a-b)=a-c=2(b-c)$.
50. If a, b, c are in A.P., then prove that $(a-c)^{2}=4\left(b^{2}-a c\right)$.
51. In an A.P. if $S_{n}=t_{1}+t_{2}+\cdots+t_{n}(n$ odd $), S_{2}=t_{2}+t_{4}+\cdots+t_{n-1}$, then find the value of S_{1} / S_{2} in terms of n.
52. Find the degree of the equation $(1+x)\left(1+x^{6}\right)\left(1+x^{11}\right) \cdots\left(1+x^{101}\right)$.
53. Prove that a sequence is an A.P. if the sum of its terms is of the form $A n^{2}+B n$, where A, B are constants.
54. If the sequence $a_{1}, a_{2}, \ldots, a_{n}$ form an A.P., then prove that $a_{1}^{2}-a_{2}^{2}+a_{3}^{2}-a_{4}^{2}+\cdots+$ $a_{2 n-1}^{2}-a_{2 n}^{2}=\frac{n}{2 n-1}\left(a_{1}^{2}-a_{2 n}^{2}\right)$.
55. Find the sum of first 24 terms of the A.P. $a_{1}, a_{2}, a_{3}, \ldots, a_{24}$, if it is known that $a_{1}+a_{5}+$ $a_{10}+a_{15}+a_{20}+a_{24}=225$
56. If the arithmetic progression whose common difference is non-zero, the sum of first $3 n$ terms is equal to next n terms. Then, find the ratio of sum of first $2 n$ terms to the sum of next $2 n$ terms.
57. If the sum of n terms of a series be $5 n^{2}+3 n$, find its nth term. Are the terms of this series in A.P.?
58. Find the sum of the series $(a+b)^{2}+\left(a^{2}+b^{2}\right)+(a-b)^{2}+\cdots$ to n terms.
59. Find $1-3+5-7+9-11+\cdots$ to n terms.
60. The interior angles of a polygon are in A.P. The smallest angle is 120° and the commnon difference is 5°. Find the number of sides of the polygon.
61. 25 trees are planted in a straight line at intervals of 5 meters. To water them the gardener must bring water for each tree separately from a well 10 meters from the first tree. How far he will have to travel to water all the trees beginning with the first if he starts from the well.
62. If a be the first term of an A.P. and the sum of its first p terms is equal to zero, show that the sum of the next q terms is $-\frac{a(p+q)}{p-1} q$.
63. The sum of the first p terms of an A.P. is equal to the sum of its first q terms, prove that the sum of its first $(p+q)$ terms is zero.
64. Prove that the sum of latter half of $2 n$ terms of a series in A.P. is equal to the one third of the sum of first $3 n$ terms.
65. If $S_{1}, S_{2}, S_{3}, \ldots, S_{p}$ be the sum of n terms of arithmetic progressions whose first terms are respectively $1,2,3, \ldots$ and common differences are $1,2,3, \ldots$ prove that

$$
S_{1}+S_{2}+S_{3}+\cdots+S_{p}=\frac{n p}{4}(n+1)(p+1)
$$

66. If a, b and c be the sum of p, q and r terms rspectively of an A.P., prove that

$$
\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0
$$

67. If the sum of m terms of an A.P. is equal to half the sum of $(m+n)$ terms and is also equal to half the sum of $(m+p)$ terms, prove that $(m+n)\left(\frac{1}{m}-\frac{1}{p}\right)=(m+p)\left(\frac{1}{m}-\frac{1}{n}\right)$.
68. If there are $(2 n+1)$ terms in an A.P., then prove that the ratio of sum of odd terms and the sum of even terms is $n+1: n$.
69. The sum of n terms of two series in A.P. are in the ration $(3 n-13):(5 n+21)$. Find the ratio of their 24 th terms.
70. If the m th term of an A.P. is $\frac{1}{n}$ and nth term of an A.P. is $\frac{1}{m}$ then prove that the sum to $m n$ terms is $\frac{m n+1}{2}$.
71. If the sum of m terms of an A.P.is n and the sum of its n terms is m, show that sum of $(m+n)$ terms is $-(m+n)$.
72. If S be the sum of $2 n+1$ terms of an A.P., and S_{1} that of alternate terms beginning with the first, then show that $\frac{S}{S_{1}}=\frac{2 n+1}{n+1}$
73. If a, b, c be the 1 st, 3 rd , nth terms respectively of an A.P., prove that the sum of n terms is $\frac{c+a}{2}+\frac{c^{2}-a^{2}}{b-a}$.
74. The sum of n terms of two series in A.P. are in ratio $(3 n+8):(7 n+15)$. Find the ratio of their 12 th terms.
75. If the ratio of the sum of m terms and n terms of an A.P. is $m^{2}: n^{2}$, prove that the ratio of its m th and nth term wil be $(2 m-1):(2 n-1)$.
76. How many terms are in the G.P. $5,20,80, \ldots, 5120$?
77. How many terms are in the G.P. $0.03,0.06,0.12, \ldots, 3.84$?
78. A boy agrees to work at the rate of one rupee the first day, two rupee the second day, four rupees the third day, eight rupees the fourth day and so on. How much would he get on $20 t h$ day?
79. The population of a city in January 1987 was 20, 000 . It increased at the rate of 2% per annum. Find the population of the city in January 1997.
80. The sum of n terms of a sequence is $2^{n}-1$, find its nth term. Is the sequence in G.P.?
81. If the fifth term of a G.P. is 81 and second term is 24 . Find the G.P.
82. The seventh term of a G.P. is 8 times the fourth term. Find the G.P. when its 5 th term is 48 .
83. If the 5 th and 8 th terms of a G.P. be 48 and 384 respectively, find the G.P
84. If the 6 th and 10 th terms of a G.P. are $\frac{1}{16}$ and $\frac{1}{256}$ respectively, find the G.P.
85. If the p th, q th and r th terms of a G.P. be $a, b, c(a, b, c>0)$, then prove that $(q-r) \log a+$ $(r-p) \log b+(p-q) \log c=0$.
86. If the $(p+q)$ th term of a G.P. is a and the $(p-q)$ th term is b, show that its p th term is $\sqrt{a b}$.
87. If the p th, q th and r th terms of a G.P. be x, y and z respectively, prove that $x^{q-r} \cdot y^{r-p} . z^{p-q}=1$.
88. The first term of a G.P. is 1 . The sum of third and fifth terms is 90 . Find the common ratio of G.P.
89. Fifth term of a G.P. is 2. Find the product of its first nine terms.
90. The fourth, seventh and last term of a G.P. are 10,80 and 2560 respectively. Find the first term and number of terms in the G.P.
91. Three numbers are in G.P. If we double the middle term they form an A.P. Find the common ratio of the G.P.
92. If p, q and r are in A.P. show that p th, q th and r th term of a G.P. are in G.P.
93. If a, b, c and d are in G.P., show that $(a b+b c+c d)^{2}=\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)$.
94. Three non-zero numbers a, b and c are in A.P. Increasing a by 1 or increading c by 2 , the numbers are in G.P. Then find b.
95. Three numbers are in G.P. whose sum is 70 . If the extremes be each multiplied by 4 and the mean by 5 , they will be in A.P. Find the numbers.
96. If the product of three numbers in G.P. be 216 and their sum is 19 , find the numbers.
97. A number consists of three digits in G.P. The sum of the right hand and left hand digits exceed twice the middle digit by 1 and the sum of left hand and middle digit is two-third of the sum of the middle and right hand digits. Find the number.
98. In a set of four numbers, the first three are in G.P. and the last three are in A.P. with a common difference of 6 . If the first number is same as fourth, find the four numbers.
99. The sum of three numbers in G.P. is 21 and the sum of their squares is 189 . Find the numbers.
100. The prodduct of three consecutive terms of a G.P. is -64 and the first term is four times the third. Find the terms.
101. Three numbers whose sum is 15 are in A.P. If $1,4,19$ be added to them respectively the resulting numbers are in G.P. Find the numbers.
102. From three numbers in G.P. other three numbers in G.P. are subtracted. Resulting numbers are found to be in G.P. again. Prove that the three sequences have the same common ratio.
103. If a, b, c, d are in G.P., show that $(b-c)^{2}+(c-a)^{2}+(d-b)^{2}=(a-d)^{2}$.
104. If a, b, c, d are in G. P., then show that $\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a d+b c+c d)^{2}$.
105. If $a^{x}=b^{y}=c^{z}$ where x, y, z are in G.P., show that $\log _{b} a=\log _{c} b$.
106. If the continued product of three numbers in a G.P. is 216 and the sum of their products in pairs is 156 , find the numbers.
107. If a, b, c, d are in G.P., show that $(a+b)^{2},(b+c)^{2},(c+d)^{2}$ are in G.P.
108. If a, b, c, d are in G.P., show that $(a-b)^{2},(b-c)^{2},(c-d)^{2}$ are in G.P.
109. If a, b, c, d are in G.P., show that $a^{2}+b^{2}+c^{2}, a b+b c+c d, b^{2}+c^{2}+d^{2}$ are in G.P.
110. If a, b, c, d are in G.P., show that $\frac{1}{(a+b)^{2}}, \frac{1}{(b+c)^{2}}, \frac{1}{(c+d)^{2}}$ are in G.P.
111. If a, b, c, d are in G.P., show that $a(b-c)^{3}=d(a-b)^{3}$.
112. If a, b, c, d are in G.P., show that $(a+b+c+d)^{2}=(a+b)^{2}+(c+d)^{2}+2(b+c)^{2}$.
113. If a, b, c are in G.P., show that $a^{2} b^{2} c^{2}\left(\frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}\right)=a^{3}+b^{3}+c^{3}$.
114. If a, b, c are in G.P., show that $\left(a^{2}-b^{2}\right)\left(b^{2}+c^{2}\right)=\left(b^{2}-c^{2}\right)\left(a^{2}+b^{2}\right)$.
115. If a, b, c are in G.P., show that $\log a, \log b, \log c$ are in A.P.
116. Find $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots$ to n terms.
117. Find $1+2+4+8+\cdots$ to 12 terms.
118. Find $1-3+9-27+\cdots$ to 9 terms.
119. Find $1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27} \cdots$ to n terms.
120. Find the sum of n terms of the series $(a+b)+\left(a^{2}+2 b\right)+\left(a^{3}+3 b\right)+\cdots$ to n terms.
121. A man agrees to work at the rate of one dollar the first day, two dollars the second day, four dollars the third day, eight dollars the fourth day and so on. How much would he get at the end of 120 days.
122. Find the sum to n terms of the series $8+88+888+\cdots$.
123. Find the sum to n terms of the series $6+66+666+\cdots$.
124. Find the sum to n terms of the series $4+44+444+\cdots$.
125. Find the sum to n terms of the series $.5+.55+.555+\cdots$.
126. Find $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}$ to n terms.
127. If you had a choice of a salary of a salary of $\$ 1000$ a day for a month of 31days or $\$ 1$ for the first day, doubling every day which choice would you make?
128. How many terms of the series $1+3+3^{2}+3^{3}+\cdots$ must be taken to make 3280 ?
129. Find the least value of n for which $1+3+3^{2}+\cdots+3^{n-1}>1000$.

130 . Find $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}$ to ∞.
131. A person starts collecting $\$ 1$ first day, $\$ 3$ second day, $\$ 9$ third day and so on. What will be his collection in 20 days.
132. Find the sum of $\left(x^{2}+\frac{1}{x^{2}}+2\right)+\left(x^{4}+\frac{1}{x^{4}}+5\right)+\left(x^{6}+\frac{1}{x^{6}}+8\right)+\cdots$ to n terms.
133. How many terms of the series $1+2+2^{2}+\cdots$ must be taken to make 511 ?
134. Find the least value of n such that $1+2+2^{2}+\cdots+2^{n-1} \geq 300$.
135. Determine the no. of terms of a G.P. if $a_{1}=3, a_{n}=96$ and $S_{n}=189$.
136. Express $0.42 \dot{2} \dot{3}$ as a rational number.
137. Find $\frac{1}{5}+\frac{1}{7}+\frac{1}{5^{2}}+\frac{1}{7^{2}}$ to ∞.
138. Prove that the sum of n terms of the series $11+103+1005+\cdots$ is $\frac{10}{9}\left(10^{n}-1\right)+n^{2}$.
139. Find the sum to n terms of the series $\left(x+\frac{1}{x}\right)^{2}+\left(x^{2}+\frac{1}{x^{2}}\right)^{2}+\left(x^{3}+\frac{1}{x^{3}}\right)^{2}+\cdots$.
140. If S be the sum, P be the product and R the sum of reciprocals of n terms in G.P., prove that $P^{2}=\left(\frac{S}{R}\right)^{n}$.
141. Find $1+\frac{x}{1+x}+\frac{x^{2}}{(1+x)^{2}}+\cdots$ to ∞ if $x>0$.
142. Prove that in an infinite G.P. whose common ratio is r is numerically less than one, the ratio of any term to the sum of all the succeediing terms is $\frac{1-r}{r}$.
143. If $S_{1}, S_{2}, S_{3}, \ldots, S_{p}$ are the sum of infinite geometric series whose first terms are $1,2,3, \ldots, p$ and whose common ratios are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots, \frac{1}{p+1}$ respectively, prove that $S_{1}+S_{2}+S_{3}+\cdots+S_{p}=p(p+3) / 2$.
144. If $x=1+a+a^{2}+a^{3}+\cdots$ to ∞ and $y=1+b+b^{2}+b^{3}+\cdots$ to ∞, show that $1+a b+$ $a^{2} b^{2}+a^{3} b^{3}+\cdots$ to $\infty=\frac{x y}{x+y-1}$, where $0<a<1$ and $0<b<1$.
145. Find the sum to infinity for the series $1+(1+a) r+\left(1+a+a^{2}\right) r^{2}+\cdots$, where $0<a<1$ and $0<r<1$.
146. After striking the floor a certain ball rebound to $\frac{4}{5}$ th of the height from which it has fallen. Find the total distance it travels before coming to rest if it is gently dropped from a height of 120 meters.
147. If a be the first term and b be the nth term and p be the product of n terms of a G.P., show that $p^{2}=(a b)^{n}$.
148. Show that the ratio of sum of n terms of two G.P.'s having the same common ratio is equal to the ratio of their nth terms.
149. If S_{1}, S_{2}, S_{3} be the sum of $n, 2 n, 3 n$ terms respectively of a G.P. show that $\left(S_{2}-S_{1}\right)^{2}=$ $S_{1}\left(S_{3}-S_{2}\right)$.
150. If S_{n} denotes the sum of n terms of a G.P.,whose first term is a and common ratio is r, find $S_{1}+S_{2}+\cdots+S_{2 n-1}$.
151. The sum of n terms of a series is $a \cdot 2^{n}-b$, find its nth term. Are the terms of this series in G.P.
152. Find $\frac{1}{1+x^{2}}\left[1+\frac{2 x}{1+x^{2}}+\left(\frac{2 x}{1+x^{2}}\right)^{2}+\cdots\right.$ to $\left.\infty\right]$ where $x \geq 0$.
153. The sum of an infinite G.P. whose common ratio is numerically less than 1 is 32 and the sum of their first two terms is 24 . Find the terms of the G.P.
154. The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the squares of its terms to infinity is $\frac{16}{3}$, find the G.P.
155. If $p(x)=\left(1+x^{2}+x^{4}+\cdots+x^{2 n-2}\right) /\left(1+x+x^{2}+\cdots+x^{n-1}\right)$ is a polynomial in x, then find the possible values of n.
156. If $x=a+\frac{a}{r}+\frac{a}{r^{2}}+\cdots \infty, y=b-\frac{b}{r}+\frac{b}{r^{2}}-\cdots \infty$ and $z=c+\frac{c}{r^{2}}+\frac{c}{r^{4}}+\cdots \infty$, then prove that $\frac{x y}{z}=\frac{a b}{c}$.
157. A G.P. consists of an even number of terms. If the sum of all terms is 5 times the sum of the terms occupying odd places, then find the common ratio.
158. If sum of n terms of a G.P. is $3-\frac{3^{n+1}}{4^{2 n}}$, then find the common ratio.
159. In an infinite G.P. whose terms are all positive, the common ratio being less than unity, prove that any term $>,=,<$ the sum of all the succeeding terms according as the common ratio $<,=,>\frac{1}{2}$.
160. Prove that $(666 \ldots n \text { digits })^{2}+888 \ldots n$ digits $=444 \ldots 2 n$ digits.
161. Find the sum $(x+y)+\left(x^{2}+x y+y^{2}\right)+\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+\cdots$ to n terms.
162. If the sum of the series $\sum_{n=0}^{\infty} r^{n},|r|<1$ is S, then find the sum of the series $\sum_{n=0}^{\infty} r^{2 n}$.
163. If for a G.P. $t_{m}=\frac{1}{n^{2}}$ and $t_{n}=\frac{1}{m^{2}}$ then find the term $t_{\frac{m+n}{2}}$.
164. If a, b, c be three successive terms of a G.P. with common ratio r and $a<0$ satisfying the condition $c>4 b-3 a$, then prove that $r>3$ or $r<1$.
165. If $(1-k)\left(1+2 x+4 x^{2}+8 x^{3}+16 x^{4}+32 x^{5}\right)=1-k^{6}$, where $k \neq 1$, then find $\frac{k}{x}$.
166. If $\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right) \leq(a b+b c+c d)^{2}$, where a, b, c, d are non-zero real numbers, then show that they are in G.P.
167. If $a_{1}, a_{2}, \ldots, a_{n}$ are n non-zero numbers such that $\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n-1}^{2}\right)\left(a_{2}^{2}+a_{3}^{2}+\cdots+\right.$ $\left.a_{n}^{2}\right) \leq\left(a_{1} a_{2}+a_{2} a_{3}+\cdots+a_{n-1} a_{n}\right)^{2}$, then show that $a_{1}, a_{2}, \ldots, a_{n}$ are in G.P.
168. α, β be the roots of $x^{2}-3 x+a=0$ and γ, δ be the roots of $x^{2}-12 x+b=0$ and the numbers $\alpha, \beta, \gamma, \delta$ form an increasing G.P., then find the values of a and b.
169. There are $4 n+1$ terms in a certain sequence of which the first $2 n+1$ terms are in A.P. of common difference 2 and the last $2 n+1$ terms are in G.P. of common ratio $\frac{1}{2}$. If the middle terms of both the A.P. and G.P. are same then find the mid term of the sequence.
170. If $f(x)=2 x+1$ and three unequal numbers $f(x), f(2 x), f(4 x)$ are in G.P, then find the number of values for x.
171. Three distinct real numbers, a, b, c are in G.P. such that $a+b+c=x b$, then show that $x<-1$ or $x>3$.
172. If $x=\sum_{n=0}^{\infty} a^{n}, y=\sum_{n=0}^{\infty} b^{n}, z=\sum_{n=0}^{\infty} c^{n}$ where a, b, c are in A.P., such that $|a|<1,|b|<$ $1,|c|<1$, then show that $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in A.P. as well.
173. Given that $0<x<\frac{\pi}{4}, \frac{\pi}{4}<y<\frac{\pi}{2}$ and $\sum_{k=0}^{\infty}(-1)^{k} \tan ^{2 k} x=p, \sum_{k=0}^{\infty}(-1)^{k} \cot ^{2 k} y=q$ then prove that $\sum_{k=0}^{\infty} \tan ^{2 k} x \cot ^{2 k} y$ is $\frac{1}{\frac{1}{p}+\frac{1}{q}-\frac{1}{p q}}$
174. An equilateral triangle is drawn by joining the mid-points of a given equilateral triangle. A third equilateral triangle is drawn inside the second in the same manner and the process is continued indefinitely. If the side of first equilateral triangle is $3^{1 / 4}$ inch, then find the sum of areas of all these triangles.
175. If $S=\exp \left\{\left(1+|\cos x|+\cos ^{2} x+\left|\cos ^{3} x\right|+\cos ^{4} x \cdots\right.\right.$ to $\left.\left.\infty\right) \log _{e} 4\right\}$ satisfies the roots of the equation $t^{2}-20 t+64=0$ for $0<x<\pi$ then find the values of x.
176. If $S \subset(-\pi, \pi)$, denote the set of values of x satisfying the equation $8^{1+|\cos x|+\cos ^{2} x+\left|\cos ^{3} x\right|+\cdots \text { to } \infty}=4^{3}$ then find the value of S.
177. If $0<x<\frac{\pi}{2}$ and $2^{\sin ^{2} x+\sin ^{4} x+\cdots \text { to } \infty}$ satisfies the roots of the equation $x^{2}-9 x+8=0$, then find the value of $\cos x /(\cos x+\sin x)$.
178. If $S_{\lambda}=\sum_{r=0}^{\infty} \frac{1}{\lambda^{r}}$, then find $\sum_{\lambda=1}^{n}(\lambda-1) S_{\lambda}$.
179. If a, b, c are in A.P. then prove that $2^{a x+1}, 2^{b x+1}, 2^{c x+1}$ are in G.P. $\forall x \neq 0$.
180. If $\frac{a+b e^{x}}{a-b e^{x}}=\frac{b+c e^{x}}{b-c e^{x}}=\frac{c+d e^{x}}{c-d e^{x}}$ then prove that a, b, c, d are in G.P.
181. If x, y, z are in G.P. and $\tan ^{-1} x, \tan ^{-1} y, \tan ^{-1} z$ are in A.P. then prove that $x=y=z$ but their common values are not necessarily zero.
182. If a, b, c are three unequal numbers such that a, b, c are in A.P. and $b-a, c-b, a$ are in G.P. then prove that $a: b: c=1: 2: 3$.
183. The sides a, b, c of a triangle are in G.P. such that $\log a-\log 2 b, \log 2 b-\log 3 c, \log 3 c-$ $\log a$ are in A.P., then prove that $\triangle A B C$ is an obtuse angled triangle.
184. If the roots of the equation $a x^{3}+b x^{2}+c x+d=0$ be in G.P. then prove that $c^{3} a=b^{3} d$.
185. Find the 100 th term of the sequence $1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \cdots$.
186. If p th term of an H.P. is $q r$, and q th term is $r p$, prove that r th term is $p q$.
187. If the p th, q th and r th terms of an H.P. be respectively a, b and c, then prove that $(q-r) b c+(r-p) c a+(p-q) a b=0$.
188. If a, b, c are in H.P., prove that $\frac{a-b}{b-c}=\frac{a}{c}$.
189. If a, b, c, d are in H.P., then, prove that $a b+b c+c d=3 a d$.
190. If $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ are in H.P., prove that $x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+\cdots+x_{n-1} x_{n}=(n-$ 1) $x_{1} x_{n}$.
191. If a, b, c are in H.P., show that $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in H.P.
192. If a^{2}, b^{2}, c^{2} are in A.P. show that $b+c, c+a, a+b$ are in H.P.
193. Find the sequence whose nth term is $\frac{1}{3 n-2}$. Is this sequence an H.P.?
194. If m th term of an H.P. be n and nth term be m, prove that $(m+n)$ th term $=\frac{m n}{m+n}$ and $(m n)$ th term $=1$.
195. The sum of three rational numbers in H.P. is 37 and the sum of their reciprocals is $\frac{1}{4}$, find the numbers.
196. If a, b, c are in H.P., prove that $\frac{1}{b-a}+\frac{1}{b-c}=\frac{1}{a}+\frac{1}{c}$.
197. If a, b, c are in H.P., prove that $\frac{b+a}{b-a}+\frac{b+c}{b-c}=2$.
198. If $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ are in H.P., prove that $x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{5}=4 x_{1} x_{5}$.
199. If $x_{1}, x_{2}, x_{3}, x_{4}$ are in H.P., prove that $\left(x_{1}-x_{3}\right)\left(x_{2}-x_{4}\right)=4\left(x_{1}-x_{2}\right)\left(x_{3}-x_{4}\right)$.
200. If $b+c, c+a, a+b$ are in H.P., prove that $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in A.P.
201. If $b+c, c+a, a+b$ are in H.P., prove that a^{2}, b^{2}, c^{2} are in A.P.
202. If a, b, c are in A.P., prove that $\frac{b c}{a b+a c}, \frac{c a}{b c+a b}, \frac{a b}{c a+c b}$ are in H.P.
203. If a, b, c are in H.P., prove that $\frac{a}{b+c-a}, \frac{b}{c+a-b}, \frac{c}{a+b-c}$ are in H.P.
204. If a, b, c are in H.P., prove that $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in H.P.
205. If a, b, c are in A.P., and x, y, z are in G.P.; show that $x^{b-c} . y^{c-a} \cdot z^{a-b}=1$.
206. If p th, q th, r th and s th term of an A.P. be in G.P., prove that $p-q, q-r, r-s$ are in G.P.
207. If p th, q th and r th terms of an A.P. and G.P. both be a, b and c, show that $a^{b-c} b^{c-a} c^{a-b}=1$.
208. If a, b, c be in A.P. and b, c, d be in H.P., prove that $a d=b c$.
209. If $a^{x}=b^{y}=c^{z}$ and a, b, c are in G.P., show that x, y, z are in H.P.
210. If $\frac{x+y}{2}, y, \frac{y+z}{2}$ be in H.P., show that x, y, z are in G.P.
211. If x, y, z be in G.P., and $x+a, y+a, z+a$ be in H.P., prove that $a=y$.
212. If three positive numbers a, b, c are in A.P., G.P. and H.P. as well, then find their values.
213. If a, b, c be in A.P., b, c, d be in G.P. and c, d, e be in H.P., prove that a, c, e are in G.P.
214. If a, b, c be in A.P. and a^{2}, b^{2}, c^{2} be in H.P., prove that $-\frac{a}{2}, b, c$ are in G.P. or else $a=b=c$.
215. If a, b, c are the p th, q th and r th terms of boht an A.P. and a G.P., prove that $a^{b} b^{c} c^{a}=$ $a^{c} b^{a} c^{b}$.
216. An A.P. and a G.P. of positive terms have the same first term. The sum of their first, second and third terms are respectively $1, \frac{1}{2}$ and 2 . Show that the sum of their fourth terms is $\frac{19}{2}$.
217. If $\frac{a-x}{p x}=\frac{a-y}{q y}=\frac{a-z}{r z}$ and p, q, r be in A.P., show that x, y, z are in H.P.
218. An A.P. and a H.P. have the same first term a, the same last term b and the same number of terms n. Prove that the product of the r th term of A.P. and the $(n-r+1)$ th terrm of term of H.P. is $a b$.
219. Prove that if from each term of the three consecutive terms of an H.P. half the second term be subtracted the resulting terms are in G.P.
220. If $y-x, 2(y-a), y-z$ are in H.P., prove that $x-a, y-a, z-a$ are in G.P.
221. If a, b, c be in A.P., p, q, r be in H.P, and $a p, b q, c r$ be in G.P., show that $\frac{p}{r}+\frac{r}{p}=\frac{a}{c}+\frac{c}{a}$.
222. If a, b, x be in A.P., a, b, y be in G.P. and a, b, z be in H.P., prove that $4 z(x-y)(y-z)=$ $y(x-z)^{2}$.
223. If $x, 1, z$ be in A.P., $x, 2, z$ be in G.P., show that $x, 4, z$ are in H.P.
224. Find the sum of n terms of the series whose nth term is $12 n^{2}-6 n+5$.
225. Find the sum to n terms of the series $1^{2}+3^{2}+5^{2}+7^{2}+\cdots$.
226. Find the sum to n terms of the series $1.2 .3+2.3 .4+3.4 .5+\cdots$.
227. Find the sum of the series $1 . n+2 \cdot(n-1)+3 \cdot(n-2)+\cdots+n .1$.
228. Find the sum to n terms of the series $1+(1+2)+(1+2+3)+\cdots$.
229. Find the sum to n terms of the series $1+(2+3)+(4+5+6)+\cdots$.
230. Find the sum of series $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\cdots$ to 16 terms.
231. Find $\left(3^{3}-2^{3}\right)+\left(5^{3}-4^{3}\right)+\left(7^{3}-6^{3}\right)+\cdots$ to 10 terms.
232. Find $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\cdots$ to n terms.
233. Find the sum of $\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\cdots$ to infinity.
234. Find the sum of n terms of the series $1+5+11+19+\cdots$.
235. A sum is distributed among certain number of persons. Second person gets one rupee more than the first, third person gets two rupees more than the second, fourth person gets three rupees more than the third and so on. If the first person gets one rupee and the last person get 67 rupees, find the number of persons.
236. Natural numbers have been grouped in the following way $1,(2,3),(4,5,6),(7,8,9,10), \cdots$ Show that the sum of the numbers in the nth group is $\frac{n\left(n^{2}+1\right)}{2}$.
237. Find $1+3+7+15+\cdots$ to n terms.
238. Find $1+2 x+3 x^{2}+4 x^{3}+\cdots$ to n terms.
239. Find $1+2.2+3.2^{2}+4.3^{3}+\cdots+100.2^{99}$.
240. Find $1+2^{2} x+3^{2} x^{2}+4^{2} x^{4}+\cdots$ to $\infty,|x|<1$
241. If the sum of n terms of a sequence be $2 n^{2}+4$, find its nth term. Is this sequence in A.P.?
242. Find the sum of n terms of the series whose nth term is $n(n-1)(n+1)$.
243. Find the sum of the series $1^{3}+3^{3}+5^{3}+\cdots$ to n terms.
244. Find the sum of the series $1^{2}+4^{2}+7^{2}+10^{2}+\cdots$ to n terms.
245. Find the sum of the series $1^{2}+2+3^{2}+4+5^{2}+6+\cdots$ to $2 n$ terms.
246. Find the sum of the series $1^{2}-2^{2}+3^{2}-4^{2}+\cdots$ to n terms.
247. Find the sum of the series $1.3+3.5+5.7+\cdots$ to n terms.
248. Find the sum of the series $1.2+2.3+3.4+\cdots$ to n terms.
249. Find the sum of the series $1.2^{2}+2.3^{2}+3.4^{2}+\cdots$ to n terms.
250. Find the sum of the series $2.1^{2}+3.2^{2}+4.3^{2}+\cdots$ to n terms.
251. Find the sum of the series $1+(1+3)+(1+3+5)+\cdots$ to n terms.
252. Find the sum of the series $1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right)+\cdots$ to n terms.
253. Find the sum of the series $1.2 .3+2.3 .5+3.4 .7+\cdots$ to n terms.
254. Find the sum of the series $1.2 .3+2.3 .4+3.4 .5+\cdots$ to n terms.
255. Find the sum of the series $1.3^{2}+2.5^{2}+3.7^{2}+\cdots$ to 20 terms.
256. Find the sum of the series $\left(n^{2}-1^{2}\right)+2\left(n^{2}-2^{2}\right)+3\left(n^{2}-3^{2}\right)+\cdots$ to n terms.
257. Find the sum of the series $\left(3^{3}-2^{3}\right)+\left(5^{3}-4^{3}\right)+\left(7^{3}-6^{3}\right)+\cdots$ to 10 terms.
258. Find the sum of the series $1+\frac{1}{1+2}+\frac{1}{1+2+3}+\cdots$ to n terms.
259. Find the sum to infinity of the series $\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\cdots$.

260 . Find the sum of the series $2+6+12+20+\cdots$ to n terms.
261 . Find the sum of the series $3+6+11+18+\cdots$ to n terms.
262 . Find the sum of the series $1+9+24+46+75+\cdots$ to n terms.
263 . Find the nth term of the series $2+4+7+11+16+\cdots$.
264. Find the sum to 10 terms of the series $1+3+6+10+\cdots$.
265. The odd natural numbers have been divided in groups as $(1,3),(5,7,9,11)$, $(13,15,17,19,21,23), \ldots$ Show that the sum of numbers in the nth group is $4 n^{3}$.
266. Show that the sum of numbers in each of the following groups is an square of an odd positive integer (1), (2, 3, 4), (3, 4, 5, 6, 7), \ldots.

267 . Find the sum to n terms of the series $2+5+14+41+\cdots$.
268. Find the sum to n terms of the series $1.1+2.3+4.5+8.7+\cdots$.
269. If $a_{1}, a_{2}, a_{3}, \cdots, a_{2 n}$ are in A.P., show that $a_{1}^{2}-a_{2}^{2}+a_{3}^{2}-a_{4}^{2}+\cdots+a_{2 n-1}^{2}-a_{2 n}^{2}=$ $\frac{n}{2 n-1}\left(a_{1}^{2}-a_{2 n}^{2}\right)$.
270. If $\alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots, \alpha_{n}$ are in A.P., whose common difference is d show that $\sin d$ $\left[\sec \alpha_{1} \sec \alpha_{2}+\sec \alpha_{2} \sec \alpha_{3}+\cdots+\sec \alpha_{n-1} \sec \alpha_{n}\right]=\tan \alpha_{n}-\tan \alpha_{1}$.
271. If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ be in A.P., prove that $\frac{1}{a_{1} a_{n}}+\frac{1}{a_{2} a_{n-1}}+\cdots+\frac{1}{a_{n} a_{1}}=\frac{2}{a_{1}+a_{n}}$ $\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}\right)$.
272. If $a_{1}, a_{2}, a_{3}, \ldots$ be in A.P. such that $a_{i} \neq 0$, show that $S=\frac{1}{a_{1} a_{2}}+\frac{1}{a_{2} a_{3}}+\cdots+\frac{1}{a_{n} a_{n+1}}=\frac{n}{a_{1} a_{n+1}}$.
273. If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ be in A.P. and $a_{1}=0$, show that $\frac{a_{3}}{a_{2}}+\frac{a_{4}}{a_{3}}+\cdots+\frac{a_{n}}{a_{n-1}}-a_{2}\left(\frac{1}{a_{2}}+\frac{1}{a_{3}}+\right.$ $\left.\cdots+\frac{1}{a_{n-2}}\right)=\frac{a_{n-1}}{a_{2}}+\frac{a_{2}}{a_{n-1}}$.
274. If $a_{1}, a_{2}, \ldots, a_{n}$ are in A.P., whose common difference is d, show that $\sum_{k=1}^{n} \frac{a_{k} a_{k+1} a_{k+2}}{a_{k}+a_{k+2}}$ $=\frac{n}{2}\left[a_{1}^{2}+(n+1) a_{1} d+\frac{(n-1)(2 n+5)}{6} d^{2}\right]$.
275. If x, y and z are positive real numbers different from 1 , and $x^{18}=y^{21}=z^{28}$, show that 3, $3 \log _{y} x, 3 \log _{z} y, 7 \log _{x} z$ are in A.P.
276. If $I_{n}=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} n x}{\sin ^{2} x} d x$, then $I_{1}, I_{2}, I_{3}, \ldots$ are in A.P.
277. Can there be an A.P. whose terms are distinct prime numbers?
278. Four distinct no. are in A.P. If one of these integers is sum of the squares of remaining three, then 0 must be one of the numbers in A.P.
279. In an A.P. of $2 n$ terms the middle pair of terms are $p+q$ and $p-q$. Show that the sum of cubes of the terms in A.P. are $2 n p\left[p^{2}+\left(4 n^{2}-1\right) q^{2}\right]$.
280. Find the sum S_{n} of the cubes of the first n terms of an A.P. and show that the sum of the first n terms of the A.P. is a factor of S_{n}.
281. Show that any positive integral power (greater than 1) of a positive integer m, is the sum of m consecutive odd positive integers. Find the first odd integer for $m^{r}(r>1)$.
282. If a be the sum of n terms and b^{2} the sum of the square of n terms of an A.P., find the first term and common difference of the A.P.
283. If $a_{1}, a_{2}, \ldots, a_{n}$ are in A.P., whose common diference is d, then find the sum of the series $\sin d\left[\csc a_{1} \csc a_{2}+\csc a_{2} \csc a_{3}+\cdots+\csc a_{n-1} \csc a_{n}\right]$.
284. If $a_{1}, a_{2}, \ldots, a_{n}$ are in A.P. where $a_{i}>0 \forall i$, show that

$$
\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\cdots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}=\frac{n-1}{\sqrt{a_{1}}+\sqrt{a_{n}}}
$$

285. If $a_{1}, a_{2}, \cdots, a_{n}$ are in A.P., whose common differemce is d show that $\sum_{2}^{n} \tan ^{-1} \frac{d}{1+a_{n-1} a_{n}}=$ $\tan ^{-1} \frac{a_{n}-a_{1}}{1+a_{n} a_{1}}$.
286. If $a_{1}, a_{2}, \ldots, a_{n}$ are the first n items of an A.P. with first term a and common difference d such that $a d>0$. Let $S_{n}=\frac{1}{a_{1} a_{2}}+\frac{1}{a_{2} a_{3}}-\cdots+\frac{1}{a_{n-1} a_{n}}$ Prove that the product $a_{1} a_{n} S_{n}$ does not depend on a or d.
287. If $a_{1}, a_{2}, \ldots, a_{n}, a_{n+1}, \ldots$ be in A.P., whose common difference is d and $S_{1}=a_{1}+a_{2}+$ $\cdots+a_{n}, S_{2}=a_{n+1}+\cdots+a_{2 n}, S_{3}=a_{2 n+1}+\cdots+a_{3 n}$ Show that $S_{1}, S_{2}, S_{3}, \ldots$ are in A.P. whose common difference is $n^{2} d$.
288. If a, b, c are three terms of an A.P. such that $a \neq b$, show that $(b-c) /(a-b)$ is a rational number.
289. Prove that $\tan 70^{\circ}, \tan 50^{\circ}+\tan 20^{\circ}, \tan 20^{\circ}$ are in A.P.
290. If $\log _{l} x, \log _{m} x, \log _{n} x$ are in A.P. and $x \neq 1$, prove that $n^{2}=(n l)^{\log _{l} m}$.
291. The length of sides of a right angled triangle are in A.P., show that their ratio is $3: 4: 5$
292. Find the values of a for which $5^{1+x}+5^{1-x}, \frac{a}{2}, 25^{x}+25^{-x}$ are in A.P.
293. If $\log 2, \log \left(2^{x}-1\right)$ and $\log \left(2^{x}+3\right)$ are in A.P., then find x.
294. If $1, \log _{y} x, \log _{z} y,-15 \log _{x} z$ are in A.P., then prove that $x=z^{3}$ and $y=z^{-3}$.
295. Show that $\sqrt{2}, \sqrt{3}, \sqrt{5}$ cannot be terms of a single A.P.
296. A circle of one centimeter radius is drawn on a piece of paper and with the same center $3 n-1$ other circles are drawn of radii $2 \mathrm{~cm}, 3 \mathrm{~cm}, 4 \mathrm{~cm}$ and so on. The inner circle is painted blue, the ring between that and next circle is painted red, the next ring yellow then other rings blue, red, yellow and so on in this order. Show that the successive areas of each color are in A.P.
297. If $x, y, z(x, y, z \neq 0)$ are in A.P. and $\tan ^{-1} x, \tan ^{-1} y, \tan ^{-1} z$ are also in A.P., then prove that $x=y=z$.
298. If θ and α are two real numbers such that $\frac{\cos ^{4} \theta}{\cos ^{2} \alpha}, \frac{1}{2}, \frac{\sin ^{4} \theta}{\sin ^{2} \alpha}$ are in A.P., prove that $\frac{\cos ^{2 n+2} \theta}{\cos ^{2 n} \alpha}, \frac{1}{2}, \frac{\sin ^{2 n+2} \theta}{\sin ^{2 n} \alpha}$ are also in A.P..
299. If $a_{n}=\int_{0}^{\pi}(\sin 2 n x / \sin x) d x$, show that $a_{1}, a_{2}, a_{3}, \ldots$ are in A.P.
300. If $l_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$, show that $\frac{1}{l_{2}+l_{4}}, \frac{1}{l_{3}+l_{5}}, \frac{1}{l_{4}+l_{6}}, \cdots$ are in A.P. Find the common difference of A.P.
301. If $I_{n}=\int_{0}^{\pi} \frac{1-\cos 2 n x}{1-\cos 2 x} d x$, then show that $I_{1}, I_{2}, I_{3}, \ldots$ are in A.P.
302. If α, β, γ are in A.P. and $\alpha=\sin (\beta+\gamma), \beta=\sin (\gamma+\alpha)$ and $\gamma=\sin (\alpha+\beta)$. Prove that $\tan \alpha=\tan \beta=\tan \gamma$.
303. Suppose a, b, c are three positive real numbers in A.P., such that $a b c=4$. Prove that the minimum value of b is $4^{\frac{1}{3}}$.
304. Find the sum of n terms of the series: $\log a+\log \frac{a^{3}}{b}+\log \frac{a^{5}}{b^{2}}+\log \frac{a^{7}}{b^{3}}+\cdots$.
305. The first, second and the last terms of an A.P. are a, b, c respectively. Prove that the sum of al the terms is $\frac{(b+c-2 a)(a+c)}{2(b-a)}$.
306. If S_{n} denotes the sum of n terms of an A.P., show that $S_{n+3}=3\left(S_{n+2}-S_{n+1}\right)+S_{n}$.
307. If $a_{1}, a_{2}, \ldots, a_{n}$ are in arithmetic progression with common difference d, prove that $\sum_{r<s} a_{r} a_{s}=\frac{1}{2} n(n-1)\left[a_{1}^{2}+(n-1) a_{1} d+\frac{1}{12}\left(3 n^{2}-7 n+2\right) d^{2}\right]$.
308. Balls are arranged in rows to form an equilateral triangle. The first row consists of one ball, the second of two balls and so on. If 669 more balls are added, then all balls can be arranged in the shape of a square and each of the sides contained 8 balls less than each side of the triangle did. Determine the initial no. of balls.
309. Find the sum of the product of the first n natural numbers takes two at a time.
310. A postman delivered daily for 42 days 4 more letters each day than on the previous day. The total delivery made for the first 24 days of the period was the same as that for the last 18 days. How many letters did he deliver during the whole period?
311. If S_{n} denotes the sum to n terms of an A.P. and $S_{n}=n^{2} p, S_{m}=m^{2} p, m \neq n$, prove that $S_{p}=p^{3}$.
312. There are n A.P.'s whose common difference are $1,2,3, \ldots, n$ respectively the first term of each being unity. Prove that the sum of their nth terms is $\frac{n}{2}\left(n^{2}+1\right)$.
313. If $S_{1}, S_{2}, \ldots, S_{m}$ are the sum of n terms of m A.P.s whose first terms are $1,2, \ldots, m$ and whose common differences are $1,3,5, \ldots, 2 m-1$ respectively, show that $S_{1}+S_{2}+\cdots+$ $S_{m}=\frac{1}{2} m n(m n+1)$
314. A straight line is drawn through the center of a square $A B C D$ intersecting side $A B$ at point N so that $A N: N B=1: 2$. On this line take an arbitrary point M lying inside the square. Prove that the distances from M to the sides $A B, A D, B C, C D$ of the square taken in that order, form an A.P.
315. If the sides of a right-angled triangle are in G.P., find the cosine of the greater acute angle.
316. Does there exist a geometric progression containing 27,8 and 12 as three of its terms? If it exists, how many such progressions are possible?
317. Show that $10,11,12$ cannot be terms of a G.P.
318. If $I_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x \cos (n x) d x$, then prove that $I_{1}, I_{2}, I_{3}, \ldots$ are in G.P.
319. Let $I_{n}=\int_{0}^{\pi} \frac{\sin (2 n-1) x}{\sin x} d x$. Show that $I_{1}, I_{2}, I_{3}, \ldots$ are in A.P. as well as in G.P.
320. Prove that the three successive terms of a G.P. will form sides of a triangle if the common ratio r satisfied the inequality $\frac{1}{2}(\sqrt{5}-1)<r<\frac{1}{2}(\sqrt{5}+1)$.
321. Find out whether $111 \ldots 1$ (91 digits) is a prime number.
322. Find the natural number a for which $\sum_{k=1}^{n} f(a+k)=16\left(2^{n}-1\right)$, where the function f satisfied the relation $f(x+y)=f(x) f(y)$ for all natural numbers x, y and further $f(1)=2$.
323. In a certain test, there are n questions. In this test 2^{n-i} students give wrong answers to at least i questions $(1 \leq i \leq n$.) If total no. of wrong answers given is 2047 , find the value of n.
324. If $S_{1}, S_{2}, S_{3}, \ldots, S_{2 n}$ are the sums of infinite geometric series whose first terms are respectively $1,2,3, \ldots, 2 n$ and common ratio are respectively $\frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{2 n+1}$, find the value of $S_{1}^{2}+S_{2}^{2}+\cdots+S_{2 n-1}^{2}$.
325. A sqaure is given, a second square is made by joining the middle points of the first square and then a third square is made by joining the middle points of the sides of second square and so on till infinity. Show that the area of first square is equal to sum of the areas of all the succeeding squares.
326. If a is the value of x for which the function $7+2 x \log 25-5^{x-1}-5^{2-x}$ has the greatest value and $r=\lim _{x \rightarrow 0} \int_{0}^{x} \frac{t^{2}}{x^{2} \tan (\pi+x)} d t$, find $\lim _{n \rightarrow \infty} \sum_{n=1}^{n} a r^{n-1}$.
327. If p th, q th, r th terms of a G.P. are positive numbers a, b, c respectively, show that the vectors $(\log a) \cdot \vec{\imath}+(\log b) \vec{\jmath}+(\log c) \vec{k}$ and $(q-r) \vec{\imath}+(r-p) \vec{\jmath}+(p-q) \vec{k}$ are perpendicular.
328. The pollution in a normal atmosphere is less that 0.01%. Due to leakage of gas from a factory the pollution increased to 20%. If everyday 80% of the pollution us neutralised, in how many days the atmosphere will be normal?
329. The sides of a triangle are in G.P. and its largest angle is twice the smallest one. Prove that the common ratio of the G.P. lies in the interval $(1, \sqrt{2})$.
330. If a, b, c, d are in G.P., then prove that $a x^{3}+b x^{2}+c x+d$ is divisible by $a x^{2}+c$.
331. If a, b, c, d, p are real and $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \leq 0$. Show that a, b, c, d are in G.P. whose common ratio is p.
332. If $2 x^{4}=y^{4}+z^{4}, x y z=8$ and $\log _{y} x, \log _{z} y, \log _{x} z$ are in G.P., show that $x=y=z=2$.
333. If a, b, c, d are in both A.P. and G.P. and $b=2$, then find the number of such sequences.
334. If $\log _{x} a, a^{x / 2}, \log _{b} x$ are in G.P., then find x.
335. The $(m+n)$ th and $(m-n)$ th terms of a G.P. are p and q respectively. Show that m th and nth terms are $\sqrt{p q}$ and $p\left(\frac{q}{p}\right)^{\frac{m}{2 n}}$ respectively.
336. If the p th, q th and r th terms of an A.P. are in G.P., then find the common ratio of the G.P.
337. A G.P. consists of $2 n$ terms. If the sum of the terms occupying the odd places is S_{1}, and that of the terms in even places is S_{2}, show that the common ratio of the progression is S_{2} / S_{1}.
338. If S_{n} denotes the sum of n terms of a G.P. whose first term and common ratio are a and r respectively, show that

$$
r S_{n}+(1-r) \sum_{n=1}^{n} S_{n}=n a
$$

339. Find the sum of $2 n$ terms of the series where every even term is x times the term just before it and every odd term is y times the term just before it, the first term being 1 .

340 . Prove that in the sequence of numbers $49,4489,444889, \ldots$ in which every number is made by inserting 48 in the middle of previous number as indicated, each number is the square of an integer.
341. If there be m quantities in a G.P., whose common ratio is r and S_{m} denotes the sum of the first m terms then prove that the sum of their products taken two and two together is $\frac{r}{r+1} S_{m} S_{m-1}$.
342. Solve the following equations for x and y

$$
\begin{gathered}
\log _{10} x+\log _{10} x^{1 / 2}+\log _{10} x^{1 / 4}+\cdots=y \\
\frac{1+3+5+(2 y-1)}{4+7+10+\cdots+3 y+1}=\frac{20}{7 \log _{10} x}
\end{gathered}
$$

343. If $a_{1}, a_{2}, \ldots, a_{n}$ are in G.P. and $S=a_{1}+a_{2}+\cdots+a_{n}, T=\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}$ and $P=a_{1} \cdot a_{2} \ldots . a_{n}$ show that $P^{2}=\left(\frac{S}{T}\right)^{n}$.
344. Let a, b, c be respectively the sums of the first n terms, the next n terms and the next n terms of a G.P. show that a, b, c are in G.P.
345. If S_{n} denotes the sum to n terms of a G.P. whose first term and common ratio are a and r respectively, then prove that $S_{1}+S_{2}+\cdots+S_{n}=\frac{n a}{1-r}-\frac{a r\left(1-r^{n}\right)}{(1-r)^{2}}$
346. If S_{n} denotes the sum to n terms of a G.P. whose first term and common ratio are a and r respectively, then prove that $S_{1}+S_{3}+S_{5}+\cdots+S_{2 n-1}=\frac{n a}{1-r}-\frac{a r\left(1-r^{2 n}\right)}{(1-r)^{2}(1+r)}$
347. Let s denote the sum of terms of an infinite geometric progression and σ^{2} the sum of squares of the terms. Show that the sum of first n terms of this geometric progression is given by $s\left[1-\left(\frac{s^{2}-\sigma^{2}}{s^{2}+\sigma^{2}}\right)^{n}\right]$, where $|r|<1$.
348. Let $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ be a geometric progression with first term a and common ratio r, then the sum of the products $a_{1}, a_{2}, \ldots, a_{n}$ taken two at a time i.e. $\sum_{i<j} a_{i} a_{j}=\frac{a^{2} r\left(1-r^{n-1}\right)\left(1-r^{n}\right)}{(1-r)^{2}(1+r)}$.
349. If $a_{1}, a_{2}, a_{3}, \ldots$ is a G.P. with first term a and common ratio r, show that $\frac{1}{a_{1}^{2}-a_{2}^{2}}+\frac{1}{a_{2}^{2}-a_{3}^{2}}+$ $\cdots+\frac{1}{a_{n-1}^{2}-a_{n}^{2}}=\frac{r^{2}\left(1-r^{2 n-2}\right)}{a^{2} r^{2 n-2}\left(1-r^{2}\right)^{2}}$.
350. If $a_{1}, a_{2}, a_{3}, \ldots$ is a G.P. with first term a and common ratio r, show that $\frac{1}{a_{1}^{m}+a_{2}^{m}}+$ $\frac{1}{a_{2}^{m}+a_{3}^{m}}+\cdots+\frac{1}{a_{n-1}^{m}+a_{n}^{m}}=\frac{r^{m n-m}-1}{a^{m}\left(1+r^{m}\right)\left(r^{m n-m}-r^{m n-2 m}\right)}$.
351. If $a_{1}, a_{2}, \ldots, a_{2 n}$ are $2 n$ positive real numbers which are in G.P. show that $\sqrt{a_{1} a_{2}}+$ $\sqrt{a_{3} a_{4}}+\sqrt{a_{5} a_{6}}+\cdots+\sqrt{a_{2 n-1} a_{2 n}}=\sqrt{a_{1}+a_{3}+\cdots+a_{2 n-1}} \sqrt{a_{2}+a_{4}+\cdots+a_{2 n}}$.
352. Find the solution of the system of equations $1+x+x^{2}+\cdots+x^{23}=0$ and $1+x+x^{2}+$ $\cdots+x^{19}=0$.
353. A man invests $\$ a$ at the end of the first year, $\$ 2 a$ at the end of the second year, $\$ 3 a$ at the end of the third year, and so on up to the end of nth year. If the rate of interest is $\$ r$ per rupee and the interest is compounded annually, find the amount the man will receive at the end of $(n+1)$ th year.
354. Find the value of $(0.16)^{\log _{2.5}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\cdots \infty\right)}$
355. If $A=1+r^{a}+r^{2 a}+\cdots$ to ∞ and $B=1+r^{b}+r^{2 b}+\cdots$ to ∞, prove that $r=\left(\frac{A-1}{A}\right)^{\frac{1}{a}}=$ $\left(\frac{B-1}{B}\right)^{\frac{1}{b}}$.
356. If $s_{1}, s_{2}, \ldots, s_{n}$ are the sums of infinite geometric series whose first terms are $1,2,3, \ldots, n$ and common ratios are $\frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n+1}$ respectively, then prove that $s_{1}+s_{2}+\cdots+s_{n}=$ $\frac{1}{2} n(n+3)$.
357. If S_{n} be the sum of infinite G.P.'s whose first term is n and the common ratio is $\frac{1}{n+1}$, find $\lim _{n \rightarrow \infty} \frac{S_{1} S_{n}+S_{2} S_{n-1}+\cdots+S_{n} S_{1}}{S_{1}^{2}+S_{2}^{2}+\cdots+S_{n}^{2}}$.
358. The sum of the terms of an infinitely decreasing G.P. is equal to the greatest value of the function $f(x)=x^{3}+3 x-9$ on the interval $[-5,3]$, and the difference between the first and second terms is $f^{\prime}(0)$. Prove that the common ratio of the progression is $\frac{2}{3}$.
359. Find the sum of the series $\frac{5}{13}+\frac{55}{13^{2}}+\frac{555}{13^{3}}+\cdots \infty$.
360. If $-\frac{\pi}{2}<x<\frac{\pi}{2}$ and the sum to infinite number of terms of series $\cos x+\frac{2}{3} \cos x \sin ^{2} x+$ $\frac{4}{9} \cos x \sin ^{4} x+\cdots$ is finite, then show that x lies in the set $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
361. An A.P. and a G.P. with positive terms have the same number of terms and their first terms as well as the last terms are equal. Show that the sum of A.P. is greater than or equal to the sum of the G.P.
362. Given a G.P. and A.P. of positive terms $a, a_{1}, a_{2}, \ldots, a_{n}, \ldots$ and $b, b_{1}, b_{2}, \ldots, b_{n}, \ldots$ respectively, with the common ratio of the G.P. being different from 1, prove that there exists $x \in R, x>0$ such that $\log _{x} a_{n}-b_{n}=\log _{x} a-b, \forall n \in N$.
363. If the $(m+1)$ th, $(n+1)$ th and $(r+1)$ th terms of an A.P. are in G.P., and m, n, r are in H.P., show that the ratio of the first term to the common difference of the A.P. is $-n / 2$.
364. If a, b, c are in G.P. and $a-b, c-a, b-c$ are in H.P., then show that $a+4 b+c=0$.
365. If S_{1}, S_{2} and S_{3} denote the sum to $n(>1)$ terms of three sequences in A.P., whose first terms are unity and common differences are in H.P., prove that $n=\frac{2 S_{3} S_{1}-S_{1} S_{2}-S_{2} S_{3}}{S_{1}-2 S_{2}+S_{3}}$
366. Find a three-digit number such that its digits are in G.P. and the digits of the number obtained from it by subtracting 400 form an A.P.
367. If a, b, c be distinct positive numbers in G.P. and $\log _{c} a, \log _{b} c, \log _{a} b$ be in A.P., prove that the common difference of the progression is $3 / 2$.
368. If p be the first of the n arithmetic means between two numbers a and b and q the first of the n harmonic means between the same two numbers, prove that the value of q cannot lie between p and $\left(\frac{n+1}{n-1}\right)^{2} p$.
369. An A.P. and a G.P. each has p as first term and q as second term where $0<q<p$. Find the sum to infinity, s of the G.P., and prove that the sum of first n terms of the A.P. may be written as $n p-\frac{n(n-1)}{2} \cdot \frac{p^{2}}{s}$.
370. If $\log _{x} y, \log _{z} x, \log _{y} z$ are in G.P., $x y z=64$ and x^{3}, y^{3}, z^{3} are in A.P., then find x, y and z.
371. Find all complex numbers x and y such that $x, x+2 y, 2 x+y$ are in A.P. and $(y+1)^{2}, x y+$ $5,(x+1)^{2}$ are in G.P.
372. Find A.P. of distinct terms whose first term is 3 and second, tenth and thirty fourth terms form a G.P.
373. Let a, b, c, d be four positive real numbers such that the geometric mean of a and b is equal to the gerometric mean of c and d and the arithmetic mean of a^{2} and b^{2} is equal to the arithmetic mean of c^{2} and d^{2}. Show that the arithmetic mean of a^{n} and b^{n} is equal to the arithmetic mean of c^{n} and d^{n} for every integral value of n.
374. The sum of first ten terms of an A.P. is equal to 155 , and the sum of first two terms of a G.P. is 9. Find these progressions if the first term of the A.P. euqals the common ratio of the G.P. and the first term of G.P. equals the common difference of A.P.
375. If a, b, c be in H.P., prove that $\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right)\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)=\frac{4}{a c}-\frac{3}{b^{2}}$.
376. If a, b, c are positive real numbers which are in H.P. show that $\frac{a+b}{2 a-b}+\frac{b+c}{2 c-b} \geq 4$.
377. If $(a+b) /(1-a b), b,(b+c) /(1-b c)$ are in A.P., then prove that a, b^{-1}, c are in H.P.
378. Suppose a, b, c are in A.P. and $|a|,|b|,|c|<1$ if $x=1+a+a^{2}+\cdots \infty, y=1+b+b^{2}+\cdots \infty$, $z=1+c+c^{2}+\cdots \infty$ then prove that x, y, z are in H.P.
379. If $a^{\frac{1}{x}}=b^{\frac{1}{y}}=c^{\frac{1}{z}}$ and a, b, c are in G.P. prove that x, y, z are in A.P.
380. If a, b, c be in A.P., l, m, n be in H.P. and $a l, b m, c n$ be in G.P. with common ratio not equal to 1 and a, b, c, l, m, n are positive show that $a: b: c=\frac{1}{n}: \frac{1}{m}: \frac{1}{l}$.
381. An A.P., a G.P. and an H.P. have the same first term a abd same second term b, show that $n+2$ th terms will be in G.P. is $\frac{b^{2 n+2}-a^{2 n+2}}{a b\left(b^{2 n}-a^{2 n}\right)}=\frac{n+1}{n}$.
382. If an A.P. and a G.P. have the same 1st and 2nd terms then show that every other term of the A.P. will be less than the corresponding term of G.P. all the terms being positive.
383. If A, G, H are the arithmetic, geometric and harmonic means of two positive real numbers a and b, and if $A=k h$, prove that $A^{2}=k G^{2}$. Find the ratio of a to b. For what value of k does the ratio exist.
384. If p be the r th term when n A.M.'s are inserted between a and b and q be the r th term when n H.M.'s are inserted between a and b, then show that $\frac{p}{a}+\frac{b}{q}$ is independent of n and r.
385. Two trains A and B start from the same station P at the same time. A covers half the distance between first station P and second station Q with speed x and other half distance with speed y. Train B covers the whole distance with speed $\frac{x+y}{2}$. Which train will reach Q earlier.
386. If n is a root of equation $x^{2}(1-a c)-x\left(a^{2}+c^{2}\right)-(1+a c)=0$ and if n H.M.'s are inserted between a and c, show that the difference between the first and last mean is equal to $a c(a-c)$.
387. If $A_{1}, A_{2}, \ldots, A_{n}$ are the n A.M.'s and $H_{1}, H_{2}, \ldots, H_{n}$ the n H.M.'s between a and b, show that $A_{r} H_{n-r+1}=a b$ for $1 \leq r \leq n$.
388. Find the coefficient of x^{99} and x^{98} in the polynomial $(x-1)(x-2)(x-3) \ldots(x-100)$.
389. Find the nth term and sum to n terms of the series $12,40,90,168,280,432, \ldots$
390. Find the nth term and the sum to n terms of the series $10,23,60,169,494, \ldots$.
391. Find the sum of the series $3+5 x+9 x^{2}+15 x^{3}+23 x^{4}+33 x^{5}+\cdots \infty$.
392. If $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ and $H_{n}^{\prime}=\frac{n+1}{2}-\left\{\frac{1}{n(n-1)}+\frac{2}{(n-1)(n-2)}+\cdots+\frac{n-2}{2.3}\right\}$, show that $H_{n}=H_{n}^{\prime}$.
393. Show that $\tan ^{-1}\left(\frac{x}{1+1.2 x^{2}}\right)+\tan ^{-1}\left(\frac{x}{1+2.3 x^{2}}\right)+\cdots+\tan ^{-1}\left(\frac{x}{1+n(n+1) x^{2}}\right)=$ $\tan ^{-1}\left(\frac{n x}{1+(n+1) x^{2}}\right)$.
394. Find the sum to n terms of the series $\frac{1}{1+1^{2}+1^{4}}+\frac{2}{1+2^{2}+2^{4}}+\frac{3}{1+3^{2}+3^{4}}+\cdots$.
395. Find $\sum_{k=n}^{n} \tan ^{-1} \frac{2 k}{2+k^{2}+k^{4}}$
396. Show that $\frac{1^{4}}{1.3}+\frac{2^{4}}{3.5}+\frac{3^{4}}{5.7}+\cdots+\frac{n^{4}}{(2 n-1)(2 n+1)}=\frac{n\left(4 n^{2}+6 n+5\right)}{48}+\frac{n}{16(2 n+1)}$
397. If $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ are in A.P. with first term a and common difference d, find the sum for $r>1$ of $a_{1} a_{2} \ldots a_{r}+a_{2} a_{3} \ldots a_{r+1}+\cdots$ to n terms.
398. If $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ are in A.P. and none of them is zero. Then prove that $\frac{1}{a_{1} a_{2} \ldots a_{r}}+$ $\frac{1}{a_{2} a_{3} \ldots a_{r+1}}+\cdots+\frac{1}{a_{n} a_{n+1} \ldots a_{n+r-1}}=\frac{1}{(r-1)\left(a_{2}-a_{1}\right)}$
$\left[\frac{1}{a_{1} a_{2} \ldots a_{r-1}}-\frac{1}{a_{n+1} a_{n+2} \ldots a_{n+r-1}}\right]$
399. Find the sum to n terms of the series $\frac{1}{1.2 .3 .4}+\frac{1}{2 \cdot 3 \cdot 4.5}+\frac{1}{3 \cdot 4.5 \cdot 6}+\cdots$.
400. Find the sum to n terms of the series $\frac{3}{2.4 .6}+\frac{4}{2.3 .5}+\frac{5}{3.4 .6}+\cdots$.
401. Find $\frac{1}{1.3}+\frac{2}{1.3 .5}+\frac{3}{1.3 .5 .7}+\cdots$ to n terms.
402. Find $\frac{2}{1.3} \cdot \frac{1}{3}+\frac{3}{3.5} \cdot \frac{1}{3^{2}}+\frac{4}{5.7} \cdot \frac{1}{3^{3}}+\cdots$ to n terms.
403. Find the sum of n terms of the series $\frac{1}{3}+\frac{3}{3.7}+\frac{5}{3.7 .11}+\frac{7}{3.7 .11 .15}+\cdots$.
404. Find the sum of the series: $1+2(1-a)+3(1-a)(1-2 a)+4(1-a)(1-2 a)(1-3 a)+$ \cdots to m terms.
405. Find the sum of the series $1+\frac{x}{b_{1}}+\frac{x\left(x+b_{1}\right)}{b_{1} b_{2}}+\frac{x\left(x+b_{1}\right)\left(x+b_{2}\right)}{b_{1} b_{2} b_{3}}+\cdots+\frac{x\left(x+b_{1}\right) \cdots\left(x+b_{n-1}\right)}{b_{1} b_{2} \cdots b_{n}}$.
406. Let $S_{k}(n)=1^{k}+2^{k}+\cdots+n^{k}$, show that $n S_{k}(n)=S_{k+1}(n)+S_{k}(n-1)+S_{k}(n-2)+$ $\cdots+S_{k}(2)+S_{k}(1)$.
407. Find the sum of all the numbers of the form n^{3} which lie between 100 and 10000 .
408. If S be the sum of the n consecutive integers beginning with a and t the sum of their squares, show that $n t-S^{2}$ is independent of a.
409. If $\sum_{x=5}^{n+5} 4(x-3)=P n^{2}+Q n+R$, find the value of $P+Q$.
410. Find the sum to $2 n$ terms of the series $5^{3}+4.6^{3}+7^{3}+4.8^{3}+9^{3}+4.10^{3}+\cdots$.
411. Find the sum to n terms of the series $\left(\frac{2 n+1}{2 n-1}\right)+3\left(\frac{2 n+1}{2 n-1}\right)^{2}+5\left(\frac{2 n+1}{2 n-1}\right)^{3}+\cdots$.
412. Find the sum to n terms of the series $1+5\left(\frac{4 n+1}{4 n-3}\right)+9\left(\frac{4 n+1}{4 n-3}\right)^{2}+13\left(\frac{4 n+1}{4 n-3}\right)^{3}+\cdots$.
413. Prove that the numbers of the sequence $121,12321,1234321, \cdots$ are each a perfect square of an odd integer.
414. Prove that the sum to n terms of the series $\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{2}+2^{2}+3^{2}}+\frac{9}{1^{2}+2^{2}+3^{2}+4^{2}}+\cdots$ is $6 n /(n+1)$.
415. Find the sum to n terms of the series $\frac{1}{(1+x)(1+2 x)}+\frac{1}{(1+2 x)(1+3 x)}+\frac{1}{(1+3 x)(1+4 x)}+\cdots$.
416. Find the sum to n terms of the series $\frac{1}{(1+x)(1+a x)}+\frac{a}{(1+a x)\left(1+a^{2} x\right)}+\frac{a^{2}}{\left(1+a^{2} x\right)\left(1+a^{3} x\right)}+\cdots$.
417. Find the sum to n terms of the series $\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\cdots$.
418. If $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ are in A.P. with first term a and common difference d, then prove that $a_{1} a_{2}+a_{2} a_{3}+\cdots+a_{n} a_{n+1}=\frac{[a+(n-1) d](a+n d)-(a-d) a(a+d)}{3 d}=\frac{n}{3}\left[3 a^{2}+2 a n d+\left(n^{2}-1\right) d^{2}\right]$.
419. If $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ are in A.P. with first term a and common difference d, then prove that $a_{1} a_{2} a_{3}+a_{2} a_{3} a_{4}+\cdots+a_{n} a_{n+1} a_{n+2}=$ $\frac{[a+(n-1) d](a+n d)[a+(n+1) d][a+(n+2) d]-(a-d) a(a+d)(a+2 d)}{4 d}=$ $\frac{n}{4}\left[4 a^{3}+6(n+1) a^{2} d+2\left(2 n^{2}+3 n-1\right) a d^{2}+\left(n^{3}-2 n^{2}-n-2\right) d^{3}\right]$.
420. Find the sum to n terms of the series $\frac{3}{1^{2} \cdot 2^{2}}+\frac{5}{2^{2} \cdot 3^{2}}+\frac{7}{3^{2} \cdot 4^{2}}+\cdots$.
421. Let S_{n} denote the sum to n terms of the series $1.2+2.3+3.4+\cdots$ and σ_{n-1} that to $n-1$ terms of the series $\frac{1}{1.2 .3 .4}+\frac{1}{2.3 .4 .5}+\frac{1}{3.4 .5 .6}+\cdots$ Then prove that $18 S_{n} \sigma_{n-1}-S_{n}=-2$.
422. Find $\frac{5}{1.2} \cdot \frac{1}{3}+\frac{7}{2.3} \cdot \frac{1}{3^{2}}+\frac{9}{3.4} \cdot \frac{1}{3^{3}}+\cdots$ to n terms.
423. If $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots \infty=\frac{\pi^{2}}{6}$ then find $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots \infty$.
424. If $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots \infty=\frac{\pi^{2}}{6}$, then find $1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots \infty$.
425. If $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$, then prove that $H_{n}=n-\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\cdots+\frac{n-1}{n}\right)$.
426. Show that $\frac{1}{x+1}+\frac{2}{x^{2}+1}+\frac{4}{x^{4}+1}+\cdots+\frac{2^{n}}{x^{2^{n}}+1}=\frac{1}{x-1}-\frac{2^{n+1}}{x^{2^{n+1}-1}}$.
427. Show that $\left(1+\frac{1}{3}\right)\left(1+\frac{1}{3^{2}}\right)\left(1+\frac{1}{3^{4}}\right) \cdots\left(1+\frac{1}{3^{2^{n}}}\right)=\frac{3}{2}\left(1-\frac{1}{3^{2^{2+1}}}\right)$.
428. If $x+y+z=1$ and x, y, z are positive numbers show that $(1-x)(1-y)(1-z) \geq 8 x y z$.
429. If $a>0, b>0$ and $c>0$, prove that $(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq 9$.
430. If $a+b+c=3$ and $a>0, b>0, c>0$, find the greatest value of $a^{2} b^{3} c^{2}$.
431. Let $a_{i}+b_{i}=1(i=1,2, \ldots, n)$ and $a=\frac{1}{n}\left(a_{1}+a_{2}+\cdots+a_{n}\right), b=\frac{1}{n}\left(b_{1}+b_{2}+\cdots+b_{n}\right)$, show that $a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}=n a b-\left(a_{1}-a\right)^{2}-\left(a_{2}-a\right)^{2}-\cdots-\left(a_{n}-a\right)^{2}$.
432. A sequence $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ of real numbers is such that $a_{1}=0,\left|a_{2}\right|=\left|a_{1}+1\right|,\left|a_{3}\right|=$ $\left|a_{2}+1\right|, \ldots,\left|a_{n}\right|=\left|a_{n-1}+1\right|$. Prove that the arithmetic mean $\left(a_{1}+a_{2}+\cdots+a_{n}\right) / n$ of these numbers cannot be less than $-1 / 2$.
433. If $a, b, c>0$, show that $(a+b)(b+c)(a+c) \geq 8 a b c$.
434. If $x+y+z=a$, show that $\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \geq \frac{9}{a}$.
435. If n is a positive integer, show that $n^{n} \geq 1.3 .5 \ldots(2 n-1)$.
436. Find the greatest value of $(7-x)^{4}(2+x)^{5}$ if $-2<x<7$.
437. If $a, b, c>0$, show that $\frac{b c}{b+c}+\frac{c a}{c+a}+\frac{a b}{a+b} \leq \frac{a+b+c}{2}$.
438. If $a, b, c>0$, show that $\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c} \geq 6$.
439. If $x_{i}>0, i=1,2,3, \ldots, n$ show that $\left(x_{1}+x_{2}+\cdots+x_{n}\right)\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}\right) \geq n^{2}$.
440. If x, y are positive real numbers and m, n are positive integers, then show that $\frac{x^{n} y^{m}}{\left(1+x^{2 n}\right)\left(1+y^{2 m}\right)} \leq \frac{1}{4}$.
441. If the arithmetic mean of $(b-c)^{2},(c-a)^{2}$ and $(a-b)^{2}$ is the same as that of $(b+c-$ $2 a)^{2},(c+a-2 b)^{2}$ and $(a+b-2 c)^{2}$, show that $a=b=c$.

Chapter 3

Complex Numbers

By definition a complex number has two parts: a real part and an imaginary part. You already know about real numbers and know about them. However, imaginary numbers is something different.

3.1 Imaginary Numbers

Imaginary numbers are called so because there cannot be physical representation of these quantities. Like we use real numbers for counting physical objects we cannot do that with imaginary numbers. In real world, they do not exist. Square root of negative numbers are called imaginary numbers. For example, $\sqrt{-1}, \sqrt{-2} . \sqrt{-3}, \ldots$ and so on.

We denote $\sqrt{-1}$ with the Greek symbol ι, which stands for iota. We also use English letters i or j to represent this imaginary number. Clearly, $i^{2}=-1, i^{3}=-i, i^{4}=1$. If you examine carefully, you will find that following holds true:

$$
i^{4 m}=1, i^{4 m+1}=i, i^{4 m+2}=-1 \text { and } i^{4 m+3}=-1, \forall m \in P
$$

Gotcha:
Consider the following:

$$
1=\sqrt{1}=\sqrt{-1 *-1}=\sqrt{-1} * \sqrt{-1}=i * i=-1
$$

However, the above result is wrong. The reason being is that for any two real numbers a and $b, \sqrt{a} * \sqrt{b}=\sqrt{a b}$ holds good if and only if two numbers are either zero or positive. Also, $\sqrt{1} \neq \sqrt{-1 *-1}$ because power of - is $\frac{1}{2}$ which results in -1 .

3.2 Definitions Related to Complex Numbers

A complex number is written as $a+i b$ or $x+i y$ or $a+j b$ or $x+j b$. Here, a, b, x, y are all real numbers. The complex numbers itself is denoted by z. Therefore, we have $z=x+i y$. Here, x is called the real part and is also denoted by $\mathfrak{R}(z)$ and y is called the imaginary part and is also denoted by $\mathfrak{I}(z)$.

A complex number is purely real if its imaginary part or y or $\mathfrak{I}(z)$ is zero. Similarly, a complex number is purely imaginary if its real part or x or $\mathfrak{R}(z)$ is zero. Clearly, as you can imagine that there can exist only one number which has both the parts as zero and certainly that is 0 . That is, $0=0+i 0$.

The set of all complex number is typically denoted by C. Two complex numbers z_{1} and z_{2} are said to be true if there real parts are equal and imaginary parts are equal. That is if $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ then x_{1} must be equal to x_{2} and similarly for imaginary part for two complex numbers to be equal.

3.3 Simple Arithmetic Operations

3.3.1 Addition

$(a+i b)+(c+i d)=(a+c)+i(b+d)$

3.3.2 Subtraction

$(a+i b)-(c+i d)=(a-c)+i(b-d)$

3.3.3 Multiplication

$$
(a+i b) *(c+i d)=a c+i b c+i a d+b d i^{2}=(a c-b d)+i(b c+a d)
$$

3.3.4 Division

The complex number in denominator must not have both parts as zero. At least one part must be non-zero.

$$
\frac{a+i b}{c+i d}=\frac{(a+i b)(c-i d)}{(c+i d)(c-i d)}=\frac{(a c+b d)+i(b c-a d)}{c^{2}+d^{2}}
$$

3.4 Conjugate of a Complex Number

Let $z=x+i y$ be a complex number then its complex conjugate is a number with imaginary part made negative. It is written as $\bar{z}=x-i y . \bar{z}$ is the typical representation for conjugate of a complex number z.

3.4.1 Properties of Conjugates

1. $z_{1}=z_{2} \Leftrightarrow \overline{z_{1}}=\overline{z_{2}}$

Clearly as we know for two complex numbers to be equal, both parts must be equal. So this is very easy to understand that if $x_{1}=x_{2}$ and $y_{1}=y_{2}$ then this bidirectional condition is always satisfied.
2. $\overline{(\bar{z})}=z$

$$
z=x+i y \text {, hence, } \bar{z}=x-i y \text {. Hence, } \overline{(\bar{z})}=x-(-i y)=x+i y=z
$$

3. $z+\bar{z}=2 \mathfrak{R}(z)$
$z+\bar{z}=x+i y+x-i y=2 x=2 \mathfrak{R}(z)$.
4. $z-\bar{z}=2 i \Im(z)$

$$
z-\bar{z}=x+i y-(x-i y)=2 i y=2 i \mathfrak{I}(z)
$$

5. $z=\bar{z} \Leftrightarrow z$ is purely real.

Clearly, $x+i y=x-i y \Rightarrow 2 i y=0 \Rightarrow y=0$. Therefore, z is purely real. Conversely, if z is purely real then $z=x$, and thus $z=\bar{z}$.
6. $z+\bar{z}=0 \Leftrightarrow z$ is purely imaginary.

Clearly, $x+i y+x-i y=0 \Rightarrow 2 x=0$. Therefore, z is purely imaginary. Conversely, if z is purely imaginary then $z=i y$, and thus $z+\bar{z}=0$.
7. $z \bar{z}=[\mathfrak{R}(z)]^{2}+[\Im(z)]^{2}$

Clearly, $z \bar{z}=(x+i y)(x-i y)=x^{2}+y^{2}=[\mathfrak{R}(z)]^{2}+[\Im(z)]^{2}$
8. $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$
$\overline{z_{1}+z_{2}}=\overline{\left(x_{1}+i y_{1}\right)+\left(x_{2}+i y_{2}\right)}=\overline{\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)}=\left(x_{1}+x_{2}\right)-i\left(y_{1}+y_{2}\right)=$ $\left(x_{1}-i y_{1}\right)+\left(x_{2}-i y_{2}\right)=\overline{z_{1}}+\overline{z_{2}}$
9. $\overline{z_{1}-z_{2}}=\overline{z_{1}}-\overline{z_{2}}$

This can be proven like previous item.
10. $\overline{z_{1} z_{2}}=\overline{z_{1} z_{2}}$

This can be proven like previous item.
11. $\overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\overline{z_{1}}}{\overline{z_{2}}}$ if $z_{2} \neq 0$

It can be proven by multiplying and dividing by conjugate of denominator and then applying division formula given above.
12. If $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}$, where $a_{0}, a_{1}, \ldots, a_{n}$ and z are complex numbers, then

$$
\overline{P(z)}=\overline{a_{0}}+\overline{a_{1}}(\bar{z})+\overline{a_{2}}(\bar{z})^{2}+\overline{a_{n}}(\bar{z})^{n}=\bar{P}(\bar{z})
$$

where

$$
\bar{P}(z)=\overline{a_{0}}+\overline{a_{1}} z+\overline{a_{2}} z^{2}+\ldots+\overline{a_{n}} z^{n}
$$

13. If $R(z)=\frac{P(z)}{Q(z)}$, where $P(z)$ and $Q(z)$ are polynomials in z, and $Q(z) \neq 0$, then

$$
\overline{R(z)}=\frac{\bar{P}(\bar{z})}{\bar{Q}(\bar{z})}
$$

14. If

$$
z=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|, \text { then } \bar{z}=\left|\begin{array}{lll}
\overline{a_{1}} & \overline{a_{2}} & \overline{a_{3}} \\
\overline{b_{1}} & \overline{b_{2}} & \overline{b_{3}} \\
\overline{c_{1}} & \overline{c_{2}} & \overline{c_{3}}
\end{array}\right|,
$$

where $a_{i}, b_{i}, c_{i}(i=1,2,3)$ are complex numbers.

3.5 Modulus of a Complex Number

Modulus of a complex number z is denoted by $|z|$ and is equal to the real number $\sqrt{x^{2}+y^{2}}$.
Note that $|z| \geq 0 \forall z \in C$.

3.5.1 Properties of Modulus

1. $|z|=0 \Leftrightarrow z=0$

Clearly, this means $x^{2}+y^{2}=0 \Rightarrow x=0$ and $y=0 \Rightarrow z=0$.
2. $|z|=|\bar{z}|=|-z|=|-\bar{z}|$

Clearly, all result in $\sqrt{x^{2}+y^{2}}$.
3. $-|z| \leq \mathfrak{R}(z) \leq|z|$.

Clearly, $-\sqrt{x^{2}+y^{2}} \leq x \leq \sqrt{x^{2}+y^{2}}$.
4. $-|z| \leq \mathfrak{I}(z) \leq|z|$.

Clearly, $-\sqrt{x^{2}+y^{2}} \leq y \leq \sqrt{x^{2}+y^{2}}$.
5. $z \bar{z}=|z|^{2}$

Clearly, $(x+i y)(x-i y)=x^{2}+y^{2}=|z|^{2}$.
Following relations are very easy and can be proved by the student. If z_{1} and z_{2} are two complex numbers then,
6. $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$

$$
\begin{aligned}
& \left|z_{1} z_{2}\right|=\left|x_{1} x_{2}-y_{1} y_{2}+i\left(x_{1} y_{2}+x_{2} y_{1}\right)\right|=\sqrt{\left(x_{1} x_{2}-y_{1} y_{2}\right)^{2}+\left(x_{1} y_{2}+x_{2} y_{1}\right)^{2}}= \\
& \sqrt{\left(x_{1}+y_{1}\right)^{2}\left(x_{2}+y_{2}\right)^{2}}=\left|z_{1}\right|\left|z_{2}\right|
\end{aligned}
$$

7. $\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$ if $z_{2} \neq=0$
8. $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\overline{z_{1}} z_{2}+z_{2} \overline{z_{2}}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2 \mathfrak{R}\left(z_{1} \overline{z_{2}}\right)$.
9. $\left|z_{1}-z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-\overline{z_{1}} z_{2}-z_{1} \overline{z_{2}}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2 \mathfrak{\Re}\left(z_{1} \overline{z_{2}}\right)$.
10. $\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$.
11. If a and b are real numbers, and z_{1} and z_{2} are complex numbers, then

$$
\left|a z_{1}+b z_{2}\right|^{2}+\left|b z_{1}-a z_{2}\right|^{2}=\left(a^{2}+b^{2}\right)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right) .
$$

12. If $z_{1}, z_{2} \neq=0$, then $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2} \Leftrightarrow \frac{z_{1}}{z_{2}}$ is purely imaginary.
13. If z_{1} and z_{2} are complex numbers then $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$. This inequality can be generalized to more terms as well.
14. $\left|z_{1}-z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|,\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$ and $\left|z_{1}-z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$. These are trivial to prove.

3.6 Geometrical Representation

A complex number z which we have considered to be equal to $x+i y$ in our previous representations can be represented by a point P whose Cartesian coordinates are (x, y) referred to rectangular axes $O x$ and $O y$ where O is origin i.e. $(0,0)$ and are called real and imaginary axes respectively. The $x y$ two-dimensional plane is also called Argand plane, complex plane
or Gaussian plane. The point P is also called the image of the complex number and z is also called the affix or complex coordinate of point P.

Now as you can easily figure out that all real numbers will lie on real axis and all imaginary numbers will lie on imaginary axis as their counterparts will be zero.

The modulus is given by the length of segment $O P$ which is equal to $O P=\sqrt{x^{2}+y^{2}}=|z|$. This, $|z|$ si the length of the $O P$. Given below is the graphical representation of the complex number.

Figure 3.1 Complex number in argand plane or complex plane.

In the diagram, θ is known as the argument of z. This is nothing but angle made with positive direction (i.e. counter-clockwise) of real axis. Now, this argument is not unique. If θ is an argument of a complex number z then, $2 n \pi+$ theta, where $n \in I$, where I is the set of integers. The value of argument for which $-\pi<\theta \leq \pi$ is called the principal value of argument or principal argument.

3.6.1 Different Arguments of a Complex Number

In the diagram, the argument is given as $\arg (z)=\tan ^{-1}\left(\frac{y}{x}\right)$, this value is for when z in first quadrant. When z will lie in second, third and fourth quadrants the arguments will be

$$
\arg (z)=\pi-\tan ^{-1}\left(\frac{y}{|z|}\right), \arg (z)=-\pi+\tan ^{-1}\left(\frac{|y|}{|z|}\right) \text { and } \arg (z)=-\tan ^{P}-1\left(\frac{|y|}{x}\right)
$$

respecticely.

3.6.2 Polar Form of a Complex Number

If z is a non-zero complex number, then we can write $z=r(\cos \theta+i \sin \theta)$, where $r=|z|$ and $\theta=\arg (z)$.

In this case, z is also given by $z=r[\cos (2 n \pi \theta)+i \sin (2 n \pi+\theta)]$, where $n \in I$.

A Euler's Formula

The complex number $\cos \theta+i \sin \theta$ is denoted by $e^{i \theta}$ or c is θ, where c is the complex number.

3.6.3 Important Results Involving Arguments

If z, z_{1} and z_{2} are complex numbers, then

1. $\arg (\overline{(z)})=-\arg (z)$. This can be easily proven as if $z=x+i y$, then $\bar{z}=x-i y$ i.e. sign of argument will get a -ve sign as y gets one.
2. $\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)+2 n \pi$, where

$$
n= \begin{cases}0 \text { if } & -\pi<\arg \left(z_{1}\right)+\arg \left(z_{2}\right) \leq-\pi \\ 1 \text { if } & -2 \pi<\arg \left(z_{1}\right)+\arg \left(z_{2}\right) \leq-\pi \\ -1 \text { if } & -\pi<\arg \left(z_{1}\right)+\arg \left(z_{2}\right) \leq 2 \pi\end{cases}
$$

3. Similarly, $\arg \left(z_{1} \overline{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$.
4. $\left|z_{1}+z_{2}\right|=\left|z_{2}-z_{2}\right| \Leftrightarrow \arg \left(z_{1}\right)-\arg \left(z_{2}\right)=\pi / 2$.
5. $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right| \Leftrightarrow \arg \left(z_{1}\right)=\arg \left(z_{2}\right)$.
6. $\left|z_{1}+z_{2}\right|^{2}=r_{1}^{2}+r_{2}^{2}+2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)$.
7. $\left|z_{1}-z_{2}\right|^{2}=r_{1}^{2}+r_{2}^{2}+2 r_{1} r_{2} \cos \left(\theta_{1}+\theta_{2}\right)$.

3.7 Vector Representation

Complex numbers can also be represented as vectors. Length of the vector is nothing but modulus of complex number and argument is the angle which the vector makes with read axis. It is denoted as $\overrightarrow{O P}$, where $O P$ represents the vector of the complex number z.

3.8 Algebraic Operation's Representation

Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ be two complex numbers, which are represented by two point P_{1} and P_{2} in the following diagrams.

3.8.1 Addition

Now, as we know that $z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)$. Let us see how it looks using geometrically:

Figure 3.2 Complex numbers addition.
Clearly, $z=z_{1}+z_{2}=x_{1}+x_{2}+i\left(y_{1}+y_{2}\right)$. Let $P_{1} M, P_{2} L$ and $P N$ be parallel to the y-axis; $P_{1} K$ be parallet to the x-axis. This implied that triangle $O P_{2} L$ and $P P_{1} K$ are congruent.

We have $P_{1} K=O L=x_{1}$ and $P_{2} L=P K=y_{1}$
Thus, $O N=O M+M N=O L+P_{1} K=x_{1}+x_{2}$ and $P N=P K+K N=P_{2} L+P_{1} M=$ $y_{2}+y_{1}$

So we can say that coordinates of P are $\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$ which represents the complex number z.

We also see that this obeys vector addition i.e. $O P_{1}+O P_{2}=O P_{1}+P_{1} P=O P$

3.8.2 Subtraction

In Figure 3.3, we first represent $-z_{2}$ by P_{2}^{\prime} so that $P_{2} P_{2}^{\prime}$ is bisected at O. Complete the parallelogram $O P_{1} P P_{2}^{\prime}$. Then it can be easily seen that P representd the difference $z_{1}-z_{2}$.
As $O P_{1} P P_{2}^{\prime}$ is a parallelogram so $P_{1} P=O P_{2}^{\prime}$. Using vetor notation, we have, $z_{1}-z_{2}=$ $O P_{1}-O P_{2}=O P_{1}+O P_{2}^{\prime}=O P_{1}+P_{1} P=P_{2} P 1$

It follows that the complex number $z_{1}-z_{2}$ is represented by the vector $P_{1} P_{2}$, where points P_{1} and P_{2} represent the complex numbers z_{1} and z_{2} respectively.

It should be noted that $\arg \left(z_{1}-z_{2}\right)$ is the angle through which $O X$ must be rotated in the anticlockwise direction to make it parallel with $P_{1} P_{2}$.

3.8.3 Multiplication

Figure 3.4 Complex numbers subtraction

For multiplication it is convenient to use Euler's formula of complex numbers.
Let $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$, then clealry, $z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}$

3.8.4 Division

Figure 3.5 Complex numbers division
For division also it is convenient to use Euler's formula of complex numbers.

Let $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$, then clealry, $z_{1} / z_{2}=r_{1} / r_{2} e^{i\left(\theta_{1}-\theta_{2}\right)}$

3.9 Three Important Results

Figure 3.6 External angle
$z_{1}-z_{2}=\overrightarrow{O P}-\overrightarrow{O Q}=\overrightarrow{Q P}$
$\therefore\left|z_{1}-z_{2}\right|=|\overrightarrow{Q P}|=Q P$ which is nothing but distance between P and Q.
$\arg \left(z_{1}-z_{2}\right)$ is the angle made by $\overrightarrow{Q P}$ with x-axis whis is nothing but θ.

Figure 3.7 Angle relation between three complex numbers

In Figure 3.7, $\theta=\alpha-\beta=\arg \left(z_{3}-z_{1}\right)-\arg \left(z_{2}-z_{1}\right) \Rightarrow \theta=\arg \frac{z_{3}-z_{1}}{z_{2}-z_{1}}$
Similarly if three complex numbers are vertices of a triangle then angles of those vertices can also be computed using previous results.

Similarly, for four points to be concyclic where those points are represented by z_{1}, z_{2}, z_{3} and z_{4} if

$$
\arg \left(\frac{z_{2}-z_{4}}{z_{1}-z_{4}} \cdot \frac{z_{1}-z_{3}}{z_{2}-z_{4}}\right)=0
$$

3.10 More Roots

3.10.1 Any Root of an Complex Number is a Complex Number

Let $x+i y$ be a complex number, where $y \neq 0$.
Let $(x+i y)^{n}=a \therefore x+i y=a^{n}$

Now, if a is real, a^{n} will also be real but from above a complex number $x+i y$ is equal to a real number, a^{n}, which is not possible. Hence, it must be complex.

3.10.2 Square Root of a Complex Number

Consider a complex number $z=x+i y$. Let $a+i b$ be its square root. Then

$$
\sqrt{x+i y}=a+i b \Rightarrow x+i y=\left(a^{2}-b^{2}\right)+2 a b i
$$

Equating real and imaginary parts

$$
x=a^{2}-b^{2}, y=2 a b \Rightarrow\left(a^{2}+b^{2}\right)^{2}=\left(a^{2}-b^{2}\right)^{2}+(2 a b)^{2}
$$

From these two equations, we have

$$
a= \pm \sqrt{\frac{\sqrt{x^{2}+y^{2}}+x}{2}}, b= \pm \sqrt{\frac{\sqrt{x^{2}-y^{2}}-x}{2}}
$$

3.10.3 Cube Roots of Unity

Let $x=\sqrt[3]{1} \Rightarrow x^{3}-1=0$
$\Rightarrow(x-1)\left(x^{2}+x+1\right)=0$
So the three roots are $x=1, \frac{-1 \pm \sqrt{3}}{2}$ i.e. $1, \frac{-1 \pm \sqrt{3} i}{2}$.
It can be easily verified that if $\omega=\frac{-1-\sqrt{3} i}{2}$, then $\omega^{2}=\frac{-1+\sqrt{3} i}{2}$, thus, three cube roots are represented as $1, \omega$ and ω^{2}. ω is the symbol used for representing cube root of unity.

A Important Identities

Following identities can be proved easily. The proof is left as an exercise to the reader.

1. $x^{2}+x+1=(x-\omega)\left(x-\omega^{2}\right)$
2. $x^{2}-x+1=(x+\omega)\left(x+\omega^{2}\right)$
3. $x^{2}+x y+y^{2}=(x-y \omega)\left(x-y \omega^{2}\right)$
4. $x^{2}-x y+y^{2}=(x+y \omega)\left(x+y \omega^{2}\right)$
5. $x^{3}+y^{3}=(x+y)(x+y \omega)\left(x+y \omega^{2}\right)$
6. $x^{3}-y^{3}=(x-y)(x-y \omega)\left(x-y \omega^{2}\right)$
7. $x^{2}+y^{2}+z^{2}-x y-y z-z x=\left(x+y \omega+z \omega^{2}\right)\left(x+y \omega^{2}+z \omega\right)$ or $\left(x \omega+y \omega^{2}+z\right)\left(x \omega^{2}+\right.$ $y \omega+z)$ or $\left(x \omega+y+z \omega^{2}\right)\left(x \omega^{2}+y+z \omega\right)$
8. $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x+y \omega+z \omega^{2}\right)\left(x+y \omega^{2}+z \omega\right)$

3.10.4 nth Root of Unity

$1=\cos 0+i \sin 0 \Rightarrow \sqrt[n]{1}=\sqrt[n]{\cos 0+i \sin 0}$
$=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}$, where $k=0,1,2,3,4, \ldots(n-1)$
$=e^{\frac{2 k \pi}{n}}=1, e^{\frac{i 2 \pi}{n}}, e^{\frac{i 4 \pi}{n}}, \ldots, e^{\frac{i 2(n-1) \pi}{n}}=1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}$, where $\alpha=e^{\frac{i 2 \pi}{n}}$
Similar to cube roots of unity it can be proven that $1+\alpha+\alpha^{2}+\ldots+\alpha^{n-1}=0$ and 1. $\alpha \cdot \alpha^{2} \ldots . \alpha^{n-1}=(-1)^{n-1}$

3.11 De Moivre's Theoremm

This theorem's proof uses mathematical induction, so read the chapter on it.
Statement: If n is any integer then $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$.
Proof: Case I. When n is 0 . Clearly, $(\cos \theta+i \sin \theta)^{0}=1$
Case II. When n is a positive integer. Clearly is it true for $n=1$
Let it is true for $n=m$. Then $(\cos \theta+i \sin \theta)^{m}=\cos m \theta+i \sin m \theta$
For $n=m+1,(\cos \theta+i \sin \theta)^{m+1}=(\cos m \theta+i \sin m \theta)(\cos \theta+i \sin \theta)=\cos (m+1) \theta+$ $i \sin (m+1) \theta$ [this result comes from trigonometry]

Thus, by mathematical induction we have proven the theorem for positive integers.
Case III. When n is negative number. For $n=-1,(\cos \theta+i \sin \theta)^{-1}=\frac{1}{\cos \theta+i \sin \theta}$
$=\frac{\cos \theta-i \sin \theta}{\cos ^{2} \theta+\sin ^{2} \theta}=\cos \theta-i \sin \theta$
Let it be true for $n=-m,(\cos \theta+i \sin \theta)^{-m}=\cos m \theta-i \sin m \theta$
For $n=-(m+1),(\cos \theta+i \sin \theta)^{-(m+1)}=\frac{\cos m \theta-i \sin m \theta}{\cos \theta+i \sin \theta}$
$=(\cos m \theta-i \sin m \theta)(\cos \theta-i \sin \theta)=\cos (m+1) \theta+i \sin (m+1) \theta$
Thus, it is proven for negative numbers as well. Proof for fractional powers is left as an exercise.

3.12 Some Important Geometrical Results

3.12.1 Section Formula

Let $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}$ then $z=x+i y$, which divides the previous two points in the ratio $\mathrm{m} ; \mathrm{nm} ; \mathrm{n}$ can be given by using the results from coordinate geometry as below:

$$
x=\frac{m x_{2}+n x_{1}}{m+n}, y=\frac{m y_{2}+n y_{1}}{m+n} \text { and } z=\frac{m z_{2}+n z_{1}}{m+n}
$$

Extending this section formula, we can say that if there is a point which is mid-point i.e. divides a line in two equal parts, then $m=1$ and $n=1$ then z is given by $\frac{1}{2}\left(z_{1}+z_{2}\right)$.

3.12.2 Distance Formula

Distance between $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$ is given by $A B=\left|z_{1}-z_{2}\right|$.

3.12.3 Equation of a Line

The equation between two points z_{1} and z_{2} is given by the determinant

$$
\left|\begin{array}{ccc}
z & \bar{z} & 1 \\
z_{1} & \overline{z_{1}} & 1 \\
z_{2} & \overline{z_{2}} & 1
\end{array}\right|=0
$$

or,

$$
\frac{z-z_{1}}{\bar{z}-\overline{z_{1}}}=\frac{z_{1}-z_{2}}{\overline{z_{1}}-\overline{z_{2}}}
$$

The parametric form is given by $z=i z_{1}+(1-t) z_{2}$

3.12.4 Collinear Points

Three points z_{1}, z_{2} and z_{3} are collinear if and only if

$$
\left|\begin{array}{lll}
z_{1} & \overline{z_{1}} & 1 \\
z_{2} & \overline{z_{2}} & 1 \\
z_{3} & \overline{z_{3}} & 1
\end{array}\right|=0
$$

3.12.5 Parallelogram

Four complex numbers $A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right)$ and $D\left(z_{4}\right)$ represent the vertices of a parallelogram if $z_{1}+z_{3}=z_{2}+z_{4}$. This result comes from the fact that diagonals of a parallelogram bisect each other.

Figure 3.8 Parallelogram

3.12.6 Rhombus

Four complex numbers $A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right)$ and $D\left(z_{4}\right)$ represent the vertices of a rhombus if $z_{1}+z_{3}=z_{2}+z_{4}$ and $\left|z_{4}-z_{1}\right|=\left|z_{2}-z_{1}\right|$.

Figure 3.9 Rhombus
The diagonals must bisect each other. Thus, $z_{1}+z_{3}=z_{2}+z_{4}$. Also, four sides of a rhombus are equal i.e. $A D=A B \Rightarrow\left|z_{4}-z_{1}\right|=\left|z_{2}-z_{1}\right|$.

3.12.7 Square

Four complex numbers $A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right)$ and $D\left(z_{4}\right)$ represent the vertices of a square if $z_{1}+z_{3}=z_{2}+z_{4},\left|z_{4}-z_{1}\right|=\left|z_{2}-z_{1}\right|$ and $\left|z_{3}-z_{1}\right|=\left|z_{4}-z_{2}\right|$.

Figure 3.10 Square
The diagonals must bisect each other. Thus, $z_{1}+z_{3}=z_{2}+z_{4}$. Also, four sides of a square are equal i.e. $A D=A B \Rightarrow\left|z_{4}-z_{1}\right|=\left|z_{2}-z_{1}\right|$.

Also the digonals are equal in length so $\left|z_{3}-z_{1}\right|=\left|z_{4}-z_{2}\right|$.

3.12.8 Rectangle

Four complex numbers $A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right)$ and $D\left(z_{4}\right)$ represent the vertices of a square if $z_{1}+z_{3}=z_{2}+z_{4}$ and $\left|z_{3}-z_{1}\right|=\left|z_{4}-z_{2}\right|$.

Figure 3.11 Rectangle
The diagonals must bisect each other. Thus, $z_{1}+z_{3}=z_{2}+z_{4}$. Also, the digonals are equal in length so $\left|z_{3}-z_{1}\right|=\left|z_{4}-z_{2}\right|$.

3.12.9 Centroid of a Triangle

Let $A\left(z_{1}\right), B\left(z_{2}\right)$ and $C\left(z_{3}\right)$ be the vertices of a $\triangle A B C$. Centroid $G(z)$ of the $\triangle A B C$ is the point of concurrence of the medians of all three sides and is given by

$$
z=\frac{z_{1}+z_{2}+z_{3}}{3}
$$

Figure 3.12 Centroid of a triangle.

3.12.10 Incenter of a Triangle

Let $A\left(z_{1}\right), B\left(z_{2}\right)$ and $C\left(z_{3}\right)$ be the vertices of a $\triangle A B C$. inceneter $I(z)$ of the $\triangle A B C$ is the point of concurrence of the internal bisectors of and is given by

$$
z=\frac{a z_{1}+b z_{2}+c z_{3}}{a+b+c}
$$

where a, b, c are the lengths of the sides.

3.12.11 Circumcenter of a Triangle

Circumcenter $S(z)$ of a $\triangle A B C$ is the point of concurrence of perpendicular bisectors of sides of the triangle. It is given by

$$
\begin{gathered}
z=\frac{\left(z_{2}-z_{3}\right)\left|z_{1}\right|^{2}+\left(z_{3}-z_{1}\right)\left|z_{2}\right|^{2}+\left(z_{1}-z_{2}\right)\left|z_{3}\right|^{2}}{\overline{z_{1}}\left(z_{2}-z_{3}\right)+\overline{z_{2}}\left(z_{3}-z_{1}\right)+\overline{z_{3}}\left(z_{1}-z_{2}\right)} \\
=\frac{\left|\begin{array}{lll}
\left|z_{1}\right|^{2} & z_{1} & 1 \\
\left|z_{2}\right|^{2} & z_{2} & 1 \\
\left|z_{3}\right|^{2} & z_{3} & 1
\end{array}\right|}{\left|\begin{array}{lll}
\overline{z_{1}} & z_{1} & 1 \\
\overline{z_{2}} & z_{2} & 1 \\
\overline{z_{3}} & z_{3} & 1
\end{array}\right|}
\end{gathered}
$$

Also,

$$
z=\frac{z_{1} \sin 2 A+z_{2} \sin 2 B+z_{3} \sin 2 C}{\sin 2 A+\sin 2 B+\sin 2 C}
$$

3.12.12 Orthocenter of a Triangle

The orthocenter $H(z)$ of the $\triangle A B C$ is the point of concurrence of altitudes of the side. It is given by

$$
\begin{gathered}
z=\frac{\left|\begin{array}{ccc}
z_{1}^{2} & \overline{z_{1}} N C 1 \\
z_{2}^{2} & \overline{z_{2}} & 1 \\
z_{3}^{2} & \overline{z_{3}} & 1
\end{array}\right|+\left|\begin{array}{ccc}
\left|z_{1}\right|^{2} N C z_{1} N C 1 \\
\left|z_{2}\right|^{2} & z_{2} & 1 \\
\left|z_{3}\right|^{2} & z_{3} & 1
\end{array}\right|}{\left|\begin{array}{ccc}
\overline{z_{1}} & z_{1} N C 1 & \\
\overline{z_{2}} & z_{2} & 1 \\
\overline{z_{3}} & z_{3} & 1
\end{array}\right|} \\
=\frac{z_{1} \tan A+z_{2} \tan B+z_{3} \tan C}{\tan A+\tan B+\tan C} \\
=\frac{z_{1} a \sec A+b z_{2} \sec B+c z_{3} \sec C}{a \sec A+b \sec B+c \sec C}
\end{gathered}
$$

3.12.13 Euler's Line

The centroid G of a triangle lies on the segment joining the orthocenter H and the circumcenter S of the triangle. G divides the line H and S in the ratio 2:1.

3.12.14 Length of Perpendicular from a Point to a Line

Length of a perpendicular of point $A(\omega)$ from the line $\bar{a} z+a \bar{z}+b=0,(a \in C, b \in R)$ is given by

$$
p=\frac{|\bar{a} \omega+a \bar{\omega}+b|}{2|a|}
$$

3.12.15 Equation of a Circle

The equation of a circle with center z_{0} and radius r is $\left|z-z_{0}\right|=r$ or $z=z_{0}+r e^{i \theta}, 0 \leq \theta \leq 2 \pi$ or $z \bar{z}-z_{0} \bar{z}-\overline{z_{0}} z+z_{0} \overline{z_{0}}-r^{2}=0$

General equation of a circle is $z \bar{z}-a \bar{z}+\bar{a} z+b=0,(a \in C, b \in R)$ such that $\sqrt{a \bar{a}-b} \geq 0$.
Center of this circle is $-a$ and radius is $a \bar{a}-b$.
An equation of the circle, one of whose diameter is the line segment joining z_{1} and z_{2} is $\left(z-z_{1}\right)\left(\bar{z}-\overline{z_{2}}\right)+\left(\bar{z}-\overline{z_{1}}\right)\left(z-z_{2}\right)=0$

An equation of the the circle passing through two points z_{1} and z_{2} is

$$
\left(z-z_{1}\right)\left(\bar{z}-\overline{z_{2}}\right)+\left(\bar{z}-\overline{z_{1}}\right)\left(z-z_{2}\right)+k\left|\begin{array}{ccc}
z & \bar{z} & 1 \\
z_{1} & \overline{z_{1}} & 1 \\
z_{2} & \overline{z_{2}} & 1
\end{array}\right|=0
$$

where k is a parameter.

3.12.16 Equation of a Circle Passing through Three Points

Figure 3.13 Circle through three points
We choose any point $P(z)$ on the circle. Two such points are shown in the figure above one is in same segment with C and the other one in different segement. So we have

$$
\begin{gathered}
\angle A C B=\angle A P B \text { or } \angle A C B+\angle A P B=\pi \\
\arg \frac{z_{3}-z_{2}}{z_{3}-z_{1}}-\arg \frac{z-z_{2}}{z-z_{1}}=0 \text { or } \arg \frac{z_{3}-z_{2}}{z_{3}-z_{1}}+\arg \frac{z-z_{2}}{z-z_{1}}=\pi
\end{gathered}
$$

Clearly, in both cases the fraction must be purely real. Thus we can apply the property of conjugates i.e. $z=\bar{z}$ which also gives us the condition for four concyclic points.

$$
\Rightarrow \frac{\left(z-z_{1}\right)\left(z_{3}-z_{2}\right)}{\left(z-z_{2}\right)\left(z_{3}-z_{1}\right)}=\frac{\overline{\left(z-z_{1}\right)\left(z_{3}-z_{2}\right)}}{\left(z-z_{2}\right)\left(z_{3}-z_{1}\right)}
$$

From this we can also deduce the condition for four points to be concyclic. Treating $P(z)$ as just another point $D\left(z_{4}\right)$, we can rewrite the abobe result as

$$
\frac{\left(z_{4}-z_{1}\right)\left(z_{3}-z_{2}\right)}{\left(z_{4}-z_{2}\right)\left(z_{3}-z_{1}\right)}=\frac{\overline{\left(z_{4}-z_{1}\right)\left(z_{3}-z_{2}\right)}}{\overline{\left(z_{4}-z_{2}\right)\left(z_{3}-z_{1}\right)}}
$$

3.12.17 Finding Loci by Examination

1. $\arg \left(z-z_{0}\right)=\alpha$

If α is a real number and z_{0} is a fixed point, then $\arg \left(z-z_{0}\right)=\alpha$ represents a vector starting at $z_{0}\left(\right.$ exlcluding the point $\left.z_{0}\right)$ and making an angle α with real x-axis.

Figure 3.14
Now suppose z_{0} is origin O, then the above equation becomes $\arg (z)=\alpha$, which is a vector starting at origin and making an angle α, which is a vector starting at origin and making an angle α with x-axis.
2. If z_{1} and z_{2} are two fixed points such that $\left|z-z_{1}\right|=\left|z-z_{2}\right|$ then z represents perpendicular bisector of the segment joining $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$. And z, z_{1}, z_{2} will form an isoscles triangle.

Figure 3.15
If z_{1} and z_{2} are two fixed points and $k>0, k \neq 1$ is a real number then $\frac{\left|z-z_{1}\right|}{\left|z-z_{2}\right|}=k$ represents a circle.
3. $\left|z-z_{1}\right|+\left|z-z_{2}\right|=k$. Let z_{1} and z_{2} be two fixed points and k be a positive real number.
i. Refer Figure 3.16, if $k>\left|z-z_{2}\right|$, then $\left|z-z_{1}\right|+\left|z-z_{2}\right|=k$ represents an ellipse with foci at $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$ and length of major axis $=k$.

Figure 3.16 Locus of an Ellipse
ii. If $k=\left|z-z_{2}\right|$, then it represents the line segment joining z_{1} and z_{2}.
iii. If $k<\left|z-z_{2}\right|$, thne it does not represent any curve/line in Argand plane.
4. If $\left|z-z_{1}\right|-\left|z-z_{2}\right|=k$. Let z_{1} and z_{2} be two fixed points and k be a positive real number.
i. Refer Figure 3.17, if $k \neq\left|z-z_{2}\right|$, then it represnts a parabola with foci at $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$.

Figure 3.17 Locus of a Parabola
ii. If $k=\left|z_{1}-z_{2}\right|$, then it represents the straight line joining $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$ but excluding the segment $A B$

Figure 3.18
5. $\left|z-z_{1}\right|^{2}+\left|z-z_{2}\right|^{2}=\left|z_{1}-z_{2}\right|^{2}$. If z_{1} and z_{2} are two fixed points then it represents a circle with z_{1} and z_{2} as the endpoints of one of the diameters.

Figure 3.19
6. $\arg \left(\frac{z-z_{1}}{z-z_{2}}\right)=\alpha$. Let z_{1} and z_{2} be any two fixed points and α be a real number such that $0 \leq \alpha \leq \pi$.
i. If $0<\alpha<\pi$ and $\alpha \neq \pi / 2$, then it represents a segment of a circle passing through $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$.

Figure 3.20
ii. If $\alpha=\pi / 2$, then it represents a circle with diameter as the line segment joining $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$.

Figure 3.21
iii. If $\alpha=\pi$, then it represents the straight line joining $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$ but excluding the line segment $A B$.

Figure 3.22
iv. If $\alpha=0$, then it represents the straight line joining $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$.

$$
A\left(z_{1}\right) \quad B\left(z_{2}\right)
$$

Figure 3.23

3.13 Problems

Find the square root of the following complex numbers:

1. $7+8 i$
2. $a^{2}-b^{2}+2 a b i$
3. $\sqrt[4]{-81}$
4. Find the square root of

$$
\frac{x^{2}}{y^{2}}+\frac{y^{2}}{x^{2}}+\frac{1}{2 i}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{31}{16}
$$

Simplify the following in the form of $A+i B$
5. $i^{n+80}+i^{n+50}$
6. $\left(i^{17}+\frac{1}{i^{15}}\right)^{3}$
7. $\frac{(1+i)^{2}}{2+3 i}$
8. $\left(\frac{1}{1+i}+\frac{1}{1-i}\right) \frac{7+8 i}{7-8 i}$
9. $\frac{(1+i)^{4 n+7}}{(1-i)^{4 n-1}}$
10. $\frac{1}{1-\cos \theta+2 i \sin \theta}$
11. $\frac{(\cos x+i \sin x)(\cos y+i \sin y)}{(\cot u+i)(i+\tan v)}$ Evaluate:
12. i^{5}
13. i^{67}
14. i^{-59}
15. i^{2014}
16. If $a<0, b>0$, then prove that $\sqrt{a b}$ is equal to $\sqrt{|a| b} i$.
17. Prove that $i^{n}+i^{n+1}+i^{n+2}+i^{n+3}=0$.
18. Find the value of the sum $\sum_{n=1}^{13}\left(i^{n}+i^{n+1}\right)$.
19. Simplify and find the value of $\frac{2^{n}}{(1+i)^{2 n}}+\frac{(1+i)^{2 n}}{2^{n}}$
20. Find different values of $i^{n}+i^{-n}, \forall n \in I$.
21. If $4 x+(3 x-y) i=3-6 i$, then find the value of x and y.
22. Find the value of $\left(\frac{1}{3}+i \frac{7}{3}\right)+\left(4+i \frac{1}{3}\right)-\left(-\frac{4}{3}+i\right)$.
23. Find the real values of x and y, if $\frac{(1+i) x-2 i}{3+i}+\frac{(2-3 i) y+i}{3-i}=i$.
24. Find the multiplicative inverse of $4-3 i$.
25. If $z_{1}=2+3 i$ and $z_{2}=1+2 i$, then find the value of z_{1} / z_{2}.
26. If $z_{1}=9 y^{2}-4-i 10 x$ and $z_{2}=8 y^{2}-20 i$ such that $z_{1}=\overline{z_{2}}$, then find $z=x+i y$.
27. Find z if $|z+1|=z+2(1+i)$, where $z \in C$.
28. Find the modulus and argument of the complex number $\frac{1+2 i}{1-3 i}$
29. If $\frac{x-3}{3+i}+\frac{y-3}{3-i}=i$, where $x, y \in R$, then find x and y.
30. What is the real part of $(1+i)^{50}$.
31. If a complex number is z, such that $z+|z|=2+8 i$, then find z.
32. Find the sum of sequence $S=i+2 i^{2}+3 i^{3}+\ldots$ up to 100 terms.
33. Find the value of the $\operatorname{sum} \frac{1}{1+i}+\frac{1}{1-i}+\frac{1}{-1+i}+\frac{1}{-1-i}+\frac{2}{1+i}+\frac{2}{1-i}+\frac{2}{-1+i}+\frac{2}{-1-i}+\ldots+\frac{n}{1+i}+$ $\frac{n}{1-i}+\frac{n}{-1+i}+\frac{n}{-1-i}$
34. Find the product of the real parts of the root $z^{2}-z-5+5 i=0$.
35. Find the number of complex numbers satisfying $z^{3}+\bar{z}=0$.
36. Find the number of real roots of the equation $z^{3}+i z-1=0$.
37. In the following diagram, if given circle is unit circle then find the reciprocal of point A.

Figure 3.24
38. If $z=(3+7 i)(p+i q)$, where $p, q \in I$, is purely imaginary, then find the minimum value of $|z|^{2}$.
39. If $\alpha=\left(\frac{a-i b}{a+i b}\right)^{2}+\left(\frac{a+i b}{a-i b}\right)^{2}, \forall a, b \in R$, then prove that α is real.
40. If $\beta=\frac{z-1}{z+1}$ such that $|z|=1$, then prove that β is imaginary.
41. If $|z-3 i|=3$ such the $\arg (z) \in\left(0, \frac{\pi}{2}\right)$, then find the value of $\cos (\arg (z))-\frac{6}{z}$.
42. Find the polar form of the complex number $\frac{-16}{1+i \sqrt{3}}$
43. Let z and w be the two non-zero complex numbers such that $|z|=|w|$ and $\arg (z)+$ $\arg (w)=\pi$, then prove that $z=-\bar{w}$.
44. If $x-i y=\sqrt{\frac{a-i b}{c-i d}}$, then prove that $\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$
45. Find the minimum value of $|z|+|z-2|$.
46. If $\left|z_{1}-1\right|<1,\left|z_{2}-2\right|<2$ and $\left|z_{3}-3\right|<3$, then prove that the maximum value of $\left|z_{1}+z_{2}+z_{3}\right|$ is 12 .
47. If α, β are two complex numbers, then prove that $|\alpha|^{2}+|\beta|^{2}=\frac{1}{2}\left(|\alpha+\beta|^{2}+|\alpha-\beta|^{2}\right)$.
48. Show that for $z \in C,|z|=0$, if and only if $z=0$.
49. If z_{1} and z_{2} are $1-i$ and $2+7 i$, then find $\operatorname{Im}\left(\frac{z_{1} z_{2}}{z_{1}}\right)$.
50. If $|z-i|<1$, then prove that $|z+12-6 i|<14$.
51. If $|z+6|=|2 z+3|$, then prove that $|z|=3$.
52. If $\sqrt{a-i b}=x-i y$, then prove that $\sqrt{a+i b}=x+i y$.
53. If $x_{r}=\cos \frac{\pi}{2^{r}}+i \sin \frac{\pi}{2^{2}}$, then find the value of $x_{1} x_{2} x_{3} \ldots$ to ∞.
54. Find the value of $\frac{(\cos \theta+i \sin \theta)^{4}}{(\sin \theta+i \cos \theta)^{2}}$.
55. If $z=\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{5}+\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^{5}$, then find $\Im(z)$.
56. Find the product of all values of $\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{\frac{3}{4}}$.
57. If z_{1} and z_{2} are two non-zero complex numbers such that $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$, then find $\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$.
58. If $z=1-\sin \alpha+i \cos \alpha$, where $\alpha \in\left(0, \frac{\pi}{2}\right)$, then find the modulus and principal value of the argument.
59. Find the value of expression $\left(\frac{1+\sin \frac{\pi}{\frac{\pi}{+}}+i \cos \frac{\pi}{8}}{1+\sin \frac{\pi}{8}-i \cos \frac{\pi}{8}}\right)^{8}$.
60. If $z_{r}=\cos \frac{2 r \pi}{5}+i \sin \frac{2 r \pi}{5}, r=0,1,2,3,4$, then find $z_{1} z_{2} z_{3} z_{4} z_{5}$.
61. If $z_{n}=\cos \frac{\pi}{(2 n+1)(2 n+3)}+i \sin \frac{\pi}{(2 n+1)(2 n+3)}$, then find $z_{1} z_{2} z_{3} \ldots \infty$.
62. If z_{1}, z_{2} be two complex numbers and a, b are two real numbers, then prove that $\mid a z_{1}-$ $\left.b z_{2}\right|^{2}+\left|b z_{1}+a z_{2}\right|^{2}=\left(a^{2}+b^{2}\right)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$.
63. Show that the equation $\frac{A^{2}}{x-a}+\frac{B^{2}}{x-b}+\ldots+\frac{H^{2}}{x-h}=x+l$, where $A, B, \ldots H, a, b, \ldots, h$ and l are real, cannot have imaginary roots.
64. Find all real number x, such that $\left|1+4 i-2^{-x}\right| \leq 5$.
65. Show that a unimodular complex number, not purely real can be expressed as $\frac{c+i}{c-i}$ for some real c.
66. If $\left(z^{2}+3\right)^{2}=-16$, then find $|z|$.
67. If $\frac{\sin \frac{x}{2}+\cos \frac{x}{2}-i \tan x}{1+2 i \sin \frac{x}{2}}$ is real, then find the set of all possible values of x.
68. Prove that $\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$.
69. If $x^{2}-x+1=0$, then find the value of $\sum_{n=1}^{5}\left(x^{n}+\frac{1}{x^{n}}\right)^{5}$.
70. If $3^{49}(x+i y)=\left(\frac{3}{2}+\frac{\sqrt{3}}{2} i\right)^{100}$, then find x and y.
71. For any two complex numbers z_{1} and z_{2}, prove that $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2 \mathfrak{R}\left(z_{1} \overline{z_{2}}\right)=$ $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2 \mathfrak{R}\left(\overline{z_{1}} z_{2}\right)$.
72. If $\left|z_{1}\right|=\left|z_{2}\right|=1$, then prove that $\left|z_{1}+z_{2}\right|=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}\right|$.
73. If $|z-2|=2|z-1|$, then prove that $|z|^{2}=\frac{4}{3} \mathfrak{R}(z)$.
74. If $\sqrt[3]{a+i b}=x+i y$, then prove that $\frac{a}{x}+\frac{b}{y}=4\left(x^{2}-y^{2}\right)$.
75. If $x+i y=\sqrt{\frac{a+i b}{c+i d}}$, then prove that $\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$
76. If $z_{1}, z_{2}, \ldots, z_{n}$ are cube roots of unity, then prove that $\left|z_{k}\right|=\left|z_{k+1}\right| \forall k \in[1, n-1]$.
77. If n is a positive integer greater than unity and z is a complex number satisfying the equation $z^{n}=(1+z)^{2}$, then prove that $\mathfrak{R}(z)<0$.
78. Prove that $x^{3 m}+x^{3 n-1}+x^{3 r-2} \forall m, n, r \in N$, is divisible by $1+x+x^{2}$.
79. If $(\sqrt{3}+i)^{n}=(\sqrt{3}-i)^{n} \forall n \in N$, then prove that minimum value of n is 6 .
80. If $(\sqrt{3}-i)^{n}=2^{n}, n \in I$, the set of integers, then prove that n is multiple of 12 .
81. If $z^{4}+z^{3}+2 z^{2}+z+1=0$, then prove that $|z|=1$.
82. If $z=\sqrt[7]{-1}$, then find the value of $z^{86}+z^{175}+z^{289}$.
83. If $z^{3}+2 z^{2}+3 z+2=0$, then find all the non-real, complex roots of the equation.
84. If z is a non-real root of $z=\sqrt[5]{1}$, then find the value of $2^{\left|1+z+z^{2}+z^{-2}+z^{-1}\right|}$.
85. If z is a non-real root of unity, then find the value of $1+3 z+5 z^{2}+\ldots+(2 n-1) z^{n-1}$.
86. Find the value of $\sqrt{-1-\sqrt{-1-\sqrt{-1-\text { to } \infty}}}$.
87. If $z=e^{\frac{i 2 \pi}{n}}$, then find the value of $(11-z)\left(11-z^{2}\right) \ldots\left(11-z^{n-1}\right)$.
88. If $\frac{3}{2+\cos \theta+i \sin \theta}=a+i b$, then prove that $a^{2}+b^{2}=4 a-3$.
89. If $|2 z-1|=|z-2|$, then prove that $|z|=1$.
90. If x is real and $\frac{1-i x}{1+i x}=m+i n$, then prove that $m^{2}+n^{2}=1$.
91. Find the general equation of the straigt line joining the points $z_{1}=1+i$ and $z_{2}=1-i$.
92. If z_{1}, z_{2}, z_{3} are three complex numbers such that $5 z_{1}-13 z_{2}+8 z_{3}=0$, then prove that

$$
\left|\begin{array}{lll}
z_{1} & \overline{z_{1}} & 1 \\
z_{2} & \overline{z_{2}} & 1 \\
z_{3} & \overline{z_{3}} & 1
\end{array}\right|=0
$$

93. Find the length of perpendicualr from $P(2-3 i)$ to the line $(3+4 i) z+(3-4 i) \bar{z}+9=0$.
94. If a point z_{1} is a reflection of a point z_{2} through the line $z \bar{z}+\bar{b} z=c, b \neq 0$ in the argand plane, thne prove that $\bar{b} z_{2}+b \overline{z_{1}}=c$.
95. The point represented by the complex number $2-i$ is rotated by origin by an angle $\pi / 2$ in the anti-clockwise direction. Find the new coordinates.
96. A particle P starts from the point $z_{0}=1+2 i$. It first moves horizontally, away from origin by 5 units and then vertically, away from origin by 3 units to reach a point z_{1}. From z_{1} the particle moves $\sqrt{2}$ units in the direction of vector $\hat{\imath}+\hat{\jmath}$ and it then rotaes about origin in anti-clockwise direction for an angle $\pi / 2$ to reach z_{2}. Find the coordinates of z_{2}.
97. A man walks a distance of 3 units from the origin in North-East direction. Then he walks 4 units in North-West direction. Find the final coordinates.
98. If three complex numbers satisfty the relationship $\frac{z_{1}-z_{3}}{z_{2}-z_{3}}=\frac{1-i \sqrt{3}}{2}$, then prove that z_{1}, z_{2} and z_{3} form an equilateral triangle.
99. If z_{1}, z_{2} and z_{3} form an equilateral triangle then prove that $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+$ $z_{3} z_{1}$, and hence $\frac{1}{z_{1}-z_{2}}+\frac{1}{z_{2}-z_{3}}+\frac{1}{z_{3}-z_{1}}=0$.
100. If z_{1}, z_{2} and z_{3} are vertices of an equilateral triangle and z_{0} is the circumcenter then prove that $3 z_{0}^{2}=z_{1}^{2}+z_{2}^{2}+z_{3}^{2}$.
101. If z_{1}, z_{2} and z_{3} form a right-angled, isosceles triangle with right angle at z_{3}, then prove that $\left(z_{1}-z_{2}\right)^{2}=2\left(z_{1}-z_{3}\right)\left(z_{3}-z_{2}\right)$.
102. Find the equation of the circle whose center is z_{0} and radius is r.
103. If $z=1-t+i \sqrt{t^{2}+t+2}$, where t is a real parameter. Prove that locus of z in argand plane is a hyperbola.
104. Find the locus of z if $\bar{z}=\bar{a}+\frac{r^{2}}{z-a}$.
105. If the equation $\left|z-z_{1}\right|^{2}+\left|z-z_{2}\right|^{2}=k$ represents the equation of a cirlce, where $z_{1}=2+3 i, z_{2}=4+3 i$ are the ends of a diameter, then find the value of k.
106. If $|z+1|=\sqrt{2}|z-1|$, then show that locus of z is a circle.
107. Prove that the locus of z given by $\left|\frac{z-1}{z-i}\right|=1$ is a straight line.
108. Find the condition for four complex numbers z_{1}, z_{2}, z_{3} and z_{4} to lie on a cyclic quadrilateral.
109. If z_{1}, z_{2} and z_{3} are complex numbers, such that $\frac{2}{z_{1}}=\frac{1}{z_{2}}+\frac{1}{z_{3}}$, then show that these points lie on a circle passing through origin.
110. If $|z-\omega|^{2}+\left|z-\omega^{2}\right|^{2}=r^{2}$, where r is radius and ω, ω^{2} are cube roots of unity and ends of diameter of the circle then find radius.
111. Find the region represented by $|z-4|<|z-2|$.
112. If $2 z_{1}-3 z_{2}+z_{3}=0$, then find the geometrical relationship between them.
113. If $z=x+i y$, such that $|z+1|=|z-1|$ and $\arg \frac{z-1}{z+1}=\frac{\pi}{4}$, find x and y.
114. If $|z|^{8}=|z-1|^{8}$, then prove that roots of this equation are collinear.
115. Prove that $z \bar{z}+a \bar{z}+\bar{a} z+b=0$, represents a circle if $|a|^{2}>b$.
116. If $z=(\lambda+3)+i \sqrt{3-\lambda^{2}}$, where $|\lambda|<\sqrt{3}$, then prove that it represents a circle.
117. If z is a complex number such that $|\mathfrak{R}(z)|+|\Im(z)|=k, \forall k \in R$, then find the locus of z.
118. Consider a sequence of complex numbers such that $z_{n+1}=z_{n}^{2}+i, \forall n \geq 1$, where $z_{1}=0$. Find z_{111}.
119. The complex numbers whose real and imaginary parts are integers and satisfy the relation $z \bar{z}^{3}+z^{3} \bar{z}=350$, forms a rectangle in the argand plane. Find length of its diagonals.
120. If z_{1}, z_{2} are two complex numbers and $\arg \frac{z_{1}+z_{2}}{z_{1}-z_{2}}$ but $\left|z_{1}+z_{2}\right| \neq\left|z_{1}-z_{2}\right|$ then find the figure formed by $0, z_{1}, z_{2}$ and $z_{1}+z_{2}$.
121. If z_{1} and z_{2} are complex numbers such that $a\left|z_{1}\right|=b\left|z_{2}\right|, a, b \in R$, then prove that $\frac{a z_{1}}{b z_{2}}+\frac{b z_{2}}{a z_{1}}$ lies on the segment $[-2,2]$ of the real axis.
122. If z_{1}, z_{2}, z_{3} are roots of the equation $z^{3}+3 \alpha z^{2}+3 \beta z+\gamma=0$, such that they form an equilateral triangle then prove that $\alpha^{2}=\beta$.
123. If $z_{1}^{2}+z_{2}^{2}+2 z_{1} z_{2} \cos \theta=0$, then prove that z_{1}, z_{1} and the origin form an isosceles triangle.
124. A, B and C represent z_{1}, z_{2} and z_{3} on argnad plane. The circumcenter of this triangle lies on the origin. If the altitude $A D$ meets circumcircle again at P, then find the complex number representing P.
125. If z_{1} and z_{2} are the roots of the equation $z^{2}+p z+q=0$, where p, q can be complex numbers. Let A, B represent z_{1}, z_{2} in the complex plane. If $\angle A O B=\alpha \neq 0$ and $O A=$ $O B$, where O is the origin then find p^{2}.
126. If $\Re\left(\frac{z+4}{2 x-1}\right)=\frac{1}{2}$ then prove that locus of z is a straight line.
127. If z_{1}, z_{2} and z_{3} are vertices of an equilateral triangle inscribed in the circle $|z|=2$. If z_{1}, z_{2}, z_{3} are in clockwise sense then find z_{2} and z_{3}.
128. If $z_{1}=\frac{a}{1-i}, z_{2}=\frac{b}{2+i}, z_{3}=a-b i$ for $a, b \in R$ and $z_{1}-z_{2}=1$. Then find the centroid of the triangle formed by z_{1}, z_{2} and z_{3}.
129. Let $\lambda \in R$. If the origin and the non-real roots of $2 z^{2}+2 z+\lambda=0$ form three vertices of an equilateral triangle in the argand plane, then find λ.
130. If a, b, c and u, v, w are complex numbers such that $c=(1-r) a+r b$ and $w=(1-r) u+$ $r v$, where r is a complex number then prove that the triangles are similar.
131. Find the intercept made by the circle $z \bar{z}+\bar{\alpha} z+\alpha \bar{z}+r=0$ on real axis on the complex plane.
132. If $a=\cos \alpha+i \sin \alpha, b=\cos \beta+i \sin \beta, c=\cos \gamma+i \sin \gamma$ and $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=1$, then find the value of $\cos (\alpha-\beta)+\cos (\beta-\gamma)+\cos (\gamma-\alpha)$.
133. Find the locus of the center of a circle which touches the circles $\left|z-z_{1}\right|=a$ and $\left|z-z_{2}\right|=b$ externally.
134. Prove that $\tan \left[i \log \left(\frac{a-i b}{a+i b}\right)\right]=\frac{2 a b}{a^{2}-b^{2}}$.
135. $z_{1}=a+i b$ and $z_{2}=c+i d$ are complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|=1$ and $\mathfrak{R}\left(z_{1} \overline{z_{2}}\right)=$ 0 . Also, $w_{1}=a+i c, w_{2}=b+i d$ then prove that $\left|w_{1}\right|=\left|w_{2}\right|=1$ and $\mathfrak{R}\left(w_{1} \overline{w_{2}}\right)=0$.
136. If $\left|\frac{z_{1}}{z_{2}}\right|=1$ and $\arg \left(z_{1} z_{2}\right)=0$, then prove that $\left|z_{2}\right|^{2}=z_{1} z_{2}$.
137. Find the value of the expression $2\left(1+\frac{1}{\omega}\right)\left(1+\frac{1}{\omega^{2}}\right)+3\left(2+\frac{1}{\omega}\right)\left(2+\frac{1}{\omega^{2}}\right)+4\left(3+\frac{1}{\omega}\right)(3+$ $\left.\frac{1}{\omega^{2}}\right)+\ldots+(n+1)\left(n+\frac{1}{\omega}\right)\left(n+\frac{1}{\omega^{2}}\right)$.
138. If z_{1} and z_{2} are two complex numbers satisfying the equation $\left|\frac{z_{1}+i z_{2}}{z_{1}-i z_{2}}\right|=1$, then prove that $\frac{z_{1}}{z_{2}}$ is purely real.
139. If $z=-2+2 \sqrt{3} i$, then find values of $z^{2 n}+2^{2 n} z^{n}+2^{4 n}$.
140. If $2 \cos \theta=x+\frac{1}{x}$ and $2 \cos \phi=y+\frac{1}{y}$, then find the values of $\frac{x}{y}+\frac{y}{x}, x y+\frac{1}{x y}$.
141. The complex numbers z_{1} and z_{2} such that $z_{1} \neq z_{2}$ and $\left|z_{1}\right|=\left|z_{2}\right|$. If z_{1} has positive real part and z_{2} has negative imaginary part, prove that $\frac{z_{1}+z_{2}}{z_{1}-z_{2}}$ is purely imaginary.
142. If $A\left(z_{1}\right), B\left(z_{1}\right)$ and $C\left(z_{3}\right)$ are the vertices of a $\triangle A B C$ in which $\angle A B C=\frac{\pi}{4}$ and $\frac{A B}{B C}=\sqrt{2}$, then prove that the value of $z_{2}=z_{3}+i\left(z_{1}-z_{3}\right)$.
143. If $z_{1} z_{2} \in C, z_{1}^{2}+z_{2}^{2} \in R, z_{1}\left(z_{1}^{2}-3 z_{2}^{2}\right)=2$ and $z_{2}\left(3 z_{1}^{2}-z_{2}^{2}\right)=11$, then find the value of $z_{1}^{2}+z_{2}^{2}$.
144. If $\sqrt{1-c^{2}}=n c-1$ and $z=e^{i \theta}$, then find the value of $\frac{c}{2 n}(1+n z)\left(1+\frac{n}{z}\right)$.
145. Consider an ellipse having its foci at $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$ in the argand plane. If the eccentricity of the ellipse is e and it is known that origin is an interior point of the ellipse, then prove that $e \in\left(0, \frac{\left|z_{1}-z_{2}\right|}{\left|z_{1}\right|+\left|z_{2}\right|}\right)$
146. If $|z-2-i|=|z|\left|\sin \left(\frac{\pi}{4}-\arg (z)\right)\right|$, then find the locus of z.
147. Find the maximum area of the triangle formed by the complex coordinates $z z_{1}$ and z_{2}, which satisfy the relation $\left|z-z_{1}\right|=\left|z-z_{2}\right|$ and $\left|z-\frac{z_{1}+z_{2}}{2}\right| \leq r$, where $r>\left|z_{1}-z_{2}\right|$.
148. If $z_{1}=a_{1}+i b_{1}$ and $z_{2}=a_{2}+i b_{2}$ are complex numbers such that $\left|z_{1}\right|=1,\left|z_{1}\right|=2$ and $\mathfrak{R}\left(z_{1} z_{2}\right)=0$, and $\omega_{1}=a_{1}+\frac{i a_{2}}{2}$ and $\omega_{2}=2 b_{1}+i b_{2}$, then prove that $\left|\omega_{1}\right|=1,\left|\omega_{2}\right|=2$ and $\mathfrak{R}\left(\omega_{1} \omega_{2}\right)=0$.
149. Let z be a complex number and a be a be a real number such that $z^{2}+a z+a^{2}=0$, then prove that i) locus of z is a pair of straight lines ii) $\arg (z)= \pm \frac{2 \pi}{3}$ iii) $|z|=|a|$
150. If $x+\frac{1}{x}=1$ and $p=x^{4000}+\frac{1}{x^{4000}}$ and q is the the digit at units place in $2^{2^{n}}+1, n \in N$ and $n>1$, then find $p+q$.
151. Consider an equilateral triangle $A\left(\frac{2}{\sqrt{3}} e^{i \pi / 2}\right), B\left(\frac{2}{\sqrt{3}} e^{-i \pi / 6}\right)$ and $C\left(\frac{2}{\sqrt{3}} e^{-i 5 \pi / 6}\right)$. If $P(z)$ is any point on the incircle then find the value of $A P^{2}+B P^{2}+C P^{2}$.
152. If $A_{1}, A_{2}, \ldots, A_{n}$ be the vertices of a regular polygon of n sides in a circle of unit radius and $a=\left|A_{1} A_{2}\right|^{2}+\left|A_{1} A_{3}\right|^{2}+\ldots+\left|A_{1} A_{n}\right|^{2}, b=\left|A_{1} A_{2}\right|\left|A_{1} A_{3}\right| \ldots\left|A_{1} A_{n}\right|$, then find $\frac{a}{b}$.
153. If $\left(1+i \frac{x}{a}\right)\left(1+i \frac{x}{b}\right)\left(1+i \frac{x}{c}\right) \ldots=A+i B$, then prove that $\left(1+\frac{x^{2}}{a^{2}}\right)\left(1+\frac{x^{2}}{b^{2}}\right)\left(1+\frac{x^{2}}{c^{2}}\right) \ldots=$ $A^{2}+B^{2}$.
154. Find the range of real number α for which the equations $z+\alpha|z-1|+2 i=0 ; z=x+i y$ has a solution. Also, find the solution.

155 . For every real number $a \geq 0$, find all the complex numbers satisfying the equation $2|z|-4 a z+1+i a=0$.
156. Show that $\left(x^{2}+y^{2}\right)^{5}=\left(x^{5}-10 x^{3} y^{2}+5 x y^{4}\right)+\left(5 x^{4} y-10 x^{2} y^{3}+y^{5}\right)^{2}$.
157. Express $\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)\left(x^{2}+c^{2}\right)$ as sum of two squares.
158. If $(1+x)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$, then prove that $2^{n}=\left(a_{0}-a_{2}+a_{4}-\ldots\right)^{2}+$ $\left(a_{1}-a_{3}+a_{5}-\ldots\right)^{2}$.
159. Dividing $f(z)$ by $z-i$, we get i as remainder and if we divide by $z+i$, we get $1+i$ as remainder. Find the remainder upon division of $f(z)$ by $z^{2}+1$.
160. If $|z| \leq 1,|w| \leq 1$, show that $|z-w|^{2} \leq(|z|-|w|)^{2}+[\arg (z)-\arg (w)]^{2}$.
161. If z is any complex number, then show that $\left|\frac{z}{|z|}-1\right| \leq|\arg (z)|$.
162. If z is any complex number, then show that $|z-1| \leq||z|-1|+|z||\arg z|$.
163. If $\left|z+\frac{1}{z}\right|=a$, where z is a complex number and $a>0$, find the greatest and least values of $|z|$.
164. If z_{1}, z_{2} be complex numebrs and c is a positive number, prove that $\left|z_{1}+z_{2}\right|^{2}<(1+$ c) $\left|z_{1}\right|^{2}+\left(1+\frac{1}{c}\right)\left|z_{2}\right|^{2}$.
165. If z_{1} and z_{2} are two complex numbers such that $\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|=1$, prove that $\frac{i z_{1}}{z_{2}}=x$ where x is a real number. Find the angle between the lines from origin to the points $z_{1}+z_{2}$ and $z_{1}-z_{2}$ in terms of x.
166. Let z_{1}, z_{2} be any two complex numbers and a, b be two real numbers such that $a^{2}+b^{2} \neq 0$. Prove that $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-\left|z_{1}^{2}+z_{2}^{2}\right| \leq 2 \frac{\left|a z_{1}+b z_{2}\right|^{2}}{a^{2}+b^{2}} \leq\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{1}^{2}+z_{2}^{2}\right|$.
167. If $b+i c=(1+a) z$ and $a^{2}+b^{2}+c^{2}=1$, prove that $\frac{a+i b}{1+c}=\frac{1+i z}{1-i z}$, where a, b, c are real numbers and z is a complex number.
168. If a, b, c, \ldots, k are all n real roots of the equation $x^{n}+p_{1} x^{n-1}+p_{2} x^{n-2}+\ldots+p_{n-1} x+$ $p_{n}=0$, where $p_{1}, p_{2}, \ldots, p_{n}$ are real, show that $\left(1+a^{2}\right)\left(1+b^{2}\right) \ldots\left(1+k^{2}\right)=\left(1-p_{2}+\right.$ $\left.p_{4}+\ldots\right)^{2}+\left(p_{1}-p_{3}+\ldots\right)^{2}$.
169. If $f(x)=x^{4}-8 x^{3}+4 x^{2}+4 x+39$ and $f(3+2 i)=a+i b$, find $a: b$.
170. Let A and B be two complex numbers such that $\frac{A}{B}+\frac{B}{A}=1$, prove that the triangle formed by origin and these two points is equilateral.
171. If $n>1$, show that the roots of the equation $z^{n}=(1+z)^{n}$ are collinear.
172. If A, B, C and D are four complex number then show that $A D \cdot B C \leq B D \cdot C A+C D . A B$.
173. If $a, b \in R$ and $a, b \neq 0$, then show that the equation of line joining a and $i b$ is $\left(\frac{1}{2 a}-\right.$ $\left.\frac{i}{2 b}\right) z+\left(\frac{1}{2 a}+\frac{i}{2 b}\right) \bar{z}=1$.
174. If z_{1} and z_{2} are two compelx numbers such that $\left|z_{1}\right|-\left|z_{2}\right|=\left|z_{1}-z_{2}\right|$, then show that $\arg \left(z_{1}\right)-\arg \left(z_{2}\right)=2 n \pi$ where $n \in I$.
175. Let A, B, C, D, E be points in the complex plane representing complex numbers $z_{1}, z_{2}, z_{3}, z_{4}, z_{5}$ respectvely. If $\left(z_{3}-z_{2}\right) z_{4}=\left(z_{1}-z_{2}\right) z_{5}$, prove that $\triangle A B C$ and $\triangle D O E$ are similar.
176. Let z and z_{0} are two complex numbers and $z, z_{0}, z \overline{z_{0}}, 1$ are represented by points P, P_{0}, Q, A respectively. If $|z|=1$, show that the triangle $P O P_{0}$ and $A O Q$ are congruent and hence $\left|z-z_{0}\right|=\left|z \overline{z_{0}}-1\right|$, where O represents the origin.
177. If the line segment joining z_{1} and z_{2} is divided by P and Q in the ratio $a: b$ internally and externally, then find $O P^{2}+O Q^{2}$ where O is origin.
178. Let z_{1}, z_{2}, z_{3} be three complex numbers and a, b, c be real numbers not all zero such that $a+b+c=0$ and $a z_{1}+b z_{2}+c z_{3}=0$, then show that z_{1}, z_{2}, z_{3} are collinear.
179. If $z_{1}+z_{2}+\ldots+z_{n}=0$, prove that if a line passes through origin then all these do not lie of the same side of the line provided they do not lie on the line.
180. The points $z_{1}=9+12 i$ and $z_{2}=6-8 i$ are given on a complex plane. Find the equation of the angle formed by the vector representing z_{1} and z_{2}.
181. If the vertices of a $\triangle A B C$ are represented by z_{1}, z_{2}, z_{3} respectively, then show that the orthocenter of $\triangle A B C$ is $\frac{z_{1} a \sec A+z_{2} b \sec B+z_{3} c \sec C}{a \sec A+b \sec B+c \sec C}$ or $\frac{z_{1} \tan A+z_{2} \tan B+z_{3} \tan C}{\tan A+\tan B+\tan C}$.
182. If the vertices of a $\triangle A B C$ are represented by z_{1}, z_{2} and z_{3} respectively, show that its circumcenter is $\frac{z_{1} \sin 2 A+z_{2} \sin 2 B+z_{3} \sin 2 C}{\sin 2 A+\sin 2 B+\sin 2 C}$.
183. Show that the circumcenter of the triangle whose vertices are given by the complex numbers z_{1}, z_{2}, z_{3} is given by $z=\frac{\sum z_{1} \overline{z_{1}}\left(z_{2}-z_{3}\right)}{\sum z_{1}\left(z_{2}-z_{3}\right)}$.
184. Find the orthocenter of the triangle with vertices z_{1}, z_{2}, z_{3}.
185. $A B C D$ is a rhombus described in clockwise direction. Suppose that the vertices A, B, C, D are given by $z_{1}, z_{2}, z_{3}, z_{4}$ respectively and $\angle C B A=2 \pi / 3$. Show that $2 \sqrt{3} z_{2}=(\sqrt{3}-i) z_{1}+(\sqrt{3}+i) z_{3}$ and $2 \sqrt{3} z_{4}=(\sqrt{3}+i) z_{1}+(\sqrt{3}-i) z_{3}$.
186. The points P, Q and R represent the numbers z_{1}, z_{2} and z_{3} respectively and the angles of the $\triangle P Q R$ at Q and R are both $\frac{1}{2}(\pi-\alpha)$. Prove that $\left(z_{3}-z_{2}\right)^{2}=4\left(z_{3}-z_{1}\right)\left(z_{1}-\right.$ $\left.z_{2}\right) \sin ^{2} \frac{\alpha}{2}$.
187. Points z_{1} and z_{2} are adjacent vertices of a regular polygon of n sides. Find the vertex z_{3} adjacent to $z_{2}\left(z_{1} \neq z_{3}\right)$.
188. Let $A_{1}, A_{2}, \ldots, A_{n}$ be the vertices of an n sided regular polygon such that $\frac{1}{A_{1} A_{2}}=$ $\frac{1}{A_{1} A_{3}}+\frac{1}{A_{1} A_{4}}$, find the value of n.
189. If $|z|=2$, then show that the points representing the complex numbers $-1+5 z$ lie on a circle.
190. If $|z-4+3 i| \leq 2$, find the least and tghe greatest values of $|z|$ and hence find the limits between which $|z|$ lies.
191. If $z-6-8 i \leq 4$, then find the least and greatest value of z.
192. If $z-25 i \leq 15$ then find the least positive value of $\arg (z)$.
193. Show that the equation $\left|z-z_{1}\right|^{2}+\left|z-z_{2}\right|^{2}=k$ where $k \in R$ will represent a circle if $k \geq \frac{1}{2}\left|z_{1}-z_{2}\right|^{2}$.
194. If $|z-1|=1$, prove that $\frac{z-2}{z}=i \tan (\arg z)$.
195. Find the locus of z if $\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{4}$
196. If α is real and z is a complex number and u and v be the real and imaginary parts of $(z-1)(\cos \alpha-i \sin \alpha)+(z-1)^{-1}(\cos \alpha+i \sin \alpha)$, prove that the locus of points representing the complex number such that $v=0$ is a circle of unit radius with center at point $(1,0)$ and a straight line through the center of the circle.
197. If $\left|a_{n}\right|<2$ for $n=1,2,3, \ldots$ and $1+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}=0$, show that z does not lie in the interior of the circle $|z|=\frac{1}{3}$.
198. Show that the roots of the equation $z^{n} \cos \theta_{0}+z^{n-1} \cos \theta_{1}+\ldots+\cos \theta_{n}=2$, where $\theta_{1}+\theta_{2}+\ldots+\theta_{n} \in R$ lies outside the circle $|z|=\frac{1}{2}$.
199. z_{1}, z_{2}, z_{3} are non-zero, non-collinear complex numbers such that $\frac{2}{z_{1}}=\frac{1}{z_{2}}+\frac{1}{z_{3}}$, show that z_{1}, z_{2}, z_{3} lie on a circle passing through origin.
200. A, B, C are the points representing the complex numbers z_{1}, z_{2}, z_{3} respectively on the complex plane and the circumcenter of the $\triangle A B C$ lies on the origin. If the altitude of the triangle through the vertex A meets the circle again at P, prove that P represents the complex number $\frac{z_{2} z_{3}}{z_{1}}$.
201. Two different non-parallel lines cut the circle $|z|=r$ at points a, b, c, d respectively. Prove that these two lines meet at a point given by $\frac{a^{-1}+b^{-1}-c^{-1}-d^{-1}}{a^{-1} b^{-1}-c^{-1} d^{-1}}$.
202. Let z_{1}, z_{2}, z_{3} be three non-zero complex numbners such that $z_{2} \neq 1, a=\left|z_{1}\right|, b=\left|z_{2}\right|$ and $c=\left|z_{3}\right|$. If $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=0$ then show that $\arg \left(\frac{z_{3}}{z_{2}}\right)=\arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)^{2}$.
203. P is a point on a circle with $O P$ as diameter. Two points Q and R are taken such that $\angle P O Q=\angle Q O R=\theta$. If O is the origin and P, Q and R are represented by the complex numbers z_{1}, z_{2} and z_{3} respectively, show that $z_{2}^{2} \cos 2 \theta=z_{1} z_{3} \cos ^{2} \theta$.
204. Find the equation in complex variables of all circles which are orthogonal to $|z|=1$ and $|z-1|=4$.
205. Find the real values of the parameter t for which there is at least one complex number $z=x+i y$ satisfying the condition $|z+3|=t^{2}-2 i+6$ and the ineuqality $z-3 \sqrt{3} i<t^{2}$.
206. If a, b, c and d are real and $a d>b c$, show that the imaginary parts of the complex number z and $\frac{a z+b}{c a+d}$ have the same sign.
207. If $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}$ and $z_{1}=\frac{i\left(z_{2}+1\right)}{z_{2}-1}$, prove that $x_{1}^{2}+y_{1}^{2}-x_{1}=\frac{x_{2}^{2}-y_{2}^{2}+2 x_{2}-2 y_{2}+1}{\left(x_{2}-1\right)^{2}+y_{2}^{2}}$.
208. Simplify $\frac{(\cos 3 \theta-i \sin 3 \theta)^{6}(\sin \theta-i \cos \theta)^{3}}{(\cos 2 \theta+i \sin 2 \theta)^{5}}$.
209. Find all complex numbers such that $z^{2}+|z|=0$.
210. Solve the equation $z^{2}+z|z|+\left|z^{2}\right|=0$.
211. If $a>0$ and $z|z|+a z+1=0$, show that z is a negative real number.
212. For every real number $a>0$, find all complex numbers z such that $|z|^{2}-2 i z+2 a(1+i)=$ 0 .
213. Find the integral solution of the following equations: i. $(3+4 i)^{x}=5^{x / 2}$ ii. $(1-x)^{x}=2^{x}$ iii. $(1-i)^{x}=(1+i)^{x}$.
214. Find the common roots of the equations $z^{3}+2 z^{2}+2 z+1=0$ and $z^{1985}+z^{100}+1=0$.
215. If $z_{1}+z_{2}+z_{3}=\alpha, z_{1}+z_{2} \omega+z_{3} \omega^{2}=\beta$ and $z_{1}+z_{2} \omega^{2}+z_{3} \omega=\gamma$, express z_{1}, z_{2}, z_{3} in terms of α, β, γ. Hence prove that $|\alpha|^{2}+|\beta|^{2}+|\gamma|^{2}=3\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}\right)$.
216. If n is an odd integer greater than 3 , but not a multiple of 3 , prove that $x^{3}+x^{2}+x$ is a factor of $(x+1)^{n}-x^{n}-1$.
217. If n is an odd integer greater than 3 , but not a multiple of 3 , prove that $(x+y)^{n}-x^{n}-y^{n}$ is divisible by $x y(x+y)\left(x^{2}+x y+y^{2}\right)$.
218. If $\left|z_{1}\right|=\left|z_{1}\right|=\cdots=\left|z_{n}\right|=1$, prove that $\left|z_{1}+z_{2}+\cdots+z_{n}\right|=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\cdots+\frac{1}{z_{n}}\right|$.
219. If $\alpha, \beta \in \mathbb{C}$, show that $\left|\alpha+\sqrt{\alpha^{2}-\beta^{2}}\right|+\left|\alpha-\sqrt{\alpha^{2}-\beta^{2}}\right|=|\alpha+\beta|+|\alpha-\beta|$.
220. If $z_{1}=a+i b$ and $z_{2}=c+i d$ are complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|=1$ and $\mathfrak{R}\left(z_{1} \overline{z_{2}}\right)=0$, then show that the pair of complex numbers $\omega_{1}=a+i c$ and $\omega_{2}=b+i d$ satisfy i. $\left|\omega_{1}\right|=1$ ii. $\left|\omega_{2}\right|=1$ iii. $\mathfrak{R}\left(\omega_{1} \overline{\omega_{2}}\right)=0$.
221. Prove that $\left|\frac{z_{1}-z_{2}}{1-\overline{z_{1}} z_{2}}\right|<1$ if $\left|z_{1}\right|<1,\left|z_{2}\right|<1$.
222. Let $z_{1}=10+6 i$ and $z_{2}=4+6 i$. If z is any complex number such that the argument of $\frac{z-z_{1}}{z-z_{2}}$ is $\frac{\pi}{2}$, then prove that $|z-7-9 i|=3 \sqrt{2}$.
223. Find all complex numbers z for which $\arg \left(\frac{3 z-6-3 i}{2 z-8-6 i}\right)=\frac{\pi}{4}$ and $|z-3+i|=3$.
224. If $|z| \leq 1,|w| \leq 1$, show that $|z-w|^{2} \leq(|z|-|w|)^{2}+(\arg (z)-\arg (w))^{2}$.
225. If z is any non-zero complex number, show that $\left|\frac{z}{|z|}-1\right| \leq|\arg (z)|$ and $|z-1| \leq$ $||z|-1|+|z||\arg (z)|$.
226. If $\left|z+\frac{1}{z}\right|=a$, where z is a complex number and $a>0$, find the greatest value of $|z|$.
227. If z_{1}, z_{2} are complex numbers and c is a positive number, prove that $\left|z_{1}+z_{2}\right|^{2}<$ $(1+c)\left|z_{1}\right|^{2}+\left(1+\frac{1}{c}\right)\left|z_{2}\right|^{2}$.
228. If z_{1} and z_{2} are two complex numbers such that $\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|=1$, prove that $\frac{i z_{1}}{z_{2}}=x$, where x is a real number. Find the angle between the lines from the origin to the points $z_{1}+z_{2}$ and $z_{1}-z_{2}$ in terms of x.
229. Let z_{1}, z_{2} be any two complex numbers and a, b be two real numbers such that $a^{2}+b^{2} \neq 0$. Prove that $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-\left|z_{1}^{2}+z_{2}^{2}\right| \leq 2 \frac{\left|a z_{1}+b z_{2}\right|^{2}}{a^{2}+b^{2}} \leq\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{1}^{2}+z_{2}^{2}\right|$.
230. If $b+i c=(1+a) z$ and $a^{2}+b^{2}+c^{2}=1$, prove that $\frac{a+i b}{1+c}=\frac{1+i z}{1-i z}$, where a, b, c are real numbers and z is a complex number.
231. For any two complex numbers z_{1} and z_{2} and any real numbers a and b, show that $\left|a z_{1}-b z_{2}\right|^{2}+\left|b z_{1}-a z_{2}\right|^{2}=\left(a^{2}+b^{2}\right)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$.
232. If α and β are any two complex numbers, show that $|\alpha+\beta|^{2}=|\alpha|^{2}+|\beta|^{2}+\mathfrak{R}(\alpha \bar{\beta})+$ $\mathfrak{R}(\bar{\alpha} \beta)$.
233. Prove that $\left|1-\overline{z_{1}} z_{2}\right|^{2}-\left|z_{1}-z_{2}\right|^{2}=\left(1-\left|z_{1}\right|^{2}\right)\left(1-\left|z_{2}\right|^{2}\right)$.
234. If $a_{i}, b_{i} \in R, i=1,2, \ldots, n$, show that $\left(\sum_{i=1}^{n} a_{i}\right)^{2}+\left(\sum_{i=1}^{n} b_{i}\right)^{2} \leq\left(\sum_{n=1}^{n} \sqrt{a_{i}^{2}+b_{i}^{2}}\right)^{2}$.
235. Let $\left|\frac{\overline{1_{1}}-2 \overline{\bar{z}}}{2-z_{1} \overline{z_{2}}}\right|=1$ and $\left|z_{2}\right| \neq 1$, where z_{1} and z_{2} are complex nubers, show that $\left|z_{1}\right|=2$.
236. If z_{1} and z_{2} are complex numbers and $u=\sqrt{z_{1} z_{2}}$, prove that $\left|z_{1}\right|+\left|z_{2}\right|=\left|\frac{z_{1}+z_{2}}{2}+u\right|+$ $\left|\frac{z_{1}+z_{2}}{2}-u\right|$
237. If z_{1} and z_{2} are roots of the equation $\alpha z^{2}+2 \beta z+\gamma=0$, then prove that $|\alpha|\left(\left|z_{1}\right|+\left|z_{2}\right|\right)=$ $|\beta+\sqrt{\alpha \gamma}|+|\beta-\sqrt{\alpha \gamma}|$
238. If a, b, c are complex numbers such that $a+b+c=0$ and $|a|=|b|=|c|=1$, find the value of $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.
239. If $|z+4| \leq 3$, find the least and greatest value of $|z+1|$.
240. Show that for any two non-zero complex numbers z_{1} and $z_{2},\left(\left|z_{1}\right|+\left|z_{2}\right|\right)\left|\frac{z_{1}}{\left|z_{1}\right|}+\frac{z_{2}}{\left|z_{2}\right|}\right| \leq$ $2\left|z_{1}+z_{2}\right|$
241. Show that the necessary and sufficient condition for both the roots of the equation $z^{2}+a z+b=0$ to be unimodular are $|a| \leq 2,|b|=1$ and $\arg (b)=2 \arg (a)$.
242. If z is a complex number, show that $|z| \leq|\mathfrak{R}(z)|+|\mathfrak{I}(z)| \leq \sqrt{2}|z|$.
243. If $\left|z-\frac{4}{z}\right|=2$, show that the greatest value of $|z|$ is $\sqrt{5}+1$.
244. If $\alpha, \beta, \gamma, \delta$ be the real roots of the equation $a x^{4}+b x^{3}+c s^{2}+d x+e=0$, show that $a^{2}\left(1+\alpha^{2}\right)\left(1+\beta^{2}\right)\left(1+\gamma^{2}\right)\left(1+\delta^{2}\right)=(a-c+e)^{2}+(b-d)^{2}$.
245. If $a_{i} \in R, i=1,2, \ldots, n$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are the roots of the equation $x^{n}+a_{1} x^{n-1}+$ $a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}=0$, show that $\prod_{i=1}^{n}\left(1+\alpha_{i}^{2}\right)=\left(1-a_{2}+a_{4}-\ldots\right)^{2}+\left(a_{1}-a_{3}+\ldots\right)^{2}$
246. If the complex numbers z_{1}, z_{2}, z_{3} are the vertices of an equilateral triangle such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$, prove that $z_{1}+z_{2}+z_{3}=0$.
247. If $z_{1}+z_{2}+z_{3}=0$ and $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1$, then prove that the complex numbers z_{1}, z_{2}, z_{3} are the vertices of an equilateral triangle inscribed in a unit circle.
248. If z_{1}, z_{2}, z_{3} be the vertices of an equilateral triangle whose circumcenter is z_{0}, then prove that $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=3 z_{0}^{2}$.
249. Prove that the complex numbers z_{1} and z_{2} and the origin form an equilateral triangle if $z_{1}^{2}+z_{2}^{2}-z_{1} z_{2}=0$.
250. If z_{1} and z_{2} be the roots of the equation $z^{2}+a z+b=0$, then prove that the origin, z_{1} and z_{2} form an equilateral triangle if $a^{2}=3 b$.
251. Let z_{1}, z_{2} and z_{3} be the roots of the equation $z^{3}+3 \alpha z^{2}+3 \beta z+\gamma=0$, where α, β and γ are complex numbers and that these represent the vertices of A, B and C of a triangle. Find the centroid of $\triangle A B C$. Show that the triangle will be equilateral, if $\alpha^{2}=\beta$.
252. If z_{1}, z_{2}, z_{3} are in A.P., prove that they are collinear.
253. If z_{1}, z_{2} and z_{3} are collinear points in argand plane then show that one of the following holds: $-z_{1}\left|z_{2}-z_{3}\right|+z_{2}\left|z_{3}-z_{1}\right|+z_{3}\left|z_{1}-z_{2}\right|=0, z_{1}\left|z_{2}-z_{3}\right|-z_{2}\left|z_{3}-z_{1}\right|+z_{3}\left|z_{1}-z_{2}\right|=$ $0, z_{1}\left|z_{2}-z_{3}\right|+z_{2}\left|z_{3}-z_{1}\right|-z_{3}\left|z_{1}-z_{2}\right|=0$.
254. What region in the argand plane is represented by the inequality $1<|z-3-4 i|<2$.
255. Find the locus of point z if $|z-1|+|z+1| \leq 4$.
256. If $z=t+5+i \sqrt{4-t^{2}}$ and t is real, find the locus of z.
257. If $\frac{z^{2}}{z-1}$ is real, show that locus of z is a circle with center $(1,0)$ and radius unity.
258. If $\left|z^{2}-1\right|=|z|^{2}+1$, show that locus of z is a straight line.
259. Find the locus of the point z if $\frac{\pi}{3} \leq \arg (z) \leq \frac{3 \pi}{2}$.
260. Find the locus of the point z if $\arg \left(\frac{z-2}{z+2}\right)=\frac{\pi}{3}$.
261. Show that the locus of the point z satisfying the condition $\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{2}$ is the semicircle above x-axis, whose diameter is the joints of the points $(-1,0)$ and $(1,0)$ excluding these points.
262. Find the locus of the point z if $\log _{\sqrt{3}} \frac{|z|^{2}-|z|+1}{2+|z|}<2$.
263. If O be the center of the circle circumscribing the equilateral $\triangle A B C$ and its radius be unity and A lies on the x-axis. Find the complex numbers represented by B and C.
264. $A B C D$ is a rhombus. Its diagonals $A C$ and $B D$ intersect at a point M and satisfy $B D=2 A C$. If the points D and M represent the complex numbers $1+i$ and $2-i$ respectively, then find the complex number represented by A.
265. If z_{1}, z_{2}, z_{3} and z_{4} are the vertices of a square taken in anticlockwise order, prove that $z_{3}=-i z_{1}+(1+i) z_{2}$ and $z_{4}=(1-i) z_{1}+i z_{2}$.
266. Let z_{1}, z_{2} and z_{3} are vertices of an equilateral triangle in the circle $|z|=2$. If $z_{1}=1+i \sqrt{3}$, then find z_{2} and z_{3}.
267. If a and b are real numbers between 0 and 1 such that points $z_{1}=a+i, z_{2}=1+b i$, and $z_{3}=0$ form an equilateral triangle, then find a and b.
268. Let $A B C D$ be a square described in the anticlockwise sense in the argand plane. If A represents $3+5 i$ and the center of the square represents $\frac{7}{2}+\frac{5}{2} i$. Find the numbers represented by B, C and D.
269. Find the vertices of a regular polygon of n sides, if its center is located at origin and one of its vertices is z_{1}.
270. Prove that the points $a(\cos \alpha+i \sin \alpha), b(\cos \beta+i \sin \beta)$ and $c(\cos \gamma+i \sin \gamma)$ in the argand plane are collinear, if $b c \sin (\beta-\gamma)+c a \sin (\gamma-\alpha)+a b \sin (\alpha-\beta)=0$.
271. A represents the number $6 i, B$ the number 3 and P the complex number z. If P moves such that $P A: P B=2: 1$, show that $z \bar{z}=(4+2 i) z+(4-2 i) \bar{z}$. Also, show that the locus of P is a circle, find its radius and center.
272. Show that if the points z_{1}, z_{2}, z_{3} and z_{4} taken in order are concyclic, then the expression $\frac{\left(z_{3}-z_{1}\right)\left(z_{4}-z_{2}\right)}{\left(z_{3}-z_{2}\right)\left(z_{4}-z_{1}\right)}$ is purely real.
273. Let z_{1}, z_{2}, z_{3} and z_{4} be the vertices of a quadrilateral. Prove that the quadrilateral is cyclic if $z_{1} z_{2}+z_{3} z_{4}=0$ and $z_{1}+z_{2}=0$.
274. Show that the triangles whose vertices are z_{1}, z_{2}, z_{3} and $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$ are similar if

$$
\left|\begin{array}{lll}
z_{1} & z_{1}^{\prime} & 1 \\
z_{2} & z_{2}^{\prime} & 1 \\
z_{3} & z_{3}^{\prime} & 1
\end{array}\right|=0
$$

275. If a, b, c and u, v, w are the complex numbers representing two triangles such that $c=(1-r) a+r b$ and $w=(1-r) u+r v$, where r is a complex number, prove that the two triangles are similar.
276. Find the equation of perpendicular bisector of the line segment joining points z_{1} and z_{2}.
277. Find the equation of a circle having the line segment joining z_{1} and z_{2} as diameter.
278. If $\left|\frac{z-z_{1}}{z-z_{2}}\right|=c, c \neq 0$, then show that locus of z is a circle.
279. If $|z|=1$, find the locus of the point $\frac{2}{z}$.
280. If for any two complex numbers z_{1} and $z_{2},\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$, prove that $\arg \left(z_{1}\right)-$ $\arg \left(z_{2}\right)=2 n \pi$.
281. Find the complex number z, the least in absolute value, which satisfies the condition $|z-2+2 i|=1$.
282. Find the point in the first quadrant, on the curve $|z-5 i|=3$, whose argument is minimum.
283. Find the set of points of the cooradinate plane, which satisfy the inequality

$$
\log _{1 / 2}\left(\frac{|z-1|+4}{3|z-1|-2}\right)>1
$$

284. Find the set of all points on the $x y$-plane whose coordinates satisfy the following condition: the number $z^{2}+z+1$ is real and positive.
285. Find the real values of the parameter a for which at least one complex number z satisfies the equality $|z-a z|=a+4$ and the inequality $|z-1|<1$.
286. Find the real values of the parameter t for whihc at least one complex number z satisfied the equality $|z+\sqrt{2}|=t^{2}-3 t+2$ and the inequality $|z+i \sqrt{2}|<t^{2}$.
287. Find the real value of a for which there is at least one complex number satisfying $|z+4 i|=\sqrt{a^{2}-12 a+28}$ and $|z-4 \sqrt{3}|<1$.
288. Find the set of points belonging to the coordinate plane $x y$, for which the real part of the complex number $(1+i) z^{2}$ is positive.
289. Solve the equation $2 z=|z|+2 i$ in complex numbers.
290. Three points represented by the complex numbers a, b, c lie on a circle with center O and radius r. The tangent at c cuts the chord joining the points a, b at z. Show that $z=\frac{a^{-1}+b^{-1}-2 c^{-1}}{a^{-1} b^{-1}-c^{-2}}$.
291. Show that all roots of the equation $a_{1} z^{3}+a_{2} z^{2}+a_{3} z+a_{4}=3$, where $\left|a_{i}\right| \leq 1, i=1,2,3,4$ lie outside the circle with center as origin and radius $\frac{2}{3}$.
292. Given that $\sum_{i=1}^{n} b_{i}=0$ and $\sum_{i=1}^{n} b_{i} z_{i}=0$, where b_{i} s are non-zero real numbers, no three of z_{i}^{\prime} 's form a straight line. Prove that z_{i}^{\prime} 's are concyclic if $b_{1} b_{2}\left|z_{1}-z_{2}\right|^{2}=b_{3} b_{4}\left|z_{3}-z_{4}\right|^{2}$.
293. A cubic equation $f(x)=0$ has one real root α and two complex roots $\beta \pm i \gamma$. Points A, B and C represent these roots. Show that the roots of the derived equation $f^{\prime}(x)=0$ are complex if A falls inside one of the two equilateral triangles described on base $B C$.
294. Prove that the reflection of $\bar{a} z+a \bar{z}=0$ in the real axis is $\overline{a z}+a z=0$.
295. If $\alpha, \beta, \gamma, \delta$ are four complex numbers such that $\frac{\gamma}{\delta}$ is real and $\alpha \delta-\beta \gamma \neq 0$, then prove that $z=\frac{\alpha+\beta t}{\gamma+\delta t}, t \in R$ represents a straight line.
296. If ω, ω^{2} are cube roots of unity, then prove that
i. $\left(3+3 \omega+5 \omega^{2}\right)^{6}-\left(2+6 \omega+2 \omega^{2}\right)^{3}=0$.
ii. $(2-\omega)\left(2-\omega^{2}\right)\left(2-\omega^{10}\right)\left(2-\omega^{11}\right)=49$.
iii. $(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{4}\right)\left(1-\omega^{5}\right)=9$.
iv. $\left(1-\omega+\omega^{2}\right)^{5}+\left(1+\omega-\omega^{2}\right)^{5}=32$.
v. $1+\omega^{n}+\omega^{2 n}=3$, where $n>0, n \in I$ and is a multiple of 3 .
vi. $1+\omega^{n}+\omega^{2 n}=0$, where $n>0, n \in I$ and is not a multiple of 3 .
297. Resolve into linear factors $a^{2}+b^{2}+c^{2}-a b-b c-c a$.
298. If $x=a+b, y=a \omega+b \omega^{2}, z=a \omega^{2}+b \omega$, prove that $x^{3}+y^{3}+z^{3}=3\left(a^{3}+b^{3}\right)$ and $x y z=a^{3}+b^{3}$.
299. Resolve into linear factors:
i. $a^{2}-a b+b^{2}$
ii. $a^{2}+a b+b^{2}$
iii. $a^{3}+b^{3}$
iv. $a^{3}-b^{3}$
v. $a^{3}+b^{3}+c^{3}-3 a b c$
300. Show that $x^{3 p}+x^{3 q+1}+x^{3 r+2}$, where p, q, r are positive integers is divisible by $x^{2}+x+1$.
301. Show that $x^{4 p}+x^{4 q+1}+x^{4 r+2}+x^{4 s+3}$, where p, q, r, s are positive integers is divisible by $x^{3}+x^{2}+x+1$.
302. If $p=a+b+c, q=a+b \omega+c \omega^{2}, r=a+b \omega^{2}+c \omega$, where ω is a cube root of unity, prove that $p^{3}+q^{3}+r^{3}-3 p q r=27 a b c$.
303. If ω is a cube root of unity, prove that $\left(a+b \omega+c \omega^{2}\right)^{3}+\left(a+b \omega^{2}+c \omega\right)^{3}=(2 a-b-$ c) $(2 b-a-c)(2 c-a-b)$.
304. If $a x+c y+b z=X, c x+b y+a z=Y, b c+a y+c z=Z$, show that
i. $\quad\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)=X^{2}+Y^{2}+Z^{2}-X Y-$ $Y Z-Z X$
ii. $\left(a^{3}+b^{3}+c^{3}-3 a b c\right)\left(x^{3}+y^{3}+z^{3}-3 x y z\right)=X^{3}+Y^{3}+Z^{3}-3 X Y Z$
305. Prove that $\left(\frac{\cos \theta+i \sin \theta}{\sin \theta+i \cos \theta}\right)^{4}=\cos 8 \theta+i \sin 8 \theta$.
306. If $z^{2}-2 z \cos \theta+1=0$, show that $z^{2}+z^{-2}=2 \cos 2 \theta$.
307. Prove that $(1+i)^{n}+(1-i)^{n}=2^{n / 2+1} \cos \frac{n \pi}{4}$.
308. Show that the value of $\sum_{k=1}^{6}\left(\sin \frac{2 \pi k}{7}-i \cos \frac{2 \pi k}{7}\right)$ is i.

309. Prove that $\left(\frac{1+\sin \phi+i \cos \phi}{1+\sin \phi-i \cos \phi}\right)^{n}=\cos \left(\frac{n \pi}{2}-n \phi\right)+i \sin \left(\frac{n \pi}{2}-n \phi\right)$.
310. If $\sin \alpha+\sin \beta+\sin \gamma=\cos \alpha+\cos \beta+\cos \gamma=0$, show that $\cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma=$ $3 \cos (\alpha+\beta+\gamma)$ and $\sin 3 \alpha+\sin 3 \beta+\sin 3 \gamma=3 \sin (\alpha+\beta+\gamma)$.
311. If $\sin \alpha+\sin \beta+\sin \gamma=\cos \alpha+\cos \beta+\cos \gamma=0$, show that $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=$ $\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma=0$.
312. If α, β are the roots of the equation $t^{2}-2 t+2=0$, show that a value of x, satisfying $\frac{(x+\alpha)^{n}-(x+\beta)^{n}}{\alpha-\beta}=\frac{\sin \theta}{\sin ^{n} \theta}$ is $x=\cot \theta-1$.
313. If $(1+x)^{n}=p_{0}+p_{1} x+p_{2} x^{2}+\ldots+p_{n} x^{n}$, show that $p_{0}-p_{2}+p_{4}-\ldots=2^{n / 2} \cos \frac{n \pi}{4}$ and $p_{1}-p_{3}+p_{5}-\ldots=2^{n / 2} \sin \frac{n \pi}{4}$.
314. If $\left(1-x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{2 n} x^{2 n}$, show that $a_{0}+a_{3}+a_{6}+\ldots=$ $\frac{1}{3}\left(1+2^{n+1} \cos \frac{n \pi}{3}\right)$.
315. If n is a positive integer and $(1+x)^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}$, show that $c_{0}+c_{4}+$ $c_{8}+\ldots=2^{n-2}+2^{n / 2-1} \cos \frac{n \pi}{4}$.
316. Solve the equation $z^{8}+1=0$ and deduce that $\cos 4 \theta=8\left(\cos \theta-\cos \frac{\pi}{8}\right)\left(\cos \theta-\cos \frac{3 \pi}{8}\right)$ $\left(\cos \theta-\cos \frac{5 \pi}{8}\right)\left(\cos \theta-\cos \frac{7 \pi}{8}\right)$.
317. Prove that the roots of the equation $8 x^{3}-4 x^{2}-4 x+1=0$ are $\cos \frac{\pi}{7}, \cos \frac{3 \pi}{7}, \cos \frac{5 \pi}{7}$.
318. Solve the equation $z^{10}-1=0$ and deduce that $\sin 5 \theta=5 \sin \theta\left(1-\frac{\sin \theta}{\sin ^{2} \frac{\pi}{5}}\right)\left(1-\frac{\sin \theta}{\sin ^{2} \frac{2 \pi}{5}}\right)$.
319. Solve the equation $x^{7}+1=0$ and deduce that $\cos \frac{\pi}{7} \cos \frac{3 \pi}{7} \cos \frac{5 \pi}{7}=-\frac{1}{8}$.
320. Form the equation whose roots are $\cot ^{2} \frac{\pi}{2 n+1}, \cot ^{2} \frac{2 \pi}{2 n+1}, \ldots, \cot ^{2} \frac{n \pi}{2 n+1}$, and hence find the value of $\cot ^{2} \frac{\pi}{2 n+1}+\cot ^{2} \frac{2 \pi}{2 n+1}+\ldots+\cot ^{2} \frac{n \pi}{2 n+1}$.
321. If $\theta \neq k \pi$, show that $\cos \theta \sin \theta+\cos ^{2} \theta \sin 2 \theta+\ldots+\cos ^{n} \theta \sin n \theta=\cot \theta(1-$ $\left.\cos ^{n} \theta \cos n \theta\right)$.
322. Show that $-3-4 i=5 e^{i\left(\pi+\tan ^{-1} 4 / 3\right)}$.
323. Solve the equation $2 \sqrt{2} x^{4}=(\sqrt{3-1})+i(\sqrt{3}+1)$.
324. If $z_{r}=\cos \frac{\pi}{3^{r}}+i \sin \frac{\pi}{3^{r}}$, prove that $z_{1} z_{2} z_{3} \ldots$ to $\infty=i$.
325. If $\cos \theta+i \sin \theta$ is a solution of the equation $p_{0} x^{n}+p_{1} x^{n-1}+p_{2} x^{n-2}+\cdots+p_{n}=0$, prove that $p_{1} \sin \theta+p_{2} \sin 2 \theta+\cdots+p_{n}=0$ and $p_{0}+p_{2} \cos \theta+\cdots+p_{n} \cos n \theta=0, p_{i} \in$ $\mathbb{R}, i=1,2,3, \ldots, n$.
326. Show that $\left(\frac{1+\cos \phi+i \sin \phi}{1+\cos \phi-i \sin \phi}\right)^{n}=\cos n \phi+i \sin \phi$.
327. If $2 \cos \theta=x+\frac{1}{x}$ and $2 \cos \phi=y+\frac{1}{y}$, then prove that
i. $\frac{x}{y}+\frac{y}{x}=2 \cos (\theta-\phi)$,
ii. $x y+\frac{1}{x y}=2 \cos (\theta+\phi)$,
iii. $x^{m} y^{n}+\frac{1}{x^{m} y^{n}}=2 \cos (m \theta+n \phi)$, and
iv. $\frac{x^{m}}{y^{n}}+\frac{y^{n}}{x^{m}}=2 \cos (m \theta-n \phi)$.
328. If α, β are the roots of the equation $x^{2}-2 x+4=0$, prove that $\alpha^{n}+\beta^{n}=2^{n+1} \cos \frac{n \pi}{3}$.
329. Find the equation whose roots are nth powers of the roots of the equation $x^{2}-2 x \cos \theta+$ $1=0$.
330. Find the values of A and B, where $A e^{2 i \theta}+B e^{-2 i \theta}=5 \cos 2 \theta-7 \sin 2 \theta$.
331. If $x=\cos \theta+i \sin \theta$ and $\sqrt{1-c^{2}}=n c-1$, prove that $1+c \cos \theta=\frac{c}{2 n}(1+n x)\left(1+\frac{n}{x}\right)$.
332. Show that the roots of equation $(1+z)^{n}=(1-z)^{n}$ are $i \tan \frac{r \pi}{n}, r=0,1,2, \ldots,(n-1)$ excluding the value when n is even and $r=\frac{n}{2}$.
333. If $x=\cos \alpha+i \sin \alpha, y=\cos \beta+i \sin \beta$, show that $\frac{(x+y)(x y-1)}{(x-y)(x y+1)}=\frac{\sin \alpha+\sin \beta}{\sin \alpha-\sin \beta}$
334. Show that ${ }^{n} C_{0}+{ }^{n} C_{3}+{ }^{n} C_{6}+\cdots=\frac{1}{3}\left[2^{n}+2 \cos \frac{n \pi}{3}\right]$
335. Show that ${ }^{n} C_{1}+{ }^{n} C_{4}+{ }^{n} C_{7}+\cdots=\frac{1}{3}\left[2^{n-2}+2 \cos \frac{(n-2) \pi}{3}\right]$
336. Show that ${ }^{N} C_{2}+{ }^{n} C_{5}+{ }^{n} C_{8}+\cdots=\frac{1}{3}\left[2^{n+2}+2 \cos \frac{(n+2) \pi}{3}\right]$
337. If C_{r} stands for ${ }^{4 n} C_{r}$, prove that $C_{0}+C_{4}+C_{8}+\cdots=2^{4 n-2}+(-1)^{n} 2^{2 n-1}$.
338. If $\left(1-x+x^{2}\right)^{6 n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$, show that $a_{0}+a_{3}+a_{6}+\ldots=\frac{1}{3}\left(2^{6 n+1}+1\right)$
339. If $\left(1-x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$, show that $a_{0}+a_{3}+a_{6}+\ldots=\frac{1}{3}(1+$ $\left.(-1)^{n} 2^{n+1} \cos \frac{n \pi}{3}\right)$
340. Let $A=x+y+z, A^{\prime}=x^{\prime}+y^{\prime}+z^{\prime}, A A^{\prime}=x^{\prime \prime}+y^{\prime \prime}+z^{\prime \prime}, B=x+y \omega+z \omega^{2}, B^{\prime}=x^{\prime}+y^{\prime} \omega+$ $z^{\prime} \omega^{2}, B B^{\prime}=x^{\prime \prime}, y^{\prime \prime} \omega, z^{\prime \prime} \omega^{2}, C=x+y \omega^{2}+z \omega, C^{\prime}=x^{\prime} y^{\prime} \omega^{2}+z^{\prime} \omega, C C^{\prime}=x^{\prime \prime}+y^{\prime \prime} \omega^{2}+z^{\prime \prime} \omega$, then find $x^{\prime \prime}, y^{\prime \prime}$ and $z^{\prime \prime}$ in terms of x, y, z and $x^{\prime}, y^{\prime} z^{\prime}$.
341. Prove the equaity $(a x-b y-c z-d t)^{2}+(b x+a y-d z+c t)^{2}+(c x+d y+a z-b t)^{2}+$ $(d x-c y+b z+a t)^{2}=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(x^{2}+y^{2}+z^{2}+t^{2}\right)$
342. Prove the equality: $\frac{\cos n \theta}{\cos ^{n} \theta}=1-{ }^{n} C_{2} \tan ^{2} \theta+{ }^{n} C_{4} \tan ^{4} \theta-\ldots+A$, where $A=$ $(-1)^{n / 2} \tan ^{n} \theta$ if n is even, $A=(-1)^{(n-1) / 2} .{ }^{n} C_{n-1} \tan ^{n} \theta$ if n is odd.
343. Prove the equality: $\frac{\sin n \theta}{\cos ^{n} \theta}={ }^{n} C_{1} \tan \theta-{ }^{n} C_{3} \tan ^{3} \theta+{ }^{n} C_{5} \tan ^{5} \theta-\ldots+A$, where $A=$ $(-1)^{(n-2) / 2} \cdot{ }^{n} C_{n-1} \tan ^{n-1} \theta$ if n is odd, $A=(-1)^{n / 2} \cdot \tan ^{n} \theta$ if n is odd.
344. Prove the following equality:

$$
2^{2 m} \cos ^{2 m} x=\sum_{k=0}^{m-1} 2\binom{2 m}{k} \cos 2(m-k) x+\binom{2 m}{m}
$$

346. Prove the following equality:

$$
2^{2 m} \sin ^{2 m} x=\sum_{k=0}^{m-1}(-1)^{m+k} 2\binom{2 m}{k} \cos 2(m-k) x+\binom{2 m}{m}
$$

347. Prove the following equality:

$$
2^{2 m} \cos ^{2 m+1} x=\sum_{k=0}^{m} 2\binom{2 m+1}{k} \cos (2 m-2 k+1) x
$$

348. Prove the following equality:

$$
2^{2 m} \sin ^{2 m+1} x=\sum_{k=0}^{m}(-1)^{m+k} 2\binom{2 m+1}{k} \cos (2 m-2 k+1) x
$$

349. Let $u_{n}=\cos \alpha+r \cos (\alpha+\theta)+r^{2} \cos (\alpha+2 \theta)+\ldots+r^{n} \cos (\alpha+n \theta), v_{n}=\sin \alpha+$ $r \sin (\alpha+\theta)+r^{2} \sin (\alpha+2 \theta)+\ldots+r^{n} \sin (\alpha+n \theta)$, then show that

$$
\begin{aligned}
& u_{n}=\frac{\cos \alpha-r \cos (\alpha-\theta)-r^{n+1} \cos [\alpha+(n+1) \theta]+r^{n+2} \cos (\alpha+n \theta)}{1-2 r \cos \theta+r^{2}} \\
& v_{n}=\frac{\sin \alpha-r \sin (\alpha-\theta)-r^{n+1} \sin [\alpha+(n+1) \theta]+r^{n+2} \sin (\alpha+n \theta)}{1-2 r \cos \theta+r^{2}}
\end{aligned}
$$

350. Simplify the following sums:

$$
\begin{aligned}
& S=1+n \cos \theta+\frac{n(n-1)}{1.2} \cos 2 \theta+\ldots=\sum_{k=0}^{n}{ }^{n} C_{k} \cos k \theta, \quad\left[{ }^{n} C_{0}=1\right] \\
& S^{\prime}=1+n \sin \theta+\frac{n(n-1)}{1.2} \sin 2 \theta+\ldots=\sum_{k=0}^{n}{ }^{n} C_{k} \sin k \theta, \quad\left[{ }^{n} C_{0}=1\right]
\end{aligned}
$$

351. If $\alpha=\frac{\pi}{2 n}$ and $p<2 n$ (p a popsitive integer), then prove that

$$
\sin ^{2 p} \alpha+\sin ^{2 p} 2 \alpha+\ldots+\sin ^{2 p} n \alpha=\frac{1}{2}+n \frac{1.3 .5 \ldots(2 p-1)}{2.4 \ldots 2 p}
$$

352. Prove that $(x+y)^{n}-x^{n}-y^{n}$ is divisible by $x y(x+y)\left(x^{2}+x y+y^{2}\right)$ if n is an odd number and not divisible by 3 .
353. Prove that $(x+y)^{n}-x^{n}-y^{n}$ is divisible by $x y(x+y)\left(x^{2}+x y+y^{2}\right)^{2}$ if n, when divided by 6 has a remainder of 1 .
354. Prove that the polynomial $(\cos \theta+x \sin \theta)^{n}-\cos n \theta-x \sin n \theta$ is divisible by $x^{2}+1$.
355. Prove that the polynomial $x^{n} \sin \theta-p^{n-1} x \sin n \theta+p^{n} \sin (n-1) \theta$ is divisible by $x^{2}-$ $2 p x \cos \theta+p^{2}$.
356. Find out for what values of p and q the binomial $x^{4}+1$ is divisible by $x^{2}+p x+q$.
357. Find the sum of the $p \operatorname{th}(p \in \mathbb{P})$ power of the roots of the equation $x^{n}=1$.
358. Let $\epsilon=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}, \forall n \in P$, and let $A_{k}=x+y \epsilon^{k}+z \epsilon^{2 k}+\cdots+w \epsilon^{(n-1) k},(k=$ $0,1,2, \ldots, n-1)$ where x, y, z, \ldots, w are n arbitrary complex numbers. Prove that

$$
\sum_{k=0}^{n-1}\left|A_{k}\right|^{2}=n\left(|x|^{2}+|y|^{2}+\ldots+|w|^{2}\right)
$$

359. Prove the identity $x^{2 n}-1=\left(x^{2}-1\right) \prod_{k=1}^{n-1}\left(x^{2}-2 x \cos \frac{k \pi}{n}+1\right)$.
360. Prove the identity $x^{2 n+1}-1=(x-1) \prod_{k=1}^{n}\left(x^{2}-2 x \cos \frac{2 k \pi}{2 n+1}+1\right)$.
361. Prove the identity $x^{2 n+1}+1=(x+1) \prod_{k=1}^{n}\left(x^{2}+2 x \cos \frac{2 k \pi}{2 n+1}+1\right)$.
362. Prove the identity $x^{2 n}+1=\prod_{k=0}^{n-1}\left(x^{2}-2 x \cos \frac{(2 k+1) \pi}{2 n}+1\right)$.
363. If n is even, then prove the identity $\sin \frac{\pi}{2 n} \sin \frac{2 \pi}{2 n} \ldots \sin \frac{(n-1) \pi}{2 n}=\frac{\sqrt{n}}{2^{n-1}}$.
364. If n is even, then prove the identity $\cos \frac{2 \pi}{2 n+1} \cos \frac{4 \pi}{2 n+1} \ldots \cos \frac{2 n \pi}{2 n+1}=\frac{(-1)^{n / 2}}{2^{n}}$.
365. Prove that if $\cos \alpha+i \sin \alpha$ is the solution of the equation $x^{n}+p_{1} x^{n-1}+\cdots+p_{n}=0$, then $p_{1} \sin \alpha+p_{2} \sin 2 \alpha+\cdots+p_{n} \sin n \alpha=0\left(p 1, p 2, \ldots, p_{n}\right.$ are real $)$.
366. Prove the identity $\sqrt[3]{\cos \frac{2 \pi}{7}}+\sqrt[3]{\cos \frac{4 \pi}{7}}+\sqrt[3]{\cos \frac{8 \pi}{7}}=\sqrt[3]{\frac{1}{2}(5-3 \sqrt[3]{7})}$.
367. Prove the identity $\sqrt[3]{\cos \frac{2 \pi}{9}}+\sqrt[3]{\cos \frac{4 \pi}{9}}+\sqrt[3]{\cos \frac{8 \pi}{9}}=\sqrt[3]{\frac{1}{2}(3 \sqrt[3]{9}-6)}$.
368. Let $A=x_{1}+x_{2} \omega+x_{3} \omega^{2}, B=x_{1}+x_{2} \omega^{2}+x_{3} \omega$, where ω, ω^{2} are complex roots of unity and x_{1}, x_{2}, x_{3} are roots of the cubic equation $x^{3}+p x+q=0$. Prove that A^{3} and B^{3} are the roots of the quadratic equation $x^{2}+27 q x-27 p^{3}=0$.
369. Solve the equation $\frac{\left(5 x^{4}+10 x^{2}+1\right)\left(5 a^{4}+10 a^{2}+1\right)}{\left(x^{4}+10 x^{2}+1\right)\left(a^{4}+10 a^{2}+5\right)}=a x$.
370. Find the magnitude of the sum $S={ }^{n} C_{1}-3^{n} C_{3}+3^{2 n} C_{5}-3^{3 n} C_{7}+\cdots$.
371. Find the magnitude of the follwing sums:

$$
\begin{gathered}
\sigma=1-{ }^{n} C_{2}+{ }^{n} C_{4}-{ }^{n} C_{6}+\cdots \\
\sigma^{\prime}={ }^{n} C_{1}-{ }^{n} C_{3}+{ }^{n} C_{5}-{ }^{n} C_{7}+\cdots
\end{gathered}
$$

Chapter 4

Polynomials and Theory of Equations

4.1 Polynomial Functions

A function of the form $f(x)=a_{n} x^{n}, a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ is called a polynomial function where $a_{i} \in \mathbb{C}$, where $i=0,1,2, \ldots, n$ i.e. $i \geq 0$ and $i \in \mathbb{0}$. Since $a_{i} \in \mathbb{C}$, it is evident that $a_{i} \in \mathbb{R}$ because $\mathbb{R} \subset \mathbb{C}$. This equation will be called an equation of degree n if and only if $a_{n} \neq 0 . a_{n}$ is called leading coefficient of the polynomial. If the leading coefficient is 1 then the polynomial is also callled monic polynomial. A polynomial with one term is called monomila, with two terms, a binomial and with three terms it is called a trinomial. The most useful trinomials are quadratic equations, which we will study further in this chapter. If $f(x)=a_{0}$, then it is called a constant polynomial. If $n=0$ implies $f(x)=a_{0}$, which will be a polynomial of degree 0 . If $f(x)=0$, then it is called zero polynomial, in this case the degree is defined as $-\infty$ to satisfy the first two properties given below. We take domain and range of these polynimoials or functions as set of complex numbers, \mathbb{C}. A real number r or a complex number z, for which $f(r)=0$ or $f(z)=0$, then r and z are called zeros, roots or solutions of the polynomial.

If $f(x)$ is a polynomial of degree p, and $g(x)$ is a polynomial of degree q, then

1. $f(x) \pm g(x)$ is a polymial of degree $\max (p, q)$,
2. $f(x) . g(x)$ is a polynomial of degree $p+q$, and
3. $f(g(x))$ is a polynomial of degree $p . q$, where $g(x)$ is not a constant polynomial.

The $f(x)$ shown at the beginning is a polynomial in one variable, and similarly, we can have polynomials in $2,3, \ldots, m$ variables. The domain of such a polynomial of m variables is set of ordered m tuple of complex numbers and range is \mathbb{C}.

4.2 Division of Polynomials

If $P(x)$ and $D(x)$ are any two polynomials such that $D(x) \not \equiv 0$, then two unique polynomilas $Q(x)$ and $R(x)$ can be found such that $P(x)=D(x) \cdot Q(x)+R(x)$. Here, the degree of $R(x)$ would be less than the degree of $D(x)$ or $R(x) \equiv 0$. Like numbers $Q(x)$ denotes the quotient, and is called so, while $R(x)$ is called the remainder.

Particulalrly, if $P(x)$ is a polynomial with complex coefficients and z is a complex number, then a polynomial $Q(x)$ of degree 1 less than $P(x)$ will exist such that $P(x)=(x-z) Q(x)+$ R, where R is a complex number.

4.3 Remainder Theorem

Theorem 1

If $f(x)$, a polynomial, is divided by $(x-\alpha)$, then the remainder is $f(\alpha)$.

Proof
$f(x)=(x-\alpha) Q(x)+R \Rightarrow f(\alpha)=(\alpha-\alpha) Q(x)+R \Rightarrow R=f(\alpha)$.

4.4 Factor Theorem

Theorem 2

$f(x)$ has a factor $(x-\alpha)$, if and only if, $f(\alpha)=0$
Proof
Following from remainder theorem, described above, if $R=f(\alpha)=0$, then $f(\alpha)=(x-$ $\alpha) Q(x)$, and thus, $f(x)$ has a factor $(x-\alpha)$.

4.5 Fundamental Theorem of Algebra

Every polynomial of degree greater or equal than one has at least one root/solution/zero in the complex numbers. We can also say that for $f(x)$ introduced in the beginning with $n \geq 1$, then there exists a $z \in \mathbb{C}$, such that

$$
f(z)=a_{n} z^{n}+a_{z}^{n-1}+\cdots+a_{1} z+a_{0}=0
$$

Now it is trivial to deduce that an nth degree polynomial will have exactly n roots i.e. $f(x)=a\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n-1}\right)\left(x-\alpha_{n}\right)$.

Notes:

1. Some of the roots of the polynomial may have repetition.
2. If a root α repeats m times, then m is called multiplicity of the root α or α is called m fold root.
3. Quadratic surds of the form $\sqrt{a}+\sqrt{b}$, where \sqrt{a} and \sqrt{b} are irrational numbers, then it will have its conjugate as a root. Similarly, if a complex root occurs, then it always occurs in pair with its complex conjugate as another root of the polynomial. However, if the coefficients are complex numbers then it is not mandatory for complex roots to appear in conjugate pairs.

4.6 Identity Theorem

Theorem 3

If $f(x)$, a polynomial of degree n, vanishes for at least $n+1$ distinct values of x, then it is identically 0.

Proof

We have $f(x)=a\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(c-\alpha_{n-1}\right)\left(x-\alpha_{n}\right)$, and we let that it vanishes for α_{n+1}, then

$$
f(x)=a\left(\alpha_{n+1}-\alpha_{1}\right)\left(\alpha_{n+1}-\alpha_{2}\right) \cdots\left(\alpha_{n+1}-\alpha_{n-1}\right)\left(\alpha_{n+1}-\alpha_{n}\right)=0
$$

Because α_{n+1} is different from $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, \alpha_{n}$ none of the terms will vanish, which implies that $a=0 \Rightarrow f(x)=0$.

Corollary 1

Consider two poynomials $f(x)$ and $g(x)$ having degrees p and q respectively, such that $p \leq q$. If both of them have equal value for $q+1$ distinct values of x, then they must be equal.

Proof

Let $h(x)=f(x)-g(x)$. This implies that the degree of $h(x)$ is at most q and it vanishes for $q+1$ distinct values of $x . \Rightarrow h(x)=f(x)-g(x)=0 \Rightarrow f(x)=g(x)$.

Corollary 2

If $f(x)$ is a periodic polynomial with some constant period T i.e. $f(x)=f(x+T) \forall x \in \mathbb{R}$, then $f(x)=c$.

Proof
Let $f(0)=x$, then $f(0)=f(T)=f(2 T)=\cdots=c$. Thus, polynomials $f(x)$ and $g(x)=c$ take same values for infinite number of points. Hence, they must be identical.

4.7 Rational Root Theorem

Theorem 4

If $p, q \in \mathbb{Z}, q \neq 0$ such that they are relatively prime i.e. $\operatorname{gcd}(p, q)=1$, then if $\frac{p}{q}$ is a root of the equation $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0$, where $a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} \in \mathbb{\square}$ and $a_{n}=0$, then p is a divisor of a_{0} and q that of a_{n}.

Proof
Since $\frac{p}{q}$ is a root, we have

$$
\begin{aligned}
& \qquad a_{n}\left(\frac{p}{q}\right)^{n}+a_{n-1}\left(\frac{p}{q}\right)^{n-1}+\cdots+a_{1} \frac{p}{q}+a_{0}=0 \\
& \Rightarrow a_{n} p^{n}+a_{n-1} p^{n-1} q+\cdots+a_{1} q^{n-1} p+a_{0} q^{n}=0 \\
& \Rightarrow a_{n-1} p^{n-1}+a_{n-1} p^{n-2} q+\cdots+a_{1} p q^{n-2}+a_{0} q^{n-1}=-a_{n} \frac{p^{n}}{q}
\end{aligned}
$$

$$
\Rightarrow a_{n} p^{n}+a_{n-1} p^{n-1} q+\cdots+a_{1} q^{n-1} p+a_{0} q^{n}=0
$$

Everything on L.H.S. is integer and p, q are relatively prime therefore q must divide a_{n}. Similalry, it can be proven that a_{0} is divisible by q.

Corollary 3

If roots of $x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0$, where $0 \leq i \leq n-1$ is an integer and coefficients are also integer, are integer then all the roots divide a_{0}.

Proof

This corollary is a direct result from previous corollary.

4.8 Vieta's Relations

If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are n roots of the equation $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0$, then
$\sum_{i=0}^{n} \alpha_{i}=-\frac{a_{n-1}}{a_{n}}, \sum_{1 \leq i \leq j \leq n} \alpha_{i} \alpha_{j}=\frac{a_{n-2}}{a_{n}}, \sum_{1 \leq i \leq j \leq k \leq n} \alpha_{i} \alpha_{j} \alpha_{n}=-\frac{a_{n-3}}{a_{n}}, \cdots, \alpha_{1} \alpha_{2} \ldots \alpha_{n}=(-1)^{n} \frac{a_{0}}{a_{n}}$.
These relations are denoted as $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ as well. These relations are known as Vieta's relations.

4.9 Symmetric Functions

Consider functions $a+b+c, a^{2}+b^{2}+c^{2},(a-b)^{2}+(b-c)^{2}+(c-a)^{2}$, and $(a+b)(b+c)(c+a)$ in which the terms can be interchanged without changing the overall function. Functions demonstrating such behavior are known as symmetric functions.

In general, if a function is of n variables then this definition warrants that any two variable can be interchanged without changing the function. Thus, we see that Vieta's relations are symmetric functions.

4.10 Common Roots of Polynomial Equations

If α is a common root of the polynomial equations $f(x)=0$ and $g(x)=0$, if and only if, it is a root of the HCF of the polynomilas $f(x)$ and $g(x)$. The HCF of two polynomials can be found exactly like HCF of two integers using Euclid's method.

4.11 Irreducabilty of Polynomials

When we talk of irreducability we talk in terms of set to which the coefficients of the polynomial belong. The set could be $\mathbb{Q}, \mathbb{\mathbb { z }}, \mathbb{R}$ or \mathbb{C}.
An irreducible polynomial is, a non-constant polynomial which cannot have non-constant factors in the same set as coefficients of the polynomial itself.
Consider following example:

1. $x^{2}-5 x+6=(x-2)(x-3)$
2. $x^{2}-\frac{4}{9}=\left(x-\frac{2}{3}\right)\left(x+\frac{2}{3}\right)$
3. $x^{2}-5=(x-\sqrt{5})(x+\sqrt{5})$
4. $x^{2}+9=(x+3 i)(x-3 i)$

Over $\mathbb{\square}$, first is reducible while other are irreducible, over \mathbb{Q} first two are reducible bit last two are not, over \mathbb{R}, first three are reducible but last one is not and over \mathbb{C} all are reducible.

4.12 Eisenstein's Irreducibility Criterion Theorem

Theorem 5

Consider the polynomial $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ with integer coefficients. If there exists a prime p such that the following three conditions apply

1. p divides each a_{i} for $0 \leq i<n$,
2. p does not divide a_{n}, and
3. p^{2} does not divide a_{0},
then $f(x)$ is irreducible over rational numbers and integers.
Proof
If possible, let us assume that $f(x)=g(x) . h(x)$ such that $g(x)=b_{k} x^{k}+b_{k-1} x^{k-1}+\cdots+$ $b_{1} x+b_{0}$ and $h(x)=c_{l} x^{l}+c_{l-1} x^{l-1}+\cdots+c_{1}+c_{0}$, where $b_{i}, c_{i} \in \mathbb{Z} \forall i=0,1,2, \ldots ; b_{k} \neq=$, $c_{l} \neq 0 ; 1 \leq k, l \leq n-1$.

Comparing leading coefficient on both sides, we have $a_{n}=b_{k} c_{l}$. As $p \nmid a_{n} \Rightarrow p \nmid b_{k} c_{l} \Rightarrow p \nmid b_{k}$ and $p \nmid c_{l}$.

Similarly, $a_{0}=b_{0} c_{0}$. As $p \mid a_{0}$ and $p^{2} \nmid a_{0} \Rightarrow p \mid b_{0} c_{0}$, but both b_{0} and c_{0} cannot be divided by p. Without loss of generality, we suppose $p \mid b_{0}$ and $p \nmid c_{0}$. Suppose i be the smallest index such that b_{i} is not divisible by p. There is such an index i since $p \nmid b_{k}$, where $1 \leq i \leq k$. Depending on i and k, for $i \leq k, a_{i}=b_{i} c_{0}+b_{i-1} c_{1}+\cdots+i_{0} c_{i}$ and for $i>k, a_{i}=b_{i} c_{0}+b_{i-1} c_{1}+\cdots+b_{i-k k} c$.

We have $p \mid a_{i}$ and by supposition p divides each one of $b_{0}, b_{1}, \ldots, b_{i-1} \Rightarrow p \mid b_{i} c_{0}$. But $p \nmid c_{0} \Rightarrow$ $p \mid b_{i}$, which is a contradiction, and therefore, $f(x)$ is irreducible.

4.13 Quadratic Equations

An equation of the form $a x^{2}+b x+c=0$, where $a, b, c \in \mathbb{C}$, the set of complex numbers, is called a quadratic equation. The numbers a, b, c are called it coefficients of the equation. The quantity $b^{2}-4 a c$ is called the discriminant of the equation. It is represented by D or Δ. A quadratic equation represents a parabola geometrically.

Examples:

1. $4 x^{2}+4 x+1=0, a=4, b=4, c=1$
2. $7 x^{3}+10=0$ is not a quadratic equation.
3. $3 x^{2}-2 x^{1 / 2}+7=0$ is not a quadratic equation.
4. $2 x^{2}-4=0, a=2, b=0, c=-4$

The quadratic equation is called incomplete if one of the coefficients b or c is zero. Thus, the last example above represents an incomplete quadratic equation.

An expression of the form $a x^{2}+b x+c$ is called a quadratic expression while other elements are same as a quadratic equation.

If two expression in x are equal for all values of x then this statement of equality between the two expression is called an identity.
$f(x)=0$ is said to be an indentity in x if it is satisfied by all values of x in the domain of $f(x)$. Thus, an indentity in x is satisfied by all values of x while an equation is satisfied for particular values of x.

Example: $(x+1)^{2}=x^{2}+2 x+1$ is an identity in x.
Two equations are called identical equations if they have same roots.
Example: $x^{2}-5 x+4=0$ and $2 x^{2}-10 x+8=0$ are indentical equations because both have same roots 1 and 4 .

Note:

1. Two equations in x are indentical if and only if the coefficients of similar power of x in the two equations are proportional. Thus, if $a x^{2}+b x+c=0$ and $a_{1} x^{2}+b_{1} x+c_{1}=0$ are identical equations, then $\frac{a}{a_{1}}=\frac{b}{b_{1}}=\frac{c}{c_{1}}$
2. An equation remains unchanged if it is multiplied or divided by non-zero number.

An expression of the form $a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{0}$, where $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are constants $\left(a_{0} \neq 0\right)$ and n is a positive integer is called a polynomial in x of degree n.

As a special case a constant is also called a polynomial of degree zero.

4.14 Rational Expression or Rational Function

An expression of the form $\frac{P(x)}{Q(x)}$, where $P(x)$ and $Q(x)$ are polynomials in x, is called a rational expression.
In the particular case, when $Q(x)$ is a non-zero constant, $\frac{P(x)}{Q(x)}$ reduces to a polynomial.Thus, every polynomial is a rational expression but the converse is not true.

Examples:

1. $\frac{x^{2}-5 x+4}{x-2}$
2. $\frac{1}{x-7}$

4.15 Roots of a Quadratic Equation

The values x for which the equation $a x^{2}+b x+c=0$ are satisfied are called roots of the equation. They are also called roots of the quadratic expression $a x^{2}+b x+c$

Every quadratic equation has at most two roots. Let $a x^{2}+b x+c=0$, where $a \neq 0$
Multiplying both sides of the equation with a
$a^{2} x^{2}+a b x+a c=0 \Rightarrow(a x)^{2}+2 \cdot a x \cdot \frac{b}{2}+\frac{b^{2}}{4}+a c-\frac{b^{2}}{4}=0$
$\left(a x+\frac{b}{2}\right)^{2}=\frac{b^{2}-4 a c}{4} \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
These are two roots of the quadratic equation. Let us suppose the above quadratic equation has three roots α, β and γ. These roots will satisfy the above equation. Thus,

$$
a \alpha^{2}+b \alpha+c=0, a \beta^{2}+b \beta+c=0, a \gamma^{2}+b \gamma+c=0
$$

Subtracting the first two, we get $(\alpha-\beta)[a(\alpha+\beta)+b]=0$
$\because \alpha \neq \beta: a(\alpha+\beta)+b=0$
Similarly, $a(\alpha+\gamma)+b=0$
Subtracting these two, we get $a(\alpha-\gamma)=0$
$\because a \neq 0 \therefore \alpha=\gamma$
Thus, a quadratic equation has at most two roots.

4.16 Sum and Product of the Roots

From the two obtained we observe that $\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$

4.17 Nature of Roots

For equation $a x^{2}+b x+c=0$ when a, b, c are real.

1. When $D<0$

In this case, both roots will be either imaginary or complex numbers depending on whether b is zero or not. These roots of conjugate of each other.
2. When $D=0$

In this case, both roots will be equal.
3. When $D>0$

In this case, both roots will be equal and unqual. If D is not a perfect square then roots are irrational and come as a pair of conjugate irrational numbers.
4. When D is a perfect square and a, b, c are rationals.

In this case, both roots are real and unequal.

4.17.1 Conjugate Roots

Imaginary/complex roots of a quadratic equation with real coefficients always occur in conjugate pair.

Let $\alpha+i \beta$ be a root of the quadratic equation $a x^{2}+b x+c=0$, where a, b, c are real numbers. Thus,
$a(\alpha+i \beta)^{2}+b(\alpha+i \beta)+c=0$
$\Rightarrow\left(a \alpha^{2}-a \beta^{2}+b \alpha+c\right)+(2 a \alpha \beta+b \beta) i=0$
Equating real and imaginary parts
$a \alpha^{2}-a \beta^{2}+b \alpha+c=0,2 a \alpha \beta+b \beta=0$

Using $\alpha-i \beta$ as the second root of the equation

$$
\begin{aligned}
& a(\alpha-i \beta)^{2}+b(\alpha-i \beta)+c=\left(a \alpha^{2}-a \beta 62+b \alpha+c\right)+(2 a \alpha \beta+b \beta) i \\
& =0+i .0
\end{aligned}
$$

Thus, we see that $\alpha-i \beta$ also satisfied the equation and is second root of the equation. Similarly, if the roots are irrational they also appear as conjugate pair.

4.18 Quadratic Expression and its Graph

Let $f(x)=a x^{2}+b x+c$, where $a, b, c \in \mathbb{R}$ and $a \neq 0$.

$$
\begin{equation*}
f(x)=a\left[\left(x+\frac{b}{2 a}\right)^{2}+\frac{4 a c-b^{2}}{4 a^{2}}\right] \tag{4.1}
\end{equation*}
$$

4.18.1 When a Quadratic Equation is Always Positive/Negative

It follows from Eq. 4.1, that $f(x)>0(<0) \forall x \in \mathbb{R}$ if and only if $a>0(<0)$ and $D=$ $b^{2}-4 a c<0$. See Figure 4.1(Figure 4.2). Also, it follows from eq:1 that $f(x) \geq 0(\leq 0) \forall x \in \mathbb{R}$ if and only if $a>0(<0)$ and $D=b^{2}-4 a c=0$. in this case $f(x)<0(<0)$ for each $x \in R, x \neq-b / 2 a$, and the graph of $y=f(x)$ touches the x-axis at $x=-b / 2 a$.

Figure 4.1 When quadratic equation is always positive

4.19 Sign of a Quadratic Equation

If $D=b^{2}-4 a c>0$, then eq. Equation 4.1 can be written as

$$
\begin{gathered}
f(x)=a\left[\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{\sqrt{b^{2}-4 a c}}{2 a}\right)^{2}\right] \\
=a\left[\left(x+\frac{b+\sqrt{b^{2}-4 a c}}{2 a}\right)\left(x+\frac{b-\sqrt{b^{2}-4 a c}}{2 a}\right)\right] \\
=a(x-\alpha)(x-\beta)
\end{gathered}
$$

Figure 4.2 When quadratic equation is always negative

Figure 4.3 When $D>0$ and $a>0$
If $D=b^{2}-4 a c>0$ and $a>0$, then (See Figure 4.3)

$$
f(x)=\left\{\begin{array}{l}
>0 \text { for } x<\alpha \text { or } x>\beta \\
>0 \text { for } \alpha<x<\beta=0 \text { for } x=\alpha, \beta
\end{array}\right.
$$

If $D=b^{2}-4 a c>0$ and $a<0$, then (See Figure 4.4)

$$
f(x)=\{<0 \text { for } x<\alpha \text { or } x>\beta>0 \text { for } \alpha<x<\beta=0 \text { for } x=\alpha, \beta
$$

Note that if $a>0$, then $f(x)$ attains the least value at $x=-b / 2 a$, a value which is achieved by differentiating the function once and at this point the tangent to parabola has slope 0 . The least value is given by

$$
f\left(-\frac{b}{2 a}\right)=\frac{4 a c-b^{2}}{4 a}
$$

If $a<0$, then $f(x)$ is maximum at value $x=-\frac{b}{2 a}$ and value of function has the same formula which is for least value shown above.

Figure 4.4 When $D>0$ and $a<0$

4.20 Position of Roots

Conditions for both roots to be more than a real number k

Figure 4.5 When $D>0$ and $a>0$
Form the Fig. Figure 4.5, we note that both the roots are more than k if and only if $D>0, k<-\frac{b}{2 a}$ and $f(k)>0$.

In case $a<0$, from Fig. Figure 4.6, both the roots are more than k if and only if $D>0, k<$ $-\frac{b}{2 a}$ and $f(k)<0$.

Combining the above two equations, we get the condition for the roots to be more than a real number k if and only if $D>0, k<-\frac{b}{2 a}$ and $a f(k)>0$. Similarly, condition for the roots to be more than a real number k if and only if $D>0, k>-\frac{b}{2 a}$ and $a f(k)>0$.

Conditions for a real number k to lie between two roots

Figure 4.6 When $D>0$ and $a<0$
Similarly, the real number k lies between the roots of the quadratic equation if and only if a and $f(k)$ are of opposite signs, i.e. if and only if $a>0, D>0, f(k)<0$ or $a<0, D>$ $0, f(k)>0$.

Combining these two, we get $D>0, a f(k)<0$ as the condition for k to lie between two roots.

Conditions for exactly one root to lie in between (k_{1}, k_{2}) where $k_{1}<k_{2}$

If $a>0$, then exactly one root lies in the interval $\left(k_{1}, k_{2}\right)$ if and only if $f\left(k_{1}\right)>0$ and $f\left(k_{2}\right)<0$. Also, same is true if anad only if $f\left(k_{1}\right)<0$ and $f\left(k_{2}\right)>0$. Combining these two we get $f\left(k_{1}\right) f\left(k_{2}\right)<0$. This condition is also true if $a<0$.

Conditions for both roots to lie in between (k_{1}, k_{2}) where $k_{1}<k_{2}$
If $a>0$, both the roots will lies in the interval $\left(k_{1}, k_{2}\right)$ if and only if $D>0, k_{1}<-\frac{b}{2 a}<$ $k_{2}, f\left(k_{1}\right)>0$ and $f\left(k_{1}\right)>0$. In case $a<0$, the conditions are $D>0, k_{1}<-\frac{b}{2 a}<k_{2}, f\left(k_{1}\right)<$ 0 and $f\left(k_{1}\right)<0$.

Conditions for the quadratic equation to have repeated roots

The quadratic equation $f(x)=a x^{2}+b x+c=0, a \neq 0$ has a repeated root if and only if $f(\alpha)=f^{\prime}(\alpha)=0$, where α is the repeated root. In this case, $f(x)=a(x-\alpha)^{2}$, In fact, $\alpha=-b / 2 a$. Geometrically, the x-axis will be a tangent to the parabola at $x=-b / 2 a$. See Figure 4.7 and Fig. Figure 4.8.
bf Conditions for two quadratic equations to have one common root
Consider two quadratic equations $a x^{2}+b x+c=0$ and $a^{\prime} x^{2}+b^{\prime} x^{2}+c^{\prime}=0$ having a common root α. Clearly, this common root will satisfy both the equations, i.e. $a \alpha^{2}+b \alpha+c=0$ and $a^{\prime} \alpha^{2}+b^{\prime} \alpha+c^{\prime}=0$.

Solving these two equations, we get

Figure $4.7 \quad f(\alpha)=0, f^{\prime}(\alpha)=0$

Figure $4.8 \quad f(\alpha)=0, f^{\prime}(\alpha)=0$

$$
\begin{aligned}
& \frac{\alpha^{2}}{b c^{\prime}-b^{\prime} c}=\frac{\alpha}{a^{\prime} c-a c^{\prime}}=\frac{1}{a b^{\prime}-a^{\prime} b} \\
& \Rightarrow \alpha^{2}=\frac{b c^{\prime}-b^{\prime} c}{a b^{\prime}-a^{\prime} b}, \alpha=\frac{a^{\prime} c-a c^{\prime}}{a b^{\prime}-a^{\prime} b}
\end{aligned}
$$

Eliminating α, we get

$$
\left(a^{\prime} c-a c^{\prime}\right)^{2}=\left(b c^{\prime}-b^{\prime} c\right)\left(a b^{\prime}-a^{\prime} b\right)
$$

This is the required condition for two quadratic equations to have one common root.

Figure 4.9 Common roots
To obtain the common root make coefficients of x^{2} in both the equations same and subtract one equation from the other to obtain a linear equation in x, which you can solve to obtain the common root.

For having both roots common the two equations must be identical i.e. $\frac{a}{a^{\prime}}=\frac{b}{b^{\prime}}=\frac{c}{c^{\prime}}$

Figure 4.10 Common roots

4.21 General Quadratic Equation in x and y

The general quadratic equation in x and y is given by $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$

$$
\begin{aligned}
& \therefore x=\frac{-2(h y+g) \pm \sqrt{4(h y+g)^{2}-4 a\left(b y^{2}+2 f y+c\right)}}{2 a} \\
\Rightarrow & x+h y+g= \pm \sqrt{\left(h^{2}-a b\right) y^{2}+2(g h-a f) y+g^{2}-a c}
\end{aligned}
$$

It can be resolved into two linear factors if $\left(h^{2}-a b\right) y^{2}+2(g h-a f) y+g^{2}-a c$ is a perfect square and $h^{2}-a b>0$.

The condition for $\left(h^{2}-a b\right) y^{2}+2(g h-a f) y+g^{2}-a c$ to be a perfect square is that its discriminant is 0 , i.e.

$$
\begin{aligned}
& 4(g h-a f)^{2}-4\left(h^{2}-a b\right)\left(g^{2}-a c\right)=0 \\
& \Rightarrow a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0
\end{aligned}
$$

4.22 Equations of Higher Degree

The equation $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}=0$, where $a_{0}, a_{1} \ldots, a_{n} \in \mathbb{C}$, the set of complex numbers and $a_{0} \neq 0$, is said to be an equation of degree n. An equation of degree n has exactly n roots. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{C}$ be the n roots. Then

$$
\begin{gathered}
f(x)=a_{0}\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{n}\right) \\
\sum \alpha_{i}=-\frac{a_{1}}{a_{0}}, \sum \alpha_{i} \alpha_{j}=\frac{a_{2}}{a_{0}}, \ldots, \prod \alpha_{i}=(-1)^{n} \frac{a_{n}}{a_{0}}
\end{gathered}
$$

4.23 Cubic and Biquadratic Equation

If α, β, γ are the roots of $a x^{3}+b x^{2}+c x+d=0$, then

$$
\alpha+\beta+\gamma=-\frac{b}{a}, \alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}, \alpha \beta \gamma=-\frac{d}{a}
$$

Also, if $\alpha, \beta, \gamma, \delta$ are the roots of the equation $a x^{4}+b x^{3}+c x^{2}+d+e=0$, then

$$
\begin{gathered}
\alpha+\beta+\gamma+\delta=-\frac{b}{a}, \alpha \beta+\alpha \gamma+\alpha \delta+\beta \gamma+\beta \delta+\gamma \delta=\frac{c}{a} \\
\alpha \beta \gamma+\alpha \beta \delta+\alpha \gamma \delta+\beta \gamma \delta=-\frac{d}{a}, \alpha \beta \gamma \delta=\frac{e}{a}
\end{gathered}
$$

4.24 Transformation of Equations

Let the given equation be

$$
\begin{equation*}
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}=0 \tag{4.2}
\end{equation*}
$$

1. To form an equation whose roots are $k(\neq 0)$ times roots of the Equation 4.2, replace x by x / k.
2. To form an equation whose roots are the negatives of the roots of Equation 4.2, replace x by $-x$. Alternatively, change the sign of the coefficients of $x^{n-1}, x^{n-3}, x^{n-5}, \ldots$ etc. in eq:2.
3. To form an equation whose roots are k more than the roots of Equation 4.2, replace x by $x-k$ in eq: 2 .
4. to form an equation whose roots are reciprocals of roots in Equation 4.2, replace x by $1 / x$ in eq:2 and then multiply both sides by x^{n}.
5. To form an equation whose roots are squares of roots in Equation 4.2, replace x by \sqrt{x}. Then you can collect all terms involving \sqrt{x} on one side and square both sides followed by simplification.
6. To form an equation whose roots are cubes of roots in Equation 4.2, replace x by $\sqrt[3]{x}$. Then you can collect all terms involving $\sqrt[3]{x}$ and $\sqrt[3]{x^{2}}$ on one side and cube both sides followed by simplification.

4.25 Descartes Rule

1. The maximum no. of positive real roots of Equation 4.2 is the number of changes of sign of coefficients from positive to negative and negative to positive.
2. The maximum no. of negtive real roots of Equation 4.2 is the number of changes of sign of coefficients from positive to negative and negative to positive in the equation $f(-x)=0$.

4.26 Hints for Solving Polynomial Equations

1. To solve the equation of the form $(x-a)^{2 n}+(x-b)^{2 n}=A$, where $n \in \mathbb{P}$, put $y=x-\frac{a+b}{2}$.
2. To solve the equation of the form $a_{0}(f(x))^{2 n}+a_{1}(f(x))^{n}+a_{2}=0$, put $(f(x))^{n}=y$ then we obtain two roots y_{1}, y_{2} to solve again for $f(x)=y_{1}, f(x)=y_{2}$.
3. An equation of the form $\left(a x^{2}+b x+c_{1}\right)\left(a x^{2}+b x+c_{2}\right) \ldots\left(a x^{2}+b x+c_{n}\right)=A$ can be solved by putting $a x^{2}+b x=y$.
4. An equation of the form $(x-a)(x-b)(x-c)(x-d)=A x^{2}$, where $a b=c d$, can be reduced to a product of two quadratic polynomials by putting $y=x+\frac{a b}{x}$.
5. An equation of the form $(x-a)(x-b)(x-c)(x-d)=A$, where $a<b<c<d, b-a=$ $d-c$ can be solved by putting $y=x-\frac{a+b+c+d}{4}$.
6. A polynomial $f(x, y)$ is said to be symmetric if $f(x, y)=f(y, x) \forall x, y$. All symmetric polynomials can be represented as a function of $x+y$ and $x y$.

4.27 Problems

1. What is the remainder when $x+x^{9}+x^{25}+x^{49}+x^{81}$ is divided by $x^{3}-x$?
2. Prove that the polynomial $x^{9999}+x^{8888}+x^{7777}+\cdots+x^{1111}+1$ is divisible by $x^{9}+x^{8}+$ $x^{7}+\cdots+x+1$.
3. If $f(x)$ is a polynomial with integral coefficients and suppose that $f(1)$ and $f(2)$ are both odd, then prove that there exists no integer n for which $f(n)=0$.
4. If f is a polynomial with integer coefficients such that there exists four distinct integers a_{1}, a_{2}, a_{3}, and a_{4} such that $f\left(a_{1}\right)=f\left(a_{2}\right)=f\left(a_{3}\right)=f\left(a_{4}\right)=1991$, show that there exists no integer b, such that $f(b)=1993$.
5. Find a polynomial function of lowest degree with integral coefficients with $\sqrt{5}$ as one of its roots.
6. Find a polynomial of the lowest degree with integer coefficients whose one of the zeroes is $\sqrt{5}+\sqrt{2}$.
7. If $f(x)$ is a polynomial such that $x . f(x-1)=(x-4) f(x) \forall x \in \mathbb{R}$. Find all such $f(x)$.
8. Let $f(x)$ be a monic cubic equation such that $f(1)=1, f(2)=2, f(3)=3$ then find $f(4)$.
9. Find a fourth degree equation with rational coefficients, one of whose roots is, $\sqrt{3}+\sqrt{7}$.
10. Form the equation of the lowest degree with rational coefficients which has $2+\sqrt{3}$ and $3+\sqrt{2}$ as two of its roots.
11. Find a polynomial equation of the lowest degree with rational coefficients whose one root is $\sqrt[2]{2}+3 \sqrt[3]{4}$.
12. Show that $(x-1)^{2}$ is a factor of $x^{n}-n x+n-1$.
13. If a, b, c, d, e are all zeroes of the polynomial $6 x^{5}+5 x^{4}+4 x^{3}+3 x^{2}+2 x+1$, find the value of $(1+a)(1+b)(1+c)(1+d)(1+e)$.
14. If $1, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}$ be the roots of the equation $x^{n}-1, n \in \mathbb{N}, n \geq 2$, show that $n=\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right) \cdots\left(1-\alpha_{n-1}\right)$.
15. If $f(x)=x^{4}=a x^{3}+b x^{2}+c x+d$ is a poynomial such that $f(1)=10, f(2)=20, f(3)=$ 30 , find the value of $\frac{f(12)+f(-8)}{10}$.
16. If the polynomial $x^{2 k}+1+(x+1)^{2 k}$ is not divisible by $x^{2}+x+1$, then find the value of $k \in \mathbb{N}$.
17. Find all polynomials $P(x)$ with real coefficients such that $(x-8) P(2 x)=8(x-1) P(x)$.
18. If $(x-1)^{3}$ divides $f(x)+1$ and $(x+1)^{3}$ divides $f(x)-1$, then find the polynomial $f(x)$ of degree 5.
19. Find the polynomial equation of lowest degree with rational coefficients, two of whose roots are $3+2 i$ and $2+3 i$.
20. Find the roots of the equation $x^{4}+x^{3}-19 x^{2}-49 x-30$, if all roots are rational numbers.
21. Find the rational roots of $2 x^{3}-3 x^{2}-11 x+6=0$.
22. Solve $x^{3}-3 x^{3}+5 x-15=0$.
23. Show that $f(x)=x^{1000}-x^{500}+x+1=0$ has no rational roots.
24. If $x^{2}+a x+b+1=0$, where $a, b \in \mathbb{Z}$ and $b \neq-1$, has a root in integers then prove that $a^{2}+b^{2}$ is composite.
25. For what values of p, will the sum of squares of the roots $x^{2}-p x+p-1=0$ be minimum?
26. Let α, β be two real numbers not equal to -1 , such that α, β and $\alpha \beta$ are the roots of a cubic polynomial with rational coefficients. Prove or disprove that $\alpha \beta$ is rational.
27. Find the roots of the cubic equation $9 x^{3}-27 x^{2}+26 x-8=0$, given that one of the roots of the equation is double the other.
28. If the product of two roots of the equation $4 x^{4}-24 x^{3}+31 x^{2}+6 x-8=0$ is 1 , find all the roots.
29. One root of the equation $x^{4}-5 x^{3}+a x^{2}+b c+c=0$ is $3+\sqrt{2}$. If all the roots of the equation are real, find extremum values of a, b, c; given that a, b and c are rational.
30. Find the rational roots of the equation $x^{4}-4 x^{3}+6 x^{2}-4 x+1=0$.
31. Solve the equation $x^{4}+10 x^{3}+35 x^{2}+50 x+24=0$, if some of two of its roots is equal to the sum of the other two roots.
32. Find the rational roots of $6 x^{4}+x^{3}-3 x^{2}-9 x-4=0$.
33. Find the rational roots of $6 x^{4}+35 x^{3}+62 x^{2}+35 x+2=0$.
34. Given that the sum of two of the roots of $4 x^{3}+a x^{2}-x+b=0$ is zero, where $a, b \in \mathbb{Q}$. Solve the equation for all values of a and b.
35. Find all a, b such that $x^{3}+a x^{2}+b x-8=0$ are real and in G.P.
36. Show that $2 x^{6}+12 x^{5}+30 x^{4}+60 x^{3}+80 x^{2}+30 x+45=0$ has no real roots.
37. Construct a polynomial equation, of the least degree with rational coefficients one of whose roots is $\sin 10^{\circ}$.
38. Construct a polynomial equation, of the least degree with rational coefficients one of whose roots is $\sin 20^{\circ}$.
39. Construct a polynomial equation, of the least degree with rational coefficients one of whose roots is $\cos 10^{\circ}$.
40. Construct a polynomial equation, of the least degree with rational coefficients one of whose roots is $\cos 20^{\circ}$.
41. Construct a polynomial equation, of the least degree with rational coefficients one of whose roots is $\tan 10^{\circ}$.
42. Construct a polynomial equation, of the least degree with rational coefficients one of whose roots is $\tan 20^{\circ}$.
43. Construct a polynomial equation, of the least degree with rational coefficients two of whose roots are $\sin 10^{\circ}$ and $\cos 20^{\circ}$.
44. If p, q, r are the real roots of $x^{3}-6 x^{2}+3 x+1=0$, determine the possible values of $p^{2} q+q^{2} r+r^{2} p$.
45. The product of two of the four roots of the equation $x^{4}-18 x^{3}+k x^{2}+200 x-1984=0$ is 32 . Determine the value of k.
46. If $x+y=1$ and $x^{4}+y^{4}=c$, find $x^{3}+y^{3}$ and $x^{2}+y^{2}$ in terms of c.
47. Find all x and y that satisfy $x^{3}+y^{3}=7$ and $x^{2}+y^{2}+x+y+x y=4$.
48. If α, β, γ are the roots of the equation $x^{3}+p x+q=0$, then prove that $\frac{\alpha^{5}+\beta^{5}+\gamma^{5}}{5}=$ $\frac{\alpha^{3}+\beta^{3}+\gamma^{3}}{3} \times \frac{\alpha^{2}+\beta^{2}+\gamma^{2}}{2}$.
49. If α, β, γ are the roots of the equation $x^{3}+p x+q=0$, then prove that $\frac{\alpha^{7}+\beta^{7}+\gamma^{7}}{7}=$ $\frac{\alpha^{5}+\beta^{5}+\gamma^{5}}{5} \times \frac{\alpha^{2}+\beta^{2}+\gamma^{2}}{2}$.
50. If $\alpha+\beta+\gamma=0$, then show that $3\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)\left(\alpha^{5}+\beta^{5}+\gamma^{5}\right)=5\left(\alpha^{3}+\beta^{3}+\gamma^{3}\right)\left(\alpha^{4}+\right.$ $\left.\beta^{4}+\gamma^{4}\right)$.
51. Show that there does not exist any distinct natural numbers a, b, c and d such that $a^{3}+b^{3}=c^{3}+d^{3}$ and $a+b=c+d$.
52. Determine all the roots of the system of simultaneous equations $x+y+z=3, x^{2}+y^{2}+$ $z^{2}=3$, and $x^{3}+y^{3}+z^{3}=3$.
53. Given real numbers x, y, z, such that $x+y+z=3, x^{2}+y^{2}+z^{2}=5, x^{3}+y^{3}+z^{3}=7$, find $x^{4}+y^{4}+z^{4}$.
54. For what values of $(1+m) x^{2}-2(1+3 m) x+(1+8 m)=0$ has equal roots?
55. If $a+b+c=0$ and a, b, c are rational. Prove that the roots of the equation $(b+c-a) x^{2}+$ $(c+a-b) x+(a+b-c)=0$ are rational.
56. Show that if the roots of the equation $\left(a^{2}+b^{2}\right) x^{2}+2(a c+b d) x+c^{2}+d^{2}=0$ are real, they will be equal.
57. If the roots of the equation $a(b-c) x^{2}+b(c-a) x+c(a-b)=0$ be equal, prove that a, b, c are in H.P.
58. If $a+b+c=0$ and a, b, c are real, prove that equation $(b-x)^{2}-4(a-x)(c-x)=0$ has real roots and roots will not be equal unless $a=b=c$.
59. Show that if p, q, r, s are real numbers and $p r=2(q+s)$ then at least one of the equations $x^{2}+p x+q=0$ and $x^{2}+r x+s=0$ has real roots.
60. If the equation $x^{2}-2 p x+q=0$ has two equal roots, then the equation $(1+y) x^{2}-$ $2(p+y) x+(q+y)=0$ will have its roots real and distinct only when y is negative and p is not unity.
61. If the equation $a x^{2}+2 b x+c=0$ has real roots. a, b, c being real numbers and if m and n are real numbers such that $m^{2}>n^{2}>0$ then prove that the equation $a x^{2}+2 m b x+n c=$ 0 has real roots.'
62. If theq equations $a x+b y=1$ and $c x^{2}+d y^{2}=1$ have only one solution, prove that $\frac{a^{2}}{c}+\frac{b^{2}}{d}=1$ and $x=\frac{a}{c}, y=\frac{b}{d}$.
63. If r be the ratio of the roots of the equation $a x^{2}+b x+c=0$, show that $\frac{(r+1)^{2}}{r}=\frac{b^{2}}{a c}$.
64. If one root of the eq. $(l-m) x^{2}+l x+1=0$ be double of the other and if l be real, show that $m \leq \frac{9}{7}$.
65. If one root of the quadratic equation $a x^{2}+b x+c=0$ is equal to the nth power of the other, then show that

$$
\left(a c^{n}\right)^{1 /(n+1)}+\left(a^{n} c\right)^{1 /(n+1)}+b=0
$$

66. If the roots of the equation $a x^{2}+b x+c=0$ be in the ratio $p: q$, show that

$$
\sqrt{\frac{p}{q}}+\sqrt{\frac{q}{p}}+\sqrt{\frac{c}{a}}=0
$$

67. If α and β be the roots of the equation $x^{2}+p x+q=0$. Find the value of the following in the terms of p and q.
i. $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}$
ii. $\left(\omega \alpha+\omega^{2} \beta\right)\left(\omega^{2} \alpha+\omega \beta\right)$, where ω an imaginary cube root fo unity.
68. If α and β be the roots of the equation $A\left(x^{2}+m^{2}\right)+A m x+c m^{2} x^{2}=0$, prove that $A\left(\alpha^{2}+\beta^{2}\right)+A \alpha \beta+c \alpha^{2} \beta^{2}=0$.
69. If α and β be the roots of the euqation $a x^{2}+b x+c=0$, prove that $a\left(\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}\right)+b\left(\frac{\alpha}{\beta}+\right.$ $\left.\frac{\beta}{\alpha}\right)=b$.
70. If a and b are the roots of the equation $x^{2}+p x+1=0$ and c and d are the roots of the equation $x^{2}+q x+1=0$, show that $q^{2}-p^{2}=(a-c)(b-c)(a+d)(b+d)$.
71. If the roots of the equation $x^{2}+p x+q=0$ differ from the roots of the equation $x^{2}+q x+p=0$ by the same quantity, show that $p+q+4=0$.
72. If α, β are the roots of the equation $a x^{2}+b x+c=0$ and $S_{n}=\alpha^{n}+\beta^{n}$, show that $a S_{n+1}+b S_{n}+c S_{n-1}=0$ and hence find S_{5}.
73. If the sum of roots of the equation $a x^{2}+b c+c=0$ is equal to the sum of the squares of their reciprocals, show that $b c^{2}, c a^{2}, a b^{2}$ are in A.P.
74. If α and β be the values of x obtained from the equation $m^{2}\left(x^{2}-x\right)+2 m x+3=0$ and if m_{1} and m_{2} be the two values of m for which α and β are connected by the relation $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{4}{3}$, find the value of $\frac{m_{1}^{2}}{m_{2}}+\frac{m_{2}^{2}}{m_{1}}$.
75. If the ratio of the roots of the equation $a x^{2}+b x+c=0$ be equal to the roots of equation $a_{1} x^{2}+b_{1} x+c_{1}=0$, prove that $\left(\frac{b}{b_{1}}\right)^{2}=\frac{c a}{c_{1} a_{1}}$.
76. Find the quantity equation with the rational coefficients one of whose roots is $\frac{1}{2+\sqrt{5}}$.
77. If α and β be the roots of the equation $a x^{2}+b x+c=0$, find the quantity equation whose roots are $\frac{1}{a \alpha+b}$ and $\frac{1}{a \beta+b}$.
78. If c, d are the roots of the equation $(x-a)(x-b)=k$, show that a, b are the roots of the equation $(x-c)(x-d)+k=0$
79. The coefficients of x in the equation $x^{2}+p x+q=0$ was wrongly written as 17 in place of 13 and roots were found to be -2 and -15 . Find the roots of the correct equation.
80. If α and β be the roots of the equation $x^{2}+p x+q=0$, show that $\frac{\alpha}{\beta}$ is a root of the equation $q x^{2}-\left(p^{2}-2 q\right) x+q=0$.
81. If $x^{2}-a x+b=0$ and $x^{2}-p x+q=0$ have a common root and the second equation has equal roots then show that $b+q=\frac{a p}{2}$.
82. If $a x^{2}+2 b x+c=0$ and $a_{1} x^{2}+2 b_{1} x+c_{1}=0$ have a common root and $\frac{a}{a_{1}}, \frac{b}{b_{1}}, \frac{c}{c_{1}}$ are in A.P., show that a_{1}, b_{1}, c_{1} are in G.P.
83. If each pair of the following three equations $x^{2}+p_{1} x+q_{1}=0, x^{2}+p_{2} x+q_{2}=0, x^{2}+$ $p_{3} x+q_{3}=0$ have exactly one root in common, then show that $\left(p_{1}+p_{2}+p_{3}\right)^{2}=$ $4\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}-q_{1}-q_{2}-q_{3}\right)$.
84. If the equations $x^{2}+c x+b c=0$ and $x^{2}+b x+c a=0$ have a common root, show that $a+b+c=0$; show that other roots are given by the equation $x^{2}+a x+b c=0$.
85. If $a, b, c \in \mathbb{R}$ and equations $a x^{2}+b x+c=0$ and $x^{2}+2 x+9=0$ have a common root, show that $a: b: c=1: 2: 9$.
86. Find the value of p if the equation $3 x^{2}-2 x+p=0$ and $6 x^{2}-17 x+12=0$ have a common root.
87. Show that $|x|^{2}-|x|-2=0$ is an equation.
88. Show that $\frac{(x+b)(x+c)}{(b-a)(c-a)}+\frac{(x+c)(x+a)}{(c-b)(a-b)}+\frac{(x+a)(x+b)}{(a-c)(b-c)}=1$ is an indenity.
89. If $a, b, c, a_{1}, b_{1}, c_{1}$ are rational and equations $a x^{2}+2 b x+c=0$ and $a_{1} x^{2}+2 b_{1} x+c_{1}=0$ have one and only one root in common, prove that $b^{2}-a c$ and $b_{1}^{2}-a_{1} c_{1}$ must be perfect squares.
90. If $\left(a^{2}-1\right) x^{2}+(a-1) x+a^{2}-4 a+3=0$ be an indentity in x, then find the value of a.
91. Solve $\left(x+\frac{1}{x}\right)^{2}=4+\frac{3}{2}\left(x+\frac{1}{x}\right)$.
92. Solve $(x+4)(x+7)(x+8)(x+11)+20=0$.
93. Solve $3^{2 x+1}+3^{2}=3^{x+3}+3^{x}$.
94. Solve $(5+2 \sqrt{6})^{x^{2}-3}+(5-2 \sqrt{6})^{x^{2}-3}=10$.
95. A car travels 25 km per hour faster than a bus for a jouney of 500 km . The bus takes 10 hours more than the car. Find the speed of the bus and the car.
96. Show that the roots of the equation $(a+b)^{2} x^{2}-2\left(a^{2}-b^{2}\right) x+(a-b)^{2}=0$ are equal.
97. Show that the equation $3 x^{2}+7 z+8=0$ cannot be satisfied by any real values of x.
98. For what values of a will the roots of the equation $3 x^{2}+(7+a) x+8-a=0$ be equal.
99. If the roots of the equation $\left(a^{2}+b^{2}\right) x^{2}+2(a c+b d) x+\left(c^{2}+d^{2}\right)=0$ are equal then show that $a: b=c: d$.
100. Prove that the roots of the equation $(b-c) x^{2}+2(c-a) x+(a-b)=0$ are always real.
101. Show that the roots of the equation $\frac{1}{x-a}+\frac{1}{a}+\frac{1}{x-1}=0$ are real for all real values of a.
102. Show that if $a+b+c=0$, the roots of the equation $a x^{2}+b x+c=0$ are rational.
103. Prove that the roots of the equation $(b+c-2 a) x^{2}+(c+a-2 b) x+(a+b-2 c)=0$ are rational.
104. Show that the roots of the equation $x^{2}+r x+s=0$ will be rational if $r=k+\frac{s}{k}$, where r, s and k are rational.
105. Prove that roots of the equation $(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$ are always real and cannot be equal unless $a=b=c$.
106. If a, b, c are rational, show that the roots of the equation $a^{2}\left(b^{2}-c^{2}\right) x^{2}+b^{2}\left(c^{2}-a^{2}\right) x+$ $c^{2}\left(a^{2}-b^{2}\right)=0$ are rational.
107. Show that the roots of the equation $\left(a^{4}+b^{4}\right) x^{2}+4 a b c d x+c^{4}+d^{4}=0$ cannot be different, if real.
108. If p, q, r are in H.P. and p and r are of the same sign, prove that the roots of the equation $p x^{2}+2 q x+r=0$ will be complex.
109. Prove that the roots of the equation $b x^{2}+(b-c) x+(b-c-a)=0$ are real if those of equation $a x^{2}+2 b x+b=0$ are imaginary and vice-versa.
110. Prove that the values of x obtained from the equations $a x^{2}+b y^{2}=1$ and $a x+b y=1$ will be equal if $a+b=1$.
111. Prove that the values of x obtained from the equations $x^{2}+y^{2}=a^{2}$ and $y=m x+c$ will be equal if $c^{2}=a^{2}\left(1+m^{2}\right)$.
112. The roots of the equation $4 x^{2}-(5 a+1) x+5 a=0$ are α and β. If $\beta=1+\alpha$, calculate the possible values of a, α and β.
113. If one root of the equation $5 x^{2}+13 x+k=0$ be reciprocal of another, find k.
114. Find the values of m, for which the equation $5 x^{2}-4 x+2+m\left(4 x^{2}-2 x-1\right)=0$ has (a) equal roots, (b)the products of root is 2 , and (c) the sum of roots is 6 .
115. Find the relation between the coefficients of the quadratic equal $a x^{2}+b x+c=0$ if one root is n times the another.
116. If the roots of the equation $a x^{2}+b x+c=0$ are in the ratio $3: 4$, prove that $12 b^{2}=49 a c$.
117. If the roots of the equation $4 x^{2}+a x+3=0$ are in the ratio $1: 2$, show that the roots of the equation $a x^{2}+3 x+a=2$ are imaginary.
118. If one root of the equation $x^{2}-p x+q=0$ be m times their difference, prove that $p^{2}\left(m^{2}-1\right)=4 m^{2} q$.
119. If the difference of the roots $x^{2}-p x+q=0$ is unity, then prove that $p^{2}-4 q=1$ and $p^{2}+4 q=(1+2 q)^{2}$.
120. Find the condition that the equation $\frac{a}{x-a}+\frac{b}{x-b}=m$ may have roots equal in magnitude but opposite in sign.
121. Find the relation between coefficients of the euqation $a x^{2}+b x+c=0$ if one root exceeds other by k.
122. If one root of the equation $a x^{2}+b x+c=0$ be square of the other, show that $b^{3}+a^{2} c+$ $a c^{2}=3 a b c$.
123. Determine the value p for which one root of the equation $x^{2}+p x+1=0$ is the square of the other.
124. If one root of the equation $x^{2}+p x+q=0$ be the square of the other then show that $p^{3}-q(3 p-1)+q^{2}=0$.
125. If α, β be the roots of the equation $2 x^{2}+3 x+4=0$. Find the values of
i. $\alpha^{2}+\beta^{2}$
ii. $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$
126. If α, β are the roots of the equation $a x^{2}+b x+c=0$, find the values of $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}$ in terms of a, b, c.
127. If α, β are the roots of the equation $a x^{2}+b x+c=0$, prove that $\sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}+\sqrt{\frac{b}{a}}=0$.
128. Show that the two equations $x^{2}-2 a x+b^{2}=0$ and $x^{2}-2 b x+b^{2}=0$ are such that the G.M. of the roots of one is equal to the A.M. of the roots of the another.
129. If sum of the roots of the equation $p x^{2}+q x+r=0$ be equal to the sum of their squares, show that $2 p r=p q+q^{2}$.
130. If α, β be the roots of the equation $x^{2}-p x+q=0$, prove that $\frac{\alpha^{2}}{\beta^{2}}+\frac{\beta^{2}}{\alpha^{2}}=\frac{p^{4}}{q^{2}}-\frac{4 p^{2}}{q}+2$.
131. If α, β be the roots of the equation $a x^{2}+b x+c=0$, find the value of $\frac{1}{(a \alpha+b)^{2}}+\frac{1}{(a \beta+b)^{2}}$.
132. If α, β be the roots of the equation $\lambda\left(x^{2}-x\right)+x+5=0$ and if λ_{1} and λ_{2} are the two values for which the roots α, β are connected by the relation $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{4}{5}$, then prove that
i. $\frac{\lambda_{1}}{\lambda_{2}}+\frac{\lambda_{2}}{\lambda_{1}}=254$
ii. $\frac{\lambda_{1}^{2}}{\lambda_{2}}+\frac{\lambda_{2}^{2}}{\lambda_{1}}=4048$
133. If α, β be the roots of the equation $x^{2}+p x+q=0$ and γ, δ be the roots of the equation $x^{2}+r x+s=0$, find the values of
i. $\quad(\alpha+\gamma)(\alpha+\delta)(\beta+\gamma)(\beta+\delta)$
ii. $(\alpha-\gamma)(\beta-\delta)+(\beta-\gamma)(\alpha-\delta)$
iii. $(\alpha-\gamma)^{2}+(\beta-\delta)^{2}+(\beta-\gamma)^{2}+(\alpha-\delta)^{2}$
134. If α, β be the roots of the equation $x^{2}-p x+q=0$ and $\nu_{n}=\alpha^{n}+\beta^{n}$, prove that $\nu_{n+1}=p \nu_{n-1}-q \nu_{n-1}$.
135. If α, β be the roots of the equation $x^{2}+p x+q=0$ and γ, δ those of equation $x^{2}+p x+r=$ 0 , prove that $(\alpha-\gamma)(\alpha-\delta)=(\beta-\gamma)(\beta-\delta)=-(q+r)$.
136. If α, β be the roots of the equation $x^{2}-2 p x+q=0$ and γ, δ those of equation $x^{2}-2 r x+s=0$ and if
i. $\quad \alpha \delta=\beta \gamma$, prove that $p^{2} s=r^{2} q$.
ii. $\alpha, \beta, \gamma, \delta$ be in G.P., prove that $p^{2} s=r^{2} q$
iii. $\alpha, \beta, \gamma, \delta$ be in A.P., prove that $s-q=r^{2}-p^{2}$.
137. If the roots of the equation $a x^{2}+2 b x+c=0$ be α and β, and those of the equation $A x^{2}+2 B x+C=0$ be $\alpha+k$ and $\beta+k$, prove that $\frac{b^{2}-a c}{B^{2}-A C}=\frac{a^{2}}{A^{2}}$.
138. If the roots of the equation $a x^{2}+b x+c=0$ be α and β, and those of the equation $A x^{2}+B x+C=0$ be $\alpha+k$ and $\beta+k$, prove that $\frac{b^{2}-4 a c}{B^{2}-4 A C}=\frac{a^{2}}{A^{2}}$.
139. If the roots of the equation $x^{2}+2 p x+q=0$ and $x^{2}+2 q x+p=0$ differ by a constant then show that $p+q+1=0$.
140. If α, β be the roots of the equation $a x^{2}+b x+c=0$ then find the equations whose roots are
i. $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$
ii. $\frac{\alpha^{2}}{\beta}$ and $\frac{\beta^{2}}{\alpha}$
iii. $(\alpha+\beta)^{2}$ and $(\alpha-\beta)^{2}$
iv. $\frac{1-\alpha}{1+\alpha}$ and $\frac{1-\beta}{1+\beta}$
v. $\frac{1}{(\alpha+\beta)^{2}}$ and $(\alpha-\beta)^{2}$
141. Find those equations whose roots are (a) reciprocal of the roots of (b) equal in magnitude but opposite in sign to the roots of the equation $a x^{2}+b x+c=0$.
142. If α, β be the roots of the equation $x^{2}+p x+q=0$, find the value of (a) $\alpha^{4}+\beta^{4}$ (b) $\alpha^{-4}+\beta^{-4}$
143. If α, β be the roots of the equation $x^{2}-p x+q=0$, find the equation whose roots are
i. $\frac{q}{p-\alpha}$ and $\frac{q}{p-\beta}$
ii. $\alpha+\frac{1}{\beta}$ and $\beta+\frac{1}{\alpha}$
144. Find the values of p and q such that the equation $x^{2}+p x+q=0$ has $5+3 i$ as a root.
145. Form the quadratic equation whose one root is $3+4 i$.
146. If one root of the equation $4 x^{2}+2 x-1=0$ be α then prove that its second root is $4 \alpha^{2}-3 \alpha$.
147. If $\alpha \neq \beta$ and $\alpha^{2}=5 \alpha-3, \beta^{2}=5 \beta-3$, form the quadratic equation whose roots are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$.
148. In copying a quadratic equation of the form $x^{2}+p x+q=0$, the coefficient of x was wrongly written as -10 in place of -11 and the roots were found to be 4 and 6 . Find the roots of the correct equation.
149. In writing a quadratic equation of the form $x^{2}+p x+q=0$, the constant term was wrongly written as -6 in place of 2 and the roots were found to be 6 and -1 . Find the correct equation.
150. Two candidaes attempt to solve a quadratic equation of the form $x^{2}+p x+q=0$. One starts wiith a wrong values of p and finds the roots to be 2 and 6 . The other starts with a wrong value of q and finds the roots too be 2 and -9 . Find the correct roots.
151. If α, β be the roots of the quadratic equation $x^{2}+p x+q=0$ and α_{1}, β_{1} be the roots of the equation $x^{2}-p x+q=0$. Form the quadratic equation whose roots are $\frac{1}{\alpha_{1} \beta}+\frac{1}{\alpha \beta_{1}}$ and $\frac{1}{\alpha \alpha_{1}}+\frac{1}{\beta \beta_{1}}$.
152. If $2+\sqrt{3} i$ is a root of the equation $x^{2}+p x+q=0$, where p, q are real, then find them.
153. Find the equation whose one root is $\frac{1}{2+\sqrt{3}}$.
154. If α, β are the roots of equation $x^{2}-p x+q=0$, show that $\alpha+\frac{1}{\beta}$ is a root of equation $q x^{2}-p(1+q) x+(1+q)^{2}=0$.
155. Determine the value of m for which $3 x^{2}+4 m x+2=0$ and $2 x^{2}+3 x-2=0$ may have a common root.
156. Find the value of a if $x^{2}-11 x+a=0$ and $x^{2}-14 x+2 a=0$ have a common root.
157. If the equations $a x^{2}+b x+x=0$ and $b x^{2}+c x+a=0$ have a common root then show either $a+b+c=0$ or $a=b=c$.
158. Find the value of m so that equations $x^{2}+10 x+21=0$ and $x^{2}+9 x+m=0$ may have a common root. Find also the equation formed by the other roots.
159. Show that the equations $x^{2}-x-12=0$ and $3 x^{2}+10 x+3=0$ have a common root. Also, find the common root.
160. If the equations $3 x^{2}+p x+1=0$ and $2 x^{2}+q x+1=0$ have a common root, show that $2 p^{2}+3 q^{2}-5 p q+1=0$.
161. Show that the equation $a x^{2}+b x+c=0$ and $x^{2}+x+1=0$ cannot have a common root unless $a=b=c$.
162. If the equations $x^{2}+p x+q=0$ and $x^{2}+p_{1} x+q_{1}=0$ have a common root, show that it must be either $\frac{p q_{1}-p_{1} q}{q-q_{1}}$ or $\frac{q-q_{1}}{p_{1}-p}$.
163. Prove that the two quadratic equations $a x^{2}+b x+c=0$ and $2 x^{2}-3 x+4=0$ cannot have common root unless $6 a=-4 b=3 c$.
164. Prove that the equations $(q-r) x^{2}+(r-p) x+p-q=0$ and $(r-p) x^{2}+(p-q) x+$ $q-r=0$ have a common root.
165. If the equations $x^{2}+a b x+c=0$ and $x^{2}+a c x+b=0$ have a common root, prove that their other roots satisfy the equation $x^{2}-a(b+c) x+a^{2} b c=0$.
166. If the equations $x^{2}-p x+q=0$ and $x^{2}-a x+b=0$ have a common root and the other root of the second equation is the reciprocal of the other root of the first, then prove that $(q-b)^{2}=b q(p-a)^{2}$.
167. Show that $(x-2)(x-3)-8(x-1)(x-3)+9(x-1)(x-2)=2 x^{2}$ is an identity.
168. Show that $\frac{a^{2}(x-b)(x-c)}{(a-b)(a-c)}+\frac{b^{2}(x-a)(x-c)}{(b-a)(b-c)}+\frac{c^{2}(x-a)(x-b)}{(c-a)(c-b)}=x^{2}$ is an identity.
169. Show that $3 x^{10}-2 x^{5}+8=0$ is an equation.
170. Solve the equation $\frac{x+2}{x-2}-\frac{x-2}{x+2}=\frac{5}{6}$.
171. Solve the equation $\frac{2 \sqrt{x}+1}{3-\sqrt{x}}=\frac{11-3 \sqrt{x}}{5 \sqrt{x}-9}$.
172. Solve the equation $(x+1)(x+2)(x-3)(x-4)=336$.
173. Solve the equation $\sqrt{x+1}+\sqrt{2 x-5}=3$.
174. Solve the equation $2^{2 x}+2^{x+2}-32=0$.
175. A pilot flies an aircraft with a cetain speed for a distance of 800 km . He could have saved 40 minutes by increasing the average speed of the aircraft by $40 \mathrm{~km} / \mathrm{hour}$. Find the average speed of the aircraft.
176. The length of a rectangle is 2 meters more than its width. If the length is increased by 6 meters and width is decreased by 2 meters, the area becomes $119 \mathrm{sq} . \mathrm{mt}$. Find the dimensions of original rectangle.
177. Find the range of values of x for which $-x^{2}+3 x+4>0$.
178. Find all integral values of x for which $5 x-1<(x+1)^{2}<7 x-3$.
179. Find all values of x for which the inequality $\frac{8 x^{2}+16 x-51}{(2 x-3)(x+4)}>3$ holds.
180. Show that the expression $\frac{x^{2}-3 x+4}{x^{2}+3 x+4}$ lies between 7 and $\frac{1}{7}$ for real values of x.
181. If x be real, prove that the expression $\frac{x^{2}+34 x-71}{x^{2}+2 x-7}$ has no value between 5 and 9 .
182. If x be real, show that the expression $\frac{4 x^{2}+36 x+9}{12 x^{2}+8 x+1}$ can have any real value.
183. Prove that if x is real, the expression $\frac{(x-a)(x-c)}{x-b}$ is capable of assuming all values if $a>b>c$ or $a<b<c$.
184. If $x+y$ is constant, prove that $x y$ is maximum when $x=y$.
185. If x be real, find the maximum value of $3-6 x-8 x^{2}$ and the corresponding value of x.
186. Prove that $\left|\frac{12 x}{4 x^{2}+9}\right| \leq 1$ for all real values of x or the equality being satisfied only if $|x|=\frac{3}{2}$.
187. Prove that if the equation $x^{2}+9 y^{2}-4 x+3=0$ is satisfied for real values of x and y, x must lie between 1 and 3 , and y must lies between $-\frac{1}{3}$ and $\frac{1}{3}$.
188. Find the value of a for which $x^{2}-a x+1-2 a^{2}>0$ for all real values of x.
189. Determine a such that $x^{2}-11 x+a$ and $x^{2}-14 x+2 a$ may have a common factor.
190. Find the condition that the expressions $a x^{2}+b x y+c y^{2}$ and $a_{1} x^{2}+b_{1} x y+c_{1} y^{2}$ may have factors $y-m x$ and $m y-x$ respectively.
191. Find the values of m for which the expression $2 x^{2}+m x y+3 y^{2}-5 y-2$ can be resolved into two linear factors.
192. If the expression $a x^{2}+b y^{2}+c z^{2}+2 a y z+2 b z x+2 c x y$ can be resolved into two rational factors prove that $a^{3}+b^{3}+c^{3}=3 a b c$.
193. Find the linear factors of $2 x^{2}-y^{2}-x+x y+2 y-1$.
194. Show that the expression $x^{2}+2(a+b+c) x+3(a b+b c+c a)$ will be a perfect square if $a=b=c$.
195. If x is real, prove that $2 x^{2}-6 x+9$ is always positive.
196. Prove that $8 x-15-x^{2}>0$ for limited values of x and also find the limits.
197. Find the range of the values of x for which $-x^{2}+5 x-4>0$.
198. Find the range of the values of x for which $x^{2}+6 x-27>0$.
199. Find the solution set of inequation $\frac{4 x}{x^{2}+3} \geq 1, x \in \mathbb{R}$.
200. Find the real values of x which satisfy $x^{2}-3 x+2>0$ and $x^{2}-3 x-4 \leq 0$.
201. If x be real and the roots of the equation $a x^{2}+b x+c=0$ are imaginary, prove that $a^{2} x^{2}+a b x+a c$ is always positve.
202. Prove that the expression $\frac{x^{2}-2 x+4}{x^{2}+2 x+4}$ lies between $\frac{1}{3}$ and 3 for real values of x.
203. If x be real, show that $\frac{2 x^{2}-3 x+2}{2 x^{2}+3 x+2}$ lies between 7 and $\frac{1}{7}$.
204. If $p>1$ and x is real, show that $\frac{x^{2}-2 x+p^{2}}{x^{2}+2 x+p^{2}}$ lies between $\frac{p-1}{p+1}$ and $\frac{p+1}{p-1}$.
205. if x be real, prove that the expansion $\frac{(x-1)(x+3)}{(x-2)(x+4)}$ does not lie between $\frac{4}{9}$ and 1 .
206. if $a^{2}+c^{2}>a b$ and $b^{2}>4 c^{2}$ for real x, show that $\frac{x+a}{x^{2}+b x+c^{2}}$ cannot lie betwen two limits.
207. show that if x real, the expression $\frac{x^{2}-b c}{2 x-b-c}$ has no real value between b and c.
208. show that no real values of x and y besides 4 can satisfy the equation $x^{2}-x y+y^{2}-$ $4 x-4 y+16=0$.
209. prove that if $x^{2}+12 x y+4 y^{2}+4 x+8 y+20=0$ is satisfied by real values of x and y, x cannot lies between -2 and 1 whereas y cannot lie betweenn -1 and $\frac{1}{2}$.
210. a rectangular field, one of whose sides is a straight edge of a river is to be enclosed by 600 meters of fencing on the remaining three sides. what would be the length and breadth of the rectangle if the ecnlosed area is to be as large as possible.
211. find the condition that the expression $a x^{2}+2 h x y+b y^{2}$ may have two factors of the form $y-m x$ and $m y+x$.
212. if $p(x)=a x^{2}+b x+c$ and $q(x)=-a x^{2}+b x+c$, where $a c \neq 0$, show that the equation $p(x) \cdot q(x)=0$ has at least two real roots.
213. prove that the roots of the equation $b x^{2}+(b-c) x+b-c-a=0$ are real if those of equation $a x^{2}+2 b x+b=0$ are imaginary and vice-versa, where $a, b, c \in \mathbb{r}$.
214. if a, b, c are odd numbers, show that the roots of the equation $a x^{2}+b x+c=0$ cannot be rational.
215. if roots of the equation $a x^{2}+2 b x+c=0$ are real and distinct, then show that the roots of the equation $(a+c)\left(a x^{2}+2 b x+c\right)=2\left(a c-b^{2}\right)\left(x^{2}+1\right)$ are complex numbers and vice-versa.
216. if $n, r \in \mathbb{p}$ such that $0<r<n$, then show that the roots of the quadratic equation ${ }^{n} C_{r-1} x^{2}+{ }^{n} C_{r} x+{ }^{n} C_{r+1}=0$ are real and distinct.
217. show that the equation $e^{\sin x}-e^{-\sin x}-4=0$ has no real solutions.
218. if a, b, c are non-zero, real numbers and the equation $a z^{2}+b z+c+i=0$ have purely imaginary roots then prove that $a=b^{2} c$.
219. if a and b are integers and the roots of the equation $x^{2}+a x+b=0$ are rational, show that they will be integers.
220. show that the quadratic equation $x^{2}+7 x-14\left(q^{2}+1\right)=0$, where q is an integer has no integral roots.
221. solve the equation $a^{3}(b-c)(x-b)(x-c)+b^{3}(c-a)(x-a)(x-c)+c^{3}(a-b)(x-$ a) $(x-b)=0$. also show that the roots are equal if $\frac{1}{\sqrt{a}} \pm \frac{1}{\sqrt{b}} \pm \frac{1}{c}=0$.
222. if roots of the equation $a x^{2}+b x+c=0$ be $\frac{k+1}{k}$ and $\frac{k+2}{k+1}$, prove that $(a+b+c)^{2}=b^{2}-4 a c$.
223. if $f(x)=a x^{2}+b x+c$, and α, β be the roots of the equation $p x^{2}+q x+r=0$, show that $f(\alpha) f(\beta)=\frac{(c p-a r)^{2}-(b p-a q)(c q-b r)}{p^{2}}$. hence or otherewise, show that if $a x^{2}+b x+c=0 \mathrm{a}$ nd $p x^{2}+q x+r=0$ have a common root, then $b p-a q, c p-a r$ and $c q-b r$ are in g.p.
224. if $a(p+q)^{2}+2 p b q+c=0$ and $a(p+r)^{2}+2 b p r+c=0$, then show that $q r=p^{2}+\frac{c}{a}$.
225. If α, β are the roots of the equation $x^{2}-p(x+1)-c=0$, show that $(\alpha+1)(\beta+1)=$ $1-c$. Hence, prove that $\frac{\alpha^{2}+2 \alpha+1}{\alpha^{2}+2 \alpha+c}+\frac{\beta^{2}+2 \beta+1}{\beta^{2}+2 \beta+c}=1$.
226. If α, β be the roots of the equation $x^{2}+p x+q=0$ and $x^{2 n}+p^{n} x^{n}+q^{n}=0$, where n is an even integer, prove that $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$ are the roots of the equation $x^{n}+1+(x+1)^{n}=0$.
227. If the roots of the equation $x^{2}-a x+b=0$ be real and differ by less than c, the show that b must lie between $\frac{a^{2}-c^{2}}{4}$ and $\frac{a^{2}}{4}$.
228. Let a, b and c be interger with $a>1$, and let p be a prime number. Show that if $a x^{2}+b x+c=p$ for two distinct integral values of x, then it cannot be equal to $2 p$ for any integral value of x.
229. If α and β are the roots of equation $x^{2}+p x+q=0$ and α^{4}, β^{4} are the roots of the equation $x^{2}-r x+s=0$, show that the equation $x^{2}-4 q x+1 q^{2}-r=0$ has real roots.
230. If α, β are the roots of the equation $a x^{2}+b x+c=0$ and $\alpha_{1},-\beta$ are those of equation $a_{1} x^{2}+b_{1} x+c_{1}=0$, show that α, α_{1} are the roots of the equation

$$
\frac{x^{2}}{\frac{b}{a}+\frac{b_{1}}{a_{1}}}+x+\frac{1}{\frac{b}{c}+\frac{b_{1}}{c_{1}}}=0
$$

231. How many quadratic equations are possible which remains unchanged when its roots are squared?
232. If a, b, c are in G.P. then show that the equations $a x^{2}+2 b x+c=0$ and $d x^{2}+2 e x+f=0$ have a common root if $\frac{a}{d}, \frac{b}{e}, \frac{c}{f}$ are in H.P.
233. If the three equations $a^{2}+a x+12=0, x^{2}+b x+15=0$ and $x^{2}+(a+b) x+36=0$ have a common root, find a, b and the roots of the equaiton.
234. If $m\left(a x^{2}+2 b x+c\right)+p x^{2}+2 q x+r$ cab be expressed in the form of $n(x+k)^{2}$, then show that $(a k-b)(q k-r)=(p k-q)(b k-c)$.
235. The real numbers x_{2}, x_{2}, x_{3} satisfying the equation $x^{3}-x^{2}+\beta x+\gamma=0$ are in A.P. Find the intervals in which β and γ must lie.
236. If equations $x^{3}+3 p x^{2}+3 q x+r=0$ and $x^{2}+2 p x+q=0$ have a common root, show that $4\left(p^{2}-q\right)\left(q^{2}-p r\right)=(p q-r)^{2}$.
237. If $c \neq 0$ and the equations $x^{3}+2 a x^{2}+3 b x+c=0$ and $x^{3}+a x^{2}+2 b x=0$ have a common root, show that $(c-2 a b)^{2}=\left(2 b^{2}-a c\right)\left(a^{2}-b\right)$.
238. If equation $x^{3}+a x+b=0$ have only real roots, then prove that $4 a^{3}+27 b^{2} \leq 0$.
239. Let α be a root of $a x^{2}+b x+c=0$ and β be a root of $-a x^{2}+b x+c=0$ show that there exists a root of the equation $\frac{a}{2} x^{2}+b x+c=0$ that lie between α and β or β and α as the case may be $(\alpha, \beta \neq 0)$
240. If $a, b, c \in \mathbb{R}, a \neq 0$ and the quadratic equation $a x^{2}+b x+c=0$ has no real root then show that $(a+b+c) c>0$.
241. If $a<b<c<d$, then show that the quadratic equation $(x-a)(x-c)+\lambda(x-b)(x-$ $d)=0$ has real roots for all real values of λ.
242. If $a x+3 b+6 c=0,(a, b, c \in \mathbb{R})$ then show that the equation $a x^{2}+b x+c=0$ has at least one root between 0 and 2 .
243. If a, b, c be non-zero real numbers such that $\int_{0}^{1}\left(1+\cos ^{8} x\left(a x^{2}+b x+c\right) d x=\int_{0}^{2}(1+\right.$ $\left.\cos ^{8} x\right)\left(a x^{2}+b x+c\right) d x$, show that the equation $a x^{2}+b x+c=0$ has at least one real root between 1 and 2 .
244. Let $f(x)=a x^{2}+b x+c$, where $a, b, c \in R$ and $a \neq 0$. If $f(x)=x$ has non-real roots, show that the equation $f(f(x))=x$ has all non-real roots.
245. Let $a, b, c \in \mathbb{P}$ and consider all quadratic equations of the form $a x^{2}-b x+c=0$, which have two distinct real roots in $] 0,1[$. Find the least positive integers a and b for which such a quadratic equation exist.
246. If equation $a x^{2}-b x+c=0$ have two distinct real roots in $(0,1), a, b, c \in \mathbb{N}$, then prove that $\log _{5}(a b c) \geq 2$.
247. If equation $a x^{2}+b x+6=0$ does not have two distinct real roots, then find the least value of $3 a+b$.
248. If equation $2 x^{3}+a x^{2}+b x+4=0$ has three real roots, where $a, b>0$, show that $a+b>-6$.
249. Show that equation $x^{3}+2 x^{2}+x+5=0$ has only real root α such that $[\alpha]=-3$, where $[x]$ denotes the integral part of x.
250 . Solve $\left.\left(x^{2}+2\right)^{2}+8 x^{2}=6 x\right)\left(x^{2}+2\right)$.
250. Solve $3 x^{3}=\left(x^{2}+\sqrt{18} x+\sqrt{32}\right)\left(x^{2}-\sqrt{18} x-\sqrt{32}\right)-4 x^{2}$.
251. Solve $(15+4 \sqrt{14})^{t}+(15-4 \sqrt{14})^{t}=30$, where $t=x^{2}-2|x|$.
252. For $a \leq 0$, determine all the roots of the equation $x^{2}-2 a|x-a|-3 a^{2}=0$.
253. Find all solution of equation $\left|x^{2}-x-6\right|=x+2$, where x is a real number.
254. Solve the equation $2^{|x+2|}-\left|2^{x+1}-1\right|=2^{x+1}+1$.
255. Solve $3^{x}+4^{x}+5^{x}=6^{x}$.
256. Solve $(\sqrt{2+\sqrt{3}})^{x}+{\sqrt{2-\sqrt{3}^{3}}}^{x}=2^{x}$.
257. Let $\{x\}$ and $[x]$ denote the fractional and integral part of a real number x respectively. Solve $4\{x\}=x+[x]$.
258. For the same notation as previous problem, solve $[x]^{2}=x(x-[x])$.
259. Solve $x^{3}-y^{3}=127, x^{2} y-x y^{2}=42$.
260. Solve the system of equations $x-2 y+z=0,4 x-y-3 z=0, x^{2}-2 x y+3 x z=14$.
261. Solve $x^{4}+y^{4}=82, x+y=4$.
262. Solve $\sqrt{a\left(2^{x}-2\right)+1}=1-2^{x}, x \in \mathbb{R}$.
263. If $x \in \mathbb{D}$, find the integral values of m satisfying the equation $(x-5)(x+m)+2=0$.
264. Find 11 the positive solutions of the system of equations $x^{x+y}=y^{n}$ and $y^{x+y}=x^{2 n} y^{n}$, where $n>0$.
265. Solve the equation $\left(144^{|x|}-2(12)^{|x|}+a=0\right)$ for every value of the parameter a.
266. If m and n are odd integers, show that the equation $x^{2}+2 m x+2 n=0$ cannot have rational roots.
267. If $f(x)=a x^{3}+b x^{2}+c x+d$ has local extrema at two points of opposite sign, then prove that the roots of the equation $a x^{2}+b x+c=0$ are real and distinct.
268. If $a, b \in \mathbb{R}, b \neq 0$, prove that the roots of the quadratic equation $\frac{(x-a)(a x-1)}{x^{2}-1}=b$, can never be equal.
269. If $n, r \in \mathbb{P}$ such that $r<n$, then show that the roots of the quadratic equation ${ }^{n} C_{r} x^{2}+$ $2^{n} C_{r+1} x+{ }^{n} C_{r+2}=0$ are real.
270. If a, b, c are rational, show that the roots of the equation $a b c^{2} x^{2}+3 a^{2} c x+b^{2} c x-6 a^{2}-$ $a b+2 b^{2}=0$ are rational.
271. If the roots of the equation $a x^{2}+b x+c=0$ be in the ratio $m: n$, prove that $\sqrt{\frac{m}{n}}+$ $\sqrt{\frac{n}{m}}+\frac{b}{\sqrt{a c}}=0$.
272. If one root of the equation $x^{2}+x f(a)+a=0$ is equal to the third power of the other, determin the function $f(x)$.
273. If α, β are the roots of the equation $x^{2}-p x+q=0$, then find the quadratic equation the roots of which are $\left(a^{2}-\beta^{2}\right)\left(\alpha^{3}-\beta^{3}\right)$ and $\alpha^{3} \beta^{2}+\alpha^{2} \beta^{3}$.
274. If α, β are the roots of the equation $x^{2}-b x+c=0$, then find the quadratic equation the roots of which are $\left(\alpha^{2}+\beta^{2}\right)\left(\alpha^{3}+\beta^{3}\right)$ and $\alpha^{5} \beta^{3}+\alpha^{3} \beta^{5}-2 \alpha^{4} \beta^{4}$.
275. If the sum of the roots of the quadratic equation $a x^{2}+b x+c=0$ is equal to the sum of squares of their reciprocals, then show that $\frac{b^{2}}{a c}+\frac{b c}{a^{2}}=2$.
276. The time of oscillation of a rigid body about a horizontal axis at a distance h from the C.G. is given by $T=2 \pi \sqrt{\frac{h^{2}+k^{2}}{g h}}$, where k is a constant. Show that there are two values of h for a given value of T. If h_{1} and h_{2} are two values of h, show that $h_{1}+h_{2}=\frac{g T^{2}}{4 \pi^{2}}$ and $h_{1} h_{2}=k^{2}$.
277. If α_{1}, α_{2} be the roots of the equation $x^{2}+p x+q=0$ and β_{1}, β_{2} be the roots of $x^{2}+r x+s=0$ and the system of equations $\alpha_{1} y+\alpha_{2} z=0$ and $\beta_{1} y+\beta_{2} z=0$ has non-trivial solutions then show that $\frac{p^{2}}{r^{2}}=\frac{q}{s}$.
278. If a, b, c are in H.P. and α, β be the roots of $a x^{2}+b x+c=0$, show that $-(1+\alpha \beta)$ is the H.M. of α and β.
279. If α, β are roots of the equation $x+1=\lambda x(1-\lambda x)$ and if λ_{1}, λ_{2} are the two values of λ determined from the equation $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=r-2$, show that $\frac{\lambda_{1}^{2}}{\lambda_{2}^{2}}+\frac{\lambda_{2}^{2}}{\lambda_{1}^{2}}+2=4\left(\frac{r+1}{r-1}\right)^{2}$.
280. If the roots of equation $a x^{2}+b x+c=0$ are reciprocals of those $l x^{2}+m x+n=0$, then prove that $a: b: c=n: m: l$, where a, b, c, l, m, n are all non-zero.
281. If x_{1}, x_{2} be the roots of the equation $x^{2}-3 x+A=0$ and x_{3}, x_{4} be those of equation $x^{2}-12 x+B=0$ and $x_{1}, x_{2}, x_{3}, x_{4}$ be an increasing G.P., find A and B.
282. Let p and q be roots fo the equation $x^{2}-2 x+A=0$ and let r and s be the roots of the equation $x^{2}-18 x+B=0$. If $p<q<r<s$ are in A.P., find the values of A and B.
283. Let α, β be the roots of the equation $x^{2}+a x-\frac{1}{2 a^{2}}=0, a$ being a real parameter, prove that $\alpha^{4}+\beta^{4} \geq 2+\sqrt{2}$.
284. If α, β be the roots of the equation $x^{2}-p x+q=0$ and $\alpha>0, \beta>0$, then find the value of $\alpha^{1 / 4}+\beta^{1 / 4}$.
285. If the difference between roots of the equation $a x^{2}-b x+c=0$ is same as the difference between the roots of equation $b x^{2}-c x+a=0$, then show that $b^{4}-a^{2} c^{2}=4 a b\left(b c-a^{2}\right)$.
286. If $f(x)=0$ is a cubic equation with real roots α, β, γ on order of magnitudes, show that one root of the equation $f^{\prime}(x)=0$ lies between $\frac{1}{2}(\alpha+\beta)$ and $\frac{1}{2}(2 \alpha+\beta)$ and the other root lies between $\frac{1}{2}(\beta+\gamma)$ and $\frac{1}{2}(2 \beta+\gamma)$.
287. Show that the roots of the polynomial equation $x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n}=0$ cannot be all real if $(n-1) a_{1}^{2}-2 n a_{2}<0$.
288. Let D_{1} be the discriminant and α, β be the roots of the equation $a x^{2}+b x+c=0$ and D_{2} be the discriminant and γ, δ be the roots of the equation $p x^{2}+q x+r=0$. If $\alpha, \beta, \gamma, \delta$ are in A.P., then prove that $D_{1}: D_{2}=a^{2}: p^{2}$.
289. If α, β be the roots of the equatio $a x^{2}+b x+c=0$ and $\alpha+h, \beta+h$ be those of equation $p x^{2}+q x+r=0$, then show that $\frac{b^{2}-4 a c}{a^{2}}=\frac{q^{2}-4 p r}{p^{2}}$.
290. If α, β be the roots of the equation $a x^{2}+b x+c=0$ and $\alpha+h, \beta+h$ be those of equation $p x^{2}+q x+r=0$, then show that $2 h=\frac{b}{a}-\frac{q}{p}$.
291. If α, β be the real and distinct roots of the equation $a x^{2}+b x+c=0$ and α^{4}, β^{4} be those of equation $l x^{2}+m x+n=0$, prove that the roots of equation $a^{2} l x^{2}-4 a c l x+2 x^{2} l+a^{2} m=$ 0 are real and opposite in sign.
292. If α, β be the roots of equation $a x^{2}+b x+c=0$ and γ, δ those of equation $l x^{2}+m x+n=$ 0 , then find the equation whose roots are $\alpha \gamma+\beta \delta$ and $\alpha \delta+\beta \gamma$.
293. If p, q be the roots of the equation $x^{2}+b x+c=0$, prove that b and c are the roots of the equation $x^{2}+(p+q-p q) x-p q(p+q)=0$.
294. If $3 p^{2}=5 p+2$ and $3 q^{2}=5 q+2$, where $p \neq 1$, obtain the equation whose roots are $3 p-2 q$ and $3 q-2 p$.
295. If $\alpha \pm \sqrt{\beta}$ be the roots of the equation $x^{2}+p x+q=0$, prove that $\frac{1}{\alpha} \pm \frac{1}{\sqrt{\beta}}$ will be the roots of the equation $\left(p^{2}-4 q\right)\left(p^{2} x^{2}+4 p x\right)=16 q$.
296. If α, β be the roots of the equation $x^{2}-p x+q=0$, form the equation whose roots are $\alpha^{2}\left(\frac{\alpha^{2}}{\beta}-\beta\right)$ and $\beta^{2}\left(\frac{\beta^{2}}{\alpha}-\alpha\right)$.
297. Let a, b, c, d be real numbers in G.P. If u, u, w satisfy the system of equations $u+2 v+$ $3 w=6,4 u+5 v+6 w=12,6 u+9 v=4$, then show that the roots of the equation $\left(\frac{1}{u}+\frac{1}{v}+\frac{1}{w}\right) x^{2}+\left[(b-c)^{2}+(c-a)^{2}+(d-b)^{2}\right] x+u+v+w=0$ and $20 x^{2}+10(a-d)^{2} x-$ $9=0$ are reciprocals of each other.
298. If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be the roots of equation $\left(\beta_{1}-x\right)\left(\beta_{2}-x\right) \ldots\left(\beta_{n}-x\right)+A=0$, find the equation whose roots are $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$.
299. If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be the roots of equation $x^{n}+n a x-b=0$, show that $\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\right.$ $\left.\alpha_{3}\right) \ldots\left(\alpha_{1}-\alpha_{n}\right)=n\left(x^{n-1}+a\right)$.
300. If $\alpha, \beta, \gamma, \delta$ be the real roots of the equation $x^{4}+q x^{2}+r x+t=0$, find the quadratic equation whose roots are $\left(1+\alpha^{2}\right)\left(1+\beta^{2}\right)\left(1+\gamma^{2}\right)\left(1+\delta^{2}\right)$ and 1 .
301. If α, β, γ be the roots of the equation $x^{3}+p x+q=0$, find the cubic equation whose roots are $\frac{\alpha+1}{\alpha}, \frac{\beta+1}{\beta}, \frac{\gamma+1}{\gamma}$.
302. Show that one of the roots of the equation $a x^{2}+b x+c=0$ may be reciprocal of of one of the roots of $a_{1} x^{2}+b_{1} x+c_{1}=0$ if $\left(a a_{1}-c c_{1}\right)^{2}=\left(b c_{1}-a b_{1}\right)\left(b_{1} c-a_{1} b\right)$.
303. If every pair of the equations $x^{2}+p x+q r=0, x^{2}+q a+p r=0$ and $x^{2}+r x+p q=0$ have a common root, find the sum of the three common roots.
304. If equation $a^{2}\left(b^{2}-c^{2}\right) x^{2}+b^{2}\left(c^{2}-a^{2}\right) x+c^{2}\left(a^{2}-b^{2}\right)=0$ has equal roots and has common root with the equation $4 x^{2} \sin ^{2} \theta-4 x \sin \theta+1=0$, find the value of θ.
305. If $a \neq 0$, find the value of a for which one of the roots of equation $x^{2}-x+3 a=0$ is double the roots of the equation $x^{2}-x+a=0$.
306. If by eliminating x between the equations $x^{2}+a x+b=0$ and $x y+l(x+y)+m=0$, a quadratic equation in terms of y is formed whose roots are same as those of original quadratic equation in x, then prove that either $a=2 l$ or $b=m$ or $b+m=a l$.
307. The roots of equation $10 x^{3}-c x^{2}-54 x-27=0$ are in H.P., then find c.
308. If a, b, c are the roots of the equation $x^{3}+p x^{2}+q x+r=0$ such that $c^{2}=-a b$, show that $\left(2 q-p^{2}\right)^{3} . r=(p q-4 r)^{3}$.
309. Let $\alpha+i \beta, \alpha, \beta \in \mathbb{R}$ be roots of the equation $x^{3}+q x+r=0, q, r \in \mathbb{R}$. Find a real cubic equation independent of α and β, whose one root is 2α.
310. If α, β, γ be the roots of the equation $2 x^{3}+x^{2}-7=0$, show that $\sum\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)=-3$.
311. The equations $x^{3}+p x^{2}+q x+r=0$ and $x^{3}+p^{\prime} x^{2}+q^{\prime} x+r^{\prime}=0$ have two common roots, find the quadratic equations whose roots are these common roots.
312. Find the condition that the roots of equation $a x^{3}+3 b x^{2}+3 c x+d=0$ may be in G.P.
313. Find the condition that the roots of equation $x^{3}-p x^{2}+q x-r=0$ may be in H.P.
314. If $f(x)=x^{3}+b x^{2}+c x+d$ and $f(0), f(-1)$ are odd integers, prove that $f(x)=0$ cannot have all integral roots.
315. If equation $2 x^{3}+a x^{2}+b x+4=0$ has three real roots $(a, b>0)$, prove that $a+b \geq$ $6\left(2^{\frac{1}{3}}+4^{\frac{1}{3}}\right)$.
316. Find the condition that $a_{1} x^{3}+b_{1} x^{2}+c_{1} x+d_{1}=0$ and $a_{2} x^{3}+b_{2} x^{2}+c_{2} x+d_{2}=0$ have a common pair of repeated roots.
317. Let α be a non-zero real root of the equation $a_{1} x^{2}+b_{1} x+c_{1}=0$. Find the condition for α to be repeated root of the equation $a_{2} x^{3}+b_{2} x^{2}+c_{2} x+d_{2}=0$.
318. If α, β, γ are real roots of the equation $x^{3}-a x^{2}+b x-c=0$, prove that the area of the triangle whose sides are α, β, γ is $\frac{1}{4} \sqrt{a\left(4 a b-a^{3}-8 c\right)}$.
319. If $a<b<c<d$, then show that the quadratic equation $\mu(x-a)(x-c)+\lambda(x-b)(x-$ $d)=0$ has real roots for all real μ and λ.
320. Show that equation $3 x^{5}-5 x^{3}+21 x+3 \sin x+4 \cos x+5=0$ can have at most one real root.
321. Find the integral part of the greatest root of equation $x^{3}-10 x^{2}-11 x-100=0$.
322. If $n \in \mathbb{N}, a_{0}, a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{\mathbb { V }}$ and a_{n} and $a_{0}+a_{1}+\ldots+a_{n}$ are odd numbers, show that equation $a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}=0$ cannot have integeral roots.
323. If the cubic equation $f(x)=0$ has three real roots α, β, γ such that $\alpha<\beta<\gamma$, show that the equation $f(x)+2 f^{\prime}(x)+f^{\prime \prime}(x)=0$ has a root between α and γ.
324. Find the values of a for which all the roots of the equation $x^{4}-4 x^{3}-8 x^{2}+a=0$ are real.
325. If the equation $a x^{2}-b x+c=0$ has two distinct real roots between 1 and 2 where $a, b, c \in \mathbb{N}$, show that $a \geq 5$ and $b \geq 11$.
326. Show that the equation $(x-1)^{5}+(x+2)^{7}+(7 x-5)^{9}=10$ has exactly one real root.
327. Find the value of $\tan (\theta+\phi)$ and $\cot (\theta-\phi)$ where $\tan \theta$ and $\tan \phi$ are respectively actual and extraneous root of the equation $\sqrt{2 x+6}-\sqrt{x+2}=3$.
328. Solve $|x+1|-|x|+3|x-1|-2|x-2|=x+2$.
329. Solve $2^{|x+1|}-2^{x}=\left|2^{x}-1\right|+1$.
330. Solve $\left|x^{2}-2 x\right|+y=1, x^{2}+|y|=1$.
331. Solve $\left|x^{2}+4 x+3\right|+2 x+5=0$.
332. Solve $x^{2}+\frac{9 x^{2}}{(x+3)^{2}}=27$.
333. Solve $\frac{1}{[x]}+\frac{1}{[2 x]}=\{x\}+\frac{1}{3}$, where $[x]$ denotes the integral part of x and $\{x\}=x-[x]$.
334. Solve $\frac{6}{5} a^{\log _{a} x \log _{10} a \log _{a} 5}-3^{\log _{10}\left(\frac{x}{10}\right)}=9^{\log _{100} x+\log _{4} 2}$.
335. Solve $\log _{5}\left(5^{\frac{1}{x}}+125\right)=\log _{5} 6+1+\frac{1}{2 x}$.
336. Solve $x^{\frac{2}{3}\left[\left(\log _{2} x\right)^{2}+\log _{2} x-\frac{5}{4}\right]}=\sqrt{2}$.
337. Find all the real solutions of the equation $3 x^{2}-8[x]+1=0$.
338. If $t>1$, solve the equation $\left(t+\sqrt{t^{2}-1}\right)^{x^{2}-2 x}+\left(t-\sqrt{t^{2}-1}\right)^{x^{2}-2 x}=2 t$.
339. Obtain real solutions of the simultaneous equation

$$
\begin{gathered}
x y+3 y^{2}-x+4 y-7=0 \\
2 x y+y^{2}-2 x-2 y+1=0
\end{gathered}
$$

341. Solve $2^{x-1} \cdot 27^{\frac{x}{x+2}}=3$.
342. Solve $4^{x}-3^{x-\frac{1}{2}}=3^{x+\frac{1}{2}}-2^{2 x-1}$.
343. Solve $\log _{10}\left[98+\sqrt{x^{3}-x^{2}-12 x+36}\right]=2$.
344. Solve $\log _{2 x+3}\left(6 x^{2}+23 x+21\right)=4-\log _{3 x+7}\left(4 x^{2}+12 x+9\right)$.
345. Prove that $2 x^{4}+1402-y^{4}=0$ has no integral solution.
346. Solve for $x,|x-1|^{\log _{3} x^{2}-2 \log _{x} 9}=(x-1)^{7}$.
347. Solve $(\cos x)^{\sin ^{2} x-\frac{3}{2} \sin x+\frac{1}{2}}=1$.
348. Find the integral values of a for which the equation $(x+a)(x+1991)+1=0$ has integral roots.
349. Solve $2^{\sin ^{2} x}+5\left(2^{\cos ^{2} x}\right)=7$.
350. Solve $x+\log _{10}\left(1+2^{x}\right)=x \log _{10} 5+\log _{10} 6$.
351. If $a>0$, solve the equation $\log _{a}(a x) \cdot \log _{x}(a x)+\log _{a^{2}}(a)=0$.
352. Solve $\sqrt{11 x-6}+\sqrt{x-1}=\sqrt{4 x+5}$.
353. Solve $\sqrt{3 x^{2}-7 x-30}-\sqrt{2 x^{2}-7 x-5}=x-5$.
354. If x and y satisfy the equations $y=2[x]+3$ and $y=3[x-2]$ simultaneously, determine $[x+y]$.
355. If $x \in \mathbb{R}$ and $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$, then find the value for which $\sum_{i=1}^{n}\left(x-a_{i}\right)^{2}$ is least.
356. Let there be a quotient of two natural numbers in which the denominator is one less than the square of the numerator. If we add two to both nuerator and denominator, the quotient will exceed $\frac{1}{3}$, and if we subtract 3 from both numerator and denominator, the quotient will be between 0 and $\frac{1}{10}$. Determine the quotient.
357. Let $f(x)$ be a quadratic expression which is positive for all real x. If $g(x)=f(x)+$ $f^{\prime}(x)+f^{\prime \prime}(x)$, the for all real x, show that $g(x)>0$.
358. By considering the quadratic equation $f(x)=\left(a_{1} x+b_{1}\right)^{2}+\left(a_{2} x+b_{2}\right)^{2}+\ldots+\left(a_{n} x+\right.$ $\left.b_{n}\right)^{2}$, prove the inequality $\left(a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}\right)^{2}$.
359. Find the real values of m for which the equation $x(x+1)(x+m)(x+m+1)=m^{2}$ has four real roots.
360. Find all real values of a for which the equation $x^{4}+(a-1) x^{3}+x^{2}+(a-1) x+1=0$ possesses at least two distinct negative roots.
361. Find the real values of the parameter a for which the equation $x^{4}+2 a x^{3}+x^{2}+2 a x+1=$ 0 has at least two distinct negative roots.
362. If $a, b, c \in R$ and $a \neq 0$, solve the following system of equation in n unknowns $x_{1}, x_{2}, \ldots, x_{n}$

$$
\begin{gathered}
a x_{1}^{2}+b x_{1}+c=x_{2} \\
a x_{2}^{2}+b x_{2}+c=x_{3} \\
\cdots \\
a x_{n}^{2}+b x_{n}+c=x_{1}
\end{gathered}
$$

when (a) $(b-1)^{2}<4 a c(b)(b-1)^{2}=4 a c(c)(b-1)^{2}>4 a c$.
363. Solve the inequality $\log _{x}\left(x^{2}-\frac{3}{16}\right)>4$.
364. Find the values of m for which every solution of the inequality $\log _{\frac{1}{2}} x^{2} \geq \log _{\frac{1}{2}}(x+2)$ is a solution of the ineuqality $49 x^{2}-4 m^{4} \leq 0$.
365. Find all values of a for which the inequality, $1+\log _{5}\left(x^{2}+1\right) \geq \log _{5}\left(a x^{2}+4 x+a\right)$ is valid for all real x.
366. Find the values of the parameter a for which $1+\log _{2}\left(2 x^{2}+2 x+\frac{7}{2}\right) \geq \log _{2}\left(a x^{2}+a\right)$ is satisfied by at least one real x.
367. Prove that the minimum value of $\frac{(a+x)(b+x)}{c+x}, x>-c$ is $(\sqrt{a-c}+\sqrt{b-c})^{2}$.
368. If x, a, b are real, prove that $4(a-x)\left(x-a+\sqrt{a^{2}+b^{2}}\right) \ngtr a^{2}+b^{2}$.
369. If β is such that $\sin 2 \beta \neq 0$, show that for real x the expression $\frac{x^{2}+2 x \cos 2 \alpha+1}{x^{2}+2 x \cos 2 \beta+1}$ always lies between $\frac{\cos ^{2} \alpha}{\cos ^{2} \beta}$ and $\frac{\sin ^{2} \alpha}{\sin ^{2} \beta}$.
370. Show that for all real values of x, the expression $\frac{2 a(x-1) \sin ^{2} \alpha}{x^{2}-\sin ^{2} \alpha}$ cannot lie between $2 s \sin ^{2} \frac{\alpha}{2}$ and $2 a \cos ^{2} \frac{\alpha}{2}$.
371. Show that the expression $\tan (x+\alpha) / \tan (x-\alpha)$ cannot lie between $\tan ^{2}\left(\frac{\pi}{4}-\alpha\right)$ and $\tan ^{2}\left(\frac{\pi}{4}+\alpha\right)$.
372. Prove that for real values of x the expression $\frac{a x^{2}+3 x-4}{3 x-4 x^{2}+a}$ may have any value provided a lies between 1 and 7 .
373. Prove that the expression $\frac{(a x-b)(d x-c)}{(b x-a)(c x-d)}$ will take all real values when x is real provided $a^{2}-b^{2}$ and $c^{2}-d^{2}$ have the same sign.

Chapter 5

Permutations and Combinations

In this chapter we will study basic principles of counting, permutations and combinations. This study will enable you to further study the branch of mathematics called combinatorics. You would have certainly encountered a combinatorical problem in your life. It would be really surprising if you have not. Have you ever solved a Sudoku puzzle or Rubik's cube? Have you ever counted the number of poker hands that are full houses in order to determine the odds against a full house? Have you ever attempted to trace through a network without removing your pencil from paper and without tracing any part of network more than once? These are all combinatorical problems. As you can see that combinatorics has evolved from mathematical games.

With the invention of modern computers, we are enabled to solve more and more problems of combinatorics which were earlier not feasible due to calculations involved. The computer programs are often based on combinatorical algorithms which determine the speed and efficiency of the solution. Analysis of these programs and algorithms require sound knowledge of combinatorical mathematics and thinking. In computer science we write test cases for our programs, and those test cases can be enumerated by applying permutations and combinations on input data and states produced in the program. Combinatorics is a powerful tool for making sure that the tester does not miss any test case, which in mission-critical programs is of paramount importance.

The best way to learn combinatorics is to solve a lot of problems. This is in general true for all branches of mathematics but even more so for combinatorics because a problem which appears simple may be quite difficult to solve or require critical thinking. By solving problems of different kinds, and by repeating them the concepts will be enforced and discipline will develop.

We start with four basic counting principles and then we will progress into permutations and combinatins. To study the topic of permutations and combinations it is required to have basic knowledge in set theory which the reader is expected to know.

5.1 Four Basic Counting Principles

Let S be a set. A partition of S is a collection of $S_{1}, S_{2}, \ldots, S_{m}$ of subsets of S such that each element in S is in exactly one of these subsets:

$$
\begin{gathered}
S=S_{1} \cup S_{2} \cup \ldots \cup S_{m} \\
S_{i} \cap S_{j}=\phi(i \neq j)
\end{gathered}
$$

Thus, the sets $S_{1}, S_{2}, \ldots, S_{m}$ are pairwise disjoint sets, and their union is S. The subsets $S_{1}, S_{2}, \ldots, S_{m}$ are called the parts of the partition. Note that by this definition a part of the partition may be empty, but usually there is no advantage in considering partitions with one or more empty sets. The number of objects of a set S is denoted by $|S|$, and is called the size of S.

5.1.1 Addition Principle

Suppose that a S is partitioned into pairwise disjoint partys $S_{1}, S_{2}, \ldots, S_{m}$. The number of objects in S can be determined by finding the number of objects in each of the parts, and adding the numbers so obtained:

$$
|S|=\left|S_{1}\right|+\left|S_{2}\right|+\ldots\left|S_{m}\right| .
$$

If the sets $S_{1}, S_{2}, \ldots, S_{m}$ are allowed to overlap, then a more profound principle, the inclusionexclusion principle can be used to count the number of objects in S.

We need to be careful when partitioning S into too many parts. For example, if we partition S into parts in such a way that each part contains only one element then addition princinple is becomes counting the number of parts, which is basically same as listing all objects of S. Thus the art of applying addition princinple is to partition the set S into not too many parts.

Example: In a university there are four mathematics courses, two economics courses, and three lietrature courses. A student is allowed to enroll into one course at most. Thus, we see that a student can take a course in $4+2+3=9$ ways.

Next principle is multiplication principle which will be stated for two sets, but it can be generalized to any finite number of sets.

5.1.2 Multiplication Principle

Let S be a set of ordered pairs (a, b), where the first object comes from a set of size p, and for each choice of object a there are q choices for object b. Then the size of S is $p \times q$:

$$
|S|=p \times q
$$

As in basic arithmetic multiplication is repeated addition, similarly multiplication principle is actually a consequence of the addition principle i.e. repeated addition. Let $a_{1}, a_{2}, \ldots, a_{p}$ be p different choices for the object a. We partition S into parts $S_{1}, S_{2}, \ldots, S_{p}$ where S_{i} is the set of ordered pairs in S with first object $a_{i}(i=1,2, \ldots, p)$. The size of each S_{i} is q; hence, by the addition principle,

$$
\begin{gathered}
|S|=\left|S_{1}\right|+\left|S_{2}\right|+\ldots+\left|S_{p}\right| \\
=q+q+\ldots+q\left(p q^{\prime} \mathrm{s}\right) \\
=p \times q
\end{gathered}
$$

The multiplication principle can be stated in another way as: If a first task has p outcomes, and no matter what the outcome of of the first task, a second task has q outcomes i.e. outcomes for two tasks are mutually exclusive, then the two tasks can be performed in $p \times q$ outcomes.

Example: Pencil comes in two different lengths, four different hardness, and three different thickness. How many different types of pencils are there?

The pencil has three different properties, which are exclusive of each other, and thus, we can apply multiplication principle. Hence, number of different types of pencils is $2 \times 4 \times 3=24$.

Example: The number of ways a man, woman, boy, and girl can be selected from three men, three women, five boys and four girls is $3 \times 3 \times 5 \times 4=180$.

Example: Determine the number of positive integers that are factors of the number

$$
2^{3} \times 3^{4} \times 5^{5} \times 7^{7}
$$

The numbers $2,3,5$, and 7 are prime numbers. By the fundamental theorem of arithmetic, each factor is of the form

$$
2^{i} \times 3^{j} \times 5^{k} \times 7^{l}
$$

where $0 \leq i \leq 2,0 \leq j \leq 3,0 \leq k \leq 5$, and $0 \leq l \leq 7$. There are three choices for i, four for j, six for k, and eight for l. By multiplication principle, the number of factors is $3 \times 4 \times 6 \times 8=576$.

In the multiplication principle the q choices for object b may vary with the choices of a. The only requirement is that there be the same number q of choices, not necessarily the same choices.

Example: How many two-digit numbers have distinct, and nonzero digits?
A two-digit number $a b$ can be regarded as an ordered pair (a, b), where a is the tens digit, and b is the units digit. Both are not allowed to be 0 , and they must be different. Thus, we see that there are 9 ways to choose a, which are $1,2, \ldots, 9$. Once a is chosen we cannot use the same digit for b, which means we are left with 8 choices for b. Here we see that choice of a makes a difference on what choices b has. However, for multiplication principle to be applicable what matters is that the number of choices remain constant which is 8 in this case. Applying multiplication principle, we arrive at the answer of the question as $9 \times 8=72$.

There is another way to arrive at the same result. Total number of two-digit number is $90,10,11,12, \ldots, 99$. Of these 90 numbers 9 have a zero in them $(10,20,30, \ldots, 90)$, and 9 have repeated $\operatorname{digits}(11,22, \ldots, 99)$. Thus, total number of required numbers equals $90-9-9=72$.

We can derive two important ideas from the previous example. First is that it is possible to solve a counting problem in many ways. The second idea is that to find the number of objects in a set A (in this csae the set of two-digit numbers with nonzero, and distinct digits) it may be easier to find the number of objects in a larger set U containing S (the set of all two-digit numbers), and then subtract the number of objects of U that do not belong to A (the two-digit numbers containing 0 or repeated digit). This leads us to subtraction principle.

5.1.3 Subtraction Principle:

Let A be a set, and let U be a larger set containing A. Let

$$
\bar{A}=U \backslash A=\{x \in U: x \notin A\}
$$

be the complement of A in U. Then the numebr $|A|$ of object in A is given by the rule

$$
|A|=|U|-|\bar{A}|
$$

The set U is usually some natural set containing all the objects under discussion (it is called universal set). Using the subtraction principle should be used only if it is easier to count the number of object in U nd \bar{A} tha to count the number of objects in A.

Example: Most websites on internet have a lower limit of 8 characters as password length. Suppose if these passwordss are to made up of the digits $0,1,2, \ldots, 9$, and the lowercase letters a, b, c, \ldots, z then how many passwords will have a repeated symbol?

There are a total of 10 digits, and 26 letters i.e. 36 symbols. So by two applications of multiplication principle, we get

$$
|U|=36^{8}=2,821,109,907,456
$$

and

$$
|\bar{A}|=36.35 .34 .33 .32 .31 .30 .29=1,220,096,908,800
$$

Therefore,

$$
|A|=|U|-|\bar{A}|=1,601,012,998,656
$$

Now we will formulate the last principle of counting principles.

5.1.4 Division Principle

Let S be a finite set that is partitioned into k parts in such a way that each part contains the same number of objects. Then the number of parts in the partition is given by the rule

$$
k=\frac{|S|}{\text { number of objects in a part }}
$$

Example; There are 240 rats in a collection of cages. If each cage contains 2 rats, the number of cages equals

$$
\frac{240}{2}=120
$$

Interesting problems of division principle will be found in the problems section.
Most counting problems can be classified as one of the following types:

1. Count the number of ordered arrangements or ordered selection of objects
i. without repeating any object,
ii. with repetion(perhaps limited) of objects permitted.
2. Count the number of unordered arrangements or unordered selection of objects
i. without repeating any object,
ii. with repetion(perhaps limited) of objects permitted.

We can represent repetition, and nonrepetition of objects as selection from a set, and a multiset. The latter might prove to be more useful in some cases. A multiset is like a set except that its members need not be distinct. ${ }^{1}$ For example, a multiset M with three a^{\prime} s, two b 's i.e. 5 elements of 2 different types. We usually indicate a multiset by specifying the number of times different types of elements occur in it. Thus, M is denoted by $\{3 . a, 2 . b\} .{ }^{2}$. The numbers 3 , and 2 are the repetition members of the multiset M. Thus we can extrapolate

[^0]that a set is a multiset with all repetition numbers equal to 1 . Often there is no limit on number of repetitions i.e. infinite repetitions are allowed. ${ }^{1}$

5.2 Factorial of n

Factorial of n is denoted by $n!$. In the old style it is written as n. $n!$ is given by the first n natural numbers, i.e.

$$
n!=1.2 .3 .4 \ldots(n-1) . n
$$

Also, $0!=1$, which we will prove later.
Permutation means arrangement of objects along with selection. In the permutation of object order matter. If order of object changes then their permutation also changes. Combination of objects means selection of objects in such a way that order does not matter.

5.3 Permutation of Sets

Let $r \in \mathbb{P}$. By an r-permutation of a set S of n elements has a meaning of an ordered(by definition of permutation) arrangement of r of the n elements $(r \leq n)$. If $S=\{a, b, c\}$, then the three 1-permutations of S are

$$
a b c
$$

the six 2-permutations of S are

$$
a b a c b a b c c a c b
$$

and the six 3-permutations of S are
$a b c$ acb bac bca cab cba.
There are no 4 -permutations of S because that will violate the assumption that $r \leq n$.
The r-permutations of an n-element set is denoted by $P(n, r)$ or ${ }_{n} P_{r}$ or ${ }^{n} P_{r}$. If $r>n$ then ${ }^{n} P_{r}=0$. Clearly, ${ }^{n} P_{1}=n$ for each $n \in \mathbb{P}$.

For n and r positive integers with $r \leq n$,

$$
{ }^{n} P_{r}=n \times(n-1) \times \ldots \times(n-r+1)
$$

Permutation of n objects taken r at a time is equivalent ot filling r different vacant spots from n different objects. We can fill first spot by n ways, second spot can be filled by remaining objects i.e. $n-1$ ways, and proceeding this way we find that r th spot can be filled in $n-r+1$ ways. Thus total number of ways is

$$
n \times(n-1) \times \ldots(n-r+1)
$$

We can rewrite the above as

$$
\frac{n \times(n-1) \ldots(n-r+1) \times(n-r) \times \ldots 2 \times 1}{(n-r) \times(n-r-1) \times \ldots 2 \times 1}
$$

[^1]$$
{ }^{n} P_{r}=\frac{n!}{(n-r)!}
$$

Alternatively, first place can be filled in n ways. Rest of $r-1$ spots from $n-1$ objects can be filled in ${ }^{n-1} P_{r-1}$ ways. Thus, ${ }^{n} P_{r}=n .{ }^{n-1} P_{r-1}$. Similarly, ${ }^{n-1} P_{r-1}=(n-1) .{ }^{n-2} P_{r-2}$. Proceeding this way we find that ${ }^{n-r+1} P_{1}=n-r+1$. Multiplying and cancelling common factors, we get ${ }^{n} P_{r}=n \times(n-1) \times \ldots \times(n-r+1)$.

The number of permutations of n elements is ${ }^{n} P_{n}=\frac{n!}{0!}=n!$. If we follow first result then it is evident that $0!=1$.

5.3.1 Meaning of $\frac{1}{(-k)!}, k \in \mathbb{P}$

We have ${ }^{n} P_{r}=\frac{n!}{(n-r)!}$. Putting $r=n+k$, we have ${ }^{n} P_{n+k}=\frac{n!}{(-k)!}$. But the number of ways of arranging $n+1$ objects out of n different objects $=0 \Rightarrow \frac{1}{(-k)!}=0$.

Note: Although $(-k)$! has no meaning by the definition of factorial but if we consider the above result then the formula for permutation becomes valid even for $r>n$.

5.3.2 Circular Permutation

Let us consider arranging objects along a circle. Let us consider that four persons A, B, C, and D are sitting around a table. We can have following arrangements:

Figure 5.1
As shown four persons are sitting around a round table, and four anticlockwise rotations have lead to four arrangements. But if A, B, C, D are sitting in a row, and then are shiftedd such that last occupies the place of first, then the four arrangements will be different. Thus, if there are n objects then for each circular arrangement there are nn linear arrangements. But for n different objects total number of linear arrengements are n ! so the total number of circular arrangements are

$$
\frac{n!}{n}=(n-1)!
$$

Thus, we can say that number of circular r-permutations of a set of n elements is given by

$$
\frac{{ }^{n} P_{r}}{r}=\frac{n!}{r \cdot(n-r)!}
$$

5.3.3 Clockwise and Anti-Clockwise Arrangements

When clockwise and anticlockwise arranegemnts are same then total number of permutations will become half of what we computed in previous case i.e.

$$
\frac{{ }^{n} P_{r}}{2 r}=\frac{n!}{2 r \cdot(n-r)!}
$$

5.4 Combination of Sets

Consider a set S having n elements. A combination of a set S has a meaning of an unordered selection of the elements of S. The result of each selection is a subset A of the elements of $S: A \subset S$. Thus, the terms combination and subset are interchangeable.

Now let r be a non-negative integer. By an r-combination of a set S of n elements, we understand an unordered selection of r of the n objects of S. The result will be an r-subset of S.

If $S=\{a, b, c, d\}$, then

$$
\{a, b, c\},\{a, b, c\},\{a, c, d\},\{b, c, d\}
$$

are the four 3 -subsets of S. We denote the number of r-subsets or r-combinations of an n-element set by $\binom{n}{r}$ or ${ }_{n} C_{r}$ or ${ }^{n} C_{r}$. Obviously,

$$
\binom{n}{r}=0 \quad \text { if } r>n
$$

Also,

$$
\binom{0}{r}=0 \quad \text { if } r>0
$$

The following facts are easy to figure out for each non-negative integer n

$$
\binom{0}{0}=\binom{n}{0}=\binom{n}{n}=1,\binom{n}{1}=n,
$$

For $0 \leq r \leq n$,

$$
{ }^{n} P_{r}=r!^{n} C_{r}
$$

Hence,

$$
{ }^{n} C_{r}=\frac{n!}{r!(n-r)!}
$$

Let S be an n-element set. Each r-permutation of S arises from following tasks

1. Choose r elements from S.
2. Arrange the chose r elements in some order.

The number of ways to carry out first task, by definition, is ${ }^{n} C_{r}$. The number of ways to carry out second task is ${ }^{n} P_{r}=r!$. By the multiplication principle, we have ${ }^{n} P_{r}=r!{ }^{n} C_{r}$. Now applying the formula for permutations, we have

$$
{ }^{n} C_{r}=\frac{n!}{r!(n-r)!}
$$

5.5 Permutation of Multisets

Let S be a multiset with objects of k different types, where each object can be repeated infinitely. Then the number of r-permutations of S is k^{r}.

To prove this, we can choose the first item to be an object of any one of the k types. Since the number of repetitions are infinite the second item can be also chose in k ways. In fact, any item can be chosen in k ways due to infinite repetition. Following, multiplication principle, total number of such permutations is k^{r}.

Let S be a multiset with objects of k different types with finite repetition numbers $n_{1}, n_{2}, \ldots, n_{k}$ respectively. Let the size of S be $n=n_{1}+n_{2}+\ldots+n_{k}$. Then the number of permutations of S equals

$$
\frac{n!}{n_{!}!n_{2}!\ldots n_{k}!}
$$

We can calculate this by thinking in terms of n places, and we want to put exactly one of the objects of S in each of the places. We have n_{1} objects of one type in S, so we must choose a subset of n_{1} places from the set of n places. We can do this in ${ }^{n} C_{n_{1}}$ ways. After this we have $n-n_{1}$ places left, and we have n_{2} objects of second type. So following similarly we can do this in ${ }^{n-n_{1}} C_{n_{2}}$ ways. Following this way invoking multiplication principle, the number of permutations of S equals

$$
{ }^{n} C_{n_{1}} \cdot{ }^{n-n_{1}} C_{n_{2}} \cdot{ }^{n-n_{1}-n_{2}} C_{n_{3}} \ldots{ }^{n-n_{1}-n_{2}-\ldots-n_{k-1}} C_{n_{k}}
$$

which gives

$$
\frac{n!}{n_{1}!\left(n-n_{1}\right)!} \cdot \frac{\left(n-n_{1}\right)!}{n_{2}!\left(n-n_{1}-n_{2}\right)!} \cdot \frac{\left(n-n_{1}-n_{2}\right)!}{n_{3}!\left(n-n_{1}-n_{2}-n_{3}\right)!} \cdots \frac{\left(n-n_{1}-n_{2}-\ldots-n_{k-1}\right)!}{n_{k}!\left(n-n_{1}-n_{2}-\ldots-n_{k}\right)!}
$$

which after cancellation, reduces to

$$
\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}
$$

Let n be a positive integer, and let $n_{1}, n_{2}, \ldots, n_{k}$ be positive integers with $n=n_{1}+n_{2}+\ldots+n_{k}$. The number of ways to partition a set of n objects into k labeled boxes in which Box 1 contains n_{1} objects, Box 2 contains n_{2} objects, \ldots, Box k contains n_{k} objects equals

$$
\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}
$$

If the boxes are not labeled, and $n_{1}=n_{2}=\ldots=n_{k}$, then the number of partitions equals

$$
\frac{n!}{k!n_{1}!n_{2}!\ldots n_{k}!}
$$

We can calculate this by direct application of the multiplication principle. So we first choose n_{1} objects for the first box, then n_{2} of the remaining $n-n_{1}$ objects for the second box and so on. By the multiplication principle, the number of ways is

$$
{ }^{n} C_{n_{1}} \cdot{ }^{n-n_{1}} C_{n_{2}} \cdot{ }^{n-n_{1}-n_{2}} C_{n_{3}} \ldots{ }^{n-n_{1}-n_{2}-\ldots-n_{k-1}} C_{n_{k}}
$$

which is same as the last result, i.e.

$$
\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}
$$

If boxes are not labeled and $n_{1}=n_{2}=\ldots=n_{k}$, then the result has to be divided by k ! because for each way of distributing the objects into the k unalbeled boxes there are k ! ways
in which we can attach the labels to the boxes. Thus, using the division principle, we arrive at the result as

$$
\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}
$$

5.6 Combination of Multisets

If S is a multiset, then an r-combination of S is an unorndered selection of r of the objects of S. Thus, an r-combination of S is itslef a multiset, a submultiset of S of size r, or, for short, an r-submultiset. If S has n objects, then there is only one n-combination of S, namely, S itself. If S contains objects of k different types, then there are $k 1$-combinations of S.

Let S be a multiset with objects of k types, each with an infinite repetitions, then the number of r-combinations of S equals

$$
{ }^{r+k-1} C_{r}={ }^{r+k-1} C_{k-1}
$$

Let k types of objects of S be $a_{1}, a_{2}, \ldots, a_{k}$ so that

$$
S=\left\{\infty \cdot a_{1}, \infty \cdot a_{2}, \ldots, \infty \cdot a_{k}\right\}
$$

Any r-combination of S is of the form $\left\{x_{1} . a_{1}, x_{2} . a_{2}, \ldots, x_{k} \cdot a_{k}\right\}$, where $x_{1}, x_{2}, \ldots, x_{k}$ are nonnegative integers with $x_{1}+x_{2}+\ldots+x_{k}=r$. The converse is also true. Thus, the number of r-combinations of S equals the number of solutions of the equation

$$
x_{1}+x_{2}+\ldots+x_{k}=r
$$

We will show that the number of solutions of this equation is given by number of permuations of the multiset

$$
T=\{r .1,(k-1) \cdot *\}
$$

of $r+k-1$ objects of two different types. Given a permuation of T, the $k-1 *$'s divide the $r 1 \mathrm{~s}$ into k groups. Let there be $x_{1} 1$ s to the left of the first $*, x_{2} 1$ s between the first and second $*, \ldots$, and $x_{k} 1$ s to the right of last $*$. Clearly, $x_{1}+x_{2}+\ldots+x_{k}=r$. The converse of this is also true. Thus, required combination is given by the formula

$$
{ }^{r+k-1} C_{r}={ }^{r+k-1} C_{k-1}
$$

5.7 Some Important Indentities

1. ${ }^{n} P_{r}=r .{ }^{n-1} P_{r-1}+{ }^{n-1} P_{r}$.
2. ${ }^{n} C_{r}={ }^{n} C_{n-r}$.
3. ${ }^{n} C_{r-1}+{ }^{n} C_{r}={ }^{n+1} C_{r}$.
4. ${ }^{n} C_{r}={ }^{n} C_{s} \Rightarrow r=s$ or $r+s=n$.
5. ${ }^{n} C_{r}=\frac{n-r+1}{r} \cdot{ }^{n} C_{r-1}(1 \leq r \leq n)$.
6. If n is even, then the greatest value of ${ }^{n} C_{r}$ is ${ }^{n} C_{m}$, where $m=n / 2$. If n is odd, then the greatet value is ${ }^{n} C_{m}$, where $m=(n-1) / 2$ or $m=(n+1) / 2$.
7. If $n=2 m+1$, then ${ }^{n} C_{0}<{ }^{n} C_{1}<{ }^{n} C_{2}<\ldots<{ }^{n} C_{m}={ }^{n} C_{m+1} \cdot{ }^{n} C_{m+1}>{ }^{n} C_{m+2}>\ldots>{ }^{n} C_{n}$.
8. If $n=2 m+1$, then ${ }^{n} C_{0}<{ }^{n} C_{1}<{ }^{n} C_{2}<\ldots<{ }^{n} C_{m}>{ }^{n} C_{m+1}>{ }^{n} C_{m+1}>\ldots>^{n} C_{n}$.
9. ${ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\ldots+{ }^{n} C_{n}=2^{n}$.
10. ${ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\ldots={ }^{n} C_{1}+{ }^{n} C_{3}+\ldots=2^{n-1}$.
11. ${ }^{2 n+1} C_{0}+{ }^{2 n+1} C_{1}+\ldots+{ }^{2 n+1} C_{n}={ }^{2 n+1} C_{n+1}={ }^{2 n+1} C_{n+1}+{ }^{2 n+1} C_{n+2}+\ldots+{ }^{2 n+1} C_{2 n+1}=$ $2^{2 n}$.
12. $r .{ }^{n} C_{r}=n .{ }^{n-1} C_{r-1}$.

5.8 Some Useful Results

Number of selections of r objects out of n different objects:

1. When p paticular objects are always included $={ }^{p} C_{p} \cdot{ }^{n-p} C_{r-p}={ }^{n-p} C_{r-p}$.
2. When p paticular objects are excluded $=^{n-p} C_{r}$.
3. Number of selections of r objects out of n different objects such that p particular objects are not together in any selection $={ }^{n} C_{r}={ }^{n-p} C_{r-p}$.
4. Number of selection of r consecutive objects out of n objects in a row $=n-r+1$.
5. Number of selection of r consecutive objects out of n objects along a circle $=n$ when $r<n, 1$ when $r=n$.
6. Number of selections of zero or more objects out of n different objects $={ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n}$ $C_{2}+\ldots+{ }^{n} C_{n}=2^{n}$.
7. Number of selections of one or more objects out of n different objects $={ }^{n} C_{1}+{ }^{n} C_{2}+$ $\ldots+{ }^{n} C_{n}=2^{n}-1$.
8. Number of selections of zero or more objects out of n identical objects $=n+1$.
9. Number of selections of one or more objects out of n identical objects $=n$.
10. Number of selection of one or more objects from $(p+q+r)$ objects, out of which r objects are identical and of one type, q objects are identical and of second type, r objects are identical and of third type $=(p+1)(q+1)(r+1)-1$.
11. Number of selection of one or more objects from $(p+q+r+n)$ objects, out of which r objects are identical and of one type, q objects are identical and of second type, r objects are identical and of third type and rest n are different $=(p+1)(q+1)(r+1)\left({ }^{n} C_{0}+{ }^{n}\right.$ $\left.C_{1}+{ }^{n} C_{2}+\ldots+{ }^{n} C_{n}\right)-1=(p+1)(q+1)(r+1) 2^{n}-1$
12. Number of ways of distributing n different objects among 3 persons such that they gey x, y, z objects $={ }^{n} C_{x} \cdot{ }^{n-x} C_{y} \cdot{ }^{n-x-y} C_{z} \cdot 3!=\frac{n!}{x!y!z!} \cdot 3!$.
13. Number of ways of distributing n different objects in 5 sets having a, b, c, d, e objects $(a+$ $b+c+d+d=n$):
i. When two sets have equal number of objects and three sets have equal number of objects $=\frac{n!}{a!b!c!d!e!2!3!}$
ii. When all sets have equal number of objects $=\frac{n!}{a!b!c!d!e!5!}$
14. Number of ways of distributing n different objects among 5 persons
i. When all person get different number of objects $=\frac{n!}{a!b!c!d!e!} .5!$.
ii. When two persons get equal number of objects and three get equal number of objects

$$
=\frac{n!}{a!b!c!d!e!2!3!} \cdot 5!.
$$

iii. When all get equal number of objects $=\frac{n!}{a!b!c!d!e!5!} \cdot 5!=\frac{n!}{a!b!c!d!e!}$.

5.9 Permutations with Repetitions

The objective is to find permutation of r objects out of n objects of which p are of one type, q of second type and so on.

Let the different objects be denoted by a, b, c, \ldots
Consider the product

$$
\left(1+\frac{a x}{1!}+\frac{a^{2} x^{2}}{2!}+\ldots+\frac{a^{p} x^{p}}{p!}\right)\left(1+\frac{b x}{1!}+\frac{b^{2} x^{2}}{2!}+\ldots+\frac{b^{q} x^{q}}{q!}\right) \ldots
$$

Required number of permutations $=$ sum of all possible terms of the form $=\frac{r!}{p!q!\ldots} a^{p} b^{q} \ldots$ where $p+q+\ldots=r$
$=r!$. coeff. of x^{r} in $\left[\left(1+\frac{x}{1!}+\frac{x^{2}}{2!}+\ldots+\frac{x^{p}}{p!}\right)\left(1+\frac{x}{1!}+\frac{x^{2}}{2!}+\ldots+\frac{x^{q}}{q!}\right) \ldots\right]$

5.10 Combinations with Repetitions

The objective is to find combinations of r objects out of n objects under different cases of repetitions. To begin with we consider combinations of r objects taken out of n objects of which p are of one type, q of the second type and so on.

Let the different things be denoted by the letters a, b, \ldots
Consider the product $\left(1+a x+a^{2} x^{2}+\ldots+a^{p} x^{2}\right)\left(1+b x+b^{2} x^{2}+\ldots+b^{q} x^{2}\right) \ldots$. All the terms in the product is of the same degree in the letters a, b, \ldots as in x. The coefficient of x^{r} in the product is the number of ways of taking r of the letters a, b, \ldots with the restriction that maximum number of a^{\prime} 's is p, maximum number of $b^{\prime} \mathrm{s}$ is q and so on. Coeff. of x^{r} will not change if $a=b=\ldots=1$. Thus required number of combinaitons $=$ Coeff. of x^{r} in $\left(1+x+x^{2}+\ldots+x^{2}\right)\left(1+x+x^{2}+\ldots+x^{2}\right) \ldots$

Similarly, number of combinaitons of r objects out of n objects of which p are of one type, q are of second type and $(n-p-q)$ things are all different $=$ Coeff. of x^{r} in [$\left(1+x+x^{2}+\right.$ $\left.\ldots+x^{p}\right)\left(1+x+x^{2}+\ldots+x^{q}\right)(1+x)(1+x) \ldots$ to $(n-p-q)$ factors]
$=$ Coeff. of x^{r} in $\left[\left(1+x+x^{2}+\ldots+x^{p}\right)\left(1+x+x^{2}+\ldots+x^{q}\right)(1+x)(1+x)^{n-p-q}\right]$

Similarly, number of combinations of r objects out of n objects of which p are of one type, q are of second type and so on, when each thing is taken at least once $=$ Coeff. of x^{r} in $\left[\left(x+x^{2}+\ldots+x^{p}\right)\left(x+x^{2}+\ldots+x^{q}\right) \ldots\right]$
$=$ Coeff. of x^{r-3} in $\left[\left(1+x+x^{2}+\ldots+x^{p}\right)\left(1+x+x^{2}+\ldots+x^{q}\right)\right.$
If n is a negative integer, then $(1+x)^{n}=1+\frac{n}{1!} x+\frac{n(n-1)}{2!} x^{2}+\ldots$ to ∞ [this comes from binomial theorem]

So if n is a positive inetger then $(1+x)^{-n}=1+\frac{n}{1!} x+\frac{n(n+1)}{2!} x^{2}+\ldots$ to ∞
Coeff. of x^{r} in $(1-x)^{-n}=^{n+r-1} C_{r}$ which is number of ways in which r identical objects can be distributed among n persons can get zero of more objects $=$ Coeff. of x^{r} in $(1+x+$ $\left.\ldots+x^{r}\right)^{n}=\left(\frac{1-x^{r+1}}{1-x}\right)^{n}=\left[\left(1-x^{r+1}\right)(1-x)^{-n}\right]$.
$=$ Coeff. of x^{r} in $(1-x)^{-n}$ (leaving powers higher than $\left.x^{r}\right)={ }^{n+r-1} C_{r}$.

5.11 Integral Solutions of Equations

As we have proved earlier, for equation $x_{1}+x_{2}+\ldots+x_{r}=n$ is equivalent of distributing r identical objects among n persons when each person getting zero or more things $={ }^{n+r-1} C_{r}$

Similarly, number of non-negative integral solutions of equation $x+2 y+3 z+4 w=n$, equals coeff. of x^{n} in $\left[(1-x)^{-1}(1-x)^{-2}(1-x)^{-3}(1-x)^{-4}\right]$.

Similarly, number of positive integral solutions of equation $x+2 y+3 z+4 w=n$, equals coeff. of $\left.x^{n-(1+2+3+4}\right)$ in $\left[(1-x)^{-1}(1-x)^{-2}(1-x)^{-3}(1-x)^{-4}\right]$.

5.12 Geometrical Applications of Combinations

Some basic geometrical results involving combinations are given below:

1. n non-concurrent and non-parallel straight lines, points of intersection are ${ }^{n} C_{2}$.
2. The number of straight lines constructed out of n points, when no three points are collinear, are ${ }^{n} C_{2}$.
3. Given n points, if m are collinear, then number of straight lines possible are ${ }^{n} C_{2}-{ }^{m}$ $C_{2}+1$.
4. In a polygon, total number of diagonals out of a n points, when no three points are collinear, are $\frac{n(n-3)}{2}$.
5. Number of triangles formed from n points, when no three points are collinear, are ${ }^{n} C_{3}$.
6. Number of triangles formed out of n points in which m are collinear, ${ }^{n} C_{3}-{ }^{m} C_{3}$.
7. Number of triangles constructed out of n points, when none of the side is common with the sides of polygon, are ${ }^{n} C_{3}-{ }^{n} C_{1}-{ }^{n} C_{1} \cdot{ }^{n-4} C_{1}$.
8. Number of parallelogram constructed by two system of parallel lines, when first set contains m parallel lines and second set contains n parallel lines, are ${ }^{n} C_{2} \times{ }^{m} C_{2}$.
9. Number of squares formed by two system of parallel lines in which first set is perpendicular to second set of lines, when first set contains m parallel lines and second set contains n parallel lines is $\sum_{r=1}^{m-1}(m-r)(n-r) ; m<n$.

5.13 Number of Divisors and Sum of Divisors

Let $n=p_{1}^{n_{1}} \cdot p_{2}^{n_{2}} \ldots p_{n}^{n_{k}}$ where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct prime numbers and $n_{1}, n_{2}, \ldots, n_{k} \in \mathbb{P}$. Obvously, any divisor of n is of the form $d=p_{1}^{m_{1}} \cdot p_{2}^{m_{2}} \ldots p_{k}^{m_{k}}$ where $m_{1}, m_{2}, \ldots \in \mathbb{N}$ such that $0 \leq m_{i} \leq n_{i}, i=1,2, \ldots, k$. Therefore, the total no. of divisors for n will be equal to the number of ways of selecting at least one from n_{1} identical prime numbers p_{1}, n_{2} primes p_{2} and so on. The number of such ways is

$$
\left(n_{1}+1\right)\left(n_{2}+1\right) \ldots\left(n_{k}+1\right)
$$

These divisors will also include 1 and n, so obviously, number of divisors other than 1 and n is

$$
\left(n_{1}+1\right)\left(n_{2}+1\right) \ldots\left(n_{k}+1\right)-2
$$

The sum of all divisors for n is given by

$$
\begin{gathered}
\sum_{r_{1}=0}^{n_{1}} \sum_{r_{2}=0}^{n_{2}} \ldots \sum_{r_{k}=0}^{n_{k}} p_{1}^{r_{1}} p_{2}^{r_{2}} \ldots p_{k}^{r_{k}} \\
=\left(\frac{p_{1}^{n_{1}+1}-1}{p_{1}-1}\right)\left(\frac{p_{2}^{n_{2}+1}-1}{p_{2}-1}\right) \ldots\left(\frac{p_{k}^{n_{k}+1}-1}{p_{k}-1}\right)
\end{gathered}
$$

5.14 Exponent of Prime p in n !

Let $E_{p}(m)$ denote the exponent of the prime p in the positive integer m. We have

$$
E_{p}(n!)=E_{p}[1.2 .3 .4 \ldots(n-1) . n]
$$

The last integer amongst $1,2,3, \ldots,(n-1), n$ which is divisible by p is $[n / p] p$, where $[x]$ denotes the greatest integer $\leq x$. Therefore,

$$
E_{p}(n!)=E_{p}\left(p .2 p .3 p \ldots\left[\frac{n}{p} p\right]\right)
$$

because the remaining integers from the set $(1,2,3, \ldots,(n-1), n)$ are not divisible by p.

$$
E_{p}(n!)=\left[\frac{n}{p}\right]+E_{p}\left(1.2 .3 \ldots\left[\frac{n}{p}\right]\right)
$$

The last integer amongst $1,2, \ldots,[n / p]$ which is divisible by p is

$$
\left[\frac{[n / p]}{p}\right] p=\left[\frac{n}{p^{2}}\right] p
$$

$$
\Rightarrow E_{p}(n!)=\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+E_{p}\left(1.2 \ldots\left[\frac{n}{p^{2}}\right]\right)
$$

Proceeding similarly,

$$
E_{p}(n!)=\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\ldots\left[\frac{n}{p^{s}}\right]
$$

where $p^{s} \leq n \leq p^{s+1}$

5.15 Inclusion-Exclusion Principle

We have seen examples of subtraction principle. Inclusion exclusion principle is an extension of subtraction principle. In this type of problems, it is easier to make an indect coutnt of object in a set rather than to count the objects directly. Consder following examples:

Example: Count the permutations $i_{1} i_{2} \ldots i_{n}$ of $1,2, \ldots, n$ in which 1 is not in the first position i.e $i_{1} \neq 1$.

The number of permutations of $\{1,2, \ldots, n\}$ with 1 in the first position is the same as the number $(n-1)$! of permutations of $2,3, \ldots, n$. Since the total umber permutations is n !, required number of permutations is $n!-(n-1)!=(n-1) \cdot(n-1)$!.

Definition: The number of objects of the set S that have none of the properties $P_{1}, P_{2}, \ldots, P_{m}$ is given by the alternating expression

$$
\begin{gathered}
\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \ldots \cap \overline{A_{m}}\right|= \\
|S|-\sum\left|A_{i}\right|+\sum\left|A_{i} \cap A_{j}\right|-\sum\left|A_{i} \cap A_{j} \cap A_{k}\right|+\ldots+(-1)^{m}\left|A_{1} \cap A_{2} \cap \ldots A_{m}\right|
\end{gathered}
$$

where the first sum is over all 1-subsets of $\{i\}$ of $\{1,2, \ldots, m\}$, the second sum is over all 2 -subsets $\{i, j\}$ of $\{1,2, \ldots, m\}$ the third sum is all over 3 -subsets $\{i, j, k\}$ of $\{1,2, \ldots, m\}$, and so until the m th sum over all m-subsets of $\{1,2, \ldots, 2\}$ of which the only one is itself.

The subtraction principle is the simplest instance of inclusion-exclusion principle. As a first generalization of the substraction principle, let S be a finite set of objects, and let P_{1} and P_{2} be two "properties" that each objects in S may or may not possess. We wish to count the number of object in S that have neither the properties of P_{1} and P_{2}. Extending the subtracting principle, we can do this by first including of all objects of S in our count, then excluding all objects that have property $P 1$ and excluding all objects that have property P_{2}, and then noting that we have excluded objects having both properties twice, readmitting all such objects once. Let A_{1} be the subset of objects of S that have property A_{1}, and let A_{2} be the subset that have property P_{1}. Then \bar{A}_{1} consists of those which do not have property P_{1}, and similarly \bar{A}_{2} consists of those which do not have property P_{2}. The objects of set $\bar{A}_{1} \cap \bar{A}_{2}$ are those that have neither property P_{1} nor property P_{1}. Thus, we have

$$
\left|\bar{A}_{1} \cap \bar{A}_{2}\right|=|S|-\left|A_{1}\right|-\left|A_{2}\right|+\left|A_{1} \cap A_{2}\right|
$$

To further prove this, we argue as follows. Consider an object x which has neither the property P_{1}, nor the property P_{2}. In this case the contribution towards the count by this object would be $1-0-0+0=1$. Next, we consider if the object x has property P_{2}, then its contribution is $1-1-0+0=0$. Similarly, if it has property P_{1}, then its contribution is $1-0-1+0=0$. For the last possibility when x has both the properties its contribution is $1-1-1+1=0$. As it is obvious any object will fall in either of these four possibilities
and the total contribution is 1 only when it has neither of the properties. The inclusionexclusion principle stated above is generalizatio of this two property example. We will now establish the validity of the general case.

First, we conisder an object x with none of the properties. Its contribution to the right side would be $1-0+0-0+\ldots+(-1)^{m} 0=1$ since it is in S but in none of the other sets. Now consider an object y with exactly $n \geq 1$ of the properties. The contribution of y to $|S|=1={ }^{n} C_{0}$. Its contribution to $\sum\left|A_{i}\right|$ is $n={ }^{n} C_{1}$ since it has exactly n of the properties and so it is a member of exactly n of the sets out of $A_{1}, A_{2}, \ldots, A_{m}$. Similarly, the contribution of y to $\sum\left|A_{i} \cap A_{j}\right|$ is ${ }^{n} C_{2}$ sinc ewe may select a pair of the properties y has in ${ }^{n} C_{2}$ ways. Following similarly, the net contribution of y is

$$
{ }^{n} C_{0}-{ }^{n} C_{1}+{ }^{n} C_{2}-\ldots+(-1)^{m n} C_{m}
$$

which equal

$$
{ }^{n} C_{0}-{ }^{n} C_{1}+{ }^{n} C_{2}-\ldots+(-1)^{n n} C_{n}
$$

because

$$
n \leq m
$$

and ${ }^{n} C_{k}=0$ if $k>n$. The last expression is 0 from binomial theorem. Following similarly, we prove the inclusion-exclusion principle.

Definition: The number of objects of S which have at least one of the properties $P_{1}, P_{2}, \ldots, P_{m}$ is given by

$$
\begin{gathered}
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{m}\right|= \\
\sum|A i|-\sum\left|A_{i} \cap A_{j}\right|+\sum\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{m+1}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{m}\right|
\end{gathered}
$$

The set $A_{1} \cup A_{2} \cup \ldots \cup A_{m}$ consiste of all those objects in S which possess at least one of the properties. Also,

$$
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{m}\right|=|S|-\left|A_{1} \cup A_{2} \bar{\cup} \ldots \cup A_{m}\right| .
$$

From Demorgan's law

$$
\left|A_{1} \cup A_{2} \bar{\cup} \ldots \cup A_{m}\right|=\bar{A}_{1} \cap \bar{A}_{2} \cap \ldots \cap \overline{A_{m}}
$$

Following result from previous definition, we have the required equality.

5.16 Derangements

Consider following problems. At a party 14 gentlemen check their overcoats. In how many ways can their overcoats be returned so that no gentleman get their own overcoat? In a cricket team there are 11 players who bat in a certain order. In how many ways those can bat so that no player bats at their pre-determined position? This type of problems fall in the category of following general problem.

Given an n-element set S in which each element has a specified position. We have to find the number of permutations of S in which no element is in its specified position. This can be exemplified by a set $S=\{1,2, \ldots, n\}$ in which location of each integer is that specified by its position in the sequence $1,2, \ldots, n$. A derangement $\{1,2, \ldots, n\}$ is a permutation of
$i_{1} i_{2} \ldots i_{n}$ of $1,2, \ldots, n$ sucb that $i_{\neq 1}, i_{2} \neq 2, \ldots, i_{n} \neq n$. Derangement of such an n-element set is denoted by D_{n}

For $n \geq 1$

$$
D_{n}=n!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\ldots+(-1)^{n} \frac{1}{n!}\right)
$$

Let T be the set of all n ! permutations of X. For $j=1,2, \ldots, n$ let P_{j} be the property that, in a permutation, j is in its proper position. Let A_{j} denote the set of permutations with property P_{j}. Thus,

$$
D_{n}=\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \ldots \cap \overline{A_{n}}\right| .
$$

The permutations in A_{1} are of the form $1 i_{2} \ldots i_{n}$, where $i_{1} \ldots i_{n}$ is a permutation of $\{2, \ldots, n\}$. Thus, $\left|A_{1}\right|=(n-1)$!. We can write the general form as $\left|A_{j}\right|=(n-1)$!. For $A_{j} \cap A_{k}$, two elements have to be in the proper position. So, $\left|A_{j} \cap A_{k}\right|=(n-2)$!. For any integer k with $1 \leq k \leq n,\left|A_{1} \cap A_{2} \cap \ldots \cap A_{k}\right|=(n-k)$!. Since there are ${ }^{n} C_{k}$ subsets of T, applying the inclusion and exclusion principle, we obtain

$$
\begin{aligned}
D_{n}= & n!-{ }^{n} C_{1}(n-1)!+{ }^{n} C_{2}(n-2)!-\ldots+(-1)^{n n} C_{n} 0! \\
& \Rightarrow D_{n}=n!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\ldots+(-1)^{n} \frac{1}{n!}\right)
\end{aligned}
$$

5.17 Problems

1. If ${ }^{n} P_{4}=360$, find n.
2. If ${ }^{n} P_{3}=9240$, find n.
3. If ${ }^{10} P_{r}=720$, find r.
4. If ${ }^{2 n+1} P_{n-1}:{ }^{2 n-1} P_{n}=3: 5$, find n.
5. If ${ }^{n} P_{4}=12 \times{ }^{n} P_{2}$, find n.
6. If ${ }^{n} P_{5}=20 \times{ }^{n} P_{3}$, find n.
7. If ${ }^{n} P_{4}:{ }^{n+1} P_{4}=3: 4$, find n.
8. If ${ }^{20} P_{r}=6840$, find r.
9. If ${ }^{k+5} P_{k+1}=\frac{11(k-1)}{2} \cdot{ }^{k+3} P_{k}$, find k.
10. If ${ }^{22} P_{r+1}:{ }^{20} P_{r+2}=11: 52$, find r.
11. If ${ }^{m+n} P_{2}=90$ and ${ }^{m-n} P_{2}=30$, find m and n.
12. If ${ }^{12} P_{r}=11880$, find r.
13. If ${ }^{56} P_{r+6}:{ }^{54} P_{r+3}=30800: 1$, find r.
14. Prove that ${ }^{1} P_{1}+2 \cdot{ }^{2} P_{2}+3 .{ }^{3} P_{3}+\cdots+n .{ }^{n} P_{n}={ }^{n+1} P_{n+1}-1$.
15. If ${ }^{n} C_{30}={ }^{n} C_{4}$, find n.
16. If ${ }^{n} C_{12}={ }^{n} C_{8}$, find ${ }^{n} C_{17}$ and ${ }^{22} C_{n}$.
17. If ${ }^{18} C_{r}={ }^{18} C_{r+2}$, find ${ }^{r} C_{6}$.
18. If ${ }^{n} C_{n-4}=15$, find n.
19. If ${ }^{15} C_{r}:{ }^{15} C_{r-1}=11: 5$, find r.
20. If ${ }^{n} P_{r}=2520$ and ${ }^{n} C_{r}=21$, find r.
21. Prove that ${ }^{20} C_{13}+{ }^{20} C_{14}-{ }^{20} C_{6}-{ }^{20} C_{7}=0$.
22. If ${ }^{n} C_{r-1}=36,{ }^{n} C_{r}=84$ and ${ }^{n} C_{r+1}=126$, find n and r.
23. How many numbers of four digits can be formed with digits $1,2,3,4$ and 5 if repetition of digits is not allowed?
24. How many numbrs between 400 and 1000 can be made with the digits $2,3,4,5,6$ and 0 , with no repetitions?
25. Find the number of numbers between 300 and 3000 that can be formed with the digits $0,1,2,3,4$ and 5 with no repetitions.
26. How many numbers of four digits greater than 2300 can be formed with digits $0,1,2,3,4,5$ and 6 with no repetitions?
27. How many numbers can be formed by using any number of digits $0,1,2,3$ and 4 with no repetitions?
28. How many numbers of four digits can be formed with the digits $1,2,3$ and 4 ? Find the sum of those numbers.
29. Find the sum of all four digit numbers that can be formed with the digits $0,1,2$ and 3 .
30. Find the sum of all four digits that can be formed with $1,2,2$ and 3 .
31. A person has to send invitation to 6 friends. In how many ways can he send invitations to them if he has 3 servants?
32. In how many ways 3 prizes can be given away to 7 boys when each is eligible for any number of prizes?
33. A telegraph has 5 arms and each arm is capable of 4 distinct positions, including the position of rest. What is the total number of signals that can be made?
34. A letter lock consists of three ring each marked with 10 different letters. In how many ways is it possible to make an unsuccessful attempts to open the lock?
35. How many numbers greater than 1000 but less than 4000 can be formed with the digits $0,1,2,3$ and 4 with repetitions allowed?
36. In how many ways can 8 Indians, 4 Americans and 4 Englishmen be seated in a row so that persons of same nationality sit together?
37. There are 20 books of which 4 are single volume and the other are books of 8,5 and 3 volumes. In how many ways can all these books are arranged on a shelf so that volumes of the same book are not separated?
38. A library has two books each having three copies and three other books each having two copies each. In how many ways can all these books be arranged in a shelf so that copies of same books are not separated?
39. In how many ways 10 examination papers be arranged so that the best and worst papers never come together?
40. There are 5 boys and 3 girls. In how many ways can they be seated in a row so that not all girls sit together?
41. In how many ways can 7 I.A. and 5 I.Sc. students can be seated in a row so that no two of the I.Sc. students sit together?
42. In a class there are 7 boys and 3 girls. In how many different ways can they can be seated in a row so that no two of the three girls are consecutive?
43. In how many ways 4 boys and 4 girls can be seated in a row so that boys and girls alternate?
44. In how many ways 4 boys and 3 girls can be seated in a row so that boys and girls alternate?
45. In how many ways can the letters of the word "civilization" be rearranged?
46. How any different words can be formed from the word "university" so that all vowels are together?
47. In how many ways can the letters of the word "director" be arranged so that vowles are never together?
48. How many words can be formed by rearranging the letter of the word "welcome"? How many of them end with ' o '?
49. How many words can be formed with the letters of the word "California" in such a way that vowels occupy vowels' position and consonants occupy consonants' position?
50. How many different words can be formed with the letters of the word "pencil" when vowels occupy even place?
51. How many different words can be formed with five given letters of which three are vowel and two are consonants? How many will have no two vowels together?
52. How many numbers greater than a million can be formed with the digits $2,3,0,3,4,2$ and 3 ?
53. In how many ways 5 Indians and 4 British can be seated at a round table if
i. there is no restriction?
ii. all British sit together?
iii. all 4 British do not sit together?
iv. no two British sit together?
54. In how many ways 5 Indians and 5 British can be seated along a circle so that they are alternated?
55. A round table conference is to be held between 20 delegates of 20 countries. In how many ways can they be seated if two particular delegates are always to sit together?
56. How many numbers of four digits can be formed with the digits $1,2,4,5,7$ with no repetitions?
57. How many numbers of 5 digits can be formed with the digits $0,1,2,3$ and 4 ?
58. How many numbers between 100 and 1000 can be formed with the digits $1,2,3,4,5,6$ and 7 ; with no repetitions?
59. How many numbers between 100 and 1000 can be formed with the digits $0,2,3,4,8$ and 9 ; with no repetitions?
60. Find the total no. of nine digit numbers which have all different digits.
61. How many number between 1000 and 10000 can be formed with the digits $0,1,2,3,4$ and 5 ; with no repetitions?
62. How many different numbers greater than 5000 can be formed with the digits $0,1,5$ and 9 ; with no repetitions?
63. Find the number of numbers between 300 and 4000 that can be formed with the digits $0,1,2,3,4$ and 5 ; with no repetitions?
64. How many numbers of four digits divisible by 5 can be formed with the digits $0,4,5,6$ and 7 ; with no repetitions?
65. How many even numbers of 5 digits can be formed with the digits $1,2,3,4$ and 5 ?
66. How many numbers less than 1000 and divisible by 5 can be formed, in which no digit repeats?
67. How many numbers between 100 and 999 can be formed with the digits $0,4,5,6,7$ and 8 ? How many of them are odd?
68. Find the number of even numbers that can be formed with the digits $0,1,2,3$ and 4 ; with no repetitions?
69. Find the number of numbers of six digits with the digit $1,2,3,4,5$ and 6 , in which 5 alwyas occupied tens place; with no repetitions.
70. A number of four different digit is formed using the digits $1,2,3,4,5,6$ and 7 . How many such numbers can be formed? How many of them are greter than 3400 ?
71. Find the number of numbers of 4 digits formed with the digits $1,2,3,4$ and 5 , in which 3 occurs in the thousand's place and 5 occurs in the unit's place.
72. Find the number of numbers of 4 digits formed with the digits $0,1,2,3,4$ and 5 ; with no repetitions. How many of these are greter than 3000 ?
73. How many number of numbers can be formed by using any number of digits $0,1,2,3,5,7$ and 9 ?
74. How many different numbers can be formed with the digits $1,3,5,7$ and 9 ; when taken all at a time and what is their sum?
75. Find the sum of all four digit numbers that can be foemd with the digits $3,2,3,4$.
76. Find the sum of all numbers greater than 10000 formed with the digits $0,2,4,6$ and 8 ; with no repetitions.
77. Find the sum of all five digit numbers with the digits $3,4,5,6$ and 7 ; with no repetitions.
78. Find the sum of all four digit numbers that can be formed with $0,2,3$ and 5 .
79. A servant has to post 5 letters and there are 4 letter boxes. In how many ways he can post the letters?
80. In how many ways can 3 prizes be given to 5 students, when each student is eligible for any number of prizes?
81. In how many ways can n things be given to p persons? Each person can get any number of things $(n>p)$.
82. There are m men and n monkeys $(m<n)$. If a man can have any number of monkeys, in how many wasy every monkey have a master?
83. In how many ways the following 5 prizes be given to 10 students? First and second in mathematics; first and second in chemistry and first in physics?
84. There are stalls for 12 animals in a ship. In how many ways the shipload can be made if there are cows, calves and horses to transported with each being 12 in number?
85. In how many ways 5 delegates be put in 6 hotels of a city of there is no restriction?
86. Find the numbers of 5 digits that can be formed with the digits $0,1,2,3$ and 4 if repetition is allowed.
87. In how many ways rings of 6 different types can be had in 4 fingers?
88. Find the number of 4 digit numbers greater than 3000 that can be formed with the digits $0,1,2,3,4$ and 5 if repetition is allowed.
89. In a town, the car plate numbers can be of three or four digits without digit 0 . What is the maximum number of cars that can be numbered?
90. In how many ways can a ten question multiple choice examination with one correct answer can be answered if there are four choices to each question? If no two consecutive questions are answered the same way, how many ways are there?
91. There are two books each of three volumes and two books each of two volumes. In how may ways can the ten books be arranged on a table so that the volumes of the same book are not separated?
92. A library has 5 copies of 1 book, 4 copies of 2 books, 6 copies of 3 books and single copy of 8 books. In how many ways all the books can be arranged in so that copies of the same book stay together?
93. In a dinner part there are 10 Indians, 5 Americans and 5 Britishers. In how many ways they can be seated if all persons of the same nationality always sit together?
94. In a class there are 4 girls and 6 boys. In how many ways can they be seated in a rows so that no two girls are together?
95. Show that the number of ways in which n books can be arranged on a shelf so that two particular books shall not be together is $(n-2)(n-1)$!
96. You are given six balls of different colors (black, white, red, green, violet, yellow). In how many ways can you arrange them in a row so that black and white balls may never come together?
97. Six papers are set an examination, 2 of them in mathematics. In how many different orders can the papers be given if two mathematics papers are non successive?
98. In how many different ways can $15 \mathrm{I} . S c$. and 12 B. Sc. students be arranged in a line so that no two B.Sc. students occupy consecutive positions?
99. In how many ways can 18 white and 19 black balls be arranged in a line so that no two white balls may be together. It is given that balls of same color are identical.
100. Show that the number of ways in which p positive and n negative signs mat be placed in a row so that no two negative signs may be together is ${ }^{p+1} C_{n}$.
101. m men and n women are to be seated in a row so that no two women sit together. If $m>n$, then show that the number of ways in which they can be seated is $\frac{m!(m+1)!}{(m-n+1)!}$
102. 3 women and 5 men are to sit in a row. Find in how many ways they can be arranged so that no two women sit next to each other.
103. Find the number of ways of arranging 5 a's, 3 b's, 3 c's, $1 \mathrm{~d}, 2$ e's and 1 f in a row, if letter c 's are separated from one another.
104. Find the number of different permutations of the letters of the word "Banana".
105. How many words can be formed from the letters of the word "circumference" taken all together?
106. There are three copies of each of four different books. In how many ways they can be arranged in a shelf?
107. Find the number of permutations of the letters of the word "Independence".
108. How many different words can be formed can be formed with the letters of the word "Principal" so that the vowels are together?
109. How many words can be formed with the letters of the word "Mathematics"? In how many of them the vowels are togeter and consonants are together?x
110. In how many ways can the letters of the word "Director" be arranged so that the three vowels are together?
111. In how many ways can the letters of the word "Plantain" be arranged so that the three vowels are together?
112. Find the number of words that can be made by arranging the letters of the word "Intermediate" so that the relative order of vowels and consonants do not change.
113. In how many permutations of the word "Parallel" all the $l \mathrm{~s}$ do not come together?
114. Find the number of words formed by the letters of the word "Delhi" which
i. begin with D.
ii. end with I.
iii. the letter L being always in the middle.
iv. begin with D and end with I
115. In how many ways can the letters of the word "Violent" be arraged so that vowels occupy only the odd places?
116. In how many ways can the letters of the word "Saloon" be arraged if consonants and vowels must occupy alternate places?
117. How many words can be formed out of the word "Article" so that vowels occupy the even places?
118. How many numbers greater than four million can be formed with the digits $2,2,3,0,3,4$ and 5 ?
119. How many seven digits can be formed with the digits $1,2,2,2,3,3$ and 5 ? How many of them are odd?
120. How many seven digits can be formed with the digits $1,2,3,4,3,2$ and 1 , so that odd digits always occupy the odd places?
121. How many numbers greater than 10,000 can be formed with the digits $1,1,2,3,4$ and 0 ?
122. Find the number of numbers of four digits that can be made from the digits $0,1,2,3,4$ and 5 if the digits can be repeated in the same number. How many of these numbers have at least one digit repeated?
123. How many signals can be made by hoisting 2 blue, 2 red and 5 yellow flags on a flag at the same time?
124. How many signals can be made by hoisting 6 differently colored flags one above the other when any number of them can be hoisted at once?
125. Find the number of arrangements of the letter of the word "Delhi" if e always comes before i.
126. In how many ways can 5 men sit around a table?
127. In how many ways 5 boys and 5 girls can site around a table, if there is no restriction; if no two girls sit side-by-side?
128. In a class of students there are 6 boys and 4 girls. In how many ways can they be seated around a table so that all 4 girls sit together?
129. 5 boys and 5 girls from a line with the boys and girls alternating. Find the number of ways in which line can be made. In how many different ways could they form a circle so that boys and girls alternate?
130. In how many ways 6 boys and 5 girls can sit at a round table when no two girls sit next to each other?
131. In how many ways 50 pearls be arranged to form a necklace?
132. A round table conference is to be held between 20 delegates of 20 countries. In how many ways they and the host can be seated if two particular delegates are always to sit on the either side of the host?
133. Four gentlemen and four ladies are invited to a certain party. Find the number of ways of seating them around a table so that only ladies are seated on the two sides of each gentleman.
134. In how many ways can 7 Englishmen and 6 Indians sit around a table so that no two Indians are together?
135. If ${ }^{15} C_{3 r}={ }^{15} C_{r+3}$, find r.
136. If ${ }^{n} C_{6}:{ }^{n-3} C_{3}=33: 4$, find n.
137. Find the value of the expression ${ }^{47} C_{4}+\sum_{j=1}^{5}{ }^{52-j} C_{3}$.
138. Prove that the product of r consecutive integers is divisible by r !
139. Find the number of triangles, which can formed by joining the angular points of a polygon of m sides as vertices.
140. A man has 8 children to take them to a zoon. He takes three of them at a time to the zoo as often as he can without the same 3 children together more than once. How many times will he have to go to zoo? How many times a particular child will go?
141. On a new year day every student of a class sends a card to every other student. The postman delivers 600 cards. How many students are there in the class?
142. Show that a polygon of m sides has $\frac{m(m-3)}{2}$ diagonals.
143. Out of 6 gentelmen and 4 ladies a committee of 5 is to be formed. In how many ways can this be done so as to include at least one lady in each committee?
144. There are ten point on a plane. Of these ten points four points are in a straight line. With the exception of these four points, no other three points are in the same straight line. Find (a) the number of triangles formed, (b) the number of straight lines formed, and (c) the number of quadrilaterals formed, by joining these ten points.
145. There are 4 oranges, 5 apples and 6 mangoes in a fruit basket. In how many ways a person make a selection of fruits from the fruits basket.
146. Given 5 different green dyes, 4 different blue dyes and 3 different red dyes, how many combinations of dies can be chosen taking at least one green and one blue dye?
147. Find the number of divisors of $216,000$.
148. In an examination a minimum is to be secured in each of 5 subjects to pass. In how many ways can a student fail?
149. In how many ways 12 different things can be divided equally among 3 persons? Also find in how many ways can these 12 things be divided in three sets having 4 things.
150. How many different words of 4 letters can be formed with the letters of the word "Examination"?
151. How many quadrilaterals can be formed by joining vertices of a polygon of n sides?
152. A man has 7 friends and he wants to invite 3 of them at a party. Find out how many parties to each of his 3 friends he can give and how many times any particular friend will attend the parties.
153. Prove that the number of combinations of n things taken r at a time in which p particular things always occur is ${ }^{n-p} C_{r-p}$.
154. A delegation of 6 members is to be sent abroad out of 12 members. In how many ways can the selection be made so that (a) a particular member is always included, and (b) a particular member is always exlcluded.
155. There are six students A, B, C, D, E and F. (a) In how many ways can they be seated in a line so that C and D do not sit together? (b) In how many ways can a committe of 4 be formed so as to always include C ? (c) In how many ways can a committee of 4 be formed so as to always include C but exclude E ?
156. There are n stations in a railway route. The number fo kinds of ticket printed (no return ticket) is 105 . Find the number of stations.
157. There are 15 points in a plane of which 6 are collinear. How many different straight lines and triangles can be drawn by joining them?
158. There are 10 points in a plane out of which 5 are collinear. Find the number of quadrilaterals formed having vertices at points.
159. The three sides of a triangle have 3,4 and 5 interior points on them. Find the number of triangles that can be constructed using given interior points as vertices.
160. In how many ways can a team of 11 be chosen from 14 football players if two of them can be only goalkeepers?
161. A committee of 2 men and 2 women is to be chosen from 5 men and 6 women. In how many ways can this be done?
162. Find the number of ways in which 8 different articles can be distributed among 7 boys, if each boy is to receive at least one article.
163. Out of 7 men and 4 ladies a committee of 5 is to be formed. In how many ways can this be done so as to include at least 3 ladies?
164. A candidate is required to ansswer six out of ten questions which are divided into two groups, each containing five questions and he is not permitted to attempt more than 4 from any group. In how many ways can he make up his choices?
165. There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students to be formed. Find in how many ways these committees can be formed if (a) a particular professor is included? (b) a particular professor is excluded.
166. From 6 boys and 7 girls, a committee of 5 is to be formed so as to include at least one girl. Find the number of ways in which this can be done.
167. From 6 gentlemen and 4 ladies, a committee of 5 is to be formed. In how many ways can this be done if (a) there is no restriction? (b) the committee is to include at least one lady?
168. From 8 gentlemen and 4 ladies, a committee of 5 is to be formed. In how many ways can this be done so as to include at least one lady.
169. In a group of 15 boys, there are 6 hockey players. In how many ways can 12 boys be selected so as to include at least 4 hockey players?
170. From 7 gentlemen and 4 ladies a boat party of 5 is to be formed. In how mny ways can this be done so as to include at least one lady?
171. A committee of 6 is to formed out of 4 boys and 6 girls. In how many ways can this be done if girls may not be outnumbered?
172. A person has 12 friends out of which 8 are relatives. In how many ways can he invite 7 friends such that at least 5 of them are relatives?
173. A student is required to answer 7 questions out of 12 questions which are divided into two groups of 6 questions each. He is not permitted to attempt more than 5 from either group. In how many ways can he choose the 7 questions?
174. Each of two parallel lines has a number of distinct points marked on them. On one line there are 2 points P and Q and on the other there are 8 points. Find the number of possible triangles out of these points. How many of these include P but exclude Q ?
175. There are 7 men and 3 ladies contesting for 2 vacancies. An elector can vote for any no. of candidates not exceeding no. of vacancies. In how many ways ca the elector vote?
176. A party of 6 is to be formed from 10 boys and 7 girls so as to include 3 boys and 3 girls. In how many ways can this party be formed if two particular girls cannot be together?
177. In an examinatio, the question paper consists of three different sections of 4,5 and 6 questions. In how many ways, can a student make a selection of 7 questions, selecting at least 2 questions from each section.
178. From 5 apples, 4 oranges and 3 mangoes, how many selections of fruits can be made?
179. Find the total no. of selections of at least one red ball from 4 red and 3 green balls if the balls of same color are different.
180. Find the number of different sums that can be formed with one dollar, one half dollar and one quarter dollar coin.
181. There are 5 questions in a question paper. In how many ways can a boy solve one or more questions?
182. In an election for 3 seats there are 6 candidates. A voter cannot vote for more than 3 candidates. In how many ways can he vote?
183. In an election the number of candidates is one more than the number of members to be elected. If a voter can vote in 30 different ways, find the number of candidates. (A voter has to vote for at least one candidate.)
184. In how many ways 12 different books can be distributed equally among 4 persons?
185. In how many ways 10 mangoes can be distributed among 4 person if any person can get any number of mangoes?
186. How many words can be formed out of 10 consonants and 4 vowels, such that each contains 3 consnants and 2 vowels?
187. A table has 7 seats, 4 being on one side facing the window and hree being on the opposite side. In how many ways can 7 people beseated at the table if 3 people must sit on the side facing the window?
188. A tea party is arranged for 16 people along two sides of a long table with 8 chairs on each side. Four men wish to sit on one particular side and two on the other side. In how many ways can they be seated.
189. Eight chairs are numbered 1 to 8 . Two women and three men wish to occupy one chair each. First two women choose chairs amongst the chair marked 1 to 4; and then men select the chairs from remaining. Find the number of possible arrangements.
190. Show that ${ }^{2 n} C_{r}(0 \leq r \leq 2 n)$ is greatest when $r=n$.
191. Ten different letters of an alphabet are given. Words with five letter are formed from these given letters. Find the number of words which have at least one letter repeated.
192. How many ternary sequences of length 9 are there which either begin with 210 or end with 210 ?
193. Find the number of 7 digit numbers when the sum of those digits is even.
194. In how many ways 10 Indians, 5 Americans and 4 Britishers can be seated in a row so that all Indians are together?
195. In how many ways can the letters of the word "'Arrange' be arranged so that (a) the two r's are never together? (b) the two a's are together but not the two r's? (c) neither the two a's nor the two r's are together?
196. A man invites a party of $m+n$ friends to dinner and places m at around table and n at another. Find the number of arranging the guests.
197. Find the total no. of signals that can be made by five flags of different colors when any number of them may be used.
198. The letters of the word '`Ought'' are written in all possible orders and these words are written out in a dictionary. Find the rank of ' 'Tough' in the dictionary.
199. The streets of a city are arranged like the lines of a chessboard. There are m streets running north and south and n east and west. Find the number of ways in which a man can travel from the N.W. to S.E. corner, going the shortest distance possible.
200. There are n letters and n corresponding envelops. In how many ways, can the letters be places in envelops (one letter in each envelop) so that no letter is put in the right envelop?
201. Find the number of non-congruent rectangles that can be formed on a chessboard.
202. Show that the no. of ways in which three numbers in A.P. can be selected from $1,2,3, \ldots, n$ in $\frac{1}{4}(n-1)^{2}$ or $\frac{1}{4} n(n-2)$; according as n is odd or even.
203. Two packs of52 playing cards are shuffled together. Find the number of ways in which a man can be dealt 26 cards so that he does not get two cards from the same suit and same denomination.
204. There is a polygon of n sides $(n>5)$. Triangles are formed by joining the vertices of the polygon. How many triangles are there? Also, prove that number of these triangles which have no side in common with any of the sides of the polygon is $\frac{1}{6} n(n-4)(n-5)$.
205. n different objects are arranged in a row. In how many ways can 3 objects be selected so that (a) all three objects are consecutive, (b) all three objects are not consecutive, and () no two objects are consecutive.
206. There are 12 intermeditate stations between two places, A and B. In how many ways can a trainbe made to stop at 4 of those 12 intermeditate stations so that no two of which are consecutive?
207. There are m points in a plane which are joined by straight lines in all possible ways and of these no two are coincident and no three of them are concurrent except at the points. Show that the number of points of intersection, other than the given points of the lines so formed is $\frac{m!}{8 .(m-4)!}$.
208. Find the number of ways of choosing m coupon out of an unlimited number of coupons bearing the letters A, B and C so that they cannot be used to spell the word $B A C$.
209. A straight is a five-card hand containing consecutive values. How many different straights are tere? If the cards are not all from the same suit, then how many straights are there?
210. A is an n-element set. A subset P_{1} of A is chosen. The set A is reconstructed by replacing the elements of P_{1}. Then a subset P_{2} of A is chosen and again set A is reconstructed by replacing the elements of P_{2}. In this way m subsets are chosen, where $m>1$. Find the number of ways of choosing $P_{1}, P_{2}, \ldots, P_{m}$ such that
i. $\quad P_{1} \cup P_{2} \cup \ldots \cup P_{m}$ contains exactly r elements of A.
ii. $P_{1} \cap P_{2} \cap \ldots \cap P_{m}$ contains exactly r elements of A.
iii. $P_{i} \cap P_{j}=\phi$ for $i \neq j$.
211. Find the number of ways in which m identical balls be distributed among $2 m$ boxes so that no box contains more than one ball and show that it lies between $\frac{4^{m}}{\sqrt{2 m+1}}$ and $\frac{4^{m}}{2 \sqrt{m}}$.
212. From 6 gentlemen and 4 ladies, a committee of 5 is to be formed. In how many ways can this be done if the committee is to include at least onelady and if two particular ladies refuse to server on the same committee?
213. A man has 7 relatives, 4 of them are ladies and 3 are gentlemen. His wife also has 7 relatives, 3 of them are ladies and 4 are gentlemen. In how many ways can they invite to a dinner party of 3 ladies and 3 men so that there are 3 of the man's relatives and 3 of the wife's relatives?
214. Prove that if each of m points on one straight line be joined to each of the n points on the other straight line terminated by the points, then excluding the points given on the two lines, number of points of intersection of these lines is $\frac{1}{4} m n(m-1)(n-1)$.
215. John has x children with his first wife. Mary has $x+1$ children with her first husband. They marry and have children of their own. The whole family has 24 children. Assuming that two children of same parents do not fight, prove tha maximum possible no. of ways fight can take place is 191.
216. Find the number of divisors and sum of divisors of 2520 .
217. Five balls of different colors are to be placed in three boxes of different sizes. Each box can hold all five balls. In how many different ways can we place the balls so that no box remains empty.
218. Prove that $(n!)$! is divisible by $(n!)^{(n-1)!}$.
219. If a and b are positive integers, show that $\frac{(a b)!}{a!(b!)^{a}}$ is an integer.
220. A conference attended by 200 delegates is held in a hall. The hall has seven doors, marked A, B, \ldots, G. At each door, an entry book is kept and the delegates entering that door sign it in the order in which they enter. If each delegate is free to enter any time and through any door they like, how many different sets of seven lists would arise in all?
221. In how many ways 16 identical objects can be distributed among 4 persons if each person gets at least 3 objects?
222. Show that a selection of 10 balls can be made from an unlimited number of red, while, blue and green balls in 286 ways and that 84 of these contain balls of all four colors.
223. In how many ways 30 marks can be allotted to 8 questions if each question carries at least 2 marks?
224. In an examination the maximum marks for each of the three papers is 50 each. Maximum marks for the fourth paper is 100 . Find the number of ways in which a student can score 60 marks in aggregate.
225. Let n and k be positive integers, such that $n \geq \frac{k(k+1)}{2}$. Find the number of solutions $x_{1}, x_{2}, \ldots, x_{k}, x_{1} \geq 1, x_{2} \geq 2, \ldots, x_{k} \geq k$ all satisfyinng $x_{1}+x_{2}+\ldots+x_{k}=n$.
226. Find the number of integral solution of equation $x+y+z+w=29, x>0, y>1, z>2$ and $w \geq 0$.
227. Find the number of non-negative integral solutions of the equation $x+y+z+4 w=20$.
228. Find the number of non-negative integral solutions to the system of equations $x+y+$ $z+w+v=20$ and $x+y+z=5$.
229. Find the number of positive integral solutions of the inequality $3 x+y+z \leq 30$.
230. Find the number of positive unique integral solution of the equation $a+b+c+d=20$.

231 . How many integers between 1 and $1,000,000$ have the sum of digits $18 ?$
232. Prove that the number of combinations of n letters together out of $3 n$ letters of which n are a and n are b and the rest unlike is $(n+2) 2^{n-1}$.
233. An eight-oared boat is to be manned by a crew chose from 11 men of whom 3 can steer but cannot row and the rest cannot steer. In how many ways can the crew be arranged if two of them can only row the bow side?
234. Find the total number of ways of selecting five letters from the letters of the word '`Independence". 235. Find the number of combinations and the number of permutations of the letters of the word '`Parallel'", taken four at a time.
236. Find the value of n for which $\frac{{ }^{n+2} P_{4}}{(n+2)!}-\frac{143}{4 . n!}<0$.
237. Find the value of n for which $\frac{195}{4 . n!}-\frac{(n+3)(n+2)(n+1)}{(n+1)!}>0$.
238. If ${ }^{n-2} P_{4}:{ }^{n+2} C_{8}=16: 57$, find the value of n.
239. If ${ }^{n} P_{r}={ }^{n} P_{r+1}$ and ${ }^{n} C_{r}={ }^{n} C_{r-1}$, find n and r.
240. If ${ }^{n} P_{r-1}:{ }^{n} P_{r}:{ }^{n} P_{r+1}=a: b: c$, prove that $b^{2}=a(b+c)$.
241. If ${ }^{n+1} C_{r+1}:{ }^{n} C_{r}::^{n-1} C_{r-1}=11: 6: 3$, find n and r.
242. Show that $\sum_{k=m}^{n}{ }^{k} C_{r}={ }^{n+1} C_{r+1}-{ }^{m} C_{r+1}$.
243. Show that $4 .{ }^{n} C_{n-r}+{ }^{n} C_{n-r+4}+{ }^{n} C_{n-r 3}={ }^{n+3} C_{r}$.
244. Find r for which ${ }^{18} C_{r-2}+2 .{ }^{18} C_{r-1}+{ }^{18} C_{r} \geq{ }^{20} C_{13}$.
245. Prove that ${ }^{4 n} C_{2 n}:{ }^{2 n} C_{n}=1.3 .5 \ldots(4 n-1): 1.3 .5 \ldots(2 n-1)^{2}$.
246. Find the positive integral values of x such that ${ }^{x-1} C_{4}-{ }^{x-1} C_{3}-\frac{5}{4}(x-2)(x-3)<0$.
247. Prove that ${ }^{2 n} P_{n}=2^{n}$.1.3.5 ... $(2 n-1)$.
248. Show that there cannot exist two positive integers n and r for which ${ }^{n} C_{r},{ }^{n} C_{r+1},{ }^{n} C_{r+2}$ are in G.P.
249. Show that there cannot exist two positive integers n and r for which ${ }^{n} C_{r},{ }^{n} C_{r+1},{ }^{n} C_{r+2},{ }^{n} C_{r+2}$ are in A.P.
250. For all positive intgers show that $2.6 .10 \ldots(4 n-6)(4 n-2)=(n+1)(n+2) \ldots(2 n-$ 2) $2 n$.
251. Show that ${ }^{47} C_{4}+\sum_{i=0}^{3}{ }^{50-i} C_{3}+\sum_{j=1}^{5}{ }^{56-j} C_{53-j}={ }^{57} C_{4}$.
252. Show that ${ }^{n} C_{k}+\sum_{j=0}^{m}{ }^{n+j} C_{k-1}={ }^{n+m-1} C_{k}$.
253. Show that ${ }^{m} C_{1}+{ }^{m+1} C_{2}+\ldots+{ }^{m+n-1} C_{n}={ }^{n} C_{1}+{ }^{n+1} C_{2}+\ldots+{ }^{n+m-1} C_{m}$.
254. How many numbers of 5 digits divisible by 25 can be made with the digits $0,1,2,3,4,5,6$ and 7 ?
255. How many numbers of 5 digits divisible by 4 can be made with the digits $1,2,3,4$ and 5 ?
256. How many numbers of 4 digits divisible by 3 can be made with the digits $0,1,2,3,4$ and 5 , digits being unrepeated in the same number? How many of these will be divisible by 6 ?
257. Find the sum of all the 4 digit numbers formed with the digits $1,3,3$ and 0 ?
258. Show that the number of permutation of n different objects taken not more than r at a time, when each object may be repeated any number of times is $\frac{n\left(n^{r}-1\right)}{n-1}$.
259. How many different 7 digit numbers are there sum of whose digits is even?
260. k numbers are chosne with replacement from the numbers $1,2,3, \ldots, n$. Find the number of ways of choosing the numbers so that the maximum number chosen is exactly $r(r \leq$ $n)$.
261. Find the number of n digit numbers formed with the digits $1,2,3, \ldots, 9$ in which no two consecutive digits repeat.
262. A valid FORTRAN identifier consists of a string of one to six alphanumeric characters which are $A, B, \ldots, Z, 1,2, \ldots, 9$ beginnning with a letter. How many valid FORTRAN identifiers are there.
263. Find the number of five digit number which can be made with at least one repeated digit.
264. Find the number of numbers between 20,000 and 60,000 having sum of digits even.

265 . Find th enumber of ways in which the candidates $A_{1}, A_{2}, \ldots, A_{10}$ can be ranked, (a) if A_{1} and A_{2} are next to each other. (b) if A_{1} is always above A_{2}.
266. $m+n$ chairs are placed in a line. You have to seat n men and m women on these chairs such that no man gets a seat between two women. In how many ways can these people be seated?
267. How many words can be made with the letters of the word ' 'Intermediate" if no vowel is between two consonants?
268. In how many ways can 5 identical black balls, 7 identical red balls and 6 identical green balls be arranged so that at least one ball is sperated from balls of the same color?
269. Ten guests are to be seated in a row of which three are ladies. The ladies insist on sitting together while two of gentlemen refuse to take consecutive seats. In how many ways can they be seated?
270. Show that the number of permutations of n different objects taken all at a time in which p particular objects are never together is $n!-(n-p+1)$! p !.
271. Find the number of ways in which six `+ ' signs and four \({ }^{-}\)-' signs can be arranged so that no two`-' signs occur together.
272. In how many ways can 3 ladies and 5 gentlemen arrange themselves about a round table so that every gentleman may have one lady by his side?
273. How many words of 7 letters can be formed by using the letters of the word "`success" so that (a) no two C's are together but not the two S , (b) neither the two C nor the two S are together? 274. A dictionary is made of the words that can be formed from the letters of the word '`Mother". What is the position of the word "'Mother'" in that dictionary if the words are printed in the same order as that of a dictionary.
275. A train going from Kolkata to Delhi stops at 7 intermediate stations. Five persons enter the train during the jouney with five different tickets of the same class. How many different set of tickets they could have had.
276. A train going from Cambridge to London stops at 9 intermediate stations. Six persons enter the train during the jouney with six different tickets of the same class. How many different set of tickets they could have had.
277. In how many ways can clear and cloudy days occur in a week? It is given that any day is entirely either clear or cloudy.
278. A student is allowed to select at most n books from a collection of $2 n+1$ books. If the total no. of ways in which he can select at least one book is 63 , find the value of n.
279. There are m bags which are numbered by m consecutive integers starting with the number k. Each bad contains as many different flowers as the number marked on the bag. A boy has to pick up k flowers from any of the bags. In how many different ways can he do it?
280. How many committes of 11 persons can be made out of 50 persons if three particular person are not to be included together?
281. There are m intermediate stations on way railway line between two place P and Q. In how many ways can the train stop at three of these intermediate stations, no two of which are consecutive?
282. A is an n-element set. A subset of P of A is chosen. The set A is reconstructed by replacing the elements of P. Then a subset Q of A is chosen. Find the number of ways of choosing P and Q such that (a) $P \cap Q$ contains exactly 2 elements, and (b) $P \cap Q=\phi$.
283. A is an n-element set. A subset P_{1} is chosen. The set A is reconstructed by replacing the elements of P_{1}. Then a subset P_{2} is chosen ad again the set is reconstructed by replacing elements of P_{2}. In this way m subsets $P_{1}, P_{2}, \ldots, P_{m}$ are chosen, where $m>1$. Find the number of ways of choosing these subesets such that
i. $\quad P_{1} \cup P_{2} \cup \ldots \cup P_{m}$ contains all the elements of A except one.
ii. $P_{1} \cup P_{2} \cup \ldots \cup P_{m}=A$.
iii. $P_{1} \cap P_{2} \cap \ldots \cap P_{m}=\phi$.
284. There are three sections in a question paper, each containing 5 questions. A candidate has to solve any 5 questions, choosing at least one from each section. Find the number of ways in which the candidate can choose the questions.
285. Two numbers are selected at random from $1,2,3, \ldots, 100$ and are multiplied. Find the number of ways in which the two numbers can be selected so that the product thus obtained is divisible by 3 .
286. In how many ways can a mixed doubles game in tennis be arranged from 5 married couples, if no husband and wife play in the same game?
287. There are n concurrent lines and another line parallel to one of them. How many different triangles will be formed by the $(n+1)$ lines?
288. In a plane there are n lines no two of which are parallel and no three are concurrent. How many different triangles can be formed with their points of intersection as vertices?
289. The England cricket team is to be selected out of fifteen players, five of them are bowlers. In how many ways can the team be selected so the team contains at least three bowler?
290. There are two bags each containing m balls. Find the number of ways in which equal no. of balls can be selected from both bags if at least one ball from each bag has to be selected.
291. A committee of 12 is to be formed from 9 women and 8 men. In how many ways can this be done if at least 5 wmen have to be included in a committee. In how many of these committees, the women are in majority and the men are in majority?
292. m equi-spaced horizontal lines are intersected by n equi-spaced vertical lines. If $m<n$ and the distance between two successive vertical lines, show that the number of squares formed by these lines $\frac{1}{6} m(m-1)(3 n-m-1)$.
293. There are two sets of parallel lines, their equations being $x \cos \alpha+y \sin \alpha=p ; p=$ $1,2,3, \ldots, m$ and $y \cos \alpha-x \sin \alpha=q ; q=1,2,3, \ldots, n(n>m)$, where α is a constant. Show that the lines form $\frac{1}{6} m(m-1)(3 n-m-1)$ squares.
294. In how many different ways can a set A of $3 n$ elements be partitioned in 3 equal number of elements?
295. In how many ways 50 different objects can be divided in 5 persons so that three of them get 12 objects each and two of them get 7 objects each?
296. If a, b, c, \ldots, k are positive integers such that $a+b+c+\ldots+k \leq n$, show that $\frac{n!}{a!b!\ldots k!}$ is a positive integer.
297. If $n \in N$, show that $\frac{\left(n^{2}\right)!}{(n!)^{n+1}}$ is an integer.
298. If $a b=n(a>1, b>1)$, then show that $(n-1)$! is divisible by both a and b.
299. Show that $(k n)!$ is divisible by $(n!)^{k}$.
300. In how may ways 20 apples be distributed among 5 persons if each person can get any number of apples?
301. In how many ways r flags be displayed on n poles in a row, disregarding the limitation on the number of flags on a pole?
302. If $x+y+z=n$, where $x, y, z, n \in \mathbb{P}$, find the number of integral solution of this equation.
303. Find the number of integeral soolutions of $x+y+z=0, x, y, z \geq-5$.
304. in an examination, the maximum marks for each of the three papers is n; for the fourth paper it is $2 n$. Prove that the number of ways in which a student can get $3 n$ marks is $\frac{1}{6}(n+1)\left(5 n^{2}+10 n+6\right)$.
305. Find the numebr of positive integral solutions of the equation $x_{1}+x_{2}+x_{3}=10$.
306. Find the numebr of non-negative integral solutions of equation $3 x+y+z=24$.
307. Find the number of non-negative integral solutions of equation $x+y+z+w=29$, where $x \geq 1, y \geq 2, z \geq 3, w \geq 0$.
308. Find the number of non-negative integral solutions of the equation $a+b+c+d=20$.
309. Find the number of non-negative integral solutions of the equation $x_{1}+x_{2}+\ldots+x_{k} \leq n$.
310. Find the number of non-negative integral solutions of the equation $2 x+2 y+z=10$.
311. How many sets of 2 and 3 (different) numbers can be formed by using numbers between 0 and 180 (both inclusive) so that their average is 60 .
312. If combinations of letters be formed by taking only 5 at a time out of the letters of the word '`Metaphysics'", in how many of them will the letter T occur? 313. How many selections and arrangements of 4 letters can be made from the letters of the word '`Proportion'?
314. A five letter word is formed such that the letter in the odd numbered positions are taken from the letters which appear without repetitioni n the word ' 'Mathematics'. Further, the letters appearing in the even numbered positions are taken from the letter which appear with repetitions in the same word ' 'Mathematics'. In how many different ways can the fice letter word be formed?
315. Box 1 contains six block lettered A, B, C, D, E and F. Box 2 contains four block lettered W, X, Y and Z. How many five letter codewords can be formed by using three blocks from box 1 and two blocks from box 2 ?
316. A tea party is arranged for $2 m$ people along two sides of a long tale with m chairs on each side. r men wish to siit on one particular side and s on the other. In how many ways can then be seated? $(r, s \leq m)$
317. A gentleman invites a party of 10 friends to a dinner and there are 6 places at round tale and the remaining 4 at another. Prove that the no. of ways in which he can arrange them among themselves is $151,200$.
318. A family consists of a grandfather, m sons and daughters and $2 n$ grandchildren. There are to be seated in a row for dinner. The grandchildren wisg to occupy the n seats at each end and grandfather refuses to have a grandchild on either side of him. In how many ways can the family be seated?
319. There are $2 n$ guests at a dinner party. If the master and mistress of the house have fixed seats opposite one another and that there are two specified guests who must not be placed next to one another, find the number of ways the guests can be placed.
320. There are $4 n$ objects of which n are alike and all the rest are different. Find the number of permutations of $4 n$ objects taken $2 n$ at a time, each permutation containing the n like objects.

Chapter 6

Mathematical Induction

Any reasoning involving passage from particular assertions to general assertions, which derive their validity from the validity of particular assertions is called induction. Mathematical induction is a mathematical proof technique which enables us to draw conclusions about a general law on the basis of particular cases. It is used to prove a statement $P(n)$ holds for every natural number $n=0,1,2,3, \ldots$; that is, the overall statement is a seuqnece of infinitely many cases $P(0), P(1), P(2), P(3), \ldots$ The earliest rigorous use of induction was by Gersonides (1288-1344). The first explicit formulation of the principle was given by Pascal in his Traité du triangle arithmétique (1665).

In boolean algebra, a statement which is either true and false is called a proposition. $P(n)$ will denote a proposition whose truth value depends on natural numbers. For example, we recall the sum of first n natural numbers from arithmetic progression as $1+2+\ldots+n=\frac{n(n+1)}{2}$ is denoted by $P(n)$, then we can write $P(n)=1+2+\ldots+n=\frac{n(n+1)}{2} \operatorname{Here} P(2)$ is true means the sum of first two natural numbers is equal to $1+2=\frac{2.3}{2}=3$.

Mathematical induction is used to prove propositions in many branches of algebra, geometry and analysis.

6.1 Principle of Finite Mathematical Induction

The proposition $P(n)$ is assumed to be true for all natural numbers if the following two conditions are satisfied:

1. The proposition $P(n)$ is true for $n=1$ i.e. $P(1)$ is true.
2. $P(m)$ is true $\Rightarrow P(m+1)$ is true where m is an arbitrary natural number.

6.2 Extended Form of Mathematical Induction

1. If $P(n)$ is a proposition such that
2. $P(1), P(2), \ldots, P(k)$ are true.
3. $P(m), P(m+1), \ldots, P(m+k-1)$ are true implies $P(m+k)$ is true.
4. If $P(n)$ is a proposition such that
5. $P(r)$ is true.
6. $P(r), P(r+1), \ldots, P(m)$ are true implies $P(m+1) i s t r u e$.

6.3 Problems

1. Show that $1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.
2. Show that $\frac{1}{1.2}+\frac{1}{2.3}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}$.
3. Show that $1^{3}+2^{3}+\ldots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$.
4. Show that $1.3+2.3^{2}+\ldots+n .3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}$.
5. Show that $\cos \alpha+\cos 2 \alpha+\ldots+\cos n \alpha=\sin \frac{n \alpha}{2} \csc \frac{\alpha}{2} \cos \frac{(n+1) \alpha}{2}$.
6. Show that $\tan ^{1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}+\ldots+\tan ^{-1} \frac{1}{n^{2}+n+1}=\tan ^{-1} \frac{n}{n+2}$.
7. Show that ${ }^{n} C_{1}+2 \cdot{ }^{n} C_{2}+\ldots+n .{ }^{n} C n=n .2^{n-1}$.
8. If $u_{1}=1, u_{2}=1$ and $\left.u_{n+2}=u_{n+1}+u\right) n, n \geq 1 . u_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right] \forall n \geq 1$.
9. Show that $11^{n+2}+12^{2 n+1}$, where $n \in \mathbb{N}$, is divisible by 133 .
10. If $p \in \mathbb{N}$, show that $p^{n+1}+p^{2 n-1}$ is divisible by $p^{2}+p+1$ for every positive integer n.
11. Show that $2^{n}>2 n+1 \forall n>2$.
12. Show that $n^{4}<10^{n} \forall n \geq 2$.
13. Show that $1^{3}+3^{3}+\ldots+(2 n-1)^{3}=n^{2}\left(2 n^{2}-1\right)$.
14. Show that $3 \cdot 2^{2}+3^{3} \cdot 2^{3}+\ldots+3^{n} \cdot 2^{n+1}=\frac{12}{5}\left(6^{n}-1\right)$.
15. Show that $\frac{1}{1.4}+\frac{1}{4.7}+\ldots+\frac{1}{(2 n-2)(3 n+1)}=\frac{n}{3 n+1}$.
16. Show that $(\cos \theta+i \sin \theta)=\cos n \theta+i \sin n \theta$.
17. Show that $\cos \theta \cdot \cos 2 \theta \ldots \cos 2^{n-1} \theta=\frac{\sin 2^{n} \theta}{2^{n} \sin \theta}$.
18. Show that $\sin \alpha+\sin 2 \alpha+\ldots+\sin n \alpha=\frac{\sin \frac{n \alpha}{2}}{\sin \frac{\alpha}{2}} \sin \frac{n+1}{2} \alpha$.
19. If $a_{1}=1$ and $a_{n+1}=\frac{a_{n}}{n+1}, n \geq 1$, show that $a_{n+1}=\frac{1}{(n+1)!}$.
20. If $a_{1}=1, a_{2}=5$ and $a_{n+2}=5 a_{n+1}-6 a_{n}, n \geq 1$, show that $a_{n}=3^{n}-2^{n}$.
21. If $u_{0}=2, u_{1}=3$ and $u_{n+1}=3 u_{n}-2 u_{n-1}$, show that $u_{n}=2^{n}-1, n \in \mathbb{N}$.
22. If $a_{0}=0, a_{1}=1$ and $a_{n+1}=3 a_{n}-2 a_{n-1}$, show that $a_{n}=2^{n}-1$.
23. If $A_{1}=\cos \theta, A_{2}=\cos 2 \theta$ and for every natural number $m>2, A_{m}=2 A_{m-1} \cos \theta-$ A_{m-2}, prove that $A_{n}=\cos n \theta$.
24. For any positive number n, show that $(2 \cos \theta-1)(2 \cos 2 \theta-1) \ldots\left(2 \cos 2^{n-1} \theta-1\right)=$ $\frac{2 \cos 2^{n} \theta+1}{2 \cos \theta+1}$.
25. Show that $\tan ^{-1} \frac{x}{1.2+x^{2}}+\tan ^{-1} \frac{x}{2.3+x^{2}}+\ldots+\tan ^{-1} \frac{x}{n(n+1)+x^{2}}=\tan ^{-1} x-\tan ^{-1} \frac{x}{n+1}, x \in$ \mathbb{R}.
26. Prove that $3+33+\ldots+\frac{33 \ldots 3}{n \text { digits }}=\frac{10^{n+1}-9 n-10}{27}$.
27. Show that $\int_{0}^{\pi} \frac{\sin (2 n+1) x}{\sin x} d x=\pi$.
28. Show that $\int_{0}^{\pi} \frac{\sin ^{2} n x}{\sin ^{2} x} d x=n \pi$.
29. Show that $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} n x}{\sin ^{2} x} d x=1+\frac{1}{3}+\ldots+\frac{1}{2 n-1}$.
30. Show that if $n \in \mathbb{N}, n(n+1)(n+5)$ is divisible by 6 .
31. Show that if $n \in \mathbb{N}, n^{3}+(n+1)^{3}+(n+2)^{3}$ is divisble by 9 .
32. Show that if $n \in \mathbb{P}$, and n is even then $n\left(n^{2}+20\right)$ is divisible by 48 .
33. Show that if $n \in \mathbb{N}, 4^{n}-3 n-1$ is divisible by 9 .
34. Show that if $n \in \mathbb{N}, 3^{2 n}-1$ is divisible by 8 .
35. Show that if $n \in \mathbb{N}, 5 \cdot 2^{3 n-2}+3^{3 n-1}$ is divisible by 19 .
36. Show that if $n \in \mathbb{N}, 7^{2 n}+2^{3 n-3} .3^{n-1}$ is divisible by 25 .
37. Show that if $n \in \mathbb{N}, 10^{n}+3.4^{n+2}+5$ is divisible by 9 .
38. Show that if $n \in \mathbb{N}, 3^{4 n+2}+5^{2 n+1}$ is divisible by 14 .
39. Show that if $n \in \mathbb{N}, 3^{2 n+2}-8 n-9$ is divisible by 64 .
40. Show that if $n \in \mathbb{N}, n^{7}-n$ is divisible by 7 .
41. Show that if $n \in \mathbb{N}, \frac{n^{3}}{3}+n^{2}+\frac{5}{3} n+1$ is a natural number.
42. Show that $x^{n}+y^{n}$ is divisible by $x+y$, where n is any odd integer.
43. Show that $x^{n}-y^{n}$ is divisible by $x-y$, where $n \in \mathbb{N}$.
44. Prove that $x\left(x^{n-1}-n a^{n-1}\right)+a^{n}(n-1)$ is divisible by $(x-a)^{2}$ for all positive integers $n>1$.
45. Show that $\frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}$ is a natural number.
46. Show that $\frac{n^{7}}{7}+\frac{n^{5}}{5}+\frac{2 n^{3}}{3}-\frac{n}{105}$ is an integer.
47. Show that $2^{n}>n^{2}, n \geq 5$.
48. Show that $1+2+\ldots+n \leq \frac{1}{8}(2 n+1)^{2}$.
49. Show that $n^{n}<(n!)^{2}, n>2$.
50. Show that $n!>2^{n}, n>3$.
51. Show that $\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}>\frac{13}{24}, n>1$.
52. Prove that $\frac{1}{2} \cdot \frac{2}{3} \cdot \cdots \cdot \frac{2 n-1}{2 n} \leq \frac{1}{\sqrt{3 n+1}}$, where $n \in \mathbb{N}$.
53. Prove that $\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}<\frac{25}{36}$, where $n \geq 2, n \in \mathbb{N}$.
54. Prove that $\sqrt{a+\sqrt{a+\sqrt{a+\cdots n \sim \text { terms } \sim}}} \leq \frac{1+\sqrt{4 a+1}}{2}$, where $a \geq 0$.
55. Prove that $\sqrt{2 \sqrt{3 \sqrt{4 \ldots \sqrt{n}}}}<3$, where $n \geq 2, n \in \mathbb{N}$.
56. Prove that $x_{1}^{2}+3 x_{2}^{2}+5 x_{3}^{2}+\cdots+(2 n-1) x_{n}^{2} \leq\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{2}$, where $x_{1} \geq x_{2} \geq$ $\cdots \geq x_{n} \geq 0$.
57. Prove that $\left|\sin \left(x_{1}+x_{2}+\cdots+x_{n}\right)\right| \leq\left|\sin x_{1}\right|+\left|\sin x_{2}\right|+\cdots+\left|\sin x_{n}\right|$, where $x_{1}, x_{2}, \ldots, x_{n} \in[0, \pi]$.
58. Prove that $\sin \left(x_{1}+x_{2}+\cdots+x_{n}\right) \leq \sin x_{1}+\sin x_{2}+\cdots+\sin x_{n}$, where $x_{1}, x_{2}, \ldots, x_{n} \in$ $[0, \pi]$.
59. Prove that $\left|\cos x_{1}\right|+\left|\cos x_{2}\right|+\left|\cos x_{3}\right|+\left|\cos x_{4}\right|+\left|\cos x_{5}\right| \geq 1$, where $x_{1}+x_{2}+x_{3}+$ $x_{4}+x_{5}=0$.
60. Bellman's inequality: If a function $f(x)$ is defined in $[0, a)$ or $[0, \infty)$ and for arbitrary numbers $x \geq y \geq z$ from that interval we have $f(x)-f(y)+f(z) \geq f(x-y+z)$ and $f(0) \leq 0$, then for all numbers $a>x_{1} \geq x_{2} \geq \cdots \geq x_{n} \geq 0$, prove that following inequality holds $f\left(x_{1}\right)-f\left(x_{2}\right)+f\left(x_{3}\right)-\cdots+(-1)^{n} f\left(x_{n}\right) \geq f\left(x_{1}-x_{2}+\cdots+(-1)^{n} f\left(x_{n}\right)\right)$.
61. Prove that $\tan x_{1}-\tan x_{2}+\cdots+(-1)^{n} \tan x_{n} \geq \tan \left(x_{1}-x_{2}+\cdots+(-1)^{n} x_{n}\right)$, where $\frac{\pi}{2}>x_{1} \geq x_{2} \geq \cdots \geq x_{n} \geq 0$.
62. Prove that $a_{1}^{r}-a_{2}^{r}+\cdots+(-1)^{n} a_{n}^{r} \geq\left(a_{1}-a_{2}+\cdots+(-1)^{n} a_{n}\right)^{r}$, where $a_{1} \geq a_{2} \geq \cdots \geq$ $a_{n} \geq 0, r \geq 1$.
63. Prove that $\left(x_{1}+x_{2}+\cdots+x_{5}\right)^{2} \geq 4\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{5}+x_{5} x_{1}\right)$, where $x_{1}, x_{2}, \ldots, x_{5}>0$.
64. Prove that $x_{1} \sqrt{x_{n}^{2}+x_{2}^{2}}+x_{2}^{2} \sqrt{x_{1}^{2}+x_{3}^{2}}+\cdots+x_{n-1} \sqrt{x_{n-2}^{2}+x_{n}^{2}}+x_{n} \sqrt{x_{n-1}^{2}+x_{1}^{2}} \leq \frac{1}{2}\left(x_{1}+\right.$ $\left.x_{2}+\cdots+x_{n}\right)^{2}$, where $n \geq 3$, and $x_{1}, x_{2}, \ldots, x_{n}>0$.
65. Prove that $\frac{1}{2}\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{2} \leq\left(x_{1}+2 x_{2}+\cdots+n x_{n}\right) \cdot \max \left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where $x_{1}, x_{2}, \ldots, x_{n} \geq 0$.
66. Prove that $a_{1}+a_{2}^{2}+\cdots+a_{n}^{n} \leq n a_{1} a_{2} \ldots a_{n}$, where $a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq 1$.
67. Prove that $a_{1}+a_{2}^{2}+\cdots+a_{n}^{n} \geq n a_{1} a_{2} \ldots a_{n}$, where $0 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n} \leq 1$.
68. Prove that $\frac{a_{2}^{2}}{a_{1}}+\frac{a_{3}^{2}}{a_{2}}+\cdots+\frac{a_{n}^{2}}{a_{n-1}} \geq 4\left(a_{n}-a_{1}\right)$, where $a_{1}, a_{2}, \ldots, a_{n}>0$.
69. Prove that $\frac{a_{1}^{3}}{b_{1} c_{1}}+\frac{a_{2}^{3}}{b_{2} c_{2}}+\cdots+\frac{a_{3}^{3}}{b_{n} c_{n}} \geq \frac{\left(a_{1}+a_{2}+\cdots+a_{n}\right)^{3}}{\left(b_{1}+b_{2}+\cdots+b_{n}\right)\left(c_{1}+c_{2}+\cdots+c_{n}\right)}$, where $a_{i}, b_{i}, c_{i}>0, i=$ $1,2, \ldots, n$.
70. If $f(x)$ is defined in I and is a convex function, then $\left(x_{2}+x_{1}\right)\left[f\left(x_{2}\right)-f\left(x_{1}\right)\right]+\left(x_{3}+\right.$ $\left.x_{2}\right)\left[f\left(x_{3}\right)-f\left(x_{2}\right)\right]+\cdots+\left(x_{n}+x_{n-1}\right)\left[f\left(x_{n}\right)-f\left(x_{n-1}\right)\right] \geq\left(x_{n}+x_{1}\right)\left[f\left(x_{n}\right)-f\left(x_{n-1}\right)\right]$, where $n \geq 2, x_{1}<x_{2}<$ cdots $<x_{n}, x_{1}, x_{2}, \ldots, x_{n} \in I$.
71. Prove that $a \sqrt{b}+b \sqrt{c}+c \sqrt{a} \geq a \sqrt{c}+b \sqrt{a}+c \sqrt{b}$, where $a \geq b \geq c \geq 0$.
72. Prove that $x_{1}^{x_{2}} \cdot x_{2}^{x_{3}} \cdot \cdots \cdot x_{n}^{x_{1}} \geq x_{2}^{x_{1}} \cdot x_{3}^{x_{2}} \cdot \cdots \cdot x_{n}^{x_{n-1}} \cdot x_{1}^{x_{n}}$, where $x_{n} \geq x_{n-1} \geq \cdots x_{1}>0, n \geq 3$.
73. Prove that $\frac{a(c-b)}{(c+b)(2 a+c+b)}+\frac{b(a-c)}{(a+c)(2 b+a+c)}+\frac{c(b-a)}{(b+a)(2 c+b+a)} \leq 0$, where $a \geq b \geq c>0$.
74. Prove that $\frac{a_{1}+a_{2}+\cdots+a_{n-1}}{n-1}+\frac{a_{1}+a_{2}+\cdots+a_{n+1}}{n+1} \geq 2 \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}$, where $n \geq 2, \frac{a_{k}+a_{k+2}}{2} \geq$ $a_{k+1}, k=1,2, \ldots, n-1$.
75. Prove that $\frac{a_{1}+a_{3}+\cdots+a_{2 n-1}}{n} \geq \frac{a_{0}+a_{2}+\cdots+a_{2 n}}{n+1}$, where $\frac{a_{k-1}+a_{k+1}}{2}, k=1,2, \ldots, 2 n-1, n \in \mathbb{N}$.
76. Prove that $\frac{a^{0}+a^{2}+\cdots+a^{2 n}}{a+a^{3}+\cdots+a^{2 n-1}} \geq \frac{n+1}{n}$, where $a>0, n \in \mathbb{N}$.
77. Prove that $1+\frac{1}{2}+\cdots+\frac{1}{n}>\ln (n+1)$, where $n \in \mathbb{N}$.
78. Prove that $1+\frac{1}{2 \sqrt{2}}+\cdots+\frac{1}{n \sqrt{n}} \leq 3-\frac{2}{\sqrt{n}}$, where $n \in \mathbb{N}$.
79. Prove that $(1+\alpha)^{n} \geq 1+n \alpha+\frac{n(n-1)}{2} \alpha^{2}$, where $\alpha \geq 0, n \in \mathbb{N}$.
80. Prove that $k!\geq\left(\frac{k+1}{e}\right)^{k}$, where $k \in \mathbb{N}$.
81. Prove that $\sum_{i=0}^{n}\left|\sin \left(2^{i} x\right)\right| \leq 1+\frac{\sqrt{3}}{2} n$, where $n=0,1,2, \ldots$.
82. Prove that $\cos \alpha+\frac{\cos 2 \alpha}{2}+\cdots+\frac{\cos n \alpha}{n} \geq-\frac{1}{2}$, where $n \in \mathbb{N}, 0 \leq \alpha \leq \frac{\pi}{2}$.
83. Prove that $\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{3}}+\cdots+\frac{a_{n-1}}{a_{n}}+\frac{a_{n}}{a_{1}}<2 n-1$, where $a_{1}, a_{2}, \ldots, a_{n}>1, n \geq 2$ and $\left|a_{k+1}-a k\right|<1, \forall k \in[1, n-1]$.
84. Prove that $\frac{\sqrt{x_{1}-x_{1}}}{x_{2}}+\frac{\sqrt{x_{3}-x_{2}}}{x_{3}}+\cdots+\frac{x_{n+1}-x_{n}}{x_{n+1}} \leq \frac{\sqrt{4 n-3}}{2}$, where $n \in \mathbb{N}$ and $x_{n+1} \geq x_{n} \geq$ $\cdots x_{2} \geq x_{1}=1$.
85. Prove that if $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}>0, \beta_{1}, \beta_{2}, \ldots, \beta_{n}>0$ and $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n} \leq \beta_{1}+\beta_{2}+\ldots+$ $\beta_{n} \leq \pi$, then $\frac{\cos \beta_{1}}{\sin \alpha_{1}}+\frac{\cos \beta_{2}}{\sin \alpha_{2}}+\cdots+\frac{\cos \beta_{n}}{\sin \alpha_{1}} \leq \frac{\cos \alpha_{1}}{\sin \alpha_{1}}+\frac{\cos \alpha_{2}}{\sin \alpha_{2}}+\cdots+\frac{\cos \alpha_{n}}{\sin \alpha_{n}}$.
86. Prove that $2\left(a^{2012}+1\right)\left(b^{2012}+1\right)\left(c^{2012}+1\right) \geq(1+a b c)\left(a^{2011}+1\right)\left(b^{2011}+1\right)\left(c^{2011}+1\right)$, where $a, b, c>0$.
87. Newton's inequality: $b_{k}^{2} \geq b_{k-1} b_{k+1}$, for $k=2,3, \ldots, n-1$, where $n \geq 2, n \in$ $\mathbb{N}, a_{1}, a_{2}, \ldots, a_{n}>0$, and $b_{k}=\frac{1}{C_{n}^{k}}\left(a_{1} a_{2} \cdots a_{k-1} a_{k}+a_{1} a_{2} \cdots a_{k-1} a_{k+1}+\cdots+\right.$ $\left.a_{1} a_{2} \cdots a_{k-1} a_{n}+\cdots+a_{n-k+1} a_{n-k} \cdots a_{n-1} a_{n}\right)$.
88. Prove that $\left(\frac{a_{2}}{a_{1}}-\frac{a_{1}}{a_{2}}\right)+\left(\frac{a_{3}}{a_{2}}-\frac{a_{2}}{a_{3}}\right)+\cdots+\left(\frac{a_{n}}{a_{n-1}}-\frac{a_{n-1}}{a_{n}}\right) \leq \frac{a_{n}}{a_{1}}-\frac{a_{1}}{a_{n}}$, where $a \geq 2,0 \leq a_{1} \leq$ $a_{2} \leq \cdots \leq a_{n}$.
89. Prove that $\left(1+a_{1}\right)\left(1+a_{2}\right) \ldots\left(1+a_{n}\right) \geq 1+a_{1}+a_{2}+\cdots+a_{n}$, where $a_{1}, a_{2}, \ldots, a_{n}>-1$ and the numbers have the same sign.
90. Prove that $C \leq D \leq 2 C$, where $C=\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}+\cdots+\left(a_{n}-b_{n}\right)^{2}, D=$ $\left(a_{1}-b_{n}\right)^{2}+\left(a_{2}-b_{n}\right)^{2}+\cdots+\left(a_{n}-b_{n}\right)^{2}, b_{k}=\frac{a_{1}+a_{2}+\cdots+a_{k}}{k}, k=1,2, \ldots, n$.
91. Prove that $\sqrt[n]{n}>\sqrt[n+1]{n+1}$, where $n \geq 3, n \in \mathbb{N}$.
92. Prove that $\left(1+\frac{1}{n}\right)^{k}<1+\frac{k}{n}+\frac{k^{2}}{n^{2}}$, where $k \leq n, n, k \in \mathbb{N}$.
93. Prove that $\left(1+\frac{m}{n}\right)^{\frac{n}{m}}<3$, where $m, n \in \mathbb{N}$.
94. Prove that $1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\cdots+\frac{x^{2 k}}{(2 k)!}>0$, where $k \in \mathbb{N}$.
95. Prove that $\sum_{i=1}^{n} \frac{1}{a_{i}} \leq \frac{1}{a_{1} a_{n}}\left[n\left(a_{1}+a_{n}\right)-\sum_{i=1}^{n} a_{i}\right]$, where $0<a_{1} \leq a_{2} \leq \cdots \leq a_{n}$.
96. Prove that $\frac{a_{1}+a_{2}+\cdots+a_{k}}{k}<\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}<\frac{a_{k+1}+a_{k+1}+\cdots+a_{n}}{n-k}$, where $\left.a_{1}<a_{2}<\cdots<a_{n}, n\right\rangle$ $k, n, k \in \mathbb{N}$.
97. Prove that $a_{1}^{2}-a_{2}^{2}+a_{3}^{2}-\cdots-a_{2 n}^{2}+a_{2 n+1}^{2} \geq\left(a_{1}-a_{2}+\cdots-a_{2 n}+a_{2 n+1}\right)^{2}$, where $a_{1} \geq a_{2} \geq \cdots \geq a_{2 n+1} \geq 0$.
98. Prove that $x_{1}+x_{1}\left(x_{2}-x_{1}\right)+\cdots+x_{n-1}\left(x_{n}-x_{n-1}\right) \leq \frac{(n-1) x_{n}^{2}+2 x_{n}+n-1}{2 n}$, where $n \geq 2$.
99. Prove that $1^{1} .2^{2} \ldots . n^{n} \geq(2 n)$!, where $n \geq 5, n \in \mathbb{N}$.
100. Prove that $\frac{\left(2 m_{1}\right)!}{m_{1}!} \cdot \frac{\left(2 m_{2}\right)!}{\left.m_{2}\right)!} \cdots \cdot \frac{\left(2 m_{n}\right)!}{m_{n}!} \geq 2^{S}$, where $m_{1}, m_{2}, \cdots, m_{n} \in \mathbb{Z}_{0}$ and $m_{1}+m_{2}+\cdots+$ $m_{n}=S$.
101. Prove that $\frac{1}{a+b}+\frac{1}{a+2 b}+\cdots+\frac{1}{a+n b}<\frac{n}{\sqrt{a(a+n b)}}$, where $a, b>0$ and $n \in \mathbb{N}$.
102. Prove that $\sum_{k=1}^{n-1} \frac{n}{n-k} \cdot \frac{1}{2^{k-1}}<4$, where $n \geq 2, n \in \mathbb{N}$.
103. Prove that $\left(1+\frac{1}{n}\right)^{k}<1+\frac{k}{n}+\frac{k^{2}}{2 n^{2}}$, where $k, n \in \mathbb{N}$ and $(k-1)^{2}<n$.
104. Prove that $\left(1+\frac{1}{n}\right)^{n}\left(1+\frac{1}{4 n}\right)<\left(1+\frac{1}{n+1}\right)^{n+1}\left(1+\frac{1}{4(n+1)}\right)$, where $n \in \mathbb{N}$.
105. Prove that $\sum_{i=0}^{n}\left|\cos 2^{i} x\right| \geq \frac{n}{2}$, where $n \in \mathbb{N}$.
106. Prove that $\sin \alpha+\frac{\sin 2 \alpha}{2}+\cdots+\frac{\sin n \alpha}{n} \geq 0$, where $n \in \mathbb{N}$ and $0 \leq \alpha \leq \pi$.
107. Prove that $\cos \alpha+\frac{\cos 2 \alpha}{2}+\cdots+\frac{\cos n \alpha}{n} \geq-1$, where $n \in \mathbb{N}$.
108. Prove that $\left(1+a_{1}\right)\left(2+a_{2}\right) \cdots\left(n+a_{n}\right) \leq 2 . n$!, where $n \geq 2, a_{1}, a_{2}, \ldots, a_{n}>0$ and $a_{1}+a_{2}+\cdots+a_{n}=1$.
109. Prove that $(1-a)\left(a^{k_{1}}+a^{k_{2}}+\cdots+a^{k_{n}}\right)^{2}<(1+a)\left(a^{2 k_{1}}+a^{2 k_{2}}+\cdots+a^{2 k_{n}}\right)$, where $n \geq 2, n \in \mathbb{N}$.
110. For arbitrary positive integer $n>1$ find the smallest value C if the inequality $\frac{a_{1}-b_{1}}{a_{1}+b_{1}}+$ $\frac{a_{2}-b_{2}}{a_{2}+b_{2}}+\cdots+\frac{a_{n}-b_{n}}{a_{n}+b_{n}}<C$ for all positive numbers $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ satisfying the equality $a_{1}+a_{2}+\cdots+a_{n}=b_{1}+b_{2}+\cdots+b_{n}$.
111. Prove that for an arbitrary positive integer $n>1$, one has $\frac{1-x_{1} x_{2} \ldots x_{n}}{1-y_{1} y_{2} \ldots y_{n}}<\frac{1-x_{1}}{1-y_{1}}+\frac{1-x_{2}}{1-y_{2}}+$ $\cdots+\frac{1-x_{n}}{1-y_{n}}$, where $0<y_{i} \leq x_{i}<1, i=1,2, \ldots, n$.

Chapter 7

Binomials, Multinomials and Expan-

An algebraic expression containing one term is called monomial, two terms is called binomial and more than two is called is called multinomial. Examples of a monomial expressions are $2 x, 4 y$, examples of binomial expressions are $a+b, x^{2}+y^{2}, x^{3}+y^{3}, x+\frac{1}{y}$ and exaamples of multinomial expressions are $1+x+x^{2}, a^{2}+2 a+b^{2}, a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$.

7.1 Binomial Theorem

Newton gave binomial theorem, by which we can expand any opwer of a binomial expression as a series. First we consider only positive integral values of exponent. For positive integral exponent the formula has the following form:

$$
(a+x)^{n}={ }^{n} C_{0} a^{n} x^{0}+{ }^{n} C_{1} a^{n-1} x^{1}+{ }^{n} C_{2} a^{n-2} x^{2}+\ldots+{ }^{n} C_{n} a^{0} x^{n}
$$

7.1.1 Proof by Mathematical Induction

Let

$$
P(n)=(a+x)^{n}={ }^{n} C_{0} a^{n} x^{0}+{ }^{n} C_{1} a^{n-1} x^{1}+{ }^{n} C_{2} a^{n-2} x^{2}+\ldots+{ }^{n} C_{n} a^{0} x^{n}
$$

When $n=1, P(1)=a+x={ }^{1} C_{0} a+{ }^{1} C_{1} x$. When $n=2, P(2)=a^{2}+2 a x+x^{2}={ }^{2} C_{0} a^{2}+{ }^{2}$ $C_{1} a x+{ }^{2} C_{2} x^{2}$. Thus we see that $P(n)$ holds good for $n=1$ and $n=2$. Let $P(n)$ is true for $n=k$ i.e.

$$
P(k)=(a+x)^{k}={ }^{k} C_{0} a^{k} x^{0}+{ }^{k} C_{1} a^{k-1} x^{1}+{ }^{k} C_{2} a^{k-2} x^{2}+\ldots+{ }^{k} C_{k} a^{0} x^{k}
$$

Multiplying both sides with $(a+x)$

$$
\begin{gathered}
P(k+1)=(a+x)^{k+1}={ }^{k} C_{0} a^{k+1} x^{0}+{ }^{k} C_{1} a^{k} x+{ }^{k} C_{2} a^{k-1} x^{2}+\ldots+{ }^{k} C_{k} a x^{k}+ \\
{ }^{k} C_{0} a^{k} x+{ }^{k} C_{1} a^{k-1} x^{2}+{ }^{k} C_{2} a^{k-2} x^{3}+\ldots+{ }^{k} C_{k} x^{k+1}
\end{gathered}
$$

Combining terms with equal powers of a and x, using the formula ${ }^{n} C_{r}+{ }^{n} C_{r+1}={ }^{n+1} C_{r+1}$ and rewriting ${ }^{k} C_{0}$ and ${ }^{k} C_{k}$ as ${ }^{k+1} C_{0}$ and ${ }^{k+1} C_{k+1}$, we get

$$
P(k+1)={ }^{k+1} C_{0} a^{k+1} x^{0}+{ }^{k+1} C_{1} a^{k} x^{1}+{ }^{k+1} C_{2} a^{k-1} x^{2}+\cdots+{ }^{k+1} C_{k+1} a^{0} x^{k+1}
$$

Thus, we see that $P(n)$ holds good for $n=k+1$ and we have proven binomial theorem by mathemtical induction.

7.1.2 Proof by Combination

We know that $(a+x)^{n}=(a+x)(a+x) \cdots[n$ factors $]$. If see only a, then we see that a^{n} exists and hence, a^{n} is a term in the final product. This is the term a^{n}, which can be written as ${ }^{n} C_{0} a^{n} x^{0}$. If we take the letter $a, n-1$ times and x once then we observe ttat x can be taken in ${ }^{n} C_{1}$ ways. Thus, we can say that the term in final product is ${ }^{n} C_{1} a^{n-1} x$. Similarly, if we
choose $a, n-2$ times and x twice then the term will be ${ }^{n} C_{2} a^{n-2} x^{2}$. Finally, like a^{n}, x^{n} will exist and can be written as ${ }^{n} C_{n} x^{n}$ for consistency. Thus, we have proven binomial theorem by combination.

7.2 Special Forms of Binomial Expansion

We have

$$
\begin{equation*}
(a+x)^{n}={ }^{n} C_{0} a^{n} x^{0}+{ }^{n} C_{1} a^{n-1} x^{1}+{ }^{n} C_{2} a^{n-2} x^{2}+\ldots+{ }^{n} C_{n} a^{0} x^{n} \tag{7.1}
\end{equation*}
$$

1. Putting $-x$ instead of x

$$
(a-x)^{n}={ }^{n} C_{0} a^{n} x^{0}-{ }^{n} C_{1} a^{n-1} x^{1}+{ }^{n} C_{2} a^{n-2} x^{2}-\ldots+(-1)^{n n} C_{n} a^{0} x^{n}
$$

2. Putting $a=1$ in Eq. 7.1

$$
(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\ldots+{ }^{n} C_{n} x^{n}
$$

3. Putting $x=-x$ in above equation

$$
(1-x)^{n}={ }^{n} C_{0}-{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}-\ldots+(-1)^{n n} C_{n} x^{n}
$$

7.3 General Term of a Binomial Expansion

We see that first term is $t_{1}={ }^{n} C_{0} a^{n} x^{0}$, second term is $t_{2}={ }^{n} C_{1} a^{n-1} x^{1}$ so general term will be

$$
t_{r}={ }^{n} C_{r-1} a^{n-r+1} x^{r-1}
$$

7.4 Middle Term of a Binomial Expansion

When n is an even number, i.e. $n=2 m, m \in \mathbb{P}$. Middle term will be $m+1$ th term i.e.

$$
t_{m+1}={ }^{n} C_{m} a^{m} m x^{m}
$$

When n an odd number, i.e. $n=2 m+1 m \in \mathbb{N}$. There will be two middle terms i.e. $m+1$ th and $m+2$ th terms will be middle terms. So

$$
t_{m+1}={ }^{n} C_{m} a^{m+1} x^{m}, t_{m+2}={ }^{n} C_{m+1} a^{m} x^{m+1}
$$

The middle terms have the largest coefficient. In case of two middle terms the coefficients of both the middle terms are equal.

7.5 Equidistant Coefficients

Binomial coefficients equidistant from start and end are equal. Coefficients of first term from start and end are ${ }^{n} C_{0}$ and ${ }^{n} C_{n}$ which are equal. Coefficients of second term from start and end are ${ }^{n} C_{1}$ and ${ }^{n} C_{n-1}$ which are equal. Similarly, coefficient of r th term from start is ${ }^{n} C_{r-1}$ and from end is ${ }^{n} C_{n-r+1}$. From combinations we know that ${ }^{n} C_{r-1}={ }^{n} C_{n-r+1}$. Thus, it is prove that coefficients of terms equidistant from start and end are equal.

7.6 Properties of Binomial Coefficients

We have proven earlier that

$$
(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\cdots+{ }^{n} C_{n} x^{n} .
$$

Putting $x=1$, we get

$$
2^{n}={ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\cdots+{ }^{n} C_{n} .
$$

Putting $x=-1$, we get

$$
0={ }^{n} C_{0}-{ }^{n} C_{1}+{ }^{n} C_{2}-\cdots+(-1)^{n n} C_{n} .
$$

Adding the last two, we have

$$
\begin{gathered}
2^{n}=2\left[{ }^{n} C_{0}+{ }^{n} C_{2}+{ }^{n} C_{4}+\cdots\right] \\
2^{n-1}{ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\cdots
\end{gathered}
$$

Subtracting, we get

$$
2^{n-1}={ }^{n} C_{1}+{ }^{n} C_{3}+{ }^{n} C_{5}+\cdots
$$

7.7 Multinomial Theorem

Consider the multinomila $\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{p}$, where n and p are positive integers. The general term of such a multinomial is givenby

$$
\frac{p!}{p_{1}!p_{2}!\ldots p_{n}!} x_{1}^{p_{1}} x_{2}^{p_{2}} \ldots x_{n}^{p_{n}}
$$

such that $p_{1}, p_{2}, \ldots, p_{n}$ are non-negative integers and $p_{1}+p_{2}+\cdots+p_{n}=p$.
We can find the general term using the binomial theorem itself. General term in the expansion $\left[x_{1}+\left(x_{2}+x_{3}+\cdots+x_{n}\right)\right]^{n}$ is

$$
\frac{n!}{p!\left(n-p_{1}\right)!} x_{1}^{p_{1}}\left(x_{2}+x_{3}+\cdots+x_{n}\right)^{n-p_{1}} .
$$

General term in expansion of $\left(x_{2}+x_{3}+\cdots+x_{n}\right)^{n-p_{1}}$ is

$$
\frac{\left(n-p_{1}\right)!}{p_{2}!\left(n-p_{1}-p_{2}\right)!} x_{2}^{p_{2}}\left(x_{3}+x_{4}+\cdots+x_{n}\right)^{n-p_{1}-p_{2}} .
$$

Proceding in this manner we obtain the general term given above.

7.7.1 Som Results on Multinomial Expansions

1. No. of terms in the multinomial $\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{p}$ is number of non-negative integral solution of the equation $p_{1}+p_{2}+\cdots+p_{n}=p$ i.e. ${ }^{n+p-1} C_{p}$ or ${ }^{n+p-1} C_{n-1}$.
2. Largest coeff. in $\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{p}$ is $\frac{n!}{(q!)^{n-r}\left[(q+1)!r^{2}\right.}$, where q is the quotient and r is the remainder of p / n.
3. Coefficient of x^{r} in $\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right)^{p}$ is $\sum \frac{n!}{p_{0}!p_{1}!p_{2}!\ldots p_{n}!} a_{0}^{p_{0}} a_{1}^{p_{1}} a_{n}^{p_{n}}$ where $p_{0}, p_{1}, \cdots, p_{n}$ are non-negative integers satisfying the equation $p_{0}+p_{1}+\ldots+p_{n}=n$ and $p_{1}+2 p_{2}+\cdots+n p_{n}=r$.

7.8 Binomial Theorem for Any Index

7.8.1 Fractional Index

Let $f(m)=(1+x)^{m}=1+m x+\frac{m(m-1)}{1.2} x^{2}+\frac{m(m-1)(m-2)}{1.2 .3} x^{3}+\cdots$, where $m \in R$ then, $f(n)=(1+x)^{n}=1+n x+\frac{n(n-1)}{1.2} x^{2}+\frac{n(n-1)(n-2)}{1.2 .3} x^{3}+\cdots$

$$
f(m) f(n)=(1+x)^{m+n}=f(m+n)
$$

$$
f(m) f(n) \ldots \text { to } k \text { factos }=f(m+n+\ldots) \text { to } k \text { terms }
$$

Let m, n, \ldots each equal to $\frac{j}{k}$

$$
\Rightarrow\left[f\left(\frac{j}{k}\right)\right]^{k}=f(j)
$$

but j is a positive integer, $f(j)=(1+x)^{j}$

$$
\begin{gathered}
\therefore(1+x)^{\frac{j}{k}}=f\left(\frac{j}{k}\right) \\
\therefore(1+x)^{\frac{j}{k}}=1+\frac{j}{k} x+\frac{\frac{j}{k}\left(\frac{j}{k}-1\right)}{1.2} x^{2}+\ldots
\end{gathered}
$$

And thus, we have proven binomial theorem for fractional index.

7.8.2 Negative Index

We can write

$$
\begin{gathered}
f(n) f(-n)=f(0)=1 \\
\Rightarrow f(-n)=\frac{1}{f(n)}=(1+x)^{-n}=1-n x+\frac{n(n-1)}{1.2} x^{2}-l d o t s
\end{gathered}
$$

7.9 General Term in Binomial Theorem for Any Index

General term is given by

$$
\frac{n \cdot(n-1) \ldots(n-r+1)}{r!} x^{r}
$$

The above expansion does not hold true when $|x|>1$ which can be quickly proved by making r arbitrarily large. For example, $(1-x)^{-1}=1+x+x^{2}+x^{3}+\ldots$. However, if we put $x=2$, then we have $(-1)^{-1}=1+2+2^{2}+\ldots$ which shows that when $x>1$ the above formula does not hold true.

From G.P. we know that $1+x+x^{2}+\ldots$ for r terms is

$$
\frac{1}{1-x}-\frac{x^{r}}{1-x}
$$

Thus, if r is very large and $|x|<1$, we can ignore the second fraction but not when $|x|>1$.

7.10 General Term for Negative Index

The $r+1$ th term is given by

$$
\begin{gathered}
\frac{-n(-n-1) \ldots(-n-r+1)}{r!}(-x)^{r} \\
=\frac{n(n+1) \ldots(n+r-1)}{r!} x^{r}
\end{gathered}
$$

7.11 Exponential and Logrithmic Series Expansions

Following expansions are useful for solving problem related to exponential and logarithmic series:

1. $e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$ to ∞, where x is any number. e lies between 2 and 3 .
2. If $a>0, a^{x}=e^{x \log _{e} a}=1+\frac{x \log _{e} a}{1!}+\frac{\left(x \log _{e} a\right)^{2}}{2!}+\ldots$
3. $\log _{e}(1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots$ to ∞ where $-1<x \leq 1$.

7.12 Problems

1. Expand $\left(x+\frac{1}{x}\right)^{5}$.
2. Use the bonimial theorem to find the exact value of $(10.1)^{5}$.
3. Simplify $(x+\sqrt{x-1})^{6}+(x-\sqrt{x-1})^{6}$.
4. If A be the sum of odd terms and B be the sum of even terms in the expansion of $(x+a)^{n}$, prove that $A^{2}-B^{2}=\left(x^{2}-a^{2}\right)^{n}$.
5. If n is a positive integer, prove that the integral part of $(7+4 \sqrt{3})^{n}$ is an odd number.
6. If $(7+4 \sqrt{3})^{n}=\alpha+$ beta, where α is a positive integer and β is a proper fraction, then prove that $(1-\beta)(\alpha+\beta)=1$.
7. Find the coefficient of $\frac{1}{y^{2}}$ in $\left(y+\frac{c^{3}}{y^{2}}\right)^{10}$.
8. Find the coefficient in $\left(1+3 x+3 x^{2}+x^{3}\right)^{15}$.
9. Find the term independent of x in $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$.
10. Find the term independent of x in $(1+x)^{m}\left(x+\frac{1}{x}\right)^{n}$.
11. Find the coefficient of x^{-1} in $\left(1+3 x^{2}+x^{4}\right)\left(x+\frac{1}{x}\right)^{n}$.
12. If a_{r} denotes the coefficient of x^{r} in the expansion $(1-x)^{2 n-1}$, then prove that $a_{r-1}+$ $a_{2 n-r}=0$.
13. Find the vallue of k so that the term independent of x in $\left(\sqrt{x}+\frac{k}{x^{2}}\right)^{10}$ is 405 .
14. Show that there will be no term containing $x^{2 r}$ in the expansion $\left(x+x^{-2}\right)^{n-3}$, if $n-2 r$ is positive but not a multiple of 3 .
15. Show that there will be a term independent of x in the expansion $\left(x^{a}+x^{-b}\right)^{n}$, only if $a n$ is a multiple of $a+b$.
16. Expand $\left(x+\frac{1}{x}\right)^{7}$ using binomial theorem.
17. Use binomial theorem to expand $\left(\frac{2 x}{3}-\frac{3}{2 x}\right)^{6}$.
18. If $(1+a x)^{n}=1+8 x+24 x^{2}+\ldots$, find a and n.
19. Find the 7 th term in the expansion of $\left(\frac{4 x}{5}-\frac{5}{2 x}\right)^{9}$.
20. Find the value of $(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}$.
21. Evaluate $(0.99)^{15}$ correct to four decimal places using binomial theorem.
22. Evaluate 999^{3} using binomial theorem.
23. Evalaute $(0.99)^{10}$ correct to four decimal places usinng binomial theorem.
24. Find the value of $(1.01)^{10}+(0.99)^{10}$ correct to 7 decimal places.
25. If A be the sum of the odd terms and B be the sum of the even terms in the expansion $(x+a)^{n}$, show that $4 A B=(x+a)^{2 n}-(x-a)^{2 n}$.
26. If n be a positive integer, prove that the integral part of $(5+2 \sqrt{6})^{n}$ is an odd integer.
27. If $(3+\sqrt{8})^{n}=\alpha+\beta$, where α, n are positive integers and β is a proper fraction, then prove that $(1-\beta)(\alpha+\beta)=1$.
28. Find the coefficient of x in the expansion of $\left(2 x-\frac{3}{x}\right)^{9}$.
29. Find the coefficient of x^{7} in the expansion of $\left(3 x^{2}+5 x^{-1}\right)^{11}$.
30. Find the coefficient of x^{9} in the expansion of $\left(2 x^{2}-x^{-1}\right)^{20}$.
31. Find the coefficient of x^{24} in the expansion of $\left(x^{2}+3 a x^{-1}\right)^{15}$.
32. Find the coefficient of x^{9} in the expansion of $\left(x^{2}-3 x^{-1}\right)^{9}$.
33. Find the coefficient of x^{-7} in the expansion of $\left(2 x-\frac{1}{3 x^{2}}\right)^{11}$.
34. Find the coefficient of x^{7} in the expansion of $\left(a x^{2}+\frac{1}{b x}\right)^{11}$ and the coefficient of x^{-7} in the expansion of $\left(a x-\frac{1}{b x}\right)^{11}$. Also, find the relation between a and b so that the coefficients are equal.
35. If x^{p} occurs in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{2 n}$, show that its coefficient is $\frac{2 n!}{\left(\frac{4 n-p}{3}\right)!\left(\frac{2 n+p}{3}\right)!}$.
36. Find the term independent of x in the following binomial expansions:
37. $\left(x+\frac{1}{x}\right)^{2 n}$,
38. $\left(2 x^{2}+\frac{1}{x}\right)^{15}$,
39. $\left(\sqrt{\frac{x}{3}}+\frac{3}{2 x^{2}}\right)^{10}$,
40. $\left(2 x^{2}-\frac{1}{x}\right)^{12}$,
41. $\left(x^{3}-\frac{3}{x^{3}}\right)^{25}$,
42. $\left(x^{2}-\frac{3}{x^{3}}\right)^{25}$,
43. $\left(x^{2}-\frac{3}{x^{3}}\right)^{10}$, and
44. $\left(\frac{1}{2} x^{1 / 3}+x^{-1 / 3}\right)^{8}$.
45. If there is a term independent of x in $\left(x+\frac{1}{x^{2}}\right)^{n}$, show that it is equal to $\frac{n!}{\left(\frac{n}{3}\right)!\left(\frac{2 n}{3}\right)!}$
46. Prove that in the expansion of $(1+x)^{m+n}$, coefficients of x^{m} and x^{n} are equal, $\forall m, n>$ $0, m, n \in \mathbb{N}$.
47. Give that the 4th term in the expansion of $\left(p x+\frac{1}{x}\right)^{n}$ is $\frac{5}{2}$. Find n and p.
48. Find the middle term in the expansion of $\left(x-\frac{1}{2 x}\right)^{12}$.
49. Find the middle terms in the expansion of $\left(2 x^{2}-\frac{1}{x}\right)^{7}$.
50. Prove that the middle term in the expansion of $\left(x+\frac{1}{x}\right)^{2 n}$ is $\frac{1.3 .5 \ldots(2 n-1)}{n!} 2^{n}$.
51. Show that the coefficient of the middle term in $(1+x)^{2 n}$ is equal to the sum of coefficients of the two middle terms in $(1+x)^{2 n-1}$.
52. Find the middle term in the expansions of;
53. $\left(\frac{2 x}{3}-\frac{3 y}{2}\right)^{20}$,
54. $\left(\frac{2 x}{3}-\frac{3}{2 x}\right)^{6}$,
55. $\left(\frac{x}{y}-\frac{y}{x}\right)^{7}$,
56. $(1+x)^{2 n}$, and
57. $\left(1-2 x+x^{2}\right)^{n}$.
58. Find the general and middle term of the expansion $\left(\frac{x}{y}+\frac{y}{x}\right)^{2 n+1} ; n$ being a positive integer show that there is no term free of x and y.
59. Show that the middle term in the expansion of $\left(x-\frac{1}{x}\right)^{2 n}$ is $\frac{1.3 .5 \ldots(2 n-1)}{n!} \cdot(-2)^{n}$.
60. If in the expansion of $(1+x)^{43}$, the coefficient of $(2 r+1)$ th term is equal to the coefficient of $(r+2)$ th term, find r.
61. If the r th term in the expansion of $(1+x)^{2 n}$ has coefficient equal to that of the $(r+4)$ th term, find r.
62. If the coefficient of $(2 r+4)$ th term and $(r-2)$ th term in the expansion of $(1+x)^{18}$ are equal, find r.
63. If the coefficient of $(2 r+5)$ th term and $(r-6)$ th term in the expansion of $(1+x)^{39}$ are equal, fin ${ }^{r} C_{12}$.
64. Given positive integers $r>1, n>2, n$ being even and the coefficient of $3 r$ th term and $(r+2)$ th term in the expansion of $(1+x)^{2 n}$ are equal, find r.
65. If the coefficient of $(p+1)$ th term in the expansion of $(1+x)^{2 n}$ be equal to that of the $(p+3)$ th term, show that $p=n-1$.
66. Find the two consecutive coefficients in the expansion of $(3 x-2)^{75}$, whose values are equal.
67. Show that the coefficient of $(r+1)$ th term in the expansion of $(1+x)^{n+1}$ is equal to the sum of the coefficients of the r th and $(r+1)$ th term in the expansion of $(1+x)^{n}$.
68. Find the greatest term in the expansion of $\left(7-\frac{10}{3}\right)^{11}$.
69. Show that if the greatest term in the expansion of $(1+x)^{2 n}$ has also the greatest coefficient x lies between $\frac{n}{n+1}$ and $\frac{n+1}{n}$.
70. Find the greatest terms in the expansions of:
71. $\left(2+\frac{9}{5}\right)^{10}$,
72. $(4-2)^{7}$, and
73. $(5+2)^{13}$.
74. Find the limits between which x must lie in order that the greatest term in the expansion of $(1+x)^{30}$ may have the greatest coefficient.
75. If $n \in \mathbb{P}$, then prove that $6^{2 n}-35 n-1$ is divisible by 1225 .
76. Show that $2^{4 n}-2^{n}(7 n+1)$ is some multuple of the square of 14 , where $n \in \mathbb{P}$.
77. Show that $3^{4 n+1}-16 n-3$ is divisible by 256 , if $n \in \mathbb{P}$.
78. If $n \in \mathbb{P}$, show that
79. $4^{n}-3 n-1$ is divisible by 9 ,
80. $2^{5 n}-31 n-1$ is divisible by 961 ,
81. $3^{2 n+2}-8 n-9$ is divisible by 64 ,
82. $2^{5 n+5}-31 n-32$ is divisible by 961 if $n>1$, and
83. $3^{2 n}-32 n^{2}+24 n-1$ is divisible by 512 if $n>2$.
84. If three consecutive coefficients in the expansion of $(1+x)^{n}$ be 165,330 and 462 , find n and r.
85. If a_{1}, a_{2}, a_{3} and a_{4} be any four consecutive coefficients in the expansion of $(1+x)^{n}$, prove that $\frac{a_{1}}{a_{1}+a_{2}}+\frac{a_{3}}{a_{3}+a_{4}}=\frac{2 a_{2}}{a_{2}+a_{3}}$.
86. If $2 \mathrm{nd}, 3 \mathrm{rd}$ and 4 th terms in the expansion of $(x+y)^{n}$ be 240, 720 and 1080 respectively, find x, y and n.
87. If a, b, c be thre three consecutive terms in the expansion of some power of $(1+x)$, prove that the exponent is $\frac{2 a c+a b+b c}{b^{2}-a c}$.
88. If 14 the, 15 th and 16 th term in the expansion of $(1+x)^{n}$ are in A.P., find n.
89. If three consecutive terms in the expansion of $(1+x)^{n}$ be 56,70 and 56 , find n and the position of the coefficients.
90. If 3 rd , 4 th and 5 th terms in the expansion of $(a+x)^{n}$ be 84,280 and 560 , find a, x and n.
91. If 6 th, 7 th and 8 th terms in the expansion of $(x+y)^{n}$ be 112,7 and $\frac{1}{4}$, find x, y and n.
92. If a, b, c and d be the 6 th, 7 th, 8 th and 9 th terms respectively in any binomial expansion, prove that $\frac{b^{2}-a c}{c^{2}-b d}=\frac{4 a}{3 c}$.
93. If the four consecutive coefficients in any binomial expansion be a, b, c, and d, then prove that (a) $\frac{a+b}{a}, \frac{b+c}{b}, \frac{c+d}{c}$ are in H.P., and (b) $(b c+a d)(b-c)=2\left(a c^{2}-b^{2} d\right)$.
94. The coefficients of the 5 th, 6 th and 7 th terms in the expansion of $(1+x)^{n}$ are in A.P. Find the value of n
95. If the coefficients of the $2 \mathrm{nd}, 3 \mathrm{rd}$ and 4 th terms in the expansion of $(1+x)^{2 n}$ are in A.P., show that $2 n^{2}-9 n+7=0$.
96. If the coefficients of r th, $(r+1)$ th and $(r+2)$ th terms in the expansion of $(1+x)^{n}$ are in A.P. show that $n^{2}-n(4 r+1)+4 r^{2}-2=0$.
97. If the coefficients of three consecutive terms in the expansion of $(1+x)^{n}$ are in the ratio 182: 84:30, prove that $n=18$.

If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\cdots+C_{n} x^{n}$, prove that
77. $C_{1}+2 . C_{2}+3 . C_{3}+\cdots+n . C_{n}=n .2^{n-1}$.
78. $C_{0}+2 \cdot C_{1}+3 . C_{2}+\cdots+(n+1) . C_{n}=(n+2) 2^{n-1}$.
79. $C_{0}+3 . C_{1}+5 \cdot C-2+\cdots+(2 n+1) \cdot C_{n}=(n+1) 2^{n}$.
80. $C_{1}-2 \cdot C_{2}+3 \cdot C_{3}-4 \cdot C_{4}+\cdots+(-1)^{n} n \cdot C_{n}=0$.
81. $C_{0}+\frac{C_{1}}{2}+\frac{C_{3}}{3}+\cdots+\frac{C_{n}}{n+1}=\frac{2^{n+1}-1}{n+1}$.
82. $C_{0}-\frac{C_{1}}{2}+\frac{C_{3}}{3}-\cdots+(-1)^{n} \frac{C_{n}}{n+1}=\frac{1}{n+1}$.
83. $\frac{C_{1}}{2}+\frac{C_{3}}{4}+\frac{C_{5}}{6}+\cdots=\frac{2^{n}-1}{n+1}$.
84. 2. $C_{0}+2^{2} \cdot \frac{C_{1}}{2}+2^{3} \cdot \frac{C_{2}}{3}+\cdots+2^{n+1} \cdot \frac{C_{n}}{n+1}=\frac{3^{n+1}-1}{n+1}$.
85. $C_{0} \cdot C_{r}+C_{1} \cdot C_{r+1}+\cdots+C_{n-r} \cdot C_{n}=\frac{(2 n)!}{(n+r)!(n-r)!}$.
86. $C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+\cdots+C_{n}^{2}=\frac{(2 n)!}{n!n!}$.
87. $\frac{C_{1}}{C_{0}}+2 \cdot \frac{C_{2}}{C_{1}}+3 \cdot \frac{C_{3}}{C_{2}}+\cdots+n \cdot \frac{C_{n}}{C_{n-1}}=\frac{n(n+1)}{2}$.
88. $\left(1+{ }^{n} C_{1}+{ }^{n} C_{2}+\cdots+{ }^{n} C_{n}\right)^{2}=1+{ }^{2 n} C_{1}+{ }^{2 n} C_{2}+\cdots+{ }^{2 n} C_{2 n}$.
89. $\left(1+{ }^{n} C_{1}+{ }^{n} C_{2}+\cdots+{ }^{n} C_{n}\right)^{5}=1+{ }^{5 n} C_{1}+{ }^{5 n} C_{2}+\cdots+{ }^{5 n} C_{5 n}$.
90. $C_{0}+5 \cdot C_{1}+9 . C_{2}+\cdots+(4 n+1) . C_{n}=(2 n+1) 2^{n}$.
91. $1-(1+x) C_{1}+(1+2 x) C_{2}-(1+3 x) C_{3}+\cdots=0$.
92. $3 . C_{1}+7 . C-2+11 . C_{3}+\cdots+(4 n-1) C_{n}=(2 n-1) 2^{n+1}$.
93. $C_{0}+\frac{C_{2}}{3}+\frac{C_{4}}{5}+\cdots=\frac{2^{n}}{n+1}$.
94. ${ }^{n} C_{0}^{n+1} C_{1}+{ }^{n} C_{1}^{n+1} C_{2}+\cdots+{ }^{n} C_{n}^{n+1} C_{n+1}=\frac{(2 n+1)!}{(n+1)!n!}$.
95. $C_{0}-2 . C-1+3 . C_{2}-\cdots+(-1)^{n}(n+1) C_{n}=0$.
96. $C_{0}-3 . C_{1}+5 . C_{2}-\cdots+(-1)^{n}(2 n+1) C_{n}=0$.
97. $a-(a-1) C_{1}+(a-2) C_{2}-(a-3) C_{3}+\cdots+(-1)^{n}(a-n) C_{n}=0$.
98. $1^{2} . C_{1}+2^{2} . C_{2}+3^{2} C_{3}+\cdots+n^{2} . C_{n}=n(n+1) 2^{n-2}$.
99. If $n>3$ and $n \in \mathbb{N}$, prove that $C_{0} \cdot a b c-C_{1}(a-1)(b-1)(c-1)+C_{2}(a-2)(b-2)(c-$
2) $-\cdots+(-1)^{n} . C_{n}(a-n)(b-n)(c-n)=0$
100. $C_{0}-2^{2} . C_{1}+3^{2} . C_{2}-\cdots+(-1)^{n}(n+1)^{2} C_{n}=0, n>2$.
101. Prove that $\sum_{r=0}^{n} r^{2} . C_{r} p^{r} q^{n-r}=n p q+n^{2} p^{2}$ if $p+q=1$.
102. $2 \cdot C_{0}+\frac{2^{2}}{2} \cdot C_{1}+\frac{2^{3}}{3} \cdot C_{2}+\cdots+\frac{2^{11}}{11} \cdot C_{11}=\frac{3^{11}-1}{11}$.
103. $C_{1}-\frac{1}{2} C_{2}+\frac{1}{3} C_{3}-\cdots+(-1)^{n} \frac{1}{n} C_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$.
104. $\frac{C_{0}}{1}-\frac{C_{1}}{5}+\frac{C_{2}}{9}-\cdots+(-1)^{n} \frac{C_{n}}{4 n+1}=\frac{n \cdot 4^{n}}{1.5 .9 \ldots(4 n+1)}$.
105. $\frac{C_{0}}{n}-\frac{C_{1}}{n+1}+\frac{C_{2}}{n+2}-\cdots+(-1)^{n} \frac{C_{n}}{2 n}=\frac{n!(n-1)!}{(2 n)!}$.
106. $\frac{C_{0}}{n(n+1)}-\frac{C_{1}}{(n+1)(n+2)}+\frac{C_{2}}{(n+2)(n+3)}-\cdots+(-1)^{n} \frac{C_{n}}{2 n(2 n+1)}=\frac{1}{(2 n+1)} \cdot \frac{1}{{ }^{2 n} C_{n-1}}$.
107. $\frac{C_{0}}{x}-\frac{C_{1}}{x+1}+\frac{C_{2}}{x+2}-\cdots+(-1)^{n} \frac{C_{n}}{x+n}=\frac{n!}{x(x+1) \ldots(x+n)}$.
108. Show that $C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-\cdots+(-1)^{n} \cdot C_{n}^{2}=0$ or $(-1)^{n / 2} \cdot \frac{n!}{\left(\frac{n!}{2}\right)^{2}}$ according as n is odd or even.
109. Show that ${ }^{m} C_{r} \cdot{ }^{n} C_{0}+{ }^{m} C_{r-1} \cdot{ }^{n} C_{1}+{ }^{m} C_{r-2} \cdot{ }^{n} C_{2}+\cdots+{ }^{m} C_{0} \cdot{ }^{n} C_{r}={ }^{m+n} C_{r}$, where m, n, r are positive integers and $r<m, r<n$.
110. ${ }^{2 n} C_{0}^{2}-{ }^{2 n} C_{1}^{2}+{ }^{2 n} C_{2}^{2}-\cdots+(-1)^{2 n} \cdot{ }^{2 n} C_{2 n}^{2}=(-1)^{n} \cdot{ }^{2 n} C_{n}$.
111. Show that $C_{1}^{2}+2 . C_{2}^{2}+3 . C_{3}^{2}+\cdots+n . C_{n}^{2}=\frac{(2 n-1)!}{[(n-1)!]^{2}}$.
112. Show that $C_{0}^{2}+\frac{C_{1}^{1}}{2}+\frac{C_{2}^{2}}{3}+\cdots+\frac{C_{n}^{2}}{n+1}=\frac{(2 n+1)!}{[(n+1)!]^{2}}$.
113. $C_{0}-2^{2} C_{1}+3^{2} C_{2}-\cdots+(-1)^{n}(n+1)^{2} C_{n}=0, n>2$.
114. $\frac{C_{1}}{2}+\frac{C_{3}}{4}+\frac{C_{5}}{6}+\cdots=\frac{2^{n}-1}{n+1}$.
115. $\frac{C_{0}}{1.2}-\frac{C_{1}}{2.3}+\frac{C_{2}}{3.4}-\cdots+(-1)^{n} \frac{C_{n}}{(n+1)(n+2)}=\frac{1}{n+2}$
116. $\frac{C_{0}}{2}-\frac{C_{1}}{3}+\frac{C_{2}}{4}-\cdots+(-1)^{n} \frac{C_{n}}{n+2}=\frac{1}{(n+1)(n+2)}$.
117. $\frac{C_{0}}{3}-\frac{C_{1}}{4}+\frac{C_{2}}{4}-\cdots+(-1)^{n} \frac{C_{n}}{n+3}=\frac{2}{(n+1)(n+2)(n+3)}$.
118.3. $C_{0}+3^{2} \frac{C_{1}}{2}+3^{3} \frac{C_{2}}{3}+\cdots+3^{n+1} \frac{C_{n}}{n+1}=\frac{4^{n+1}-1}{n+1}$.
119. If n is a positive integer in $(1+x)^{n}$, show that $2 \cdot \frac{\left(\frac{n!}{2}\right)^{2}}{n!}\left[C_{0}^{2}-2 . C_{1}^{2}+3 . C_{2}^{2}-\cdots+(-1)^{n} \cdot(n+\right.$ 1) $\left.C_{n}^{2}\right]=(-1)^{n / 2}(2+n)$.
120. Show that $\sum_{0 \leq i \leq n} \sum_{0 \leq j \leq n} C_{j} C_{j}=2^{2 n-1}-\frac{(2 n)!}{2(n!)^{2}},(i \leq j \leq n)$.
121. Show that ${ }_{r=0}^{n} C_{r}^{3}$ is equal to the coefficient of $x^{n} y^{n}$ in the expansion of $[(1+x)(1+$ $y)(x+y)]^{n}$.
122. Prove that the sum of coefficients in the expansion $\left(1+x-3 x^{2}\right)^{2163}$ is -1 .
123. If $\left(1+x-2 x^{2}\right)^{6}=1+a_{1} x+a_{2} x^{2}+\cdots+a_{12} x^{12}$, show that $a_{2}+a_{4}+a_{6}+\cdots+a_{12}=31$.
124. Find the sum of the rational terms in the expansion of $(2+\sqrt[5]{3})^{10}$.
125. Find the fractional pert of $\frac{2^{4 n}}{15}$.
126. Show that the integer just above $(\sqrt{3}+1)^{2 n}$ is divisible by $2^{n+1}, \forall n \in \mathbb{N}$.
127. Let $R=(5 \sqrt{5}+11)^{2 n+1}$ and $f=R-[R]$, where [] denotes the greatest integer function. Prove that $R f=4^{2 n+1}$.
128. Show that $(101)^{50}>(100)^{50}+(99)^{50}$.
129. Find the sum of the series $\sum_{r=0}^{n}(-1)^{r} \cdot{ }^{n} C_{r}\left[\frac{1}{2^{r}}+\frac{3^{r}}{2^{2 r}}+\frac{7^{r}}{2^{3 r}}+\cdots\right.$ to m terms $]$.
130. Find the last digit of the number $(32)^{32}$.
131. Prove that $\sum_{r=0}^{k}(-3)^{r-1} \cdot{ }^{3 n} C_{2 n-1}=0$, where $k=\frac{3 n}{2}$ and n is a positive even number.
132. If $t_{0}, t_{1}, t_{2}, t_{3}, \ldots$ be ther terms of expansion $(a+x)^{n}$, prove that $\left(t_{0}-t_{2}+t_{4}-\cdots\right)^{2}+$ $\left(t_{1}-t_{3}+t_{5}-\cdots\right)^{2}=\left(a^{2}+x^{2}\right)^{n}$.

If $\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2 n} x^{2 n}$, show that
133. $a_{0}+a_{1}+a_{2}+\cdots+a_{2 n}=3^{n}$.
134. $a_{0}-a_{1}+a_{2}-\cdots+a_{2 n}=1$.
135. $a_{0}+a_{3}+a_{6}+\cdots=3^{2 n-1}$.
136. If $S_{n}=1+q+q^{2}+\cdots+q^{n}$ and $S_{n}^{\prime}=1+\left(\frac{q+1}{2}\right)+\left(\frac{q+1}{2}\right)^{2}+\cdots+\left(\frac{q+1}{2}\right)^{n}, q \neq 1$, prove that ${ }^{n+1} C_{1}+{ }^{n+1} C_{2} \cdot S_{1}+{ }^{n+1} C_{3} \cdot S_{2}+\cdots+{ }^{n+1} C_{n+1} \cdot S_{n}=2^{n} S_{n}^{\prime}$.
137. Find the number of rational terms in the expansion of $(\sqrt[4]{9}+\sqrt[6]{8})^{1000}$.
138. Find the sum of rational terms in the expansion of $(\sqrt[3]{2}+\sqrt[5]{3})^{15}$.
139. Determine the values of x in the expansion of $\left(x+x \log _{10} x\right)^{5}$ if the third term in tat expansion is $1,000,000$.
140. Expand $\left(x+1-\frac{1}{x}\right)^{3}$.
141. Find the value of x for which the sixth term of $\left(\sqrt{2^{\log \left(10-3^{x}\right)}}+\sqrt[5]{2^{(x-2) \log 3}}\right)^{m}$ is equal to 21 and coefficients of second, third and fourth terms are the first, third and fifth terms of an A.P., given base of \log is 10 .
142. Find the values of x for which the sixth term of the expansion $\left[2^{\log _{2} \sqrt{9^{x-1}+7}}+\right.$ $\left.\frac{1}{2^{\frac{1}{\log _{2}\left(3^{x-1}+1\right)}}}\right]^{7}$ is equal to 84.
143. If $n \in \mathbb{N}$, prove that $\frac{1}{(81)^{n}}-\frac{10}{(81)^{n}} \cdot{ }^{2 n} C_{1}+\frac{10^{2}}{(81)^{n}} \cdot{ }^{2 n} C_{2}-\frac{10^{3}}{(81)^{n}} \cdot{ }^{2 n} C_{3}+\cdots+\frac{10^{2 n}}{(81)^{n}}=1$.
144. Find the value of $\lim _{n \rightarrow \infty} S_{n}=C_{n}-\frac{2}{3} C_{n-1}+\left(\frac{2}{3}\right)^{2} C_{n-2}-\cdots+(-1)^{n}\left(\frac{2}{3}\right)^{n} C_{0}$.
145. If $E=(6 \sqrt{6}+14)^{2 n+1}$ and F be fractional part of E, prove that $E F=20^{2 n+1}$.
146. Find the digits at units, tens and hundreds place in the number $(17)^{256}$.
147. Show that for $n \geq 3, n^{n+1}>(n+1)^{n}$, forall $n \in \mathbb{P}$.
148. Show that $2<\left(1+\frac{1}{n}\right)^{n}<n \forall n \in \mathbb{N}$.
149. Show that $1992^{1998}-1955^{1998}-1938^{1998}+1901^{1998}$ is divisible by 1998 .
150. Show that $53^{53}-33^{33}$ is divisible by 10 .
151. Let k and n be positive integers and $S_{k}=1^{k}+2^{k}+\cdots+n^{k}$, show that ${ }^{m+1} C_{1} S_{1}+{ }^{m+1}$ $C_{2} S_{2}+{ }^{m+1} C_{m} S_{m}=(n+1)^{m+1}-n-1$.
152. Find $\sum_{i=1}^{k} \sum_{k=1}^{n}{ }^{n} C_{k}^{k} C_{i}, i \leq k$.
153. Prove that $\sum_{r=0}^{n}(-1)^{r} \cdot{ }^{n} C_{r} \frac{1+r \log _{e} 10}{\left(1+\log _{e} 10^{n}\right)^{r}}=0$.
154. Find the remainder when $32^{32^{32}}$ is divided by 7 .
155. If $\sum_{r=0}^{2 n} a_{r}(x-2)^{r}=\sum_{r=0}^{2 n} b_{r}(x-3)^{r}$ and $a_{r}=1 \forall r \geq n$, then show that $b_{n}={ }^{2 n+1} C_{n+1}$.
156. Find the coefficient of x^{50} in $(1+x)^{1000}+2 x(1+x)^{999}+3 x^{2}(1+x)^{998}+\cdots+1001 x^{1000}$.
157. Show that ${ }^{n} C_{n}+{ }^{n+1} C_{n}+{ }^{n+2} C_{n}+\cdots+{ }^{n+k} C_{n}={ }^{n+k+1} C_{n+1}$.
158. Find the coefficient of x^{n} in $\left(1+x+2 x^{2}+3 x^{3}+\cdots+n x^{n}\right)^{2}$.
159. Find the coefficient of $x^{k}, 0 \leq k \leq n$ in the expansion of $1+(1+x)+(1+x)^{2}+\cdots+$ $(1+x)^{n}$.
160. Find the coefficient of x^{3} in $(x+1)^{n}+(x+1)^{n-1}(x+2)+(x+1)^{n-2}(x+2)^{2}+\cdots+$ $(x+2)^{n}$.
161. Simplify $\left(\frac{a+1}{a^{2 / 3}-a^{1 / 3}+1}-\frac{a-1}{a-a^{1 / 2}}\right)^{10}$ into a binomial and determine the term independent of a.
162. Find the coefficient of x^{2} in $\left(x+\frac{1}{x}\right)^{10}\left(1-x+2 x^{2}\right)$.
163. Find the coefficient of x^{4} in the expansion of $\left(1+x-2 x^{2}\right)^{6}$.
164. Find the term independent of x in $\left(1+x+2 x^{3}\right)\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$.
165. Find the term independent of x in $\left(x^{2}+\frac{1}{x^{3}}\right)^{7}(2-x)^{10}$.
166. Find the term independent of x in $\left(1+x+x^{-2}+x^{-3}\right)^{10}$.
167. Let $\left(1+x^{2}\right)^{2}(1+x)^{n}=\sum_{k=0}^{n+4} a_{k} x^{k}$. If a_{1}, a_{2} and a_{3} are in A.P., find n.
168. Show that ${ }^{m} C_{1}+{ }^{m+1} C_{2}+{ }^{m+2} C_{3}+\cdots+{ }^{m+n-1} C_{n}={ }^{n} C_{1}+{ }^{n+1} C_{2}+{ }^{n+2} C_{3}+\cdots+{ }^{n+m-1}$ C_{n}.
169. If $n \in \mathbb{N}$ and $\left(1+x+x^{2}\right)^{n}=\sum_{r=0}^{2 n} a_{r} x^{r}$, prove that (a) $a_{r}=a_{2 n-r}$, (b) $a_{0}+a_{1}+a_{2}+$ $\cdots+a_{n-1}=\frac{1}{2}\left(3^{n}-a_{n}\right)$, and $(\mathrm{c})(r+1) a_{r+1}=(n-r) a_{r}+(2 n-r+1) a_{r-1}$, where $0<r<2 n$.
170. If $\left(1-x^{3}\right)^{n}=\sum_{r=0}^{n} a_{r} \cdot x^{r} \cdot(1-x)^{3 n-2 r}$, where $n \in \mathbb{N}$, then find a_{r}.
171. Show that the coefficient of middle term in the expansion of $(1+x)^{2 n}$ is double the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$.
172. Find the value of r for which ${ }^{200} C_{r}$ is greatest.
173. Committees of how many persons should be made out of 20 persons so that the number of committees is maximum.
174. Show that the number of permutations which can be formed from $2 n$ letters which are either ' a ' or ' b ' is greatest when the number of a 's is equal to the number of b's.
175. Find the consecutive terms in the expansion of $(3+2 x y)^{7}$ whose coefficients are equal.
176. Find the sum of coefficients in the expansion of $\left(1+5 x^{2}-7 x^{3}\right)^{2000}$.
177. If the sum of coefficients in the expansion of $\left(3^{-\frac{x}{4}}+3^{\frac{5 x}{4}}\right)^{n}$ is 64 and the term with greatest coefficient exceeds the third term by $n-1$ and $[\alpha]=x$, where $[\alpha]$ denotes the integral part of α, find the value of α.
178. Find the sum of the coefficients in the expansion of $(5 p-4 q)^{n}$, where $n \in \mathbb{P}$.
179. Find the sum of the coefficients in the expansion of the polynomial $\left(1-3 x+x^{3}\right)^{201} \cdot(1+$ $\left.5 x-5 x^{2}\right)^{503}$.
180. If the sum of the coefficients in the expansion of $\left(t x^{2}-2 x+1\right)^{n}$ is equal to the sum of coefficients in the expansion of $(x-t y)^{n}$, where $n \in \mathbb{N}$, then find the value of t.
181. If $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ be the successive coefficient of $(1+x)^{n}$, show that $\left(a_{0}-a_{2}+a_{4}-\ldots\right)^{2}+$ $\left(a_{1}-a_{3}+a_{5}-\ldots\right)^{2}=a_{0}+a_{1}+\cdots+a_{n}=2^{n}$.
182. Find the greatest term in the expansion of $\sqrt{3}\left(1+\frac{1}{\sqrt{3}}\right)^{20}$.
183. In the expansion of $(x+a)^{15}$, if the eleventh term is the G.M. of the eighth and twelfth terms, which term in the expression is thre greatest?
184. if the greatest term in the expansion of $(1+x)^{2 n}$ has the greatest coefficient if and only if $x \in\left(\frac{10}{11}, \frac{11}{10}\right)$ and the fourth term in the expansion of $\left(k x+\frac{1}{x}\right)^{m}$, is $\frac{m}{4}$, then find the value of $m k$.
185. Given that the 4 th term in the expansion of $\left(2+\frac{3}{8} x\right)^{10}$ has the maximum numerical value, find the range of values of x for which this would be true.
186. If $n \in \mathbb{P}$, show that $p^{n}+7$ is divisible by 8 .
187. If $n \in \mathbb{P}$, show that $3^{2 n+1}+2^{n+2}$ is divisible by 7 .
188. Show that the roots of the equation $a x^{2}+2 b x+c=0$ are real and unequal, where a, b, c are three consecutive binomial expansion with positive integral index.
189. Show that no three consecutive binomial coefficients can be in G.P. or H.P.
190. Let n be a positive integer and $\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{2 n} x^{2 n}$, show that $a_{0}^{2}-a_{1}^{2}+a_{2}^{2}-\cdots+a_{2 n}^{2}=a_{n}$.
191. Let n be a positive integer and $\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{2 n} x^{2 n}$, show that $a_{0}^{2}-a_{1}^{2}+a_{2}^{2}-\cdots+(-1)^{n} a_{n-1}^{2}=\frac{1}{2} a_{n}\left[1-(-1)^{n} a_{n}\right]$.
192. Show that $\sum_{0 \leq i \leq n} \sum_{0 \leq j \leq n}\left(C_{i}+C_{j}\right)^{2}=(n-1)^{2 n} C_{n}+2^{2 n},(0 \leq i \leq j \leq n)$.
193. Show that $\sum_{0 \leq i \leq n} \sum_{0 \leq j \leq n}(i+j) C_{i} C_{j}=n\left(2^{2 n-1}-\frac{1}{2}^{2 n} C_{n}\right)$.
194. Show that $\left(C_{0}+C_{1}\right)\left(C_{1}+C_{2}\right)\left(C_{2}+C_{3}\right) \cdots\left(C_{n-1}+C_{n}\right)=\frac{(n+1)^{n}}{n!} C_{1} \cdot C_{2} \ldots . C_{n}$.
195. If n be a positive integer, prove that $\frac{1}{1!(n-1)!}+\frac{1}{3!(n-1)!}+\frac{1}{5!(n-5)!}+\cdots+\frac{1}{(n-1)!1!}=\frac{2^{n-1}}{n!}$.
196. Prove that $\sum_{r=0}^{n}(-1)^{r} \cdot\left(\frac{{ }^{n} C_{r}}{r+3 C_{r}}\right)=\frac{3!}{2(n+3)}$.
197. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\cdots+C_{n} x^{n}$ show that for $m \geq 2, C_{0}-C_{1}+C_{2}-\cdots+$ $(-1)^{n-1} C_{m-1}=(-1)^{m-1} \frac{(n-1)(n-2) \ldots(n-m+1)}{(m-1)!}$.
198. Find the G.C.D. of ${ }^{2 n} C_{1},{ }^{2 n} C_{3},{ }^{2 n} C_{5}, \ldots,{ }^{2 n} C_{2 n-1}$.
199. Show that $\sum_{r=0}^{n}{ }^{n} C_{r} \cdot \sin r x \cos (n-r) x=2^{n-1} \sin n x$.
200. $a \cdot C_{0}+(a-b) \cdot C_{1}+(a-2 b) \cdot C_{2}+\cdots+(a-n b) \cdot C_{n}=2^{n-1}(2 a-n b)$.
201. $a^{2} \cdot C_{0}-(a-1)^{2} \cdot C_{1}+(a-2)^{2} \cdot C_{2}-\cdots+(-1)^{n}(a-n)^{2} . C_{n}=0, n>3$.
202. If $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ be in an A.P., prove that $a_{0}-a_{1} \cdot C_{1}+a_{2} C_{2}-\cdots+(-1)^{n} a_{n} C_{n}=0$.
203. Show that $n>3, \sum_{r=0}^{n}(-1)^{r}(a-r)(b-r) C_{r}=0$.
204. Show that $n>3, \sum_{r=0}^{n}(-1)^{r}(a-r)(b-r)(c-r) C_{r}=0$.
205. Find the value of n for which $\frac{C_{0}}{2^{n}}+\frac{2 \cdot C_{1}}{2^{n}}+\cdots+\frac{(n+1) C_{n}}{2^{n}}=16$ is true.
206. If $a_{0}, a_{1}, a_{2}, \ldots, a_{n+1}$ be an A.P., prove that $\sum_{k=0}^{n} a_{k+1} C_{k}=2^{n-1}\left(a_{1}+a_{n+1}\right)$.
207. If $s=\frac{n+1}{2}[2 a+n d]$ and $S=a+(a+d) C_{1}+(a+2 d) C_{2}+\cdots+(a+n d) C_{n}$, prove that $(n+1) S=2^{n} . s$.
208. If $\left(1+x+x^{2}+\cdots+x^{p}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n p} x^{n p}$, show that $a_{1}+2 a_{2}+3 a_{3}+$ $\cdots+n p \cdot a_{n p}=\frac{1}{2} n p(p+1)^{n}$.
209. Show that $\sum_{k=0}^{15} \frac{{ }^{15} C_{k}}{(k+1)(k+2)}=\frac{2^{17}-18}{16.17}$.
210. Show that $\frac{C_{0}}{1}-\frac{C_{1}}{4}+\frac{C_{2}}{7}-\cdots+(-1)^{n} \frac{C_{n}}{3 n+1}=\frac{3^{n} . n!}{1.4 .5 \ldots(3 n+1)}$.
211. Show that $\sum_{r=0}^{n} \frac{(-1)^{r} C_{r}}{(r+1)(r+2)}=\frac{1}{n+2}$.
212. Prove that $\sum_{r=0}^{n} \frac{C_{r} \cdot 3^{r+3}}{(r+1)(r+2)(r+3)}=\frac{4^{n+3}-1-\frac{3}{2}(n+3)(3 n+8)}{(n+1)(n+2)(n+3)}$.
213. Prove that $\sum_{r=0}^{n} \frac{r+2}{r+1} C_{r}=\frac{2^{n}(n+3)-1}{n+1}$.
214. Show that $\sum_{r=0}^{n} \frac{3^{r+4} C_{r}}{(r+1)(r+2)(r+3)(r+4)}=\frac{1}{(n+1)(n+2)(n+3)(n+4)}$.

$$
\left[4^{n+4}-\sum_{k=0}^{n}{ }^{n+4} C_{k} 3^{k}\right]
$$

215. Show that $\sum_{r=0}^{n-3} C_{r} C_{r+3}=\frac{(2 n)!}{(n+3)!(n-3)!}$.
216. Show that the sum of the product taken two at a time from $C_{0}, C_{1}, C_{2}, \ldots$ is $2^{2 n-1} \frac{(2 n-1)!}{n!(n-1)!}$.
217. If $S_{n}=C_{0} C_{1}+C_{1} C_{2}+\cdots+C_{n-1} C_{n}$ and $\frac{S_{n+1}}{S_{n}}=\frac{15}{4}$, find n.
218. Show that $C_{0}^{2}+\frac{C_{1}^{2}}{2}+\frac{C_{2}^{2}}{3}+\cdots+\frac{C_{n}^{2}}{n+1}=\frac{(n+2)(2 n-1)!}{n!(n-1)!}$.
219. Show that $C_{0} \cdot{ }^{2 n} C_{n}-C_{1} \cdot{ }^{2 n-2} C n+C_{2} \cdot{ }^{2 n-4} C_{n}-\cdots=2^{n}$.
220. Show that $\sum_{0 \leq i \leq n} \sum_{0 \leq j \leq n}(i+j)\left(C_{i}+C_{j}+C_{i} C_{j}\right)=n^{2} .2^{n}+n\left(2^{2 n-1}-\frac{(2 n)!}{2(n!)^{2}}\right)[0 \leq i \leq$ $j \leq n]$.
221. If $\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2 n} x^{2 n}$, show that $a_{0} a_{2 r}-a_{1} a_{2 r+1}+a_{2} a_{2 r+2}-$ $\cdots+a_{2 n-2 r} a_{2 n}=a_{n+r}$.
222. If $a_{r}=\frac{1.3 .5 \ldots(2 r-1)}{2 \cdot 4 \cdot 6 \ldots 2 r}$, then show that $a_{2 n+1}+a_{1} a_{2 n}+a_{2} a_{2 n-1}+\cdots+a_{n} a_{n+1}=\frac{1}{2}$.
223. If P_{n} denoted the product of all coefficients in the expansion of $(1+x)^{n}$, show that $\frac{P_{n+1}}{P_{n}}=\frac{(n+1)^{n}}{n!}$.
224. Show that $\sum_{r=1}^{n} r^{3}\left(\frac{C_{r}}{C_{r-1}}\right)^{2}=\frac{1}{12} n(n+1)^{2}(n+2)$.
225. Show that $C_{3}+C_{7}+C_{11}+\ldots=\frac{1}{3}\left[2^{n-1}-2^{n / 2} \sin \frac{n \pi}{4}\right]$.
226. If $\left(1+x+x^{2}\right)^{20}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots=a_{40} x^{40}$, then find the value of $a_{0}+a_{2}+a_{4}+$ $\cdots+a_{38}$.
227. If $\left(1+x+x^{2}\right)^{20}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots=a_{40} x^{40}$, then find the value of $a_{1}+a_{3}+a_{5}+$ $\cdots+a_{37}$.
228. Show that $C_{1}-\frac{C_{2}}{2}+\frac{C_{3}}{3}-\cdots+(-1)^{n} \frac{C_{n}}{n}+\frac{1}{n(n-1)}+\frac{2}{(n-1)(n-2)}+\cdots+\frac{n-2}{2.3}=\frac{n+1}{2}$.
229. Show that $\sum_{0 \leq i \leq n} \sum_{0 \leq j \leq n} \frac{i}{C_{i}}+\frac{j}{C_{j}}=\frac{n^{2}}{2} \sum_{r=0}^{n} \frac{1}{C_{r}}[0 \leq i \leq j \leq n]$.
230. Show that $\sum_{0 \leq i \leq n} \sum_{0 \leq j \leq n} i . j . C_{i} \cdot C_{j}=n^{2}\left[2^{2 n-3}-\frac{1}{2}^{2 n-2} C_{n-1}\right][0 \leq i \leq j \leq n]$.
231. Prove that $C_{1}-\left(1+\frac{1}{2}\right) C_{2}+\left(1+\frac{1}{2}+\frac{1}{3}\right) C_{3}-\cdots+(-1)^{n}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right) C_{n}=\frac{1}{n}$.
232. Find the coefficient of x^{5} in the expansion of $\left(1+2 x+3 x^{2}\right)^{4}$.
233. Find the coefficient of $x^{3} y^{4} z^{2}$ in the expansion of $(2 x-3 y+4 x)^{9}$.
234. Find the number of terms in $(2 x-3 y+4 z)^{100}$.
235. Find the coefficient of x^{4} in the expansion of $\left(1+x+x^{2}\right)^{3}$.
236. Find the coefficient of x^{10} in $\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right)^{3}$.
237. Find the coefficient of x^{7} in $\left(1+3 x-2 x^{3}\right)^{10}$.
238. Find the coefficient of $x^{3} y^{4} z^{5}$ in $(x y+y z+z x)^{6}$.
239. Find the greatest coefficient in $(w+x+y+z)^{15}$.
240. Find the number of terms in $(a+b+c+d+e)^{100}$.
241. If $|x|<1$, show that $(1+x)^{-2}=1+2 x+3 x^{2}+4 x^{3}+\cdots$ to ∞.
242. Find a, b so that the coefficient of x^{n} in the expansion of $\frac{(a+b x)}{(1-x)^{2}}$ may be $2 n+1$ and hence find the sum of the series $1+3\left(\frac{1}{2}\right)+5\left(\frac{1}{2}\right)^{2}+\cdots$.
243. Sum the series $1+\frac{1}{3}+\frac{1.3 .5}{3.6 .9}+\cdots$ to ∞.
244. If $|x|<1$, show that $(1-x)^{-1}=1+x+x^{2}+x^{3}+\ldots$ to ∞.
245. If $|x|<1$, show that $(1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots$ to ∞.
246. If $|x|<1$, show that $(1+x)^{-2}=1-2 x+3 x^{2}-4 x^{3}+\ldots$ to ∞.
247. If $|x|<1$, show that $(1-x)^{-3}=1+3 x+6 x^{2}+10 x^{3}+\ldots$ to ∞.
248. If $|x|<1$, show that $(1+x)^{-3}=1-3 x+6 x^{2}-10 x^{3}+\ldots$ to ∞.
249. If $|x|<1$, show that $(1+x)^{1 / 5}=1-\frac{x}{5}+\frac{3 x^{2}}{25}-\frac{11 x^{3}}{125}+\ldots$ to ∞.
250. Find the first four terms of $\left(\frac{2 x}{3}-\frac{3}{2 x}\right)^{-3 / 2}$.
251. Find the first three terms of $\left(1-\frac{x}{2}\right)^{-2}$.
252. Find the coefficient of x^{6} in $(1-2 x)^{-5 / 2}$.
253. Find the $(r+1)$ th term and the its coefficients in $(1-2 x)^{-1 / 2}$.
254. Find the cube root of 1001 correct to four places of decimal.
255. Show that $\left(1+2 x+3 x^{2}+4 x^{3}+\ldots \text { to } \infty\right)^{3 / 2}=1+3 x+6 x^{2}+10 x^{3}+\ldots$ to $\infty,|x|<1$.
256. Sum the series $1+\frac{1}{4}+\frac{1.3}{4.8}+\frac{1.3 .5}{4.8 .12}+\ldots$ to ∞.
257. Sum the series $1+\frac{2}{6}+\frac{2.5}{6.12}+\frac{2.5 .8}{6.12 .18}+\ldots$ to ∞.
258. If $y=x-x^{2}+x^{3}-x^{4}+\ldots$ to ∞, show that $x=y+y^{2}+y^{3}+\ldots$ to ∞.
259. Show that the coefficent of x^{n} in $\left(1+x+x^{2}\right)^{-1}$ is $1,0,-1$ as n is of the form $3 m, 3 m-$ $1,3 m+1$.
260. Show that $\frac{1}{e}=2\left[\frac{1}{3!}+\frac{2}{5!}+\frac{3}{7!}+\ldots\right.$ to $\left.\infty\right]$.
261. Sum the series $1+\frac{2^{2}}{2!}+\frac{3^{2}}{3!}+\frac{4^{2}}{4!}+\ldots$ to ∞.
262. Show that $\log 2=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\ldots$ to ∞.
263. If $y=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots$ to ∞, show that $x=y+\frac{y^{2}}{2!}+\frac{y^{3}}{3!}+\ldots$ to ∞.
264. If α, β be the roots of the equation $a x^{2}+b x+c=0$, show that $\log \left(a-b x+c x^{2}\right)=$ $\log a+(\alpha+\beta) x-\frac{\left(\alpha^{2}+\beta^{2}\right)}{2} x^{2}+\ldots$ to ∞.
265. Sum the series $\frac{1}{3!}+\frac{2}{5!}+\frac{3}{7!}+\cdots$ to ∞.
266. Sum the series $\frac{1}{2!}+\frac{3}{4!}+\frac{5}{6!}+\cdots$ to ∞.
267. Sum the series $\frac{1}{2!}+\frac{1+2}{3!}+\frac{1+2+3}{4!}+\cdots$ to ∞.
268. Sum the series $\frac{1^{3}}{1!}+\frac{2^{3}}{2!}+\frac{3^{3}}{3!}+\cdots$ to ∞.
269. Prove that $1-\log 2=\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\cdots$ to ∞.
270. Prove that $\log (1+x)-\log (x-1)=2\left[\frac{1}{x}+\frac{1}{3 x^{3}}+\frac{1}{5 x^{5}}+\cdots\right.$ to $\left.\infty\right]$.
271. Prove that $\log x-\log (x+1)-\log (x-1)=\frac{1}{x^{2}}+\frac{1}{2 x^{4}}+\frac{1}{3 x^{5}}+\cdots$ to ∞.
272. Prove that $\log (1+x)^{1+x} \log (1-x)^{1-x}=2\left[\frac{x^{2}}{1.2}+\frac{x^{4}}{3.4}+\frac{x^{6}}{5.6}+\cdots\right.$ to $\left.\infty\right]$
273. If α, β be the roots of the equation $x^{2}-p x+q=0$, show that $\log \left(1+p x+q x^{2}\right)=$ $(\alpha+\beta) x-\frac{\alpha^{2}+\beta^{2}}{2} x^{2}+\frac{\alpha^{3}+\beta^{3}}{3} x^{3}+\ldots$ to ∞.

Chapter 8
 Determinants

Let a, b, c, d be any four numbers, real or complex, then the symbol

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

denotes $a d-b c$ and is called a determinant of second order. a, b, c, d are called elements of the determinant and $a d-b c$ is called value of the determinant.

As you can see, the elements of a determinant are positioned in the form of a square in its designation. The diagonal on which elements aa and dd lie is called the principal or primary diagonal of the determinant and the diagonal which is formed on the line of bb and cc is called the secondary diagonal. A row is constituted by elements lying in the same horizontal line and a column is constituted by elements lying in the same vertical line. Clearly, determinant of second order has two rows and two columns and its value is equal to the products of elements along primary diagonal minus the product of elements along the secondary diagonal. Thus, by definition

$$
\left|\begin{array}{ll}
2 & 4 \\
3 & 9
\end{array}\right|=18-12=6
$$

Let $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3}$ be any nine numbers, then the symbol

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

is another way of saying

$$
a_{1}\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{l}
b_{1} b_{2} \\
c_{1} c_{2}
\end{array}\right|
$$

i.e. $a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)$

Rule to put + or - before any element: Find the sum of number of rows and columns in which the considered element occus. If the sum is even put $a+\operatorname{sign}$ before the element and if the sum is odd, put a - sign before the element. Since a_{1} occurs in first row and first column whose sum is $1+1=2$ which is an even number, therefore + sign occurs for it. Since a_{2} occurs in first row and second column whose sum is $1+2=3$ which is an odd number, therefore - sign occurs before it.

We have expanded the determinant along first row in previous case. The value of determinant does not change no matter which row or column we expand it along. Expanding the determinant along second row, we get

$$
\begin{aligned}
& \left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=-b_{1}\left|\begin{array}{ll}
a_{2} & a_{3} \\
c_{2} & c_{3}
\end{array}\right|+b_{2}\left|\begin{array}{ll}
a_{1} & a_{3} \\
c_{1} & c_{3}
\end{array}\right|-b_{3}\left|\begin{array}{ll}
a_{1} & a_{2} \\
c_{1} & c_{2}
\end{array}\right| \\
= & -b_{1}\left(a_{2} c_{3}-a_{3} c_{2}\right)+b_{2}\left(a_{1} c_{3}-a_{3} c_{1}\right)-b_{3}\left(a_{1} c_{2}-a_{2} c_{1}\right)
\end{aligned}
$$

$$
=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)
$$

Thus, we see that value of determinant remains unchanged irrespective of the change of row and column against which it is expanded.

Usually, an element of a determinant is denoted by a letter with two suffices, first one indicating the row and second one indicating the column in which the element occcur. Thus, $a_{i j}$ element indicates that it has occurred in i th row and j th column. We also denote the rows by R_{1}, R_{2}, R_{3} and so on. R_{i} denotes the i th row of determinant while R_{j} denotes j th row. Columns are denoted by C_{1}, C_{2}, C_{3} and so on. C_{i} and C_{j} denote i th and j th column of determinant. Δ is the usual symbol for a determinant. Another way of denoting the determinant

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

is $\left(a_{1} b_{2} c_{3}\right)$. The expanded form of determinant has $n!$ terms where n is the number of rows or columns.

Ex 1. Find the value of the determinant

$$
\begin{gathered}
\Delta=\left|\begin{array}{lll}
1 & 2 & 4 \\
3 & 4 & 9 \\
2 & 1 & 6
\end{array}\right| \\
\Delta=1\left|\begin{array}{ll}
4 & 9 \\
1 & 6
\end{array}\right|-2\left|\begin{array}{ll}
3 & 9 \\
2 & 6
\end{array}\right|+4\left|\begin{array}{ll}
3 & 4 \\
2 & 1
\end{array}\right|
\end{gathered}
$$

Expanding the determinant along first row $=1(24-9)-2(18-18)+4(3-8)=-5$
Ex 2. Find the value of the determinant

$$
\Delta=\left|\begin{array}{lll}
3 & 1 & 7 \\
5 & 0 & 2 \\
2 & 5 & 3
\end{array}\right|
$$

Expanding the determinant along second row,

$$
\Delta=-5\left|\begin{array}{ll}
1 & 7 \\
5 & 3
\end{array}\right|+0\left|\begin{array}{cc}
3 & 7 \\
23 &
\end{array}\right|-2\left|\begin{array}{ll}
3 & 1 \\
2 & 5
\end{array}\right|
$$

$=-5(3-35)-2(15-2)=134$

8.1 Minors

Consider the determinant

$$
\Delta=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{31} & a_{33}
\end{array}\right|
$$

If we leave the elements belonging to row and column of a particular element $a_{i j}$ then we will obtain a second order determinant. The determinant thus obtained is called minor of $a_{i j}$
and it is denoted by $M_{i j}$, since there are 9 elements in the above determinant we will have 9 minors.

For example, the minor of element

$$
a_{21}=\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|=M_{21}
$$

The minor of element

$$
a_{32}=\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right|=M_{32}
$$

If we want to write the determinant in terms of minors then following is the expression obtained if we expand it along first row

$$
\begin{gathered}
\Delta=(-1)^{1+1} a_{11} M_{11}+(-1)^{1+2} a_{12} M_{12}+(-1)^{1+3} a_{13} M_{13} \\
=a_{11} M_{11}-a_{12} M_{12}+a_{13} M_{13}
\end{gathered}
$$

8.2 Cofactors

The minor $M_{i j}$ multiplied with $(-1)^{i+j}$ is known as cofactor of the element $a_{i j}$ and is denoted like $A_{i j}$. Thus, we can say that, $\Delta=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}$

8.3 Theorems on Determinants

Theorem 6

The value of a determinant is not changed when rows are changed into corresponsing columns.
Proof
Let

$$
\Delta=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

Expanding the determinant along first row,

$$
\Delta=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-b_{1}\left(a_{2} c_{3}-a_{3} c_{2}\right)+c_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)
$$

If Δ^{\prime} be the value of the determinant when rows of determinant Δ are changed into corresponding columns then

$$
\begin{gathered}
\Delta^{\prime}=\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \\
=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right) \\
=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{2} b_{1} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}-a_{3} b_{2} c_{1}
\end{gathered}
$$

$$
=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-b_{1}\left(a_{2} c_{3}-a_{3} c_{2}\right)+c_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)
$$

Thus, we see that $\Delta=\Delta^{\prime}$.

Theorem 7

If any two rows or columns of a determinant are interchanged, the sign of determinant is changed, but its value remains the same.

Proof
Let

$$
\Delta=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

Expanding the determinant along first row, $\Delta=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-b_{1}\left(a_{2} c_{3}-a_{3} c_{2}\right)+c_{1}\left(a_{2} b_{3}-\right.$ $a_{3} b_{2}$)

Now $\Delta^{\prime}=\left|\begin{array}{lll}a_{3} & b_{3} & c_{3} \\ a_{2} & b_{2} & c_{2} \\ a_{1} & b_{1} & c_{1}\end{array}\right|\left[R_{1} \leftrightarrow R_{3}\right]$
$=a_{3}\left(b_{2} c_{1}-b_{1} c_{2}\right)-b_{3}\left(a_{2} c_{1}-a_{1} c_{2}\right)+c_{3}\left(a_{2} b_{1}-a_{1} b_{2}\right)$
$=a_{3} b_{2} c_{1}-a_{3} b_{1} c_{2}-b_{3} a_{2} c_{2}+b_{3} a_{1} c_{2}+c_{3} a_{2} b_{1}-c_{3} a_{1} b_{2} x$
$=-a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)+b_{1}\left(a_{2} c_{3}-a_{3} c_{2}\right)-c_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)$
$=-\Delta$

Theorem 8

The value of a determinant is zero if any two rows or columns are identical.

Proof

Let

$$
\begin{gathered}
\Delta=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{1} & b_{1} & c_{1}
\end{array}\right| \\
\Delta=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{1} & b_{1} & c_{1}
\end{array}\right|=-\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{1} & b_{1} & c_{1}
\end{array}\right|=-\Delta\left[R_{1} \leftrightarrow R_{3}\right]
\end{gathered}
$$

Thus, $\Delta=-\Delta \Rightarrow 2 \Delta=0 \Rightarrow \Delta=0$.

Theorem 9

A common factor of all elements of any row(or of any column) may be taken outside the sign of the determinant. In other owrds, if all the elements of the same row(or the same column) are multiplies by a constant, then the determinant becomes multiplied by that number.

Proof

$$
\Delta=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

Expanding the determinant along first row, $\Delta=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-b_{1}\left(a_{2} c_{3}-a_{3} c_{2}\right)+c_{1}\left(a_{2} b_{3}-\right.$ $a_{3} b_{2}$)
and

$$
\Delta^{\prime}=\left|\begin{array}{ccc}
m a_{1} & m b_{1} & m c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

$=m a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-m b_{1}\left(a_{2} c_{3}-a_{3} c_{2}\right)+m c_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)$
$=m \Delta$

Theorem 10

If every element of some row or column is the the sum of two terms, then the determinant is equal to the sum of two determinants; one containing only the first term in place of each term, the other only the second term. The remaining elements of both the determinants are the same as in the given determinant.

Proof
We have to prove that

$$
\left|\begin{array}{lll}
a_{1}+\alpha_{1} & b_{1} & c_{1} \\
a_{2}+\alpha_{2} & b_{2} & c_{2} \\
a_{3}+\alpha_{3} & b_{3} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|+\left|\begin{array}{lll}
\alpha_{1} & b_{1} & c_{1} \\
\alpha_{2} & b_{2} & c_{2} \\
\alpha_{3} & b_{3} & c_{3}
\end{array}\right|
$$

Let

$$
\Delta=\left|\begin{array}{lll}
a_{1}+\alpha_{1} & b_{1} & c_{1} \\
a_{2}+\alpha_{2} & b_{2} & c_{2} \\
a_{3}+\alpha_{3} & b_{3} & c_{3}
\end{array}\right|
$$

Then,

$$
\begin{gathered}
\Delta=\left(a_{1}+\alpha_{1}\right)\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|-\left(a_{2}+\alpha_{2}\right)\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{3} & c_{3}
\end{array}\right|+\left(a_{3}+\alpha_{3}\right)\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{2} & c_{2}
\end{array}\right| \\
=a_{1}\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{3} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{2} & c_{2}
\end{array}\right|+\alpha_{1}\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|-\alpha_{2}\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{3} & c_{3}
\end{array}\right|+\alpha_{3}\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{2} & c_{2}
\end{array}\right| \\
=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|+\left|\begin{array}{lll}
\alpha_{1} & b_{1} & c_{1} \\
\alpha_{2} & b_{2} & c_{2} \\
\alpha_{3} & b_{3} & c_{3}
\end{array}\right|
\end{gathered}
$$

Theorem 11

The value of a determinant does not change when any row or column is multiplied by a number or an expression and is then added to or subtracted from any other row or column.

Proof

We have to prove that

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1}+m b_{1} & b_{1} & c_{1} \\
a_{2}+m b_{2} & b_{2} & c_{2} \\
a_{3}+m b_{3} & b_{3} & c_{3}
\end{array}\right|
$$

Let

$$
\Delta=\left|\begin{array}{lll}
a_{1}+m b_{1} & b_{1} & c_{1} \\
a_{2}+m b_{2} & b_{2} & c_{2} \\
a_{3}+m b_{3} & b_{3} & c_{3}
\end{array}\right|
$$

then

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|+\left|\begin{array}{lll}
m b_{1} & b_{1} & c_{1} \\
m b_{2} & b_{2} & c_{2} \\
m b_{3} & b_{3} & c_{3}
\end{array}\right| \\
& =\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|+m\left|\begin{array}{lll}
b_{1} & b_{1} & c_{1} \\
b_{2} & b_{2} & c_{2} \\
b_{3} & b_{3} & c_{3}
\end{array}\right| \\
& =\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|+m \cdot 0=\Delta
\end{aligned}
$$

8.4 Reciprocal Determinants

If

$$
\Delta=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

then

$$
\left|\begin{array}{lll}
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3} \\
C_{1} & C_{2} & C_{3}
\end{array}\right|=\Delta^{2}
$$

where capital letters denote the cofactors of corresponding small letters in Δ i.e. $A_{i}=$ cofactor of $a_{i}, B_{i}=$ cofactor of b_{i} and $C_{i}=$ cofactor of c_{i} in the determinant Δ. Here, the cofactors are sometimes called inverse elements and determinant made from them is called reciprocal determinant.

We know that,

$$
\begin{aligned}
& a_{1} A_{1}+a_{2} A_{2}+a_{3} A_{3}=\Delta, b_{1} B_{1}+b_{2} B_{2}+b_{3} C_{3}=\Delta, c_{1} C_{1}+c_{2} C_{2}+c_{3} C_{3}=\Delta, a_{1} B_{1}+a_{2} B_{2}+ \\
& a_{3} B_{3}=0, b_{1} A_{1}+b_{2} A_{2}+b_{3} A_{3}=0, a_{1} C_{1}+a_{2} C_{2}+a_{3} C_{3}=0, c_{1} A_{1}+c_{2} A_{2}+c_{3} A_{3}=0, b_{1} C_{1}+ \\
& b_{2} C_{2}+b_{3} C_{3}=0, c_{1} B_{1}+c_{2} B_{2}+c_{3} B_{3}=0 . \text { Let }
\end{aligned}
$$

$$
\Delta_{1}=\left|\begin{array}{lll}
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3} \\
C_{1} & C_{2} & C_{3}
\end{array}\right|
$$

Now,

$$
\begin{gathered}
\Delta \Delta_{1}=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|\left|\begin{array}{lll}
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3} \\
C_{1} & C_{2} & C_{3}
\end{array}\right| \\
=\left|\begin{array}{lll}
a_{1} A_{1}+a_{2} A_{2}+a_{3} A_{3} & a_{1} B_{1}+a_{2} B_{2}+a_{3} B_{3} & a_{1} C_{1}+a_{2} C_{2}+a_{3} C_{3} \\
b_{1} A_{1}+b_{2} A_{2}+b_{3} A_{3} & b_{1} B_{1}+b_{2} B_{2}+b_{3} C_{3} & b_{1} C_{1}+b_{2} C_{2}+b_{3} C_{3} \\
c_{1} A_{1}+c_{2} A_{2}+c_{3} A_{3} & c_{1} B_{1}+c_{2} B_{2}+c_{3} B_{3} & c_{1} C_{1}+c_{2} C_{2}+c_{3} C_{3}
\end{array}\right| \\
=\left|\begin{array}{ccc}
\Delta & 0 & 0 \\
0 & \Delta & 0 \\
0 & 0 & \Delta
\end{array}\right| \\
\Delta \Delta_{1}=\Delta^{3} \\
\Delta_{1}=\Delta^{2}
\end{gathered}
$$

Similarly, if Δ is a determinant of the n-th order and Δ^{\prime} is the reciprocal determinant, then

$$
\Delta^{\prime}=\Delta^{n-1}
$$

which can be proven by induction.
Any minor of Δ^{\prime} of order r is equla to the complement of the corresponding minor of Δ multiplied with Δ^{r-1}, provided that $\Delta \neq 0$. The proof of this is straightforward and has been left as an exercise to the reader.

8.5 Two Methods of Expansions

Let

$$
\Delta=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| \text {, and } D=\left|\begin{array}{llll}
a_{1} & b_{1} & c_{1} & l \\
a_{2} & b_{2} & c_{2} & m \\
a_{3} & b_{3} & c_{3} & n \\
l^{\prime} & m^{\prime} & n^{\prime} & r
\end{array}\right|
$$

Let A_{1}, B_{1}, \ldots be the cofactors of a_{1}, b_{1}, \ldots in Δ.
In the expansion of D, the sum of the terms containing r is $r \Delta$: every other term contains one of the three l, m, m and one of the three $l^{\prime}, m^{\prime}, n^{\prime}$.

Again, $\left|\begin{array}{ll}a_{1} & l \\ l^{\prime} & r\end{array}\right|$ and $\left|\begin{array}{ll}b_{2} & c_{2} \\ b_{3} & c_{3}\end{array}\right|$ are complementary minors of Δ;
hence, cofficients of $l l^{\prime}$ in $D=-$ cofficient of $a_{1} r$ in $D=-$ coefficient of a_{1} in $\Delta=-A_{1}$
and similarly, coefficient of $m n^{\prime}$ in $D=-$ coefficient of $c_{2} r$ in $D=-$ coefficient of c_{2} in $\Delta=-C_{2}$

Thus, we can show that
$D=r \Delta-\left[A_{1} l l^{\prime}+B_{2} m m^{\prime}+C_{2} n n^{\prime}+C_{2} m n^{\prime}+B_{2} m^{\prime} n+A_{2} n l^{\prime}+C_{1} n^{\prime} l+B_{1} l m^{\prime}+A_{2} l^{\prime} m\right]$.

8.6 Symmetric Determinants

A determinant of nth order is often wirtten in the form

$$
\left|\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\cdots & \ldots & \cdots & \cdots & \cdots
\end{array}\right|=\left(a_{11} a_{22} \ldots, a_{n n}\right)
$$

Denoting any element by $a_{i j}$, the determinant is said to be symmetric if $a_{i j}=a_{j i}$. If $a_{i j}=$ $-a_{j i}$, the determinant is skew-symmetric: it is implied that all the elements in the leading diagonal are zero. For example, if

$$
\Delta_{1}=\left|\begin{array}{llll}
a & h & g & l \\
h & b & f & m \\
g & f & c & n \\
l & m & n & 0
\end{array}\right|, \Delta_{2}=\left|\begin{array}{ccc}
0 & x & y \\
-x & 0 & y \\
-y & -x & 0
\end{array}\right|
$$

the determinant Δ_{1} is symmetric and Δ_{2} is skew-symmetric. We also say that Δ_{1} is bordered by l, m, n.

If $A_{i j}, A_{j i}$ are the cofactors of the elements $a_{i j}, a_{j i}$ of a symmetric determinant Δ, then $A_{i j}=A j i$.

For $A_{i j}$ is trandformed into $A_{j i}$, by changing rows into columns. Thus, if $\Delta=\left(\begin{array}{lll}a_{11} & a_{22} & a_{33}\end{array}\right)$

$$
A_{23}=-\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right|=-\left|\begin{array}{ll}
a_{11} & a_{31} \\
a_{12} & a_{32}
\end{array}\right|=-\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right|=A_{32} .
$$

Similarly, for the skew-symmetric determinants $A_{i j}=(-) 1^{n-1} A_{j i}$, where n is the order of the determinant. Also, every skew-symmetric determinant of odd order is equal to zero (follows from the definition of skew-symmetric determinants).

8.7 System of Linear Equations

8.7.1 Consistent Linear Equations

A system of linear equations is said to be consistent if it has at least one solution.
Example: (i) System of equations $x+y=2$ and $2 x+2 y=7$ is inconsistent because it has no solution i.e. no values of x and y exit which can satisfy the pair of equations. (ii) On the other hand equations $x+y=2$ and $x-y=0$ has a solution $x=1, y=1$ which satisfies the pair of equation making it a consistent system of linear equations.

8.8 Cramer's Rule

Cramer's rule is used to solve system of linear equations using determinants. Consider two equations $a_{x}+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ where $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$

Solving this by cross multiplication, we have,

$$
\begin{aligned}
\frac{x}{b_{1} c_{2}-b_{2} c_{1}} & =\frac{-y}{a_{1} c_{2}-a_{2} c_{1}}=\frac{1}{a_{1} b_{2}-a_{2} b_{1}} \\
\frac{x}{\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{2} & c_{2}
\end{array}\right|} & =\frac{-y}{\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|}=\frac{1}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}
\end{aligned}
$$

8.8.1 System of Linear Equations in Three Variables

Let the given system of linear equations given in x, y and z be $a_{1} x+b_{1} y+c_{1} z=d_{1}, a_{2} x+$ $b_{2} y+c_{2} z=d_{2}$ and $a_{3} x+b_{3} y+c_{3} z=d_{3}$

Let

$$
\Delta=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|, \Delta_{1}=\left|\begin{array}{lll}
d_{1} & b_{1} & c_{1} \\
d_{2} & b_{2} & c_{2} \\
d_{3} & b_{3} & c_{3}
\end{array}\right|, \Delta_{2}=\left|\begin{array}{lll}
a_{1} & d_{1} & c_{1} \\
a_{2} & d_{2} & c_{2} \\
a_{3} & d_{3} & c_{3}
\end{array}\right|, \Delta_{2}=\left|\begin{array}{lll}
a_{1} & b_{1} & d_{1} \\
a_{2} & b_{2} & d_{2} \\
a_{3} & b_{3} & d_{3}
\end{array}\right|
$$

Let

$$
\begin{gathered}
\Delta \neq 0 \\
\Delta_{1}=\left|\begin{array}{lll}
d_{1} & b_{1} & c_{1} \\
d_{2} & b_{2} & c_{2} \\
d_{3} & b_{3} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1} x+b_{1} y+c_{1} z & b_{1} & c_{1} \\
a_{2} x+b_{2} y+c_{2} z & b_{2} & c_{2} \\
a_{3} x+b_{3} y+c_{3} z & b_{3} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1} x & b_{1} & c_{1} \\
a_{2} x & b_{2} & c_{2} \\
a_{3} x & b_{3} & c_{3}
\end{array}\right|\left[C_{1} \rightarrow C_{1}-y C_{2}-z C_{3}\right] \\
=x\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=x \Delta \Rightarrow x=\frac{\Delta_{1}}{\Delta}
\end{gathered}
$$

Similalry,

$$
y=\frac{\Delta_{2}}{\Delta}, z=\frac{\Delta_{3}}{\Delta}
$$

This rule which gives the values of x, y and z is known as Cramer's rule.

8.8.2 Nature of Solution of System of Linear Equations

From previous section we have arrived at the fact that $x \Delta=\Delta_{1}, y \Delta=\Delta_{2}, z \Delta=\Delta_{3}$
Case I. When $\Delta \neq 0$
In this case unique values of x, y, z will be obtained and the system of equations will have a unique solution.

Case II. When $\Delta=0$
Sub Case I. When at least one of $\Delta_{1}, \Delta_{2}, \Delta_{3}$ is non-zero.
Let $\Delta_{1} \neq 0$ then $\Delta_{1}=x \Delta$ will not be satisfied for any value of x because $\Delta=0$ and hence no value is possible in this case. Same is the case for y and z.

Thus, no solution is feasible and system of equations become inconsistent.

Sub Case II. When $\Delta_{1}=\Delta_{2}=\Delta_{3}=0$
In this case infinite number of solutions are possible.

8.8.3 Condition for Consistency of Three Linear Equations in Two Unknonws

Consider a system of linear equations in x and $y \mathrm{~m} a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$ and $a_{3} x+b_{3} y+c_{3}=0$ will be consistent if the values of x and y obtained from any two equations satisfy the third equations.

Solving first two equations by Cramer's rule, we have

$$
\frac{x}{\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{2} & c_{2}
\end{array}\right|}=\frac{-y}{\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|}=\frac{1}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}=k(\text { say })
$$

Substituting these in third equation we get,

$$
\begin{gathered}
k\left[a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)-b_{3}\left(a_{1} c_{2}-a_{2} c_{1}\right)+c_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right)\right]=0 \\
a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)-b_{3}\left(a_{1} c_{2}-a_{2} c_{1}\right)+c_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right)=0 \\
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=0
\end{gathered}
$$

This is the required condition for consistency of three linear equations in two variables. If such a system of equations is consistent then number of solution is one i.e. a unique solution exists.

8.8.4 System of Homogeneous Linear Equations

A system of linear equations is said to be homogeneous if the sum of powers of the variables in each term is one. Let the three homogeneous equations in three unknowns x, y, z be $a_{1} x+b_{1} y+c_{1} z=0, a_{2} x+b_{2} y+c_{2} z=0$ and $a_{3} x+b_{3} y+c_{3} z=0$

Clearly, $x=0, y=0, z=0$ is a solution of above system of equations. This solution is called trivial solution and any other solution is called non-triivial solution. Let the above system of equations has a non-trivial solution.

Let

$$
\Delta=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

From first two we have

$$
\frac{x}{\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{2} & c_{2}
\end{array}\right|}=\frac{-y}{\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|}=\frac{z}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}=k(\text { say })
$$

Substituting these in third equation we get

$$
\begin{gathered}
k\left[a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)-b_{3}\left(a_{1} c_{2}-a_{2} c_{1}\right)+c_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right)\right]=0 \\
a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)-b_{3}\left(a_{1} c_{2}-a_{2} c_{1}\right)+c_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right)=0 \\
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=0
\end{gathered}
$$

This is the condition for system of equation to have non-trivial solutions.

8.9 Use of Determinants in Coordinate Geometry

8.9.1 Are of a Triangle

The area of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is

$$
\Delta=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

8.9.2 Condition of Concurrency of Three Lines

Three lines are said to be concurrent if they pass through a common point i.e. they meet at a point.

Let $a_{1} x+b_{1} y+c_{1}=0 a_{2} x+b_{2} y+c_{2}=0$ and $a_{3} x+b_{3} y+c_{3}=0$ be three lines.
These lines will be concurrent if

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=0
$$

8.9.3 Condition for General Equation in Second Degree to Represent a Pair of Straight Lines

The general second degree equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represent a pair of straight lines if

$$
\left|\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right|=0
$$

8.10 Product of Two Determinants

Let

$$
\Delta_{1}=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|, \Delta_{2}=\left|\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
z_{1} & z_{2} & z_{3}
\end{array}\right|
$$

then $\Delta_{1} \Delta_{2}$ is defined as

$$
\Delta_{1} \Delta_{2}=\left|\begin{array}{ccc}
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3} & a_{1} y_{1}+a_{2} y_{2}+a_{3} y_{3} & a_{1} z_{1}+a_{2} z_{2}+a_{3} z_{3} \\
b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3} & b_{1} y_{1}+b_{2} y_{2}+b_{3} y_{3} & b_{1} z_{1}+b_{2} z_{2}+b_{3} z_{3} \\
c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3} & c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3} & c_{1} z_{1}+c_{2} z_{2}+c_{3} z_{3}
\end{array}\right|
$$

8.11 Differential Coefficient of Determinant

Let

$$
y=\left|\begin{array}{lll}
f_{1}(x) & f_{2}(x) & \left.f_{3}(x)\right] \\
g_{1}(x) & g_{2}(x) & g_{3}(x) \\
h_{1}(x) & h_{2}(x) & h_{3}(x)
\end{array}\right|
$$

where $f_{i}(x), g_{i}(x), h_{i}(x), i=1,2,3$ are differentiable functions of x.
Now, $y=f_{1}(x)\left[g_{2}(x) h_{3}(x)-g_{3}(x) h_{2}(x)\right]-f_{2}(x)\left[g_{1}(x) h_{3}(x)-g_{3}(x) h_{1}(x)\right]+$ $f_{3}(x)\left[g_{1}(x) h_{2}(x)-g_{2}(x) h_{1}(x)\right]$
$\therefore \frac{d y}{d x}=f_{1}^{\prime}(x)\left[g_{2}(x) h_{3}(x)-g_{3}(x) h_{2}(x)\right]+f_{1}(x)\left[g_{2}^{\prime}(x) h_{3}(x)-g_{3}^{\prime}(x) h_{2}(x)+g_{2}(x) h_{3}^{\prime}(x)-\right.$ $\left.g_{3}(x) h_{2}^{\prime}(x)\right]+-f_{2}^{\prime}(x)\left[g_{1}(x) h_{3}(x)-g_{3}(x) h_{1}(x)\right]+-f_{2}(x)\left[g_{1}^{\prime}(x) h_{3}(x)-g_{1}(x) h_{3}^{\prime}(x)+\right.$ $\left.g_{1}(x) h_{3}^{\prime}(x)-g_{3}(x) h_{3}^{\prime}(x)\right]+f_{3}^{\prime}(x)\left[g_{1}(x) h_{2}(x)-g_{2}(x) h_{1}(x)\right]+f_{3}(x)\left[g_{1}^{\prime}(x) h_{2}(x)-\right.$ $\left.g_{2}^{\prime}(x) h_{1}(x) x+g_{1}(x) h_{2}^{\prime}(x)-g_{2}(x) h_{1}^{\prime}(x)\right]$

$$
=\left|\begin{array}{lll}
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & f_{1}^{\prime}(x) \\
g_{1}(x) & g_{2}(x) & g_{3}(x) \\
h_{1}(x) & h_{2}(x) & h_{3}(x)
\end{array}\right|+\left|\begin{array}{lll}
f_{1}(x) & f_{2}(x) & f_{3}(x) \\
g_{1}^{\prime}(x) & g_{2}^{\prime}(x) & g_{3}^{\prime}(x) \\
h_{1}(x) & h_{2}(x) & h_{3}(x)
\end{array}\right|+\left|\begin{array}{ccc}
f_{(}(x) & f_{2}(x) & f_{3}(x) \\
g_{1}(x) & g_{2}(x) & g_{3}(x) \\
h_{1}^{\prime}(x) & h_{2}^{\prime}(x) & h_{3}^{\prime}(x)
\end{array}\right|
$$

8.12 Problems

1. Evaluate $\left|\begin{array}{lll}4 & 9 & 7 \\ 3 & 5 & 7 \\ 5 & 4 & 5\end{array}\right|$.
2. Show that $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$.
3. Evaluate $\left|\begin{array}{ccc}1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16\end{array}\right|$ making use of relations between 2nd and 3rd column.
4. Evaluate $\left|\begin{array}{lll}4 & 9 & 2 \\ 3 & 5 & 7 \\ 8 & 1 & 6\end{array}\right|$.
5. Evaluate $\left|\begin{array}{lll}18 & 1 & 17 \\ 22 & 3 & 19 \\ 26 & 5 & 21\end{array}\right|$.
6. \quad Evaluate $\left|\begin{array}{lll}4 & 9 & 7 \\ 3 & 5 & 7 \\ 5 & 4 & 5\end{array}\right|$.
7. Evaluate $\left|\begin{array}{lll}1^{2} & 2^{2} & 3^{2} \\ 2^{2} & 3^{2} & 4^{2} \\ 3^{2} & 4^{2} & 5^{2}\end{array}\right|$.
8. Let a, b, c be positive and unequal. Show that the value of the determinant $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ is negative.
9. Evaluate $\left|\begin{array}{lll}b+c & a+b & a \\ c+a & b+c & b \\ a+b & c+a & c\end{array}\right|$.
10. Evaluate $\left|\begin{array}{ccccc}1+a_{1} & a_{2} & a_{3} & a_{1} & 1+a_{2} \\ a_{1} & a_{3} & a_{2} & 1+a_{3}\end{array}\right|$.
11. Show that $\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|=2(a+b+c)^{3}$.
12. Show that $\left|\begin{array}{lll}a-b+c & a+b-c & a-b-c \\ b-c+a & b+c-a & b-c-a \\ c-a+b & c+a-b & c-a-b\end{array}\right|=4\left(a^{3}+b^{3}+c^{3}-3 a b c\right)$.
13. Prove that $\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & \\ 2 c & 2 c & c-a-b\end{array}\right|=(a+b+c)^{3}$.
14. Prove that $\left|\begin{array}{ccc}x & y & z \\ x^{2} & y^{2} & z^{2} \\ y z & z x & x y\end{array}\right|=\left|\begin{array}{ccc}1 & 1 & 1 \\ x^{2} & y^{2} & z^{2} \\ x^{3} & y^{3} & z^{3}\end{array}\right|=(x-y)(y-z)(z-x)(x y+y z+z x)$.
15. Prove that $\left|\begin{array}{ccc}a^{1}+1 & a b & a c \\ a b & b^{2}+1 & b c \\ a c & b c & c^{2}+1\end{array}\right|=1+a^{2}+b^{2}+c^{2}$.
16. Prove that $\left|\begin{array}{ccc}1+a_{1} & 1 & 1 \\ 1 & 1+a_{2} & 1 \\ 1 & 1 & 1+a_{3}\end{array}\right|=a_{1} a_{2} a_{3}\left(1+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}\right)$.
17. If x, y, z are all different and if $\left|\begin{array}{lll}x & x^{2} & 1+x^{3} \\ y & y^{2} & 1+y^{3} \\ z & z^{2} & 1+z^{3}\end{array}\right|=0$, prove that $x y z=-1$.
18. Evaluate $\left|\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right|$.
19. Show that $\left|\begin{array}{ccc}(b+c)^{2} & a^{2} & a^{2} \\ b^{2} & (c+a)^{2} & b^{2} \\ c^{2} & c^{2} & (a+b)^{2}\end{array}\right|=2 a b c(a+b+c)^{3}$.
20. Solve the equation $\left|\begin{array}{ccc}15-x & 1 & 10 \\ 11-3 x & 1 & 16 \\ 7-x & 1 & 13\end{array}\right|=0$.
21. If $a+b+c=0$, solve the equation $\left|\begin{array}{ccc}a-x & c & b \\ c & b-x & a \\ b & a & c-x\end{array}\right|=0$.
22. If $D_{1}=\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & k\end{array}\right|, D_{2}=\left|\begin{array}{lll}a & g & x \\ b & h & y \\ c & k & z\end{array}\right|$ and $d=t x, e=h y, f=t z$, prove without expanding that $D_{1}=-t D_{2}$
23. Show without expanding thet $\left|\begin{array}{lll}a & b c & a b c \\ b & c a & a b c \\ c & a b & a b c\end{array}\right|=\left|\begin{array}{lll}a & a^{2} & a^{3} \\ b & b^{2} & b^{3} \\ c & c^{2} & c^{3}\end{array}\right|$.
24. If a, b, c are positive and are the p th, q th, r th terms of a G.P., respectively, then show without expanding thet $\left|\begin{array}{lll}\log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1\end{array}\right|=0$.
25. Evaluate $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y\end{array}\right|$.
26. Evaluate $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|$.
27. Evaluate $\left|\begin{array}{lll}1 & b+c & b^{2}+c^{2} \\ 1 & c+a & c^{2}+a^{2} \\ 1 & a+b & a^{2}+b^{2}\end{array}\right|$.
28. Evaluate $\left|\begin{array}{lll}1 & a & a^{2}-b c \\ 1 & b & b^{2}-a c \\ 1 & c & c^{2}-a b\end{array}\right|$.
29. Evaluate $\left|\begin{array}{lll}1 & b c & b c(b+c) \\ 1 & c a & c a(c+a) \\ 1 & a b & a b(a+b)\end{array}\right|$.
30. Prove that $\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & c+a\end{array}\right|=0$.
31. If a, b, c are the p th, q th, r th terms respectively of an H.P., show that $\left|\begin{array}{lll}b c & p & 1 \\ c a & q & 1 \\ a b & r & 1\end{array}\right|=0$.
32. If $\left|\begin{array}{ccc}x^{2}+3 x & x-1 & x+3 \\ x+1 & 1-2 x & x-4 \\ x-2 & x+4 & 3 x\end{array}\right|=p x^{4}+q x^{3}+r x^{2}+s x+t$ be an indentity in x, where p, q, r, s and t are constants, find the value of t.
33. Prove that $\left|\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{3}\end{array}\right|=a b c(a-b)(b-c)(c-a)$.
34. If a, b, c are in A.P., show that $\left|\begin{array}{lll}x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c\end{array}\right|=0$.
35. If ω is a complex cube root of unity, prove that $\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega & 1 & \omega^{2}\end{array}\right|=0$
36. Evaluate $\left|\begin{array}{ccc}k & k & k \\ 1 & 2 & 3 \\ 1 & 3 & 6\end{array}\right|$.
37. Evaluate $\left|\begin{array}{ccc}a^{2}+x & b^{2} & c^{2} \\ a^{2} & b^{2}+x & c^{2} \\ a^{2} & b^{2} & c^{2}+x\end{array}\right|$.
38. Evaluate $\left|\begin{array}{lll}a & b+c & a^{2} \\ b & c+a & b^{2} \\ c & a+b & c^{2}\end{array}\right|$.
39. Evaluate $\left|\begin{array}{lll}b+c & a-b & a \\ c+a & b-c & b \\ a+b & c-a & c\end{array}\right|$.
40. Show that $\left|\begin{array}{lll}a+b & b+c & c+a \\ b+c & c+a & a+b \\ c+a & a+b & b+c\end{array}\right|=-2\left(a^{3}+b^{3}+c^{3}-3 a b c\right)$.
41. Show that $\left|\begin{array}{lll}x+a & x+b & x+c \\ y+a & y+b & y+c \\ z+a & z+b & z+c\end{array}\right|=0$.
42. Show that $\left|\begin{array}{ccc}0 & p-q & p-r \\ q-p & 0 & q-r \\ r-p & r-q & 0\end{array}\right|=0$.
43. Show that $\left|\begin{array}{ccc}a & a+b & a+2 b \\ a+2 b & a & a+b \\ a+b & a+2 b & a\end{array}\right|=9 b^{2}(a+b)$
44. Show that $\left|\begin{array}{ccc}a & b-c & c+b \\ a+c & b & c-a \\ a-b & b+a & c\end{array}\right|$ and $(a+b+c)$ have the same sign.
45. Evaluate $\left|\begin{array}{ccc}b^{2}+c^{2} & a b & a c \\ a b & c^{2}+a^{2} & b c \\ c a & c b & a^{2}+b^{2}\end{array}\right|$.
46. Show that $\left|\begin{array}{ccc}(b+c)^{2} & c^{2} & b^{2} \\ c^{2} & (c+a)^{2} & a^{2} \\ b^{2} & a^{2} & (a+b)^{2}\end{array}\right|=2(a b+b c+c a)^{3}$.
47. Show that $\left|\begin{array}{ccc}(a+b)^{2} & c a & b c \\ c a & (b+c)^{2} & a b \\ b c & a b & (c+a)^{2}\end{array}\right|=2 a b c(a+b+c)^{3}$.
48. Show that $\left|\begin{array}{ccc}\frac{a^{2}+b^{2}}{c} & c & c \\ a & \frac{b^{2}+c^{2}}{a} & a \\ b & b & \frac{c^{2}+a^{2}}{b}\end{array}\right|=4 a b c$.

Solve the following equations:
49. $\left|\begin{array}{lll}a & a & x \\ a & a & a \\ b & x & b\end{array}\right|=0$.
50. $\left|\begin{array}{ccc}x & 2 & 3 \\ 6 & x+4 & 4 \\ 7 & 8 & x+8\end{array}\right|=0$.
51. $\left|\begin{array}{lll}x & 2 & 3 \\ 4 & x & 1 \\ x & 2 & 5\end{array}\right|=0$.
52. $\left|\begin{array}{ccc}x+a & b & c \\ a & x+b & c \\ a & b & x+c\end{array}\right|=0$.
53. $\left|\begin{array}{ccc}3+x & 5 & 2 \\ 1 & 7+x & 6 \\ 2 & 5 & 3+x\end{array}\right|=0$.

Show without expanding at any stage that:
54. $\left|\begin{array}{lll}a+b & b+c & c+a \\ b+c & c+a & a+b \\ b+c & c+a & a+b\end{array}\right|=2\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$.
55. $\left|\begin{array}{lll}b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y\end{array}\right|=2\left|\begin{array}{lll}a & b & c \\ p & q & r \\ x & y & z\end{array}\right|$.
56. $\left|\begin{array}{lll}1 & \cos \alpha-\sin \alpha & \cos \alpha+\sin \alpha \\ 1 & \cos \beta-\sin \beta & \cos \beta+\sin \beta \\ 1 & \cos \gamma-\sin \gamma & \cos \gamma+\sin \gamma\end{array}\right|=2\left|\begin{array}{lll}1 & \cos \alpha & \sin \alpha \\ 1 & \cos \beta & \sin \beta \\ 1 & \cos \gamma & \sin \gamma\end{array}\right|$.
57. $\left|\begin{array}{lll}(a-1)^{2} & a^{2}+1 & a \\ (b-1)^{2} & b^{2}+1 & b \\ (c-1)^{2} & c^{2}+1 & c\end{array}\right|=0$
58. $\left|\begin{array}{ccc}0 & c & b \\ -c & 0 & a \\ -b & -a & 0\end{array}\right|=0$.
59. $\left|\begin{array}{lll}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{array}\right|=\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$.
60. $\left|\begin{array}{ccc}a & b & c \\ x & y & z \\ y z & z x & x y\end{array}\right|=\left|\begin{array}{ccc}a x & b y & c z \\ x^{2} & y^{2} & z^{2} \\ 1 & 1 & 1\end{array}\right|$.
61. $\left|\begin{array}{lll}a & b & c \\ x & y & z \\ p & q & r\end{array}\right|=\left|\begin{array}{lll}y & b & q \\ x & a & p \\ z & c & r\end{array}\right|=\left|\begin{array}{ccc}x & y & z \\ p & q & r \\ a & b & c\end{array}\right|$.
62. find the value of the following determinant $\left|\begin{array}{ccc}m! & (m+1)!(m+2)! \\ (m+1)! & (m+2)!(m+3)! \\ (m+2)!(m+3)!(m+4)!\end{array}\right|$.
63. Solve the following system of equations using Cramer'r rule: $x+y=4,2 x-3 y=9$.
64. Solve the following system of equations using Cramer'r rule: $2 x-y+3 z=0, x+y+z=$ $6, x-y+z=2$.
65. Determine the nature of solution for the equations: $2 x+3 y=6,4 x+6 y=10$.
66. Show that the following system of equations is consistent $x+y-z=1,2 x+3 x+z=$ $4,4 x+3 y+z=16$.
67. Determine the nature of solution for the equations: $x+y=2,2 x+2 y=4$.
68. Determine whether the following system of equations is consistent: $2 x+y=13,6 x+$ $3 y=18, x-y=-3$.
69. Show that the system of following euqations has non-trivial solutions: $x+y-6 z=$ $0,3 x-y-2 x=0, x-y+2 x=0$.
70. For what value of k the following system of equations possess non-trivial solution. Also, find all the solutions of the system for that value of $k, x+y-k z=0,3 x-y-2 x=$ $0, x-y+2 x=0$.

Solve the following equations by Cramer's rule:
71. $x-2 y=0 ; 7 x+6 y=40$.
72. $x+y+z=9 ; 3 x+2 y-3 z=0 ; z-x=2$.
73. $x-y+z=0 ; 2 x+3 y-5 z=-1 ; 3 x-4 y+2 z=-1$.
74. $2 x+3 y-3 z=0 ; \quad 5 x-2 y+2 z=19 ; x+7 y-5 z=5$.
75. $x+y+z=1 ; a x+b y+c z=k ; a^{2} x+b^{2} y+c^{2} z=k^{2}$ where $a \neq b \neq c$.
76. $3 x+2 y-2 z=1 ;-x+y-4 z=1 ; 2 x-3 y+4 z=8$.

Determine whether the following system of equations have no solution, unique solution or infinite number of solution:
77. $3 x+9 y=5 ; 9 x+27 y=10$.
78. $5 x-3 y=3 ; x+y=7$.
79. $x+2 y=5 ; 3 x+6 y=15$.
80. $2 x+3 y+z=5 ; 3 x+y+5 z=7 ; x+4 y-2 z=3$.
81. $x+y-z=-2 ; 6 x+4 y+6 z=26 ; 2 x+7 y+4 z=31$.
82. $x+4 y=9 ; 2 x+8 y=18 ; y-2 x=0$.
83. Find the value of k such that following system of equations possess a non-trivial solution over the set of rationals Q. For that value of k find all the solutions of the system: $x+k y_{3} z=0 ; x+k y-2 z=0 ; 2 x+3 y-4 z=0$.
84. If a, b, c are different, show that the following system of equations has non-trivial solutions only when $a+b+c=0, a x+b y+c z=0 ; b x+c y+a z=0 ; c z+a y+b z=0$.
85. what value of λ the following system of equations has non-trivial solutions: $3 x-y+4 z=$ $0 ; x_{2} y-3 z=0 ; 6 x+5 y-\lambda z=0$.
86. For a positive integer n, if $D=\left|\begin{array}{ccc}n! & (n+1)! & (n+2)! \\ (n+1)! & (n+2) & (n+3)! \\ (n+2)! & (n+3)! & (n+4)!\end{array}\right|$, then show that $\frac{D}{(n!)^{3}}-4$ is divisible by n.
87. Let the three digit numbers $A 28,3 B 9,62 C$, where A, B, C are integers between 0 and 9 , be divisible by a fixed integer k, show that the determinant $\left|\begin{array}{ccc}A & 2 & 6 \\ 8 & 9 & C \\ 2 & B & 2\end{array}\right|$ is divisible by k.
88. Evaluate $\left|\begin{array}{lll}{ }^{x} C_{1} & { }^{x} C_{2} & { }^{x} C_{3} \\ { }_{y} C_{1} & { }^{y} C_{2} & { }^{y} C_{3} \\ { }^{z} C_{1} & { }^{z} C_{2} & { }^{z} C_{3}\end{array}\right|$
89. If $a \neq p, b \neq q, c \neq r$ and $\left|\begin{array}{lll}p & b & c \\ a & q & c \\ a & b & r\end{array}\right|=0$, then find the values of $\frac{p}{p-a}+\frac{q}{q-b}+\frac{r}{r-c}$.
90. Show that $\left|\begin{array}{ccc}(x-a)^{2} & b^{2} & c^{2} \\ a^{2} & (x-b)^{2} & c^{2} \\ a^{2} & b^{2} & (x-c)^{2}\end{array}\right|=x^{2}(x-2 a)(x-2 b)(x-2 c)$ $\left(x+\frac{a^{2}}{x-2 a}+\frac{b^{2}}{x-2 b}+\frac{c^{2}}{x-2 c}\right)$.
91. If $a>0, d>0$, find the value of the determinant

$$
\left|\begin{array}{ccc}
\frac{1}{a} & \frac{1}{a(a+d)} & \frac{1}{(a+d)(a+2 d)} \\
\frac{1}{a+d} & \frac{1}{(a+d)(a+2 d)} & \frac{1}{(a+2 d)(a+3 d)} \\
\frac{1}{a+2 d} & \frac{1}{(a+2 d)(a+3 d)} & \frac{1}{(a+3 d)(a+4 d)}
\end{array}\right|
$$

92. Show that $\left|\begin{array}{lll}\frac{1}{a+x} & \frac{1}{a+y} & \frac{1}{a+z} \\ \frac{1}{a+y} & \frac{1}{b+y} & \frac{1}{b+z} \\ \frac{1}{c+x} & \frac{1}{c+y} & \frac{1}{c+z}\end{array}\right|=$

$$
\frac{(a-b)(b-c)(c-a)(x-y)(y-z)(z-x)}{(a+x)(b+x)(c+x)(b+x)(b+y)(b+z)(c+x)(c+y)(c+z)}
$$

93. If $2 s=a+b+c$, show that

$$
\left|\begin{array}{ccc}
a^{2} & (s-a)^{2} & (s-a)^{2} \\
(s-b)^{2} & s^{2} & (s-b)^{2} \\
(s-c)^{2} & (s-c)^{2} & s^{2}
\end{array}\right|=2 s^{3}(s-a)(s-b)(s-c)
$$

94. Show that

$$
\begin{aligned}
& \left|\begin{array}{ccc}
a x-b y-c z & a y+b x & c x+a z \\
a y+b x & b y-c z-a x & b z+c y \\
c x+a z & b z+c y & c z-a x-b y
\end{array}\right|= \\
& \left(x^{2}+y^{2}+z^{2}\right)\left(a^{2}+b^{2}+c^{2}\right)(a x+b y+c z)
\end{aligned}
$$

95. Find the value of θ between 0 and $\pi / 2$ and satisfying the equation:

$$
\left|\begin{array}{ccc}
1+\cos ^{2} \theta & \sin ^{2} \theta & 4 \sin \theta \\
\cos ^{2} \theta & 1+\sin ^{2} \theta & 4 \sin \theta \\
\cos ^{2} \theta & \sin ^{2} \theta & 1+4 \sin \theta
\end{array}\right|=0
$$

96. If $a^{2}+b^{2}+c^{2}=1$, then prove that

$$
\left|\begin{array}{ccc}
a^{2}+\left(b^{2}+c^{2}\right) \cos \phi & a b(1-\cos \phi) & a c(1-\cos \phi) \\
a b(1-\cos \phi) & b^{2}+\left(c^{2}+a^{2}\right) \cos \phi & b c(1-\cos \phi) \\
c a(1-\cos \phi) & b c(1-\cos \phi) & c^{2}+\left(a^{2}+b^{2}\right) \cos \phi
\end{array}\right|=\cos ^{2} \phi
$$

97. If none of the a, b, c is zero, show that $\left|\begin{array}{ccc}-b c & b^{2}+a c & c^{2}+b c \\ a^{2}+a c & -a c & c^{2}+a c \\ a^{2}+a b & b^{2}+a b & -a b\end{array}\right|=(a b+b c+c a)^{3}$.
98. If u, v are functions of x, and $y=\frac{u}{v}$, show that $v^{2} \frac{d^{2} x}{d y^{2}}=\left|\begin{array}{ccc}u & v & 0 \\ u^{\prime} & b^{\prime} & v \\ u^{\prime \prime} & v^{\prime \prime} & 2 v^{\prime}\end{array}\right|$ where primes denote derivatives.
99. If $a \neq 0$ and $a \neq 1$, show that $\left|\begin{array}{ccc}x+1 & x & x \\ x & x+a & x \\ x & x & x+a^{2}\end{array}\right|=a^{3}\left[1+\frac{x\left(a^{3}-1\right)}{a^{2}(a-1)}\right]$.
100. If $p+q+r=0$, prove that $\left|\begin{array}{lll}p a & q b & r c \\ q c & r a & p b \\ r b & p c & q a\end{array}\right|=p q r\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$.
101. Show without expanding that $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=\left|\begin{array}{lll}1 & b c & b+c \\ 1 & c a & c+a \\ 1 & a b & a+b\end{array}\right|$.
102. Show without expanding that $\left|\begin{array}{ccc}x^{2}+x & x+1 & x-2 \\ 2 x^{2}+3 x-1 & 3 x & 3 x-3 \\ x^{2}+2 x+3 & 2 x-1 & 2 x-1\end{array}\right|=a A+B$, where A and B are determinants of 3 rd order not involving x.
103. If $D_{r}=\left|\begin{array}{ccc}r & x & \frac{n(n+1)}{2} \\ 2 r-1 & y & \frac{n(3 n-1)}{2} \\ 3 r-2 & z & \frac{n(3 n-1)}{2}\end{array}\right|$ show that $\sum_{r=1}^{n} D_{r}=0$.
104. Without expanding the determinant, show that the value of $\left|\begin{array}{ccc}-5 & 3+5 i & \frac{3}{2}-4 i \\ 3-5 i & 8 & 4+5 i \\ \frac{3}{2}+4 i & 4-5 i & 9\end{array}\right|$ is real.
105. Prove that $\left|\begin{array}{ccc}-2 a & a+b & b+c \\ b+a & -2 b & b+c \\ c+a & c+b & -2 c\end{array}\right|=4(a+b)(b+c)(c+a)$.
106. $f_{r}(x), g_{r}(x), h_{r}(x)$, where $r=1,2,3$ are polynomials in x such that $f_{r}(a)=g_{r}(a)=h_{r}(a)$ and

$$
F(x)=\left|\begin{array}{lll}
f_{1}(x) & f_{2}(x) & f_{3}(x) \\
g_{1}(x) & g_{2}(x) & g_{3}(x) \\
h_{1}(x) & h_{2}(x) & h_{3}(x)
\end{array}\right|
$$

then find $F^{\prime}(x)$.
107. Let α be a repeated root of a quadratic equation $f(x)=0$ and $A(x), B(x), C(x)$ be polynomials of degree $3,4,5$ respectively. Show that $\Delta(x)=\left|\begin{array}{ccc}A(x) & B(x) & C(x) \\ A(\alpha) & B(\alpha) & C(\alpha) \\ A^{\prime}(\alpha) & B^{\prime}(\alpha) & C^{\prime}(\alpha)\end{array}\right|$ is divisible by $f(x)$, where prime denotes a derivative.
108. Prove that $\left|\begin{array}{ccc}\cos (\theta+\alpha) & \cos (\theta+\beta) & \cos (\theta+\gamma) \\ \sin (\theta+\alpha) & \sin (\theta+\beta) & \sin (\theta+\gamma) \\ \sin (\beta-\gamma) & \sin (\gamma-\alpha) & \sin (\alpha-\beta)\end{array}\right|$ is independent of θ.
109. If f, g, h are differential functions of x and $\Delta=\left|\begin{array}{ccc}f & g & h \\ f^{\prime} & g^{\prime} & h^{\prime} \\ \left(x^{2} f\right)^{\prime \prime} & \left(x^{2} g\right)^{\prime \prime} & \left(x^{2} h\right)^{\prime \prime}\end{array}\right|$ prove that $\Delta^{\prime}=\left|\begin{array}{ccc}f & g & h \\ f^{\prime} & g^{\prime} & h^{\prime} \\ \left(x^{3} f^{\prime \prime}\right)^{\prime} & \left(x^{3} y^{\prime \prime}\right)^{\prime} & \left(x^{3} h^{\prime \prime}\right)^{\prime}\end{array}\right|$
110. If $f(x)=\left|\begin{array}{ccc}x^{n} & \sin x & \cos x \\ n! & \sin \frac{n \pi}{2} & \cos \frac{n \pi}{2} \\ a & a^{2} & a^{3}\end{array}\right|$, then show that $\frac{d^{n} f(x)}{d x^{n}}=0$, where $x=0$.
111. Prove that $\left|\begin{array}{lll}\cos (A-P) & \cos (A-Q) & \cos (A-R) \\ \cos (B-P) & \cos (B-Q) & \cos (Q-R) \\ \cos (C-P) & \cos (C-Q) & \cos (C-R)\end{array}\right|=0$.
112. Prove that $\left|\begin{array}{ccc}2 b c-a^{2} & c^{2} & b^{2} \\ c^{2} & 2 b c-b^{2} & a^{2} \\ b^{2} & a^{2} & 2 b c-c^{2}\end{array}\right|=\left(a^{3}+b^{3}+c^{3}-3 a b c\right)^{2}$.
113. Prove that $\left|\begin{array}{ccc}1 & \cos (\beta-\alpha) & \cos (\gamma-\alpha) \\ \cos (\alpha-\beta) & 1 & \cos (\gamma-\text { beta }) \\ \cos (\alpha-\gamma) & \cos (\beta-\gamma) & 1\end{array}\right|=0$.
114. For what value of m does the system of equation $3 x+m y=m$ and $2 x-5 y=20$ has a solution satisfying the conditions $x>0, y>0$.
115. Prove that the system of equation $3 x-y+4 z=0, x+2 y-3 z=-2,6 x+5 y+\lambda z=-3$ has at least one solution for any real λ. Find the set of solutions when $\lambda=-5$.
116. For what value of p and q, the system of equations $2 x+p y+6 z=8, x+2 y+q z=5$, $x+y+3 z=4$ has (a) no solution (b) a unique solution, and (c) infinite solutions.
117. Let λ and α be real. Find the set of all values of λ for which the system of equations: $\lambda x+y \sin \alpha-z \cos \alpha=0, x+y \cos \alpha+z \sin \alpha=0,-x+y \sin \alpha-z \cos \alpha=0$.
118. Evaluate $\left|\begin{array}{lll}a & b+c & a^{2} \\ b & c+a & b^{2} \\ c & a+b & c^{2}\end{array}\right|$.
119. Evaluate $\left|\begin{array}{ccc}\sqrt{13}+\sqrt{3} & 2 \sqrt{5} & \sqrt{5} \\ \sqrt{15}+\sqrt{26} & 5 & \sqrt{10} \\ 3+\sqrt{65} & \sqrt{15} & 5\end{array}\right|$.
120. Evaluate $\left|\begin{array}{lll}x & x\left(x^{2}+1\right) & x+1 \\ y & y\left(y^{2}+1\right) & y+1 \\ z & z\left(z^{2}+1\right) & z+1\end{array}\right|$.
121. If x, y, z are respectively l th, $2 m$ th, $3 n$th terms of an H.P., then find the value of $\left|\begin{array}{ccc}y z & z x & x y \\ l & 2 m & 3 n \\ 1 & 1 & 1\end{array}\right|$.
122. Show that $\left|\begin{array}{lll}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{array}\right|=(a b+b c+c a)\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$.
123. Evaluate $\left|\begin{array}{lll}(b+c)^{2} & a^{2} & b c \\ (c+a)^{2} & b^{2} & c a \\ (a+b)^{2} & c^{2} & a b\end{array}\right|$.
124. Prove that $\left|\begin{array}{lll}x^{2} & x^{2}-(y-z)^{2} & y z \\ y^{2} & y^{2}-(z-x)^{2} & z x \\ z^{2} & z^{2}-(x-y)^{2} & x y\end{array}\right|=(x-y)(y-z)(z-x)(x+y+z)\left(x^{2}+y^{2}+z^{2}\right)$.
125. If $a_{1} b_{1} c_{1}, a_{2} b_{2} c_{2}, a_{3} b_{3} c_{3}$ are three 3 digit numbers such that each of them is divisible by k, then prove that the determinant $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$ is divisible by k.
126. If $a_{i}, \quad b_{i}, \quad c_{i} \in \mathbb{R}(i=1,2,3)$ and $x \in R$, show that $\left.\left|\begin{array}{ll}a_{1}+b_{1} x & a_{1} x+b_{1} \\ c_{1} \\ a_{2}+b_{2} x & a_{2} x+b_{2} \\ c_{2} \\ a_{3}+b_{3} x & a_{3} x+b_{3}\end{array} c_{3}\right| l \right\rvert\,=(1-$ $\left.x^{2}\right)\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$.
127. If a, b, c are the roots of the equation $p x^{3}+q x^{2}+r x+s=0$, then find the value of $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|$.
128. If $a<b<c$, prove that $\left|\begin{array}{lll}1 & a & a^{4} \\ 1 & b & b^{4} \\ 1 & c & c^{4}\end{array}\right|>0$.
129. If a, b, c are distinct and $\left|\begin{array}{lll}a & a^{3} & a^{4}-1 \\ b & b^{3} & b^{4}-1 \\ c & c^{3} & c^{4}-1\end{array}\right|=0$, show that $a b c(a b+b c+c a)=a+b+c$.
130. Show that $x_{1}, x_{2}, x_{3} \neq 0,\left|\begin{array}{ccc}x_{1}+a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} \\ a_{2} b_{1} & x_{2}+a_{2} b_{2} & a_{2} b_{3} \\ a_{3} b_{1} & a_{3} b_{2} & x_{3}+a_{3} b_{3}\end{array}\right|=x_{1} x_{2} x_{3}$ $\left(1+\frac{a_{1} b_{1}}{x}+\frac{a_{2} b_{2}}{x}+\frac{a_{3} b_{3}}{x_{3}}\right)$.
131. Show that $\left|\begin{array}{lll}\frac{1}{a+x} & \frac{1}{a+y} & 1 \\ \frac{1}{b+x} & \frac{1}{b+y} & 1 \\ \frac{1}{c+x} & \frac{1}{c+y} & 1\end{array}\right|=\frac{(a-b)(b-c)(c-a)(x-y)}{(a+x)(b+x)(c+x)(a+y)(b+y)(c+y)}$.
132. Show that $\left|\begin{array}{ccc}a^{2} & b c & a c+c^{2} \\ a^{2}+a b & b^{2} & a c \\ a b & b^{2}+b c & c^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$.
133. Show that $\left|\begin{array}{ccc}1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2}\end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3}$.
134. If a, b, c are sides of a triangle, show that $\left|\begin{array}{ccc}a^{2} & (s-a)^{2} & (s-b)^{2} \\ (s-b)^{2} & b^{2} & (s-b)^{2} \\ (s-c)^{2} & (s-c)^{2} & c^{2}\end{array}\right|=\frac{1}{2} P^{2} A^{2}$, where P denotes the perimeter of the triangle, A its area and $s=\frac{P}{2}$.
135. Show that $\left|\begin{array}{ccc}(x-a)^{2} & a b & a c \\ b a & (x-b)^{2} & b c \\ c a & c b & (x-c)^{2}\end{array}\right|=x^{2}(x-2 a)(x-2 b)(x-2 c)$

$$
\left(x+\frac{a^{2}}{x-2 a}+\frac{b^{2}}{x-2 b}+\frac{c^{2}}{x-2 c}\right) .
$$

136. If x, y, z are unequal and $\left|\begin{array}{ccc}x^{3} & (x+a)^{3} & (x-a)^{3} \\ y^{3} & (y+a)^{3} & (y-a)^{3} \\ z^{3} & (z+a)^{3} & (z-z)^{3}\end{array}\right|=0$, prove that $a^{2}(x+y+z)=3 x y z$.
137. Show that $\left|\begin{array}{ccc}(1-x) & a & a^{2} \\ a & a^{2}-x & a^{3} \\ a^{2} & a^{3} & a^{4}-x\end{array}\right|=x^{2}\left(1+a^{2}+a^{3}\right)-x^{3}$.
138. If $y=\sin p x$ and $y_{n}=\frac{d^{n} x}{d y^{n}}$, find the value of $\left|\begin{array}{ccc}y & y_{1} & y_{2} \\ y_{3} & y_{4} & y_{5} \\ y_{6} & y_{7} & y_{8}\end{array}\right|$.
139. Evaluate $\left|\begin{array}{ccc}\cos ^{2} \theta & \cos \theta \sin \theta & -\sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta & \cos \theta \\ \sin \theta & -\cos \theta & 0\end{array}\right|$.
140. Evaluate $\left|\begin{array}{ccc}\cos \alpha & \sin \alpha \cos \beta & \sin \alpha \sin \beta \\ -\sin \alpha & \cos \alpha \cos \beta & \cos \alpha \sin \beta \\ 0 & -\sin \beta & \cos \beta\end{array}\right|$.
141. Solve the equation $\left|\begin{array}{ccc}a^{2}+x & a b & a c \\ a b & b^{2}+x & b c \\ a c & b c & c^{2}+x\end{array}\right|=0$.
142. Solve the equation for $x,\left|\begin{array}{ccc}{ }^{x} C_{r} & { }^{n-1} C_{r} & { }^{n-1} C_{r-1} \\ { }^{x+1} C_{r} & { }^{n} C_{r} *{ }^{n} C_{r-1} & \\ { }^{x+2} C_{r} & { }^{n+1} C_{r} & { }^{n+1} C_{r-1}\end{array}\right|=0 \forall n, r>1$.
143. Solve the equation $\left|\begin{array}{ccc}u+a^{2} x & w^{\prime}+a b x & v^{\prime}+a c x \\ w^{\prime}+a b x & v+b^{2} x & u^{\prime}+b c x \\ v^{\prime}+a c x & u^{\prime}+b c x & w+c^{2} x\end{array}\right|=0$ expressing the result by means of determinants.
144. If $f(a, b)=\frac{f(b)-f(a)}{b-a}$ and $f(a, b, c)=\frac{f(b, c)-f(a, b)}{c-a}$, show that

$$
f(a, b, c)=\left|\begin{array}{ccc}
f(a) & f(b) & f(c) \\
1 & 1 & 1 \\
a & b & c
\end{array}\right| \div\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right|
$$

145. If A, B, C are the angles of a $\triangle A B C$, then prove that $\left|\begin{array}{lll}e^{2 i A} & e^{-i C} & e^{-i B} \\ e^{-i C} & e^{2 i B} & e^{-i A} \\ e^{-i B} & e^{-i A} & e^{2 i C}\end{array}\right|$ is purely real.
146. If A, B, C are the angles of a $\triangle A B C$ such that $A \geq B \geq C$, find the minimum value of Δ, where $\Delta=\left|\begin{array}{llll}\sin ^{2} A & \sin A \cos A & \cos ^{2} A \\ \sin ^{2} B & \sin B & \cos B & \cos ^{2} B \\ \sin ^{2} C & \sin C & \cos C & \cos ^{2} C\end{array}\right|$. Also, show that $\Delta=\frac{1}{4}[\sin (2 A-2 B)+$ $\sin (2 B-2 C)+\sin (2 C-2 A)]$.
147. Evaluate $\left|\begin{array}{ccc}a^{2} & a & 1 \\ \cos n x & \cos (n+1) x & \cos (n+2) x \\ \sin n x & \sin (n+1) x & \sin (n+2) x\end{array}\right|$.
148. If $0<x<\frac{\pi}{2}$, the find the values of x for which $\left|\begin{array}{ccc}1+\sin ^{2} x & \cos ^{2} x & 4 \sin 2 x \\ \sin ^{2} x & 1+\cos ^{2} x & 4 \sin 2 x \\ \sin ^{2} x & \cos ^{2} x & 1+4 \sin 2 x\end{array}\right|$ has maximum value.
149. If A, B, C are the angles of a triangle, show that $\left|\begin{array}{ccc}-1 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & 1\end{array}\right|=0$.
150. If A, B, C are the angles of an isoscceles triangle, evaluate

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
1+\sin A & 1+\sin B & 1+\sin C \\
\sin A+\sin ^{2} A & \sin B+\sin ^{2} B & \sin C+\sin ^{2} C
\end{array}\right|
$$

151. For positive numbers $x, y, z \neq 1$, show that the numeric value of the determinant

$$
\left|\begin{array}{ccc}
1 & \log _{x} y & \log _{x} z \\
\log _{y} x & 1 & \log _{y} z \\
\log _{z} x & \log _{z} y & 1
\end{array}\right|=0
$$

152. If $a, b, c>0$ and $x, y, z \in \mathbb{R}$, then show without expanding that

$$
\left|\begin{array}{ccc}
\left(a^{x}+a^{-x}\right)^{2} & \left(a^{x}-a^{-x}\right)^{2} & 1 \\
\left(b^{y}+b^{-y}\right)^{2} & \left(b^{y}-b^{-y}\right)^{2} & 1 \\
\left(c^{z}+c^{-z}\right)^{2} & \left(c^{z}-c^{-z}\right)^{2} & 1
\end{array}\right|=0
$$

153. Without expanding the determinants, prove that $\left|\begin{array}{lll}103 & 115 & 114 \\ 111 & 108 & 106 \\ 104 & 113 & 116\end{array}\right|+\left|\begin{array}{lll}113 & 116 & 104 \\ 108 & 106 & 111 \\ 115 & 114 & 103\end{array}\right|=0$.
154. Evaluate $\sum_{n=1}^{N} U_{n}$ if $U_{n}=\left|\begin{array}{ccc}n & 1 & 5 \\ n^{2} & 2 N+1 & 2 N+1 \\ n^{3} & 3 N^{2} & 3 N\end{array}\right|$.
155. If A, B, C are the angles of a triangle, then show without expanding that

$$
\left|\begin{array}{ccc}
\sin (A+B+C) & \sin B & \cos C \\
-\sin B & 0 & \tan A \\
\cos (A+B) & -\tan A & 0
\end{array}\right|=0
$$

156. Evaluate without expanding $\left|\begin{array}{lll}b^{2}-a b & b-c & b c-a c \\ a b-a^{2} & a-b & b^{2}-a b \\ b c-a c & c-a & a b-a^{2}\end{array}\right|$
157. Let $\Delta_{i}=\left|\begin{array}{ccc}i-1 & n & 6 \\ (i-1)^{2} & 2 n^{2} & 4 n-2 \\ (i-1)^{3} & 3 n^{3} & 3 n^{2}-2 n\end{array}\right|$. Show that $\sum_{n=1}^{n} \Delta_{i}=k$, a constant.
158. Let $m \in \mathbb{P}$ and $\Delta_{r}=\left|\begin{array}{ccc}2 r-1 & { }^{m} C_{r} & 1 \\ m^{2}-1 & 2^{m} & m+1 \\ \sin ^{2} m^{2} & \sin ^{2} m & \sin ^{2}(m+1)\end{array}\right|$, then find the value of $\sum_{r=0}^{m} \Delta_{r}$.
159. Show that $\left|\begin{array}{lll}{ }^{x} C_{r} & { }^{x} C_{r+1} & { }^{x} C_{r+2} \\ { }^{y} C_{r} & { }^{y} C_{r+1} & { }^{y} C_{r+2} \\ { }^{z} C_{r} & { }^{z} C_{r+1} & { }^{z} C_{r+2}\end{array}\right|=\left|\begin{array}{lll}{ }^{x} C_{r}{ }^{x+1} C_{r+1} & { }^{x+2} C_{r+1} \\ { }^{y} C_{r} & { }^{y+1} C_{r+1} & { }^{y+2} C_{r+1} \\ { }^{z} C_{r} & { }^{z+1} C_{r+1} & { }^{z+2} C_{r+1}\end{array}\right|$
160. If $\Delta_{r}=\left|\begin{array}{ccc}r & n+1 & 1 \\ r^{2} & 2 n-1 & \frac{2 n+1}{3} \\ r^{3} & 3 n+2 & \frac{n(n+1)}{2}\end{array}\right|$, show that $\sum_{r=1}^{n} \Delta_{r}=0$.
161. If $\Delta_{r}=\left|\begin{array}{ccc}2^{r-1} & 2.3^{r-1} & 4.5^{r-1} \\ x & y & z \\ 2^{n}-1 & 3^{n}-1 & 5^{n}-1\end{array}\right|$, show that $\sum_{r=1}^{n} \Delta_{r}=0$.
162. Show without expanding that $\left|\begin{array}{ccc}x^{2} & (x-1)^{2} & (x-2)^{2} \\ (x-1)^{2} & (x-2)^{2} & (x-3)^{2} \\ (x-2)^{2} & (x-3)^{2} & (x-4)^{2}\end{array}\right|$ is independent of x.
163. Show without expanding that $\left|\begin{array}{ccc}2 & 1+i & 3 \\ 1-i & 0 & 2+i \\ 3 & 2-i & 1\end{array}\right|$ is purely real.
164. Show without expanding that $\left|\begin{array}{ccc}x-3 & 2 x+1 & 2 \\ 3 x+2 & x+2 & 1 \\ 5 x+1 & 5 x+4 & 5\end{array}\right|$ is independent of x.
165. If a and x are real numbers and n is a positive integer, then show without expanding that $\left|\begin{array}{ccc}a^{n}-x & a^{n+1}-x & a^{n+2}-x \\ a^{n+3}-x & a^{n+4}-x & a^{n+5}-x \\ a^{n+6}-x & a^{n+7}-x & a^{n+8}-x\end{array}\right|=0$.
166. Find $\sum_{r=2}^{n}(-2)^{r}\left|\begin{array}{ccc}n-2 \\ C_{r-2} & { }^{n-2} C_{r-1} & { }^{n-2} C_{r} \\ -3 & 1 & 1 \\ 2 & 1 & 0\end{array}\right|, n>2$.
167. If a, b, c are non-zero real numbers, show without expanding that $\left|\begin{array}{cll}b^{2} c^{2} & b c & b+c \\ c^{2} a^{2} & c a & c+a \\ a^{2} b^{2} & a b & a+b\end{array}\right|=0$.
168. Prove that $\left|\begin{array}{lll}b+a-a-d & b c-a d & b c(a+d)-a d(b+d) \\ c+a-b-d & c a-b d & c a(b+d)-b d(c+a) \\ a+b-c-d & a b-c d & a b(c+d)-c d(a+b)\end{array}\right|=-2(b-c)(c-a)(a-$ b) $(a-d)(b-d)(c-d)$.
169. Prove that $\left|\begin{array}{ccc}b c-a^{2} & c a-b^{2} & a b-c^{2} \\ c a+a b-b c & b c+a b-c a & b c+c a-a b \\ (a+b)(a+c) & (b+c)(b+a) & (c+a)(c+b)\end{array}\right|=3(b-c)(c-a)(a-b)(a+$ $b+c)(a b+b c+c a)$.
170. Prove that $\left|\begin{array}{lll}1 & (m+n-l-p)^{2} & (m+n-l-p)^{4} \\ 1 & (n+l-m-p)^{2} & (n+l-m-p)^{4} \\ 1 & (l+m-n-p)^{2} & (l+m-n-p)^{4}\end{array}\right|=64(l-m)(l-n)(l-p)(m-$ $n)(m-p)(n-p)$.
171. If u, v, w are differentiable functions of f and suffixes denote the derivatives w.r..t t, prove that $\frac{d}{d t}\left|\begin{array}{lll}u_{1} & v_{1} & w_{1} \\ u_{2} & v_{2} & w_{2} \\ u_{3} & v_{3} & w_{3}\end{array}\right|=\left|\begin{array}{lll}u_{1} & v_{1} & w_{1} \\ u_{2} & v_{2} & w_{2} \\ u_{4} & v_{4} & w_{4}\end{array}\right|$.
172. If $Y=s X$ and $Z=t X$, all the variables being differentiable functions of x, prove that $\left|\begin{array}{lll}X & Y & Z \\ X_{1} & Y_{1} & Z_{1} \\ X_{2} & Y_{2} & Z_{2}\end{array}\right|=X^{3}\left|\begin{array}{ll}s_{1} & t_{1} \\ s_{2} & t_{2}\end{array}\right|$, where suffixes denote the derivatives w.r.t. x.
173. If $f(x), g(x), h(x)$ are polynomials in x, find the condition that $\left|\begin{array}{ccc}f(x) & g(x) & h(x) \\ f(\alpha) & g(\alpha) & h(\alpha) \\ f(\beta) & g(\beta) & h(\beta)\end{array}\right|$, which is a polynomial of degree 3 , is expressible as $a(x-\alpha)^{2}(x-\beta)$.
174. Show that $\left|\begin{array}{lll}\sin (x+\alpha) & \cos (x+\alpha) & a+x \sin \alpha \\ \sin (x+\beta) & \cos (x+\beta) & b+x \sin \beta \\ \sin (x+\gamma) & \cos (x+\gamma) & c+x \sin \gamma\end{array}\right|$ is independent of x.
175. If $l_{r} \vec{\imath}, m_{r} \vec{r}, n_{r} \vec{k}, r=1,2,3$ be three mutually perpendicular unit vectors, show that $\left|\begin{array}{lll}l_{1} & l_{2} & l_{3} \\ m_{1} & m_{2} & m_{3} \\ n_{1} & n_{2} & n_{3}\end{array}\right|= \pm 1$.
176. Let $\Delta=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$ and A_{i}, B_{i}, C_{i} be the cofactors of a_{i}, b_{i}, c_{i} respectively and $\alpha_{i}, \beta_{i}, \gamma_{i}$ be the cofactors of A_{i}, B_{i}, C_{i} respectively, where $i=1,2,3$, show that $\left|\begin{array}{lll}A_{1} & B_{1} & C_{1} \\ A_{2} & B_{2} & C_{2} \\ A_{3} & B_{3} & C_{3}\end{array}\right|\left|\begin{array}{ccc}\alpha_{1} & \beta_{1} & \gamma_{1} \\ \alpha_{2} & \beta_{2} & \gamma_{2} \\ \alpha_{3} & \beta_{3} & \gamma_{3}\end{array}\right|=\Delta^{6}$
177. Using determinants, solve the equations: $x+2 y+3 z=6,2 x+4 y+z=17,3 x+2 y+9 z=$ 2.
178. Solve the system of equations $a x+b y+c a=d, a^{2} x+b^{2} y+c^{2} a=d^{2}, a^{3} x+b^{3} y+c^{3} a=d^{3}$. Will the solution always exist and be unique?
179. Determine the coefficients a, b, c of the quadratic function where $f(x)=a x^{2}+b x+c$, if $f(1)=0, f(2)=-2$ and $f(3)=-6$.
180. Determine the coefficients a, b, c of the quadratic function where $f(x)=a x^{2}+b x+c$, if $f(0)=6, f(2)=11, f(-3)=6$. Also, find $f(1)$.
181. Solvve $(b+c)(y+z)-a x=b-c,(c+a)(z+x)-b y=c-a,(a+b)(x+y)-c z=a-b$, where $a+b+c \neq 0$.
182. Examine the consistency of the system of equations $7 x-7 y+5 z=3,3 x+y+5 z=7$ and $2 x+3 y+5 z=5$.
183. Find the value of k for which the following system of equations is consistent $x+y=$ $3,(1+k) x+(2+k) y=8, x-(1+k) y+(2+k)=0$.
184. Find the value of k for which the following system of equations is consistent $(k+1)^{3} x+$ $(k+2)^{3} y=(k+1)^{3},(k+1) x+(k+2) y=k+3, x+y=1$.
185. Find the values of c for which the system of equations $2 x+3 y=4 ;(c+2) x+(c+4) y=$ $c+6,(c+2)^{2} x+(c+4)^{2}=(c+6)^{2}$ are consistent and find the solutions for all such values of c.
186. Find the values of λ for which the system of equations $x+y-2 z=0,2 x-3 y+z=$ $0, x-5 y+4 z=\lambda$ are consistent and find the solutions for all such values of λ.
187. Find the values of λ and μ for which the following system of equations $x+y+z=$ $0, x+2 y+3 z=14,2 x+5 y+\lambda z=\mu, \lambda, \mu \in R$ has (a) unique solution (b) infinite solutions.
188. If $b c+q r=c a+r p=a b+p q=-1$, show that $\left|\begin{array}{lll}q p & a & p \\ b q & b & q \\ c r & c & r\end{array}\right|=0$.
189. Find all values of k for which the following system possesses a non-trivial solution: $x+k y+3 z=0 ; k x+2 y+2 z=0,2 x+3 y+4 z=0$
190. If $x=c y+b z, y=a z+c x, z=b x+a y$, where a, b, c are not all zero. Prove that $a^{2}+b^{2}+c^{2}+2 a b c=1$. Further if at least one of a, b, c is a proper fraction, prove that (a) $a^{2}+b^{2}+c^{2}<3$ (b) $a b c>-1$
191. If $a=\frac{x}{y-z}, b=\frac{y}{z-x}, c=\frac{z}{x-y}$, where x, y, z are not all zero, prove that $1+a b+b c+c a=0$.
192. Consider the system of linear equations, in $x, y, z:(\sin 3 \theta) x-y+z=0,(\cos 2 \theta)+$ $4 y+3 z=0,2 x+7 y+7 z=0$. Find the value of θ for which this system has non-trivial solution.
193. If a, b, c are in G.P. with common ratio $r_{1} ; \alpha, \beta, \gamma$ are in G.P. with common ratio r_{2}, then find the conditions that r_{1} must satisfy in order that the equations $a x+\alpha y+z=$ $0, b x+\beta y+z=0, c x+\gamma y+z=0$ have only trivial solutions.
194. Prove that $\left|\begin{array}{llll}x & l & m & 1 \\ \alpha & x & n & 1 \\ \alpha & \beta & x & 1 \\ \alpha & \beta & \gamma & 1\end{array}\right|=(x-\alpha)(x-\beta)(x-\gamma)$, where l, m, n have any values whatever.
195. Prove that $\left|\begin{array}{cccc}a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a\end{array}\right|=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{2}$.
196. If $u=a x^{4}+4 b x^{3}+6 c x^{2}+4 d x+e$ and $u_{11}=a x^{2}+2 b x+c, u_{12}=b x^{2}+2 c x+d, u_{22}=$ $c x^{2}+2 d x+e$, prove that $\left|\begin{array}{cccc}a & b & c & u_{11} \\ b & c & d & u_{12} \\ c & d & e & u_{22} \\ u_{11} & u_{12} & u_{22} & 0\end{array}\right|=-u\left|\begin{array}{lll}a & b & c \\ b & c & d \\ c & d & e\end{array}\right|$.
197. If $u=a x^{2}+2 b x y+c y^{2}$, $u^{\prime}=a^{\prime} x^{2}+2 b^{\prime} x y+c^{\prime} y^{2}$, prove that $\left|\begin{array}{ccc}y^{2} & -x y & x^{2} \\ a & b & c \\ a^{\prime} & b^{\prime} & c^{\prime}\end{array}\right|=$ $\left|\begin{array}{cc}a x+b y & b x+c y \\ a^{\prime} x+b^{\prime} y & b^{\prime} x+c^{\prime} y\end{array}\right|=-\frac{1}{y}\left|\begin{array}{cc}u & u^{\prime} \\ a x+b y & a^{\prime} x+b^{\prime} y\end{array}\right|$.
198. Prove that $\left|\begin{array}{ccc}a & b & a x+b y \\ b & c & b x+c y \\ a x+b y & b x+c y & 0\end{array}\right|=-\left(a c-b^{2}\right)\left(a x^{2}+2 b x y+c y^{2}\right)$.
199. Prove that the determinant $\left|\begin{array}{cccc}a-x & b & c & d \\ b & c-x & d & a \\ c & d & a-x & b \\ d & a & b & c-x\end{array}\right|=(x-a-b-c-d)(x-a+$ $b-c+d)\left[x^{2}-(a-c)^{2}-(b-d)^{2}\right]$.

Chapter 9
 Matrices

Matrices are an important concept which has numerous real life usage in various mathematical branches. Also, it has huge importance in modern computer science. It has its applications in computer graphics, artificial intelligence, data structures leading to various clever algorithms. Thus, it is of paramount importance that the reader understand this particular concept in a sound manner.

Definition: A matrix is a rectangular array of real or complex numbers. This rectangular array is made up of rows and columns much like determinants. Let us consider a matrix of $m \times n$ symbols, where m is number of rows and $: n$ is the number of columns.

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

Such a matrix is called m by n matrix or a matrix of order $m \times n$. Sometimes a matrix is shown with parenthese instead of square brackets as shown in last example.

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

A compact way to write a matrix is $A=\left[a_{i j}\right], 1 \leq i \leq m ; 1 \leq j \leq n$ or simply $\left[a_{i j}\right]_{m \times n} a_{i j}$ is an element located at $i^{t h}$ row and $j^{t h}$ column and is called $(i, j)^{t h}$ element of the matrix. A matrix is just a rectangular array of numbers and unlike determinants it does not have a value.

9.1 Classification of Matrices

9.1.1 Equal Matrices

Two matrices are said to be equal if they have same order and each corresponding element is equal.

9.1.2 Row Matrix

A matrix having a single row is called a row matrix. For example, $[1,2,3,4]$.

9.1.3 Column Matrix

A matrix having a single column is called a column matrix. For example,

9.1.4 Square Matrix

If $m=n$ i.e number of rows and columns are equal then the matrix is called a square matrix. For example,

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

is a 3×3 matrix.

9.1.5 Diagonal Matrix

The diagonal from left-hand side upper corner to right-hand side lower corner is known as leading diagonal or principal diagonal. In the example of square matrix the elements of diagonal are $1,5,9$. When a matrix has all elements as zero except those belonging to its diagonal, then it is called a diagonal matrix. Equivalently, We can say that a matrix $\left[a_{i j}\right]_{m \times n}$ is a diagonal matrix if $a_{i j}=0 \forall i \neq j$. For example, the square matrix example can be converted to a diagonal matrix like below:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 9
\end{array}\right]
$$

For an $n \times n$ matrix the diagonal elements are represented as $\left[d_{1}, d_{2} \ldots, d_{n}\right.$] This diagonal is also written with a diag prefix like $\operatorname{diag}\left[d_{1}, d_{2} \ldots, d_{n}\right]$.

9.1.6 Scalar Matrix

A diagonal matrix whose elements of the diagonal are equal is called scalar matrix. For example:

$$
\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

For a square matrix $\left[a_{i j}\right]_{m \times n}$ to be a scalar matrix:

$$
a_{i j}=\left\{\begin{array}{ll}
0, & i \neq j \\
m, & i=j
\end{array} \forall m \neq 0\right.
$$

9.1.7 Unit Matrix or Identity Matrix

A diagonal matrix of order n, which has all elements of its diagonal as one, is called a unit or identity matrix. It is also denoted by I_{n}. We can rewrite it in concise way like we did for scalar matrix as

$$
a_{i j}= \begin{cases}0, & i \neq j \\ 1, & i=j\end{cases}
$$

9.1.8 Horizontal Matrix

An $m \times n$ matrix is called a horizontal matrix if $m<n$. For example:

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

9.1.9 Vertical Matrix

An $m \times n$ matrix is called a vertical matrix if $m>n$. For example:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]
$$

9.1.10 Triangular Matrix

A sqaure matrix in which all the elements below the diagonal are zero is called upper triangular matrix. Conversely, a sqaure matrix in which all the elements above the diagonal matrix is called lower triangular matrix. Thus, for a lower triangular matrix $a_{i j}=0$ when $i<j$ and for an upper triangular matrix $a_{i j}=0$ when $i>j$

Clearly, a diagonal matrix is both lower and upper triangular matrix. A triangular matrix is called strictly triangular if $a_{i i}=0 \forall 1 \leq i \leq n$. Example of upper triangular matrix:

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 5 & 6 \\
0 & 0 & 9
\end{array}\right]
$$

Example of lower triangular matrix:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 5 & 0 \\
7 & 8 & 9
\end{array}\right]
$$

9.1.11 Null or Zero Matrix

If all elements of a matrix is zero then it is a null or zero matrix.

9.1.12 Singular and Non-Singular Matrix

A matrix is said to be non-singular if $|A| \neq 0$ and singular if $|A|=0$.

9.1.13 Trace of Matrix

If sum of the elements of a sqaure matrix A lying along the principal diagonal is called the trace of A, i.e. $\operatorname{tr}(A)$. Thus, if $A=\left[a_{i j}\right]_{n \times n}$, then $\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$

9.1.14 Properties of Trace of a Matrix

To prove the second and third properties of a trace of matrix we will have to use properties given further below on algebraic operations on a matrix. If $A=\left[a_{i i}\right]_{n \times n}$ and $B=\left[b_{i i}\right]_{n \times n}$ and λ is a scalar then

1. $\operatorname{tr}(\lambda A)=\lambda \operatorname{tr}(A)$
2. $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
3. $\operatorname{tr}(A B)=\operatorname{tr}(B A)$

9.1.15 Determinant of a Matrix

Every square matrix A has a determinant associated with it. This is written as $\operatorname{det}(A)$ or $|A|$ or Δ. We observe following for determinants of matrices:

1. If $A_{1}, A_{2}, \ldots, A_{n}$ are square matrices of the same order then $\left|A_{1} A_{2} \ldots A_{n}\right|=$ $\left|A_{1}\right|\left|A_{2}\right| \ldots\left|A_{n}\right|$.
2. If k is a scalar, then $|k A|=k^{n}|A|$, where n is the order of matrix.
3. If A and B are two matrices of equal order then $|A B|=|B A|$ even though $A B \neq B A$.

9.2 Algebra of Matrices

9.2.1 Addition of Matrices

If any two matrices are of same order then addition of those can be performed. The result is a matrix of same order with corresponding elements added. For example, consider two 3×3 matrices as given below:

$$
A=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right], B=\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3} \\
b_{4} & b_{5} & b_{6} \\
b_{7} & b_{8} & b_{9}
\end{array}\right]
$$

then,

$$
A+B=\left[\begin{array}{lll}
a_{1}+b_{1} & a_{2}+b_{2} & a_{3}+b_{3} \\
a_{4}+b_{4} & a_{5}+b_{5} & a_{6}+b_{6} \\
a_{7}+b_{7} & a_{8}+b_{8} & a_{9}+b_{9}
\end{array}\right]
$$

9.2.2 Subtraction of Matrices

The conditions are same for subtraction to happen i.e. order of the matrices must be same. The result is like that of addition with resulting elements being the difference of original matrices. For example,

$$
A-B=\left[\begin{array}{lll}
a_{1}-b_{1} & a_{2}-b_{2} & a_{3}-b_{3} \\
a_{4}-b_{4} & a_{5}-b_{5} & a_{6}-b_{6} \\
a_{7}-b_{7} & a_{8}-b_{8} & a_{9}-b_{9}
\end{array}\right]
$$

where A and B are matrices from previous example. Following is observed for addition and subtraction:

1. Addition of matrices is commutative i.e. $A+B=B+A$ as well as associative i.e. $(A+B)+C=A+(B+C)$.
2. Cancellation laws are true in case of addition.
3. The equation $A+B=O$ has a unique solution in the set of all $m \times n$ matrices (where O is null matrix).

9.2.3 Scalar Multiplication

The scalar multiplication of a matrix A with a scalar λ is defined as $\lambda A=\left[\lambda a_{i j}\right]$.

9.2.4 Multiplication of two Matrices

The prerequisite for matrix multiplication is that number of columns of first matrix must be equal to number of rows of second matrix. The product is defined as

$$
A_{m \times n} B_{n \times p}=\sum_{r=1}^{n} a_{m r} b_{r p}
$$

It can be easily verified that the resulting matrix will have m rows and p columns.

A Properties of Matrix Multiplication

1. Commutative laws does not hold always for matrices.
2. If $A B=B A$, then they are called commutative matrices.
3. If $A B=-B A$, then they are called anti-commutative matrices.
4. Matrix multiplication is associative i.e. $(A B) C=A(B C)$. Proof of this has been left as an exercise.
5. Matrix mulplication is distributive wrt addition and subtraction i.e. $A(B \pm C)=A B \pm$ $A C$.

9.2.5 Transpose of a Matrix

Let A be any matrix then its transpose can be obtained by ecxchanging rows and columns. It is denoted by A^{\prime} or A^{T} and clearly, if order of A is $m \times n$ then A^{\prime} will have order of $n \times m$.

A Properties of Transpose Matrices

1. $(A+B)^{\prime}=A^{\prime}+B^{\prime}$.
2. $\left(A^{\prime}\right)^{\prime}=A$.
3. $(k A)^{\prime}=k A^{\prime}$ where k is a constant.
4. $(A B)^{\prime}=B^{\prime} A^{\prime}$.

Proofs of these properties are simple and have been left as an exercise.

9.2.6 Symmetric Matrix

A sqaure matrix $A=\left[a_{i j}\right]$ is called a symmetric matrix if $a_{i j}=a_{j i} \forall i, j$. We can also say thet a matrix is symmetric if and only if $A=A^{\prime}$.

9.2.7 Skew Symmetric Matrix

A square matrix A is said to be a skew symmetric matrix if $a_{i j}=-a_{j i} \forall i, j$. Clearly, if a matrix is skew symmetric then elements of its diagonal are all zeros.

9.2.8 Orthogonal Matrix

A matrix is said to be orthogonal if $A A^{\prime}=1$.

Theorem 12

If A is a square matrix then $A+A^{\prime}$ is a symmetric matrix and $A-A^{\prime}$ is a skew symmetric matrix.

Proof
$\left(A+A^{\prime}\right)^{\prime}=A^{\prime}+\left(A^{\prime}\right)^{\prime}=A^{\prime}+A$. Hence, $A+A^{\prime}$ is a symmetric matrix. $\left(A-A^{\prime}\right)^{\prime}=A^{\prime}-A=$ $-\left(A-A^{\prime}\right)$. Hence, $A-A^{\prime}$ is a skew symmetric matrix.

Theorem 13

Every square matrix can be shown as sum of a symetric matrix and a skew symmetric matrix.

Proof

Let A be any square matrix. $\frac{1}{2}\left(A+A^{\prime}\right)+\frac{1}{2}\left(A-A^{\prime}\right)=A$ hus, the matrix A is a sum of symmetrix matrix $A+A^{\prime}$ and a skew symmetric matrix $A-A^{\prime}$

9.2.9 Adjoint of a Matrix

Let $A=\left[a_{i j}\right]$ be a square matrix. Let $B=\left[A_{i j}\right]$ where $A_{i j}$ is the cofactor of the element $a_{i j}$ in the det. A. The transpose B^{\prime} of the matrix B is called the adjoint of the matrix A and is written by $a d j . A$. For example,

Let $A=\left[\begin{array}{lll}1 & 2 & 5 \\ 2 & 3 & 4 \\ 2 & 0 & 5\end{array}\right]$, then $B=\left[\begin{array}{ccc}15 & -2 & -6 \\ -10 & -1 & 4 \\ -1 & 2 & -1\end{array}\right]$

$$
\begin{aligned}
& \operatorname{adj} \cdot A=B^{\prime}=\left[\begin{array}{ccc}
15 & -10 & -1 \\
-2 & -1 & 2 \\
-6 & -4 & -1
\end{array}\right] \\
& \text { A.adj }(A)=\operatorname{adj}(A) \cdot A=|A| I_{n}
\end{aligned}
$$

9.2.10 Inverse of a Matrix

Following from above, inverse of a matrix is $\frac{\operatorname{adj}(A)}{|A|}$. Inverse of a matrix A is denoted by A^{-1}.

9.2.11 Hermitian and Skew Hermitian Matrix

A sqaure matrix $A=\left[a_{i j}\right]$ is said to be a Hermitian matrix if $a_{i j}=\overline{a_{i j}} \forall i, j$ i.e. $A=A^{\theta}$. For example,

$$
\left[\begin{array}{cc}
a & b+i c \\
b-i c & d
\end{array}\right]
$$

is a Hermitian matrix.
Similarly, a sqaure matrix $A=\left[a_{i j}\right]$ is said to be a skew Hermitian matrix if $a_{i j}=\overline{a_{j i}} \forall i, j$ i.e. $A=-A^{\theta}$. For example,

$$
\left[\begin{array}{cc}
0 & -b+i c \\
b+i c & 0
\end{array}\right]
$$

is a skew Hermitian matrix. Following are observed for these types of matrices:

1. If A is a hermitian matrix, then $a_{i i}=\overline{a_{i i}} \Rightarrow a_{i i}$ is real, $\forall i$. Thus, members of diagonal of a Hermitian matrix are all real.
2. A Hermitian matrix over the set of real numbers is actually a real symmetric matrix.
3. If A is a skew Hermitian matrix, then $a_{i i}=-\overline{\left(a_{i i}\right)} \Rightarrow a_{i i}=0$ i.e. $a_{i i}$ must be purely imaginary or zero.
4. A skew Hermitian matrix over the set of real numbers is acually a real skew-symmetric matrix.

9.2.12 Idempotent Matrix

A square matrix A is said to be idempotent if $A^{2}=A$ i.e. multiplication of the matrix with itself yields itself.

9.2.13 Involuntary Matrix

A sqaure matrix A is said to be involuntary if $A^{2}=I$ i.e. multiplication of the matrix with itself yields an indetity matrix.

9.2.14 Nilpotent Matrix

For a positive integer i if a square matrix satisfied the relationship $A^{i}=O$ then it is called a nilpotent matrix. Such smallest integer is called index of the nilpotent matrix.

9.3 Properties of adjoint and inverse matrices

1. If A is a sqaure matrix of order n, then $A(\operatorname{adj}(A))=|A| I_{n}=(\operatorname{adj}(A)) A$.

Let $A=\left[a_{i j}\right]$, and let $C_{i j}$ be a cofactor of $a_{i j}$ in A. Then, $(a d j(A))=C_{j i} \forall 1 \leq i, j \leq n$. Now,

$$
\begin{gathered}
(A \operatorname{adj}(A))=\sum_{r=1}^{n}(A)_{i r}(\operatorname{adj}(A))_{r j} \\
=\sum_{r=1}^{n} a_{i r} C_{r j}= \begin{cases}|A|, & \text { if } i=j \\
0, & \text { if } i \neq j\end{cases} \\
\Rightarrow=\left[\begin{array}{cccc}
|A| & 0 & 0 & \ldots \\
0 & |A| & 0 \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots \\
\hline
\end{array}\right] \\
=|A| I_{n}
\end{gathered}
$$

Similarly,

$$
(a d j(A) A)_{i j}=\sum_{r=1}^{n}(a d j(A))_{i r} A_{r j}
$$

$$
=\sum_{r=1}^{n} C_{r i} a_{r j}= \begin{cases}|A|, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

2. Every invertible matrix possesses a unique matrix. Let A be a sqaure matrix of order $n \times n$. Let B and C be two inverses of A. Then, $A B=B A=I_{n}$ and $A C=C A=I_{n}$

$$
\begin{gathered}
A B=I_{n} \Rightarrow C(A B)=C I_{n} \Rightarrow(C A) B=C I_{n} \Rightarrow I_{n} B=C I_{n} \\
\Rightarrow B=C
\end{gathered}
$$

3. Reversal law: If A and B are invertible matrices of same oreder, then $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$. In general, if A, B, C, \ldots are invertible matrices then $(A B C \ldots)^{n}=$... $C^{-1} B^{-1} A^{-1}$

If the given matrices are invertible $|A| \neq 0$ and $|B| \neq 0 \Rightarrow|A||B| \neq 0$ Hence, $A B$ is an invertible matrix. Now,

$$
\begin{gathered}
(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1} \\
=A\left(I_{n}\right) A^{-1}=A A^{-1}=I_{n}
\end{gathered}
$$

Similarly,

$$
\left(B^{-1} A^{-1}\right)(A B)=I_{n}
$$

4. If A is an invertible matrix, then A^{\prime} is also invertible and $\left(A^{\prime}\right)^{-1}=\left(A^{-1}\right)^{\prime}$.
A is an invertible matrix $\therefore|A| \neq 0 \Rightarrow\left|A^{\prime}\right| \neq 0\left[\because\left|A^{\prime}\right|=|A|\right]$. Hence, A^{\prime} is also invertible. Now,

$$
\begin{gathered}
A A^{-1}=I_{n}=A^{-1} A \\
\left(A A^{-1}\right)^{\prime}=\left(A^{-1} A\right)^{\prime} \\
\left(A^{-1}\right)^{\prime} A^{\prime}=I_{n}=A^{\prime}\left(A^{-1}\right)^{\prime} \\
\Rightarrow\left(A^{\prime}\right)^{-1}=\left(A^{-1}\right)^{\prime}
\end{gathered}
$$

5. If A is a non-singular square matrix of order n, then $|a d j A|=|A|^{n-1}$.

We have $A(\operatorname{adj}(A))=|A| I_{n}$

$$
\begin{gathered}
A(\operatorname{adj}(A))=\left[\begin{array}{ccccc}
|A| & 0 & 0 & \cdots & 0 \\
0 & |A| & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \\
0 & 0 & 0 & \cdots & |A|
\end{array}\right] \\
|A(\operatorname{adj}(A))|=|A|^{n} \\
|\operatorname{adj}(A)|=|A|^{n-1}
\end{gathered}
$$

6. Reversal law for adjoint: If A and B are non-singular sqaure matrices of the same order, then
$\operatorname{adj}(A B)=\operatorname{adj}(B) \operatorname{adj}(A)$ using $(A B)^{-1}=B^{-1} A^{-1}$
7. If A is an invertible square matrix, then $\operatorname{adj}\left(A^{\prime}\right)=(\operatorname{adj}(a))^{\prime}$
8. If A is a sqaure non-singular matrix, then $\operatorname{adj}(\operatorname{adj}(A))=A^{n-2} A$

We know that $B(\operatorname{adj}(B))=|B| I_{n}$ for every sqaure matrix of order n. Replacing B by $\operatorname{adj}(A)$, we get $(\operatorname{adj}(A))[\operatorname{adj}(\operatorname{adj}(A))]=|\operatorname{adj}(A)| I_{n}=|A|^{n-1} I_{n}$. Multiplying both sides by A

$$
\begin{gathered}
(A \operatorname{adj}(A))[\operatorname{adj}(\operatorname{adj}(A))]=A\left\{|A|^{n-1} I_{n}\right\} \\
|A| I_{n}(\operatorname{adj}(\operatorname{adj}(A)))=\left|A^{n-1}\right|\left(A I_{n}\right) \\
\operatorname{adj}(\operatorname{adj}(A))=\left|A^{n-2}\right| A
\end{gathered}
$$

9. If A is a non-singular matrix then $\left|A^{-1}\right|==|A|^{-1}$ i.e. $\left|A^{-1}\right|=\frac{I}{A}$. Since $|A| \neq 0, \therefore A A^{-1}=$ $I,\left|A A^{-1}\right|=|A| \Rightarrow|A|\left|A^{-1}\right|=1$
10. Inverse of $k^{\text {th }}$ power of A is $k^{\text {th }}$ power of the inverse of A.

9.4 Solution of Simultaneous Linear Equations

Consider the system of equations given below:

$$
\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n}=b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n}=b_{n}
\end{array}\right.
$$

Let

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right], X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], B=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\cdots \\
b_{n}
\end{array}\right]
$$

The system of equations can be written as $A X=B \Rightarrow X=A^{-1} B$. If $|A| \neq 0$, the system of equations has only trivial solution and the number of solutions is finite. If $|A|=0$, the system of equations has non-trivial solution and the number of solutions is infintite. If the number of equations is less than the number of unknonwns then it has non-trivial solutions.

9.5 Elementary Operations/Transformations of a Matrix

Following are elementary operations of a matrix:

1. The interchange of any two rows or columns.
2. The multiplication of any row or column with a non-zero number.
3. The addition to the elements of any row or columns the corresponding elements of any other row or column multiplied with any non-zero number.

Elementary operations are also called row or column operation.

9.5.1 Equivalent Matrices

If a matrix B can be obtained from a matrix A by elementary transformations, then they are called equivalent matrices and are written as $A B$.

Every elementary row or column transformation of $m \times n$ matrix (not identiry matrix) can be obtained by pre-multiplcation or post-multiplication with the corresponding elementary matrix obtained from the identity matrix $I_{m}\left(I_{n}\right)$ by subjecting it to the same elementary row or column transformation.

Let $C=A B$ be a product of two matrices. Any elementray row or column transformation of $A B$ can be obained by subjecting the pre-factor A or post-factor B to the same elementary row or column transformation.

9.5.2 Method of Finding Inverse of a Matrix by Elementary Transformation

Let A be a non-singular matrix of order n. Then A can be reduced to the identity matrix I_{n} by a sequence of elementary transformations only. As we have discussed every elementary row transformation of a matrix is equivalent top pre-multiplication by the corresponding elementary matrix. Therefore, there exists elementary matrices $E_{1}, E_{2}, \ldots, E_{k}$ such that $\left(E_{1}, E_{2}, \ldots, E_{k}\right) A=I_{n}\left(E_{1}, E_{2}, \ldots, E_{k}\right) A A^{-1}=I_{n} A^{-1}\left(E_{1}, E_{2}, \ldots, E_{k}\right) I_{n}=A^{-1}$

9.6 Echelon Form of a Matrix

A matrix is said to be in echelon form if

1. Every row of A which has all its elements 0 , occurs below row which has a non-zero element.
2. The first non-zero element in each non-zero row is 1 .
3. The number of zeros before the first non-zero element in a row is less than the number of such zeros in the next row.

9.7 Rank of a Matrix

Let A be a matrix of order $m \times n$. If at least one of its minors of order r is different from zero and all minors of order $r+1$ are zero, then the number r is called the rank of the matrix A and is denoted by $\rho(A)$.

1. The rank of a zero matrix is zero and rank of an identity matrix of order n is n.
2. The rank of a non-singular matrix of order n is n.
3. The rank of a matrix in echelon form is equal to the number of non-zero rows of the matrix.

9.8 Application of Matrices to Geometry or Computer Graphics

As said earlier matrices are very useful to represent many operaion in computer graphics or geometry. It will require some knowledge of coordinate geometry.

9.8.1 Reflection Matrix

Consider a point $P(x, y)$ and its reflection $Q\left(x_{1}, y_{1}\right)$ along x-axis.

Figure 9.1 Reflection of a point along x -axis.

This may be written as $x_{1}=x+0 ; y_{1}=0-y$. This system of equation can be written in matrix form as

$$
\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Thus the matrix $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ is reflection matrix of a point along x-axis. Similarly, $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$ is reflection matrix along y-axis.

Similarly, the reflection matrix through origin is $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
Similarly, reflection along the line $y=x$ is $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
Similarly, reflection along the line $y=x \tan \theta$ is $\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right]$

9.8.2 Rotation Through an Angle

The rotation matrix in such a form would be $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ for anti-clockwise rotation.

9.9 Problems

1. Find the number of matrices having 12 elements.
2. Write down the matrix $A=\left[a_{i j}\right]_{2 \times 3}$ where $a_{i j}=2 i-3 j$.
3. If $A=\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right], B=\left[\begin{array}{cc}-a & b \\ -b & -a\end{array}\right]$, then find $A+B$.
4. If $Y=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$ and $2 X+Y=\left[\begin{array}{cc}1 & 0 \\ -3 & 2\end{array}\right]$, find X.
5. If $\left[\begin{array}{cc}x^{2}-4 x & x^{2} \\ x^{2} & x^{3}\end{array}\right]=\left[\begin{array}{cc}-3 & 1 \\ x-+2 & 1\end{array}\right]$, then find x.
6. Find x, y, z and a for which $\left[\begin{array}{cc}x+3 & 2 y+x \\ z-1 & 4 a-6\end{array}\right]=\left[\begin{array}{cc}0 & -7 \\ 3 & 2 a\end{array}\right]$.
7. If $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 0 & 2 \\ 1 & -3 & 1\end{array}\right], B=\left[\begin{array}{ccc}4 & 5 & 6 \\ -1 & 0 & 1 \\ 2 & 1 & 2\end{array}\right]$, find $4 A-3 B$.
8. If $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ -4 & 2 & 5\end{array}\right], B=\left[\begin{array}{ll}2 & 3 \\ 4 & 5 \\ 2 & 1\end{array}\right]$, find $A B$ and $B A$. Also, show that $A B \neq B A$.
9. If A, B, C are three matrices such that $A=\left[\begin{array}{lll}x & y & z\end{array}\right], B=\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right], C=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$, then find $A B C$.
10. Find the transpose and adjoint of the matrix A, where $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 3\end{array}\right]$.
11. Find the inverse of the matrix $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$.
12. Find the inverse of the matrix $A=\left[\begin{array}{ccc}1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{array}\right]$ and verify that $A A^{-1}=1$.
13. Let $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$, prove that $A^{2}-4 A-5 I=0$, hence obtain A^{-1}.
14. Solve the following equations by matrix method: $5 x+3 y+z=16,2 x+y+3 z=$ 19 and $x+2 y+4 z=25$.
15. Find the product of two matrices A and B where $A=\left[\begin{array}{ccc}-5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1\end{array}\right], B=\left[\begin{array}{lll}1 & 1 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 3\end{array}\right]$ and use it for solving the equations $x+y+2 z=1,3 x+2 y+z=7$ and $2 x+y+3 z=2$.
16. If $\left[\begin{array}{cc}x+y & 2 \\ 1 & x-y\end{array}\right]=\left[\begin{array}{ll}3 & 2 \\ 1 & 7\end{array}\right]$, then find x and y.
17. If $\left[\begin{array}{cc}x-y & 2 x+x_{1} \\ 2 x-y & 3 x+y_{1}\end{array}\right]=\left[\begin{array}{cc}-1 & 5 \\ 0 & 13\end{array}\right]$ and co-ordinates of points P and Q be (x, y) and $\left(x_{1}, y_{1}\right)$, then find $P Q$.
18. Find X and Y if $X+Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]$ and $X-Y=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$.
19. Given $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{array}\right]$, find the matrix C such that $A+C=B$.
20. If $A=\left[\begin{array}{ccc}2 & 3 & 4 \\ -3 & 0 & 2\end{array}\right], B=\left[\begin{array}{ccc}3 & -4 & -5 \\ 1 & 2 & 1\end{array}\right]$ and $C=\left[\begin{array}{ccc}5 & -1 & 2 \\ 7 & 0 & 3\end{array}\right]$, find the matrix X such that $2 A+3 B=X+C$.
21. If $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 0 & 2 \\ 1 & -3 & 1\end{array}\right], B=\left[\begin{array}{ccc}4 & 5 & 6 \\ -1 & 0 & 1 \\ 2 & 1 & 2\end{array}\right], C=\left[\begin{array}{ccc}-1 & 2 & 1 \\ -1 & 2 & 3 \\ -1 & -2 & 2\end{array}\right]$, find $A=2 B+3 C$.
22. If $P(x)=\left[\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]$, then show that $P(x) \cdot P(y)=P(x+y)=P(y) \cdot P(x)$
23. If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{array}\right]$, find A^{2}.
24. If $A=\left[\begin{array}{ccc}-1 & 1 & -1 \\ 3 & -3 & 3 \\ 5 & -5 & 5\end{array}\right], B=\left[\begin{array}{ccc}0 & 4 & 3 \\ 1 & -3 & -3 \\ -1 & 4 & 4\end{array}\right]$, then find $A^{2} B^{2}$.
25. If $A=\left[\begin{array}{ccc}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2\end{array}\right], B=\left[\begin{array}{ccc}1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]$, find $A B$ and $B A$ and show that $A B \neq B A$.
26. Find the product of the following two matrices: $\left[\begin{array}{ccc}0 & c & -b \\ -c & 0 & a \\ b & -a & 0\end{array}\right]$ and $\left[\begin{array}{ccc}a^{2} & a b & a c \\ a b & b^{2} & b c \\ a c & b c & c^{2}\end{array}\right]$.
27. If $A=\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]$, find $A^{2}-5 A-14 I$, where I is a unit matrix.
28. Verify that $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$ satisfies the equation $A^{3}-4 A^{2}+A=O$.
29. If $A=\left[\begin{array}{cc}0.8 & 0.6 \\ -0.6 & 0.8\end{array}\right]$, find A^{2}.
30. If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$, find $f(A)$, where $f(x)=x^{2}-5 x+7 I$.
31. If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & \cos \theta\end{array}\right], B=\left[\begin{array}{cc}\cos \phi & \sin \phi \\ \sin \phi & \cos \phi\end{array}\right]$, show that $A B=B A$.
32. Let $f(x)=x^{2}-5 x+6$, find $f(A)$, if $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 9\end{array}\right]$.
33. If the matrix $A=\left[\begin{array}{cc}5 & 3 \\ 12 & 7\end{array}\right]$, then verify that $A^{2}-12 A-I=0$, where I is a unit matrix.
34. Show that $\left(\left[\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right]+\left[\begin{array}{ccc}\omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega \\ \omega & \omega^{2} & 1\end{array}\right]\right)\left[\begin{array}{c}1 \\ \omega \\ \omega^{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.
35. Let $A=\left[\begin{array}{cc}0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0\end{array}\right]$ and I, the identity matrix of order 2 . Show that $I+A=$ $(I-A)\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$.
36. Without using the concept of inverse of matrix, find the matrix $\left[\begin{array}{ll}x & y \\ z & u\end{array}\right]$ such that $\left[\begin{array}{cc}5 & -7 \\ -2 & 3\end{array}\right]\left[\begin{array}{ll}x & y \\ z & u\end{array}\right]=\left[\begin{array}{cc}-16 & -6 \\ 7 & 2\end{array}\right]$.
37. x so that $\left[\begin{array}{lll}1 & x & 1\end{array}\right]\left[\begin{array}{lll}1 & 3 & 2 \\ 0 & 5 & 1 \\ 0 & 3 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ x\end{array}\right]=O$.
38. Prove that the product of two matrices $\left[\begin{array}{cc}\cos ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]$ and $\left[\begin{array}{cc}\cos ^{2} \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin ^{2} \phi\end{array}\right]$ is a zero matrix when θ and ϕ differ by an odd multiple of $\frac{\pi}{2}$.
39. If $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$, then show that $A^{n}=\left[\begin{array}{cc}\cos \theta & -\sin n \theta \\ \sin n \theta & \cos n \theta\end{array}\right]$, where n is a positive integer.
40. If $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$, show that $A^{n}=\left[\begin{array}{cc}1+2 n & -4 n \\ n & 1-2 n\end{array}\right]$, where n is a positive integer.
41. Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. Show that $(a I+b A)^{n}=a^{n} I+n a^{n-1} b A$, where I is a unit matrix of order 2 and n is a positive integer.
42. Under what condition is the marix equation $A^{2}-B^{2}=(A+B)(A-B)$ true?
43. A man buys 8 dozens of mangoes, 10 dozens of apples and 4 dozens of bananas.Mangoes cost USD 18 per dozen, apples 9 per dozen and bananas 6 per dozen. Represent the quntities by a row and a column matrix. Also, find the total cost.
44. A trust fund has USD 30,000 that is to be invested in two different types of bonds. The first bond pays 5% interest per year and second bond pays 7% interest per year. Using matrix multiplication determine how to divide USD 30, 000 among the two types of bonds if the turst find must obtain an annual interest of USD 2000.
45. A store has in stock 20 dozen shirts, 15 dozen trousers and 25 dozen pair of socks. If the selling prices are USD 50 per shirt, 90 per trouser and 12 per pair of socks, then find the toal amount store owner will get after selling all the items in the stock.
46. Co-operative store of a particular school has 10 dozen physics books, 8 dozen chemisty books and 5 dozen mathematics books. Their selling prices are USD 8.3, 3.45, 4.5 each
respectively. Find the total amnount the store owner will receive after selling all the books.
47. If $A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$, verify that $A A^{\prime}=I_{2}=A^{\prime} A$.
48. Express the following matrix as a sum of a symmetric matrix and skew symmetric $\operatorname{matrix}\left[\begin{array}{lll}1 & 2 & 4 \\ 6 & 8 & 1 \\ 3 & 5 & 7\end{array}\right]$.
49. Show that the following matrix is orthogonal $\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$.
50. Show that the matrix $\frac{1}{3}\left[\begin{array}{ccc}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right]$ is orthogonal.
51. If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 4\end{array}\right]$, find $\operatorname{adj}(A)$.
52. For the matrix $\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$ verify that $A(\operatorname{adj} A)=|A| I$.
53. For the matrix $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 3 & 0 \\ 8 & 2 & 10\end{array}\right]$, show that $\operatorname{Aadj}(A)=O$.
54. Find the inverse of $\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$.
55. Find the inverse of $\left[\begin{array}{ccc}2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2\end{array}\right]$.
56. Find the inverse of $\left[\begin{array}{ccc}1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1\end{array}\right]$.
57. Find the inverse of $\left[\begin{array}{ccc}1 & 2 & 3 \\ -3 & 5 & 0 \\ 0 & 1 & 1\end{array}\right]$.
58. If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that $a d-b c \neq 0$, then find the inverse of A.
59. If $A=\left[\begin{array}{ll}3 & 1 \\ 4 & 0\end{array}\right], B=\left[\begin{array}{ll}4 & 0 \\ 2 & 5\end{array}\right]$, verify thet $(A B)^{-1}=B^{-1} A^{-1}$.
60. If $A=\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]$, show that $A A^{-1}=\left[\begin{array}{cc}\cos 2 x & -\sin 2 x \\ \sin 2 x & \cos 2 x\end{array}\right]$.
61. If $A=\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}6 & 7 \\ 8 & 9\end{array}\right]$, find $(A B)^{-1}$.
62. Solve the following system of equations by matrix method: $3 x-2 y=7$ and $5 x+3 y=1$.
63. Solve the following system of equations by matrix method: $5 x-7 y=2$ and $7 x-5 y=3$.
64. Solve the following system of equations by matrix method: $2 x-3 y+3 z=1,2 x+2 y+$ $3 z=2$ and $3 x-2 y+2 z=3$.
65. Solve the following system of equations by matrix method: $x+y+z=3,2 x-y+z=2$ and $x-2 y+3 z=2$.
66. Solve the following system of equations by matrix method: $2 x-y+3 z=9, x+y+z=6$ and $x-y+z=2$.
67. Examine following system of equations for consistency: $2 x+3 y=5$ and $6 x+9 y=10$.
68. Examine following system of equations for consistency: $4 x-2 y=3$ and $6 x-3 y=5$.

Chapter 10
 Inequalities

Ineuqalities come up in different branches of mathematics; for example in algebra, geometry and trigonometry. They are very useful in establishing many relations among various quantities. Certain inequalities are very useful in studying properties of many common expressions which lead to interesting observations. In this chapter we will only study algebraic inequalitites. The problems given are quite basic and simple. We start with some useful theorems for these inequalities.

There are some facts which are the very important for proving inequalities. Some of them are as follows:

1. If $x \geq y$ and $y \geq z$ then $x \geq z$, for any $x, y, z \in \mathbb{R}$.
2. If $x \geq a$ and $y \geq b$ then $x+a \geq y+b$, for any $x, y, a, b \in \mathbb{R}$.
3. If $x \geq y$ then $x+z \geq y+z$, for any $x, y, z \in \mathbb{R}$.
4. If $x \geq y$ and $a \geq b$ then $x a \geq y b$, for any $x, y \in \mathbb{R}^{+}$or $a, b \in \mathbb{R}^{+}$.
5. If $x \in \mathbb{R}$ then $x^{2} \geq 0$, with equality holding if and only if $x=0$. More generally for $a_{i} \in \mathbb{R}^{+}$ and $x_{i} \in \mathbb{R}, i=1,2, \ldots, n$ holds $a_{i} x_{i}^{2}+a_{2} x_{2}^{2}+\cdots+a_{n} x_{n}^{2} \geq 0$, with equality holding if and only if $x_{1}=x_{2}=\cdots=x_{n}=0$.

10.1 Strum's Method

Strum's method is given by the German mathematician Friedrich Otto Rudolf Sturm. Sturm's method helps prove a large number of different inequalities under certain conditions along with various other applications.

Theorem 14

Prove that if the product of positive numbers $x_{1}, x_{2}, \cdots, x_{n}(n \geq 2)$ is euqal to 1 , then $x_{1}+$ $x_{2}+\cdots+x_{n} \geq n$.

Proof
If $x_{1}=\cdots=x_{n}$, then $x_{1}+\cdots+x_{n}=n$. So we see that the statement is true if all the numbers are equal and are unity. Now we consider the case when at least two numbers are different such that one is greater than 1 and the other one is smaller. Let us assume that these are x_{1} and x_{2} which does not cause loss of generality, and that $x_{1}<1<x_{2}$. Note that $x_{1}+x_{2}>1+x_{1} x_{2}\left[\because\left(1-x_{1}\right)(x 2-1)>0\right]$. If given numbers are substitued by $1, x_{1} x_{2}, x_{3}, \ldots, x_{n}$, then the product is equal to 1 and $1+x_{1} x_{2}+x_{3}+\cdots+x_{n}<x_{1}+x_{2}+\cdots+x_{n}$. Repeating this we will find $n-1$ numbers equal to 1 and the nth number equal to $x_{1} x_{2} \ldots x_{n}$. Thus, $x_{1}+x_{2}+\cdots+x_{n}<1$. We see that equality holds if and only if $x_{1}=x_{2}=\cdots=x_{n}=1$

Theorem 15

Prove that if the sum of the numbers $x_{1}, x_{2}, \ldots, x_{n}(n \geq 2)$ is equal to 1 , then prove that $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \geq \frac{1}{n}$.

Proof

If $x_{1}=x_{2}=\ldots=x_{n}=\frac{1}{n}$ then $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=\frac{1}{n}$. Like previous theorem we consider two numbers x_{1} and x_{2} such that one of them is greater than $\frac{1}{n}$ while the other is smaller than $\frac{1}{n}$. Assume that these two numbers are x_{1} and x_{2}, which does not cause loss of generality, and that $x_{1}<\frac{1}{n}$ and $x_{2}>\frac{1}{n}$. So we obtain a sequence of numbers $\frac{1}{n}, x_{1}+x_{2}-\frac{1}{n}, x_{3}, \ldots, x_{n}$ suhc that their sum remains equal to 1 . We can easily prove that $x_{1}^{2}+x_{2}^{2}>\frac{1}{n^{2}}+\left(x_{1}+x_{2}-\frac{1}{n}\right)^{2}$, and hence

$$
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}>\frac{1}{n^{2}}+\left(x_{1}+x_{2}-\frac{1}{n}\right)^{2}+x_{3}^{2}+\cdots+x_{n}^{2}
$$

Repeating this we obtain a sequence in which all terms will be equal to $\frac{1}{n}$, and sum of their square is less than the sum of squares of numbers $x_{1}, x_{2}, \ldots, x_{n}$ i.e. $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}>$ $\frac{1}{n^{2}}+$ to n times. From this it follows that equality holds if and only if $x_{1}=x_{2}=\cdots=x_{n}$.

10.2 A.M., G.M., H.M. and Q.M.

Theorem 16 ((A.M.- G.M. - H.M. - Q.M. Inequality))
Let $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers, then

$$
\begin{equation*}
\frac{n}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}} \leq \sqrt[n]{x_{1} x_{2} \ldots x_{n}} \leq \frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \leq \sqrt{\frac{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}{n}} \tag{10.1}
\end{equation*}
$$

Proof

Consider the numbers $\frac{x_{1}}{\sqrt[n]{x_{1} x_{2} \cdots x_{n}}}, \frac{x_{2}}{\sqrt[n]{x_{1} x_{2} \cdots x_{n}}}, \cdots, \frac{x_{n}}{\sqrt[n]{x_{1} x_{2} \cdots x_{n}}}$, we see that product is equal to 1 . From theorem 14, we have that

$$
\frac{x_{1}}{\sqrt[n]{x_{1} x_{2} \cdots x_{n}}}+\frac{x_{2}}{\sqrt[n]{x_{1} x_{2} \cdots x_{n}}}+\cdots+\frac{x_{n}}{\sqrt[n]{x_{1} x_{2} \cdots x_{n}}} \geq n \Rightarrow \frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \geq \sqrt[n]{x_{1} x_{2} \cdots x_{n}}
$$

The above inequality is also known as Cauchy's inequality.
In the above inequality, if we substitute $x_{i}=\frac{1}{x_{i}}$, then

$$
\frac{n}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}} \leq \sqrt[n]{x_{1} x_{2} \cdots x_{n}}
$$

Consider the numbers $\frac{x_{1}}{x_{1}+x_{2}+\cdots+x_{n}}, \frac{x_{2}}{x_{1}+x_{2}+\cdots+x_{n}}, \cdots, \frac{x_{n}}{x_{1}+x_{2}+\cdots+x_{n}}$, and note that their sum is equal to 1. According to theorem 15, we have

$$
\begin{gathered}
\left(\frac{x_{1}}{x_{1}+x_{2}+\cdots+x_{n}}\right)^{2}+\left(\frac{x_{2}}{x_{1}+x_{2}+\cdots+x_{n}}\right)^{2}+\cdots+\left(\frac{x_{n}}{x_{1}+x_{2}+\cdots+x_{n}}\right)^{2} \geq \frac{1}{n} \\
\Rightarrow \frac{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}{n} \geq\left(\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}\right)^{2}
\end{gathered}
$$

Hence, all the inequalities have been proven.

10.3 Cauchy-Bunyakovsky-Schwarz Inequality

Theorem 17 ((Cauchy-Bunyakovsky-Schwarz Inequality))

Let $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n} \in R$. Then

$$
\begin{equation*}
\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+\cdots+b_{n}\right)^{2} \geq\left(a_{1} b_{1}+a_{2} b_{2}+\cdots a_{n} b_{n}\right)^{2} \tag{10.2}
\end{equation*}
$$

Proof
Let $x_{k}=\sqrt{\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{k}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+\cdots+b_{k}^{2}\right)}$, where $k=1,2, \ldots, n$. In this case,

$$
\begin{gathered}
x_{k+1}=\sqrt{\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{k}^{2}+a_{k+1}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+\cdots+b_{k}^{2}+b_{k+1}^{2}\right)} \\
\sqrt{\left[\left(\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{k}^{2}}\right)^{2}+a_{k+1}^{2}\right]\left[\left(\sqrt{b_{1}^{2}+b_{2}^{2}+\cdots+b_{k}}\right)^{2}+b_{k+1}^{2}\right]} \\
\geq \sqrt{\left(\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{k}^{2}} \cdot \sqrt{b_{1}^{2}+b_{2}^{2}+\cdots+b_{k}^{2}}+a_{k+1} \cdot b_{k+1}\right)^{2}}=x_{k}+a_{k+1} b_{k+1}
\end{gathered}
$$

Alternative Proof.

$$
\begin{gathered}
\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+\cdots+b_{n}\right)^{2}-\left(a_{1} b_{1}+a_{2} b_{2}+\cdots a_{n} b_{n}\right)^{2}= \\
\sum_{i, j=1 i \geq j}^{n}\left(a_{i} b_{j}-b_{j} a_{i}\right)^{2} \geq 0 .
\end{gathered}
$$

10.3.1 Titu's Lemma

Lemma 1

Let $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ be positive real numbers then

$$
\begin{equation*}
\frac{a_{1}^{2}}{b_{1}}+\frac{a_{2}^{2}}{b_{2}}+\ldots+\frac{a_{n}^{2}}{b_{n}} \geq \frac{\left(a_{1}+a_{2}+\cdots+a_{n}\right)^{2}}{b_{1}+b_{2}+\cdots+b_{n}} \tag{10.3}
\end{equation*}
$$

Proof
This is a direct consequence of Cauchy-Bunyakovsky-Schwarz Inequality. It is obtained by substituting $a_{i}=\frac{x_{i}}{\sqrt{y_{i}}}$ and $b_{i}=\sqrt{y_{i}}$ into Cauchy-Bunyakovsky-Schwarz Inequality. Equality holds if and only if $a_{i}=k b_{i}$ for a non-zero real constant k.

10.4 Chebyshev's Inequality

Theorem 18

Let $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ be real numbers such that $a_{1} \leq_{2} \leq a_{2} \leq \cdots \leq a_{n}$ and $b_{1} \leq b_{2} \leq$ $\cdots \leq b_{n}$ or $a_{1} \geq_{2} \geq a_{2} \geq \cdots \geq a_{n}$ and $b_{1} \geq b_{2} \geq \cdots \geq b_{n}$, then the inequality

$$
\begin{equation*}
\left(\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right)\left(\frac{b_{1}+b_{2}+\cdots+b_{n}}{n}\right) \leq \frac{a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}}{n} \tag{10.4}
\end{equation*}
$$

holds. The inequality is strict unless at least one of the sequences is a constant sequence.

Proof

We have

$$
\sum_{i=1}^{n} \sum_{j=1}^{n}\left(a_{i} b_{i}-a_{j} b_{j}\right)=\sum_{i=1}^{n}\left(n a_{i} b_{i}-a_{i} \sum_{j=1}^{n} b_{j}\right)=n \sum_{i=1}^{n} a_{i} b_{i}-\sum_{i=1}^{n} a_{i} \sum_{j=1}^{n} b_{j}
$$

Simiarly

$$
\sum_{i=1}^{n} \sum_{j=1}^{n}\left(a_{j} b_{j}-a_{j} b_{i}\right)=n \sum_{j=1}^{n} a_{j} b_{j}-\sum_{j=1}^{n} a_{j} \sum_{i=1}^{n} b_{i}
$$

From these two equations, we get

$$
\begin{gathered}
n \sum_{j=1}^{n} a_{j} b_{j}-\sum_{j=1}^{n} a_{j} \sum_{i=1}^{n} b_{i}=\frac{1}{2}\left[\sum_{i=1}^{n} \sum_{j=1}^{n}\left(a_{i} b_{i}-a_{i} b_{j}+a_{j} b_{j}-a_{j} b_{i}\right)\right] \\
=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(a_{i}-a_{j}\right)\left(b_{i}-b_{j}\right)
\end{gathered}
$$

Since both the sequences are either decreasing or increasing, we will have $\left(a_{i}-a_{j}\right)\left(b_{i}-b_{j}\right) \geq$ 0 . Thus, we have

$$
n \sum_{j=1}^{n} a_{j} b_{j}-\sum_{j=1}^{n} a_{j} \sum_{i=1}^{n} b_{i} \geq 0
$$

Here equality holds if and only if for each of the indexes i, j either $a_{i}=a_{j}$ or $b_{i}=b_{j}$.

Remark

If the the order of sequences $\left\langle a_{i}\right\rangle$ and $\left\langle b_{i}\right\rangle$ in the orevious theorem are reverses then the inequlaity reverses as well.

The proof is similar to the proof of the theorem.

Remark

Chebyshev's inequality can be generalized to three or more sets of real numbers, with the constraint that sets are in increasing or decreasing order.

Remark

If the two sequeqnces are non-increasing or non-decreasing, and let $p_{1}, p_{2}, \ldots, p_{b}$ be a sequence of non=negative real numbers such that $\sum_{i=1}^{n} p_{i}$ is positive. Then the following inequality holds

$$
\left(\frac{\sum_{i=1}^{n} p_{i} a_{i} b_{i}}{\sum_{i=1}^{n} p_{i}}\right) \geq\left(\frac{\sum_{i=1}^{n} p_{i} a_{i}}{\sum_{i=1}^{n} p_{i}}\right)\left(\frac{\sum_{i=1}^{n} p_{i} b_{i}}{\sum_{i=1}^{n} p_{i}}\right)
$$

The proof is similar to the theorem. This is called Chebyshev's inequality with weights.

10.5 Surányi's Inequality

Theorem 19

Let $a_{1}, a_{2}, \ldots, a_{n}$ be non-negative real numbers, and let $n \in P$. Then

$$
\begin{equation*}
(n-1)\left(a_{1}^{n}+a_{2}^{n}+\cdots+a_{n}^{n}\right)+n a_{1} a_{2} \cdots a_{n} \geq\left(a_{1}+a_{2}+\cdots+a_{n}\right)\left(a_{1}^{n-1}+a_{2}^{n-1}+\cdots+a_{n}^{n-1}\right) . \tag{10.5}
\end{equation*}
$$

Proof

We will prove this by mathematical induction. Due to symmetry and homegeneity of the inequality we may assume $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$ and $a_{1}+a_{2}+\cdots+a_{n}=1$. For $n=1$ equality occurs. Let us assume that for $n=1$ the inequality holds i.e.

$$
(k-1)\left(a_{1}^{k}+a_{2}^{k}+\cdots+a_{k}^{k}\right)+k a_{1} a_{2} \cdots a_{k} \geq a_{1}^{k-1}+a_{2}^{k-1}+\cdots+a_{k}^{k-1}
$$

We need to prove that:

$$
k \sum_{i=1}^{k+1} a_{i}^{k+1}+(k+1) \prod_{i=1}^{k+1} a_{i}-\left(1+a_{k+1}\right) \sum_{i=1}^{k+1} a_{i}^{k} \geq 0 .
$$

Hence

$$
k a_{k+1} \prod_{i=1}^{k} a_{i} \geq a_{k+1} \sum_{i=1}^{k} a_{i}^{k-1}-(k-1) a_{k+1} \sum_{i=1}^{k} a_{i}^{k}
$$

Using this last inequality, it remains to prove that:

$$
\begin{gathered}
\left(k \sum_{i=1}^{k+1} a_{i}^{k+1}-\sum_{i=1}^{k} a_{i}^{k}\right)-a_{k+1}\left(k \sum_{i=1}^{k} a_{i}^{k}-\sum_{i=1}^{k} a_{i}^{k-1}\right)+ \\
a_{k+1}\left(\prod_{i=1}^{k} a_{i}+(k-1) a_{k+1}^{k}-a_{k+1}^{k-1}\right) \geq 0
\end{gathered}
$$

We have

$$
\begin{gathered}
\prod_{i=1}^{k} a_{i}+(k-1) a_{k+1}^{k}-a_{k+1}^{k-1}=\prod_{i=1}^{k}\left(a_{i}-a_{k+1}+a_{k+1}\right)+(k-1) a_{k+1}^{k}-a_{k+1}^{k-1} \\
\geq a_{k+1}^{k}+a_{k+1}^{k-1} \sum_{i=1}^{k}\left(a_{i}-a_{k+1}\right)+(k-1) a_{k+1}^{k}-a_{k+1}^{k-1}=0
\end{gathered}
$$

Also

$$
\begin{gathered}
\left(k \sum_{i=1}^{k+1} a_{i}^{k+1}-\sum_{i=1}^{k} a_{i}^{k}\right)-a_{k+1}\left(k \sum_{i=1}^{k} a_{i}^{k}-\sum_{i=1}^{k} a_{i}^{k-1}\right) \geq 0 \\
\Rightarrow k \sum_{i=1}^{k} a_{i}^{k+1}-\sum_{i=1}^{k} a_{i}^{k} \geq a_{k+1}\left(k \sum_{i=1}^{k} a_{i}^{k}-\sum_{i=1}^{k} a_{i}^{k-1}\right)
\end{gathered}
$$

By Chebyshev's inequality, we have

$$
\begin{gathered}
k \sum_{i=1}^{k} a_{i}^{k} \geq \sum_{i=1}^{k} a_{i} \sum_{i=1}^{k} a_{i}^{k-1}=\sum_{i=1}^{k} a_{i}^{k-1} \\
\Rightarrow k \sum_{i=1}^{k} a_{i}^{k}-\sum_{i=1}^{k} a_{i}^{k-1} \geq 0
\end{gathered}
$$

and since $a_{1}+a_{2}+\cdots+a_{k+1}=1$, by the assumption $a_{1} \geq a_{2} \geq \cdots \geq a_{k+1}$, we deduce that

$$
a_{k+1} \leq \frac{1}{k}
$$

So it is enough to prove that

$$
k \sum_{i=1}^{k} a_{i}^{k+1}-\sum_{i=1}^{k} a_{i}^{k} \geq \frac{1}{k}\left(k \sum_{i=1}^{k} a_{i}^{k}-\sum_{i=1}^{k} a_{i}^{k-1}\right) .
$$

which is equivalent to

$$
k \sum_{i=1}^{k} a_{i}^{k+1}+\frac{1}{k} \sum_{i=1}^{k} a_{i}^{k-1} \geq 2 \sum_{i=1}^{k} a_{i}^{k}
$$

Since $\mathrm{AM} \geq \mathrm{GM}$ we have that

$$
k a_{i}^{k+1}+\frac{1}{k} a_{i}^{k-1} \geq 2 a_{i}^{k} \forall i
$$

Adding this inequality for $i=1,2, \ldots, k$ we obtain the required inequality.

10.6 Rearrangement Inequality

Theorem 20

Let $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $b_{1} \leq b_{2} \leq \cdots \leq b_{n}\left(\right.$ or $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$ and $b_{1} \geq b_{2} \geq \cdots \geq b_{n}$) be real numbers. If $a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}$ is any permutation of $a_{1}, a_{2}, \ldots, a_{n}$ then the equality

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} b_{n+1-i} \leq \sum_{i=1}^{n} a_{i} ; b_{i} \leq \sum_{i=1}^{n} a_{i} b_{i}, \tag{10.6}
\end{equation*}
$$

holds. Thus the sum $\sum_{i=1}^{n} a_{i} b_{i}$ is maximum when the two sequences $\left\langle a_{i}\right\rangle$ and $\left\langle b_{i}\right\rangle$ are oredered similarly. And the sum is minimum when these are ordered in opposite manner.

Proof

We start by assuming that both a_{i} 's and b_{i} 's are non-decreasing. Suppose $\left\langle a_{i}^{\prime}\right\rangle \neq\left\langle a_{i}\right\rangle$. Let r be the largest index such that $a_{r}^{\prime} \neq a_{r}$ i.e. $a_{r}^{\prime} \neq a_{r}$ and $a_{i}^{\prime}=a_{i}$ for $r<i \leq n$. This implies that a_{r}^{\prime} is from the set $\left\{a_{1}, a_{2}, \ldots, a_{r-1}\right\}$ and $a_{r}^{\prime}<a_{r}$. Further this also shows that $a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{r}^{\prime}$ is a permutation of $a_{1}, a_{2}, \ldots, a_{r}$. Thus we can find indices $k<r$ and $l<r$ such that $a_{k}^{\prime}=a_{r}$ and $a_{r}^{\prime}=a_{l}$. It follows that

$$
a_{k}^{\prime}-a_{r}^{\prime}=a_{r}-a_{l} \geq 0, b_{r}-b_{k} \geq 0
$$

We now interchange a_{r}^{\prime} and a_{k}^{\prime} to get a permutation of $a_{1}^{\prime \prime}, a_{2}^{\prime \prime}, \ldots, a_{n}^{\prime \prime}$ of $a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}$; thus

$$
\begin{cases}a_{i}^{\prime \prime}=a_{i}^{\prime}, & \text { if } i \neq r, k \\ a_{r}^{\prime \prime}=a_{k}^{\prime}=a_{r}, a_{k}^{\prime \prime}=a_{r}^{\prime}=a_{l}\end{cases}
$$

Consider the sums

$$
S^{\prime \prime}=a_{1}^{\prime \prime} b_{1}+a_{2}^{\prime \prime} b_{2}+\cdots+a_{n}^{\prime \prime} b_{n}, S^{\prime}=a_{1}^{\prime} b_{1}+a_{2}^{\prime} b_{2}+\cdots+a_{n}^{\prime} b_{n}
$$

and the difference $S^{\prime \prime}-S^{\prime}$:

$$
\begin{aligned}
S^{\prime \prime}-S^{\prime} & =\sum_{i=1}^{n}\left(a_{i}^{\prime \prime}-a_{i}^{\prime}\right) b_{i} \\
& =\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right)+\left(a_{r}^{\prime \prime}-a_{r}^{\prime}\right) b_{r} \\
& \&=\left(a_{r}^{\prime}-a_{k}^{\prime}\right) b_{k}+\left(a_{k}^{\prime}-a_{r}^{\prime}\right) b_{r} \\
& =\left(a_{k}^{\prime}-a_{r}^{\prime}\right)\left(b_{r}-b_{k}\right)
\end{aligned}
$$

$\because a_{k}^{\prime}-a_{r}^{\prime} \geq 0$ and $b_{r}-b_{k} \geq 0$, we can say that $S^{\prime \prime} \geq S^{\prime}$. We observe that the permutations $a_{1}^{\prime \prime}, a_{2}^{\prime \prime}, \ldots, a_{n}^{\prime \prime}$ of $a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}$ has th eproperty that $a_{i}^{\prime \prime}=a_{i}=a_{i}$ for $r<i \leq n$ and $a_{r}^{\prime \prime}=a_{k}^{\prime}=a_{r}$. Hence the permutation $\left\langle a_{i}^{\prime \prime}\right\rangle$ in place of $\left\langle a_{i}^{\prime}\right\rangle$ may be considered and the steps can be continued like above. After at most $n-1$ such steps, we will arrive at the original permutation $\left\langle a_{i}\right\rangle$ from $\left\langle a_{i}^{\prime}\right\rangle$. At each step the corresponding sum has the same order as a_{i} 's i.e. non-decreasing. Thus,

$$
\begin{equation*}
a_{1}^{\prime} b_{1}+a_{2}^{\prime} b_{2}+\cdots+a_{n}^{\prime} b_{n} \leq a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} \tag{10.7}
\end{equation*}
$$

For the other part, let us put $c_{i}=a_{n+1-i}^{\prime}, d_{i}=-b_{n+1-i}$. Then $c_{1}, c_{2}, \ldots, c_{n}$ is a permutation of $a_{1}, a_{2}, \ldots, a_{n}$ and $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$. Using the inequality (Equation 10.7) for the sequences $\left\langle c_{i}\right\rangle$ and $\left\langle d_{i}\right\rangle$, we get

$$
c_{1} d_{1}+c_{2} d_{2}+\cdots+c_{n} d_{n} \leq a_{1} d_{2}+a_{2} d_{2}+\cdots+a_{n} d_{n}
$$

Thus,

$$
-\sum_{i=1}^{n} a_{n+1-i}^{\prime} b_{n+1-i} \leq-\sum_{n=1}^{n} a_{i} b_{n+1-i}
$$

Thus,

$$
\begin{equation*}
a_{1}^{\prime} b_{1}+a_{2}^{\prime} b_{2}+\cdots+a_{n}^{\prime} b_{n} \geq a_{1} b_{1}+a_{2} b_{n-1}+\cdots+a_{n} b_{1} \tag{10.8}
\end{equation*}
$$

which is the other part of the inequality.
For the equality, we consider pairs k, l with $1 \leq k<l \leq n$, either $a+k^{\prime}=a_{l}^{\prime}$ or $a_{k}^{\prime}>a_{l}^{\prime}$ and $b_{k}=b_{l}$, then the equality holds for (Equation ??rearrangement:2). For (Equation 10.8), for each k, l with $1 \leq k<l \leq n$, either $a_{n+1-k}^{\prime} \geq a_{n+1-l}^{\prime}$ and $b_{n+1-k}=b_{n+1-l}$.

Corollary 4

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be real numbers and $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ be a permutation of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. Then

$$
\sum_{i=1}^{n} \alpha_{i} \beta_{1} \leq \sum_{i=1}^{n} \alpha_{i}^{2}
$$

The equality holds if and only if $\left\langle\alpha_{i}\right\rangle=\left\langle\beta_{i}\right\rangle$.

Proof

Let $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{n}^{\prime}$ be a permutation of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that $\alpha_{1}^{\prime} \leq \alpha_{2}^{\prime} \leq \ldots \leq \alpha_{n}^{\prime}$. Then we can find a bijections σ of $\{1,2, \ldots, n\}$ onto itself such that $\alpha_{i}^{\prime}=\alpha_{\sigma(i)}, 1 \leq j \leq n$; i.e. σ is a permutation on the set $\{1,2, \ldots, n\}$. Let $\beta_{i}^{\prime}=\beta_{\sigma(i)}$. Then $\beta_{1}^{\prime}, \beta_{2}^{\prime}, \ldots, \beta_{n}^{\prime}$ is a permutation of $\alpha_{1}^{\prime} \leq \alpha_{2}^{\prime} \leq \ldots \leq \alpha_{n}^{\prime}$. Applying the rearrangement inequality to $\alpha_{1}^{\prime} \leq \alpha_{2}^{\prime} \leq \ldots \leq \alpha_{n}^{\prime}$ and $\beta_{1}^{\prime}, \beta_{2}^{\prime}, \ldots, \beta_{n}^{\prime}$, we get

$$
\sum_{i=1}^{n} \alpha_{i}^{\prime} \beta_{i}^{\prime} \leq \sum_{i=1}^{n}\left(\alpha_{i}^{\prime}\right)^{2}=\sum_{i=1}^{n} \alpha_{i}^{2}
$$

We also have

$$
\sum_{i=1}^{n} \alpha_{i}^{\prime} \beta_{i}^{\prime}=\sum_{i=1}^{n} \alpha_{\sigma(i)} \beta_{\sigma(i)}=\sum_{i=1}^{n} \alpha_{i} \beta_{i}
$$

because σ is a bijection on $\{1,2, \ldots, n\}$. Thus,

$$
\sum_{i=1}^{n} \alpha_{i} \beta_{i} \leq \sum_{i=1}^{n} \alpha_{i}^{2}
$$

Say that equality holds and $\left\langle\alpha_{i}\right\rangle \neq\left\langle\beta_{i}\right\rangle$. Then $\left\langle\alpha_{i}^{\prime}\right\rangle \neq\left\langle\beta_{i}^{\prime}\right\rangle$. Let k be the largest index such that $\alpha_{k}^{\prime} \neq \beta_{k}^{\prime}$ for $k<i \neq n$. Let m be the least integer such that $\alpha_{k}^{\prime}=\beta_{m}^{\prime}$. If $m>k$, then $\beta_{m}^{\prime}=\alpha_{k}^{\prime}$ and hence $\alpha_{k}^{\prime}=\alpha_{m}^{\prime}$. This implies that $\alpha_{k}^{\prime}=\alpha_{k+1}^{\prime}=\cdots=\alpha_{m}^{\prime}$ and hence $\beta_{k+1}^{\prime}=\cdots=\beta_{m}^{\prime}$. We now have an $m_{1}>m$ such that $\alpha_{k}^{\prime}=\beta_{m_{1}}^{\prime}$. Using m_{1} as pivot, we get $\alpha_{k}^{\prime}=\alpha_{k+1}^{\prime}=\cdots=\alpha_{m}^{\prime}=\cdots=\alpha_{m}^{\prime}$ and $\beta_{k+1}^{\prime}=\cdots=\beta_{m}^{\prime}=\cdots=\beta_{m_{1}}^{\prime}$. It can be concluded that $\alpha_{k}^{\prime}=\beta_{l}^{\prime}$ for some $l<k$, thus forcing $m<k$.

Clearly $\beta_{m}^{\prime} \neq \beta_{k}^{\prime}$ by our choice of k. We know that equality holds if and only if for any two indexes $r \neq s$, either $\alpha_{r}^{\prime}=\alpha_{s}^{\prime}$ or $\beta_{r}^{\prime}=\beta_{s}^{\prime}$. Since $\beta_{m}^{\prime} \neq \beta_{k}^{\prime}$, we must have $\alpha_{m}^{\prime}=\alpha_{k}^{\prime}$. But then we have $\alpha_{m}^{\prime}=\alpha_{m+1}^{\prime}=\cdots=\alpha_{k}^{\prime}$. From the minimality of m, we see that $k-m+1$ equal elements $\alpha_{m}^{\prime}, \alpha_{m+1}^{\prime}, \ldots, \alpha_{k}^{\prime}$ must be among $\beta_{m}^{\prime}, \beta_{m+1}^{\prime}, \ldots, \beta_{n}^{\prime}$ and since $\beta_{k}^{\prime} \neq \alpha_{k}^{\prime}$, we must have $\alpha_{k}^{\prime}=\beta_{l}^{\prime}$ for some $l>k$. But then using $\beta_{l}^{\prime}=\alpha_{l}^{\prime}$, we have

$$
\alpha_{m}^{\prime}=\alpha_{m+1}^{\prime}=\cdots=\alpha_{k}^{\prime}=\cdots=\alpha_{l}^{\prime}
$$

Thus the number of equal elements gets enlarged to $l-m+1>k-m+1$. Since this process cannot be continues indefinitely, we conclude that $\left\langle\alpha_{i}^{\prime}\right\rangle=\left\langle\beta_{i}^{\prime}\right\rangle$ which will be followed by $\left\langle\alpha_{i}\right\rangle \neq\left\langle\beta_{i}\right\rangle$.

Corollary 5

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be positive real numbers and let $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ be a permutation of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. Then

$$
\sum_{i=1}^{n} \frac{\beta_{i}}{\alpha_{i}} \geq n
$$

Equality holds if and only if $\left\langle\alpha_{i}\right\rangle \neq\left\langle\beta_{i}\right\rangle$.
Proof
Let $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{n}^{\prime}$ be a permutation of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ suhc that $\alpha_{1}^{\prime} \leq \alpha_{2}^{\prime} \leq \ldots \alpha_{n}^{\prime}$. Like in previous corollary, we can find a permutation σ of $\{1,2, \ldots, n\}$ such that $\alpha_{i}^{\prime}=\alpha_{\sigma(i)}$ for
$1 \leq i \leq n$. We defien $\beta_{i}^{\prime}=\beta_{\sigma(i)}$. Then $\left\langle\beta_{i}^{\prime}\right\rangle$ is a permutation of $\left\langle\alpha_{i}^{\prime}\right\rangle$. Using the rearrangement theorem, we get

$$
\sum_{i=1}^{n} \beta_{i}^{\prime}\left(-\frac{1}{\alpha_{i}^{\prime}}\right) \leq \sum_{i=1}^{n} \alpha_{i}^{\prime}\left(-\frac{1}{\alpha_{i}^{\prime}}\right)=-n
$$

Thus, we have the desired inequality. Like previous case we camn derive the equality.

10.7 Young's Inequality

Theorem 21
If $p \in[1, \infty)$ and $q=p /(p-1) . q \in[1, \infty]$ and $\frac{1}{p}+\frac{1}{q}=1$. If $a, b>0$, then

$$
\begin{equation*}
\frac{a^{p}}{p}+\frac{b^{q}}{q} \geq a b \tag{10.9}
\end{equation*}
$$

Proof
Taking \log of L.H.S. $\log \left(\frac{a^{p}}{p}+\frac{b^{q}}{q}\right)$
Notice that, since $\frac{1}{p}+\frac{1}{q}=1$, so the L.H.S. is just a convext combination of a^{p} and b^{q}. Since $\log x$ is a concave function, we have

$$
\log \left(\frac{a^{p}}{p}+\frac{b^{q}}{q}\right) \geq \frac{\log a^{p}}{p}+\frac{b^{q}}{q}=\log a+\log b=\log (a b)
$$

Hence, the inequality is proved(since $\log x$ is strictly increasing).
Alternative Proof.
Using generalized AM-GM inequality,

$$
\frac{x^{p}}{p}+\frac{b^{q}}{q} \geq\left[\left(x^{p}\right)^{1 / p}\left(y^{q}\right)^{1 / q}\right]=x y
$$

10.8 Hölder's Inequality

Theorem 22

Let $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ be real numbers and p, q be two positive real numbers such that $\frac{1}{p}+\frac{1}{q}=1$. (Such a pair of indices is called a pair of conjugate indices.) Then the inequality holds

$$
\begin{equation*}
\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|b_{i}\right|^{q}\right)^{1 / q} \tag{10.10}
\end{equation*}
$$

holds. Equality holds if and only if $\left|a_{i}\right|^{p}=c\left|b_{i}\right|^{q}, 1 \leq i \leq n$, for some real constant c.
Proof
Following Young's inequality, consider

$$
x=\frac{\left|a_{k}\right|}{\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}}, y=\frac{\left|b_{k}\right|}{\left(\sum_{i=1}^{n}\left|b_{i}\right|^{q}\right)^{1 / q}}
$$

so we get

$$
\frac{\left|a_{k}\right|^{p}}{p\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)}+\frac{\left|b_{k}\right|^{q}}{q\left(\sum_{i=1}^{n}\left|b_{i}\right|^{q}\right)} \geq \frac{\left|a_{k}\right|\left|b_{k}\right|}{\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|b_{i}\right|^{q}\right)^{1 / q}}
$$

Now summing over k, we obtain

$$
\frac{1}{p}+\frac{1}{q} \geq \frac{\sum_{i=1}^{n}\left|a_{k} b_{k}\right|}{\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|b_{i}\right|^{q}\right)^{1 / q}}
$$

Thus, we have

$$
\sum_{i=1}^{n}\left|a_{k} b_{k}\right| \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|b_{i}\right|^{q}\right)^{1 / q}
$$

It is now trivial to prove the condition for equality.

Remark

If we take $p=q=3$, Hölder's inequality reduces to the Cauchy-Schwarz inequality.
Remark
If either of p and q is negativem Hölder's inequality is reversed.

Remark

Hölder's inequality can have a version with weights. In addition to what we have, we also consider consider weights $w_{1}, w_{2}, \ldots, w_{n}$ then following equality holds

$$
\sum_{i=1}^{n} w_{i}\left|a_{i} b_{i}\right| \leq\left(\sum_{i=1}^{n} w_{i}\left|a_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n} w_{i}\left|b_{i}\right|^{q}\right)^{1 / q}
$$

Given below is generalized Hölder's inequaltiy and the proof is similar like above.

Theorem 23

Let $a_{i j}, i=1,2, \ldots, m ; j=1,2, \ldots, n$, be positive humbers and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be positive real numbers such that $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}=1$. Then

$$
\begin{equation*}
\sum_{i=1}^{m}\left(\prod_{j=1}^{n} a_{i j} a_{i j}^{\alpha_{j}}\right) \leq \prod_{j=1}^{n}\left(\sum_{i=1}^{m} a_{i j}\right)^{\alpha_{j}} \tag{10.11}
\end{equation*}
$$

10.9 Minkowski's Inequality

Theorem 24

Let $p \geq 1$ be a real number and $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ be real numbers. Then

$$
\begin{equation*}
\left(\sum_{i=1}^{n}\left|a i+b_{i}\right|^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n}\left|b_{i}\right|^{p}\right)^{1 / p} \tag{10.12}
\end{equation*}
$$

Here equality holds if and only if $a_{i}=\lambda b_{i}$ for some constant $\lambda, 1 \leq i \leq n$.

Proof

We assume that $p>1$, because the result is clear for $p=1$. Observe the following:

$$
\sum_{i=1}^{n}\left|a i+b_{i}\right|^{p}=\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{p-1}\left|a_{i}+b_{i}\right| \leq \sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{p-1}\left|a_{i}\right|+\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{p-1}\left|b_{i}\right|
$$

Let q be the conjugate index of p. Using Hölder's inequaity to each sum on the right hand side, we have

$$
\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{p-1}\left|a_{i}\right| \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{(p-1) q}\right)^{1 / q} .
$$

Since p, q are conjugate indexes, we get $(p-1) q=p$. It follows that

$$
\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{p-1}\left|a_{i}\right| \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{p}\right)^{1 / q}
$$

Similarly,

$$
\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{p-1}\left|b_{i}\right| \leq\left(\sum_{i=1}^{n}\left|b_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{p}\right)^{1 / q}
$$

It now follows that

$$
\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{p} \leq\left[\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n}\left|b_{i}\right|^{p}\right)^{1 / p}\right]\left(\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{p}\right)^{1 / q} .
$$

If we use $1-(1 / 1)=1 / p$, we finally get the required inequaity.
Like Hölder's inequality the equality can be proven for this using the same conditions.
Remark
For $0<p<1$, the inequality (Equation 10.12) gets reversed.

10.10 Convex and Concave Functions

Most of the inequalities discussed so far are consequencce of inequalities for a special class of functions, known as convex and concave functions. Consider the function $f(x)=x^{n} \forall n>1$ defined on \mathbb{R}. Consider the case of $n=2$, then on the graphs of this function, the chord joining any two points always lies above the graph. In fact taking $a<b$, and the point $k a+(1-k) b$ between a and b, we see that

$$
{ }^{2}-k a^{2}-(1-k) b^{2}=-k(1-k)(a-b)^{2} \leq 0 .
$$

Thus,

$$
f(k a+(1-k) b) \leq k f(a)+(1-k) f(b)
$$

This property is the defining property of a convex function. The family of convex functions obey a class of inequalities known as Jensen's inequality.

Let I be an interval in \mathbb{R}. A function $f: I \rightarrow \mathbb{R}$ is said to be convext if for all x, y in I and k in the interval $[0,1]$, the following inequality holds:

$$
\begin{equation*}
f(k x+(1-k) y) \leq k f(x)+(1-k) f(y) \tag{10.13}
\end{equation*}
$$

If the inequality is strict for all $x \neq y, f$ is said to be strictly convex on I. If the inequality is reverse for same conditions then f is said to be concave and similarly for strictly concave f.

There are other equivalent properties of a convex function. Let x_{1}, x_{2}, x_{3} are in I such that $x_{1}<x_{2}<x_{3}$ and we take $k=\frac{x_{3}-x_{2}}{x_{3}-x_{1}}$ which gives us

$$
1-k=\frac{x_{2}-x_{1}}{x_{3}-x_{1}}, \text { and } x_{2}=k x_{1}+(1-k) x_{3}
$$

We have

$$
\begin{aligned}
f\left(x_{2}\right) & =f\left(k x_{1}+(1-k) x_{3}\right) \\
& \leq k f\left(x_{1}\right)+(1-k) f\left(x_{3}\right) \\
& =\frac{x_{3}-x_{2}}{x_{3}-x_{1}} f\left(x_{1}\right)+\frac{x_{2}-x_{1}}{x_{3}-x_{1}} f\left(x_{3}\right) .
\end{aligned}
$$

We can write this as

$$
f \frac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}} \leq \frac{f\left(x_{2}\right)-f\left(x_{3}\right)}{x_{2}-x_{3}}
$$

for all $x_{1}<x_{2}<x_{3}$ in I. We can also write this as:

$$
\frac{f\left(x_{1}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}+\frac{f\left(x_{2}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}+\frac{f\left(x_{3}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} \geq 0
$$

Consider $z_{1}=(a, f(a))$ and $z_{2}=(b, f(b))$ as two points on f. The equation of line joining these two points is given by

$$
g(x)=f(a)+\frac{f(b)-f(a)}{b-z}(x-a)
$$

Any point between a and b is of the form $x=k a+(1-k) b$. Thus,

$$
\begin{aligned}
g(x) & =g(k a+(1-k) b) \\
& =f(a)+\frac{f(b)-f(a)}{b-a}(k a+(1-k) b-a) \\
& =f(a)+(1-k)[f(b)-f(a)] \\
& =k f(a)+(1-k) f(b) \\
& \geq f(k a+(1-k) b)=f(x)
\end{aligned}
$$

Thus, $(x, g(x))$ lies above $(x, f(x))$, a point on f.

We can look at this in another way. A subset E of the plane \mathbb{R}^{2} is said to be convex if for every pair of points z_{1} and z_{2} in E, the line joining z_{1} and z_{2} lies entirely in E. With every function $f: I \rightarrow \mathbb{R}$, we associate a subset of \mathbb{R}^{2} by

$$
E(f)=\{(x, y): a \leq x \leq b, f(x) \leq y\} .
$$

Theorem 25

The function $f: I \rightarrow \mathbb{R}$ is convex if and only if $E(f)$ is a convex subset of \mathbb{R}^{2}.
Proof
Let f be convex. Let $z_{1}=\left(x_{1}, y_{1}\right)$ and $z_{2}=\left(x_{2}, y_{2}\right)$ be two points of $E(f)$. Consider any point on the line zoining z_{1} and z_{2}. Then,

$$
\begin{aligned}
z & =k z_{1}+(1-k) z_{2} \\
& =\left(k x_{1}+(1-k) x_{2}, k y_{1}+(1-k) y_{2}\right)
\end{aligned}
$$

for some $k \in[0,1]$. We see that $a \leq k x_{1}+(1-k) x_{2} \leq b$. Moreover,

$$
\begin{aligned}
f\left(k x_{1}+(1-k) x_{2}\right) & \leq k f\left(x_{1}\right)+(1-k) f\left(x_{2}\right) \\
& \leq k y_{1}+(1-k) y_{2} .
\end{aligned}
$$

Thus it follows that $z \in E(f)$, proving that $E(f)$ is convex.
Conversely let $E(f)$ be convex. Let x_{1}, x_{2} be two points in I and let $z_{1}=\left(x_{1}, f\left(x_{1}\right)\right)$ and $z_{2}=\left(x_{2}, f\left(x_{2}\right)\right)$. Then z_{1} and z_{2} are in $E(f)$. By conexity of $E(f)$, the point $k z_{1}+(1-k) z_{2}$ also lies in $E(f)$ for each $k \in[0,1]$. Thus,

$$
\left(k x_{1}+(1-k) x_{2}, k f\left(x_{1}\right)+(1-k) f\left(x_{1}\right)\right) \in E(f)
$$

The definition of $E(f)$ shows that

$$
f\left(k x_{1}+(1-k) x_{2}\right) \leq k f\left(x_{1}\right)+(1-k) f\left(x_{2}\right) .
$$

This shows that f is convex on the interval I.
Following theorem gives description about slope of a function's graph.

Theorem 26

Let $f: I \rightarrow \mathbb{R}$ be a convex function and $a \in I$ be a fixed point. Define a function $P: I \backslash\{a\} \rightarrow \mathbb{R}$ by

$$
P(x)=\frac{f(x)-f(a)}{x-a} .
$$

Then P is a non-decreasing function on $I \backslash\{a\}$.
Proof
Let f is convex on I and let x, y be two points in $I, x \neq a, x \neq b$ such that $x<y$. Then exactly one of the three possibilities will be possible:

$$
a<x<y ; x<a<y x<y<a .
$$

Consider the case $a<x<y$; other cases can be handled similarly. We can write

$$
x=\frac{x-a}{y-a} y+\frac{y-x}{y-a} a .
$$

The convexity of f shows that

$$
f\left(\frac{x-a}{y-a} y+\frac{y-x}{y-a} a\right) \leq \frac{x-a}{y-a} f(y)+\frac{y-x}{y-a} f(a) .
$$

This is equivalent to

$$
\frac{f(x)-f(a)}{x-a} \leq \frac{f(y)-f(a)}{y-a}
$$

Thus $P(x) \leq P(y)$. This shows that $P(x)$ is a non-decreasing function for $x \neq a$.
Interestingly, the converse is also true; if $P(x)$ is a non-decreasing function on $I \backslash\{a\}$ for every $a \in I$, then $f(x)$ is convex. We fix $x<y$ in I and let $a=k x+(1-k) y$ where $k \in(0,1)$. (The cases $k=0$ or 1 are obvious.) In this case

$$
\begin{gathered}
P(x)=\frac{f(x)-f(a)}{x-a}=\frac{f(x)-f(a)}{(1-k)(x-y)} \\
P(y)=\frac{f(y)-f(a)}{y-a}=\frac{f(y)-f(a)}{k(y-x)}
\end{gathered}
$$

The condition $P(x) \leq P(y)$ implies that $f(a) \leq k f(x)+(1-k) f(y)$. Hence convexity of f is proven.

There is another easy way of deciding wherther a function is convex or concave for twice differentiable functions. If f is convex on an interval I and if its second derivative exists on I, then f is convex(strictly convex) on I if $f^{\prime \prime}(x) \geq 0(>0)$ for all $x \in I$. Similarly f is concave(striclty concave) on I if $f^{\prime \prime}(x) \leq 0(<0)$ for all $x \in I$.

When we defined conex function the inequality involved two points x, y; refer to (Equation 10.13). Jensen's inequaity extends this to any finite number of points.

10.11 Jensen's Inequality

Theorem 27

Let $f: I \rightarrow \mathbb{R}$ be a convex function. Let $x_{1}, x_{2}, \ldots, x_{n}$ are points in I and $k_{1}, k_{2}, \ldots, k_{n}$ are real numbers in the interval $[0,1]$ such that $k_{1}+k_{2}+\cdots+k_{n}=1$. Then

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} k_{i} x_{i}\right) \leq \sum_{i=1}^{n} k_{i} f\left(x_{i}\right) \tag{10.14}
\end{equation*}
$$

Proof
We will use induction to prove this. For $n=2$, this is the definition of a convex function. Suppose the inequality (Equarion 10.14) is true for all $p<n$; i.e. for $p<n$ if $x_{1}, x-2, \ldots, x_{p}$ are p points in I and $k_{1}, k_{2}, \ldots, k_{p}$ are real numbers in $[0,1]$ such that $\sum_{i=1}^{n} k-i=1$, then

$$
f\left(\sum_{i=1}^{p} k_{i} x_{i}\right) \leq \sum_{i=1}^{p} k+i f\left(x_{i}\right) .
$$

Now considering the conditions of the theorem,

$$
y_{1}=\frac{\sum_{i=1}^{n-1} k_{i} x_{i}}{\sum_{i=1}^{n-1} k_{i}}, y_{2}=x_{n}, \alpha_{1}=\sum_{j=1}^{n-1} k_{i}, \alpha_{2}=k_{n}
$$

We observe that $\alpha_{2}=1-\alpha_{1}$, and y_{1}, y_{2} are in I. Using the conexity of f, we get

$$
\begin{aligned}
f\left(\alpha_{1} y_{1}+\alpha_{2} y_{2}\right) & =f\left(\alpha_{1} y_{1}+\left(1-\alpha_{1}\right) y_{2}\right) \\
& \left.\leq \alpha_{1} f\left(y_{1}\right)+(1-\alpha) 1\right) f\left(y_{2}\right) \\
& =\alpha_{1} f\left(y_{1}\right)+\alpha_{2} f\left(y_{2}\right) .
\end{aligned}
$$

However, we have

$$
\alpha_{1} y_{1}+\alpha_{2} y_{2}=\sum_{i=1}^{n} k_{i} x_{i} .
$$

Now we consider $f\left(y_{1}\right)$. If

$$
\mu_{i}=\frac{k_{i}}{\sum_{i=1}^{n-1} k_{i}}, 1 \leq l \leq n-1
$$

then it can be easily verifief that $\sum_{l=1}^{n-1} \mu_{l}=1$. Using the induction hypothesis, we get

$$
f\left(\sum_{l=1}^{n-1} \mu_{l} x_{l}\right) \leq \sum_{l=1}^{n-1} \mu_{l} f\left(x_{l}\right)
$$

Since

$$
\sum_{l=1}^{n-1} \mu_{l} x_{l}=y_{1}
$$

we get

$$
f\left(y_{1}\right) \leq \frac{\sum_{l=1}^{m-1} k_{l} f\left(x_{l}\right)}{\sum_{i=1}^{n-1} k_{i}}=\frac{\sum_{i=1}^{n-1} f\left(x_{i}\right)}{\alpha_{1}}
$$

Thus we obtain
f

$$
\begin{aligned}
\left(\sum_{i=1}^{n} k_{i} f\left(x_{i}\right)\right) & \leq \alpha_{1}\left(\frac{\sum_{i=1}^{n-1} k_{i} f\left(x_{i}\right)}{\sum_{i=1}^{n-1} k_{i}}\right)+k_{n} f\left(x_{n}\right) \\
& =\sum_{i=1}^{n} k_{i} f\left(x_{i}\right)
\end{aligned}
$$

Thus, the theorem is proved by induction.

Remark

If $f: I \rightarrow \mathbb{R}$ is concave, then the inequality (Equarion 10.14) gets reversed. If $x_{1}, x_{2}, \ldots, x_{n}$ are points in I and $k_{1}, k_{2}, \ldots, k_{n}$ are real numbers in the interval $[0,1]$, such that $k_{1}+k_{2}+\cdots+k_{n}=$ 1 , then following inequality holds:

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} k_{i} x_{i}\right) \geq \sum_{i=1}^{n} k_{i} f\left(x_{i}\right) \tag{10.15}
\end{equation*}
$$

Remark

Using the concavity of $f(x)=\ln x$ on $(0, \infty)$, the AM-GM inequality can be proved. If $x_{1}, x_{2}, \ldots, x_{n}$ are points in $(0, \infty)$ and $k_{1}, k_{2}, \ldots, k_{n}$ are real numbers in the interval $[0,1]$ such that $k_{1}+k_{2}+\ldots+k_{n}=1$, then we have

$$
\ln \left(\sum_{i=1}^{n} k_{i} x_{i}\right) \geq \sum_{i=1}^{n} k_{i} \ln \left(x_{i}\right)
$$

Proof
Taking $k_{i}=\frac{1}{n}$ for all i,

$$
\ln \left(\sum_{i=1}^{n} \frac{x_{i}}{n}\right) \geq \frac{1}{n} \sum_{i=1}^{n} \ln x_{i}=\sum_{i=1}^{n} \ln \left(x_{i}^{1 / n}\right)
$$

Using the fact that $g(x)=e^{x}=\exp (x)$ is strictly increasing on the interval $(-\infty, \infty)$, this leads to

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} x_{i} & \geq \exp \left(\sum_{i=1}^{n} \ln \left(x_{i}^{1 / n}\right)\right) \\
& =\prod_{i=1}^{n} \exp \left(\ln \left(x_{i}^{1 / n}\right)\right) \\
& =\left(x_{1} x_{2} \ldots x_{n}\right)^{1 / n}
\end{aligned}
$$

We can also prove generalized AM-GM inequality with this method.

$$
\ln \left(\sum_{i=1}^{n} k_{i} x_{i} \geq \sum_{i=1}^{n} k_{i} \ln \left(x_{i}\right)\right)=\sum_{i=1}^{n} \ln x_{i}^{k_{i}},
$$

Taking antilog

$$
\sum_{i=1}^{n} k_{i} x_{i} \geq \prod_{i=1}^{n} x_{i}^{k_{i}}
$$

Nowfor any n positive real numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, consider

$$
k_{i}=\frac{\alpha_{i}}{\sum_{j=1}^{n} \alpha_{j}}
$$

Observe that k_{i} are in $[0,1]$ and $\sum_{i=1}^{n} k_{i}=1$. These choices of k_{i} give

$$
\frac{\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}}{\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}} \geq\left(x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha) 2}\right)^{1 /\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}\right)}
$$

which is our generalized AM-GM inequality.

Remark

Function $f(x)=x^{p}$ can be used to prove Hölder's inequality. We know that $f(x)=x^{p}$ is convex for $p \geq 1$ and concave for $0, p<1$ for $p \in(0, \infty)$. Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers and $k_{1}, k_{2}, \ldots, k_{n}$ in $[0,1]$, then we have

$$
\left(\sum_{i=1}^{n} k_{i} x_{i}\right)^{p} \leq \sum_{i=1}^{n} k_{i} x_{i}^{p} \text { for } p \geq 1
$$

and

$$
\left(\sum_{i=1}^{n} k_{i} x_{i}\right)^{p} \geq \sum_{i=1}^{n} k_{i} x_{i}^{p} \text { for } 0<p<1
$$

Proof
Let $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ be real numbers and $p>1$ and q be conjugate numbers. Thus, $\frac{1}{p}+\frac{1}{q}=1$. We need to assume that $b_{i} \neq 0$ for all i; else we may delete all those b_{i} which are zero without having an effect on the equality. Let

$$
t=\sum_{i=1}^{n}\left|b_{i}\right|^{q}, k_{j}=\frac{\left|b_{j}\right|^{q}}{t}, x_{j}=\frac{\left|a_{j}\right|}{\left|b_{j}\right|^{q-1}}
$$

We have $k_{j} \in[0,1]$ and $k_{1}+k_{2}+\ldots+k_{n}=1$. Using the conexity of x^{p}, we have

$$
\left(\sum_{i=1}^{n} k_{i} x_{i}\right)^{p} \leq \sum_{i=1}^{n} k_{i} x_{i}^{p}
$$

which implies that

$$
\left(\sum_{j=1}^{n} \frac{\left|b_{j}\right|^{q}}{t} \frac{\left|a_{j}\right|}{\left|b_{j}\right|^{q-1}}\right)^{p} \leq \sum_{j=1}^{n} \frac{\left|b_{j}\right|^{1}}{t} \frac{\left|a_{j}\right|^{p}}{\left|b_{j}\right|^{(q-1) p}}=\frac{1}{t} \sum_{j=1}^{n}\left|a_{j}\right|^{p}
$$

Futher simplification yields

$$
\sum_{j=1}^{n}\left|a_{j} b_{j}\right| \leq\left(\sum_{j=1}^{n}\left|a_{j}\right|^{p}\right)^{1 / p} t^{1-(1 / p)}=\left(\sum_{j=1}^{n}\left|a_{j}\right|^{p}\right)^{1 / p}\left(\sum_{j=1}^{n}\left|b_{j}\right|^{q}\right)^{1 / q}
$$

For concave case the inequality is simply reversed.

Theorem 28

Let $f: I \rightarrow \mathbb{R}$ be a convex function; $a_{1} \leq a_{2} \leq \cdots \leq a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ are real numbers in I such that $a_{1}+b_{1} \in I$ and $a_{n}+b_{n} \in I$. Let $a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}$ be a permutation of $a_{1}, a_{2}, \ldots, a_{n}$. Then the follwoing inequality is true:

$$
\sum_{i=1}^{n} f\left(a_{i}+b_{n+1-i}\right) \leq \sum_{i=1}^{n} f\left(a_{i}^{\prime}+b_{i}\right) \leq \sum_{i=1}^{n} f\left(a_{i}+b_{i}\right)
$$

Proof

We will use the proof of rearrangement inequality. Assume $\left\langle a_{i}^{\prime}\right\rangle \neq\left\langle a_{i}\right\rangle$ and r be the largest index such that $a_{r}^{\prime} \neq a_{r}$. Since $a_{i}=a_{i}^{\prime}$ for $r<i \leq n$, we see that $a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{r}^{\prime}$ is a permutation of $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$. Thus we can find $k<r, l<r$ such that $a_{k}^{\prime}=a_{r}$ and $a_{r}^{\prime}=a_{l}$. We deduce that $a_{k}^{\prime}-a_{r}^{\prime}=a_{r}-a_{l} \geq 0$ and $b_{r}-b_{k} \geq 0$. Interchanging a_{r}^{\prime} and a_{k}^{\prime} to get a permutation $\left(a_{1}^{\prime \prime}, a_{2}^{\prime \prime}, \ldots, a_{n}^{\prime \prime}\right)$ of $\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)$. Thus

$$
a_{i}^{\prime \prime}=a_{i}^{\prime} \text { for } j \neq r, k, a_{r}^{\prime \prime}=a_{k}^{\prime}=a r, a_{k}^{\prime \prime}=a_{r}^{\prime}=a_{l}
$$

Let

$$
S^{\prime \prime}=\sum_{i=1}^{n} f\left(a_{i}^{\prime \prime}+b_{i}\right), S^{\prime}=\sum_{i=1}^{n} f\left(a_{i}^{\prime}+b_{i}\right)
$$

Then,

$$
\begin{aligned}
S^{\prime \prime}-S^{\prime} & =f\left(a_{r}^{\prime \prime}+b_{r}\right)+f\left(a_{k}^{\prime \prime}+b_{k}\right)-f\left(a_{r}^{\prime}+b_{r}\right)-f\left(a_{k}^{\prime}+b_{k}\right) \\
& =f\left(a_{r}+b_{r}\right)+f\left(a_{l}+b_{k}\right)-f\left(a_{l}+b_{r}\right)-f\left(a_{r}+b_{k}\right)
\end{aligned}
$$

We notice that

$$
a_{l}+b_{k}<a_{r}+b_{k} \text { and } a_{l}+b_{r}<a_{r}+b_{r}
$$

These give

$$
a_{l}+b_{k}<a_{r}+b_{k} \leq a_{r}+b r, a_{l}+b_{k} \leq a_{l}+b_{r}<a_{r}+b_{r}
$$

If x_{1}, x_{2}, x_{3} are in I, then the convexity of f implies that

$$
\left(x_{3}-x_{1}\right) f\left(x_{2}\right) \leq\left(x_{3}-x_{2}\right) f\left(x_{1}\right)+\left(x_{2}-x_{1}\right) f\left(x_{3}\right)
$$

Putting $x_{1}=a_{l}+b_{k}, x_{2}=a_{r}+b_{k}$ and $x_{3}=a_{r}+b_{r}$, we get

$$
\left(a_{r}+b_{r}-a_{l}-b_{k}\right) f\left(a_{r}+b_{k}\right) \leq\left(b_{r}-b_{k}\right) f\left(a_{l}+b_{k}\right)+\left(a_{r}-a_{l}\right) f\left(a_{r}+b_{r}\right)
$$

Similarly putting $x_{1}=a_{l}+b_{k}, x_{2}=a_{l}+b_{r}$ and $x_{3}=a_{r}+b_{r}$, we get

$$
\left(a_{r}+b_{r}-a_{l}-b_{k}\right) f\left(a_{l}+b_{r}\right) \leq\left(a_{r}-a_{l}\right) f\left(a_{l}+b_{k}\right)+\left(b_{r}-b_{k}\right) f\left(a_{r}+b_{r}\right)
$$

Adding, we get

$$
\begin{gathered}
\left(a_{r}+b_{r}-a_{l}-b_{k}\right)\left\{f\left(a_{r}+b_{k}\right)+f\left(a_{l}+b_{r}\right)\right\} \leq \\
\left(a_{r}+b_{r}-a_{l}-b_{k}\right)\left\{f\left(a_{l}+b_{k}\right)+f\left(a_{r}+b_{r}\right)\right\}
\end{gathered}
$$

Since $a_{l}+b_{k}<a_{r}+b_{r}$, we arrive at

$$
f\left(a_{r}+b_{k}\right)+f\left(a_{l}+b_{r}\right) \leq f\left(a_{l}+b_{k}\right)+f\left(a_{r}+b_{r}\right)
$$

This proves that $S^{\prime \prime}-S^{\prime} \geq 0$.
Now we observe that the permutation $\left(a_{1}^{\prime \prime}, a_{2}^{\prime \prime}, \ldots, a_{n}^{\prime \prime}\right)$ has the property $a_{r}^{\prime \prime}=a_{r}$ and $a_{i}^{\prime \prime}=a_{i}$, for $r<j \leq n$. We may consider the $\left(a_{1}^{\prime \prime}, a_{2}^{\prime \prime}, \ldots, a_{n}^{\prime \prime}\right)$ in place $\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)$ and proceed as
above. After at most $n-1$ steps we arrive at the original numbers $\left\langle a_{i}\right\rangle$ from $\left\langle a_{i}^{\prime}\right\rangle$ and at each stage the corresponding sum in non-decreasing. Thus, finally we arrive at

$$
\sum_{i=1}^{n} f\left(a_{i}^{\prime}+n_{i}\right) \leq \sum_{i=1}^{n} f\left(a_{i}+b_{i}\right)
$$

For the other inequality we define $c_{i}=a_{n+1-i}$ so that $c_{1} \geq c_{2} \geq \cdots \geq c_{n}$. We have to show that

$$
\sum_{i=1}^{n} f\left(a_{n+1-i}+b_{i}\right) \leq \sum_{i=1}^{n} f\left(a_{i}^{\prime}+b_{i}\right)
$$

Setting $c_{i}^{\prime}=a_{i}^{\prime}$, we have

$$
\sum_{i=1}^{n} f\left(c_{i}+b_{i}\right) \leq \sum_{i=1}^{n} f\left(c_{i}^{\prime}+b_{i}\right)
$$

where $\left(c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{n}^{\prime}\right)$ is a permutation of $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$. We take $\left\langle c_{i}^{\prime}\right\rangle \neq\left\langle c_{i}\right\rangle$ and let r be the smallest index such that $c_{r}^{\prime} \neq c_{r}$. This forces that $c_{r}^{\prime} \in\left\{c_{r+1}, c_{r+2}, \ldots, c_{n}\right\}$ and $c_{r}^{\prime}<c_{r}$. We see that $\left(c_{r}^{\prime}, c_{r+1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ is a permutation of $\left(c_{r}, c_{r+1}, \ldots, c_{n}\right)$. We can find $k>r, l>r$ such that $c_{k}^{\prime}=c_{r}$ and $c_{r}^{\prime}=c_{l}$. This implies that $c_{k}^{\prime}-c_{r}^{\prime}=c_{r}-c_{l} \geq 0$ and $b_{k}-b_{r} \geq 0$. Now we can interchange c_{r}^{\prime} and c_{k}^{\prime} to get a permutation $\left(c_{1}^{\prime \prime}, c_{2}^{\prime \prime}, \ldots, c_{n}^{\prime \prime}\right)$ of $\left(c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{n}^{\prime}\right)$; thus

$$
c_{i}^{\prime \prime}=c_{i}^{\prime} \text { for } i \neq r, k, c_{r}^{\prime \prime}=c_{k}^{\prime}=c_{r}, c_{k}^{\prime \prime}=c_{r}^{\prime}=c_{l}
$$

We compute the difference between

$$
S^{\prime \prime}=\sum_{i=1}^{n} f\left(c_{i}^{\prime \prime}+b_{i}\right), \quad S^{\prime}=\sum_{i=1}^{n} f\left(c_{i}^{\prime}+b_{i}\right)
$$

and obtain

$$
\begin{aligned}
S^{\prime \prime}-S^{\prime} & =f\left(c_{r}^{\prime \prime}+b_{r}\right)+f\left(c_{k}^{\prime \prime}+b_{k}\right)-f\left(c_{r}^{\prime}+b_{r}\right)-f\left(c_{k}^{\prime}+b_{k}\right) \\
& =f\left(c_{r}+b_{r}\right)+f\left(c_{l}+b_{k}\right)-f\left(c_{l}+b_{r}\right)-f\left(c_{r}+b_{k}\right)
\end{aligned}
$$

We see that

$$
c_{l}+b_{r} \leq c_{l}+b_{k}<c_{r}+b_{k}, c_{l}+b_{r} \leq c_{r}+b_{r}<c_{r}+b_{k}
$$

From the convexity of f

$$
\left(c_{r}+b_{k}-c_{l}-b_{r}\right) f\left(c_{l}+b_{k}\right) \leq\left(c_{r}-c_{l}\right) f\left(c_{l}+b_{r}\right)+\left(b_{k}-b_{r}\right) f\left(c_{r}+b_{k}\right)
$$

and

$$
\left(c_{r}+b_{k}-c_{l}-b_{r}\right) f\left(c_{r}+b_{r}\right) \leq\left(b_{k}-b_{r}\right) f\left(c_{l}+b_{r}\right)+\left(c_{r}-c_{l}\right) f\left(c_{r}+b_{k}\right)
$$

Adding, we get

$$
\left(c_{r}+b_{k}-c_{l}-b_{r}\right)\left\{f\left(c_{l}+b_{k}\right)+f\left(c_{r}+b_{r}\right)\right\} \leq\left(c_{r}+b_{k}-c_{l}-b_{r}\right)\left\{f\left(c_{l}+b_{r}\right)+f\left(c_{r}+b_{k}\right)\right\}
$$

We know that $c_{r}+b_{k}-c_{l}-n_{r} \neq 0$, so we have

$$
f\left(c_{l}+b_{k}\right)+f\left(c_{r}+b_{r}\right) \leq f\left(c_{l}+b_{r}\right)+f\left(c_{r}+b_{k}\right)
$$

Thus, we see that $S^{\prime \prime} \leq S^{\prime}$. We also see that the new sequence $\left\langle c_{i}^{\prime \prime}\right\rangle$ has the property: $c_{r}^{\prime \prime}=c_{r}$ and $C_{i}^{\prime \prime}=c_{i}$ for $1 \leq i<r$. Now we repeat the above argument by replacing $\left\langle c_{i}^{\prime}\right\rangle$ with $\left\langle c_{i}^{\prime \prime}\right\rangle$. At
each step the sum will never increase. After at most $n-1$ steps we arrive at the sequence $\left\langle c_{i}\right\rangle$. Thus, we find that the corresponding sum does not exceed to that of S^{\prime}. Thus we get

$$
\sum_{i=1}^{n} f\left(c_{i}+b_{i}\right) \leq \sum_{i=1}^{n} f\left(c_{i}^{\prime}+b_{i}\right)
$$

which was to be proved.

10.12 Bernoulli's Inequality

Theorem 29

For every real number $r \geq 1$ and real number $x \geq-1$, we have

$$
(1+x)^{r} \geq 1+r x
$$

while for $0 \leq r \leq 1$ and real number $x \geq-1$ we have

$$
(1+x)^{r} \leq 1+r x
$$

Proof

Using the convexity of $f(x)=\ln (x)$ on $(0, \infty)$. Since $x \geq-1$, we have $1+x \geq 0$. If $0 \leq r \leq 1$, we have

$$
\ln (1+r x)=\ln (r(1+x)+1-r) \geq r \ln (1+x)+(1-r) \ln (1)=r \ln (1+x)
$$

Taking antilog gives $(1+x)^{r} \leq 1+r x$. When $1 \leq r<\infty$,

$$
\ln (1+x)=\ln \left(\frac{r-1}{r}+\frac{1}{r}(1+r x)\right) \geq \frac{r-1}{r} \ln (1)+\frac{1}{r} \ln (1+r x)=\frac{1}{r} \ln (1+r x)
$$

This gives $(1+x)^{r} \geq 1+r x$.

10.13 Popoviciu's Inequality

Theorem 30

Let $f: I \rightarrow \mathbb{R}$. If f is convex, then for any three p;oints x, y, z in I :

$$
\begin{equation*}
\frac{f(x)+f(y)+f(z)}{3}+f\left(\frac{x+y+z}{3}\right) \geq \frac{2}{3}\left[f\left(\frac{x+y}{2}\right)+f\left(\frac{y+z}{2}\right)+f\left(\frac{z+x}{2}\right)\right] \tag{10.16}
\end{equation*}
$$

Proof
Without loss of generality, we can assume that $x \leq y \leq z$. If $x \leq y \leq \frac{x+y+z}{3}$, then

$$
\frac{x+y+z}{3} \leq \frac{x+z}{2} \leq z \text { and } \frac{x+y+z}{3} \leq \frac{y+z}{2} \leq z
$$

Therefore, there exists $s, t \in[0,1]$ such that

$$
\begin{aligned}
& \frac{x+z}{2}=\left(\frac{x+y+z}{3}\right) s+z(1-s) \\
& \frac{y+z}{2}=\left(\frac{x+y+z}{3}\right) t+z(1-t)
\end{aligned}
$$

Adding, we get

$$
\frac{x+y-2 z}{2}=\frac{x+y-2 z}{3}(s+t) \Rightarrow s+t=\frac{3}{2}
$$

As f is a convex function

$$
\begin{aligned}
& f\left(\frac{x+z}{2}\right) \leq s \cdot f\left(\frac{x+y+z}{3}\right)+(1-s) \cdot f(z) \\
& f\left(\frac{y+z}{2}\right) \leq t \cdot f\left(\frac{x+y+z}{3}\right)+(1-t) \cdot f(z)
\end{aligned}
$$

and

$$
f\left(\frac{x+y}{2}\right) \leq \frac{1}{2} f(x)+\frac{1}{2} f(y)
$$

Adding together last three inequalities we get the required inequality. The case when $\frac{x+y+z}{3} \leq$ y is considered similarly, bearing in mind that $x \leq \frac{x+z}{2} \leq \frac{x+y+z}{3}$ and $x \leq \frac{y+z}{2} \leq \frac{x+y+z}{3}$.

When f is a concave function, the inequality gets reversed.

10.14 Majorization

Definition: Given two seuquences $\langle a\rangle=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\langle b\rangle=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ where $a_{i}, b_{i} \in \mathbb{R} \forall i \in\{1,2, \ldots, n\}$. We say that the sequence $\langle a\rangle$ majorizes the seuqnece $\langle b\rangle$, and write $\langle a\rangle \succ\langle b\rangle$, if the following conditions are fulfilled:

$$
\begin{gathered}
a_{1} \geq a_{2} \geq \cdots \geq a_{n} \\
b_{1} \geq b_{2} \geq \cdots \geq b_{n} \\
a_{1}+a_{2}+\cdots+a_{n}=b_{1}+b_{2}+\cdots+b_{n} \\
a_{1}+a_{2}+\cdots+a_{k} \geq b_{1}+b_{2}+\cdots+b_{k} \forall k \in\{1,2, \ldots, n-1\}
\end{gathered}
$$

10.15 Karamata's Inequality

Theorem 31

Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function. Suppose that $\left(x_{1}, \ldots, x_{n}\right) \succ\left(y_{1}, \ldots, y_{n}\right)$ where $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in[a, b]$. Then we have:

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(x_{i}\right) \geq \sum_{i=1}^{n} f\left(y_{i}\right) \tag{10.17}
\end{equation*}
$$

Proof

If $f(x)$ is a convex function over the interval (a, b), then $\forall a \leq x_{1} \leq x_{2} \leq b$ and $g(x, y)=$ $\frac{f(y)-f(x)}{y-x}, f\left(x_{1}, x\right) \leq g\left(x_{2}, x\right)$. If $x<x_{1}$, then

$$
g\left(x_{1}, x\right)=\frac{f\left(x_{1}\right)-f(x)}{x_{1}-x} \leq \frac{f\left(x_{1}\right)-f(x)}{x_{1}-x}=g\left(x_{2}-x\right)
$$

We can argue similarly for other values of x.
We define a sequence $\langle C\rangle$ such that $c_{i}=g\left(a_{i}, b_{i}\right)$
We also define sequences $\langle A\rangle$ and $\langle B\rangle$ such that

$$
A_{i}=\sum_{j=1}^{i} a_{j}, A_{0}=0 \text { and } B_{i}=\sum_{j=1}^{i} b_{j}, B_{0}=0
$$

If we assume that $a_{i} \geq a_{i+1}$ and similarly $b_{i} \geq b_{i+1}$, then we get that $c_{i} \geq c_{i+1}$. Now, we know that

$$
\begin{aligned}
& \sum_{i=1}^{n} f\left(a_{i}\right)-\sum_{i=1}^{n} f\left(b_{I}\right)=\sum_{i=1}^{n} c_{i}\left(a_{i}-b_{i}\right)=\sum_{i=1}^{n} c_{i}\left(A_{i}-A_{i-1}-B_{i}+B_{i+1}\right) \\
& =\sum_{i=1}^{n} c_{i}\left(A_{i}-B_{i}\right)-\sum_{i=0}^{n-1} c_{i+1}\left(A_{i}-B_{i}\right)=\sum_{i=1}^{n}\left(c_{i}-c_{i+1}\right)\left(A_{i}-B_{i}\right) \geq 0
\end{aligned}
$$

Therefore,

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \geq \sum_{i=1}^{n} f\left(y_{i}\right)
$$

10.16 Muirhead's Inequality

Theorem 32

If a sequence $\langle a\rangle$ majorises a sequence $\langle b\rangle$, and $x_{1}, x_{2}, \ldots, x_{n}$ be a set of postiive real numbers then

$$
\begin{equation*}
\sum_{\text {sym }} x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}} \geq \sum_{\text {sym }} x_{1}^{b_{1}} x_{2}^{b_{2}} \ldots x_{n}^{b_{n}} \tag{10.18}
\end{equation*}
$$

Proof
We define a sequence $\langle c\rangle$ such that $\sum_{i=1}^{n} c_{i}=0$, the we observe

$$
\sum_{\text {sym }} x_{1}^{c_{1}} x_{2}^{c_{2}} \ldots x_{n}^{c_{n}} \geq n!
$$

for real $x_{1}, x_{2}, \ldots x_{n}$. By AM-GM we know that

$$
\frac{\sum_{\text {sym }} x_{1}^{c_{1}} x_{2}^{c_{2}} \ldots x_{n}^{c_{n}}}{n!} \geq n!\sqrt{\prod_{\text {sym }} x_{1}^{c_{1}} x_{2}^{c_{2}} \ldots x_{n}^{c_{n}}}
$$

$$
\begin{gathered}
\Rightarrow n!\sqrt{\prod_{s y m} x_{1}^{c_{1}} x_{2}^{c_{2}} \ldots x_{n}^{c_{n}}}=n!\sqrt{\prod_{i=1}^{n} x_{i}^{(n-1)!\left(c_{1}+c_{2}+\cdots c_{n}\right)}}=1 \\
\Rightarrow \sum_{\text {sym }} x_{1}^{c_{1}} x_{2}^{c_{2}} \ldots x_{n}^{c_{n}} \geq n!
\end{gathered}
$$

We defined out sequence $\langle c\rangle$ such that $c_{i}=a_{i}-b_{i}$ which gives us $\sum c_{i}=\sum a_{i}-\sum b_{i}=0$ Thus, $\sum_{\text {sym }} x_{1}^{c_{1}} x_{2}^{c_{2}} \ldots x_{n}^{c_{n}}-n!\geq 0$. Multiplying with $\sum_{s y m} \prod_{i=1}^{n} x_{i}^{b_{i}}$, we get

$$
\begin{gathered}
\left(\sum_{\text {sym }} \prod_{i=1}^{n} x_{i}^{b_{i}}\right)\left(\sum_{\text {sym }} x_{1}^{c_{1}} x_{2}^{c_{2}} \ldots x_{n}^{c_{n}}-1\right) \\
=\sum_{\text {sym }} \prod_{i=1}^{n} x_{i}^{b_{i}+c_{i}}-\prod_{i=1}^{n} x_{i}^{b_{1}} \geq 0 \\
\Rightarrow \sum_{\text {sym }} \prod_{i=1}^{n} x_{i}^{a_{i}}-\prod_{i=1}^{n} x_{i}^{b_{1}} \geq 0
\end{gathered}
$$

Hence, it is proved.

10.17 Schur's Inequality

Theorem 33

Let x, y, z be non-negative real numbers. For any $r>0$, we have

$$
\begin{equation*}
\sum_{c y c} x^{r}(x-y)(x-z) \geq 0 \tag{10.19}
\end{equation*}
$$

with equality if and only if $x=y=z$, or if two of x, y, z are equal and the third is 0 .

Proof

When $r=1$, the following case arises:

$$
x^{3}+y^{3}+z^{3}+3 x y z \geq x y(x+y)+y z(y+z)+z x(z+x)
$$

Because L.H.S. is cyclic in x, y, z without loss of generality we can assume $x \geq y \geq z$. Rewriting L.H.S., we have

$$
(x-y)\left[x^{r}(x-z)-y^{r}(y-z)\right]+z^{r}(z-x)(z-y)
$$

We see that $x^{r} \geq y^{r}$ and $x-z \geq y-z$. Thus the expression inside brackets is non-negative. $(x-y)$ is also non-negative. z^{r} and $(z-x)(z-y)$ are also non-negtive. Thus entire expression is non-negative and hence the inequality is proven.

Velentin Vornicu has given a general form of Schur's inequality. Consider $a, b, c, x, y, z \in \mathbb{R}$, where $a \geq b \geq c$, and either $z \geq y \geq z$ or $z \geq y \geq x$. Let $k \in \mathbb{Z}^{+}$, and let $f: \mathbb{R} \rightarrow \mathbb{R}_{0}^{+}$be either convex or monotonic, then

$$
\begin{equation*}
f(x)(a-b)^{k}(a-c)^{k}+f(y)(b-a)^{k}(b-c)^{k}+f(z)(c-a)^{k}(c-b)^{k} \geq 0 \tag{10.20}
\end{equation*}
$$

10.18 Symmetric Functions

Let $a_{1}, a_{2}, \ldots, a_{n}$ be arbitrary real numbers. Considering the polynomial $P(x)=\left(x+a_{1}\right)(x+$ $\left.a_{2}\right) \cdots\left(x+a_{n}\right)=c_{o} x^{n}+c_{1} x^{n-1}+\cdots+c_{n-1} x+c_{n}$. The the coefficients $c_{0}, c_{1}, \ldots, c_{n}$ can be expressed as functions of a_{1}, a_{2}, a_{n} like $c_{0}=1, c_{1}=a_{1}+a_{2}+\cdots+a_{n}, c_{2}=a_{1} a_{2}+a_{2} a_{3}+$ $\cdots, a_{n-1} a_{n}, c_{3}=a_{1} a_{2} a_{3}+a_{2} a_{3} a_{4}+\cdots+a_{n-2} a_{n-1} a_{n}, \ldots, c_{n}=a_{1} a_{2} \ldots a_{n}$.

These are also called elementary symmetric sum and the first elementary symmetric sum of $f(x)$ is often written as $\sum_{\text {sym }} f(x)$ while the nth can be written as $\sum_{\text {sym }}^{n} f(x)$.

The symmetric sum $\sum_{\text {sym }} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of a function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of n variables is defined to be $\sum_{\sigma} f\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)$, where σ ranges over over all permutations of $(1,2, \ldots, n)$. More generally symmetric sum of n variables is a sum that is unchanged by any permutatoin of its variables. Any symmetric sum can be written as a polynomial of elementary symmetric sums.

A symmetric function of n variables is a function that does not change by any permutation of its variables. Therefore,

$$
\sum_{\text {sym }} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=n!f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

We define symmetric average p_{k} as $\frac{c_{k}}{\binom{n}{k}}$.

10.19 Newton's Inequality

Theorem 34

For non-negative $x_{1}, x_{2}, \ldots, x_{n}$ and $0<k<n m$

$$
\begin{equation*}
d_{k}^{2} \geq d_{k-1} d_{k+1} \tag{10.21}
\end{equation*}
$$

equality holds when all x_{i} 's are equal.

Proof

We will prove this by mathematical induction. A proof by calculus is also possible but we will not prove by that method.

For $n=2$, the inequality becomes AM-GM inequaltiy. Let the inequality hold for $n=m-1$ for some positive integer $m \geq 3$.

Let d_{k}^{\prime} be the symmetric averages of $x_{1}, x_{2}, \ldots, x_{m-1}$. Note that $d_{k}=\frac{n-k}{n} d_{k}^{\prime}+\frac{k}{n} d_{k-1}^{\prime} x_{m}$.

$$
\begin{gathered}
d_{k-1} d_{k+1}=\left(\frac{n-k+1}{n} d_{k-1}^{\prime}+\frac{k-1}{n} d_{k-2}^{\prime} x_{m}\right)\left(\frac{n-k-1}{n} d_{k+1}^{\prime}+\frac{k+1}{n} d_{k}^{\prime} x_{m}\right) \\
=\frac{(n-k+1)(n-k-1)}{n^{2}} d_{k-1}^{\prime} d_{k+1}^{\prime}+\frac{(k-1)(n-k-1)}{n^{2}} d_{k-2}^{\prime} d_{k+1}^{\prime} x_{m} \\
+\frac{(n-k+1)(k+1)}{n^{2}} d_{k-1}^{\prime} d_{k}^{\prime} x_{m}+\frac{(k-1)(k+1)}{n^{2}} d_{k-2}^{\prime} d_{k}^{\prime} x_{m}^{2}
\end{gathered}
$$

$$
\begin{gathered}
\leq \frac{(n-k+1)(n-k-1)}{n^{2}} d_{k}^{2 \prime}+\frac{(k-1)(n-k-1)}{n^{2}} d_{k-2}^{\prime} d_{k+1}^{\prime} x_{m} \\
\\
+\frac{(n-k+1)(k+1)}{n^{2}} d_{k-1}^{\prime} d_{k}^{\prime} x_{m}+\frac{(k-1)(k+1)}{n^{2}} d_{k-1}^{2}{ }^{\prime} x_{m}^{2} \\
\leq \\
\quad+\frac{(n-k+1)(n-k-1)}{n^{2}} d_{k}^{2 \prime}+\frac{(k-1)(n-k-1)}{n^{2}} d_{k-1}^{\prime} d_{k}^{\prime} x_{m} \\
=\frac{(n-k)^{2}}{n^{2}} d_{k}^{2 \prime}+\frac{2(n-k) k}{n^{2}} d_{k}^{\prime} d_{k-1}^{\prime} x_{m}+\frac{k^{2}}{n^{2}} d_{k-1}^{2}{ }^{\prime} x_{m}^{2}-\left(\frac{d_{k}}{n}-\frac{d_{k-1} x_{m}}{n}\right)^{2} \\
\leq\left(\frac{n-k}{n} d_{k}^{\prime}+\frac{k}{n} d_{k-1}^{\prime} x_{m}\right)^{2}=d_{k}^{2}
\end{gathered}
$$

Hence, it is proven by induction.

10.20 Maclaurin's Inequality

Theorem 35

For non-negative $x_{1}, x_{2}, \ldots, x_{n}$ and $0<k<n m$

$$
\begin{equation*}
d_{1} \geq d_{2}^{1 / 2} \geq \cdots \geq d_{n}^{1 / n} \tag{10.22}
\end{equation*}
$$

equality holds when all x_{i} 's are equal.
Proof
Following Newton's inequality it is enough to show that $d_{n-1}^{1 /(n-1)} \geq d_{n}^{1 / n}$.
Since this is a homogeneous inequaqlity, it can be normalized. Thus, $d_{n}=\prod x_{i}=1$ We then transform the inequality to(by exponentiating both sides by $n-1$)

$$
\frac{\sum 1 / x_{i}}{n} \geq 1^{(n-1) / n}=1
$$

We know that the G.M. of $\frac{1}{x_{1}}, \frac{1}{x_{2}}, \cdots, \frac{1}{x_{n}}$ is 1 and hence the inequality is true by AM-GM.

10.21 Aczel's Inequality

Theorem 36

If $a_{1}^{2}>a_{2}^{2}+\cdots+a_{n}^{2}$ or $b_{1}^{2}>b_{2}^{2}+\cdots+b_{n}^{2}$, then

$$
\begin{equation*}
\left(a_{1} b_{1}-a_{2} b_{2}-\cdots-a_{n} b_{n}\right)^{2} \geq\left(a_{1}^{2}-a_{2}^{2}-\cdots-a_{n}^{2}\right)\left(b_{1}^{2}-b_{2}^{2}-\cdots-b_{n}^{2}\right) \tag{10.23}
\end{equation*}
$$

Proof
Consider the function

$$
\begin{gathered}
f(x)=\left(a_{1} x-b_{1}\right)^{2}-\sum_{i=2}^{n}\left(a_{i} x-b_{i}\right)^{2} \\
=\left(a_{1}^{2}-a_{2}^{2}-\cdots-a_{n}^{2}\right) x^{2}-2\left(a_{1} b_{2}-a_{2} b_{2}-\cdots-a_{n} b_{n}\right) x+\left(b_{1}^{2}-b_{2}^{2}-\cdots-b_{n}^{2}\right) .
\end{gathered}
$$

We have $f\left(\frac{b_{1}}{a_{1}}\right)=-\sum_{i=2}^{n}\left(a_{i} \frac{b_{1}}{a_{1}}-b_{i}\right)^{2} \leq 0$, and from $a_{1}^{2}>a_{2}^{2}+\cdots+a_{n}^{2}$ we get $\lim _{x \rightarrow \infty} f(x) \rightarrow$ ∞. Therefore, $f(x)$ must have at least one root, $\Leftrightarrow D=\left(a_{1} b_{1}-a_{2} b_{2}-\cdots-a_{n} b_{n}\right)^{2}-$ $\left(a_{1}^{2}-a_{2}^{2}-\cdots-a_{n}^{2}\right)\left(b_{1}^{2}-b_{2}^{2}-\cdots-b_{n}^{2}\right) \geq 0$.

10.22 Carleman's Inequality

Theorem 37

Let $a_{1}, a_{2}, \ldots, a_{n}$ be n non-negative real numbers, where $n \geq 1$ then

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left(a_{1} a_{2} \cdots a_{i}\right)^{1 / i}<e \sum_{i=1}^{\infty} a_{i} \tag{10.24}
\end{equation*}
$$

unless all of a_{i} 's are equal to zero.

Proof

Let us define $c_{n}=n\left(1+\frac{1}{n}\right)^{n}=\frac{(n+1)^{n}}{n^{n-1}}$. Then for all positive integers i,

$$
\begin{gathered}
\left(c_{1} \ldots c_{i}\right)^{1 / i}=i+1 \\
\Rightarrow \sum_{i=1}^{\infty}\left(a_{1} \ldots a_{i}\right)^{1 / i}=\sum_{i=1}^{\infty} \frac{\left(c_{1} a_{1} \ldots c_{i} a_{i}\right)^{1 / i}}{\left(c_{1} \ldots c_{i}\right)^{1 / i}}=\sum_{i=1}^{\infty} \frac{\left(c_{1} a_{1} \ldots c_{i} a_{i}\right)^{1 / i}}{i+1}
\end{gathered}
$$

Using AM-GM inequality, we get

$$
\sum_{i=1}^{\infty} \frac{\left(c_{1} a_{1} \ldots c_{i} a_{i}\right)^{1 / i}}{i+1} \leq \sum_{i=1}^{\infty} \sum_{j=1}^{i} \frac{c_{j} a_{j}}{i(i+1)}=\sum_{j=1}^{\infty} \sum_{i=j}^{\infty} \frac{c_{j} a_{j}}{i(i+1)}
$$

Using the partial fraction for $\frac{1}{i(i+1)}$

$$
\begin{aligned}
& \sum_{i=j}^{\infty} \frac{1}{i(i+1)}=\sum_{i=j}^{\infty}\left(\frac{1}{i}-\frac{1}{i+1}\right)=\frac{1}{j} \\
& \Rightarrow \sum_{j=1}^{\infty} \sum_{i=j}^{\infty} \frac{c_{j} a_{j}}{i(i+1)}=\sum_{j=1}^{\infty}\left(1+\frac{1}{j}\right)^{j} a_{i}
\end{aligned}
$$

Since $\left(1+\frac{1}{j}\right)^{j}<e, \forall j \in I$ the inequality holds.

10.23 Sum of Squares(SOS Method)

Sum of sqaures or S.O.S. method revolves around the basic fact that sum of squares is a non-negative quantity. As you can see it requires knowledge only of very basic inequalitites which makes it highly desirable. By using SOS method we rewrite inequalitites as sum of squares to prove them as non-negative using only basic inequalities.

Proposition 1

Let $a, b, c \in \mathbb{R}$. Then $(a-c)^{2} \leq 2(a-b)^{2}+2(b-c)^{2}$.
Proof
We have

$$
\begin{gathered}
(a-c)^{2} \leq 2(a-b)^{2}+2(b-c)^{2} \\
\Leftrightarrow a^{2}-2 a c+c^{2} \leq 2\left(a^{2}-2 a b+b^{2}\right)+2\left(b^{2}-2 b c+c^{2}\right) \\
\Leftrightarrow a^{2}+4 b^{2}+c^{2} 04 a b-4 b c+2 a c \geq 0 \\
\Leftrightarrow(a+c-2 b)^{2} \geq 0
\end{gathered}
$$

which clearly holds.

Proposition 2

Let $a \geq b \geq c$. Then $(a-c)^{2} \geq(a-b)^{2}+(b-c)^{2}$.
Proof
We have

$$
\begin{gathered}
(a-c)^{2} \geq(a-b)^{2}+(b-c)^{2} \\
\Leftrightarrow a^{2}-2 a c+c^{2} \geq\left(a^{2}-2 a b+b^{2}\right)+\left(b^{2}-2 b c+c^{2}\right) \\
\Leftrightarrow b^{2}+a c-a b-b \leq 0 \\
\Leftrightarrow(b-a)(b-c) \leq 0
\end{gathered}
$$

which is true for $a \geq b \geq c$.

Proposition 3

Let $a \geq b \geq c$. Then $\frac{a-c}{b-c} \geq \frac{a}{b}$.
Proof
Given $\frac{a-c}{b-c} \geq \frac{a}{b}$

$$
\Leftrightarrow b(a-c) \geq a(b-c) \Leftrightarrow a c \geq b c \Leftrightarrow a \geq b
$$

Theorem 38

Consider the expression $S=S_{a}(b-c)^{2}+S_{b}(c-a)^{2}+S_{c}(a-b)^{2}$, where S_{a}, S_{b}, S_{c} are functions of a, b, c.

1. If $S_{a}, S_{b}, S_{c} \geq 0$ then $S \geq 0$.
2. If $a \geq b \geq c$ or $a \leq b \leq c$ and $S_{b}, S_{b}+S_{a}, S_{b}+S_{c} \geq 0$ then $S \geq 0$.
3. If $a \geq b \geq c$ or $a \leq b \leq c$ and $S_{a}, S_{c}, S_{a}+2 S_{b}, S_{c}+2 S_{b} \geq 0$ then $S \geq 0$.
4. If $a \geq b \geq c$ and $S_{b}, S_{c}, a^{2} S_{b}+b^{2} S_{a} \geq 0$ then $S \geq 0$.
5. If $S_{a}+S_{b} \geq 0$ or $S_{b}+S_{c} \geq 0$ or $S_{c}+S_{a} \geq 0$ or $S_{a}+S_{b}+S_{c} \geq 0$ and $S_{a} S_{b}+S_{b} S_{c}+S_{c} S_{a} \geq 0$ then $S \geq 0$.

Proof

1. If $S_{a}, S_{b}, S_{c} \geq 0$ then clearly $S \geq 0$.
2. Let us assume that $a \geq b \geq c$ or $a \leq b \leq c$ and $S_{b}, S_{b}+S_{a}, S_{b}+S_{c} \geq 0$.

By Proposition (Preposition 2), it follows that $(a-c)^{2} \geq(a-b)^{2}+(b-c)^{2}$, so we have

$$
\begin{aligned}
S & =S_{a}(b-c)^{2}+S_{b}(c-a)^{2}+S_{c}(a-b)^{2} \\
& \geq S_{a}(b-c)^{2}+S_{b}\left[(a-b)^{2}+(b-c)^{2}\right]+S_{c}(a-b)^{2} \\
& =(b-c)^{2}\left(S_{a}+S_{b}\right)+(a-b)^{2}\left(S_{b}+S_{c}\right) .
\end{aligned}
$$

Thus, $S \geq 0$ because $S_{a}+S_{b}, S_{b}+S_{c} \geq 0$.
3. Let us assume that $a \geq b \geq c$ or $a \leq b \leq c$ and $S_{a}, S_{c}, S_{a}+2 S_{b}, S_{c}+2 S_{b} \geq 0$.

Then if $S_{b} \geq 0$ clearly $S \geq 0$.
For case when $S_{b} \leq 0$, by Proposition (Preposition 1), we have $(a-c)^{2} \leq 2(a-b)^{2}+$ $2(b-c)^{2}$. Therefore

$$
\begin{aligned}
S & =S_{b}(b-c)^{2}+S_{b}(a-c)^{2}+S_{c}(a-b)^{2} \\
& \geq S_{a}(b-c)^{2}+S_{b}\left[2(a-b)^{2}+2(b-c)^{2}\right]+S_{c}(a-b)^{2} \\
& =(b-c)^{2}\left(S_{a}+2 S_{b}\right)+(a-b)^{2}\left(S_{c}+2 S_{b}\right)
\end{aligned}
$$

which is true for the given conditions.
4. Given $a \geq b \geq c$ and $S_{b}, S_{c}, a^{2} S_{b}+b^{2} S_{a} \geq 0$

By Proposition (Preposition 3), we have $\frac{a-c}{b-c} \geq \frac{a}{b}$. Therefore

$$
\begin{aligned}
S & =S_{a}(b-c)^{2}+S_{b}(a-c)^{2}+S_{c}(a-b)^{2} \geq S_{a}(b-c)^{2}+S_{b}(a-c)^{2} \\
& =(b-c)^{2}\left[S_{a}+S_{b}\left(\frac{a-c}{b-c}\right)^{2}\right] \geq(b-c)^{2}\left[S_{a}+S_{b}\left(\frac{a}{b}\right)^{2}\right] \\
& =(b-c)^{2}\left(\frac{b^{2} S_{a}+a^{2} S_{b}}{b^{2}}\right),
\end{aligned}
$$

which is true for given conditions.
5. We assume that $S_{b}+S_{c} \geq 0$. Then

$$
\begin{aligned}
S & =S_{a}(b-c)^{2}+S_{b}(a-c)^{2}+S_{c}(a-b)^{2} \\
& =S_{a}(b-c)^{2}+S_{b}[(c-b)+(b-a)]^{2}+S_{c}(a-b)^{2} \\
& =\left(S_{b}+S_{c}\right)(a-b)^{2}+2 S_{b}(c-b)(b-a)+\left(S_{a}+S_{b}\right)(b-c)^{2} \\
& =\left(S_{b}+S_{c}\right)\left(b-a+\frac{S_{b}}{S_{b}+S_{c}}(c-b)\right)^{2}+\frac{S_{a} S_{b}+S_{b} S_{c}+S_{c} S_{a}}{S_{b}+S_{c}}(c-b)^{2} \& \geq 0 .
\end{aligned}
$$

Every difference $\sum_{c y c} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}-\sum_{c y c} x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \ldots x_{n}^{\beta_{n}}$ where $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}=\beta_{1}+$ $\beta_{2}+\cdots+\beta_{n}$ can be written in SOS form.

Some special cases are given below:

1. $a^{2}+b^{2}+c^{2}-a b-b c-c a=\frac{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}}{2}$
2. $a^{3}+b^{3}+c^{3}-3 a b c=\frac{a+b+c}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]$
3. $a^{b}+b^{2} c+c^{2} a-a b^{2}-b c^{2}-c a^{2}=\frac{(a-b)^{3}+(b-c)^{3}+(c-a)^{3}}{3}$
4. $a^{3}+b^{3}+c^{3}-a^{2} b-b^{2} c-c^{2} a=\frac{(2 a+b)(a-b)^{2}+(2 b+c)(b-c)^{2}+(2 c+a)(c-a)^{2}}{3}$
5. $a^{4}+b^{4}+c^{4}-a^{3} b-b^{3} c-c^{3} b=\frac{\left(3 a^{2}+2 a b+b^{2}\right)(a-b)^{2}+\left(3 b^{2}+2 b c+c^{2}\right)(b-c)^{2}+\left(3 c^{2}+2 c a+a^{2}\right)(c-a)^{2}}{4}$
6. $a^{3} b+b^{3} c+c^{3} a-a b^{3}-b c^{3}-c a^{3}=\frac{a+b+c}{3}\left[\left(b-a^{3}\right)+(c-b)^{3}+(a-c)^{3}\right]$
7. $a^{4}+b^{4}+c^{4}-a^{2} b^{2}-b^{2} c^{2}-c^{2} a^{2}=\frac{\left(a^{2}-b^{2}\right)^{2}+\left(b^{2}-c^{2}\right)^{2}+\left(c^{2}-a^{2}\right)^{2}}{2}$

Theorem 39

Consider two polynomials having the same degree and same number of variables A and B. The difference of these two polynomilas can be written in SOS form:

$$
\sum_{c y c} a_{1}^{\alpha_{1}} a_{2}^{\alpha_{2}} \ldots a_{n}^{\alpha_{n}}-\sum_{c y c} a_{1}^{\beta_{1}} a_{2}^{\beta_{2}} \ldots a_{n}^{\beta_{n}}=\sum P_{i j}(a)\left(a_{i}-a_{j}\right)^{2}
$$

where $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}=\beta_{1}+\beta_{2}+\cdots+$ beta $_{n}=m$ and $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Proof

We need to prove the following lemma first.

Lemma 2

If $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\alpha_{1}+\alpha_{2}+\alpha_{n}=m$, then:

$$
\sum_{c y c} a_{1}^{n}-\sum_{c y c} a_{1}^{\alpha_{1}} a_{2}^{\alpha_{2}} \ldots a_{n}^{\alpha_{n}}=\sum P_{i j}(a)\left(a_{i}-a_{j}\right)^{2}
$$

We prove this lemma by induction over k, which will be the number of elements except 0 belonging to the set $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$.

If $k=1$, the theorem is obviously true.
If $k=2$, the expression becomes $\sum_{c y c} a_{1}^{m}-\sum_{a_{1}}^{t} a_{2}^{m-t}=\sum P_{i j}(a)\left(a_{i}-a_{j}\right)^{2}$
We observe that $t a^{m}+(m-t) b^{m}-m a^{t} b^{m-t}=P(a, b)(a-b)^{2}$. We also observe that $f(x)=t x^{n}+(m-t)-m x^{t}=0$ has one repeated root which is 1 because $f(1)=f^{\prime}(1)=0$. Therefore $f(x)$ can be written like $Q(x)(x-1)^{2}$ where degree of Q will be $m-2$.

Let $x=\frac{a}{b}$, then we have: $b^{m} f\left(\frac{a}{b}\right)=t a^{m}+(m-t) b^{m}-m a^{t} b^{m-1}=b^{m-2} Q\left(\frac{a}{b}\right)(a-b)^{2}$.

However, b^{m-2} is a polynomial having 2 variables a, b because Q is a $m-2$ degree polynomial. If our proposition is already true with k, the number of elements except for 0 in the set of α, with $k+1$ we can transform this into the case of k as given below:
$a_{1}^{\alpha_{1}} a_{2}^{\alpha_{2}} \ldots a_{k+1}^{\alpha_{k+1}}=\frac{\alpha_{1} a_{1}^{\alpha_{1}+\alpha_{2}+\alpha_{2}} a_{2}^{\alpha_{1}+\alpha_{2}}-\left(\alpha_{1}+\alpha_{2}\right) a_{1}^{\alpha_{1}} a_{2}^{\alpha_{2}}}{\alpha_{1}+\alpha_{2}} \cdot a_{3}^{\alpha_{3}} \ldots a_{k+1}^{\alpha_{k+1}} \frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}} a_{1}^{\alpha_{1}+\alpha_{2}}$
$a_{3}^{\alpha_{3}} \ldots a_{k+1}^{\alpha_{k+1}}+\frac{\alpha_{2}}{\alpha_{1}+\alpha_{2}} a_{2}^{\alpha_{1}+\alpha_{3}} a_{3}^{\alpha_{3}} \ldots a_{k+1}^{\alpha_{k+1}}$
With $k=2: \frac{\alpha_{1} a_{1}^{\alpha_{1}+\alpha_{2}}+\alpha_{2} a_{2}^{\alpha_{1}+\alpha_{2}}-\left(\alpha_{1}+\alpha_{2}\right) a_{1}^{\alpha_{1}} a_{2}^{\alpha_{2}}}{\alpha_{1}+\alpha_{2}}=H_{12}(a)\left(a_{1}-a_{2}\right)^{2}$, we have:
$a_{1}^{\alpha_{1}} a_{2}^{\alpha_{2}} \ldots a_{k+1}^{k+1}=Q_{12}(a)\left(a_{1}-a_{2}\right)^{2}+\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}} a_{1}^{\alpha_{1}+\alpha_{2}} a_{3}^{\alpha_{3}} \ldots a_{k+1}^{\alpha_{k+1}}+\frac{\alpha_{2}}{\alpha_{1}+\alpha_{2}} a_{2}^{\alpha_{1}+\alpha_{3}} a_{3}^{\alpha_{3}} \ldots a_{k+1}^{\alpha_{k+1}}$
$\therefore \sum_{c y c} a_{1}^{m}-\sum_{c y c} a_{1}^{\alpha_{1}} a_{2}^{\alpha_{2}} \ldots a_{k+1}^{\alpha_{k+1}}=-\sum_{c y c} Q_{12}(a)\left(a_{1}-a_{2}\right)^{2}+\sum_{c y c} a_{1}^{m}-\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}}$
$\sum a_{1}^{\alpha_{1}+\alpha_{2}} a_{3}^{\alpha_{3}} \ldots a_{k+1}^{\alpha_{k+1}}+\sum \frac{\alpha_{2}}{\alpha_{1}+\alpha_{2}} a_{2}^{\alpha_{1}+\alpha_{3}} a_{3}^{\alpha_{3}} \ldots a_{k+1}^{\alpha_{k+1}} \sum_{a_{1}}^{m}-\sum_{c y c} a_{1}^{\alpha_{1}} \ldots a_{k+1}^{\alpha_{k+1}}$
$=-\sum Q_{12}(a)\left(a_{1}-a_{2}\right)^{2}+\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}}\left(\sum_{c y c} a_{1}^{m}-\sum_{c y c} a_{1}^{\alpha_{1}+\alpha_{2}} a_{3}^{\alpha_{3}} \ldots a_{k+1}^{\alpha_{k+1}}\right)+$
$\frac{\alpha_{2}}{\alpha_{1}+\alpha_{2}}\left(\sum_{c y c} a_{1}^{m}-\sum_{c y c} a_{2}^{\alpha_{1}+\alpha_{2}} a_{3}^{\alpha_{3}} \ldots a_{k+1}^{\alpha_{k+1}}\right)$
So we see that these can be written in SOS form recursively. Hence proved.

10.24 Problems

Prove the following inequalities:

1. $a^{2}+b^{2} \geq 2 a b$.
2. $\sqrt{a b} \geq \frac{2}{\frac{1}{a}+\frac{1}{b}}$, where $a>0, b>0$.
3. $\sqrt{\frac{a^{2}+b^{2}}{2}} \geq \frac{a+b}{2}$
4. $\frac{a+b}{2} \geq \frac{2}{\frac{1}{a}+\frac{1}{b}}$, where $a>0, b>0$.
5. $a+b>1+a b$, where $b<1<a$.
6. $a^{2}+b^{2}>c^{2}+(a+b-c)^{2}$, where $b<c<a$.
7. $2 \leq \frac{a}{b}+\frac{b}{a}$, where $a b>0$.
8. $\frac{a}{b}+\frac{b}{a} \leq-2$, where $a b<0$.
9. $\quad x_{1} \leq \frac{x_{1}+\cdots+x_{n}}{n} \leq x_{n}$, where $x_{1} \leq \cdots \leq x_{n}$.
10. $\frac{x_{1}}{y_{1}} \leq \frac{x_{1}+\cdots+x_{n}}{y_{1}+\cdots+y_{n}} \leq x_{n}$, where $\frac{x_{1}}{y_{1}} \leq \cdots \leq \frac{x_{n}}{y_{n}}$ and $y_{i}>0, i=1, \ldots, n$.
11. $x_{1} \leq\left(x_{1} \ldots x_{n}\right)^{\frac{1}{n}} \leq x_{n}$, where $n \geq 2,0 \leq x_{1} \leq \ldots \leq x_{n}$.
12. $\left|a_{1}\right|+\cdots+\left|a_{n}\right| \geq\left|a_{1}+a_{2}+\cdots+a_{n}\right|$.

13. $a+b \sqrt{\frac{a+b}{2}} \geq a \sqrt{b}+b \sqrt{a}$, where $a>0, b>0$.
14. $\frac{1}{2}(a+b)+\frac{1}{4} \geq \sqrt{\frac{a+b}{2}}$, where $a>0, b>0$.
15. $a(x+y-a) \geq x y$, where $x \leq a \leq y$.
16. $\frac{1}{x-1}+\frac{1}{x+1}>\frac{2}{x}$, where $x>1$.
17. $\frac{1}{3 k+1}+\frac{1}{3 k+2}+\frac{1}{3 k+3}>\frac{1}{2 k+1}+\frac{1}{2 k+2}$, where $k \in \mathbb{N}$.
18. $\frac{a b}{(a+b)^{2}} \leq \frac{(1-a)(1-b)}{[(1-a)+(1-b)]^{2}}$, where $o<\leq \frac{1}{2}, 0<b \leq \frac{1}{2}$.
19. $\frac{1}{\sqrt{3 k+1}} \cdot \frac{2 k+1}{2 k+2}<\frac{1}{\sqrt{3 k+4}}$, where $k \in \mathbb{N}$.
20. $2^{n-1} \geq n$, where $n \in \mathbb{N}$.
21. $\frac{1}{3}+\frac{2}{3} \cdot \frac{1}{5}+\frac{2}{3} \cdot \frac{4}{5}+\frac{1}{7}+\cdots+\frac{2}{3} \cdot \frac{4}{5} \cdot \frac{6}{7} \cdots \frac{100}{101} \cdot \frac{1}{103}<1$.
22. $\frac{1-a}{1-b}+\frac{1-b}{1-a} \leq \frac{a}{b}+\frac{b}{a}$, where $0<a, b \leq \frac{1}{2}$.
23. $\sum_{i=1}^{n} \frac{1}{1-a_{i}} \sum_{i=1}^{m}\left(1-a_{i}\right) \leq \sum_{i=1}^{n} \frac{1}{a_{i}} \sum_{i=1}^{n} a_{i}$, where $0<a_{1}, \ldots, a_{n} \leq \frac{1}{2}$.
24. $1+\frac{1}{2^{3}}+\cdots+\frac{1}{n^{3}}<\frac{5}{4}$, where $n \in \mathbb{N}$.
25. $\frac{1}{1+a+b} \leq 1-\frac{a+b}{2}+\frac{a b}{3}$, where $0 \leq a \leq 1,0 \leq b \leq$.
26. $|x-y|<|1-x y|$, where $|x|<1,|y|<1$.
27. $\frac{a}{b c}+\frac{b}{c a}+\frac{c}{a b} \geq \frac{2}{a}+\frac{2}{b}-\frac{2}{c}$, where $a>0, b>0, c>0$.
28. $\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{a b c}$, where $a^{2}+b^{2}+c^{2}=\frac{5}{3}$ and $a>0, b>0, c>0$.
29. $3\left(1+a^{2}+a^{4}\right) \geq\left(1+a+a^{2}\right)^{2}$.
30. $(a c+b d)^{2}+(a d-b c)^{2} \geq 144$, where $a+b=4, c+d=6$.
31. $x_{1}^{2}+x_{2}^{2}+\cdots+x_{2 n}^{2}+n a^{2} \geq a \sqrt{2}\left(x_{1}+x_{2}+\cdots+x_{2 n}\right)$.
32. $\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c} \leq \frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{2 \sqrt{a b c}}$, where $a>0, b>0, c>0$.
33. $a^{3}\left(b^{2}-c^{2}\right)+b^{3}\left(c^{2}-a^{2}\right)+c^{3}\left(a^{2}-b^{2}\right)<0$, where $0<a<b<c$.
34. $\frac{y}{x}+\frac{y}{z}+\frac{x+z}{y} \leq \frac{(x+z)^{2}}{x z}$, where $0<x \leq y \leq z$.
35. $\sqrt{1+\sqrt{a}}+\sqrt{1+\sqrt{a+\sqrt{a^{2}}}}+\cdots+\sqrt{1+\sqrt{a+\cdots+\sqrt{a^{n}}}}<n a$ where $n \geq 2, a \geq 2, n \in$ N.
36. $[5 x] \geq[x]+\frac{[2 x]}{2}+\frac{[3 x]}{3}+\frac{[4 x]}{4}+\frac{[5 x]}{5}$, where $[x]$ si the integer part of the real number x.
37. $(n!)^{2} \geq n^{n}$, where $n \in \mathbb{N}$.
38. $x^{6}+x^{5}+4 x^{4}-12 x^{3}+4 x^{2}+x+1 \geq 0$.
39. $\log ^{2} \alpha \geq \log \beta \log \gamma$, where $\alpha>1, \beta>1, \gamma>1, \alpha^{@} \geq \beta \gamma$.
40. $\log _{4} 5+\log _{5} 6+\log _{6} 7+\log _{7} 8>4.4$.
41. $\frac{1}{3}+\frac{2}{3.5}+\cdots+\frac{n}{3.5 \cdots(2 n+1)}<\frac{1}{2}$, where $n \in \mathbb{N}$.
42. $\frac{2^{3}+1}{2^{3}-1} \cdots \frac{n^{3}+1}{n^{3}-1}<\frac{3}{2}$, where $n \geq 2, n \in \mathbb{N}$.
43. $1.1!+2.2!+\cdots+n . n!<(n+1)!$, where $n \in \mathbb{N}$.
44. $\left(1+\frac{1}{2^{2}}\right)\left(1+\frac{1}{3^{2}}\right) \cdots\left(1+\frac{1}{n^{2}}\right)<2$, where $n \geq 2, n \in \mathbb{B}$.
45. $\left(1-\frac{1}{p_{1}^{2}}\right)\left(1-\frac{1}{p_{2}^{2}}\right) \cdots\left(1-\frac{1}{p_{n}^{2}}\right)>\frac{1}{2}$, where $1<p_{1}<p_{2}<\cdots<p_{n}, p_{i} \in \mathbb{N}, i=1,2, \ldots n$.
46. $\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\cdots-\frac{1}{999}+\frac{1}{1000}<\frac{2}{5}$.
47. $\frac{a+b}{1+a+b} \leq \frac{a}{1+a}+\frac{b}{1+b}$, where $a \geq 0, b \geq 0$.
48. $\frac{a+b}{2+a+b} \geq \frac{1}{2}\left(\frac{a}{1+a}+\frac{b}{1+b}\right)$, where $a \geq 0, b \geq 0$.
49. $\sum_{i=1}^{n} \frac{a_{1}+2 a_{2}+\cdots+i a_{i}}{i^{2}} \leq 2 \sum_{i=1}^{n} a_{i}$, where $a_{i} \geq 0, i=1,2, \ldots, n$.
50. $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq \frac{41}{42}$, where $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}<1, a, b, c \in \mathbb{N}$.
51. $\frac{4 x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}>2$, where $x, y, z>0$.
52. $1<\frac{a}{a+b+d}+\frac{b}{a+b+c}+\frac{c}{b+c+d}+\frac{d}{a+c+d}<2$, where $a, b, c, d>0$.
53. $a+b>c+d$, where $a, b, c, d \geq \frac{1}{2}$ and $a^{2}+b>c^{2}+d, a+b^{2}>c+d^{2}$.
54. $(b-a)\left(9-a^{2}\right)+(c-a)\left(9-b^{2}\right)+(c-b)\left(9-c^{2}\right) \leq 24 \sqrt{2}$, where $0 \leq a \leq b \leq c \leq 3$.
55. If $0<a, b, c<1$, then one of the numbers $(1-a) b,(1-b) c,(1-c) a$ is not greater than $\frac{1}{4}$.
56. Let $a>0, b>0, c>0$, and $a+b+c=1$. Prove that $\sqrt{a+\frac{1}{4}(b-c)^{2}}+\sqrt{b+\frac{1}{4}(c-a)^{2}}+$ $\sqrt{c+\frac{1}{4}(b-a)^{2}} \leq 2$.
57. Let $a>0, b>0, c>0$, and $a+b+c=1$. Prove that $\sqrt{a+\frac{1}{4}(b-c)^{2}}+\sqrt{b}+\sqrt{c} \leq \sqrt{3}$.
58. Find the smallest possible value of the expression: $\frac{a^{4}}{b^{4}}+\frac{b^{4}}{a^{4}}-\frac{a^{2}}{b^{2}}-\frac{b^{2}}{a^{2}}+\frac{a}{b}+\frac{b}{a}$, where $a, b>0$.
59. $\frac{\left(1-x_{1}\right)\left(1-x_{2}\right) \ldots\left(1-x_{n}\right)}{x_{1} x_{2} \ldots x_{n}} \geq(n-1)^{n}$, where $n \geq 2, x_{i}>0, i=1,2, \ldots, n$ and $x_{1}+x_{2}+\cdots+x_{n}=$ 1.
60. $\frac{1}{1+x_{1}}+\frac{1}{1+x_{2}}+\cdots+\frac{1}{1+x_{n}}$, where $n \geq 2, x_{1} \geq 1, x_{2} \geq 1, \ldots, x_{n} \geq 1$.
61. $a b c+b c d+c d a+d a b \leq \frac{1}{27}+\frac{176}{27} a b c d$, where $a, b, c, d \geq 0$, and $a+b+c+d=1$.
62. $0 \leq x y+y z+z x-2 x y z \leq \frac{7}{27}$, where $x, y, z \geq 0$, and $x+y+z=1$.
63. Suppose that for numbers $x_{1}, x_{2}, \ldots, x_{1997}$, the following conditions holds: (a) $-\frac{1}{\sqrt{3}} \leq$ $x_{i} \leq \sqrt{3}, i=1,2, \ldots, 1997$, (b) $x_{1}+x_{2}+\cdots+x_{1997}=-318 \sqrt{3}$. Find the greatest possible value of the expression $x_{1}^{12}+x_{2}^{12}+\cdots+x_{1997}^{12}$.
64. Prove that $\cos \alpha_{1} \cos \alpha_{2} \cdots \cos \alpha_{n}\left(\tan \alpha_{1}+\tan \alpha_{2}+\cdots+\tan \alpha_{n}\right) \leq \frac{(n-1)^{(n-1) / 2}}{n^{(n-2) / 2}}$, where $n \geq 2$ and $0 \leq \alpha_{i}<\frac{\pi}{2}, i=1,2, \ldots, n$.
65. Prove that $\sum_{i=1}^{n} x_{i}^{k}\left(1-x_{i}\right) \leq a_{k}$, where $k \geq 2, k \in \mathbb{N}$, and $a_{k}=\max \left[x^{k}(1-x)+(1-\right.$ $\left.\left.x)^{k} x\right], x_{i} \geq 0, i=1,2, \ldots, n, x_{1}+x_{2}+\cdots+x\right) n=1, n \geq 2$.
66. $2(n-1)\left(x_{2} x_{3}+x_{1} x_{3}+\cdots+x_{1} x_{n}+x_{2} x_{3}+\cdots+x_{2} x_{n}+\cdots+x_{n-1} x_{n}\right)-n^{n-1} x_{1} x_{2} \ldots x_{n} \leq$ $n-2$, where, $n \geq 2, x_{1}, x_{2}, \ldots x_{n} \geq 0$ and $x_{1}+x_{2}+\cdots+x_{n}=1$.
67. $\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}-\sqrt[n]{x_{1} x_{2} \ldots x_{n}} \leq$ $\frac{\left(\sqrt{x_{1}}-\sqrt{x_{2}}\right)^{2}+\left(\sqrt{x_{1}}-\sqrt{x_{3}}\right)^{2}+\cdots+\left(\sqrt{x_{1}}-\sqrt{x_{n}}\right)^{2}+\cdots+\left(\sqrt{x_{n-1}}-\sqrt{x_{n}}\right)^{2}}{n}$, where $n \geq 2, x_{1}, x_{2}, \ldots, x_{n} \geq 0$.
68. Turkevici's Inequality: $(n-1)\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)+\sqrt[n]{x_{1}^{2} x_{2}^{2} \ldots x_{n}^{2}} \geq\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{2}$, where $n \geq 2, x_{2}, x_{2}, \ldots, x_{n} \geq 0$.
69. $(a+b)(b+c)(c+a) \geq 8 a b c$, where $a>0, b>0, c>0$.
70. $(a+b+c-d)(b+c+d-a)(c+d+a-b)(d+a+b-c) \leq(a+b)(b+c)(c+d)(d+a)$, where $a>0, b>0, c>0, d>0$.
71. (Schur's Inequality) $a^{3}+b^{3}+c^{3}+3 a b c \geq a^{2} b+a b^{2}+b^{2} c+b c^{2}+c a^{2}+c^{2} a$, where $a>0, b>0, c>0$.
72. $\left(1+\frac{4 a}{b+c}\right)\left(1+\frac{4 b}{c+a}\right)\left(1+\frac{4 c}{a+b}\right)>25$, where $a>0, b>0, c>0$.
73. $\frac{\log (a-1)}{\log a}<\frac{\log a}{\log (a+1)}$, where $a>1$.
74. (Schur's Inequality) $a b c \geq(a+b-c)(c+a-b)(b+c-a)$, where $a>0, b>0, c>0$.
75. $x^{8}+y^{8} \geq \frac{1}{128}$, if $x+y=1$.
76. $\left(a+\frac{1}{a}\right)^{2}+\left(b+\frac{1}{b}\right)^{2} \geq 12.5$, if $a>0, b>0$ and $a+b=1$.
77. $\left(x_{1}+\frac{1}{x_{1}}\right)^{2}+\cdots+\left(x_{n}+\frac{1}{x_{2}}\right)^{2} \geq \frac{\left(n^{2}+1\right)^{2}}{n}$, if $n \geq 2, x_{1}>0, \ldots, x_{n}>0$ and $x_{1}+\cdots+x_{n}=1$.
78. $a^{4}+b^{4}+c^{4} \geq a b c(a+b+c)$.
79. $x^{2}+y^{2} \geq 2 \sqrt{2}(x-y)$, if $x y=1$.
80. $\sqrt{6 a_{1}+1}+\sqrt{6 a_{2}+1}+\sqrt{6 a_{3}+1}+\sqrt{6 a_{4}+1}+\sqrt{6 a_{5}+1} \leq \sqrt{55}$, if $a_{1}>0, \ldots, a_{5}>0$ and $a_{1}+\cdots+a_{5}=1$.
81. $6 a+4 b+5 c \geq 5 \sqrt{a b}+3 \sqrt{b c+7 \sqrt{c a}}$, where $a \geq 0, b \geq 0, c \geq 0$.
82. $2\left(a^{4}+b^{4}\right)+17>16 a b$.
83. $\left(\frac{1+n b}{n+1}\right)^{n+1} \geq b^{n}$, where $n \in \mathbb{N}, b>0$.
84. $\left(1+\frac{1}{n}\right)^{n}<\left(1+\frac{1}{n+1}\right)^{n+1}$, where $n \in \mathbb{N}$.
85. $\left(1+\frac{1}{n}\right)^{n+1}<\left(1+\frac{1}{n+1}\right)^{n+2}$, where $n \in \mathbb{N}$.
86. $\left(1+\frac{m}{n-1}\right)^{(n-1) / m}<\left(1+\frac{m}{n}\right)^{n / m}<\left(1+\frac{m-1}{n}\right)^{n /(m-1)}$, where $m>1, n>1$ and $m, n \in \mathbb{N}$.
87. $n!<\left(\frac{n+1}{2}\right)^{n}$, where $n=2,3,4, \ldots$.
88. $n(n+1)^{1 / n}<n+S_{n}$, where $S_{n}=\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n}, n=2,3,4, \ldots$.
89. $n-S_{n}>(n-1)^{1 /(1-n)}$, where $S_{n}=\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n}, n=3,4, \ldots$.
90. $\left(q^{n}-1\right)\left(q^{n+1}+1\right) \geq 2 n q^{n}(q-1)$, where $q>1, n \in \mathbb{N}$.
91. $a^{2}+b^{2}+c^{2}+d^{2}+a b+a c+a d+b c+b d+c d \geq 10$, where $a, b, c, d>0$, and $a b c d=1$.
92. $\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)\left(c-1+\frac{1}{a}\right) \leq\left(\frac{1+a b c}{2 \sqrt{a b c}}\right)^{3}$, where $a, b, c>0$.
93. $\left(a+\frac{1}{b}-t\right)\left(b+\frac{1}{c}-t\right)\left(c+\frac{1}{a}-t\right) \leq(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)(1-t)^{2}+4-3 t$, where $a, b, c, t>0$ and $a b c=1$.
94. $n \sqrt[n]{a_{1} a_{2} \ldots a_{n}}-(n-1) \sqrt[n-1]{a_{1} a_{2} \ldots a_{n-1}} \leq a_{n}$, where $a_{i}>0, i=1,2, \ldots, n, n=3,4, \ldots$
95. $\sqrt[n]{a_{1} a_{2} \ldots a_{n}}+\sqrt[n]{b_{1} b_{2} \ldots b_{n}}+\cdots+\sqrt[n]{k_{1} k_{2} \ldots k_{n}}$
$\leq \sqrt[n]{\left(a_{1}+b_{1}+\cdots+k_{1}\right)\left(a_{2}+b_{2}+\cdots+k_{2}\right) \cdots\left(a_{n}+b_{n}+\cdots+k_{n}\right)}$ where $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}, \ldots, k_{1}, k_{2}, \ldots, k_{n}>0$.
96. $a_{1}+\sqrt{a_{1} a_{2}}+\cdots+\sqrt[n]{a_{1} a_{2} \ldots a_{n}} \leq e\left(a_{1}+a_{2}+\cdots+a_{n}\right)$, where $n \geq 2, a_{1}, a_{2}, \ldots, a_{n} \geq 0$.
97. $n a^{k}-k a^{n} \leq n-1$, where $n>k, n, k \in \mathbb{N}, a>0$.
98. $\frac{x_{1}^{2}}{x_{2}}+\frac{x_{2}^{3}}{x_{3}^{2}}+\cdots+\frac{x_{n}^{n+1}}{x_{1}^{n}} \geq x_{1}+x_{2}+\cdots+x_{n}$, where $n \geq 2, n \in \mathbb{N}, x_{1}=\min \left(x_{1}, x_{2}, \ldots, x_{n}\right)>0$.
99. $\frac{a^{x_{1}-x_{2}}}{x_{1}+x_{2}}+\frac{a^{x_{2}-x_{3}}}{x_{2}+x_{3}}+\cdots+\frac{a^{x_{n-x}}}{x_{n}+x_{1}} \geq \frac{n^{2}}{2 \sum_{i=1}^{n} x_{i}}$, where $a>0, x_{i}>0, i=1,2, \ldots, n$.
100. $\sqrt[p]{x_{1}+1}+\sqrt[p]{x_{2}+1}+\cdots+\sqrt[p]{x_{n}+1} \leq n+1$, where $n \geq 2, x_{1}, x_{2}, x_{n}>0, x_{1}+x_{2}+\cdots+x_{n}=$ $p, p \in \mathbb{N}, p \geq 2$.
101. $x^{k}\left(1-x^{m}\right) \leq \frac{k^{k / m} \cdot m}{(k+m)^{1+k / m}}$, where $0 \leq x \leq 1, k, m \in \mathbb{N}$.
102. $\frac{x}{1-x^{2}}+\frac{y}{1-y^{2}}+\frac{z}{1-z^{2}} \geq \frac{3 \sqrt{3}}{2}$, where $x, y, z>0$ and $x^{2}+y^{2}+z^{2}=1$.
103. $\frac{1}{1-x}+\frac{1}{1-y}+\frac{1}{1-z} \geq \frac{9+3 \sqrt{3}}{2}$, where $x, y, z>0$ and $x^{2}+y^{2}+z^{2}=1$.
104. Find the minimum value of the funciton $f(x)=\frac{1}{\sqrt[n]{1+x}}+\frac{1}{\sqrt[n]{1-x}}$ in $[0,1)$, where $n \in \mathbb{N}, n>1$.
105. Find the minimum value of the funciton $f(x)=a x^{m}+\frac{b}{x^{n}}$ in $(0, \infty)$, where $a, b>$ $0, m, n \in \mathbb{N}$.
106. Find in $[a, b](0<a<b)$ a point x_{0} such that the function $f(x)=(x-a)^{2}\left(b^{2}-x^{2}\right)$ attains its maximum value in $\lfloor a, b\rfloor$ at x_{0}.
107. Find the greatest possible value of the product $x y z$ given $x, y, z>0$, and $2 x+\sqrt{3} y+\pi z=$ 1.
108. Find the maximum and minimum values of the function $y=\frac{x}{a x^{2}+b}$, where $a, b>0$.
109. Find the maximum value of the function $y=\frac{5 \sqrt{x^{2}+6 x+8}+12}{x+3}$.
110. Find the maximum value of the function $y=\frac{\sqrt[3]{\left(x^{2}+1\right)^{2}\left(x^{2}+3\right)}}{3 x^{3}+4}$.
111. Solve the system of equations: $x+y=2, x y-z^{2}=1$.
112. Solve the system of equations: $x+y+z=3, x^{2}+y^{2}+z^{2}=3$.
113. Given $a+b+c+d+e=8, a^{2}+b^{2}+c^{2}+d^{2}+e^{2}=16$, find the greatest possible value of e.
114. Find the minimum value of the expression $\frac{x_{1}}{x_{2}}+\frac{x_{3}}{x_{4}}+\frac{x_{5}}{x_{6}}$ if $1 \leq x_{1} \leq x_{2} \leq x_{3} \leq x_{4} \leq x_{5} \leq$ $x_{6} \leq 1000$.
115. Solve the equation $x^{4}+y^{4}+2=4 x y$.
116. Find all integer solutions of the equation $\frac{x y}{z}+\frac{y z}{x}+\frac{z x}{y}=3$.
117. Prove that $x_{1}^{\alpha}+x_{2}^{\alpha}+\cdots+x_{n}^{\alpha} \geq x_{1}^{\beta}+x_{2}^{\beta}+\cdots+x_{n}^{\beta}$, where $n \geq 2, x_{1}>0, x_{2}>0, \cdots, x_{n}>$ $0, \alpha>\beta \geq 0$, and $x_{1} x_{2} \ldots x_{n}=1$.
118. Prove that $x_{1}^{\alpha}+x_{2}^{\alpha}+\cdots+x_{n}^{\alpha} \geq x_{1}^{\beta}+x_{2}^{\beta}+\cdots+x_{n}^{\beta}$, where $n \geq 2, x_{1}>0, x_{2}>0, \cdots, x_{n}>$ $0, \alpha \geq(n-1)|\beta|$, and $x_{1} x_{2} \ldots x_{n}=1$.
119. Prove that $\frac{1+a}{1+a b}+\frac{1+b}{1+b c}+\frac{1+c}{1+c d}+\frac{1+d}{1+d a} \geq 4$, where $a, b, c, d>0$ and $a b c d=1$.
120. Prove that $\frac{1+a b}{1+a}+\frac{1+b c}{1+b}+\frac{1+c d}{1+c}+\frac{1+d a}{1+d} \geq 4$, where $a, b, c, d>0$ and $a b c d=1$.
121. Prove that $2 S T>\sqrt{3(S+T)[S(b d+d f+f b)+T(a c+c e+e a)]}$, where $0<a<b<$ $c<d<e<f$ and $a+c+e=S, b+d+f=T$.
122. Prove that $\frac{a+\sqrt{a b}+\sqrt[3]{a b c}+\sqrt[4]{a b c d}}{4} \leq \sqrt[4]{a \cdot \frac{a+b}{2} \cdot \frac{a+b+c}{3} \cdot \frac{a+b+c+d}{4}}$, where $a>0, b>0, c>0, d>0$.
123. Prove that $a^{12}+(a b)^{6}+(a b c)^{4}+(a b c d)^{3} \leq 1.43\left(a^{12}+b^{12}+c^{12}+d^{12}\right)$.
124. $a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{1}$, if $\frac{1}{p}+\frac{1}{q}=1, a, b, p, q>0$, where p and q are rational numbers.
125. $\left(1+\frac{1}{n}\right)^{n}>2$, where $n \in \mathbb{N}$.
126. $\left(1+a_{1}\right)\left(1+a_{2}\right) \cdots\left(1+a_{n}\right) \leq 1+\frac{S}{1!}+\cdots+\frac{S^{n}}{n!}$, where $n \geq 2, S=a_{1}+a_{2}+\cdots+a_{n}, a_{i}>$ $0, i=1,2, \ldots, n$.
127. $\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right) \geq 64$, where $a, b, c>0$ and $a+b+c=1$.
128. $\sqrt[n]{a^{2 n-1}}+\sqrt[n]{a^{2 n+1}} \geq 3 a-1$, where $n \geq 2, a>0, n>k, n, k \in \mathbb{N}$.
129. $\frac{a^{n}-1}{a^{n}(a-1)} \geq n+1-a^{\frac{n(n+1)}{2}}$, where $a>0, a \neq 1$.
130. $n a^{n+1}+1 \geq(n+1) a^{n}$, where $a>0$.
131. $(\sqrt{k}+\sqrt{k+1})(\sqrt{k+1}+\sqrt{k+1}) \cdots(\sqrt{n}+\sqrt{n+1}) \geq(\sqrt{n}-\sqrt{k})(\sqrt{n}+\sqrt{k}-1)+2$, where $n>k, n, k \in \mathbb{N}$.
132. $\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{3}}+\cdots+\frac{a_{n-1}}{a_{n}}+\frac{a_{n}}{a_{1}} \geq n$, where $a_{i}>0, i=1,2, \ldots, n$.
133. $a_{n+1}+\frac{1}{a_{1}\left(a_{2}-a_{1}\right)\left(a_{3}-a_{2}\right) \cdots\left(a_{n+1}-a_{n}\right)} \geq n+1$, where $0<a_{k}<a_{k+1}, k=1,2, \ldots, n$.
$135.1+\frac{x}{2} \leq \frac{1}{\sqrt{1-x}}$, where $0 \leq x<1$.
134. $\frac{a^{4}}{b^{4}}+\frac{b^{4}}{c^{4}}+\frac{d^{4}}{e^{4}}+\frac{e^{4}}{a^{4}} \geq \frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{e}+\frac{e}{a}$, where $a b c d e \neq 0$.
135. $\left(\frac{a}{b}\right)^{1999}+\left(\frac{b}{c}\right)^{1999}+\left(\frac{c}{d}\right)^{1999}+\left(\frac{d}{a}\right)^{1999}$, where $a, b, c, d>0$.
136. Prove that $\sqrt{\frac{a_{1}+a_{2}}{a_{3}}}+\sqrt{\frac{a_{2}+a_{3}}{a_{4}}}+\cdots+\sqrt{\frac{a_{n-1}+a_{n}}{a_{1}}}+\sqrt{\frac{a_{n}+a_{1}}{a_{2}}} \geq n \sqrt{2}$, where $n>2$ and $a_{1}>0, a_{2}>0, \ldots, a_{n}>0$.
137. Prove that $\frac{x}{1+x^{2}}+\frac{y}{1+y^{2}}+\frac{z}{1+z^{2}} \leq \frac{3 \sqrt{3}}{4}$, where $x^{2}+y^{2}+z^{2}=1$.
138. Prove that $\left(\frac{1}{a_{1}^{2}}-1\right)\left(\frac{1}{a_{2}^{2}}-1\right) \cdots\left(\frac{1}{a_{n}^{2}}-1\right) \geq\left(n^{2}-1\right) n$, where $n \geq 2, a_{1}>0, a_{2}>0, \ldots, a_{n}>0$ and $a_{1}+a_{2}+\cdots+a_{n}=1$.
139. Find the maximum and minimum value of the expression $(1+u)(1+v)(1+w)$ if $0<u \leq \frac{7}{16}, 0<v \leq \frac{7}{16}, 0<w \leq \frac{7}{16}$, and $u+v+w=1$.
140. Find the maximum value of the expression $x^{p} y^{q}$ if $x+y=a, x>0, y>0$ and $p, q \in \mathbb{N}$.
141. Find the maximum value of the expression $a+2 c$ if for all x, one has $a x^{2}+b x+c \leq$ $\frac{1}{\sqrt{1-x^{2}}}$, where $|x|<1$.
142. Prove that $\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right) \geq 2\left(1+\frac{a+b+c}{\sqrt[3]{a b c}}\right)$, where $a>0, b>0, c>0$.
143. Prove that $\frac{1+a_{1}}{1-a_{1}} \cdot \frac{1+a_{2}}{1-a_{2}} \cdots \frac{1+a_{n+1}}{1-a_{n+1}}$, where $-1<a_{1}, a_{2}, \ldots, a_{n+1}<1$ and $a_{1}+a_{2}+\cdots+a_{n+1} \geq$ $n-1$.
144. Prove that $(a+b)^{3}(b+c)^{3}(c+d)^{3}(d+a)^{3} \geq 16 a^{2} b^{2} c^{2} d^{2}(a+b+c+d)^{4}$, where $a>$ $0, b>0, c>0, d>0$.
145. Prove that $\left[\left(1+\frac{a}{b}\right)^{2}+\left(1+\frac{b}{c}\right)^{2}+\left(1+\frac{c}{a}\right)^{2}\right]\left[\left(1+\frac{b}{a}\right)^{2}+\left(1+\frac{c}{b}\right)^{2}+\left(1+\frac{a}{c}\right)^{2}\right] \geq$ $4\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)^{2}$, where $a>0, b>0, c>0$.
146. Prove that $\left(a^{2}+b c\right)^{3}\left(b^{2}+a c\right)^{3}\left(c^{2}+a b\right)^{3} \geq 64\left(a^{3}+b^{3}\right)\left(b^{3}+c^{3}\right)\left(c^{3}+a^{3}\right)$, where $a>$ $0, b>0, c>0$.
147. Prove that $a+\sqrt{a b}+\sqrt[3]{a b c} \leq \frac{4}{3}(a+b+c)$, where $a>0, b>0, c>0$.
148. Prove that $a+\sqrt{a b}+\sqrt[3]{a b c} \leq 3 \cdot \sqrt[3]{a \cdot \frac{a+b}{2} \cdot \frac{a+b+c}{3}}$, where $a>0, b>0, c>0$.
149. Prove that $(a b)^{\frac{5}{4}}+(b c)^{\frac{5}{4}}+(c a)^{\frac{5}{4}} \leq \frac{\sqrt{3}}{9}$, where $a>0, b>0, c>0$ and $a+b+c=1$.
150. Prove that $a^{2}+b^{2}+c^{2} \geq 14$ if $a+2 b+3 c \geq 14$.
151. Prove that $a b+\sqrt{\left(1-a^{2}\right)\left(1-b^{2}\right)} \leq 1$ if $|a| \leq 1,|b| \leq 1$.
152. Prove that $\sqrt{c(a-c)}+\sqrt{c(b-c)} \leq \sqrt{a b}$ if $a>c, b>c, c>0$.
153. Prove that $a \sqrt{a^{2}+c^{2}}+b \sqrt{b^{2}+c^{2}} \leq a^{2}+b^{2}+c^{2}$.
154. Prove that $\frac{1}{\sqrt{a b}}+\frac{1}{\sqrt{b c}}+\frac{1}{\sqrt{c a}} \leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}$, where $a>0, b>0, c>0$.
155. Prove that $\sqrt{a}(a+c-b)+\sqrt{b}(a+b-c)+\sqrt{c}(b+c-a) \leq \sqrt{\left(a^{2}+b^{2}+c^{2}\right)(a+b+c)}$, where a, b, c are lengths of sides of a triangle.
156. Prove that $\left(a_{1}+a_{2}+\cdots+a_{n}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}\right) \geq n^{2}$, where $a_{1}>0, a_{2}>0, \ldots, a_{n}>0$.
157. Prove that $\frac{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}{n} \geq\left(\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right)^{2}$.
158. Prove that $a_{1} a_{2}+a_{2} a_{3}+\cdots+a_{9} a_{10}+a_{10} a_{1} \geq-1$ if $a_{1}^{2}+a_{2}^{2}+\cdots+a_{10}^{2}=1$.
159. Prove that $x^{4}+y^{4} \geq x^{3} y+x y^{3}$.
160. Prove that $\left(\left|a_{1}\right|^{3}+\left|a_{2}\right|^{3}+\cdots+\left|a_{n}\right|^{3}\right)^{2} \leq\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)^{3}$.
161. Prove that $3\left(a^{2}+b^{2}+c^{2}+x^{2}+y^{2}+z^{2}\right)+6 \sqrt{\left(a^{2}+b^{2}+c^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)} \geq$ $(a+b+c+x+y+z)^{2}$.
162. Prove that $a^{2}+b^{2}+c^{2} \geq a b+b c+c a$.
163. Prove that $\left(a_{1}+a_{2}+\cdots+a_{n}\right)\left(a_{1}^{7}+a_{2}^{7}+\cdots+a_{n}^{7}\right) \geq\left(a_{1}^{3}+a_{2}^{3}+\cdots+a_{n}^{3}\right)\left(a_{1}^{5}+a_{2}^{5}+\cdots+a_{n}^{5}\right)$, where $a_{1}>0, a_{2}>0, \ldots, a_{n}>0$.
164. Prove that $\sqrt{a+1}+\sqrt{2 a-3}+\sqrt{50-3 a} \leq 12$, where $\frac{3}{2} \leq a \leq \frac{50}{3}$.
165. Prove that $a+b+c \leq a b c+2$, where $a^{2}+b^{2}+c^{2}=2$.
166. Prove that $2(a+b+c)-a b c \leq 10$, where $a^{2}+b^{2}+c^{2}=9$.
167. Prove that $1+a b c \geq 3 \cdot \min (a, b, c)$, where $a^{2}+b^{2}+c^{2}=9$.
168. Prove that $\left(\sum_{i=1}^{n} a_{i}^{k+1}\right)\left(\sum_{i=1}^{n} a_{i}^{-1}\right) \geq n\left(\sum_{i=1}^{n} a_{i}^{k}\right)$, where $k, n \in \mathbb{N}$ and $a_{1}>0, a_{2}>$ $0, \ldots, a_{n}>0$.
169. Prove that $\frac{a+b+c}{3} \geq \sqrt[3]{a b c}$, where $a>0, b>0, c>0$.
170. Prove that $\frac{a_{1}^{k}+a_{2}^{k}+\cdots+a_{n}^{k}}{n} \geq\left(\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right)^{k}$, where $k, n \in \mathbb{N}$ and $a_{1}>0, a_{2}>0, \ldots, a_{n}>0$.
171. Prove that $\left(1+\frac{1}{\sin \alpha}\right)\left(1+\frac{1}{\cos \alpha}\right)>5$, where $0<\alpha<\frac{\pi}{2}$.
172. Find the smallest possible value of the expression $(u-v)^{2}+\left(\sqrt{2-u^{2}}-\frac{9}{v}\right)^{2}$ if $0<u<$ $\sqrt{2}, v>0$.
173. Prove that $x_{1}^{2}+\left(\frac{x_{1}+x_{2}}{2}\right)^{2}+\cdots+\left(\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}\right)^{2} \leq 4\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{2}$. This inequality is a particular case of Hardy's inequality $\sum_{k=1}^{n}\left(\frac{a_{1}+a_{2}+\cdots+a_{k}}{k}\right)^{p} \leq\left(\frac{p}{p-1}\right)^{p} \cdot \sum_{k=1}^{n} a_{k}^{p}$, where $p>1, a_{i} \geq 0, i=1,2, \ldots, n$.
174. Prove that $\frac{1}{a_{1}}+\frac{2}{a_{1}+a_{2}}+\cdots+\frac{n}{a_{1}+a_{2}+\cdots+a_{n}}<2\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}\right)$, where $a_{1}>0, a_{2}>$ $0, \ldots, a_{n}>0$.
175. Prove that $\left(\sin \alpha_{1}+\sin \alpha_{2}+\cdots+\sin \alpha_{n}\right)^{2}+\left(\cos \alpha_{1}+\cos \alpha_{2}+\cdots+\cos \alpha_{n}\right)^{2} \leq n^{2}$.
176. Prove that $\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \geq \sqrt[n]{a_{1} a_{2} \ldots a_{n}}$, where $n \geq 2, a_{1}>0, a_{2}>0, \ldots, a_{n}>0$.
177. Prove that $\sqrt{a_{1} b_{1}}+\sqrt{a_{2} b_{2}}+\cdots+\sqrt{a_{n} b_{n}} \leq \sqrt{a_{1}+a_{2}+\cdots+a_{n}} \cdot \sqrt{b_{1}+b_{2}+\cdots+b_{n}}$, where $a_{i} \geq 0, b_{i} \geq 0, i=1,2, \ldots, n$.
178. Prove that $\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2}+\left(x_{2} y_{3}-x_{3} y_{2}\right)^{2}+\left(x_{1} y_{3}-x_{3} y_{1}\right)^{2} \leq\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}+\right.$ $\left.y_{3}^{2}\right)$.
179. Prove that $\left(\sum_{i=1}^{n} \sqrt{a_{i} b_{i}}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i} x_{i}\right)\left(\sum_{i=1}^{n} \frac{b_{i}}{x_{i}}\right)$, where $x_{i}>0, a_{i}>0, b_{i}>0, i=$ $1,2, \ldots n$.
180. Prove that $\left(\sum_{i=1}^{n} x_{i} y_{i}\right)\left(\sum_{i=1}^{n} \frac{x_{i}}{y_{i}}\right) \geq\left(\sum_{i=1}^{n} x_{i}\right)^{2}$, where $x_{i}>0, y_{i}>0, i=1,2, \ldots, n$.
181. Prove that $a x+b y+c z+\sqrt{\left(a^{2}+b^{2}+c^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)} \geq \frac{2}{3}(a+b+c)(x+y+z)$.
182. Prove that $\left(p_{1} q_{1}-p_{2} q_{2}-\cdots-p_{n} q_{n}\right)^{2} \geq\left(p_{1}^{2}-p_{2}^{2}-\cdots-p_{n}^{2}\right)\left(q_{1}^{2}-q_{2}^{2}-\cdots-q_{n}^{2}\right)$, if $p_{1}^{2} \geq p_{2}^{2}+\cdots+p_{n}^{2}, q_{1}^{2} \geq q_{2}^{2}+\cdots+q_{n}^{2}$.
183. Prove that $\sqrt{x^{2}+x y+y^{2}} \sqrt{y^{2}+y z+z^{2}}+\sqrt{y^{2}+y z+z^{2}} \sqrt{z^{2}+z x+x^{2}}+$ $\sqrt{z^{2}+z x+x^{2}} \sqrt{x^{2}+x y+y^{2}} \geq(x+y+z)^{2}$.
184. Prove that $a_{1}\left(b_{1}+a_{2}\right)+a_{2}\left(b_{2}+a_{3}\right)+\cdots+a_{n}\left(b_{n}+a_{1}\right)<1$, where $n \geq 3, a_{1}, a_{2}, \ldots, a_{n}>0$ and $a_{1}+a_{2}+\cdots+a_{n}=1, b_{1}^{2}+b_{2}^{2}+\cdots+b_{n}^{2}=1$.
185. Prove that $\sqrt{1-\left(\frac{x+y}{2}\right)^{2}}+\sqrt{1-\left(\frac{y+z}{2}\right)^{2}}+\sqrt{1-\left(\frac{z+x}{2}\right)^{2} \geq \sqrt{6}}$, where $x, y, z \geq 0, x^{2}+$ $y^{2}+z^{2}=1$.
186. Prove that $\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}} \geq 2 \sqrt{1+\frac{a b c}{(a+b)(b+c)(c+a)}}$, where $a, b, c>0$.
187. Prove that $\sqrt{a+(b-c)^{2}}+\sqrt{b+(c-a)^{2}}+\sqrt{c+(a-b)^{2}} \geq \sqrt{3}$, where $a, b, c \geq 0$ and $a+b+c=1$.
188. Prove that $\sqrt{\frac{a+b}{2}-a b}+\sqrt{\frac{b+c}{2}-b c}+\sqrt{\frac{c+a}{2}-c a} \geq \sqrt{2}$, where $a, b, c \geq 0$ and $a+b+c=2$.
189. Prove that $\sqrt{1-x y} \sqrt{1-y z}+\sqrt{1-y z} \sqrt{1-z x}+\sqrt{1-z x} \sqrt{1-x y} \geq 2$, where $x, y, z \geq 0$ and $x^{2}+y^{2}+z^{2}=1$.
190. Prove that $x \sqrt{1-y z}+y \sqrt{1-z x}+z \sqrt{1-x y} \geq \frac{2 \sqrt{2}}{3}$, where $x, y, z \geq 0$ and $x+y+z=1$.
191. Prove the following identity $\left(a_{1} c_{1}+a_{2} c_{2}+\cdots+a_{n} c_{n}\right)-\left(a_{1} d_{1}+a_{2} d_{2}+\cdots+a_{n} d_{n}\right)\left(b_{1} c_{1}+\right.$ $\left.b_{2} c_{2}+\cdots+b_{n} c_{n}\right)=\sum_{1 \leq i<k \leq n}\left(a_{i} b_{k}-a_{k} b_{i}\right)\left(c_{i} d_{k}-c_{k} d_{i}\right)$.
192. Prove that $\left(a_{1} c_{1}+a_{2} c_{2}+\cdots+a_{n} c_{n}\right)-\left(a_{1} d_{1}+a_{2} d_{2}+\cdots+a_{n} d_{n}\right) \geq\left(a_{1} d_{1}+a_{2} d_{2}+\cdots+\right.$ $\left.a_{n} d_{n}\right)\left(b_{1} c_{1}+b_{2} c_{2}+\cdots+b_{n} c_{n}\right)$, where $b_{i} d_{1} \geq 0(i=1,2, \ldots, n)$ or $b_{i} d_{1}<0(i=1,2, \ldots, n)$ and $\frac{a_{1}}{b_{1}} \leq \frac{a_{2}}{b_{2}} \leq \ldots \leq \frac{a_{n}}{b_{n}}, \frac{c_{1}}{d_{1}} \leq \frac{c_{2}}{d_{2}} \leq \ldots \leq \frac{c_{n}}{d_{n}}$.
193. Find the maximum and minimum value of the expression $\frac{\sqrt{x^{2}+y^{2}}+\sqrt{(x-2)^{2}+(y-1)^{2}}}{\sqrt{x^{2}+(y-1)^{2}}+\sqrt{(x-2)^{2}+y^{2}}}$.
194. Find the minimum value of the expression $\left(\frac{1}{x^{n}}+\frac{1}{a^{n}}-1\right)\left(\frac{1}{y^{n}}+\frac{1}{b^{n}}-1\right)$, where $x, y, a, b>$ $0, x+y=1, a+b=1$.
195. Prove that $4 \leq a^{2}+b^{2}+a b+\sqrt{4-a^{2}} \sqrt{9-b^{2}} \leq 19$, where $0 \leq a \leq 2$ and $0 \leq b \leq 3$.
196. Prove that $n \sqrt{m-1}+m \sqrt{n-1} \leq m n$, where $m \geq 1, n \geq 1$.
197. Prove that $\sqrt{m^{2}-n^{2}}+\sqrt{2 m n-n^{2}} \geq m$, where $m>n>0$.
198. Prove that $x>\sqrt{x-1}+\sqrt{x(\sqrt{x}-1)}$, where $x \geq 1$.
199. Prove that $1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}} \geq n \sqrt{\frac{2}{n+1}}$, where $n \in \mathbb{N}$.
200. Prove that among seven arbitrary numbers one can find two numbers x and y such that $0 \leq \frac{x-y}{1+x y}<\frac{\sqrt{3}}{3}$.
201. Prove that $\frac{|a-b|}{\sqrt{1+a^{2}} \sqrt{1+b^{2}}} \leq \frac{|a-c|}{\sqrt{1+a^{2}} \sqrt{1+c^{2}}} \leq \frac{|b-c|}{\sqrt{1+b^{2}} \sqrt{1+c^{2}}}$.
202. Huygen's inequality: $\sqrt[n]{\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) \cdots\left(a_{n}+b_{n}\right)} \geq \sqrt[n]{a_{1} a_{2} \ldots a_{n}} \sqrt[n]{b_{1} b_{2} \ldots b_{n}}$, where $a_{i}>0, b_{i}>0, i=1,2, \ldots, n$.
203. Milne's inequality: $\frac{a_{1} b_{1}}{a_{1}+b_{1}}+\frac{a_{2} b_{2}}{a_{2}+b_{2}}+\cdots+\frac{a_{n} b_{n}}{a_{n}+b_{n}} \leq$ $\frac{\left(a_{1}+a_{2}+\cdots+a_{n}\right)\left(b_{1}+b_{2}+\cdots+b_{n}\right)}{\left(a_{1}+a_{2}+\cdots+a_{n}\right)+\left(b_{1}+b_{2}+\cdots+b_{n}\right)}$, where $a_{i}>0, b_{i}>0, i=1,2, \ldots, n$.
204. Prove that $\frac{8}{\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right)-\left(z_{1}+z_{2}\right)^{2}} \leq \frac{1}{x_{1} y_{1}-z_{1}^{2}}+\frac{1}{x_{2} y_{2}-z_{2}^{2}}$, where $x_{1}>0, x_{2}>0$ and $x_{1} y_{1}-$ $z_{1}^{2}>0, x_{2} y_{2}-z_{2}^{2}>0$.
205. Prove that $\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1} \leq \frac{2}{3} \sqrt{a b c}$, where $a \geq 1, b \geq 1, c \geq 1$.
206. Prove that $\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}+\sqrt{d-a} \leq \frac{3 \sqrt{3}}{4} \sqrt{a b c d}$, where $a \geq 1, b \geq 1, c \geq$ $1, d \geq 1$.
207. Prove that $\left(\frac{a^{2}-b^{2}}{2}\right)^{2} \geq \sqrt{\frac{a^{2}+b^{2}}{2}}-\frac{a+b}{2}$, where $a, b \geq \frac{1}{2}$.
208. Prove that $x_{1}+x_{2}+\cdots+x_{n} \leq \frac{n}{3}$, where $x_{1}^{3}+x_{2}^{3}+\cdots+x_{n}^{3}=0$ and $x_{i} \in[-1,1], i=$ $1,2, \ldots, n$.
209. Prove that $\left|x_{1}^{3}+x_{2}^{3}+\cdots+x_{n}^{3}\right| \leq 2 n$, where $x_{1}+x_{2}+\cdots+x_{n}=0$ and $x_{i} \in[-2,2], i=$ $1,2, \ldots, n$.
210. Prove that $1<\frac{a}{\sqrt{a^{2}+b^{2}}}+\frac{b}{\sqrt{b^{2}+c^{2}}}+\frac{c}{\sqrt{c^{2}+a^{2}}} \leq \frac{3 \sqrt{2}}{4}$, where $a, b, c>0$.
211. Prove that $\sqrt{1-a}+\sqrt{1-b}+\sqrt{1-c}+\sqrt{1-d} \geq \sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}$, where $a, b, c, d>$ $0, a^{2}+b^{2}+c^{2}+d^{2}=1$.
212. Prove that $\frac{a+b+c}{3}-\sqrt[3]{a b c} \leq \max \left[(\sqrt{a}-\sqrt{b})^{2},(\sqrt{b}-\sqrt{c})^{2},(\sqrt{c}-\sqrt{a})^{2}\right]$, where $a>$ $0, b>0, c>0$.
213. Given that $a^{2}+b^{2}=1$. Prove that (i) $|a+b| \leq \sqrt{2}$, (ii) $|a-b| \leq \sqrt{2}$, (iii) $|a b| \leq \frac{1}{2}$, and (iv) $\left|a b^{2}+a^{2} b\right| \leq \frac{1}{\sqrt{2}}$.
214. Prove that $\left|x y-\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)}\right| \leq 1$, where $|x| \leq 1,|y| \leq 1$.
215. Prove that $\sqrt{1-x^{2}}+\sqrt{1-y^{2}} \leq 2 \sqrt{1-\left(\frac{x+y}{2}\right)^{2}}$, where $|x| \leq 1,|y| \leq 1$.
216. Prove that $\frac{a_{1}}{1-a_{1}}+\frac{a_{2}}{1-a_{2}}+\cdots+\frac{a_{n}}{1-a_{n}} \geq \frac{n\left(a_{1}+a_{2}+\cdots+a_{n}\right)}{n-\left(a_{1}+a_{2}+\cdots+a_{n}\right)}$, where $0 \leq a_{1}<1,0 \leq a_{2}<1, \ldots, 0 \leq$ $a_{n}<1$.
217. Prove that $\frac{1}{\sqrt{1+a^{2}}}+\frac{1}{\sqrt{1+b^{2}}}+\frac{1}{\sqrt{1+c^{2}}} \leq \frac{3}{2}$, where $a, b, c>0$ and $a+b+c=a b c$.
218. Prove that $\frac{|x-y|}{1+a|x-y|}+\frac{|y-z|}{1+a|y-z|} \geq \frac{|x-z|}{1+a|x-z|}$, where $a>0$.
219. Prove that $\frac{2 x\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}+\frac{2 y\left(1-y^{2}\right)}{\left(1+y^{2}\right)^{2}}+\frac{2 z\left(1-z^{2}\right)}{\left(1+z^{2}\right)^{2}} \leq \frac{x}{1+x^{2}}+\frac{y}{1+y^{2}}+\frac{z}{1+z^{2}}$, where $x>0, y>0, z>0$ and $x y+y z+z x=1$.
220. Prove that $\sqrt{a_{1}+a_{2}+\cdots+a_{n}} \leq \sqrt{1}\left(\sqrt{a_{1}}-\sqrt{a_{2}}\right)+\sqrt{2}\left(\sqrt{a_{2}}-\sqrt{a_{3}}\right)+\cdots+\sqrt{n}\left(\sqrt{a_{n}}-\right.$ $\left.\sqrt{a_{n+1}}\right)$, where $a_{1} \geq a_{2} \geq \ldots \geq a_{n+1}=0$.
221. Prove that $\frac{1}{\frac{1}{1+a_{1}}+\frac{1}{1+a_{2}}+\cdots+\frac{1}{1+a_{n}}}-\frac{1}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}} \geq \frac{1}{n}$, where $a_{1}>0, a_{2}>0, \ldots, a_{n}>0$.
222. Prove that $a+b+c-2 \sqrt{a b c} \geq a b+b c+c a-2 a b c$, where $0 \leq a \leq 1,0 \leq b \leq 1,0 \leq c \leq 1$.
223. Prove that $\sqrt{a(1-b)(1-c)}+\sqrt{b(1-c)(1-a)}+\sqrt{c(1-a)(1-b)} \leq 1+\sqrt{a b c}$, where $0 \leq a \leq 1,0 \leq b \leq 1,0 \leq c \leq 1$.
224. Prove that $[(x+y)(y+z)(z+x)]^{2} \geq x y z(2 x+y+z)(2 y+z+x)(2 z+x+y)$, where $x, y, z \geq 0$.
225. Prove that $\frac{a b(1-a)(1-b)}{(1-a b)^{2}}<\frac{1}{4}$, where $0<a<1,0<b<1$.
226. Prove that $\max \left(a_{1}, a_{2}, \ldots, a_{n}\right) \geq 2$, where $n>3, a_{1}+a_{2}+\cdots+a_{n} \geq n, a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \geq$ n^{2}.
227. Prove that $\sqrt{a_{1}+\frac{\left(a_{n}-a_{n-1}\right)^{2}}{4(n-2)}}+\cdots+\sqrt{a_{n-2}+\frac{\left(a_{n}-a_{n-1}\right)^{2}}{4(n-2)}}+\sqrt{a_{n-1}}+\sqrt{a_{n}} \leq \sqrt{n}$, where $n \geq 3, a_{1}, a_{2}, \ldots, a_{n} \geq 0$ and $a_{1}+a_{2}+\cdots+a_{n}=1$.
228. Prove that $2 \sqrt{\left(x^{2}-1\right)\left(y^{2}-1\right)} \leq 2(x-1)(y-1)+1$, where $0 \leq x, y \leq 1$.
229. Prove that $a^{3}+b^{3}+c^{3}-3 a b c \leq \sqrt{\left(a^{2}+b^{2}+c^{2}\right)^{3}}$.
230. Pprove that $\frac{1}{n-1+x_{1}}+\frac{1}{n-1+x_{2}}+\cdots+\frac{1}{n-1+x_{n}} \leq 1$, where $x_{1}, x_{2}, \ldots, x_{n}>0$ and $x_{1} \cdot x_{2} \ldots . x_{n}=1$.
231. Prove that $\frac{x}{\sqrt{1-x}}+\frac{1}{\sqrt{1-y}} \geq \frac{x+y}{\sqrt{1-\frac{x+y}{2}}}$, where $0 \leq x, y<1$.
232. Prove that $\frac{x_{1}}{\sqrt{1-x_{1}}}+\frac{x_{2}}{\sqrt{1-x_{2}}}+\cdots+\frac{x_{n}}{\sqrt{1-x_{n}}} \geq \frac{\sqrt{x_{1}}+\sqrt{x_{2}}+\cdots+\sqrt{x_{n}}}{\sqrt{n-1}}$, where $n \geq 2, n \in$ $\mathbb{N}, x_{1}, x_{2}, \ldots, x_{n}>0$ and $x_{1}+x_{2}+\cdots+x_{n}=1$.
233. Prove that $\frac{x}{\sqrt{4 y^{2}+1}}+\frac{y}{\sqrt{4 x^{2}+1}} \leq \frac{1}{\sqrt{2}}$, where $0 \leq x, y \leq \frac{1}{2}$.
234. Prove that $0 \leq a b+b c+c a-a b c \leq 2$, where $a, b, c>0$ and $a^{2}+b^{2}+c^{2}+a b c=4$.
235. Prove that $a+b+c \leq 3$, whhere $a, b, c>0$ and $a^{2}+b^{2}+c^{2}+a b c=4$.
236. Prove that $(x-1)(y-z)(z-1) \leq 6 \sqrt{3}-10$, where $x, y, z>0$ and $x+y+z=x y z$.
237. Prove that $\sqrt[3]{\frac{x+y}{2 z}}+\sqrt[3]{\frac{y+z}{2 x}}+\sqrt[3]{\frac{z+x}{2 y}} \leq \frac{5(x+y+z)+9}{8}$, where $x, y, z>0$ and $x y z=1$.
238. Prove that among four arbitrary numbers there are two numbers a and b such that $\frac{1+a b}{\sqrt{1+a^{2}} \sqrt{1+b^{2}}}>\frac{1}{2}$.
239. Given that $x+y+z=0$ and $x^{2}+y^{2}+z^{2}=6$, find all possible values of the expression $x^{2} y+y^{2} z+z^{2} x$.
240. Let $\left(h_{n}\right)$ be a sequence such that $h_{1}=\frac{1}{2}$ and $h_{n+1}=\sqrt{\frac{1-\sqrt{1-h_{n}^{2}}}{2}}, n=1,2, \ldots$. Prove that $h_{1}+h_{2}+\cdots+h_{n} \leq 1.03$.
241. Prove that $a b c \geq(a+b-c)(b+c-a)(c+a-b)$, where $a, b, c>0$.
242. Prove that $\left(a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}\right)^{2} \leq\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+\cdots+b_{n}^{2}\right)$.
243. Prove that $(a+b)^{2}\left(a^{2}+b^{2}\right)^{2} \cdots\left(a^{n}+b^{n}\right)^{2} \geq\left(a^{n+1}+b^{n+1}\right)^{n}$, where $a, b>0$.
244. Prove that $\left(a_{1}^{\alpha}+a_{2}^{\alpha}+\cdots+a_{n}^{\alpha}\right)^{\beta} \leq\left(a_{1}^{\beta}+a_{2}^{\beta}+\cdots+a_{n}^{\beta}\right)^{\alpha}$, where $0<\beta<\alpha, a_{1}>0, a_{2}>$ $0, \ldots, a_{n}>0$.
245. Nesbitt's inequality:: $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{3}{2}$, where $a, b, c>0$.
246. Prove that $\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{a+c+d}}+\sqrt{\frac{c}{a+b+d}}+\sqrt{\frac{d}{a+b+c}}>2$, where $a, b, c, d>0$.
247. Prove that $\sqrt[3]{\frac{a b c+a b d+a c d+b c d}{4}} \leq \sqrt{\frac{a b+a c+a d+b c+b d+c d}{6}}$, where $a, b, c, d>0$.
248. Prove that $2 \sqrt{a b+b c+a c} \leq 3 \sqrt[3]{(b+c)(c+a)(a+b)}$, where $a, b, c>0$.
249. Prove that $8\left(x^{3}+y^{3}+z^{3}\right)^{2} \geq 9\left(x^{2}+y z\right)\left(y^{2}+x z\right)\left(z^{2}+x y\right)$, where $x, y, z>0$.
250. Prove that $4 a^{3}+4 b^{3}+4 c^{3}+15 a b c \geq 1$, where $a, b, c \geq 0$ and $a+b+c=1$.
251. Prove that $a^{3}+b^{3}+c^{3}+a b c d \geq \min \left(\frac{1}{4}, \frac{1}{9}+\frac{d}{27}\right)$, where $a, b, c \geq 0$ and $a+b+c=1$.
252. Prove that $\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \geq \frac{1}{n} \sqrt{\frac{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}{n}}+\left(1-\frac{1}{n}\right) \sqrt[n]{a_{1} a_{2} \ldots a_{n}}$, where $n \geq 2, a_{i}>0, i=$ $1,2, \ldots, n$.
253. Turkevici's Inequality: $a^{4}+b^{4}+c^{4}+d^{4}+2 a b c d \geq a^{2} b^{2}+a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}+c^{2} d^{2}$, where $a, b, c, d \geq 0$.
254. Prove that $\frac{a_{1}^{3}}{b_{1}}+\frac{a_{2}^{3}}{b_{2}}+\cdots+\frac{a_{n}^{3}}{b_{n}} \geq 1$, where $a_{i}, b_{i}>0, i=1,2, \ldots, n$, and $\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)^{3}=$ $b_{1}^{2}+b_{2}^{2}+\cdots+b_{n}^{2}$.
255. Prove that $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{a+c}{b+c}+\frac{b+a}{c+a}+\frac{c+b}{a+b}$, where $a, b, c>0$.
256. Prove that $\sqrt{\frac{a_{1}^{n}}{a_{1}^{n}+\lambda a_{1} a_{2} \ldots a_{n}}}+\sqrt{\frac{a_{2}^{n}}{a_{2}^{n}+\lambda a_{1} a_{2} \ldots a_{n}}}+\cdots+\sqrt{\frac{a_{n}^{n}}{a_{n}^{n}+\lambda a_{1} a_{2} \ldots a_{n}}} \geq \frac{n}{\sqrt{1+\lambda}}$, where $n \geq$ $2, a_{1}, 2_{2}, \ldots, a_{n}>0$ and $\lambda \geq n^{2}-1$.
257. Prove that $(\sqrt[k]{2}-1)\left(a_{1}+a_{2}+\cdots+a_{n}\right)<\sqrt[k]{2 a_{1}^{k}+2^{2} a_{2}^{k}+\cdots+2^{n} a_{n}^{k}}$, where $k \in \mathbb{N}, k \geq$ $2, a_{1}, a_{2}, \ldots, a_{n}>0$.
258. Prove that $3\left(x^{2} y+y^{2} z+z^{2} x\right)\left(x y^{2}+y z^{2}+z x^{2}\right) \geq x y z(x+y+z)^{3}$, where $x, y, z>0$.
259. Prove that $\left(x_{1}+x_{2}+\cdots+x_{n}+y_{1}+y_{2}+\cdots+y_{n}\right)^{2} \geq 4 n\left(x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}\right)$, where $x_{1} \leq x_{2} \leq \ldots \leq x_{n} \leq y_{1} \leq y_{2} \leq \ldots \leq y_{n}$.
260. Prove that $\frac{\ln z-\ln y}{z-y}<\frac{\ln z-\ln x}{z-x}<\frac{\ln y-\ln x}{y-x}$, where $0<x<y<z$.
261. Prove that $a^{b} b^{c} c^{d} d^{a} \geq b^{a} c^{b} d^{c} a^{d}$, where $0 \leq a \leq b \leq c \leq d$.
262. Prove that $\frac{x_{1}}{S-x_{1}}+\frac{x_{2}}{S-x_{2}}+\cdots+\frac{x_{n}}{S-x_{n}} \geq \frac{n}{n+1}$, where $n \geq 2, S=x_{1}+x_{2}+\cdots+$ $x_{n}, x_{1}, x_{2}, \ldots, x_{n}>0$.
263. Prove that $a^{3}+b^{3}+c^{3}+6 a b c \geq \frac{1}{4}(a+b+c)^{3}$, where $a, b, c \geq 0$.
264. Prove that $a^{2}(2 b+2 c-a)+b^{2}(2 c+2 a-b)+c^{2}(2 a+2 b-c) \geq 9 a b c$, where a, b, c are side lengths of a triangle.
265. Prove that $\sqrt[n]{a_{1} a_{2} \ldots a_{n}}+\sqrt[n]{b_{1} b_{2} \ldots b_{n}} \leq \sqrt[n]{\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) \ldots\left(a_{n}+b_{n}\right)}$, where $n \geq$ $2, a_{i}>0, b_{i}>0, i=1,2, \ldots, n$.
266. Prove that $\sqrt[n]{(n+1)!}-\sqrt[n]{n!} \geq 1$, where $n \geq 2, n \in \mathbb{N}$.
267. Prove that $\sqrt[n]{F_{n+1}}>1+\frac{1}{\sqrt[n]{F_{n}}}$, where $n \geq 2, F_{1}=1, F_{2}=2, F_{k+2}=F_{k+1}+F_{k}, k=1,2, \ldots$.
268. Prove that $\sqrt[n]{C_{n+1}^{n}}>2\left(1+\frac{1}{\sqrt[n]{n+1}}\right)$, where $n=2,3, \ldots$.
269. Prove that $\left(1+a_{1}\right)\left(2+a_{2}\right) \cdots\left(n+a_{n}\right) \geq n^{\frac{n}{2}}$, where $n \geq 2, n \in \mathbb{N}, a_{1}, a_{2}, \ldots, a_{n}>0$ and $a_{1} a_{2} \ldots a_{n}=1$.
 $c_{i}>0, i=1,2, \ldots, n$.
270. Prove that $\sqrt[3]{a b}+\sqrt[3]{c d} \leq \sqrt[3]{(a+c+d)(a+b+c)}$, where $a, b, c, d \geq 0$.
271. Prove that $\left.x^{(} x^{2}-1\right)^{2}+y^{2}\left(y^{2}-1\right)^{2} \geq\left(x^{2}-1\right)\left(y^{2}-1\right)\left(x^{2}+y^{2}-1\right)$.
272. Prove that $\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)\left(x_{1}-x_{5}\right)+\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)\left(x_{2}-\right.$ $\left.x_{5}\right)+\cdots+\left(x_{5}-x_{1}\right)\left(x_{5}-x_{2}\right)\left(x_{5}-x_{3}\right)\left(x_{5}-x_{4}\right) \geq 0$.
273. Prove that $0 \leq a b+b c+c a-a b c \leq 2$, where $a, b, c \geq 0$ and $a^{2}+b^{2}+c^{2}+a b c=4$.
274. Prove that $x^{\lambda}(x-y)(x-z)+y^{\lambda}(y-z)(y-x)+z^{\lambda}(z-y)(z-x) \geq 0$, where $x, y, z>0$.
275. Prove that $\sqrt[3]{\left(\frac{a}{b+c}\right)^{2}}+\sqrt[3]{\left(\frac{b}{a+c}\right)^{2}}+\sqrt[3]{\left(\frac{c}{a+b}\right)^{2}} \geq \frac{3}{\sqrt[3]{4}}$, where $a, b, c>0$.
276. Prove that $\left(a^{5}-a^{2}+3\right)\left(b^{5}-b^{2}+3\right)\left(c^{5}-c^{2}+3\right) \geq(a+b+c)^{3}$, where $a, b, c>0$.
277. Prove that $a b c+a b d+b c d+a c d-a b c d \leq 3$, where $a, b, c, d>0$ and $a^{3}+b^{3}+c^{3}+$ $d^{3}+a b c d=5$.
278. Prove that $0 \leq a b+b c+c a-a b c \leq 2$, where $a, b, c \geq 0$ and $a^{2}+b^{2}+c^{2}+a b c=4$.
279. Prove that $a^{2}+b^{2}+c^{2}+2 a b c+1 \geq(a b+b c+c a)$, where $a, b, c \geq 0$.
280. Prove that $\frac{x+y+z}{x y+y z+z x} \leq 1+\frac{1}{48}\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$, where $x, y, z>0$ and $x y+y z+z x+x y z=4$.
281. Let $a_{1}, a_{2}, \ldots, a_{n+1}$ be $n+1$ positive real numbers such that $a_{1}+a_{2}+\cdots+a_{n}=a_{n+1}$. Prove that $\sum_{i=1}^{n} \sqrt{a_{i}\left(a_{n+1}\right)-a_{i}} \leq \sqrt{\sum_{i=1}^{n} a_{n+1}\left(a_{n+1}-a_{i}\right)}$.
282. Prove that $\frac{a}{b+2 c}+\frac{b}{c+2 a}+\frac{c}{a+2 b} \geq 1$, where $a, b, c>0$ and $a, b, c \in \mathbb{R}$.
283. Prove that $a^{2}+b^{2}+c^{2} \geq \sqrt{3} a b c$, where $a, b, c>0$ and $a, b, c \in \mathbb{R}$ such that $a b c \leq a+b+c$.
284. For any positive real numbers a, b, c prove that $\frac{2}{b(a+b)}+\frac{2}{c(b+c)}+\frac{2}{a(c+a)} \geq \frac{27}{(a+b+c)^{2}}$.
285. Let a, b, c be three sides of a triangle such that $a+b+c=2$. Prove that $1 \leq a b+b c+$ $c a-a b c \leq 1+\frac{1}{27}$.
286. If a, b, c be positive real numbers such that $a+b+c=1$. Prove that $\sqrt{a b+c}+\sqrt{b c+a}+$ $\sqrt{c a+b} \geq 1+\sqrt{a b}+\sqrt{b c}+\sqrt{c a}$.
287. If a, b, c, d are positive real numbers, prove that $\sqrt{\frac{a^{2}+b^{2}+c^{2}+d^{2}}{4}} \geq$ $\sqrt[4]{\frac{a b c+b c d+c d a+a b d}{4}}$.
288. Let a, b, c be the sides of a triangle such that $a+b+c=2$. Prove that $a^{2}+b^{2}+c^{2}+2 a b c<$ 2.
289. If a, b, c are positive real numbers such that $a^{2}+b^{2}+c^{2}=1$, prove that $\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+$ $a+b+c \geq 4 \sqrt{3}$.
290. Find all triples (a, b, c) of real numbers which satisfy the system of equations:

$$
\begin{gathered}
a+b+c=6 \\
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2-\frac{4}{a b c}
\end{gathered}
$$

294. Let a, b, c be real numbers such that $a^{2}+b^{2}+c^{2}=1$. Prove that $\frac{a^{2}}{1+2 b c}+\frac{b^{2}}{1+2 c a}+\frac{c^{2}}{1+2 a b} \geq \frac{3}{5}$.
295. Let a, b, c and α, β, γ be positive real numbers such that $\alpha+\beta+\gamma=1$. Prove that $b \alpha+b \beta+c \gamma+2 \sqrt{(\alpha \beta+\beta \gamma+\gamma \alpha)(a b+b c+c a)} \leq a+b+c$.
296. Prove that for all real numbers a and $b, a^{2}+b^{2}+1>a \sqrt{b^{2}+1}+b \sqrt{a^{2}+1}$.
297. For a fixed positive integer n, compute the minimum value of the sum $x_{1}+\frac{x_{2}^{2}}{2}+\frac{x_{3}^{3}}{3}+$ $\cdots+\frac{x_{n}^{n}}{n}$, where $x_{1}, x_{2}, \ldots, x_{n}$ are positive real numbers such that $\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}=n$.
298. Let a, b, c, d be positive real numbers such that $a+b+c+d \leq 1$. Prove that $\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a} \leq$ $\frac{1}{64 a b c d}$.
299. Let a, b, c be positive real numbers, all less than 1 , such that $a+b+c=2$. Prove that $a b c \geq 8(1-a)(1-b)(1-c)$.
300. Prove that $\frac{(2 a+b+c)^{2}}{2 a^{2}+(b+c)^{2}}+\frac{(2 b+c+a)^{2}}{2 b^{2}+(c+a)^{2}}+\frac{(2 c+a+b)^{2}}{2 c^{2}+(a+b)^{2}} \leq 8$, where a, b, c are positive real numbers.
301. Prove that $a b c \leq 1$, where a, b, c are real numbers such that $(1+a)(1+b)(1+c)=8$.
302. Prove that $\left.\sum_{i=1}^{n} \frac{a_{i}}{2-a_{i}}\right]$ geq $\frac{n}{2 n-1}$, where $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}, n \geq 2$ such that $\sum_{i=1}^{n} a_{i}=1$.
303. Prove that $\sum_{i=1}^{n} \frac{a_{i}^{2}}{a_{i}+a_{i+1}} \geq \frac{1}{2}$, where $a_{1}, a_{2}, \ldots, a_{n}$ are positive numbers such that $\sum_{i=1}^{n} a_{i}=1$ and $a_{1}=a_{n+1}$.
304. Prove that $\frac{1}{a}+\frac{4}{b}+\frac{9}{c}+\frac{16}{d} \geq \frac{100}{a+b+c+d}$, where $a, b, c, d \in \mathbb{R}$.
305. Prove that $\sum_{i=1}^{n} \frac{a_{i}^{2}}{1-2 a_{i}} \geq \frac{1}{n-2}$, where $n>2,0<a_{1}, a_{2}, \ldots, a_{n}<\frac{1}{2}$ such that $\sum_{i=1}^{n} a_{i}=1$.
306. Prove that $x_{1}+x_{2}+\cdots+x_{n} \leq \frac{x_{1}}{y_{1}}+\frac{x_{2}}{y_{2}}+\cdots+\frac{x_{n}}{y_{n}}$, where $n \geq 2, x_{1}+x_{2}+\cdots+x_{n} \geq$ $x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}$ and $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}$ are positive real numbers.
307. If $x_{1}, x_{2}, \ldots, x_{n}$ are n positive real numbers, prove that $\frac{x_{1}}{1+x_{1}^{2}}+\frac{x_{2}}{1+x_{1}^{2}+x_{2}^{2}}+\cdots+$ $\frac{x_{n}}{1+x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}<\sqrt{2}$.
308. If a, b, c are poositive real numbers, prove that $3\left(a^{2} b+b^{2} c+c^{2} a\right)\left(a b^{2}+b c^{2}+c a^{2}\right) \geq$ $a b c(a+b+c)^{3}$.
309. Let $P(x)=a x^{2}+b x+c$ be a quadratic polynomial with non-negative coefficients and let α be a positive real number. Prove that $P(\alpha) P(1 / \alpha) \geq P(1)^{2}$.
310. If a, b, c, d, e are positive, real numbers, prove that $\sum \frac{a}{b+c} \geq \frac{5}{2}$ where sum is taken cyclically over a, b, c, d, e.
311. Let a, b, c be non-negative real numbers such that $\frac{1}{a^{2}+1}+\frac{1}{b^{2}+1}+\frac{1}{c^{2}+1}=2$. Prove that $a b+b c+c a \leq \frac{3}{2}$.
312. Suppose a, b, c are positive real numbers. Prove that $3(a+b+c) \geq 8 \sqrt[3]{a b c}+\sqrt[3]{\frac{a^{3}+b^{3}+c^{3}}{3}}$. When does equality hold?
313. Let $c_{1}, c_{2}, \ldots, c_{n}$ be n real numbers such that either $0 \leq c_{i} \leq 1$ for all i or $c_{i} \geq 1$ for all i. Prove that the inequality $\prod_{i=1}^{n}\left(1-p+p c_{i}\right) \leq 1-p+p \prod_{i=1}^{n} c_{i}$ holds, for any real p with $0 \leq p \leq 1$.
314. Let $x_{1}, x_{2}, x_{3}, x_{4}$ be real numbers in the interval $(0,1 / 2]$. Prove that $\frac{x_{1} x_{2} x_{3} x_{4}}{\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)\left(1-x_{4}\right)} \leq \frac{x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}}{\left(1-x_{1}\right)^{4}+\left(1-x_{2}\right)^{4}+\left(1-x_{3}\right)^{4}+\left(1-x_{4}\right)^{4}}$.
315. If $x_{1}, x_{2}, \ldots, x_{n}$ be n real numbers such that $x_{i} \in(0,1 / 2]$. Prove that $\frac{\prod_{i=1}^{n} x_{i}}{\left(\sum_{i=1}^{n} x_{i}\right)^{n}} \leq$ $\frac{\prod_{i=1}^{n}\left(1-x_{i}\right)}{\left(\sum_{i=1}^{n}\left(1-x_{i}\right)\right)^{n}}$.
316. Consider a sequence $\left\langle a_{i}\right\rangle$ of real numbers satisfying $a_{i+j} \leq a_{i}+a_{j}$. Prove that $a_{1}+\frac{a_{2}}{2}+$ $\cdots+\frac{a_{n}}{n} \geq a_{n}, \forall n$.
317. For positive real numbers x, y, z, prove that $\sum \frac{x}{x+\sqrt{(x+y)(x+z)}} \leq 1$, where the sum is taken cyclically over x, y, z.
318. Let x, y be non-negative real numbers such that $x+y=2$. Prove that $x^{3} y^{3}\left(x^{3}+y^{3}\right) \leq 2$.
319. Let $\left\langle a_{i}\right\rangle$ and $\left\langle b_{i}\right\rangle$ be two sequences such that $0<h \leq a_{i} \leq H$ and $0<m \leq b_{i} \leq M$ for real h, H, m, M. Prove that $1 \leq \frac{\left(\sum a_{i}^{2}\right)\left(\sum b_{i}^{2}\right)}{\left(\sum a_{i} b_{i}\right)^{2}} \leq \frac{1}{4}\left(\sqrt{\frac{H M}{h m}}+\sqrt{\frac{h m}{H M}}\right)^{2}$.
320. Let $f:[0, a] \rightarrow \mathbb{R}$ be a convex function. Consider n points $x_{1}, x_{2}, \ldots, x_{n}$ in $[0, a]$ such that $\sum_{i=1}^{n} x_{i}$ is also in $[0, a]$. Prove that $\sum_{i=1}^{n} f\left(x_{i}\right) \leq f\left(\sum_{i=1}^{n} x_{i}\right)+(n-1) f(0)$.
321. For any real number n, prove that $\binom{2 n}{n} \sqrt{3 n}<4^{n}$.
322. Let a, b, c be positive real numbers and let x be a non-negative real number. Prove that $a^{x+2}+b^{x+2}+c^{x+2} \geq a^{x} b c+a b^{x} c+a b c^{x}$.
323. Let $\left(a_{1}, a_{2}, \ldots, a_{n}\right),\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ and $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ be three seuqnences of positive real numbers. Prove that $\sum_{i=1}^{n} a_{i} b_{i} c_{i} \leq \sqrt[3]{\sum_{i=1}^{n} a_{i}^{3}} \sqrt[3]{\sum_{i=1}^{n} b_{i}^{3}} \sqrt[3]{\sum_{i=1}^{n} c_{i}^{3}}$.
324. Prove for any three real numbers a, b, c, the inequality $3\left(a^{2}-a-1\right)\left(b^{2}-b-1\right)\left(c^{2}-\right.$ $c-1) \geq(a b c)^{2}-a b c+1$.
325. Consider a polynomial of the form $P(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+1$, where $a_{i} \geq$ $0 \forall 1 \leq i \leq n-1$. Suppose $P(x)=0$ has n real roots. Prove that $P(2) \geq 3^{n}$.
326. Let $a_{1}<a_{2}<\cdots<a_{n}$ be n positive integers. Prove that $\left(a_{1}+a_{2}+\cdots+a_{n}\right)^{2} \leq a_{1}^{3}+$ $a_{2}^{3}+\cdots+a_{n}^{3}$.
327. Consider a sequence $a_{1}, a_{2}, \ldots, a_{n}$ of positive real numbers which add up to 1 , where $n \geq 2$ is an integer. Prove that for any positive real numbers $x_{1}, x_{2}, \ldots, x_{n}$ with $\sum_{i=1}^{n} x_{i}=1$, the inequality $2 \sum_{i<j} x_{i} x_{j} \leq \frac{n-2}{n+1}+\sum_{i=1}^{n} \frac{a_{i} x_{i}^{2}}{1-a_{i}}$, holds.
328. Let $x_{1}, x_{2}, x_{3}, x_{4}$ be four consecutive positive real numbers such that $x_{1} x_{2} x_{3} x_{4}=1$. Prove that $x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3} \geq \min \left(x_{1}+x_{2}+x_{3}+x_{4}, \frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\frac{1}{x_{4}}\right)$.
329. Let $\{x\}$ denote the fractional part of x i.e. $\{x\}=x-\lceil x\rceil$. Prove for any positive integer $n, \sum_{i=1}^{n}\{\sqrt{i}\} \leq \frac{n^{2}-1}{2}$.
330. If a, b, c are positive real numbers, prove that $\frac{a^{2}}{(a+b)(a+c)}+\frac{b^{2}}{(b+c)(b+a)}+\frac{c^{2}}{(c+a)(c+b)} \geq \frac{3}{4}$.
331. Let a, b, c be positive real numbers such that $a b c>a b+b c+c a$. Prove that $a b c \geq$ $3(a+b+c)$.
332. Let $a_{1}, a_{2}, \ldots, a_{n}$ be n non-negative real numbers and let a denote the sum of these numbers. Prove that $\sum_{i=1}^{n-1} a_{i} a_{i+1} \leq \frac{a^{2}}{4}$.
333. Let a, b, c, d be complex numbers such that $a c \neq 0$. Prove that $\frac{\max (|a c|,|a d+b c|,|b d|)}{\max (|a|,|b|)(|c|,|d|)} \geq$ $\frac{-1+\sqrt{5}}{2}$.
334. Let $x_{1}, x_{2}, x_{3}, x_{4}$ be non-negative real numbers such that $\sum_{i=1}^{n} \frac{1}{1+x_{i}} \leq 1$. Prove that $x_{1} x_{2} \cdots x_{n} \geq(n-1)^{n}$.
335. Prove that $\frac{1}{m+n-1}-\frac{1}{(m+1)(n+1)} \leq \frac{4}{45}$ for any two natural numbers m and n.
336. If a, b are two positive real numbers, prove that $a^{b}+b^{a}>1$.
337. Let a, b be positive real numbers such that $a+b=1$ and let p be a positive real. Prove that $\left(a+\frac{1}{a}\right)^{p}+\left(b+\frac{1}{b}\right)^{p} \geq \frac{5^{p}}{2^{p-1}}$.
338. Let a, b, c be positive real numbers such that $a b c=1$. Prove that $\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)$ $\left(c-1+\frac{1}{a}\right) \leq 1$.
339. Let x, y, z be real numbers in the interval $[-1,2]$ such that $x+y+z=0$. Prove that $\frac{(2-x)(2-y)}{(2+x)(2+y)}+\sqrt{\frac{(2-y)(2-z)}{(2+y)(2+z)}}+\sqrt{\frac{(2-z)(2-x)}{(2+z)(2+x)}} \geq 3$.
340. Let $\left\langle a_{n}\right\rangle$ be a sequence of distinct positive integers. Prove that $\sum_{i=1} \frac{a_{i}}{i^{2}} \geq \sum_{i=1}^{n} \frac{1}{i}$, for every positive integer n.
341. Let x, y, z be non-negative real numbers such that $x+y+z=1$. Prove that $0 \leq$ $x y+y z+z x-2 x y z \leq \frac{7}{27}$.
342. Let $x_{1}, x_{2}, \ldots, x_{n}$ be n positive real numbers. Prove that $\sum_{i=1}^{n} \frac{x_{i}^{3}}{x_{i}^{2}+x_{i} x_{i+1}+x_{i+1}^{2}} \geq \frac{1}{3} \sum_{i=1}^{n} x_{i}$, where $x_{1}=x_{n+1}$.
343. Suppose x, y, z are non-negative real numbers. Prove that $x(x-z)^{2}+y(y-z)^{2} \geq$ $(x-z)(y-z)(x+y-z)$.
344. Prove that $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{c+a}{c+b}+\frac{a+b}{a+c}+\frac{b+c}{b+a}$, where a, b, c are positive real numbers.
345. If a, b are real numbers, prove that $a^{2}+a b+b^{2} \geq 3(a+b-1)$.
346. Define a sequence $\left\langle x_{n}\right\rangle$ by $x_{1}=2, x_{n+1}=\frac{x_{n}^{4}+9}{10 x_{n}}$. Prove that $\frac{4}{5}<x_{n} \leq \frac{5}{4} \forall n>1$.
347. Let a, b, c be positive real numbers such that $a^{2}-a b+b^{2}=c^{2}$. Prove that $(a-c)(b-c) \leq$ 0 .
348. Let a, b, c be positive real numbers. Prove that $\sqrt{a^{2}-a b+b^{2}}+\sqrt{b^{2}-b c+c^{2}} \geq$ $\sqrt{a^{2}+a c+c^{2}}$.
349. For all real numbers a, show that $\left(a^{3}-a+2\right)^{2} \geq 4 a^{2}\left(a^{2}+1\right)(a-2)$.
350. Let a, b, c be distinct real numbers. Prove that $\left(\frac{2 a-b}{a-b}\right)^{2}+\left(\frac{2 b-c}{b-c}\right)+\left(\frac{2 c-a}{c-a}\right)^{2} \geq 5$.
351. Let $\alpha, \beta, x_{1}, x_{2}, \ldots, x_{n}$ be positive reals such that $\alpha+\beta=1$, and $x_{1}+x_{2}+\cdots+x_{n}=1$. Prove that $\sum_{i=1}^{n} \frac{x_{i}^{2 m+1}}{\alpha x_{i}+\beta x_{i+1}} \geq \frac{1}{n^{2 m-1}}$ for every positive integer m, where $x_{n+1}=x_{1}$.
352. Given positive reals a, b, c, d, prove that $\sqrt{(a+c)^{2}+(b+d)^{2}} \leq \sqrt{a^{2}+b^{2}}+\sqrt{c^{2}+d^{2}} \leq$ $\sqrt{(a+c)^{2}+(b+d)^{2}}+\frac{2|a d-b c|}{\sqrt{(a+c)^{2}+(b+d)^{2}}}$.
353. With every natural number n, associate a real number a_{n} by $a_{n}=\frac{1}{p_{1}}+\frac{1}{p_{2}}+\cdots+\frac{1}{p_{k}}$, where $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ is the set of all prime divisors of n. Show that for any natural number $N \geq 2, \sum_{i=2}^{N} a_{1} a_{2} \ldots a_{n}<1$.
354. Let n be a fixed integer, with $n \geq 2$. Determine the least constant C such that the inequality $\sum_{1 \leq i<j \leq n} x_{i} x_{j}\left(x_{i}^{2}+x_{j}^{2}\right) \leq C\left(\sum_{1 \leq i \leq n} x_{i}\right)^{4}$ holds for all real numbers $x_{1}, x_{2}, \ldots, x_{n}$. Determine when the equality holds.
355. Let a, b, c, d be real numbers such that $\left(a^{2}+b^{2}-1\right)\left(c^{2}+d^{2}-1\right)>(a c+b d-1)^{2}$. Prove that $a^{2}+b^{2}-1>0$ and $c^{2}-d^{2}-1>0$.
356. Let $x_{1}, x_{2}, \ldots, x_{100}$ be 100 positive integers such that $\frac{1}{\sqrt{x_{1}}}+\frac{1}{\sqrt{x_{2}}}+\cdots+\frac{1}{\sqrt{x_{100}}}=20$. Prove that at least two of the x_{i} 's are equal.
357. Let $f(x)$ be a polynomial with integer coefficients and of degree $n>1$. Suppose $f(x)=0$ has n real roots in the interval $(0,1)$, not all equal. If a is the leading coefficient of $f(x)$, prove that $|a| \geq 2^{n}+1$.
358. Show that the equation $\frac{x}{y}+\frac{y}{z}+\frac{z}{w}+\frac{w}{x}=m$, has no solutions in positive reals for $m=2,3$.
359. Solve the system of equations: $x=\frac{4 z^{2}}{1+4 z^{2}}, y=z=\frac{4 x^{2}}{1+4 x^{2}}$, for real numbers x, y, z.
360. Suppose a, b are non-zero real numbers and that all the roots of the real polynomial $a x^{n}-a x^{n-1}+a_{n-1} x^{n-2}+\cdots+a_{2} x^{2}-n^{2} b x+b=0$ are real and positive. Prove that all the roots are in fact equal.
361. Find all triples (a, b, c) of positive integers such that product of any two leaves a remainder 1 when divided by the third number.
362. Find all positive solutions of the system: $x_{1}+\frac{1}{x_{2}}=4, x_{2}+\frac{1}{x_{3}}=1, \cdots, x_{1999}+\frac{1}{x_{2000}}=$ $4, x_{2000}+\frac{1}{x_{1}}=1$.
363. Find all positive solutions of the system: $x+y+z=1, x^{3}+y^{3}+z^{3}+x y z=x^{4}+y^{4}+$ $z^{4}+1$.
364. Let a, b be positive integers such that each equation $(a+b-x)^{2}=a-b,(a b+1-x)^{2}=$ $a b-1$ has two distinct real roots. Suppose the bigger of these roots are the same. Show that the smaller roots are also the same.
365. Suppose the polynomial $P(x)=x^{n}+n x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n}$ has real roots $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. If $\alpha_{1}^{16}+\alpha_{2}^{16}+\cdots+\alpha_{n}^{16}=n$. Find $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$.
366. Find all the solutions of the following system of inequalities:

$$
\begin{aligned}
& \left(x_{1}^{2}-x_{3} x_{5}\right)\left(x_{2}^{2}-x_{3} x_{5}\right) \leq 0, \\
& \left(x_{2}^{2}-x_{4} x_{1}\right)\left(x_{3}^{2}-x_{4} x_{1}\right) \leq 0, \\
& \left(x_{3}^{2}-x_{5} x_{2}\right)\left(x_{4}^{2}-x_{5} x_{2}\right) \leq 0, \\
& \left(x_{4}^{2}-x_{1} x_{3}\right)\left(x_{5}^{2}-x_{1} x_{3}\right) \leq 0, \\
& \left(x_{5}^{2}-x_{2} x_{4}\right)\left(x_{1}^{2}-x_{2} x_{4}\right) \leq 0 .
\end{aligned}
$$

367. Solve the following system of equations, when a is a real number such that $|a|>1$:

$$
\begin{aligned}
x_{1}^{2} & =a x_{2}+1, \\
x_{2}^{2} \&=a x_{3}+1, & \\
\vdots & \not \vdots \\
x_{999}^{2} & =a x_{1000}+1, \\
x_{1000}^{2} & =a x_{1}+1 .
\end{aligned}
$$

368. Let $a_{1}, a_{2}, \ldots, a_{n}$ be n positive integers such that $\sum_{i=1}^{n} a_{i}=\prod_{i=1}^{n} a_{i}$. Let K_{n} denote this common value. Show that $K_{n} \geq n+s$, where s is the least positive integer such that $2^{s}-s \geq n$.
369. Let $z_{1}, z_{2}, z_{3}, \ldots, z_{n}$ be n complex numbers such that ${ }_{i=1}^{n}\left|z_{i}\right|=1$. Prove that there exists a subset S of the set $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ such that $\left|\sum_{z \in S} z\right| \geq \frac{1}{4}$.
370. Let $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ be two sequences of real numbers which are not proportional. Let $\left\langle x_{n}\right\rangle$ such that $\sum_{i=1}^{n} a_{i} x_{i}=0, \sum_{i=1}^{n} b_{i} x_{i}=1$. Prove that $\sum_{i=1}^{n} x_{i}^{2} \geq$ $\frac{\sum_{i=1}^{n} a_{i}^{2}}{\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)-\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}}$. When does equality hold?
371. Let $x_{1}, x_{2}, \ldots, x_{n}$ be n positive real numbers. Prove that $\sum_{i=1}^{n} \frac{x_{i}}{2 x_{i}+x_{i+1}+\cdots+x_{i+n-2}} \leq n$, where $x_{n+i}=x_{i}$.
372. Let $x_{1}, x_{2}, \ldots, x_{n}$ be $n \geq 2$ positive real numbers and k be a fixed integer such that $1 \leq k \leq n$. Show that $\sum_{\text {cyclic }} \frac{x_{1}+2 x_{2}+\cdots+2 x_{k-1}+x_{k}}{x_{k}+x_{k+1}+\cdots+x_{n}} \geq \frac{2 n(k-1)}{n-k+1}$.
373. If z_{1} and z_{2} be two complex numbers such that $\left|z_{1}\right| \leq r,\left|z_{2}\right| \leq r$ and $z_{1} \neq z_{2}$. Prove that for any natural number $n\left|\frac{z_{1}^{n}-z_{2}^{n}}{z_{1}-z_{2}}\right| \leq \frac{1}{2} n(n-1) r^{n-2}\left|z_{1}-z_{2}\right|$.
374. A sequence $\left\langle a_{n}\right\rangle$ is said to be convex if $a_{n}-2 a_{n+1}+a_{n+2} \geq 0$ for all $n \geq 1$. Let $a_{1}, a_{2}, \ldots, a_{2 n+1}$ be a convex sequence. Show that $\frac{a_{1}+a_{3}+\cdots+a_{2 n+1}}{n+1} \geq \frac{a_{2}+a_{4}+\cdots+a_{2 n}}{n}$, and equality holds if and only if $a_{1}, a_{2}, \ldots, a_{2 n+1}$ is an arithmetic progression.
375. Suppose $a_{1}, a_{2}, \ldots, a_{n}$ are n positive real numbers. For each k, define $x_{i}=a_{i+1}+a_{i+2}+$ $\cdots+a_{i+n-1}-(n-2) a_{i}$, where $a_{i}=a_{i-n}$ for $i>n$. Suppose $x_{k} \geq 0$ for $1 \leq i \leq n$. Prove that $\prod_{i=1}^{n} a_{i} \geq \prod_{i=1}^{n} x_{i}$. Show that for $n=3$ the inequality is still true without the nonnegativity of $x_{i}{ }^{\prime} \mathrm{s}$, but for $n>3$ these conditions are essential.
376. Let a, c be positive reals and b be a complex number such that $f(z)=a|z|^{2}+2 \operatorname{Re}(b z)+$ $c \geq 0$, for all complex numbers z, where $\operatorname{Re}(z)$ denoted the real part of z. Prove that $|b|^{2} \leq a c$, and $f(z) \leq(a+c)\left(1+|z|^{2}\right)$. Show that $|b|^{2}=a c$ only if $f(z)=0$ for some $z \in \mathbb{C}$.
377. Suppose $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ be n real numbers. Show that $\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq$ $\frac{2\left(n^{2}-1\right)}{3} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(x_{i}-x_{k}\right)^{2}$. Prove also that equality holds if and only if the sequence $\left\langle x_{i}\right\rangle$ is in A.P.
378. Suppose $\left\langle a_{n}\right\rangle$ is an infinite sequence of real numbers with the properties
379. there is some real constant c such that $0 \leq a_{n} \leq c$, for all $n \geq 1$, and
380. $\left|a_{i}-a_{j}\right| \geq \frac{1}{i+j} \forall i \neq j$.

Prove that $c \geq 1$.
379. Let a, b, c be positive reals such that $a+b+c=1$. Prove that $a(1+b-c)^{1 / 3}+$ $b(1+c-a)^{1 / 3}+c(1+a-b)^{1 / 3} \leq 1$.

380 . let $x_{1}, x_{2}, \ldots, x_{n}$ be n positive reals which add up to 1 . Find the minimum value of $\sum_{i=1}^{n} \frac{x_{i}}{1+\sum_{j \neq i} x_{j}}$.
381. If a, b, c, d are positive reals then find all possible values of $\frac{a}{a+b+d}+\frac{b}{a+b+c}+\frac{c}{b+c+d}+\frac{d}{a+c+d}$.
382. Let $\left\langle F_{n}\right\rangle$ be the Fibonacci sequence defined by $F_{1}=F_{2}=1, F_{n+2}=F_{n+1}+F_{n}$, for $n \geq 1$. Prove that $\sum_{i=1}^{n} \frac{F_{i}}{2^{i}}<2$ for all $n \geq 1$.
383. Let $P(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ be a polynomial with real coefficients such that $|P(0)|=P(1)$. Suppose all the roots of $P(x)=0$ are real and lie in the interval $(0,1)$. Prove that the product of the roots does not exceed $\frac{1}{2^{n}}$.
384. If x, y are real numbers such that $2 x+y+\sqrt{8 x^{2}+4 x y+32 y^{2}}=3+3 \sqrt{2}$, prove that $x^{2} y \leq 1$.
385. Determine the maximum value of $\sum_{i<j} x_{i} x_{j}\left(x_{i}+x_{j}\right)$, over all n-tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of reals such that $x_{i} \geq 0$ for $1 \leq i \leq n$.
386. Let $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers. Prove that $\sum_{i=1}^{n}\left(x_{1} x_{2} \cdots x_{i}\right)^{1 / i}<3\left(\sum_{i=1}^{n} x_{i}\right)$.
387. Let $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ be n real numbers with the property ${ }_{i=1}^{n} a_{i}=0$. Prove that $n a_{1} a_{n} \sum_{i=1}^{n} a_{i}^{2} \leq 0$.
388. Let a, b, c be positive real numbers. Prove that $\frac{1}{a(1+b)}+\frac{1}{b(1+c)}+\frac{1}{c(1+a)} \geq \frac{3}{1+a b c}$.
389. Let x, y, z be positive real numbers such that $x^{2}+y^{2}+z^{2}=2$. Prove that $x+y+z \leq$ $2+x y z$. Find the conditions under which equality holds.
390. Let $0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ be such that $\sum_{i=1}^{n} x_{i}=1$, where $n \geq 2$ is an integer. If $x_{n} \leq \frac{2}{3}$, prove that there exists a j such that $1 \leq j \leq n$ and $\frac{1}{3} \leq \sum_{i=1}^{j} x_{i} \leq \frac{2}{3}$.
391. Let x, y, z be non-negative real numbers such that $x y+y z+z x+x y z=4$. Prove that $x+y+z \geq x y+y z+z x$.
392. Let x, y, z be non-negative real numbers such that $x+y+z=1$. Prove that $x^{y}+y^{z}+z^{x} \leq$ $\frac{4}{27}$.
393. Let x, y, z be real numbers and let p, q, r be real numbers in the interval $\left(0, \frac{1}{2}\right)$ such that $p+q+r=1$. Prove that $p q r(x+y+z)^{2} \geq x y r(1-2 r)+y z p(1-2 p)+z x q(1-2 q)$. When does equality hold?
394. Let $x_{1}, x_{2}, \ldots, x_{n}$ be n real numbers in the interval $[0,1]$. Prove that $\left(\sum_{i=1}^{n} x_{i}\right)-$ $\left(\sum_{i=1}^{n} x_{i} x_{i+1}\right) \leq\left[\frac{n}{2}\right]$, where $x_{n+1}=x_{1}$.
395. Suppose x, y, z are positive real numbers such that $x y z \geq 1$. Prove that $\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}+$ $\frac{y^{5}-y^{2}}{y^{5}+z^{2}+x^{2}}+\frac{z^{5}-z^{2}}{z^{5}+x^{2}+y^{2}} \geq 0$.
396. Consider two sequences of positive real numbers, $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$, such that $\sum_{i=1}^{n} a_{i} \geq \sum_{i=1}^{n} b_{i}$. Suppose there exists a $j, 1 \leq j \leq n$, such that $b_{i} \leq a_{i}$ for $1 \leq i \leq j$ and $b_{i} \geq a_{i}$ for $i>j$. Prove that $\prod_{i=1}^{n} a_{i} \geq \prod_{i=1}^{n} b_{i}$.
397. Let a, b, c be positive real numbers such that $a b c=1$. Prove that $\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a} \leq$ $\frac{1}{2+a}+\frac{1}{2+b}+\frac{1}{2+c}$.
398. Let $n \geq 4$ and let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers such that $a_{1}+a_{2}+\cdots+a_{n} \geq n, a_{1}^{2}+$ $a_{2}^{2}+\cdots+a_{n}^{2} \geq n^{2}$. Prove that $\max \left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \geq 2$.
399. Let $x_{1} \leq x_{2} \leq \cdots \leq x_{n+1}$ be $n+1$ positive integers. Prove that $\sum_{i=1}^{n+1} \frac{\sqrt{x_{i+1}-x_{i}}}{x_{i+1}}<\sum_{i=1}^{n^{2}} \frac{1}{j}$.
400. Let a, b, c be three positive real numebrs which satisfy $a b c=1$ and $a^{3}>36$. Prove that $\frac{2}{3} a^{2}<a^{2}+b^{2}+c^{2}-a b-b c-c a$.
401. Let $z_{1}, z_{2}, \ldots, z_{n}$ be n complex numbers and consider n positive real numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ which have the property that $\sum 1 / \lambda_{i}=1$. Prove that $\left|\sum_{i=1}^{n} z_{i}\right|^{2} \leq \sum_{i=1}^{n} \lambda_{1}\left|z_{i}\right|^{2}$.
402. Let a, b, c be three distinct real numbers. Prove that $2 \min \{a, b, c\}<\sum a-$
$\left(\sum a^{2}-\sum a b\right)^{1 / 2}<\sum a+\left(\sum a^{2}-\sum a b\right)^{1 / 2}<3 \max \{a, b, c\}$, where the sum is cyclic over a, b, c.
403. Show that for all complex numbers z with $\mathfrak{R}(z)>1$, prove that $\left|z^{n+1}-1\right|>\left|z^{n}\right| \mid z-$ $1 \mid, \forall n \geq 1$.
404. Suppose a, b, c are positive real numbers such that $x=a+b-c, y=b+c-a, z=$ $c+a-b$. Prove that $a b c(x y+y z+z x) \geq x y z(a b+b c+c a)$.
405. Let a, b, c be positive real numbers. Prove that $\sum \frac{a^{3}}{b^{2}-b c+c^{2}} \geq \frac{3 \sum a b}{\sum a}$, where all sums are cyclic.
406. Let $a_{1}, a_{2}, \ldots, a_{n}<1$ be non-negative real numbers satisfying $a=\sqrt{\frac{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}{n}} \geq \frac{1}{\sqrt{3}}$. Prove that $\frac{a_{1}}{1-a_{1}^{2}}+\frac{a_{2}}{1-a_{2}^{2}}+\cdots+\frac{a_{n}}{1-a_{n}^{2}} \geq \frac{n a}{1-a^{2}}$.
407. Suppose x, y, z are non-negative real numbers such that $x^{2}+y^{2}+z^{2}=1$. Prove that

1. $1 \leq \sum \frac{x}{1-y z} \leq \frac{3 \sqrt{3}}{2}$, and
2. $1 \leq \sum \frac{x}{1+y z} \leq \sqrt{2}$.

The sums are cyclic over x, y and z.
408. Let x, y, z be non-negative real numbers satisfying $x+y+z=1$. Prove that $x y^{2}+y z^{2}+$ $z x^{2} \geq x y+y z+z x-\frac{2}{9}$.
409. Let a, b, c, d be positive real numbers such that $a+b+c+d=2$. Prove that $\sum_{\text {cyclic }} \frac{a^{2}}{\left(a_{1}^{2}\right)^{2}} \leq$ $\frac{16}{25}$.
410. Prove that $\frac{a}{\sqrt{a^{2}+8 b c}}+\frac{b}{\sqrt{b^{2}+8 c a}}+\frac{c}{\sqrt{c^{2}+8 a b}} \geq 1$ for all positive real numbers a, b and c.
411. If x, y are real numbers such that $x^{3}+y^{4} \leq x^{2}+y^{3}$, prove that $x^{3}+y^{3} \leq 2$.
412. Let a, b, c be three positive real numbers. Prove that $\sum \frac{a b}{c(c+a)} \geq \sum \frac{a}{c+a}$, where the sum is cyclic over a, b and c.
413. Let x, y be two real numbers, where y is non-negative and $y(y+1) \leq(x+1)^{2}$. Prove that $y(y-1) \leq x^{2}$.
414. Let x, y, z be positive real numbers. Prove that $\left(\frac{x y+y z+z x}{3}\right)^{1 / 2} \leq$ $\left(\frac{(x+y)(y+z)(z+x)}{8}\right)^{1 / 3}$.
415. Let a, b, c be positive real numbers such that $a b c=1$. Show that $\sum \frac{a^{9}+b^{9}}{a^{6}+a^{3} b^{3}+b^{6}} \geq 2$, where the sum is cyclical.
416. Let $a_{1}, a_{2}, \ldots, a_{n}(n>2)$ be positive real numbers and let s be their sum. Let $0<\beta \leq 1$ be a real number. Prove that $\sum_{i=1}^{n}\left(\frac{s-a_{i}}{a_{i}}\right)^{\beta} \geq(n-1)^{2 \beta} \sum_{i=1}^{n}\left(\frac{a_{i}}{s-a_{i}}\right)^{\beta}$. When does equality hold?
417. For $n \geq 4$, let $a_{1}, a_{2}, \ldots, a_{n}$ be n positive real numbers such that ${ }_{i=1}^{n} a_{i}^{2}=1$. Show that $\frac{a_{1}}{a_{2}^{2}+1}+\frac{a_{2}}{a_{3}^{2}+1}+\cdots+\frac{a_{n}}{a_{1}^{2}+1} \geq \frac{4}{5}\left(a_{1} \sqrt{a_{1}}+a_{2} \sqrt{a_{2}}+\text { cdots }+a_{n} \sqrt{a_{n}}\right)^{2}$.
418. Does there exist an infinite sequence $\left\langle x_{n}\right\rangle$ of positive real numbers such that $x_{n+2}=$ $\sqrt{x_{n+1}}-\sqrt{x_{n}}, \forall n \geq 2$.
419. Let $a_{1}, a_{2}, \ldots, a_{n}$ be n positive real numbers and consider a permutation of $b_{1}, b_{2}, \ldots, b_{n}$ of it. Prove that $\sum_{i=1}^{n} \frac{a_{i}^{2}}{b_{i}} \geq \sum_{i=1}^{n} a_{i}$.
420. Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be two sequences of positive real numbers such that $\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} b_{i}=1$. Prove that $\sum_{i=1}^{n} \frac{a_{i}^{2}}{a_{i}+b_{i}} \geq \frac{1}{2}$.
421. Let x, y, z be positive real numbers. Prove that $\frac{y^{2}-x^{2}}{z+x}+\frac{z^{2}-y^{2}}{x+y}+\frac{x^{2}-z^{2}}{y+z} \geq 0$.
422. Find the greatest value of k such that for every triple (a, b, c) of positive real numbers, the inequality $\left(a^{2}-b c\right)^{2}>k\left(b^{2}-c a\right)\left(c^{2}-a b\right)$ holds.
423. Let a, b, c, d be positive real numbers. Prove that $\sum_{\text {cyclic }} \frac{a}{b+2 c+d} \geq 1$.
424. Let a, b, c be positive real numbers such that $(a+b)(b+c)(c+a)=1$. Prove that $a b+b c+c a \leq \frac{3}{4}$.
425. Let x, y, z be non-negative real numbers such that $x+y+z=1$. Prove that $x^{2}+y^{2}+$ $z^{2}+18 x y z \leq 1$.
426. Let a, b, c be three positive real numbers such that $a b+b c+c a=1$. Prove that $\left(\frac{1}{a}+6 b\right)^{1 / 3}+\left(\frac{1}{b}+6 c\right)^{1 / 3}+\left(\frac{1}{c}+6 a\right)^{1 / 3} \leq \frac{1}{a b c}$.
427. Let $a_{1}, a_{2}, \ldots, a_{n}$ be $n>1$ positive real numbers. For each $k, 1 \leq k \leq n$, let $A_{k}=$ $\left(a_{1}+a_{2}+\cdots+a_{k}\right) / k$. Let $g_{n}=\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}$ and $G_{n}=\left(A_{1} A_{2} \cdots A_{n}\right)^{1 / n}$. Prove that $n\left(\frac{G_{n}}{A_{n}}\right)^{1 / n}+\frac{g_{n}}{G_{n}} \leq n+1$. Find the cases of equality.
428. Let x, y, z be real numbers in the interval $[0,1]$. Prove that $3\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)-$ $2 x y z(x+y+z) \leq 3$.
429. Let x, y, z be non-negative real numbers such that $x+y+z=1$. Prove that $7(x y+$ $y z+z x) \leq 2+9 x y z$.
430. Let x, y, z be real numbers in the interval $[0,1]$. Prove that $\frac{x}{y z+1}+\frac{y}{z x+1}+\frac{z}{x y+1} \leq 2$.
431. Let a, b, c, d be positive real such that $a^{3}+b^{3}+3 a b=c+d=1$. Prove that $\left(a+\frac{1}{a}\right)^{3}+$ $\left(b+\frac{1}{b}\right)^{3}+\left(c+\frac{1}{c}\right)^{3}+\left(d+\frac{1}{d}\right)^{3} \geq 40$.
432. Let x, y, z be positive real numbers such that $x+y+z=x y z$. Prove that $\frac{1}{\sqrt{1+x^{2}}}+$ $\frac{1}{\sqrt{1+y^{2}}}+\frac{1}{\sqrt{1+z^{2}}} \leq \frac{3}{2}$.
433. Let x, y, z be non-negative real numbers. Prove that $x^{3}+y^{3}+z^{3} \geq x^{2} \sqrt{y z}+y^{2} \sqrt{z x}+$ $z^{2} \sqrt{x y}$.
434. For all positive real numbers show that $4(a b+b c+c a)-1 \geq a^{2}+b^{2}+c^{2} \geq 3\left(a^{3}+b^{3}+\right.$ c^{3}).
435. Let a, b, c be positive real numbers such that $a b c=1$. Prove that $\frac{a}{(a+1)(b+1)}+\frac{b}{(b+1)(c+1)}+$ $\frac{c}{(c+1)(a+1)} \geq \frac{3}{4}$.
436. Suppose a, b, c are positive real numbers such that $a^{2}+b^{2}+c^{2}=1$. Prove that $\frac{1}{a^{2}}+\frac{1}{b^{2}}+$ $\frac{1}{c^{2}} \geq 3+\frac{2\left(a^{3}+b^{3}+c^{3}\right)}{a b c}$.
437. Let x, y, z be positive real numbers such that $x y z=1$. Prove that $\frac{x^{3}}{(1+y)(1+z)}+\frac{y^{3}}{(1+z)(1+z)}+$ $\frac{z^{3}}{(1+x)(1+y)} \geq \frac{3}{4}$.
438. Let a, b, c, d be non-negative real numbers such that $a b+b c+c d+d a=1$. Show that $\frac{a^{3}}{b+c+d}+\frac{b^{3}}{c+d+a}+\frac{c^{3}}{d+a+b}+\frac{d^{3}}{a+b+c} \geq \frac{1}{3}$.
439. Find all real k for which the inequality $x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \geq k\left(x_{1} x_{2}+x_{2} x_{3}\right)$ holds for all real numbers x_{1}, x_{2}, x_{3}.
440. Let a, b, c be positive real numbers such that $a b c=1$. Prove that $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.
441. Let a, b, c be non-negative reals such that $a+b \leq 1+c, b+c \leq 1+a, c+a \leq 1+b$. Prove that $a^{2}+b^{2}+c^{2} \leq 2 a b c+1$.
442. If a, b, c are non-negative real numbers such that $a+b+c=1$, then show that $\frac{a}{1+b c}+$ $\frac{b}{1+c a}+\frac{c}{1+a b} \geq \frac{9}{10}$.
443. Let a, b, c be three positive real numbers such that $a+b+c=1$. Prove that among the three numbers $a-a b, b-b c, c-c a$ there is one which is at most $1 / 4$ and there is one which is at least $2 / 9$.
444. Let x and y be positive real numbers such that $y^{3}+y \leq x-x^{3}$. Prove that (a) $y<x<1$, and (b) $x^{2}+y^{2}<1$.
445. Let a, b, c be three positive real numbers such that $a+b+c=1$. Let $k=\min \left\{a^{3}+\right.$ $\left.a^{2} b c, b^{3}+a b^{2} c, c^{3}+a b c^{2}\right\}$. Prove that the roots of the equation $x^{2}+x+4 k=0$ are real.
446. If a, b, c are three positive real numbers, prove that $\frac{a^{2}+1}{b+c}+\frac{b^{2}+1}{c+a}+\frac{c^{2}+1}{a+b} \geq 3$.
447. If d is tghe largest among the positive numbers a, b, c, d, prove that $a(d-b)+b(d-c)+$ $c(d-a) \leq d^{2}$.
448. If x, y, z are positive real numbers, prove that $(x+y+z)^{2}(y z+z x+x y)^{2} \leq 3\left(y^{2}+\right.$ $\left.y z+z^{2}\right)\left(z^{2}+z x+x^{2}\right)\left(x^{2}+x y+y^{2}\right)$.
449. Suppose a, b, c are positive real bumbers. Prove that $a^{a} b^{b} c^{c} \geq(a b c)^{(a+b+c) / 3}$.
450. Find all real p and q for which the equation $x^{4}-\frac{8 p^{2}}{q} x^{3}+4 q x^{3}-3 p x+p^{2}=0$ has four positive roots.
451. Let a_{1}, a_{2}, a_{3} be real numbers, each greater than 1 . Let $S=a_{1}+a_{2}+a_{3}$ and suppose $S<\frac{a_{i}^{2}}{a_{i}-1}$ for $i=1,2,3$. Prove that $\frac{1}{a_{1}+a_{2}}+\frac{1}{a_{2}+a_{3}}+\frac{1}{a_{3}+a_{1}}>1$.
452. Let a, b, c be positive real numbers such that $a b+b c+c a=\frac{1}{3}$. Prove that $\frac{a}{a^{2}-b c+1}+$ $\frac{b}{b^{2}-c a+1}+\frac{c}{c^{2}-a b+1} \geq \frac{1}{a+b+c}$.
453. Suppose a, b, c are positive real numbers. Prove that $\frac{a^{2} b(b-c)}{a+b}+\frac{b^{2} c(c-a)}{b+c}+\frac{c^{2} a(a-b)}{c+a} \geq 0$.
454. Let $a_{1}, a_{2}, \ldots, a_{n}$ be $n>2$ positive real numbers such that $a_{1}+a_{2}+\cdots+a_{n}=1$. Prove that $\sum_{i=1}^{n} \frac{a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n}}{a_{i}+n-1} \leq \frac{1}{(n-1)^{2}}$.
455. Determine the largest value of k such that the inequality $\left(k+\frac{a}{b}\right)\left(k+\frac{b}{c}\right)\left(k+\frac{c}{b a}\right) \geq$ $\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)$ holds for positive real numbers a, b, c.
456. Let $x_{1}, x_{2}, \ldots, x_{n}$ be $n \geq 3$ positive real numbers. Prove that $\frac{x+1 x_{3}}{x_{1} x_{3}+x_{2} x_{4}}+\frac{x_{2} x_{4}}{x_{2} x_{4}+x_{3} x_{5}}+\cdots+$ $\frac{x_{n-1} x_{1}}{x_{n-1} x_{1}+x_{n} x_{2}}+\frac{x_{n} x_{2}}{x_{n} x_{2}+x_{1} x_{3}} \leq n-1$.
457. Let $a_{1}, a_{2}, \ldots, a_{2017}$ be positive real numbers. Prove that $\sum_{i=1}^{2017} \frac{a_{i}}{a_{i+1}+a_{i+2}+\cdots+a_{i+1008}} \geq \frac{2017}{1008}$, where indices are taken modulo 2017.
458. Let a, b, c be three positive real numbers such that $a b+b c+c a=1$. Prove that $\sqrt{a+\frac{1}{a}}+\sqrt{b+\frac{1}{b}}+\sqrt{c+\frac{1}{c}} \geq 2(\sqrt{a}+\sqrt{b}+\sqrt{c})$.
459. Let a, b, c be positive real numbers such that $a+b+c=3$. Prove that $\frac{a^{3}+2}{b+2}+\frac{b^{3}+2}{c+2}+\frac{c^{3}+2}{a+3} \geq$ 3.
460. Let a, b, c, d be real numbers such that $a^{2}+b^{2}+c^{2}+d^{2}=4$. Prove that $(2+a)(2+b) \geq$ $c d$.
461. Find all real k such that $\frac{a+b}{2} \geq k \sqrt{a b}+(1-k) \sqrt{\frac{a^{2}+b^{2}}{2}}$ holds for all positive real numbers a, b.
462. Let a, b, c, d be real numbers having absolute value greater than 1 such that $a b c+a b d+$ $a c d+b c d+a+b+c+d=0$. Probvve that $\frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1}+\frac{1}{d-1}>0$.
463. For all positive, real x, y show that $\frac{1}{x+y-1}-\frac{1}{(x+1)(y+1)}<\frac{1}{11}$.
464. Let a, b, c be three positive real numbers such that $a b c=1$. Prove that $\frac{1}{b(a+b)}+\frac{1}{c(b+c)}+$ $\frac{1}{a(c+a)} \geq \frac{3}{2}$.
465. Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that $\frac{a^{2}}{(b+c)^{3}}+$ $\frac{b^{2}}{(c+a)^{3}+\frac{c^{2}}{(a+b)^{3}}} \geq \frac{9}{8}$.
466. Suppose a, b, c are positive real numbers such that $a b+b c+c a \geq a+b+c$. Prove that $(a+b+c)(a b+b c+c a)+3 a b c \geq 4(a b+b c+c a)$.
467. Let a, b, c, d be four real nubers such that $a+b+c+d=0$. Prove that $(a b+a c+a d+$ $b c+b d+c d)^{2}+12 \geq 6(a b c+a b d+a c d+b c d)$.
468. Consider the expression $P=\frac{x^{3} y^{4} z^{3}}{\left(x^{4}+y^{4}\right)\left(x y+z^{2}\right)^{3}}+\frac{y^{3} z^{4} x^{3}}{\left(y^{4}+z^{4}\right)\left(y z+x^{2}\right)^{3}}+\frac{z^{3} x^{4} y^{3}}{\left(z^{4}+x^{4}\right)\left(z x+y^{2}\right)^{3}}$. Find the maximum value of P when x, y, z vary over the set of all positive real numbers.
469. Let $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers such that $x_{1} x_{2} \ldots x_{n}=1$. Let $S=x_{1}^{3}+x_{2}^{3}+$ $\cdots+x_{n}^{3}$. Prove that $\frac{x_{1}}{S-x_{1}^{3}+x_{1}^{2}}+\frac{x_{2}}{S-x_{2}^{3}+x_{2}^{2}}+\cdots+\frac{x_{n}}{S-x_{n}^{3}+x_{n}^{2}} \leq 1$.
470. Let $a_{1}, a_{2}, \ldots, a_{n}$ be $n>1$ positive real numbers whose sum is 1 . Define $b_{i}=\frac{a_{i}^{2}}{\sum_{j=1}^{n} a_{j}^{2}}, 1 \leq$ $i<2$. Prove that $\sum_{i=1}^{n} \frac{a_{i}}{1-a_{i}} \leq \sum_{i=1}^{n} \frac{b_{i}}{1-b_{i}}$.
471. Suppose a, b, c, d are posotive real numbers. Prove that $\sum_{\text {cyclic }} \frac{a^{4}}{a^{3}+a^{2} b+a b^{2}+b^{3}} \geq \frac{a+b+c+d}{4}$.
472. Let a, b, c be non-negative real numberssatisfying $a^{2}+b^{2}+c^{2}=1$. Prove that $\sqrt{a+b}+$ $\sqrt{b+c}+\sqrt{c+a} \geq 5 a b c+2$.
473. Let x, y, z be positive real numbers such that $x^{2}+y^{2}+z^{2} \leq x+y+z$. Prove that $\frac{x^{2}+3}{x^{3}+1}+\frac{y^{2}+3}{y^{3}+1}+\frac{z^{2}+3}{z^{3}+1} \geq 6$.
474. For any three positive real numbers a, b, c prove that $\frac{a^{2}}{a+b}+\frac{b^{2}}{b+c} \geq \frac{3 a+2 b-c}{4}$.
475. Suppose a, b, c are non-negative real numbers such that $a^{3}+b^{3}+c^{3}+a b c=4$. Prove that $a^{3} b+b^{3} c+c^{3} a \leq 3$.
476. Let a, b, c be positive real numbers such that $a b c=1$. Prove that $\left(a+\frac{1}{b}\right)^{2}+\left(b+\frac{1}{c}\right)^{2}+$ $\left(c+\frac{1}{a}\right)^{2} \geq 3(a+b+c+1)$.
477. Let a, b, c be positive reall numbers with $a b c=1$. Prove that $\frac{a}{c(a+1)}+\frac{b}{a(b+1)}+\frac{c}{b(c+1)} \geq \frac{3}{2}$.
478. Let a, b, c be positive real numbers such that $a b c=1$. Prove that $\frac{1}{1+a^{2014}}+\frac{1}{1+b^{2014}}+$ $\frac{1}{1+c^{2014}}>1$.
479. For positive real numbers a, b, c, prove the inequality $\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\right) \geq \frac{9}{1+a b c}$.
480. Let x, y, z be positive real numbers such that $x+y+z=3$. Prove that $\sqrt{x}+\sqrt{y}+\sqrt{z} \geq$ $x y+y z+z x$.
481. Let a, b, c be positive real numbers. Prove that $\frac{9 a b c}{2(a+b+c)} \leq \frac{a b^{2}}{a+b}+\frac{b c^{2}}{b+c}+\frac{c a^{2}}{c+a} \leq \frac{a^{2}+b^{2}+c^{2}}{2}$.
482. For positive real numbers a, b, c, prove that $\frac{a b c}{(1+a)(a+b)(b+c)(c+16)} \leq \frac{1}{81}$.
483. Let a, b, c, d be positive real numbers such that $a+b+c+d=4$. Prove that $\frac{1}{a^{2}+1}+$ $\frac{1}{b^{2}+1}+\frac{1}{c^{2}+1}+\frac{1}{d^{2}+1} \geq 2$.
484. Let a, b, c be positive real numbers. Prove that $\frac{1+a b}{c}+\frac{1+b c}{a}+\frac{1+c a}{b} \geq \sqrt{a^{2}+2}+\sqrt{b^{2}+2}+$ $\sqrt{c^{2}+2}$.
485. Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that $\frac{a^{2}}{b^{3}+c^{4}+1}+\frac{b^{2}}{c^{3}+a^{4}+1}+$ $\frac{c^{2}}{a^{3}+b^{4}+1}>\frac{1}{5}$.
486. Janous Inequality: Let a, b, c and x, y, z be two sets of positive real numbers. Prove that $\frac{x(b+c)}{y+z}+\frac{y(c+a)}{z+x}+\frac{z(a+b)}{x+y} \geq \sqrt{3(a b+b c+c a)}$.
487. Let x, y, z be positive real numbers such that $x y+y z+z x=1$. Prove that $\frac{x}{x^{2}+1}+\frac{y}{y^{2}+1}+$ $\frac{z}{z^{2}+1} \leq \frac{3 \sqrt{3}}{4}$.
488. Let x, y, z be positive real numbers such that $x+y+z=1$. Prove that $\frac{1}{1-x y}+\frac{1}{1-y z}+$ $\frac{1}{1-z x} \leq \frac{27}{8}$.
489. Let x, y, z be positive real numbers such that $x+y+z=1$. Show that $\frac{z-x y}{x^{2}+x y+y^{2}}+$ $\frac{x-y z}{y^{2}+y z+z^{2}}+\frac{y-z x}{z^{2}+z x+x^{2}} \geq 2$.
490. Let a, b, c be positive real numbers. Define $u=a+b+c, \frac{u^{2}-b^{2}}{3}=a b+b c+c a, w=a b c$, where $v \geq 0$. Then $\frac{(u+v)^{2}(u-2 v)}{27} \leq w \leq \frac{(u-v)^{2}(u+2 v)}{27}$.
491. Let a, b, c be positive real numbers. Prove that $a^{4}+b^{4}+c^{4} \geq a b c(a+b+c)$.
492. Let a, b, c be real numbers such that $a^{2}+b^{2}+c^{2}=9$. Prove that $2(a+b+c)-a b c \leq 10$.
493. Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that $a^{2}+b^{2}+c^{2}+$ $3 a b c \geq \frac{9}{4}$.
494. Determine the maximum value of k such that $a+b+c \geq k$ for all positive reals a, b, c with $a \sqrt{b c}+b \sqrt{c a}+c \sqrt{a b} \geq 1$.
495. If a, b, c are real numbers such that $a+b+c=1$, prove that $10\left(a^{3}+b^{3}+c^{3}\right)-$ $9\left(a^{5}+b^{5}+c^{5}\right) \geq 1$.
496. Let a, b, c be positive real numbers. Prove that $24 a b c \leq\left|a^{3}+b^{3}+c^{3}-(a+b+c)^{3}\right| \leq$ $\frac{8}{9}(a+b+c)^{3}$. Also show that equality holds in both the inequalities if and only if $a=b=c$.
497. Find all $k>0$ such that the inequality $\sqrt{a^{2}+k b^{2}}+\sqrt{b^{2}+k a^{2}} \geq a+b+(k-1) \sqrt{a b}$ holds positive real numbers a and b.
498. Let a, b, c be positive real numbers such that $a b c=1$. Prove that $a+b+c \geq$ $\sqrt{\frac{1}{3}(a+2)(b+2)(c+2)}$.
499. Let $x_{1}, x_{2}, \ldots, x_{n}$ be $n \geq 3$ positive real numbers such that $x_{1} x_{2} \cdots x_{n}=1$. Prove that $\sum_{i=1}^{n} \frac{x_{i}^{8}}{x_{i+1}\left(x_{i}^{4}+x_{i+1}^{4}\right)} \geq \frac{n}{2}$, where $x_{1}=x_{n+1}$.
500. Let a, b, c be positive real numbers such that $\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a}=1$. Prove that $\frac{a^{2}+b^{2}+c^{2}+a b+b c+c a-3}{5} \geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}$.
501. For positive, real x, y, z show that $\frac{x(2 x-y)}{y(2 z+x)}+\frac{y(2 y-z)}{z(2 x+y)}+\frac{z(2 z-x)}{x(2 y+z)} \geq 1$.
502. Suppose $\frac{z(z x+y z+y)}{x y^{2}+z^{2}+1} \leq k$, for alll real numbers $x, y, z \in(-2,2)$ with $x^{2}+y^{2}+z^{2}+x y z=4$. Find the smallest value of k.
503. Suppose a, b, c are positive real numbers such that $a^{3}+b^{3}+c^{3}=a^{4}+b^{4}+c^{4}$. Prove that $\frac{a}{a^{2}+b^{3}+c^{3}}+\frac{b}{b^{2}+c^{3}+a^{3}}+\frac{c}{c^{2}+c^{3}+a^{3}} \geq 1$.
504. Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that $\frac{a^{4}+5 g^{4}}{a(a+2 b)}+\frac{b^{4}+5 c^{4}}{b(b+2 c)}+$ $\frac{c^{4}+5 a^{4}}{c(c+2 a)} \geq 1-(a b+b c+c a)$.
505. Let x, y, z be positive real numbers. Prove that $(x y+y z+z x)\left(\frac{1}{(x+y)^{2}}+\frac{1}{(y+z)^{2}}+\frac{1}{(z+x)^{2}}\right) \geq$ $\frac{9}{4}$.
506. Suppose a, b, c are positive real numbers such that $a b c=1$. Prove that $\sum_{\text {cyclic }} \frac{a^{2}+b c}{a^{2}(b+c)} \geq$ $a b+b c+c a$.
507. Let a, b, c be non-negative real numbers. Prove that $4\left(a^{3}+b^{3}+c^{3}\right)+15 a b c \geq(a+b+c)^{3}$.
508. Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that $\frac{1}{a^{4}+b+c}+\frac{1}{b^{4}+c+a}+$ $\frac{1}{c^{4}+a+b} \leq \frac{3}{a+b+c}$.
509. Let a, b, c be positive reals. Prove that $a^{4}(b+c)+b^{4}(c+a)+c^{4}(a+b) \leq \frac{1}{12}(a+b+c)^{5}$.
510. Let a, b, c be positive reals such that $a b+b c+c a=1$. Prove that $\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}-\frac{1}{a+b+c} \geq$ 2.
511. Let a, b, c be positive reals such that $a b+b c+c a=1$. Prove that $\frac{1+a^{2} b^{2}}{(a+b)^{2}}+\frac{1+b^{2} c^{2}}{(b+c)^{2}}+\frac{1+c^{2} a^{2}}{(c+a)^{2}} \geq$ $\frac{5}{2}$.
512. Let a, b, c be positive real numbers. Prove that $3+a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq$ $3\left[\frac{(a+1)(b+1)(c+1)}{1+a b c}\right]$.
513. Let a, b, c be distinct positive real numbers such that $a b c=1$. Prove that $\sum_{\text {cyclic }} \frac{a^{6}}{(a-b)(a-c)}>15$.
514. Let a, b, c be real numbers such that $a^{2}+b^{2}+c^{2}=1$. Prove that $a+b+c \leq 2 a b c+\sqrt{2}$.
515. Let a, b, c be positive real numbers. Prove that $\frac{(b+c-a)^{2}}{a^{2}+(b+c)^{2}}+\frac{(c+a-b)^{2}}{b^{2}+(c+a)^{2}}+\frac{(a+b-c)^{2}}{c^{2}+(a+b)^{2}} \geq \frac{3}{5}$.
516. Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that $\sqrt{\frac{1}{a}-1} \sqrt{\frac{1}{b}-1}+$ $\sqrt{\frac{1}{b}-1} \sqrt{\frac{1}{c}-1}+\sqrt{\frac{1}{c}-1} \sqrt{\frac{1}{a}-1} \geq 6$.

Answers

Answers of Chapter 1

Logarithm

1. $\log _{\sqrt{8}} x=\frac{10}{3} \Rightarrow \log _{2^{2}} x=\frac{10}{3} \Rightarrow \frac{2}{3} \log _{2} x=\frac{10}{3}$
$\Rightarrow \log _{2} x=5 \Rightarrow x=2^{5}=32$.
2. L.H.S. $=\log _{b} a \cdot \log _{c} b \log _{a} c=\frac{\log a}{\log b} \cdot \frac{\log b}{\log c} \cdot \frac{\log c}{\log a}=1=$ R.H.S.
3. L.H.S. $=\log _{3} \log _{2} \log _{\sqrt{5}}(\sqrt{5})^{8}=\log _{3} \log _{2} 8=\log _{3} 3=1=$ R.H.S.
4. Given $a^{2}+b^{2}=23 a b \Rightarrow(a+b)^{2}=25 a b \Rightarrow \frac{a+b}{5}=\sqrt{a b}$

Taking log of both sides, we get
$\log \frac{a+b}{5}=\frac{1}{2}(\log a+\log b)$.
5. L.H.S. $=7 \log \frac{16}{15}+5 \log \frac{25}{24}+3 \log \frac{81}{80}=\log 2$
$=7\left[\log 2^{4}-\log 3.5\right]+5\left[\log 5^{2}-\log 2^{3} .3\right]+3\left[\log 3^{4}-\log 2^{4} .5\right]$
$=7[4 \log 2-\log 3-\log 5]+5[2 \log 5-3 \log 2-\log 3]+3[4 \log 3-4 \log 2-\log 5]$
$=\log 2=$ R.H.S.
6. \quad L.H.S. $=\log \tan 1^{\circ}+\log \tan 2^{\circ}+\ldots+\log \tan 89^{\circ}$
$=\left(\log \tan 1^{\circ}+\log \tan 89^{\circ}\right)+\left(\log \tan 2^{\circ}+\log \tan 88^{\circ}\right)+\cdots+\log \tan 45^{\circ}$
$=\left(\log \tan 1^{\circ} \cot 1^{\circ}\right)+\left(\log \tan 2^{\circ} \cot 2^{\circ}\right)+\cdots+\log \tan 45^{\circ}\left[\because \tan \left(90^{\circ}-\theta\right)=\cot \theta\right]$
$=\log 1+\log 1+\cdots+\log 1=0[\because \tan \theta \cot \theta=1]$
7. Given $\log _{9} \tan \frac{\pi}{6}=\log _{9} \frac{1}{\sqrt{3}}=-\log _{9} \sqrt{3}=-\log _{9} 9^{1 / 4}=-\frac{1}{4}$.
8. Given $\frac{\log _{a^{2}} b}{\log _{\sqrt{a}} b^{2}}=\frac{\frac{1}{2} \log _{a} b}{2 \cdot 2 \log _{a} b}=\frac{1}{8}$.
9. Given $\log _{\sqrt{5}} .008=2 \log _{6} \frac{8}{1000}=2\left[\log _{5} 8-\log _{5} 1000\right]=2\left[\log _{5} 8-\log 8.125\right]$
$=2\left[\log _{5} 8-\log _{6} 8-\log _{5} 125\right]=-2 . \log _{5} 5^{3}=-6$.
10. Given $\log _{2 \sqrt{3}} 144=\log _{2 \sqrt{3}}(2 \sqrt{3})^{4}=4$.
11. L.H.S. $=\log _{3} \log _{2} \log _{\sqrt{3}} 81=\log _{3} \log _{2} \log _{\sqrt{3}}(\sqrt{3})^{8}=\log _{3} \log _{2} 8=\log _{3} 3=1=$ R.H.S.
12. L.H.S. $=\log _{a} x \log _{b} y=\frac{\log x}{\log a} \cdot \frac{\log y}{\log b}=\frac{\log x}{\log b} \cdot \frac{\log y}{\log a}$
$=\log _{b} x \log _{a} y=$ R.H.S.
13. L.H.S. $=\log _{2} \log _{2} \log _{2} 16=\log _{2} \log _{2} \log _{2} 2^{4}=\log _{2} \log _{2} 4=\log _{2} 2=1=$ R.H.S.
14. R.H.S. $=\log _{b} x \log _{c} b \ldots \log _{n} m \log _{a} n=\frac{\log x}{\log b} \cdot \frac{\log b}{\log c} \cdots \frac{\log m}{\log n} \cdot \frac{\log n}{\log a}$
$=\frac{\log x}{\log a}=\log _{a} x=$ L.H.S.
15. Let $10^{x} \log _{10} a=z$.

Taking log of both sides, we get
$x \log _{10} a=\log z \Rightarrow \log _{10} a^{x}=\log z \Rightarrow z=a^{x}$.
16. Given $a^{2}+b^{2}=7 a b \Rightarrow a^{2}+b^{2}+2 a b=(a+b)^{2}=9 a b$
$\Rightarrow\left(\frac{a+b}{3}\right)^{2}=a b \Rightarrow \frac{a+b}{3}=\sqrt{a b}=(a b)^{1 / 2}$
Taking log of both sides,
$\log \frac{a+b}{3}=\frac{1}{2}(\log a+\log b)$.
17. L.H.S. $=\frac{\log _{a} \log _{b} a}{\log _{b} \log _{a} b}$

Let $\log _{b} a=z$, then L.H.S. $=\frac{\log _{a} z}{\log _{b} \frac{1}{z}}=-\frac{\log _{a} z}{\log _{b} z}=-\frac{\log z}{\log a} \cdot \frac{\log z}{\log b}$ $=-\frac{\log b}{\log a}=-\log _{a} b=$ R.H.S.
18. L.H.S. $=\log (1+2+3)=\log 6=\log (1 \cdot 2 \cdot 3)=\log 1+\log 2+\log 3=$ R.H.S.
19. L.H.S. $=2 \log (1+2+4+7+14)=2 \log 28=\log 784$
$=\log (1 \cdot 2 \cdot 4 \cdot 7 \cdot 14)=\log 1+\log 2+\log 4+\log 7+\log 14=$ R.H.S.
20. L.H.S. $=\log 2+16 \log \frac{16}{15}+12 \log \frac{25}{24}+7 \log \frac{81}{80}$
$=\log 2+16\left[\log 2^{4}-\log 3-\log 5\right]+12\left[\log 5^{2}-\log 2^{3}-\log 3\right]+7\left[\log 3^{4}-\log 2^{4}-\log 5\right]$
$=\log 2+16[4 \log 2-\log 3-\log 5]+12[2 \log 5-3 \log 2-\log 3]+7[4 \log 3-4 \log 2-\log 5]$
$=\log 2[1+64-36-28]+\log 3[28-16-112]+\log 5[24-7-15]$
$=\log 2+\log 5=\log 10=1[\because$ default base of \log is 10 .]
21. Given $\frac{\log _{9} 11}{\log _{5} 13} \div \frac{\log _{3} 11}{\log _{\sqrt{5}} 13}=\frac{\log _{3} 11}{\log _{5} 13} \cdot \frac{\log _{\frac{1}{2}}{ }^{11}}{\log _{3} 11}$
$=\frac{\frac{1}{2} \log _{3} 11}{\log _{5} 13} \cdot \frac{2 \log _{5} 13}{\log _{3} 11}=1$.
22. Given, $3^{\sqrt{\log _{3} 2}}-2^{\sqrt{\log _{2} 3}}$

Taking log with base 10,
$\sqrt{\log _{3} 2} \log 3-\sqrt{\log _{2} 3} \log 2=\sqrt{\frac{\log 2}{\log 2}(\log 3)^{2}}-\sqrt{\frac{\log 3}{\log 2}(\log 2)^{2}}$
$=\sqrt{\log 2 \log 3}-\sqrt{\log 3 \log 2}=0$.
23. Given $\log _{10} 343=2.5353 \Rightarrow \log _{10} 7^{3}=2.5353 \Rightarrow \log _{10} 7=o .8451$

For $7^{n}>10^{5} \Rightarrow n \log _{10} 7>5 \Rightarrow n>\frac{5}{0.8451}$
Thus, least such integer is 6 .
24. Since a, b, c are in G.P., we can write $b^{2}=a c$

Taking log of both sides, we get
$2 \log b=\log a+\log c \Rightarrow \log a, \log b, \log c$ are in A.P.
i.e. $\frac{1}{\log a}, \frac{1}{\log b}, \frac{1}{\log c}$ are in H.P.

Multiplying each term with $\log x$,
$\frac{\log x}{\log a}, \frac{\log x}{\log b}, \frac{\log x}{\log c}$ are in H.P.
$\log _{a} x, \log _{b} x, \log _{c} x$ are in H.P.
25. R.H.S. $=3 \log 2+\log \sin x+\log \cos x+\log \cos 2 x+\log \cos 4 x$
$=2 \log 2+(\log 2 \cdot \sin x \cos x)+\log \cos 2 x+\log \cos 4 x$
$=2 \log 2+\log \sin 2 x+\log \cos 2 x+\log \cos 4 x=\log 2+(\log 2 \cdot \sin 2 x \cos 2 x)+\log \cos 4 x$
$=\log 2+\log \sin 4 x+\cos 4 x=\log 2 \cdot \sin 4 x \cos 4 x$
$=\log \sin 8 x=$ L.H.S.
26. We have to prove that $x y z+1=2 y z \Rightarrow x+\frac{1}{y z}=2$
L.H.S. $=x+\frac{1}{y z}$, substituting the values of x, y and z,
$\log _{2 a} a+\frac{1}{\log _{3 a} 2 a \log _{4 a} 3 a}=\frac{\log a}{\log 2 a}+\frac{\log 3 a \cdot \log 4 a}{\log 2 a \cdot \log 3 a}$
$=\frac{\log a+\log 4 a}{\log 2 a}=\frac{\log (2 a)^{2}}{\log 2 a}=2=$ R.H.S.
27. We have to prove that $\log _{c+b} a+\log _{c-b} a=2 \log _{c+a} a \log _{c-b} a$

Dividing both sides by $\log _{c+b} a \log _{c-b} a$,
$\frac{1}{\log _{c-b} a}+\frac{1}{\log _{c+b} \log a}=2$
$\Rightarrow \log _{a}(c-b)+\log _{a}(c+b)=2$
$\Rightarrow \log _{a}\left(c^{2}-b^{2}\right)=2 \Rightarrow c^{2}=a^{2}+b^{2}$
which is true because c is hypotenuse and a and b are sides of a right-angle triangle.
28. Let $\frac{\log x}{y-z}=\frac{\log y}{z-x}=\frac{\log z}{x-y}=k$
$\log x=k(y-z), \log y=k(z-x), \log z=k(x-y)$
$\Rightarrow x \log x+y \log y+z \log z=k(x y-z x+y z-x y+z x-y z)=0$
$\Rightarrow \log x^{x}+\log y^{y}+\log z^{z}=\log x^{x} y^{y} z^{z}=0$
$\Rightarrow x^{x} y^{y} z^{z}=1$.
29. Given $\frac{y z \log (y z)}{y+z}=\frac{z x \log (z x)}{z+x}=\frac{x y \log (x y)}{x+y}$

Dividing by $x y z, \frac{\log (y z)}{x(y+z)}=\frac{\log (z x)}{y(z+x)}=\frac{\log (x y)}{z(x+y)}=k$ (let)
$\log y+\log z=k(x y+y z), \log z+\log x=k(y z+x y), \log x+\log y=k(y z+z x)$
$\Rightarrow x \log x=k y z \Rightarrow x \log x=k x y z=y \log y=z \log z$
$\Rightarrow x^{x}=y^{y}=z^{z}$.
30. We have to prove that $(y z)^{\log y-\log z}(z x)^{\log z-\log x}(x y)^{\log x-\log y}=1$

Taking \log of both sides,
$\Rightarrow(\log y-\log z)(\log y+\log z)+(\log z-\log x)(\log z+\log x)+(\log x-\log y)(\log x+$ $\log y)=0$
$\Rightarrow(\log y)^{2}-(\log z)^{2}+(\log z)^{2}-(\log x)^{2}+(\log x)^{2}-(\log y)^{2}=0$
$\Rightarrow 0=0$.
31. L.H.S $=\log _{N} 2+\log _{n} 3+\cdots+\log _{n} 1988$
$=\log _{N}\left(2.3 .4 \ldots\right.$ 1988) $=\log _{N} 1988!=\frac{1}{\log _{1988!} N}=$ R.H.S.
32. L.H.S. $=\log (1+x)+\log \left(1+x^{2}\right)+\log \left(1+x^{4}\right) \ldots$ to ∞
$=\log \left(1+x+x^{2}+\ldots\right.$ to $\left.\infty\right)$
$=\log \frac{1}{1-x}[\because 0<x<1]$ (from the formula for the sum of an infinite G.P.)
$=-\log (1-x)=$ R.H.S.
33. Let $S_{n}=\frac{1}{\log _{2} a}+\frac{1}{\log _{4} a}+\cdots$ up to n terms
$S_{n}=\log _{a} 2+\log _{a} 4+\log _{a} 8+\cdots$ up to n terms
$S_{n}=(1+2+3+\cdots+n) \log _{a} 2=\frac{n(n+1)}{2} \log _{a} 2$.
34. L.H.S. $=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}$
$=\frac{1}{\log _{4} 10+\log _{4} 4}+\frac{1}{\log _{2} 20+\log _{2} 20}+\frac{1}{\log _{5} 8+\log _{5} 5}$
$=\frac{1}{\log _{4} 40}+\frac{1}{\log _{2} 40}+\frac{1}{\log _{5} 40}$
$=\log _{40} 4+\log _{40} 2+\log _{40} 5=\log _{40}(4 \cdot 2 \cdot 5)=\log _{40} 40=1=$ R.H.S.
35. L.H.S. $=\frac{1}{\log _{a} b c+1}+\frac{1}{\log _{b} c a+1}+\frac{1}{\log _{c} a b+1}$
$=\frac{1}{\log _{a} b c+\log _{a} a}+\frac{1}{\log _{b} c a+\log _{b} b}+\frac{1}{\log _{c} a b+\log _{c} c}$
$=\frac{1}{\log _{a} a b c}+\frac{1}{\log _{b} a b c}+\frac{1}{\log _{c} a b c}$
$=\log _{a b c} a+\log _{a b c} b+\log _{a b c} c=\log _{a b c} a b c=1=$ R.H.S.
36. Given, $\frac{1}{1+\log _{b} a+\log _{b} c}+\frac{1}{1+\log _{c} a+\log _{c} b}+\frac{1}{1+\log _{a} b+\log _{a} c}=1$
L.H.S. $=\frac{1}{\log _{b} a+\log _{b} a+\log _{b} c}+\frac{1}{\log _{c} c+\log _{c} a+\log _{c} b}+\frac{1}{\log _{a} a+\log _{a} b+\log _{a} c}$
$=\frac{1}{\log _{b} a b c}+\frac{1}{\log _{c} a b c}+\frac{1}{\log _{a} a b c}$
Like previous problem the above expression will evaluate to 1 .
37. We have to prove that $x^{\log y-\log z} y^{\log z-\log x} z^{\log x-\log y}=1$

Taking log of both sides,
$(\log y-\log z) \log x+(\log z-\log x) \log y+(\log x-\log y) \log z=0$
$\Rightarrow \log y \log z-\log z \log x+\log z \log y-\log x \log y+\log x \log z-\log y \log z=0$
$\Rightarrow 0=0$.
38. Let $\frac{\log a}{y-z}=\frac{\log b}{z-x}=\frac{\log c}{x-y}=k$
$\Rightarrow x \log a=k(x y-z x), y \log b=k(y z-x y), z \log c=k(z x-y z)$
Adding all,
$x \log a+y \log b+z \log c=k(x y-z x+y z-x y+z x-y z)=0$
$\log a^{x} b^{y} x^{z}=0 \Rightarrow a^{x} b^{y} c^{z}=1$
39. Let $\frac{x(y+z-x)}{\log x}=\frac{y(z+x-y)}{\log y}=\frac{z(x+y-z)}{\log z}=\frac{1}{k}$
$\Rightarrow \log x=k x(y+z-x), \log y=k y(z+x-y), \log z=k z(x+y-z)$
Let $y^{z} z^{y}=z^{x} z^{z}=x^{y} y^{x}$
Taking log, we have
$z \log y+y \log z=x \log z+z \log x=y \log x+x \log y$
$\Rightarrow z k y(z+x-y)+y k z(x+y-z)=x k z(x+y-z)+z k x(y+z-x)=y k x(y+z-x)+$ $x k y(x+z-y)$
$\Rightarrow y z^{2}+x y z-y^{2} z+x y z+y^{2}-z^{2} y=x^{2} z+x y z-x z^{2}+x y z+x z^{2}-x^{2} z=x y^{2}+x y z-$ $x^{2} y+x^{2} y+x y z-x y^{2}$
$\Rightarrow 2 x y z=2 x y z=2 x y z$.
40. Let $\frac{\log a}{b-c}=\frac{\log b}{c-a}=\frac{\log c}{a-b}=k$
$\Rightarrow \log a=k(b-c), \log b=k(c-a), \log c=k(a-b)$
$\Rightarrow(b+c) \log a=k\left(b^{2}-c^{2}\right),(c+a) \log b=k\left(c^{2}-a^{2}\right),(a+b) \log c=k\left(a^{2}-b^{2}\right)$
Adding all, $\log a^{b+c}+\log b^{c+a}+\log c^{a+b}=0$
$\Rightarrow a^{b+c} b^{c+a} c^{a+b}=1$.
41. Let $\frac{\log x}{q-r}=\frac{\log y}{r-p}=\frac{\log z}{p-q}=k$
$\Rightarrow \log x=k(q-r), \log y=k(r-p), \log z=k(p-q)$
$\Rightarrow(q+r) \log x=k\left(q^{2}-r^{2}\right),(r+p) \log y=k\left(r^{2}-p^{2}\right),(p+q) \log z=k\left(p^{2}-q^{2}\right)$
Adding all $\log x^{q+r}+\log y^{r+p}+\log z^{p+q}=0$
$\Rightarrow x^{q+r} y^{r+p} z^{p+q}=1$.
Similarly, $p \log x=k p(q-r), q \log y=k q(r-p), r \log z=k r(p-q)$
Adding all, $\log x^{p}+\log y^{q}+\log z^{r}=0 \Rightarrow x^{p} y^{q} z^{r}=1$.
42. Given $y=a^{\frac{1}{1-\log _{a} x}}$ and $z=a^{\frac{1}{1-\log _{a} y}}$
$\therefore z=a^{\frac{1}{1-\log _{a} a^{\left(\frac{1}{1-\log _{a} x}\right)}}=a^{\frac{1}{1-\frac{1}{1-\log _{a} x}}}}$
Taking log of both sides with base a,
$\log _{a} z=\frac{1}{1-\frac{1}{1-\log _{a} x}}=\frac{1-\log _{a} x}{-\log _{a} x}=1-\frac{1}{\log _{a} x}$
$\Rightarrow x=a^{\frac{1}{1-\log _{a} z}}$.
43. Given $f(y)=e^{f(z)}$ and $z=e^{f(x)}$, where $f(x)=\frac{1}{1-\log _{e} x}$
$f(y)=e^{\frac{1}{1-\log _{e} z}}=e^{\frac{1}{1-\log _{e} e^{\frac{1}{1-\log _{e} x}}}}=e^{\frac{1}{1-\frac{1}{1-\log _{e} x}}}$
Following like above exercie $x=e^{f(y)}$.
44. L.H.S. $=\frac{1}{\log _{2} n}+\frac{1}{\log _{3} n}+\frac{1}{\log _{4} n}+\cdots+\frac{1}{\log _{43} n}$
$=\log _{n} 2+\log _{n} 3+\log _{n} 4+\cdots+\log _{n} 43=\log _{n}(2.3 .4 \ldots 43)$
$=\log _{n} 43!=\frac{1}{\log _{43!}}=$ R.H.S.
45. L.H.S. $=(1+2+3+\cdots+n) .2 \log a=\frac{n(n+1)}{2} \cdot 2 \log a=n(n+1) \log a=$ R.H.S.
46. We will use of the fact that positive characteristics of n of a logarithmm means that there $n+1$ digits in the number.

Let $\log y=12 \log 12=12 \log (2.2 .3)=12[2 \times 0.301+0.477]=12.96$.
Thus, number of digits is 13 .
47. We can use the fact that the number of positive integers having base b and characteristics n is $b^{n+1}-b^{n}$.

Thus, number of integer with base 3 and characteristics 2 is $3^{3}-3^{3}=18$.
48. Let $y=(0.0504)^{10} \Rightarrow \log _{10} y=10 \log _{10}(0.504)=10 \log _{10}\left(504 \times 10^{-} 4\right)$
$=-10 \log _{10}\left[-4+\log \left(2^{3} \cdot 3^{2} \cdot 7\right)\right]=-12.98$.
Thus, characteristics is -13 . Therefore, number of zeros after decimal and first significant digit is 12 .
49. Let $x=72^{15} \therefore \log _{10} x=15 \log _{10} 72=15 \log _{10}\left(2^{3} \times 3^{2}\right)=15\left[3 \log _{10} 2+2 \log _{10} 3\right]$
$i=15[3 \times 0.301+2 \times 0.477]=15[0.903+0.954]=15 \times 1.857=27.855$
So the characteristics is 27 and hence the number of digits will be 28.
50. Given $b=5, n=2$, therefore the number of integers will be $5^{3}-5^{2}-100$.
51. Let $x=3^{15} \times 2^{10} \therefore \log _{10} x=15 \log _{10} 3+10 \log _{10} 2$
$=15 \times 0.477+10 \times 0.301=10.165$.
So no. of digits will be 11 .
52. Let $x=6^{20} \therefore \log _{10} x=20 \log _{10}(2 \times 3)=20\left[\log _{10} 2+\log _{10} 3\right]$
$=20[0.301+0.477]=15.56$.
So no. of digits will be 16 .
53. Let $x=5^{25} \therefore \log _{10} x=25 \log _{10} \frac{10}{2}=25\left[1-\log _{10} 2\right]$
$=25 \times 0.699=17.475$
So no. of digits will be 18 .
54. Given $\log _{a}\left[1+\log _{b}\left\{1+\log _{c}\left(1+\log _{p} x\right)\right\}\right]=0$
$\Rightarrow 1+\log _{b}\left\{1+\log _{c}\left(1+\log _{p} x\right)\right\}=1$
$\Rightarrow \log _{b}\left\{1+\log _{c}\left(1+\log _{p} x\right)\right\}=0$
$\Rightarrow 1+\log _{c}\left(1+\log _{p} x\right)=1$
$\Rightarrow \log _{c}\left(1+\log _{p} x\right)=0$
$\Rightarrow 1+\log _{p} x=1$
$\Rightarrow \log _{p} x=0 \Rightarrow x=1$
55. Given $\log _{7} \log _{5}(\sqrt{x+5}+\sqrt{x})=0 \Rightarrow \log _{5}(\sqrt{x+5}+\sqrt{x})=1$
$\Rightarrow \sqrt{x+5}+\sqrt{x}=5 \Rightarrow \sqrt{x+5}=5-\sqrt{x}$
Squaring both sides,
$x+5=25+x-10 \sqrt{x} \Rightarrow \sqrt{x}=2 \Rightarrow x=4$.
56. $\log _{2} x+\log _{4}(x+2)=2 \Rightarrow \log _{2} x+\frac{1}{2} \log _{2}(x+2)=2$
$\Rightarrow 2 \log _{2} x+\log _{2}(x+2)=4 \Rightarrow \log _{2} x^{2}(x+3)=4$
$\Rightarrow x^{2}(x+2)=16 \Rightarrow x=2$
57. $\log _{(x+2)} x+\log _{x}(x+2)=\frac{5}{2} \Rightarrow \frac{1}{\log _{x}(x+2)}+\log _{x}(x+2)=\frac{5}{2}$

Let $z=\log _{x}(x+2) \Rightarrow \frac{1}{z}+z=\frac{5}{2}$
$2 z^{2}+2-5 z=0 \Rightarrow z=2, \frac{1}{2}$
$\Rightarrow \log _{x}(x+2)=2, \frac{1}{2}$
$\Rightarrow x+2=2^{2}, x+2=\sqrt{x}$
$x=2, x^{2}-4 x+4=0 \Rightarrow x=\frac{3 \pm \sqrt{-7}}{2}$
However, x cannot be a complex number. $\therefore x=2$.
58. $\frac{\log (x+1)}{\log x}=2 \Rightarrow \log _{x}(x+1)=2 \Rightarrow x+1=x^{2}$
$\Rightarrow x=\frac{1 \pm \sqrt{5}}{2}$
$\because x>0, x=\frac{1+\sqrt{5}}{2}$.
59. $2 \log _{x} a+\log _{a x} a+3 \log _{a^{2} x} a=0 \Rightarrow \frac{2}{\log _{a} x}+\frac{1}{\log _{a} a x}+\frac{1}{\log _{a} a^{2} x}=0$
$\Rightarrow \frac{2}{\log _{a} x}+\frac{1}{\log _{a} a+\log _{a} x}+\frac{1}{\log _{a} a^{2}+\log _{a} x}=0$
$\Rightarrow \frac{2}{\log _{a} x}+\frac{1}{1+\log _{a} x}+\frac{1}{2+\log _{a} x}=0$
Substituting $\log _{a} x=z, \frac{2}{z}+\frac{1}{1+z}+\frac{1}{2+z}=0$
$\Rightarrow 6 z^{2}+11 z+4=0 \Rightarrow z=-\frac{1}{2},-\frac{4}{3}$
$\therefore x=a^{-\frac{1}{2}}, a^{-\frac{4}{3}}$.
60. $x+\log _{10}\left(1+2^{2}\right)=x \log _{10} 5+\log _{10} 6$
$\Rightarrow \log _{10} 10^{x}+\log _{10}\left(1+2^{x}\right)=\log _{10} 5^{x}+\log _{10} 6$
$\Rightarrow \log _{10} 10^{x}\left(1+x^{x}\right)=\log _{10}\left(5^{x} .6\right)$
$\Rightarrow 2^{x}\left(1+2^{x}\right)=2.3 \Rightarrow 2^{x}=2,1+2^{x}=3 \Rightarrow x=1$.
61. $x^{\frac{3}{4}\left(\log _{2} x\right)^{2}+\log _{2} x-\frac{5}{4}}=\sqrt{2}$

Taking $\log _{2}$ of both sides,
$\left[\frac{3}{4}\left(\log _{2} x\right)^{2}+\log _{2} x-\frac{5}{4}\right] \log _{2} x=\frac{1}{2} \log _{2} 2$
$\left[\frac{3}{4}\left(\log _{2} x\right)^{2}+\log _{2} x-\frac{5}{4}\right] \log _{2} x=\frac{1}{2}$
Let $\log _{2} x=z, \Rightarrow\left(\frac{3}{4} z^{2}+z-\frac{5}{4}\right) z=\frac{1}{2}$
Solving this qubic equation yields $x=2, \frac{1}{4}, \frac{1}{\sqrt[3]{2}}$.
62. Given $\left(x^{2}+6\right)^{\log _{3} x}=(5 x)^{\log _{3} x}$
$\log _{3} x$ has a possible value of 0 , in that case $x=1$
If $\log _{3} x \neq 0, \Rightarrow x^{2}+6=5 x \Rightarrow x=2,3$.
63. Given, $(3+2 \sqrt{2})^{x^{2}-6 x+9}+(3-2 \sqrt{2})^{x^{2}-6 x+9}=6$

We observe that $3+2 \sqrt{2}=\frac{1}{3-2 \sqrt{2}}$, thus, given equation becomes
$(3+2 \sqrt{2})^{x^{2}-6 x+9}+(3+2 \sqrt{2})^{-\left(x^{2}-6 x+9\right)}=6$
Let $z=(3+2 \sqrt{2})^{x^{2}-6 x+9} \Rightarrow z+\frac{1}{z}=6 \Rightarrow z=3 \pm 2 \sqrt{2}$
Thus, $x^{2}-6 x+9= \pm 1 \Rightarrow x=2,4$ because other roots are irrational.
64. Given, $\log _{8}\left(\frac{8}{x^{2}}\right) \div\left(\log _{8} x\right)^{2}=3$
$\Rightarrow \log _{8} 8-\log _{8} x^{2}=3\left(\log _{8} x\right)^{2} \Rightarrow 1-2 \log _{8} x=3\left(\log _{8} x\right)^{2}$
Let $z=\log _{8} x \Rightarrow 1-2 z=3 z^{2} \Rightarrow z=-1, \frac{1}{3} \Rightarrow x=2, \frac{1}{8}$.
65. Given, $\sqrt{\log _{2}(x)^{4}}+4 \log _{4} \sqrt{\frac{2}{x}}=2$
$\Rightarrow \sqrt{\log _{2}(x)^{4}}+2 \log _{2} \sqrt{\frac{2}{x}}=2$
$\Rightarrow \sqrt{4 \log _{2} x}+\log _{2} \frac{2}{x}=2$
$\Rightarrow \sqrt{4 \log _{2} x}+1-\log _{2} x=2 \Rightarrow \sqrt{4 \log _{2} x}=1+\log _{2} x$
Squaring, $4 \log _{2} x=1+2 \log _{2} x+\left(\log _{2} x\right)^{2} \Rightarrow\left(\log _{2} x-1\right)^{2}=0$
$\Rightarrow \log _{2} x=1 \Rightarrow x=2$.
66. Given, $2 \log _{10} x-\log _{x} 0.01=5 \Rightarrow 2 \log _{10} x-\log _{x}(10)^{-2}=5$
$\Rightarrow 2 \log _{10} x-\log _{x}(10)^{-2}=5 \Rightarrow 2 \log _{10} x+2 \log _{x} 10=5$
$\Rightarrow 2 \log _{10} x+\frac{2}{\log _{10} x}=5$
Let $z=\log _{10} x \Rightarrow 2 z+\frac{2}{z}=5 \Rightarrow z=2, \frac{1}{2}$
$\Rightarrow x=100, \sqrt{10}$.
67. Given, $\log _{\sin x} 2 \log _{\cos x} 2+\log _{\sin x} 2+\log _{\cos x} 2=0$
$\Rightarrow \log _{\sin x} 2\left(\log _{\cos x} 2+1\right)+\log _{\cos x} 2=0$
$\Rightarrow \frac{\ln 2}{\ln \sin x}\left(\frac{\ln 2}{\ln \cos x}+1\right)+\frac{\ln 2}{\ln \cos x}=0$
$\Rightarrow \frac{1}{\ln \sin x}\left(\frac{\ln 2}{\ln \cos x}+1\right)+\frac{1}{\ln \cos x}=0$
$\Rightarrow \frac{1}{\ln \sin x}\left(\frac{\ln 2}{\ln \cos x}+1\right)=-\frac{1}{\ln \cos x}$
$\Rightarrow \frac{1}{\ln \sin x}(\ln 2+\ln \cos x)=-1$
$\Rightarrow \ln (\sin 2 x)=0 \Rightarrow x=2 k \pi+\frac{\pi}{4}, k \in 0$.
68. Given, $2^{x+3}+2^{x+2}+2^{x+1}=7^{x}+7^{x-1}$
$\Rightarrow 2^{x+1}\left(2^{2}+2+1\right)=7^{x-1}(7+1) \Rightarrow 2^{x-2}=7^{x-2}$
Taking \log of both sides
$(x-1) \log 2=(x-2)(\log 7), \because 2 \neq 7 \Rightarrow x=2$.
69. Given, $\log _{\sqrt{2} \sin x}(1+\cos x)=2$
$\Rightarrow 1+\cos x=(\sqrt{2} \sin x)^{2}=2 \sin ^{2} x=2-2 \cos ^{2} x$
$\Rightarrow 2 \cos ^{2} x+\cos x-1=0 \Rightarrow \cos x=-1, \frac{1}{2}$
$\Rightarrow x=2 n \pi, 2 n \pi+\frac{\pi}{3}, n \in I$
70. Given, $\log _{10}\left[98+\sqrt{x^{2}-12 x+36}\right]=2$
$\Rightarrow 98+\sqrt{x^{2}-12 x+36}=10^{2}=100$
$\Rightarrow x^{2}-12 x+36=4 \Rightarrow x^{2}-12 x+32=0$
$\Rightarrow x=4,8$.
71. Given, $2^{x} 3^{2 x}-100=0 \Rightarrow x \log _{10} 2+2 x \log _{10} 3=\log _{10} 100=2$

Substituting values for $\log _{10} 2$ and $\log _{10} 3$, we get
$0.30103 x+0.95424 x=2 \Rightarrow x=1.593$.
72. Given, $\log _{x} 3 \log _{\frac{x}{3}} 3+\log _{\frac{x}{81}} 3=0$
$\Rightarrow \frac{1}{\log _{3} x} \cdot \frac{1}{\log _{x} \frac{x}{3}}+\frac{1}{\log _{3} \frac{x}{81}}=0$
$\Rightarrow \frac{1}{\log _{3} x} \cdot \frac{1}{\log _{3} x-\log _{3} 3}+\frac{1}{\log _{3} x-\log _{3} 81}=0$
Let $z=\log _{3} x, \Rightarrow \frac{1}{z} \cdot \frac{1}{z-1}+\frac{1}{z-4}=0$
$\Rightarrow z-4+z^{2}-z=0 \Rightarrow z^{2}-4=0 \Rightarrow z= \pm 2$
$\Rightarrow x=9, \frac{1}{9}$.
73. Given, $\log _{(2 x+3)}\left(6 x^{2}+23 x+21\right)=4-\log _{(3 x+7)}\left(4 x^{2}+12 x+9\right)$
$\Rightarrow \log _{(2 x+3)}(2 x+3)(3 x+7)=4-\log _{(3 x+7)}(2 x+3)^{2}$
$\Rightarrow 1+\log _{(2 x+3)}(3 x+7)=4-2 \log _{(3 x x+7)}(2 x+3)$
Let $z=\log _{(2 x+3)}(3 x+7)$,
$\Rightarrow 1+z=4-\frac{2}{z} \Rightarrow z=1,2 \Rightarrow x=-4,-3,-\frac{1}{4}$.
For logarithm to be defined, $2 x+3>0,2 x+3 \neq 1$ and $3 x+7>0,3 x+7 \neq 1$.
Thus, $x=-\frac{1}{4}$ is the only valid solution.
74. Given, $\log _{2}\left(x^{2}-1\right)=\log _{\frac{1}{2}}(x-1)$
$\Rightarrow \log _{2}\left(x^{2}-1\right)=\log _{2^{-1}}(x-1)=-\log _{2}(x-1)=\log _{2} \frac{1}{x-1}$
$\Rightarrow x^{2}-1=\frac{1}{x-1} \Rightarrow x=0, x^{2}-x-1=0$
$\Rightarrow x=0, \frac{1 \pm \sqrt{5}}{2}$
For logarithm to be defined $x^{2}-1>0$ and $x-1>0$
Thus, $x=\frac{1+\sqrt{5}}{2}$ is the only acceptable solution.
75. Given, $\log _{5}\left(5^{\frac{1}{x}+125}\right)=\log _{5} 6+1+\frac{1}{2 x}$
$\Rightarrow \log _{5}\left(5^{\frac{1}{x}+125}\right)-\log _{5} 6=1+\frac{1}{2 x}$
$\Rightarrow \log _{5}\left(\frac{5^{\frac{1}{x}+125}}{6}\right)=1+\frac{1}{2 x}$
$\Rightarrow 5^{\frac{1}{x}+125}=30.5^{\frac{1}{2 x}}$
Let $z=5^{\frac{1}{2 x}}$
$\Rightarrow z^{2}-30 z+125=0 \Rightarrow z=5,25 \Rightarrow x=\frac{1}{2}, \frac{1}{4}$.
76. For $\log _{100}|x+y|=\frac{1}{2} \Rightarrow(x+y)^{2}=100$

And for $\log _{10} y-\log _{10}|x|=\log _{100} 4 \Rightarrow \log _{10} \frac{y}{|x|}=\log _{10} 2$
$\Rightarrow y=2|x| \Rightarrow y^{2}=4 x^{2} \Rightarrow 5 x^{2}+4 x|x|=100$
When $x>0, x=\frac{10}{3}$ and when $x<0, x=-10$
$\Rightarrow y=\frac{20}{3}, 20$.
77. Given, $2 \log _{2} \log _{2} x+\log _{\frac{1}{2}} \log _{2}(2 \sqrt{2} x)=1$
$\Rightarrow \log _{2}\left(\log _{2} x\right)^{2}-\log _{2} \log _{2}(2 \sqrt{2} x)=1$
$\Rightarrow \log _{2}\left(\frac{\left(\log _{2}\right)^{2}}{\log _{2}(2 \sqrt{2} x)}\right)=1$
$\Rightarrow \frac{\left(\log _{2} x\right)^{2}}{\log _{2}(2 \sqrt{2} x)}=2$
$\Rightarrow\left(\log _{2} x\right)^{2}=\log _{2}(2 \sqrt{2} x)^{2}$
$\Rightarrow\left(\log _{2} x\right)^{2}-3-2 \log _{2} x=0$
Let $z=\log _{2} x$, then $z^{2}-2 z-3=0 \Rightarrow z=-1,3$
$\Rightarrow x=\frac{1}{2}, 8$
For logarithm to be defined $x>0,2 \sqrt{2} x>0, \log _{2} x>0, \log _{2}(2 \sqrt{2} x)>0$.
Thus, $x=8$ is only acceptable solution.
78. Given $\log _{\frac{3}{4}} \log _{8}\left(x^{2}+7\right)+\log _{\frac{1}{2}} \log _{\frac{1}{4}}\left(x^{2}+7\right)^{-1}=-2$
$\Rightarrow \log _{\frac{3}{4}} \log _{2^{3}}\left(x^{2}+7\right)+\log _{\frac{1}{2}} \log _{2^{-2}}\left(x^{2}+7\right)^{-} 1=-2$
$\Rightarrow \log _{\frac{3}{4}}\left[\frac{1}{3} \log _{2}\left(x^{2}+7\right)\right]+\log _{\frac{1}{2}}\left[\frac{1}{2} \log _{2}\left(x^{2}+7\right)\right]=-2$
Let $y=\log _{2}\left(x^{2}+7\right)$,
$\Rightarrow \log _{\frac{3}{4}}\left(\frac{y}{3}\right)+\log _{\frac{1}{2}} \frac{1}{2}+\log _{\frac{1}{2}} y=-2$
$\Rightarrow-\log _{\frac{3}{4}} 3+\log _{2} y \cdot \log _{\frac{3}{4}} 2-\log _{2} y=-3$
$\Rightarrow \log _{2} y\left(\log _{\frac{3}{4}} 2-1\right)=-3+\log _{\frac{3}{4}} 3$
$\Rightarrow \log _{2} y\left(\log _{\frac{3}{4}} 2-\log _{\frac{3}{4}} \frac{3}{4}\right)=\log _{\frac{3}{4}}\left(\frac{3}{4}\right)^{-3}+\log _{\frac{3}{4}} 3$
$\Rightarrow \log _{2} y \cdot \log _{\frac{3}{4}} \frac{8}{3}=\log _{\frac{3}{4}} \frac{64}{9}=2 \log _{\frac{3}{4}} \frac{8}{3}$
$\Rightarrow \log _{2} y=2 \Rightarrow y=3 \Rightarrow x= \pm 3$, both of which are valid for the given equation.
79. Given, $\log _{10} x+\log _{10} x^{\frac{1}{2}}+\log _{10} x^{\frac{1}{4}}+\cdots$ to $\infty=y$
$\Rightarrow\left[1+\frac{1}{2}+\frac{1}{4}+\cdots\right.$ to $\left.\infty\right] \log _{10} x=y$
$\Rightarrow \frac{1}{1-\frac{1}{2}} \log _{10} x=y \Rightarrow \log _{10} x=\frac{y}{2}$
Also given that $\frac{1+3+5+\cdots+(2 y-1)}{4+7+10+\cdots+(3 y+1)}=\frac{20}{7 \log _{10} x}$
$\Rightarrow \frac{\frac{y}{2}[2+(y-1) 2]}{\frac{2}{2}[8+(y-1) 3]}=\frac{20}{7 \log _{10} x}$
$\Rightarrow \frac{2 y}{3 y+5}=\frac{20}{7 \log _{10} x}=\frac{20 \times 2}{7 y} \Rightarrow 7 y^{2}-60 y-100=0$
$y=10,-\frac{10}{7}$. Since number of terms cannot be fraction, therefore $y=10$ and $x=10^{5}$.
80. Given, $18^{4 x-3}=(54 \sqrt{2})^{3 x-4}$

Taking log on both sides,
$\Rightarrow(4 x-3) \log 18=(3 x-4) \log (18 \times 3 \sqrt{2})=\frac{3}{2}(3 x-4) \log 18$
$\Rightarrow 4 x-3=\frac{3}{2}(3 x-4) \Rightarrow x=6$
81. Given, $4^{\log _{9} 3}+9^{\log _{2} 4}=10^{\log _{x} 83}$
$\Rightarrow 4^{\log _{3} 23}+9^{\log _{2} 2^{2}}=10^{\log _{x} 83}$
$\Rightarrow 4^{\frac{1}{2} \log _{3} 3}+9^{2 \log _{2} 2}=10^{\log _{x} 83}$
$\Rightarrow 4^{\frac{1}{2}}+9^{2}=83=10^{\log _{x} 83} \Rightarrow x=10$
82. Given, $3^{4 \log _{9}(x+1)}=2^{2 \log _{2}(x+3)}$
$\Rightarrow 3^{2 \log _{3}(x+1)}=x^{2}+3\left[\because a^{\log _{a} N}=N\right]$
$\Rightarrow 3^{\log _{3}(x+1)^{2}}=x^{2}+2 x+1=x^{2}+3 \Rightarrow x=1$
83. $\frac{6}{5} a^{\log _{a} x \log _{10} a \log _{a} 5}-3^{\log _{10} \frac{x}{10}}=9^{\log _{100} x+\log _{4} 2}$
$\Rightarrow \frac{6}{5} a^{\log _{10} x \log _{a} 5}-3^{\log _{10} x-1}=9^{\frac{1}{2} \log _{10} x+\frac{1}{2} \log _{2} 2}$
$\Rightarrow \frac{6}{5}\left(5^{\log _{a} 5}\right)^{\log _{10} x}-3^{\log _{10} x-1}=3^{\log _{10} x+1}$
$\Rightarrow \frac{6}{5} 5^{\log _{10} x}=6.5^{\log _{10} x-1}=3^{\log _{10} x-1}\left(1+3^{3}\right)$
$\Rightarrow\left(\frac{5}{3}\right)^{\log _{10} x-1}=\frac{10}{6}$
$\Rightarrow \log _{10} x-1=1 \Rightarrow x=100$
84. Given, $2^{3 x+\frac{1}{2}}+2^{x+\frac{1}{2}}=2^{\log _{2} 6}$
$\Rightarrow 2^{3 x} \sqrt{2}+2^{x} \sqrt{2}=6$
$\Rightarrow\left(2^{x}\right)^{3}+2^{2}=3 \sqrt{2} \Rightarrow 2^{x}=\sqrt{2}, \frac{-\sqrt{2} \pm \sqrt{-10}}{2}$
Ignoring complex roots we have $x=\frac{1}{2}$.
85. $(5+2 \sqrt{6})^{x^{2}-3}+(5-2 \sqrt{6})^{x^{2}-3}=10$
$\Rightarrow(5+2 \sqrt{6})^{x^{2}-3}+(5+2 \sqrt{6})^{-\left(x^{2}-3\right)}=10$
Let $z=(5+2 \sqrt{6})^{x^{2}-3}$, then
$\Rightarrow z+\frac{1}{z}=10 \Rightarrow z=5 \pm 2 \sqrt{6}$
$\therefore x= \pm 2, \pm \sqrt{2}$
86. $2 \log _{10 x} x-\log _{x} .01 \geq 4$
$\Rightarrow 2 \log _{10} x-\log _{x} 10^{-2} \geq 4$
$\Rightarrow 2 \log _{10} x+2 \log _{x} 10 \Rightarrow 2 \log _{10} x+\frac{2}{\log _{10} x} \geq 4$
$=2\left(\log _{10} x+\frac{1}{\log _{10} x}\right) \geq 4$
Let $z=\log _{10} x$, then $2\left(z+\frac{1}{z}\right) \geq 4$
$\Rightarrow 2\left[\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)^{2}+2\right] \geq 4$
which is true.
87. Let $E=\log _{b} a+\log _{a} b=\log _{b} a+\frac{1}{\log _{b} a}$

Let $z=\log _{b} a$, then $E=z+\frac{1}{z}$
Clearly, $z \neq 0$, or the problem will be undefined.
When $z>0, E=z+\frac{1}{z}=\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)^{2}+2>2$
When $z<0, z=-y$ (let), then
$E=\left|-y-\frac{1}{y}\right|=y+\frac{1}{y}>2$.
88. Given, $\log _{0.3}\left(x^{2}+8\right)>\log _{0.3} 9 x$
$\Rightarrow x^{2}+8<9 x \Rightarrow 1<x<8$.
89. $\log _{x-2}(2 x-3)>\log _{x-2}(24-6 x)$

Case I: When $0<x-2<1 \Rightarrow 2<x<3$
Given inequality becomes $2 x-3<24-6 x \Rightarrow x<\frac{27}{8}$
But $x<3$ so 3 si still limiting value of x.
Case II: When $x-2>1 \Rightarrow x>3$
Given inequality becomes $2 x-3>24-6 x \Rightarrow x>\frac{27}{3}$
However, for logarithm to be defined $2 x-3>0$ and $24-6 x>0$ and also $x-2>0$.
Combining all these we get $2<x<3$.
90. Given, $\log _{0.3}(x-1)<\log _{0.09}(x-1)$
$\Rightarrow(x-1)^{2}>(x-1) \Rightarrow x^{2}-3 x+2>0$
$\Rightarrow x<1, x>2$. For logarithm function to be defined $x>1$, thus the interval for x will be $(2, \infty]$.
91. Given, $\log _{\frac{1}{2}} x \geq \log _{\frac{1}{3}} x$
$\Rightarrow \log _{\frac{1}{2}} x \geq \log _{\frac{1}{2}} x \log _{\frac{1}{3}} \frac{1}{2}$
$\Rightarrow \log _{\frac{1}{2}} x\left[1-\log _{\frac{1}{3}} \frac{1}{2}\right] \geq 0$
$\Rightarrow \log _{\frac{1}{2}} x\left[1-\log _{3} 2\right] \geq 0$
$\log _{\frac{1}{2}} x \geq 0 \Rightarrow x \leq 1$
For logarithm function to be defined $x>0$, thus range of x will be $(0,1]$.
92. Given, $\log _{\frac{1}{3}} \log _{4}\left(x^{2}-5\right)>0$
$\Rightarrow \log _{4}\left(x^{2}-5\right)<1 \Rightarrow x^{2}-5<4 \Rightarrow-3<x<3$
For logarithm to be defined $x^{2}-5>0$ and $\log _{4}\left(x^{2}-5\right)>0$
$\Rightarrow x<-\sqrt{5}, x>\sqrt{5}$ and $x^{2}-5>1 \Rightarrow x<-\sqrt{6}, x>\sqrt{6}$
Combining all these conditions we get two ranges for $x,(-3,-\sqrt{6})$ and $(\sqrt{6}, 3)$.
93. Given, $\log \left(x^{2}-2 x-2\right) \leq 0 \Rightarrow x^{2}-2 x-2 \leq 1$
$\Rightarrow-1 \leq x \leq 3$
For logarithm to be defined $x^{2}-2 x-2>0$
$\Rightarrow x<1-\sqrt{3}, x>1+\sqrt{3}$
Combining all these ranges gives us the range as $[-1,1-\sqrt{3}) \cup(1+\sqrt{3}, 3]$.
94. Given, $\log _{2}^{2}(x-1)^{2}-\log _{0.5}(x-1)>5$
$\Rightarrow\left(2 \log _{2}|x-1|\right)^{2}-\log _{0.5}(x-1)>5$
$\Rightarrow 4\left[\log _{2}(x-1)\right]^{2}+\log _{2}(x-1)>5$
Let $z=\log _{2}(x-1), \Rightarrow 4 x^{2}+z-5>0$
$\Rightarrow 2<-\frac{5}{4}, x>1 \Rightarrow x<1+\frac{1}{2 \sqrt[4]{2}}$
For \log to be defined $x-1>0 \Rightarrow x>1$
When $z>1, x>3$
Thus, the range of x is $\left(1,1+\frac{1}{2 \sqrt[4]{2}}\right) \cup(3, \infty)$.
95. We have to prove that $\log _{2} 17 \log _{\frac{1}{5}} 2 \log _{3} \frac{1}{5}>2$
$\Rightarrow \log _{2} 17 \log _{3} 2>2 \Rightarrow \log _{3} 17>2$
$\because 17>3^{2} \because \log _{3} 17>2$
96. We have to prove that $\frac{1}{3}<\log _{20} 3<\frac{1}{2}$
$\frac{1}{3}<\log _{20} 3 \Rightarrow 1<\log _{20} 3^{3} \Rightarrow 1<\log _{20} 27$
which is true as the base is greater than 1 and the number is greater than the base.
$\log _{20} 3<\frac{1}{2} \Rightarrow \log _{20} 3^{2}<1 \Rightarrow \log _{20} 9<1$
which is true as the base is greater than 1 and the number is less than the base.
97. We have to prove that $\frac{1}{4}<\log _{10} 2<\frac{1}{2}$
$\frac{1}{4}<\log _{10} 2 \Rightarrow 1<\log _{10} 2^{4}=\log _{10} 16$
which is true because base is greater than 1 and the number is greater than the base.
$\log _{10} 2<\frac{1}{2} \Rightarrow \log _{10} 2^{2}<1 \Rightarrow \log _{10} 4<1$
which is true as the base is greater than 1 and the number is less than the base.
98. Given $\log _{0.1}\left(4 x^{2}-1\right)>\log _{0.1} 3 x$
$\Rightarrow 4 x^{2}-3 x-1<0 \Rightarrow(4 x+1)(x-1)<0$
Thus, $\left[-\infty,-\frac{1}{4}\right) \cup(1, \infty]$ is the initial solution.
Now, $x>0$ is another restriction from R.H.S.
From L.H.S $>4 x^{2}-1>0 \Rightarrow x<-\frac{1}{2}, x>\frac{1}{2}$
Combining all these we get, $\frac{1}{2}<x<1$.
99. Given, $\log _{2}\left(x^{2}-24\right)>\log _{2} 5 x$
$\Rightarrow x^{2}-24>5 x \Rightarrow x<-3, x>8$
But $x^{2}-24>0$ and also $x>0$ for loarithm function to be defined.
$\therefore x>8$.
100. We have to prove that $\frac{1}{\log _{3} \pi}+\frac{1}{\log _{4} \pi}>2$
$\Rightarrow \log _{\pi} 3+\log _{\pi} 4>2$
$\Rightarrow \log _{\pi} 12>2 \Rightarrow 12>\pi^{2}$ which is true .
101. Given $(0.01)^{\frac{1}{3}}$ and $(0.001)^{\frac{1}{5}}$

Taking \log of both with base 10 ,
$\frac{1}{3} \log _{01} 0.01$ and $\frac{1}{5} \log _{10} 0.001$
$-\frac{2}{3}$ and $-\frac{3}{5}$ out of which $-\frac{3}{5}$ is greater, therefore $(0.001)^{\frac{1}{5}}$ is greater.
102. $\log _{3} 11>\log _{3} 9=\log _{3}\left(3^{2}\right)=2$ and $\log _{2} 3<\log _{2} 4=2$.

Thus, $\log _{3} 11$ is geater.
103. Given, $\log _{3}\left(x^{2}+10\right)>\log _{3} 7 x$ $\Rightarrow x^{2}+10>7 x \Rightarrow x<2, x>5$

However, $x^{2}+10>0$ and $x>0$ for logarithm to be defined.
Thus, intervals are $0<x<2$ and $x>5$.
104. We have, $x^{\log _{10} x}>10$
$\Rightarrow \log _{10} x \log _{10} x>1 \Rightarrow \log _{10} x> \pm 1$
Thus range of values of x would be $(0,0.1) \cup(10, \infty]$.
105. We have, $\log _{2} x \log _{2 x} 2 \log _{2} 4 x>1$
$\Rightarrow \frac{1}{\log _{x} 2}\left[\frac{1}{\log _{2} 2 x} \log _{2} 2^{2} x\right]>1$
$\Rightarrow \frac{1}{\log _{x} 2}\left[\frac{1}{1+\log _{2} x}\right]\left[2+\frac{1}{\log _{x} 2}\right]>1$
Let $z=\log _{x} 2$, then
$\Rightarrow \frac{1}{z} \frac{z}{1+z}\left[2+\frac{1}{z}\right]>1$
Solving this inequality and applying rules for definition of logarithm we have following range for x
$\left(2^{-\sqrt{2}}, \frac{1}{2}\right) \cup\left(1,2^{\sqrt{2}}\right)$
106. Given, $\log _{2} x \log _{3} 2 x+\log _{3} x \log _{2} 4 x>0$

Exchanging base, we have $\log _{3} x \log _{2} 2 x+\log _{3} x \log _{2} 4 x>0$
$\Rightarrow \log _{3} x\left(\log _{2} 2+\log _{2} x+\log _{2} 4+\log _{2} x\right)>0$
$\Rightarrow \log _{3} x\left(3+2 \log _{2} x\right)>0$
For $\log _{3} x>0, x>1$ and for, $3+2 \log _{2} x^{2}>0 \Rightarrow \log _{2} x^{2}>-3$.
Also for $\log _{3} x<0,0<x<1$ and for $3+\log _{2} x^{2}<0 \Rightarrow \log _{2} x^{2}<-3$
107. $\log _{12} 60=\frac{\log _{2} 60}{\log _{2} 12}=\frac{\log _{2}\left(2^{2} \times 3 \times 5\right)}{\log _{2}\left(2^{2} \times 3\right)}$
$=\frac{2+\log _{2} 3+\log _{2} 5}{2+\log _{2} 3}$
Let $\log _{2} 3=x$ and $\log _{2} 5=y$, then $\log _{12} 60=\frac{2+x+y}{2+x}$
Given $a=\log _{6} 30=\frac{\log _{2} 30}{\log _{2} 6}=\frac{\log _{2}(2 \times 3 \times 5)}{\log _{2} 2 \times 3}$
$=\frac{1+\log _{2} 3+\log _{2} 5}{1+\log _{2} 3}=\frac{1+x+y}{1+x}$

Also given, $b=\log _{15} 24$, proceeding similarly $b=\frac{3+x}{x+y}$
From these two, we can write x and y in terms of x and y,
$x=\frac{b+3-a b}{a b-3}, y=\frac{2 a-b-2+a b}{a b-1}$
Substituting these values for $\log _{12} 60$, we get
$\log _{12} 60=\frac{2 a b+2 a-1}{a b+b+1}$
108. $\log _{a} x, \log _{b} x$ and $\log _{c} x$ are in A.P.
$\therefore 2 \log _{x} b=\frac{1}{\log _{x} a}+\frac{1}{\log _{x} c}$
$\Rightarrow \frac{2}{\log _{x} b}=\frac{\log _{x} a c}{\log _{x} a \log _{x} c}$
$\Rightarrow 2 \log _{x} c=\log _{x} a c \frac{\log _{x} b}{\log _{x} a} \Rightarrow \log _{x} c^{2}=\log _{x} a c \log _{a} b$
$\Rightarrow c^{2}=a c^{\log _{a} b}$.
109. $a=\log _{\frac{1}{2}} \sqrt{0.125}>0$ because both base and number are less than 1 .
$b=\log _{3}\left(\frac{1}{\sqrt{24}-\sqrt{17}}\right)=\log _{3}\left(\frac{\sqrt{24}+\sqrt{17}}{3}\right)>0$
because both base and number are greater than 1 .
110. Given $e^{-\frac{\pi}{2}}<\theta<\frac{\pi}{2}$

Taking log natural of both sides

$$
\begin{aligned}
& \log _{e} e^{-\frac{\pi}{2}}<\log _{e} \theta<\log _{e} \frac{\pi}{2} \\
& \Rightarrow-\frac{\pi}{2}<\log _{e} \theta<1<\frac{\pi}{2}\left[\because \log _{e} \frac{\pi}{2}<\log _{e} e\right] \\
& \Rightarrow-\frac{\pi}{2}<\log _{e} \theta<\frac{\pi}{2} \\
& \Rightarrow \cos \left(\log _{e} \theta\right)>0 \\
& \text { Again, } e^{-\frac{\pi}{2}}<\theta<\frac{\pi}{2} \\
& \Rightarrow 0<\theta<\frac{\pi}{2}\left[\because e^{-\frac{\pi}{2}}>0\right] \\
& \Rightarrow 0<\cos \theta<1 \Rightarrow \log _{e} \cos \theta<0 \\
& \Rightarrow \cos \left(\log _{e} \theta\right)>\log _{e}(\cos \theta)
\end{aligned}
$$

111. Given, $\log _{2} x+\log _{2} y \geq 6 \Rightarrow \log _{2} x y \geq 6 \Rightarrow x y \geq 64$

This means x and y are positive as negative values will not be valid for logarithm function.
A.M $\geq \mathrm{G} . \mathrm{M} \Rightarrow \frac{x+y}{2} \geq x y \Rightarrow x+y \geq 16$.
112. Given, $\log _{b} a \log _{c} a-\log _{a} a+\log _{a} b \log _{c} b-\log _{b} b+\log _{a} c \log _{b} c-\log _{c} c=0$
$\Rightarrow \frac{(\log a)^{2}}{\log b \log c}-1+\frac{(\log b)^{2}}{\log a \log c}-1+\frac{(\log c)^{2}}{\log a \log b}-1=0$
Let $x=\log a, y=\log b, z=\log c$, then
$\frac{x^{2}}{y z}+\frac{y^{2}}{z x}+\frac{z^{2}}{x y}-3=0$
$\Rightarrow \frac{x^{3}+y^{3}+z^{3}-3 x y z}{x y z}=0$
$\Rightarrow(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)=0$
$\Rightarrow \frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]=0$
$\because x, y, z$ are different the term inside brackets will be always positive. Thus.
$x+y+z=0$, now substituting the original values,
$\log a b c=0 \Rightarrow a b c=1$.
113. Since n is a natural number and $p 1_{p} 2, \ldots, p_{k}$ are distinct primes, therefore $a_{1}, a_{2}, \ldots, a_{k}$ are also natural numbers.

Now $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{K}}$
$\Rightarrow \log n=a_{1} \log p_{1}+a_{2} \log p_{2}+\cdots+a_{k} \log p_{k}$
$\log n \geq \log 2+\log 2+\cdots+\log 2$ [since bases are primes so minimum value is is 2 and pwoers are natural numbers so they are greater than 1]
$\log n \geq k \log 2$
114. Let d be the common difference of the A.P., then
$3 \log _{y} x=3+d \Rightarrow \log _{y} x^{3}=3+d \Rightarrow x^{3}=y^{(3+d)}$
$3 \log _{z} y=3+2 d \Rightarrow y^{3}=z^{(3+2 d)}$
$7 \log _{x} z=3+3 d \Rightarrow z^{7}=x^{(3+3 d)}$
$y^{3}=z^{(3+2 d)} \Rightarrow y=z^{\frac{3+2 d}{3}}$
$x^{3}=y^{(3+d)} \Rightarrow x=y^{\frac{3+d}{3}}=z^{\frac{(3+d)(3+2 d)}{9}}$
$z^{7}=x^{(3+3 d)} \Rightarrow x=z^{\frac{7}{3+3 d}}$
$\therefore \frac{(3+d)(3+2 d)}{9}=\frac{7}{3+3 d} \Rightarrow d=\frac{1}{2}$
Thus, $x^{18}=y^{21}=z^{28}$.
115. We have, $\log _{4} 18=\log _{2^{2}}\left(2 \times 3^{2}\right)=\frac{1}{2}+\log _{2} 3$

Thus, it will be enough to prove tha $\log _{2} 3$ is an irrational number.
Let $\log _{2} 3=\frac{p}{q}$, where $p, q \in \mathbb{\square}$
$\Rightarrow 2^{\frac{p}{q}}=3 \Rightarrow 2^{p}=3^{q}$
However, 2^{p} is an even number and 3^{q} is an odd number, and hence the equality will never be achieved. Therefore, $\log _{2} 3$ is an irrational number.
116. Given, x, y, z are in G.P. $\therefore \frac{y}{x}=\frac{z}{y}$
$\Rightarrow \ln \frac{y}{x}=\ln \frac{z}{y} \Rightarrow \ln y-\ln x=\ln z-\ln y$
$\Rightarrow \ln x, \ln y, \ln z$ are in A.P.
$\Rightarrow 1+\ln x, 1+\ln y, 1+\ln z$ are in A.P.
$\Rightarrow \frac{1}{1+\ln x}, \frac{1}{1+\ln y}, \frac{1}{1+\ln z}$ are in H.P.
117. $\log _{30} 8=\log _{30} 2^{3}=3 \log _{30} 2=3 \log _{30} \frac{30}{15}$
$=3-3\left(\log _{30} 3+\log _{30} 5\right)=3(1-a-b)$.
118. Given $\log _{7} 12=a$ and $\log _{12} 24=b$

Multiplying $a b=\log _{7} 24$
Adding 1 on both sides
$a b+1=\log _{7} 24+\log _{7} 7=\log _{7} 168$
Similarly, $8 a=\log _{7} 12^{8}$ and $5 a b=\log _{7} 168^{5}$
$\frac{a b+1}{8 a-5 a b} \frac{\log _{7} 168}{\log _{7} 12^{8}-\log _{7} 168^{5}}$
Upon simplification we find that $\log _{54} 168=\frac{a b+1}{8 a-5 a b}$
119. Case I: When $x>1, x>a^{2}+1$. Also, $a^{2}+1<1 \therefore x>1$

Case II: When $x<1, x<a^{2}+1$. Also, $a^{2}>0 \therefore x<1$.
In both the cases $x>0$.
120. Given, $\log _{12} 18=a$ and $\log _{24} 54=b$
$\therefore a b+5(a-b)=\frac{\log 18 \log 54}{\log 12 \log 24}+5\left(\frac{\log 18}{\log 12}-\frac{\log 54}{\log 24}\right)$
$=\frac{\log 18 \log 54+5(\log 18 \log 24-\log 54 \log 12)}{\log 12 \log 24}$
$\log 18=\log 2+2 \log 3, \log 12=2 \log 2+\log 3$
$\log 24=3 \log 2+\log 3, \log 54=\log 2+3 \log 3$
Now it is only a matter of substitution and simplification.
121. Given, a, b, c are in G.P. so we can write $b^{2}=a c$

Taking \log with base x,
$2 \log _{x} b=\log _{x} a+\log _{x} c \Rightarrow \frac{2}{\log _{b} x}=\frac{1}{\log _{a} x}+\frac{1}{\log _{b} x}$
Thus, $\log _{a} x, \log _{b} x, \log _{c} x$ are in H.P.
122. Let r be the common ratio of the G.P. and d be the common difference of the A.P.
$\log a_{n}-b_{n}=\log a+n \log r-(b+n d)=\log a-b$
$\Rightarrow n \log r-n d=0 \Rightarrow \log r=d \Rightarrow b=r^{\frac{1}{d}}$.
123. Given $\log _{3} 2, \log _{3}\left(2^{x}-5\right)$ and $\log _{3}\left(2^{x}-\frac{7}{2}\right)$ are in A.P.

$$
\begin{aligned}
& \Rightarrow 2 \log _{3}\left(2^{x}-5\right)=\log _{3}\left(2^{x}-\frac{7}{2}\right)+\log _{3} 2 \\
& \Rightarrow\left(2^{x}-5\right)^{2}=2\left(2^{x}-\frac{7}{2}\right)
\end{aligned}
$$

Let $z=2^{x}$, then
$z^{2}-10 x+25=2 z-7 \Rightarrow z^{2}-12 z+32=\Rightarrow z=4,8$
$\Rightarrow x=2,3$, however, if $x=2$ then $2^{x}-5<0$ so only acceptable value of x is 3 .
124. Let $\log _{2} 7$ is a rational number i.e. $\log _{2} 7=\frac{p}{q}$, where $p, q \in \mathbb{\square}$
$\Rightarrow 7=2^{\frac{p}{q}} \Rightarrow 7^{q}=2^{q}$
However, integral power of 7 is an odd number while that of 2 is an even number. Thus, by contradiction $\log _{2} 7$ is irrational number.
125. Given, $\log _{0.5}(x-2)<\log _{0.25}(x-2)$
$\Rightarrow(x-2)^{2}>x-2 \Rightarrow(x-2)(x-3)>0$
Thus, $x>3$ for logarithm function to be defined.

Answers of Chapter 2

Progressions

1. Given $t_{n}=2 n^{2}+1 \Rightarrow t_{n-1}=2(n-1)^{2}+1$
$\therefore d=t_{n}-t_{n-1}=4 n-2$, which is not constant. Hence, the sequence is not in A.P.
2. Given, $t_{1}=1, t_{2}=2$ and $t_{n+2}=t_{n}+t_{n+1}$
$\therefore t_{3}=t_{1}+t_{2}=3, t_{4}=t_{2}+t_{3}=5, t_{5}=t_{3}+t_{4}=8$.
3. Given $t_{n}=3 n+5 \Rightarrow t_{1}=3 \times 1+5=8, t_{2}=3 \times 2+5=11, t_{3}=3 \times 3+5=14$. So the seuquence is $8,11,14, \ldots, 3 n+5$.
4. Given $t_{n}=2 n^{2}+3 \Rightarrow t_{1}=2 \times 1^{2}+3=5, t_{2}=2 \times 2^{2}+3=11, t_{3}=2 \times 3^{2}+5=23$. So the sequence is $5,11,23, \ldots, 2 n^{2}+3$.
5. Given, $t_{n}=\frac{3 n}{2 n+4} \Rightarrow t_{1}=\frac{3 \times 1}{2 \times 1+4}=\frac{3}{6}=\frac{1}{2}, t_{2}=\frac{3 \times 2}{2 \times 2+4}=\frac{6}{8}=\frac{3}{4}, t_{3}=\frac{3 \times 3}{2 \times 3+4}=\frac{9}{10}$. So the sequence is $\frac{1}{2}, \frac{3}{4}, \frac{9}{10}, \cdots, \frac{3 n}{2 n+4}$.
6. Given, $t_{1}=2, t_{n+1}=\frac{2 t_{n}+1}{t_{n}+3} \Rightarrow t_{2}=\frac{2 t_{1}+1}{t_{1}+3}=\frac{2 \times 1+1}{1+3}=\frac{3}{4}, t_{3}=\frac{2 t_{2}+1}{t_{2}+3}=\frac{2 \times \frac{3}{4}+1}{\frac{3}{4}+3}=\frac{10}{15}=\frac{2}{3}$. So the sequence is $2, \frac{3}{4}, \frac{2}{3}, \cdots$.
7. Given, $t_{n}=4 n^{2}+1 \Rightarrow t_{n-1} 4(n-1)^{2}+1$ $\therefore d=t_{n}-t_{n-1}=8 n-4$, which is not constant. Hence the sequence is not in A.P.
8. Given $t_{n}=2 a n+b \Rightarrow t_{n-1}=2 a(n-1)+b$ $\therefore d=t_{n}-t_{n-1}=2 a$. which is a constant. Hence the sequence will be an A.P.
9. Given, $t_{1}=3, t_{2}=3, t_{3}=6$ and $t_{n+2}=t_{n}+t_{n+1}$
$\therefore t_{4}=t_{2}+t_{3}=3+6=9$ and $t_{5}=t_{3}+t_{4}=6+9=15$.
10. $t_{1}=1=a+b+c, t_{2}=5=4 a+2 b+c$ and $t_{3}=11=9 a+3 b+c$
$\therefore t_{2}-t_{1}=4=3 a+b$ and $t_{3}-t_{2}=6=5 a+b$
$\Rightarrow 2 a=2 \Rightarrow a=1 \Rightarrow b=1 \Rightarrow c=-1$
$\Rightarrow t_{10}=1 \times 10^{2}+1 \times 10-1=109$.
11. Difference between successive terms i.e. commond difference, $d=12-9=15-12=$ $18-15=3$ which is a constant, hence, the given sequence is an A.P.

Here first term $t_{1}=9$ and $d=3 \therefore t_{16}=9+(16-1) 3=54$ and $t_{n}=9+(n-1) 3=$ $3(n+2)$.
12. $t_{1}=\log a, t_{2}=\log (a b)=\log a+\log b, t_{3}=\log \left(a b^{2}\right)=\log a+2 \log b$
$t_{2}-t_{1}=t_{3}-t_{2}=\log b$. Clearly, $t_{1}=\log a, d=\log b$ which is constant so the sequence is an A.P.
$\therefore t_{n}=\log a+(n-1) \log b=\log \left(a b^{n-1}\right)$.
13. Given, $t_{n}=5-6 n \Rightarrow t_{1}=5-6=-1$
$S_{n}=\frac{n}{2}\left[t_{1}+t_{n}\right]=n(2-3 n)$.
14. $d=7-3=11-7=4, t_{n}=407=3+(n-1) d \Rightarrow n=\frac{404}{4}+1=102$.
15. Since a, b, c, d, e are in A.P. $\therefore a+e=b+d=2 c=k$ (say)
$\therefore a-4 b+6 c-4 d+e=(a+e)-4(b+d)+3.2 c=k-4 k+3 k=0$.
16. Let a be the first term and d be the common difference of the given A.P.

Given, $5 t_{5}=8 t_{8} \Rightarrow 5 a+20 d=8 a+56 d \Rightarrow 3 a=-36 d \Rightarrow a=-12 d$
$\Rightarrow t_{13}=a+12 d=0$.
17. Let nth term be the smallest positive number. From the sequence we obtain that $t_{1}=25$ and $d=-2 \frac{1}{4}=-\frac{9}{4}$.

Then $t_{n}>0 \Rightarrow 25-(n-1) \frac{9}{4}>0 \Rightarrow n<\frac{25 \times 4}{9}+1 \Rightarrow n=12$.
18. The given pay scale represents an A.P. with $t_{1}=700, d=40$ and $t_{n}=1500$.
$\therefore t_{n}=t_{1}+(n-1) d \Rightarrow n=\frac{t_{n}-t_{1}}{d}+1=\frac{1500-700}{40}+1=21$.
Thus, the person will reach maximum payment in 21 years.
19. Let a be the first term and d be the common difference of the A.P. According to the question,
$t_{7}=a+6 d=34$ and $t_{13}=a+12 d=64$
Subtracting $6 d=30 \Rightarrow d=5 \Rightarrow a=4$. So the A.P. is $4,9,14, \ldots$
20. If 55 is the nth term then n will have to be an integer. From the given sequence $a=1, d=3-1=5-3=2$.
$55=1+(n-1) 2 \Rightarrow n=28$, which is an integer and hence, 55 will be 28 th term of the A.P.
21. From the given sequence $a=2000, d=1995-2000=1990-1995=-5$.

Let nth term be first negative term, then, $a+(n-1) d<0 \Rightarrow 2000-(n-1) 5<0$ $\Rightarrow n>401 \Rightarrow n=402 \Rightarrow t_{402}=2000-(402-1) 5=-5$.
22. Common different of the sequence $2,4,6,8, \ldots$ is 2 and common difference of the seqquence $3,6,9, \ldots$ is 3 .

Thus, common terms will have a common different which is L.C.M. of these two commond differences i.e. 6 .

Last term of first sequence is 200 and last term of second sequence is 240 . Clearly, last identical(common) number will be less than 200 . We also observe that 6 is the first identical term. Let there be n such terms. Then
$6+(n-1) 6 \leq 200 \Rightarrow n \leq \frac{194}{6}+1 \Rightarrow n=33$. Thus there will be 33 identical terms in the two given A.P.
23. Clearly the first number of three digits divisible by 5 is 100 ; while the last such number is 995 . Since these numbers are all divisible by 5 they will form an A.P. with common difference 5.

Clearly, $t_{1}=100, t_{n}=995, d=5$ and we have to find n.
$t_{n}=995=100+(n-1) 5 \Rightarrow n=180$.
24. Given sequence is $4,9,14, \ldots$ So $a=4, d=9-4=14-9=5$. Let 105 be nth term of this A.P. then n has to be an integer for this assumption to be true.
$105=4+(n-1) 5 \Rightarrow n=\frac{106}{5}$ which is not an integer and therefore 105 is not a term in the given A.P.
25. This problem is same as problem 21 and has been left as an exercise.
26. This problem is same as problem 22 and has been left as an exercise.
27. Let a be the first term and d be the common difference of the A.P. Given,

$$
\begin{aligned}
& m t_{m}=n t_{n} \Rightarrow m a+(m-1) m d=n a+(n-1) n d \Rightarrow(m-n) a=\left(n^{2}-n-m^{2}+m\right) d \\
& \Rightarrow a=-(m+n-1) d \therefore t_{m+n}=a+(m+n-1) d=0
\end{aligned}
$$

28. Let x be the first term and y be the common difference of the A.P. Then,
$a=x+(p-1) y, b=x+(q-1) y, c=x+(r-1) y$
We have to prove that $a(q-r)+b(r-p)+c(p-q)=0$.
Substituting the values of a, b and c in the above equation

$$
\begin{aligned}
& \text { L.H.S. }=[x+(p-1) y](q-r)+[x+(q-1) y](r-p)+[x+(r-1) y](p-q) \\
& =x(q-r+r-p+p-q)+y[(p-1)(q-r)+(q-1)(r-p)+(r-1)(p-q)] \\
& =0=\text { R.H.S. }
\end{aligned}
$$

29. First number after 100 which is divisible by 7 is 105 . The last number divisible by 7 before 1000 is 994 .

Let n be the numbers divisible by 7 between 100 and 1000 . Then $994=105+(n-1) 7$ $\Rightarrow n=128$. Then no. of numbers not divisible by 7 is $1000-100-128=772$.
30. Let x be the first term and y be the common difference of the A.P. Then, $a=x+(p-1) y, b=x+(q-1) y, c=x+(r-1) y$

We have to prove that $(a-b) r+(b-c) p+(c-a) q=0$

Substituting the values of a, b and c in the above equation
L.H.S. $=(p-q) y r+(q-r) y p+(r-p) y q=0=$ R.H.S.
31. Let the numbers in A.P. be $a-d, a$ and $a+d$. Given their sum is 27 and sum of squares is 293 .
$\therefore a-d+a+a+d=27 \Rightarrow a=9$
$\therefore(a-d)^{2}+a^{2}+(a+d)^{2}=293 \Rightarrow 3 a^{2}+2 d^{2}=293 \Rightarrow 3 \times 81+2 d^{2}=293$
$\Rightarrow 2 d^{2}=50 \Rightarrow d= \pm 5$
So the numbers are $4,9,14$ or $14,9,4$.
32. Let the numbers in A.P. be $a-3 d, a-d, a+d, a+3 d$. Given their sum is 24 and product is 945 .
$\therefore a-3 d+a-d+a+d+a+3 d=24 \Rightarrow 4 a=24 \Rightarrow a=6$
Also, $(a-3 d)(a-d)(a+d)(a+3 d)=945 \Rightarrow\left(a^{2}-9 d^{2}\right)\left(a^{2}-d^{2}\right)=945$
$\Rightarrow a^{4}-10 a^{2} d^{2}+9 d^{4}=945 \Rightarrow 9 d^{4}-360 d^{2}+1296-945=0$
$\Rightarrow 9 d^{4}-360 d^{2}+351=0 \Rightarrow d^{4}-40 d^{2}+39=0$
$\Rightarrow\left(d^{2}-1\right)\left(d^{2}-39\right)=0$. Since the numbers are integers $\Rightarrow d^{2} \neq 39$.
$\Rightarrow d= \pm 1$. So the numbers are $3,5,7,9$ or $9,7,5,3$.
33. Let a be the first term and d be the common ratio of the A.P. Given,
$t_{p}=a+(p-1) d=q$ and $t_{q}=a+(q-1) d=p$
$\Rightarrow(p-q) d=q-p \Rightarrow d=-1 \Rightarrow a=p+q-1$
$\Rightarrow t_{p+q}=a+(p+q-1) d=p+q-1-(p+q-1)=0$.
34. Let a be the first term and d be the common ratio of the A.P.
$\Rightarrow t_{m}=a+(m-1) d, t_{2 n+m}=a+(2 n+m-1) d$
$\Rightarrow t_{m}+t_{2 n+m}=2 a+(2 m+2 n-2) d=2[a+(m+n-1) d]=2 t_{m+n}$
35. Let the three numbers be $a-d, a, a+d$. Given that their sum is 15 and sum of their square is 83 .
$\Rightarrow a-d+a+a+d=15 \Rightarrow 3 a=15 \Rightarrow a=5$
$\Rightarrow(a-d)^{2}+a^{2}+(a+d)^{2}=83 \Rightarrow 3 a^{2}+2 d^{2}=83 \Rightarrow 3 \times 5^{2}+2 d^{2}=83^{2}$
$\Rightarrow d= \pm 2$. So the numbers are $3,5,7$ or $7,5,3$.
36. This problem is similar to previous problem and has been left as an exercise.
37. Let the three numbers be $a-d, a, a+d$. Given their sum as 12 and sum of cubes as 408.
$\therefore a-d+a+a+d=12 \Rightarrow 3 a=12 \Rightarrow a=4$
$\therefore(a-d)^{3}+a^{3}+(a+d)^{3}=3 a^{3}+6 a d^{2}=408 \Rightarrow 24 d^{2}=216 \Rightarrow d= \pm 3$
Hence, the numbers are $1,4,7$ or $7,4,1$.
38. Let the numbers in A.P. be $a-3 d, a-d, a+d, a+3 d$. Given their sum is 24 and product of first and fourth to product of second and third is $2: 3$.
$\therefore a-3 d+a-d+a+d+a+3 d=20 \Rightarrow 4 a=20 \Rightarrow a=5$
$\therefore \frac{(a-3 d)(a+3 d)}{(a-d)(a+d)}=\frac{2}{3}$
$\Rightarrow 3 a^{2}-27 d^{2}=2 a^{2}-2 d^{2} \Rightarrow a^{2}=25 d^{2} \Rightarrow d= \pm 1$.
Therefore numbers are $2,4,6,8$ or $8,6,4,2$.
39. Let the three numbers be $a-d, a, a+d$. Given their sum is -3 and product is 8 .
$\therefore a-d+a+a+d=-3 \Rightarrow 3 a=-3 \Rightarrow a=-1$
$\therefore(a-d) \cdot a \cdot(a+d)=8 \Rightarrow a^{2}-d^{2}=-8 \Rightarrow d= \pm 3$
Hence the numbers are $-4,-1,2$ or $2,-1,-4$.
40. This problem is similar to problem 38 and has been left as an exercise.
41. Given $\frac{b+c-a}{a}, \frac{c+a-b}{b}, \frac{a+b-c}{c}$ are in A.P.

Adding 2 to each term will give us another A.P. [refer properties of A.P.]
$\therefore \frac{a+b+c}{a}, \frac{a+b+c}{b}, \frac{a+b+c}{c}$ will be in A.P.
Dividing each term with $a+b+c$ will yield another A.P.
$\therefore \frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ will be in A.P.
42. Given a, b, c are in A.P.

Dividing each term by $a b c$ will yield another A.P.
$\therefore \frac{1}{b c}, \frac{1}{c a}, \frac{1}{a b}$ will be in A.P.
Multiplying each term with $a b c+1$ will yield another A.P.
$\therefore a+\frac{1}{b c}, b+\frac{1}{c a}, c+\frac{1}{a b}$ will be in A.P.
43. Given a, b, c are in A.P. $\therefore b-a=c-b$
$\Rightarrow \frac{1}{b-a}=\frac{1}{c-b} \Rightarrow \frac{a b+b c+c a}{b-a}=\frac{a b+b c+c a}{c-b}$
$\Rightarrow a b(b-a)+c\left(b^{2}-a^{2}\right)=b c(c-a)+a\left(c^{2}-b^{2}\right)$
$\Rightarrow b^{2} a+b^{2} c-a^{2} b-a^{2} c=c^{2} a+c^{2} b-b^{2} c-b^{2} a \Rightarrow b^{2}(a+c)-a^{2}(b+c)=c^{2}(a+b)-$ $b^{2}(c+a)$
$\therefore a^{2}(b+c), b^{2}(c+a), c^{2}(a+b)$ are in A.P.
44. We will prove this in reverse. We assume that $\frac{1}{\sqrt{b}+\sqrt{c}}, \frac{1}{\sqrt{c}+\sqrt{a}}, \frac{1}{\sqrt{a}+\sqrt{b}}$ are in A.P.
$\Rightarrow \frac{1}{\sqrt{c}+\sqrt{a}}-\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{c}+\sqrt{a}}$
$\Rightarrow \frac{2}{\sqrt{c}+\sqrt{a}}=\frac{1}{\sqrt{b}+\sqrt{c}}+\frac{1}{\sqrt{a}+\sqrt{b}}$
$\Rightarrow \frac{2}{\sqrt{c}+\sqrt{a}}=\frac{\sqrt{a}+\sqrt{b}+\sqrt{b}+\sqrt{c}}{(\sqrt{b}+\sqrt{c})(\sqrt{a}+\sqrt{b})}$
$\Rightarrow 2(\sqrt{b}+\sqrt{c})(\sqrt{a}+\sqrt{b})=(\sqrt{c}+\sqrt{a})(\sqrt{a}+2 \sqrt{b}+\sqrt{c})$
$\Rightarrow 2(\sqrt{a b}+b+\sqrt{a c}+\sqrt{b c})=\sqrt{a c}+2 \sqrt{b c}+c+a+2 \sqrt{a b}+\sqrt{a c}$
$\Rightarrow 2 b=a+c$, which implies that a, b, c are in A.P. So the reverse is also true.
45. Given a, b, c are in A.P.

Dividing each term by $a b c$ will yield another A.P.
$\Rightarrow \frac{1}{b c}, \frac{1}{c a}, \frac{1}{a b}$ will be in A.P.
Multiplying each term with $a b+b c+c a$ will yield another A.P.
$\Rightarrow \frac{a b+c a}{b c}+1, \frac{a b+b c}{c a}+1, \frac{b c+c a}{a b}+1$ will be in A.P.
Subtracting 1 from each term yields desired terms in A.P.
46. We have to prove that $\frac{1}{b-c}, \frac{1}{c-a}, \frac{1}{a-b}$ are in A.P.
i.e. $\frac{1}{c-a}-\frac{1}{b-c}=\frac{1}{a-b}-\frac{1}{c-a}$
$\Rightarrow \frac{b-2 c+a}{(c-a)(b-c)}=\frac{c-2 a+b}{(a-b)(c-a)}$
$\Rightarrow(a+b-2 c)(a-b)=(b+c-2 a)(b-c)$
Now, given that $(b-c)^{2},(c-a)^{2},(a-b)^{2}$ are in A.P.
$\Rightarrow(c-a)^{2}-(b-c)^{2}=(a-b)^{2}-(c-a)^{2}$
$\Rightarrow(b-a)(2 c-a-b)=(c-b)(2 a-b-c)$
Thus, we have proven the desierd result.
47. Given a, b, c are in A.P.

Subtracting a, b, c from each term will yield another A.P.
$\Rightarrow-(b+c),-(c+a),-(a+b)$ will be in A.P.
Multiplying each term with -1 will yield the desired A.P.
48. We have to prove that $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P.
i.e. $\frac{1}{c+a}-\frac{1}{b+c}=\frac{1}{a+b}-\frac{1}{c+a}$
$\Rightarrow \frac{b-a}{(b+c)}=\frac{c-b}{(a+b)}$
$\Rightarrow b^{2}-a^{2}=c^{2}-b^{2} \Rightarrow a^{2}, b^{2}, c^{2}$ are in A.P.
Thus, we have proven the desired result in reverse.
49. Given that a, b, c are in A.P. $\Rightarrow b-a=c-b=k$ (say)
$\Rightarrow c-a=2 k \Rightarrow 2(a-b)=a-c=2(b-c)=-2 k$.
50. Given that a, b, c are in A.P. Let $b=a+d \Rightarrow c=a+2 d$

Now, $(a-c)^{2}=4 d^{2}, 4\left(b^{2}-a c\right)=4\left[(a+d)^{2}-a(a+2 d)\right]=4 d^{2}$
$\Rightarrow(a-c)^{2}=4\left(b^{2}-a c\right)$
51. Let $n=2 m+1$ where $m \in N . \Rightarrow S_{1}=\frac{n}{2}\left[t_{1}+t_{n}\right]$ where d is the commond difference.

For S_{2} the no. of terms will be $m . \Rightarrow S_{2}=\frac{m}{2}\left[t_{2}+t_{n-1}\right]$
We know that $t_{1}+t_{n}=t_{2}+t_{n-1}$
$\therefore \frac{S_{1}}{S_{2}}=\frac{n}{m}=\frac{n}{\frac{n-1}{2}}=\frac{2 n}{n-1}$.
52. The degree is the highest power of x which will be $1+6+11+\cdots+101$.

Clearly, the above sequence is an A.P. having first term 1 , common difference 5 and last term as 101.
$n=\frac{t_{n}-t_{1}}{d}+1=\frac{101-1}{5}+1=21$.
$\Rightarrow S=\frac{21}{2}\left[t_{1}+t_{n}\right]=\frac{21}{2}[1+101]=21 \times 51=1071$
Therefore, the degree of the polynomial will be 1071.
53. Consider an A.P. with first term as a, commond difference as d and no. of terms as n. Then sum is given by
$S=\frac{n}{2}[2 a+(n-1)] d=\frac{n^{2} d^{2}}{2}+\frac{(2 a-d) n}{2}$
which is of the form $A n^{2}+B n$ where $A=\frac{d^{2}}{2}$ and $B=\frac{2 a-d}{2}$.
54. Let the common difference of the A.P. be d.
L.H.S. $\left.=a_{1}^{2}-a_{2}^{2}+a_{3}^{2}-a\right) 4^{2}+\cdots+a_{2 n-1}^{2}-a_{2 n}^{2}$
$=\left(a_{1}-a_{2}\right)\left(a_{1}+a_{2}\right)+\left(a_{3}-a_{4}\right)\left(a_{3}+a_{4}\right)+\cdots+\left(a_{2 n-1}-a_{2 n}\right)\left(a_{2 n-1}+a_{2 n}\right)$
$=-d\left(a_{1}+a_{2}+a_{3}+a_{4}+\cdots+a_{2 n-1}+a_{2 n}\right)$
$=-\frac{2 n d}{2}\left[a_{1}+a_{2 n}\right]$
$=\frac{n}{2 n-1}\left(a_{1}^{2}-a_{2 n}^{2}\right)\left[\because d=\frac{a_{2 n}-a_{1}}{2 n-1}\right]$
55. We know that sum of equidistant terms from start and end of an A.P. is equal.

$$
\therefore a_{1}+a_{24}=a_{5}+a_{20}=a_{10}+a_{15}=k(\text { say })
$$

$\therefore a_{1}+a_{5}+a_{10}+a_{15}+a_{24}=3 k=225 \Rightarrow k=75$
Sum of first 24 terms $S=a_{1}+a_{2}+\cdots+a_{24}=\frac{24}{2}\left[a_{1}+a_{24}\right]=12 \times 75=600$.
56. Let a be the first term and d be the common difference. Also let S_{1} denote the sum of first $3 n$ terms and S_{2} denote the sum of next n terms.
$S_{1}=\frac{3 n}{2}[2 a+(3 n-1) d], S_{2}=\frac{n}{2}[2 a+6 n d+(n-1) d]\left[\because t_{3 n+1}=a+3 n d\right]$
Given, $S_{1}=S_{2} \Rightarrow \frac{3 n}{2}[2 a+(3 n-1) d]=\frac{n}{2}[2 a+6 n d+(n-1) d]$
$\Rightarrow 6 a+(9 n-3) d=2 a+(7 n-1) d \Rightarrow 2 a+(n-2) d=0$
Let S_{3} be sum of first $2 n$ terms and S_{4} be sum of next $2 n$ terms, then
$\frac{S_{3}}{S_{4}}=\frac{\frac{2 n}{2}[2 a+(2 n-1) d]}{\frac{2 n}{2}[2 a+4 n d+(2 n-1)] d}$
$\Rightarrow=\frac{n d}{5 n d}=\frac{1}{5}[\because 2 a+(n-1) d=0 x s]$
57. Given $S_{n}=5 n^{2}+3 n \Rightarrow t_{n}=S_{n}-S_{n-1}=5 n^{2}+3 n-5(n-1)^{2}-3(n-1)$
$=10 n-5+3=10 n-2 \Rightarrow d=t_{n}-t_{n-1}=10 n-2-10(n-1)+2=10$,
Since common difference is a constant the series is in A.P.
58. Common difference of the series $d=\left(a^{2}+b^{2}\right)-(a+b)^{2}=(a-b)^{2}-\left(a^{2}+b^{2}\right)=-2 a b$
$S=\frac{n}{2}\left[2(a+b)^{2}-(n-1) 2 a b\right]=\frac{n}{2}\left[2 a^{2}+2 b^{2}-2(n+1) a b\right]$ $=n\left[a^{2}+b 62-(n+1) a b\right]$.
59. There will be two cases. First n being odd and second n being even.

Case I: When n is odd i.e. $n=2 m+1$, where $m=0,1,2, \ldots$
$S=1+5+9+\cdots$ up to $m+1$ terms $-3-7-11$ up to m terms
$=\frac{m+1}{2}[2+4 m]-\frac{m}{2}[6+4 m-4]=(m+1)(1+2 m)-m(2 m+1)$
$=2 m^{2}+3 m+1-2 m^{2}-m=2 m+1=n$.
Case II: When n is even i.e. $n=2 m$, where $m=1,2,3, \ldots$
$S=1+5+9+\cdots$ up to m terms $-3-7-11$ up to m terms
$=\frac{m}{2}[2+4 m-4]-\frac{m}{2}[6+4 m-4]=-2 m=-n$.
60. Let there be n sides of the polygon. From geometry, we know that sum of angles of the polygon $=(n-2) 180^{\circ}$

From the formula for sum of an A.P. $S=\frac{n}{2}\left[2 \times 120^{\circ}+(n-1) 5^{\circ}\right]=(n-2) 180^{\circ}$
$\left.\frac{n}{[} 240^{\circ}+(n-1) 5^{\circ}\right]=(n-2) 360^{\circ} \Rightarrow n\left[48^{\circ}+(n-1)\right]=(n-2) 72^{c}$ irc
$\Rightarrow n^{2}-25 n+144=0 \Rightarrow n=9,16$
61. To water first tree the gardener will have to travel 10 m . To water second tree he will have tp travel back 10 m to well and then 15 m to the tree i.e. 25 m . Similarly, for third tree he will have to travel 15 m to well and 20 m i.e a total of 35 m .

Thus, total distance travelled will be $10+25+35+\cdots$
Clearly, 25 will be the first term of the A.P. and there will be 24 such terms because distance travelled for first tree is noty part of the A.P. Note that common difference would be 10 .

Total distance travelled $=10+\frac{24}{2}[2 \times 25+(24-1) 10]=10+3360=3370 \mathrm{~m}$.
62. Let d be the common difference. Given $S_{p}=0 \Rightarrow \frac{p}{2}[2 a+(p-1) d]=0$
$\Rightarrow 2 a+(p-1) d=0 \Rightarrow d=\frac{2 a}{1-p}$
$p+1$ th term $t_{p+1}=a+p d$, so the sum of next q terms $S=\frac{q}{2}[2 a+2 p d+(q-1) d]$
$=\frac{q}{2}[2 a+(2 p+q-1) d]=\frac{q}{2}\left[2 a+(2 p+q-1) \cdot \frac{2 a}{1-p}\right]$
$=\frac{q}{2}\left[\frac{2 a \cdot(p+q)}{1-p}\right]=-\frac{a(p+q)}{p-1} q$.
63. Sum of first p terms, $S_{p}=\frac{p}{2}[2 a+(p-1) d]$; sum of first q terms $S_{q}=\frac{q}{2}[2 a+(q-1) d]$
$2 a p+\left(p^{2}-p\right) d=2 a q+\left(q^{2}-q\right) d \Rightarrow 2 a(p-q)=\left(q^{2}-p^{2}+p-q\right) d$
$2 a=(1-p-q) d$
Sum of $(p+q)$ terms, $S_{p+q}=\frac{p+q}{2}[2 a+(p+q-1) d]=\frac{p+q}{2}[(1-p-q) d+(p+q-1) d]=$ 0.
64. Sum of latter half of $2 n$ terms means $n+1$ th term to $2 n$th term. $t_{n+1}=a+n d$ and $t_{2 n}=a+(2 n-1) d$ where a and d are the first term and common difference respectively.

Sum of latter half of terms, $S=\frac{n}{2}\left[t_{n+1}+t_{2 n}\right]=\frac{n}{2}[2 a+(3 n-1) d]$
Sum of first $3 n$ terms, $S_{3 n}=\frac{3 n}{2}[2 a+(3 n-1) d]$
Clearly, $S / S_{3 n}=1: 3$.
65. Let S_{r} be the r th A.P. whose first term is r and common difference is also r.
$S_{r}=\frac{n}{2}[2 r+(n-1) r]=\frac{n}{2}[(n+1) r]=\frac{n(n+1) r}{2}$
$S_{1}+S_{2}+S_{3}+\cdots+S_{p}=\sum_{r=1}^{p} S_{r}$
$=\frac{n(n+1)}{2} \sum_{r=1}^{p} r=\frac{n p}{4}(n+1)(p+1)\left[\because \sum_{i=1}^{n} i=\frac{n(n+1)}{2}\right]$.
66. Let x be the first term and y be the common difference of the A.P.

Then, according to the question $a=\frac{p}{2}[2 x+(p-1) y], b=\frac{q}{2}[2 x+(q-1) y], c=$ $\frac{r}{2}[2 x+(r-1) y]$

We have to prove that $\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
L.H.S. $=x(q-r+r-p+p-q)+\frac{y}{2}[(p-1)(q-r)+(q-1)(r-p)+(r-1)(p-q)]$ $=0$.
67. Let a be the first term and d be the common difference of the A.P.

Given, $S_{m}=\frac{1}{2} S_{m+n} \Rightarrow \frac{m}{2}[2 a+(m-1) d]=\frac{1}{2} \cdot \frac{m+n}{2}[2 a+(m+n-1) d]$
Let $2 a+(m-1) d=x$, then the above equation can be written as
$m x=\frac{m+n}{2}[x+n d] \Rightarrow 2 m x=(m+n)[x+n d] \Rightarrow m x=n(x+n d)+m n d$
$\Rightarrow(m-n) x=(m+n) n d$
Similarly, $(m-p) x=(m+p) p d$
Dividing, we get
$(m-n)(m+p) p=(m+n)(m-p) n$
Dividing both sides with $m n p$ we arrive at the desired result.
68. Let a be the first term and d be the common difference of the A.P. For odd terms, the no. of terms will be $n+1$, first term will be a and common difference will be $2 d$.
$\therefore S_{\text {odd }}=\frac{n+1}{2}[2 a+2 n d]$
For even terms, the no. of terms will be n, first term will be $a+d$ and common difference will be $2 d$.
$\therefore S_{\text {even }}=\frac{n}{2}[2 a+2 d+2(n-1) d]=\frac{n}{2}[2 a+2 n d]$
$\therefore \frac{S_{\text {odd }}}{S_{\text {even }}}=\frac{n+1}{n}$.
69. Let a_{1} and a_{2} be the first terms and d_{1} and d_{2} be the common differences of the two series in A.P.

Given, $\frac{\frac{n}{2}\left[2 a_{1}+(n-1) d_{1}\right]}{\frac{n}{2}\left[2 a_{2}+(n-1) d_{2}\right]}=\frac{3 n-12}{5 n+21}$
$\Rightarrow \frac{2 a_{1}+(n-1) d_{1}}{2 a_{2}+(n-1) d_{2}}=\frac{3 n-13}{5 n+21}$
We need to find ratio of the 24 th terms i.e. $\frac{a_{1}+23 d_{1}}{a_{2}+23 d_{2}}=\frac{2 a_{1}+46 d_{1}}{2 a_{2}+46 d_{2}}$
Putting $n=47$ in the ratio of sums, we have
$\frac{2 a_{1}+46 d_{1}}{2 a_{2}+46 d_{2}}=\frac{3 \times 47-13}{5 \times 47+21}=\frac{1}{2}$
70. Let a be the first term and d be the common difference of the A.P.

Given, $t_{m}=a+(m-1) d=\frac{1}{n}, t_{n}=a+(n-1) d=\frac{1}{m}$
Subtracting, we get $(m-n) d=\frac{m-n}{m n} \Rightarrow d=\frac{1}{m n} \Rightarrow a=\frac{1}{m n}$
$\therefore S_{m n}=\frac{m n}{2}\left[\frac{2}{m n}+\frac{m n-1}{m n}\right]=\frac{m n+1}{2}$.
71. Let a be the first term and d be the common difference of the A.P.

Given, $S_{m}=n=\frac{m}{2}[2 a+(m-1) d] \Rightarrow 2 a+(m-1) d=\frac{2 n}{m}$
and $S_{n}=m=\frac{n}{2}[2 a+(n-1) d] \Rightarrow 2 a+(n-1) d=\frac{2 m}{n}$
$\Rightarrow d=-\frac{2(m+n)}{m n} \Rightarrow a=\frac{m^{2}+n^{2}+m n-m-n}{m n}$
$\Rightarrow S_{m+n}=\frac{m+n}{2}[2 a+(m+n-1) d]=-(m+n)$.
72. Let a be the first term and d be the common difference of the A.P.
$\therefore S=\frac{2 n+1}{2}[2 a+2 n d]$
For S_{1} first term would be a, common difference would be $2 d$ and no. of terms would be $n+1$.
$\therefore S_{1}=\frac{n+1}{2}[2 a+2 n d]$
$\therefore \frac{S}{S_{1}}=\frac{2 n+1}{n+1}$.
73. Let d be the common difference, then $b=a+2 d \Rightarrow d=\frac{b-a}{2}$
$c=a+(n-1) d \Rightarrow n-1=\frac{c-a}{d}=\frac{2(c-a)}{b-a}$
$\Rightarrow n=\frac{2(c-a)}{b-a}+1$
$\therefore S=\frac{n}{2}[2 a+(n-1) d]=\frac{1}{2}\left[\frac{2(c-a)}{b-a}+1\right]\left[2 a+\frac{2(c-a)}{b-a} \cdot \frac{b-a}{2}\right]$
$=\frac{c+a}{2}+\frac{c^{2}-a^{2}}{b-a}$.
74. Let a_{1}, a_{2} be the first terms and d_{1}, d_{2} be the common differences of the two series in A.P.

According to the question $\frac{2 a_{1}+(n-1) a_{1}}{2 a_{2}+(n-1) d_{2}}=\frac{3 n+8}{7 n+15}$.
We have to find ratio of 12 th terms i.e. $\frac{a_{1}+11 d_{1}}{a_{2}+11 d_{2}}=\frac{2 a_{1}+22 d_{1}}{2 a_{2}+22 d_{2}}$
Putting $n=23$ in previous equation, we get
$\frac{2 a_{1}+22 d_{1}}{2 a_{2}+22 d_{2}}=\frac{77}{176}=\frac{7}{16}$.
75. Let a be the first term and d be the common difference of the A.P.

Given, $\frac{S_{m}}{S_{n}}=\frac{\frac{m}{2}[2 a+(m-1) d]}{\frac{n}{2}[2 a+(n-1) d]}=\frac{m^{2}}{n^{2}}$
$\Rightarrow \frac{2 a+(m-1) d}{2 a+(n-1) d}=\frac{m}{n}$
$\Rightarrow 2 a(n-m)+[(m-1) n-(n-1) m] d=0 \Rightarrow a=\frac{d}{2}$
We have to find $\frac{t_{m}}{t_{n}}=\frac{a+(m-1) d}{a+(n-1) d}=\frac{2 m-1}{2 n-1}$
76. Let n be the no. of terms. Clearly, common ratio $r=\frac{20}{5}=\frac{80}{20}=4$

Then $t_{n}=5120=5 \cdot r^{n-1} \Rightarrow 4^{n-1}=1024=4^{5} \Rightarrow n=6$.
77. Let n be the no. of terms. Clearly, common ratio $r=\frac{0.06}{0.03}=\frac{0.12}{0.06}=2$

Then $t_{n}=3.84=0.03 r^{n-1} \Rightarrow 2^{n-1}=128 \Rightarrow n=8$.
78. From the question we deduce that it is a G.P. with $a=1, r=2, n=20$. We have to find t_{20}.
$t_{20}=1.2^{20-1}=524288$.
79. This is a G.P. with $a=20000, r=1.02, n=11$. We have to find t_{11}.
$t_{11}=20000 \times(1.02)^{11-1}=24380$.
80. Given, $S_{n}=2^{n}-1 \Rightarrow t_{n}=S_{n}-S_{n-1}=2^{n}-1-\left(2^{n-1}-1\right)=2^{n-1}$
$r=\frac{t_{n}}{t_{n-1}}=\frac{2^{n-1}}{2^{n-2}}=2$, which is a constant and hence the sequence is in G.P.
81. Let the first term of the G.P. be a and common ratio is r.

Then $t_{2}=a r=24$ and $t_{5}=a r^{4}=81$, Dividing, we have $r^{3}=\frac{81}{24}=\frac{27}{8}$
$\Rightarrow r=\frac{3}{2} \Rightarrow a=16$.
Hence the G.P. is $16,24,36,54,81, \ldots$.
82. Let the first term of the G.P. be a and common ratio is r.

Given $t_{7}=8 t_{4} \Rightarrow a r^{6}=8 a r^{3} \Rightarrow r=2$. Also given, $t_{5}=48 \Rightarrow a r^{4}=48$
$\Rightarrow a=3$. Hence, the G.P. is $3,6,12,24, \ldots$.
83. Let the first term of the G.P. be a and common ratio is r.

Given, $t_{5}=a r^{4}=48$ and $t_{8}=a r^{7}=384 \Rightarrow r^{3}=8 \Rightarrow r=2$ $\Rightarrow a=3$. Hence, the G.P. is $3,6,12,24, \ldots$.
84. Let the first term of the G.P. be a and common ratio is r.

Given $t_{6}=a r^{5}=\frac{1}{16}$ and $t_{10}=a r^{9}=\frac{1}{256} \Rightarrow r= \pm \frac{1}{2}$
$\Rightarrow a= \pm 2$. Hence the G.P. is $2,1, \frac{1}{2}, \ldots$ or $-2,1,-\frac{1}{2}, \ldots$.
85. Let the first term of the G.P. be x and common ratio is y. Then
$a=x y^{p-1}, b=x y^{q-1}, c=x y^{r-1}$
Taking \log of both sides for these three terms
$\log a=\log x+(p-1) \log y, \log b=\log x+(q-1) \log y, \log c=\log x+(r-1) \log y$
Clearly, $(q-r) \log a+(r-p) \log b+(p-q) \log r=0$.
86. Let the first term of the G.P. be x and common ratio is r.

Given, $t_{p+q}=a=x r^{p+q-1}$ and $t_{p-q}=b=x r^{p-q-1}$
Multiplying the two terms, we have $x^{2} r^{2 p-2}=\left(x r^{p-1}\right)^{2}=t_{p}^{2}=a b \Rightarrow t_{p}=\sqrt{a b}$.
87. Let a be the first term and b be the common ratio. Then,
$x=a b^{p-1}, y=a b^{q-1}, z=a b^{r-1}$
We have to prove that $x^{q-r} . y^{r-p} . z^{p-q}=1$
L.H.S. $=\left(a b^{p-1}\right)^{q-r} \cdot\left(a b^{q-1}\right)^{r-p} \cdot\left(a b^{r-1}\right)^{p-q}$
$=a^{(q-r+r-p+p-q)} b^{[(p-1)(q-r)+(q-1)(r-p)+(r-1)(p-q)]}$
$=a^{0} b^{0}=1=$ R.H.S.
88. Let r be the common ratio and first term is given as 1 .
$t_{3}+t_{5}=90 \Rightarrow r^{4}+r^{2}=90 \Rightarrow r^{2}=9 \Rightarrow r=p m 3$.
r^{2} cannot be -10 as that would mean that it is an imaginary number.
89. Let a be the first term and r be the common ratio of the G.P.

Gibem $t_{5}=a r^{4}=2$ and we have to find the product of the first nine terms. Let the required product be S.
$S=a . a r . a r^{2} \ldots . . a r^{8}=a^{9} r^{1+2+\cdots+8}=a^{9} r^{\frac{8.9}{2}}=a^{9} r^{36}=\left(a r^{4}\right)^{9}=2^{9}=512$.
90. Let a be the first term, r be the common ratio and n be the number of terms.

Given, $t_{4}=a r^{3}=10, t_{7}=a r^{6}=80, t_{n}=a r^{n-1}=2560$
$\therefore \frac{t_{7}}{t_{4}}=r^{3}=8 \Rightarrow r=2 \Rightarrow a=\frac{10}{8}$
$\Rightarrow \frac{10}{8} 2^{n-1}=2560 \Rightarrow 2^{n-1}=2048 \Rightarrow n=12$.
91. Let the three numbers in G.P. be $a, a r, a r^{2}$. According to question, on doubling $a r$ the numbers form an A.P.
$\Rightarrow 2 a r-a=a r^{2}-2 a r \Rightarrow r^{2}-4 r+1=0 \Rightarrow r=\frac{4 \pm \sqrt{12}}{2}=2 \pm \sqrt{3}$.
92. Given, p, q, r are in A.P. i.e. $q-p=r-q$.

Let x be the first term and y be the common ratio of the G.P. We have to prove that t_{p}, t_{q}, t_{r} are in G.P.
$\Rightarrow \frac{t_{q}}{t_{p}}=\frac{t_{r}}{t_{q}} \Rightarrow \frac{x y^{q-1}}{x y^{p-1}}=\frac{x y^{r-1}}{x y^{q-1}}$
$\Rightarrow y^{q-p}=y^{r-q}$ which is true from the condition for A.P.
93. Let r be the common ratio of the G.P. Then, $b=a r, c=a r^{2}, d=a r^{3}$
L.H.S. $=\left(a . a r+a r . a r^{2}+a r^{2} . a r^{3}\right)^{2}=a^{4} r^{2}\left(1+r^{2}+r^{4}\right)^{2}$
R.H.S. $=\left(a^{2}+a^{2} r^{2}+a^{2} r^{4}\right)\left(a^{2} r^{2}+a^{2} r^{4}+a^{2} r^{6}\right)=a^{2}\left(1+r^{2}+r^{4}\right) \cdot a^{2} r^{2}\left(1+r^{2}+r^{4}\right)$
$=a^{2} r^{4}\left(1+r^{2}+r^{4}\right)^{2}=$ L.H.S.
94. Given a, b, c are in A.P. $\Rightarrow 2 b=a+c$

If we increase a by 1 then they are in G.P. $\Rightarrow b^{2}=(a+1) c \Rightarrow b^{2}=(a+1)(2 b-a)$
$\Rightarrow b^{2}=2 a b-a^{2}+2 b-a \Rightarrow(a-b)^{2}=2 b-a$
If we increase c by 2 then again they are in G . $\mathrm{P} \Rightarrow b^{2}=a(c+2)=a(2 b-a+2)$
$\Rightarrow b^{2}=2 a b-a^{2}+2 a \Rightarrow(a-b)^{2}=2 a \Rightarrow 2 b-a=2 a \Rightarrow 2 b=3 a$
$\Rightarrow\left(a-\frac{3 a}{2}\right)^{2}=2 a \Rightarrow a=8 \Rightarrow b=12 \Rightarrow c=16$.
95. Let the three numbers in G.P. be $\frac{a}{r}, a, a r$. Then,
$\frac{a}{r}+a+a r=70$ and $10 a=\frac{4 a}{r}+4 a r \Rightarrow \frac{10 a}{4}=\frac{a}{r}+a r$
$\Rightarrow \frac{10 a}{4}+a=70 \Rightarrow a=20$
$\Rightarrow \frac{20}{r}+20 r=50 \Rightarrow r=2, \frac{1}{2}$
So the numbers are $10,20,40$ or $40,20,10$.
96. Let the three numbers in G.P. be $\frac{a}{r}, a, a r$. Given that product of these numbers is 216 .
$\Rightarrow \frac{a}{r} \cdot a \cdot a r=216 \Rightarrow a^{3}=216 \Rightarrow a=6$
Also, given that their sum is $19 \Rightarrow \frac{6}{r}+6+6 r=19$
$\Rightarrow 6 r^{2}-13 r+6=0 \Rightarrow r=\frac{2}{3}, \frac{3}{2}$.
So the numbers are $9,6,4$ or $4,6,9$.
97. Let the number be $100 a+10 a r+a r^{2}$.

According to question $a+a r^{2}=2 a r+1$ and $a+a r=\frac{2}{3}\left(a r+a r^{2}\right)$
$\Rightarrow a(r-1)^{2}=1$ and $3+3 r=2 r+2 r^{2} \Rightarrow r=-1, \frac{3}{2}$
If $r=-1, a=\frac{1}{4}$, but a cannot be a fraction.
If $r=\frac{3}{2} \Rightarrow a=4$ and the number is 469 .
98. Given that three of four numbers are in A.P. and so we choose them as $a-d, a, a+d$. Also, since first number is same as first so the numbers are $a+d, a-d, a, a+d$. The first three are in G.P. Given $d=6$
$\therefore(a-d)^{2}=a(a+d) \Rightarrow(a-6)^{2}=a(a+6) \Rightarrow 18 a=36 \Rightarrow a=2$.
So the numbers are $8,-4,2,8$.
99. Let the three numbers are $a, a r, a r^{2}$. The sum is given as $21 \Rightarrow a+a r+a r^{2}=21$.

Also, sum of squares is given as $189 \Rightarrow a^{2}+a^{2} r^{2}+a^{2} r^{4}=189$
$\Rightarrow \frac{441\left(1+r^{2}+r^{4}\right)}{\left(1+r+r^{2}\right)^{2}}=189$
$\Rightarrow 7\left(1+2 r^{2}+r^{4}-r^{2}\right)=3\left(r+r+r^{2}\right)^{2} \Rightarrow 7\left(1-r+r^{2}\right)-3\left(1+r+r^{2}\right)$
$\Rightarrow 2 r^{2}-5 r+2=0 \Rightarrow r=2, \frac{1}{2}$
When $r=2, a=3$ and so the numbers are $3,6,12$.
When $r=\frac{1}{2}, a=12$ and so the numbers are $12,6,3$.
100. Let the terms in G.P. be $\frac{a}{r}, a, a r$. Given that the product of these is -64 .
$\therefore \frac{a}{r} . a . a r=-64 \Rightarrow a^{3}=-64 \Rightarrow a=-4$.
Also given that the first term is four times the third. $\Rightarrow \frac{a}{r}=4 . a r \Rightarrow r^{2}=\frac{1}{4} \Rightarrow r= \pm \frac{1}{2}$. If $r=\frac{1}{2}$, the terms will be $-8,-4,-2$. If $r=-\frac{1}{2}$, the terms will be $8,-4,2$.
101. Let the numbers be $a-d, a, a+d$. Given that sum is $15 . \Rightarrow a-d+a+a+d=15 \Rightarrow a=5$.

Also given that if $1,4,19$ are added to them then they are in G.P.
$\Rightarrow(5+4)^{2}=(5-d+1)(5+d+19) \Rightarrow 81=(6-d)(24+d)$
$\Rightarrow d^{2}+18 d-63=0 \Rightarrow d=-21,3$.
If $d=-15$, the numbers will be $26,5,-16$ and if $d=3$ the numbers will be $2,5,8$.
102. Let the two sets of three numbers in G.P. are $a_{1}, a_{1} r_{1}, a_{1} r_{1}^{2}$ and $a_{2}, a_{2} r_{2}, a_{2} r_{2}^{2}$.

Given that the difference is also in G.P.
$\Rightarrow\left(a_{1} r_{1}-a_{2} r_{2}\right)^{2}=\left(a_{1} r_{1}^{2}-a_{2} r_{2}^{2}\right)\left(a_{1}-a_{2}\right)$
$\Rightarrow a_{1}^{2} r_{1}^{2}+a_{2}^{2} r_{2}^{2}-2 a_{1} a_{2} r_{1} r_{2}=a_{1}^{2} r_{1}^{2}-a_{1} a_{2} r_{2}^{2}-a_{1} a_{2} r_{1}^{2}+a_{2}^{2} r_{2}^{2}$
$\Rightarrow 2 a_{1} a_{2} r_{1} r_{2}=a_{1} a_{2} r_{2}^{2}+a_{1} a_{2} r_{1}^{2} \Rightarrow 2 r_{1} r_{2}=r_{1}^{2}+r_{2}^{2} \Rightarrow\left(r_{1}-r_{2}\right)^{2}=0$
$\Rightarrow r_{1}=r_{2}$ which implies that they have same common ratio.
103. Let r be the common ratio. Then $b=a r, c=a r^{2}, d=a r^{3}$
L.H.S. $=(b-c)^{2}+(c-a)^{2}+(d-b)^{2}=\left(a r-a r^{2}\right)^{2}+\left(a r^{2}-a\right)^{2}+\left(a r^{3}-a r\right)^{2}$
$=a^{2}\left(r-r^{2}\right)^{2}+a^{2}\left(r^{2}-1\right)^{2}+a^{2}\left(r^{3}-r\right)^{2}=a^{2}\left(r^{2}+r^{4}-2 r^{3}+r^{4}+1-2 r^{2}+r^{6}+r^{2}-2 r^{4}\right)$
$=a^{2}\left(r^{6}-2 r^{3}+1\right)=\left(a r^{3}-a\right)^{2}=(d-a)^{2}=$ R.H.S.
104. This problem can be solved like previous problem.
105. Given that x, y, z are in G.P. Let p be the first term and r be the common ratio of this G.P.

Also given, $a^{x}=b^{y}=c^{z} \Rightarrow x \log a=y \log b=z \log c$
$\Rightarrow \frac{\log a}{\log b}=\frac{y}{x}$ and $\frac{\log b}{\log c}=\frac{z}{y}$. Clearly, $\frac{y}{x}=\frac{z}{y}=r \Rightarrow \log _{b} a=\log _{c} b$.
106. Let $\frac{a}{r}, a, a r$ be the terms in G.P. Given that continued product is 216 i.e.
$\frac{a}{r} \cdot a . a r=216 \Rightarrow a^{3}=216 \Rightarrow a=6$
Sum of products when taken in pair is given as 156 .
$\Rightarrow \frac{a}{r} \cdot a+a \cdot a r+\frac{a}{r} \cdot a r=156 \Rightarrow \frac{1}{r}+r+1=\frac{26}{6}$
$\Rightarrow 6 r^{2}-20 r+6=0 \Rightarrow r=\frac{1}{3}, 3$
So the numbers are $18,6,2$ or $2,6,18$.
107. Let r be the common ratio. Then, $\frac{(b+c)^{2}}{(a+b)^{2}}=\frac{\left(a r+a r^{2}\right)^{2}}{(a+a r)^{2}}=r^{2}$.

Similarly, $\frac{(c+d)^{2}}{(b+c)^{2}}=r^{2}=\frac{(b+c)^{2}}{(a+b)^{2}}$.
Thus, $(a+b)^{2},(b+c)^{2},(c+d)^{2}$ are also in G.P.
108. This problem can be solved like previous problem.
109. This problem can be solved like previous problem.
110. This problem can be solved like previous problem.
111. Let r be the common ratio. Then, $a(b-c)^{3}=a\left(a r-a r^{2}\right)^{3}=a^{4} r^{3}(1-r)^{3}$ and $d(a-b)^{3}=$ $a r^{3}(a-a r)^{3}=a^{4} r^{3}(1-r)^{3}$.

Thus, $a(b-c)^{3}=d(a-b)^{3}$.
112. We have to prove that $(a+b+c+d)^{2}=(a+b)^{2}+(c+d)^{2}+2(b+c)^{2}$ where a, b, c, d are in G.P.

Now, $(a+b+c+d)^{2}=(a+b)^{2}+(c+d)^{2}+2(a+b)(c+d)$ so it is enough to prove that $(a+b)(c+d)=(b+c)^{2}$.
$(a+b)(c+d)=(a+a r)\left(a r^{2}+a r^{3}\right)=a^{2} r^{2}(1+r)^{2}$ and $(b+c)^{2}=\left(a r+a r^{2}\right)^{2}=$ $a^{2} r^{2}(1+r)^{2}$ which proves the required equality.
113. Let r be the common ratio. L.H.S. $=a^{2} b^{2} c^{2}\left(\frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}\right)=\frac{b^{2} c^{2}}{a}+\frac{a^{2} c^{2}}{b}+\frac{a^{2} b^{2}}{c}$ $=a^{3} r^{6}+a^{3} r^{3}+a^{3}=a^{3}+b^{3}+c^{3}=$ R.H.S.
114. Let r be the common ratio. L.H.S. $=\left(a^{2}-b^{2}\right)\left(b^{2}+c^{2}\right)=\left(a^{2}-a r^{2}\right)\left(a^{2} r^{2}+a^{2} r^{4}\right)=$ $r^{2}\left(a^{2}-a^{2} r^{2}\right)\left(a^{2}+a^{2} r^{2}\right)=\left(a^{2} r^{2}-a^{2} r^{4}\right)\left(a^{2}+a^{2} r^{2}\right)=\left(b^{2}-c^{2}\right)\left(a^{2}+b^{2}\right)=$ R.H.S.
115. Let r be the common ratio. Given a, b, c are in G.P. i.e. $a, a r, a r^{2}$ are in G.P.

Taking \log of a, b, c, we have
$\log a, \log a+\log r, \log a+2 \log r$ are in A.P. with $\log a$ being the first term and $\log r$ be the common difference.
116. Given series is $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots$ to n terms. Let S be the sum, $a=1, r=\frac{1}{2}$, then $S=\frac{a\left(1-r^{n}\right)}{1-r}=2\left(\frac{2^{n}-1}{2^{n}}\right)$
117. Given series is $1+2+4+8+\cdots$ to 12 terms. First term $a=1$, common ratio $r=2$ and no. of terms $n=12$. Let S be the sum of the series. Then,
$S=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{1\left(2^{12}-1\right)}{2-1}=4095$.
118. Given series is $1-3+9-27+\cdots$ to 9 terms. First terms $a=1$, common ratio $r=-3$ and no. of terms $n=9$. Let S be the sum of the series. Then,
$S=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{1-(-3)^{9}}{1-(-3)}=4921$
119. This problem is similar to 115 , and has been left as an exercise.
120. Given series is $(a+b)+\left(a^{2}+2 b\right)+\left(a^{3}+3 b\right)+\cdots$ to n terms. We can rewrite the series as $a+a^{2}+a^{3}+\cdots$ to n terms $+b+2 b+3 b+\cdots$ to n terms.

We know that $a+a^{2}+a^{3}+\cdots$ to n terms $=\frac{a\left(a^{n}-1\right)}{a-1}$ and for the second series applying the A.P. formula, $b+2 b+3 b+\cdots$ to n terms $=\frac{n}{2}[2 b+(n-1) b]=\frac{n}{2}[(n+1) b]=\frac{n(n+1) b}{2}$.
121. Clearly the given situation forms a G.P. with $a=1$, common ratio $r=2$ and $n=120$. Let S be the sum which he gets at the end of 120 days. Then,

$$
S=\frac{a\left(r^{n}-1\right)}{r-1}=2^{120}-1=1329227995784915872903807060280344575
$$

122. Given series is $S=8+88+888+\cdots=\frac{8}{9}[9+99+999+\cdots]$

$$
\begin{aligned}
& =\frac{8}{9}[(10-1)+(100-1)+(1000-1)+\cdots] \\
& =\frac{8}{9}\left[\frac{10\left(10^{n}-1\right)}{10-1}-n\right]=\frac{8}{81}\left[10^{n+1}-10-9 n\right]
\end{aligned}
$$

123. This problem can be solved like previous problem.
124. This problem can be solved like previous problem.
125. This problem can be solved like previous problem.
126. Let $S=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots$ to n terms. Clearly, $a=1$ and $r=-\frac{1}{2}$.
$\Rightarrow S=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{1-(-1)^{n} \frac{1}{2^{n}}}{1-\left(-\frac{1}{2}\right.}=\frac{2}{3} \cdot \frac{2^{n}-(-1)^{n}}{2^{n}}$.
127. When we make 1000 per day for 31 days total amount received will be 31,000 .

When we receive 1 for the first day and doubling every day then that would be a G.P. with $a=1, r=2, n=31 \Rightarrow S=\frac{a\left(r^{n}-1\right)}{r-1}=2^{31}-1=2,147,483,647$ which is clearly way more than we make in the first case so we will happily take the second option.
128. We assume that n terms of the series $1+3+3^{2}+\cdots$ make for 3280 . Then $S=\frac{1\left(3^{n}-1\right)}{3-1} \Rightarrow 3^{n}=6561 \Rightarrow n=8$.
129. Let $S=1+3+3^{2}+\cdots+3^{n-1} \Rightarrow S=\frac{3^{n}-1}{3-1}>1000 \Rightarrow 3^{n}>2001 \Rightarrow n=7$.
130. Let the sum be S. Clearly it is a G.P. with $a=1, r=\frac{1}{2}$. We know that when $|r|<1$ the sum of an infinite G.P. is given by $S=\frac{a}{1-r}$. Thus, $S=\frac{1}{1-\frac{1}{2}}=2$.
131. Clearly, it is a G.P. with $a=1, r=3$ and $n=20$. Thus sum is given by $S=\frac{3^{20}-1}{3-1}=$ 1, 743, 392, 200.
132. We can represent the given series as three series like $\left(x^{2}+x^{4}+x^{6}+\cdots\right)$ to n terms $+\left(\frac{1}{x^{2}}+\frac{1}{x^{4}}+\frac{1}{x^{6}}+\cdots\right)$ to n terms $+2+5+8+\cdots$ to n terms. Let the sum be S.
$S=x^{2} \frac{\left(x^{2}\right)^{n}-1}{x^{2}-1}+\frac{1}{x^{2}} \cdot \frac{\frac{1}{\left(x^{2}\right)^{n}-1}}{\frac{1}{x^{2}-1}}+\frac{n}{2}[3 n+1]$.
133. Let n be the no. of terms required to make the sum of given G.P. with $a=1, r=2$ equal to 511 .

$$
511=\frac{2^{n}-1}{2-1} \Rightarrow 2^{n}=512 \Rightarrow n=9
$$

134. Let the sum be $S . S=1+2+2^{2}+\cdots+2^{n-1}=\frac{2^{n}-1}{2-1} \geq 300 \Rightarrow 2^{n} \geq 301 \Rightarrow n=9$.
135. Let r be the common ratio. $a_{n}=a r^{n-1}=96 . S=\frac{a_{1}\left(r^{n}-1\right)}{r-1}=\frac{a_{n} r-a_{1}}{r-1}=\frac{96 r-3}{r-1}=189 \Rightarrow$ $32 r-1=63 r-63 \Rightarrow r=2 \Rightarrow n=6$.
136. $0.4 \dot{2} \dot{3}=0.4232323 \ldots$ to $\infty=\frac{4}{10}+\frac{23}{1000}+\frac{23}{100000}+\cdots$ to ∞

$$
=\frac{4}{10}+\frac{23}{100}\left[1+\frac{1}{100}+\frac{1}{10000}+\cdots \text { to } \infty\right]=\frac{4}{10}+\frac{23}{100} \frac{1}{1-\frac{1}{100}}=\frac{419}{990} .
$$

137. Given series can be written as $S=\frac{1}{5}+\frac{1}{5^{2}}+\cdots$ to $\infty+\frac{1}{7}+\frac{1}{7^{2}}+\cdots$ to ∞

$$
=\frac{1}{5} \cdot \frac{1}{1-\frac{1}{5}}+\frac{1}{7} \cdot \frac{1}{1-\frac{1}{7}}=\frac{1}{4}+\frac{1}{6}=\frac{5}{12} .
$$

138. Let the sum be S, then $S=(10+1)+(100+3)+(1000+5)+\cdots$ to n terms

$$
=\frac{10\left(10^{n}-1\right)}{10-1}+\frac{n}{2}[2+(n-1) 2]=\frac{10}{9}\left(10^{n}-1\right)+n^{2} .
$$

139. The general term of the series is $t_{n}=\left(x^{n}+\frac{1}{x^{n}}\right)^{2}=x^{2 n}+\frac{1}{x^{2 n}}+2$ so we can write it as three series and solve like problem 132.
140. Let a be the first term and r be the common ratio of the G.P. Then,
$S=\frac{a\left(r^{n}-1\right)}{r-1}, P=a . a r . a r^{2} \ldots a r^{n-1}=a^{n} r^{\frac{n(n-1)}{2}}, R=\frac{1}{a} \frac{1-\frac{1}{r^{n}}}{1-\frac{1}{r}}=\frac{1}{a} \frac{r^{n}-1}{r-1} \cdot \frac{1}{r^{n-1}}$ $P^{2}=a^{2 n} r^{n(n-1)}, \frac{S}{R}=a^{2} . r^{n-1} \therefore\left(\frac{S}{R}\right)^{n}=P^{2}$.
141. Clearly, the given series is a G.P. with $a=1, r=\frac{x}{1+x} \Rightarrow S=\frac{1}{1-\frac{x}{1+x}}=1+x$.
142. We consider the n-th term. $t_{n}=a r^{n-1}$, where a is the first term. Sum of all succeeding terms $S=\frac{a r^{n}}{1-r} \quad \therefore \frac{t_{n}}{S}=\frac{1-r}{r}$. Hence proven.
143. $S_{1}=\frac{1}{1-\frac{1}{2}}=2, S_{2}=\frac{2}{1-\frac{1}{3}}=3, S_{3}=\frac{3}{1-\frac{1}{4}}, \ldots, S_{p}=\frac{p}{1-\frac{1}{p+1}}=p+1$.

Clearly, $S_{1}, S_{2}, \ldots, S_{p}$ forms an A.P. with 2 as first term and 1 as c.d.
$S_{1}+S_{2}+\cdots+S_{p}=\frac{p}{2}[2.2+(p-1)]=\frac{p(p+3)}{2}$.
144. $x=\frac{1}{1-a} \Rightarrow a=1-\frac{1}{x}=\frac{x-1}{x}$ and similarly $b=\frac{y-1}{y}$.
$1+a b+a^{2} b^{2}+\cdots$ to $\infty=\frac{1}{1-a b}=\frac{1}{1-\frac{x-1}{x} \cdot \frac{y-1}{y}}=\frac{x y}{x+y-1}$.
145. Let S be the sum, then $S=\frac{1}{1-r}+\frac{a}{1-r}+\frac{a^{2}}{1-r}+\cdots$ to ∞
$\Rightarrow S=\frac{a}{1-r} \cdot \frac{1}{1-a}=\frac{a}{(1-r)(1-a)}$.
146. When the ball is dropped it will first travel 120 mts . Then it will bounce back $120 \cdot \frac{4}{5}=96$ m and fall 96 m as well. It will then bounce back $96 \cdot \frac{4}{5} \mathrm{~m}$ and fall the same distance as well.
Thus, total distance travelled $120+120 \times 2 \times \frac{4}{5}+120 \times 2 \times \frac{4^{2}}{5^{2}}+\cdots$ to ∞
$=120+192\left[1+\frac{4}{5}+\frac{4^{2}}{5^{2}}+\cdots\right]$ to $\infty=120+192 \cdot \frac{1}{1-\frac{4}{5}}=120+960=1080$ meters.
147. Let r be the common ratio. Then $b=a r^{n-1} \Rightarrow(a b)^{n}=a^{2 n} r^{n(n-1)}$
$p=a . a r . a r^{2} \cdot a r^{3} \ldots . a r^{n-1}=a^{n} r^{1+2+3+\cdots+(n-1)}=a^{n} r \frac{n(n-1)}{2}$
$\Rightarrow p^{2}=(a b)^{n}$.
148. Let the first terms are a and b; and the common ratio is r. Ratio of sums would be $a: b$ which is equal to $a r^{n-1}: b r^{n-1}$ i.e. ratio of nth terms.
149. Let a be the first term. Then, $S_{1}=\frac{a\left(r^{n}-1\right)}{r-1}, S_{2}=\frac{a\left(r^{2 n}-1\right)}{r-1}$ and $S_{3}=\frac{a\left(r^{3 n}-1\right)}{r-1}$.
$S_{2}-S_{1}=\frac{a\left(r^{2 n}-r^{n}\right)}{r-1}=\frac{a r^{n}\left(r^{n}-1\right)}{r-1}$
$S_{1}\left(S_{3}-S_{2}\right)=\frac{a\left(r^{n}-1\right)}{r-1}\left(\frac{a r^{2 n}\left(r^{n}-1\right)}{r-1}\right)=\frac{a^{2} r^{2 n}\left(r^{n}-1\right)^{2}}{(r-1)^{2}}$
$\Rightarrow S_{1}\left(S_{3}-S_{2}\right)=\left(S_{2}-S_{1}\right)^{2}$.
150. $S_{1}=a, S_{2}=\frac{a\left(r^{2}-1\right)}{r-1}, S_{2}=\frac{a\left(r^{3}-1\right)}{r-1}, \cdots, S_{2 n-1}=\frac{a\left(r^{2 n-1}-1\right)}{r-1}$
$S_{1}+S_{2}+S_{3}+\cdots+S_{2 n-1}=\frac{a}{r-1}\left[r+r^{2}+r^{3}+\cdots+r^{2 n-1}-(1+1+\cdots+\right.$ to $2 n-1$ terms $\left.)\right]$ $=\frac{a}{r-1}\left[\frac{r\left(r^{2 n-1}-1\right)}{r-1}-(2 n-1)\right]$.
151. Given, $S_{n}=a .2^{n}-b ; t_{n}=S_{n}-S_{n-1}=a .2^{n}-b-a .2^{n-1}+b=a .2^{n-1} ; r=\frac{t_{n}}{t_{n-1}}=2$ which is a constant independent of n hence the given series is in G.P.
152. Given $x \geq 0 \therefore \frac{2 x}{1+x^{2}}<1$ therefore we can apply the sum formula of a G.P. for infinite terms.

Let S be the required sum, then $S=\frac{1}{1+x^{2}} \cdot \frac{1}{1-\frac{2 x}{1+x^{2}}}=\frac{1}{(1-x)^{2}}$.
153. Let a be the first term and r be the common ratio. Then given, $a+a r=24$ and $S_{\infty}=\frac{a}{1-r}=32$
$a=\frac{24}{1+r}$ and $a=32(1-r) \Rightarrow 1-r^{2}=\frac{24}{32}=\frac{3}{4} \Rightarrow r= \pm \frac{1}{2}$
If $r=\frac{1}{2}$ then series is $16,8,4, \ldots$. If $r=-\frac{1}{2}$ then series is $48,-24,12,-6, \ldots$.
154. Let a be the first term and r be the common ratio. Sum of this G.P. $\frac{a}{1-r}=4$ and sum of squares of terms $\frac{a^{2}}{1-r^{2}}=\frac{16}{3}$. $\Rightarrow \frac{16(1-r)^{2}}{1-r^{2}}=\frac{16}{3} \Rightarrow \frac{1-r}{1+r}=\frac{1}{3} \Rightarrow r=\frac{1}{2} \Rightarrow a=2$. So the G.P. is $2,1, \frac{1}{2}, \frac{1}{4}, \ldots$
155. $p(x)=\frac{\frac{x^{2 n}-1}{x^{2}-1}}{\frac{x^{n}-1}{x-1}}=\frac{x^{n}+1}{x+1}$ so clearly n is an odd number for $p(x)$ to be a polynomial in x.
156. $x=a+\frac{a}{r}+\frac{a}{r^{2}}+\cdots$ to $\infty=\frac{a}{1-\frac{1}{r}}=\frac{a r}{r-1}$. Similarly $y=\frac{b r}{r+1}$ and $z=\frac{c r^{2}}{r^{2}-1}, \therefore \frac{x y}{z}=\frac{a b}{c}$.
157. Let a be the first term, r be the common ratio and $2 n$ be the no. of terms. Then sum of all terms $S=\frac{a\left(r^{2 n}-1\right)}{r-1}$ and sum of odd terms $S_{\text {odd }}=\frac{a\left(r^{2 n}-1\right)}{r^{2}-1}$.

Given, $S=5 S_{\text {odd }} \Rightarrow r=4$.
158. $S_{n}=3-\frac{3^{n+1}}{4^{2 n}} \Rightarrow t_{n}=S_{n}-S_{n-1}=\frac{3^{n}}{4^{2(n-1)}}-\frac{3^{n+1}}{4^{2 n}}=\frac{16 \cdot 3^{n}-3^{n+1}}{4^{2 n}}=\frac{3^{n} \cdot 13}{4^{2 n}}$.
$\Rightarrow r=\frac{t_{n}}{t_{n-1}}=\frac{3}{16}$.
159. Let a be the first term and r be the common ratio; then $t_{n}=a r^{n-1}$. Let the sum of all terms succeeding t_{n} be S. Then $S=\frac{a r^{n}}{1-r}$. $\frac{t_{r}}{S}=\frac{1-r}{r}$. If $\frac{1-r}{r}>1$ then $r<\frac{1}{2}$, if $\frac{1-r}{r}=1$ then $r=\frac{1}{2}$ and $\frac{1-r}{r}<1$ then $r>\frac{1}{2}$.
160. $666 \ldots n$ digits $=\frac{6}{9}\left(10^{n}-1\right)=\frac{2}{3}\left(10^{n}-1\right)$. $888 \ldots n$ digits $=\frac{8}{9}\left(10^{n}-1\right) . \Rightarrow$ L.H.S. $=\frac{4}{9}\left(10^{2 n}-2 \cdot 10^{n}+1-2 \cdot 10^{n}-2\right)=\frac{4}{9}\left(10^{2 n}-1\right)$ R.H.S. $=444 \ldots 2 n$ digits $=\frac{4}{9}\left(10^{2 n}-1\right)=$ L.H.S.
161. Let $S=(x+y)+\left(x^{2}+x y+y^{2}\right)+\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+\cdots$ to n terms $S=\frac{1}{x-y}\left[\left(x^{2}-y^{2}\right)+\left(x^{3}-y^{3}\right)+\left(x^{4}+y^{4}\right)+\cdots\right]$ to n terms $=\frac{1}{x-y}\left[\frac{x^{2}\left(x^{n}-1\right)}{x-1}-\frac{y^{2}\left(y^{n}-1\right)}{y-1}\right]$.
162. $S=\frac{1}{1-r} \Rightarrow r=\frac{S-1}{S}$. Let $S^{\prime}=\sum_{n=0}^{\infty} r^{2 n}$ then $S^{\prime}=\frac{1}{1-r^{2}}=\frac{S^{2}}{2 S-1}$.
163. Let a be the first term and r be the common ratio. Then $t_{m}=a r^{m-1}=\frac{1}{n^{2}}$ and $t_{n}=$ $a r^{n-1}=\frac{1}{m^{2}} \Rightarrow \frac{t_{m}}{t_{n}}=r^{m-n}=\frac{m^{2}}{n^{2}} \Rightarrow r=\sqrt[m-n]{\frac{m^{2}}{n^{2}}}$. $a r^{m-1}=\frac{1}{n^{2}} \Rightarrow a=\frac{1}{n^{2}}\left(\frac{n^{2}}{m^{2}}\right)^{\frac{m-1}{m-n}}$ $\Rightarrow t_{\frac{m+n}{2}}=a r^{\frac{m+n-2}{2}}=\frac{1}{n^{2}}\left(\frac{n^{2}}{m^{2}}\right)^{\frac{m-1}{m-n}} \cdot\left(\frac{m^{2}}{n^{2}}\right)^{\frac{m+n-2}{2(m-n)}}=\frac{1}{m n}$.
This can be alternatively computed with G.M. formula i.e. $t_{\frac{m+n}{2}}=\sqrt{t_{m} t_{n}}=\frac{1}{m n}$.
164. Given condition is $c>4 b-3 a \Rightarrow c-4 b+3 a>0 \Rightarrow r^{2}-4 r+3<0[\because a<0] \Rightarrow r>3$ or $r<1$.
165. Given, $(1-k)\left(1+2 x+4 x^{2}+8 x^{3}+16 x^{4}+32 x^{5}\right)=1-k^{6} \Rightarrow(1-k) \frac{64 x^{6}-1}{x-1}=1-k^{6} \Rightarrow$ $k=2 x \Rightarrow \frac{k}{x}=2$.
166. Given, $\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right) \leq(a b+b c+c d)^{2} \Rightarrow\left(b^{2}-a c\right)^{2}+\left(c^{2}-a d\right)^{2}+$ $(a d-b c)^{2} \leq 0$
Since a, b, c, d are non-zero real numbers therefore the above condition leads to equality if and only if $b^{2}=a c, c^{2}=a d, a d=b c$ i.e. a, b, c, d are in G.P.
167. This problem is generalization of previous problem and can be solved similarly.
168. Let r be the common ratio, then $\beta=\alpha r, \gamma=\alpha r^{2}, \delta=\alpha r^{3}$.

From roots of quadratic equaiton $\alpha+\beta=3, \alpha \beta=a, \gamma+\delta=12, \gamma \delta=b$
$\frac{\gamma+\delta}{\alpha+\beta}=r^{2}=4 \Rightarrow r=2$ because G.P. is increasing so we discard the negative root.
$\Rightarrow \alpha=1 \Rightarrow a=2, \Rightarrow b=32$.
169. Let a be the first term of the A.P. Then $t_{2 n+1}=a+4 n$. So the first term of the G.P. is $a+4 n$.

Middle term of A.P. $t_{n+1}=a+2 n$ and middle term of G.P. $=\frac{a+4 n}{2^{n}}$
Given, $a+2 n=\frac{a+4 n}{2^{n}}$ thus, a can found and hence $a+4 n$ which is the mid term can be deduced.
170. $f(x)=2 x+1, f(2 x)=4 x+1, f(4 x)=8 x+1$. Given that $f(x), f(2 x), f(4 x)$ are in G.P.
$\Rightarrow \frac{f(2 x)}{f(x)}=\frac{f(4 x)}{f(2 x)} \Rightarrow(4 x+1)^{2}=(2 x+1)(8 x+1) \Rightarrow 8 x+1=10 x+1 \Rightarrow x=0$.
171. Let r be the common ratio then $a+b+c=x b \Rightarrow 1+r+r^{2}=x r \Rightarrow x=\frac{1+r+r^{2}}{r}=\frac{1}{r}+1+r$.

We know that if $r>0, r+\frac{1}{r}>2 \Rightarrow x>3$ and if $r<0, r+\frac{1}{r}<-2 \Rightarrow x<-1$.
172. $x=\frac{1}{1-a}, y=\frac{1}{1-b}, z=\frac{1}{1-c} \Rightarrow \frac{1}{x}=1-a, \frac{1}{y}=1-b, \frac{1}{z}=1-c$

Thus, $\because a, b, c$ are in A.P. where $|a|,|b|,|c|<1 \therefore x, y, z$ are also in A.P.
173. $p=\frac{1}{1+\tan ^{2} x}=\cos ^{2} x ; q=\frac{1}{1+\cot ^{2} y}=\sin ^{2} y$
$\sum_{k=0}^{\infty} \tan ^{2 k} x \cot ^{2 k} y=\frac{1}{1-\tan ^{2} x \cot ^{2} y}$
$\frac{1}{\frac{1}{p}+\frac{1}{q}-\frac{1}{p q}}=\frac{\cos ^{2} x \sin ^{2} y}{\cos ^{2} x+\sin ^{2} y-1}$
Dividing numerator and denominator with $\cos ^{2} x \sin ^{2} y$, we get
$=\frac{1}{\csc ^{2} y+\sec ^{2} x-\csc ^{2} y \sec ^{2} x}=\frac{1}{\tan ^{2} x+\cot ^{2} y+2-1-\tan ^{2} x-\cot ^{2} y-\tan ^{2} x \cot ^{2} y}=\sum_{k=0}^{\infty} \tan ^{2 k} x \cot ^{2 k} y$.
174. We know that area of an equilateral triangle is $\frac{\sqrt{3}}{4} a^{2}$, where a is one of the sides. In this case $\Delta=\frac{3}{4}$.

Now the area of sides joining mid-point will have side $\frac{a}{2}$ and terefore area will be $\frac{1}{4}$ th of the original triangle. This ratio of $\frac{1}{4}$ will continue and areas of all triangles will form a G.P. with common ratio of $\frac{1}{4}$. Thus sum of areas of all these triangles $=\frac{\frac{3}{4}}{1-\frac{1}{4}}=1$.
175. $1+|\cos x|+\left|\cos ^{2} x\right|+\left|\cos ^{3} x\right|+\cdots$ to $\infty=\frac{1}{1-|\cos x|}=p$ (let).
$\Rightarrow e^{p . \log _{e} 4}=4^{p}$. Now given equation is $t^{2}-20 t+64=0 \Rightarrow t=4,16 \Rightarrow p=1,2 \Rightarrow$ $|\cos x|=0,1 / 2 \Rightarrow x=\pi / 2, \pi / 3,2 \pi / 3$.
176. $1+|\cos x|+\left|\cos ^{2} x\right|+\left|\cos ^{3} x\right|+\cdots$ to $\infty=\frac{1}{1-|\cos x|} \Rightarrow \frac{1}{1-|\cos x|}=2 \Rightarrow|\cos x|=\frac{1}{2} \Rightarrow$ $\cos x= \pm \frac{1}{2} \Rightarrow S=\left\{\frac{\pi}{3}, \frac{2 \pi}{3}\right\}$.
177. $\sin ^{2} x+\sin ^{4} x+\cdots$ to $\infty=\frac{\sin ^{2} x}{1-\sin ^{2} x}=\tan ^{2} x$

Roots of $x^{2}-9 x+8=0$ are 1, 8 i.e. $2^{0}, 2^{3} \Rightarrow \tan x=0, \sqrt{3}$ (rejecting $-\sqrt{3}$ as for $0<x<\frac{\pi}{2}, \tan x$ cannot be negative.)
$\frac{\cos x}{\cos x+\sin x}=\frac{1}{1+\tan x}=1, \frac{1}{1+\sqrt{3}}$.
178. $S_{\lambda}=\frac{\lambda}{\lambda-1}$ [Hint: It is a G.P.] $\sum_{\lambda=1}^{n}(\lambda-1) S_{\lambda}=\sum_{\lambda=1}^{n} \lambda=\frac{n(n+1)}{2}$.
179. Let $2^{a x+1}, 2^{b x+1}, 2^{c x+1}$ are in G.P. $\Rightarrow \frac{2^{b x+1}}{2^{a x+1}}=\frac{2^{c x+1}}{2^{b x+1}} \Rightarrow(b-a) x=(c-b) x \Rightarrow b-a=c-b$ which implies that a, b, c are in A.P. which is a given and hence we have proven required condition in reverse.
180. Given $\frac{a+b e^{x}}{a-b e^{x}}=\frac{b+c e^{x}}{b-c e^{x}} \Rightarrow a b-a c e^{x}+b^{2} e^{x}-b c e^{2 x}=a b+a c e^{x}-b^{2} e^{x}-b c e^{2 x} \Rightarrow 2 a c e^{x}=$ $b^{2} e^{x} \Rightarrow 2 a c=b^{2}$, which implies a, b, c are in G.P. Similarly it can be proven that b, c, d are in G.P. making a, b, c, d are in G.P.
181. Given, $2 \tan ^{-1} y=\tan ^{-1} x+\tan ^{-1} z \Rightarrow \frac{2 y}{1-y^{2}}=\frac{x+z}{1-z x}$

But we are also given that $y^{2}=z x \Rightarrow 2 y=x+z \Rightarrow x, y, z$ are in A.P. Now $4 y^{2}=$ $(x+z)^{2}=2(x+z) \Rightarrow x=z=y$ but the common values are not necessarily 0.
182. Given, $b-c=a-b\left[\because a, b, c\right.$ are in A.P.]. From second condition $(c-b)^{2}=(b-a) a \Rightarrow$ $(a-b)^{2}=(a-b) a \Rightarrow 2 a=b \Rightarrow 3 a=c \Rightarrow a: b: c=1: 2: 3$.
183. Since a, b, c are in G.P. $\Rightarrow b^{2}=a c$. From second condition, $2(\log 2 b-\log 3 c)=\log 3 c-$ $\log 2 b \Rightarrow 3 \log 2 b=3 \log 3 c \Rightarrow 2 b=3 c \Rightarrow b=\frac{2 a}{3}, c=\frac{4 a}{9}$. Clearly, a is the greatest side. Using cos rule, $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}=-\frac{1}{2}$ and thus $A>90^{\circ}$ making the triangle obtuse-angled triangle.
184. Let α, β, γ are the roots. Then $\alpha+\beta+\gamma=-\frac{b}{c}, \alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}, \alpha \beta \gamma=-\frac{d}{a}$. Let r be the common ratio of the G.P. then $\beta=\alpha r, \gamma=\alpha r^{2}$. Also let $\alpha=x$.

$$
\frac{c^{3}}{b^{3}}=\frac{c^{3}}{a^{3}} \cdot \frac{a^{3}}{b^{3}}=-\frac{(\alpha \beta+\beta \gamma+\gamma \alpha)^{3}}{(\alpha+\beta+\gamma)^{3}}=-\left(\frac{x^{2} r+x^{2} r^{3}+x^{2} r^{2}}{x+x r+x r^{2}}\right)^{3}=-x^{3} r^{3}=-\alpha \beta \gamma=\frac{d}{a} \Rightarrow c^{3} a=b^{3} d
$$

185. Clearly $t_{n}=\frac{1}{2 n-1} \Rightarrow t_{100}=\frac{1}{199}$.
186. The corresponding p th and q th term in the A.P.would be $\frac{1}{q r}$ and $\frac{1}{r p}$. Let a be the first term and d be the commond difference of this A.P. Then, $a+(p-1) d=\frac{1}{q r}$ and $a+(q-1) d=\frac{1}{r p}$. Subtracting $(p-q) d=\frac{p-q}{p q r} \Rightarrow d=\frac{1}{p q r}$. $\Rightarrow a=\frac{1}{q r}-\frac{p-1}{p q r}=\frac{1}{p q r} . \Rightarrow t_{r}=\frac{1}{p q r}+\frac{r-1}{p q r}=\frac{1}{p q}$. Therefore r th term in H.P. would be $p q$.
187. Corrsponding p th, q th and r th term of the A.P. would be $\frac{1}{a}, \frac{1}{b}$ and $\frac{1}{c}$. Let x be the first term and y be the c.d. of this A.P. Then,
$x+(p-1) y=\frac{1}{a}, x+(q-1) y=\frac{1}{b}, x+(r-1) y=\frac{1}{c}$
$(p-q) y=\frac{b-a}{a b} \Rightarrow(p-q) a b=\frac{b-a}{y}$. Similarly, $(q-r) b c=\frac{c-b}{y}$ and $(r-p) c a=\frac{c-a}{y}$. Clearly, $(q-r) b c+(r-p) c a+(p-q) a b=0$.
188. We have to prove that $\frac{a-b}{b-c}=\frac{a}{c} \Rightarrow a c-b c=a b-a c \Rightarrow 2 a c=a b+b c$ which prove that a, b, c are in H.P. Thus required equality is proven in reverse.
189. Given $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}, \frac{1}{d}$ are in A.P. Let p be the c.d. of this A.P. $\Rightarrow \frac{1}{b}-\frac{1}{a}=p \Rightarrow a b=\frac{a-b}{p}$. Similarly, $b c=\frac{b-c}{p}, c d=\frac{c-d}{p}$. Adding these we have $a b+b c+c d=\frac{a-d}{p}$. Now $\frac{1}{d}-\frac{1}{a}=3 p \Rightarrow 3 a d=\frac{a-d}{p}$. Thus, $a b+b c+c d=3 a d$.
190. Let d be the common difference of the corresponding A.P. Then, $\frac{1}{x_{n}}-\frac{1}{x_{1}}=(n-1) d \Rightarrow$ $\frac{x_{1}-x_{n}}{d}=(n-1) x_{1} x_{n}=$ R.H.S.

Now, $\frac{1}{x_{1}}-\frac{1}{x_{2}}=d \Rightarrow \frac{x_{1}-x_{2}}{d}=x_{1} x_{2}$. Similarly, $\frac{x_{2}-x_{3}}{d}=x_{2} x_{3}$ and so on till $\frac{x_{n-1}-x_{n}}{d}=x_{n-1} x_{n}$. Adding these and comparing with R.H.S. we get the required equality.
191. $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P.
$\Rightarrow \frac{a+b+c}{a}, \frac{a+b+c}{b}, \frac{a+b+c}{c}$ are in A.P.
$\Rightarrow \frac{a+b+c}{a}-1, \frac{a+b+c}{b}-1, \frac{a+b+c}{c}-1$ are in A.P.
$\Rightarrow \frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in H.P.
192. a^{2}, b^{2}, c^{2} are in A.P. $\Rightarrow a^{2}+a b+b c+c a, b^{2}+a b+b c+c a, c^{2}+a b+b c+c a$ are in A.P. $\Rightarrow(a+b)(c+a),(b+c)(a+b),(c+a)(b+c)$ are in A.P.

Dividing each term by $(a+b)(b+c)(c+a)$, we have
$\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P.
$\Rightarrow b+c, c+a, a+b$ are in H.P.
193. If $t_{n}=\frac{1}{3 n-2}$ then the sequence is $1, \frac{1}{4}, \frac{1}{7}, \frac{1}{10}, \cdots$

Let us assume that it is in H.P. then corresponding nth term in A.P. is $3 n-2$. Thus, c.d. $=3 n-2-(3 n-1)-2=3$ which is a constant so the sequence is in A.P. Thus our assumption is correct and given sequence is in H.P.
194. Let a be the first term and d be the c.d. of the corresponding A.P. Then,
$a+(m-1) d=\frac{1}{n}$ and $a+(n-1) d=\frac{1}{m}$. Subtracting, $(m-n) d=\frac{m-n}{m n} \Rightarrow d=\frac{1}{m n} \Rightarrow$ $a=\frac{1}{n}-\frac{m-1}{m n}=\frac{1}{m n}$.

Then $t_{m+n}=\frac{1}{m n}+(m+n-1) \frac{1}{m n}=\frac{m+n}{m n}$ thus corrsponding term in H.P. would be $\frac{m n}{m+n}$. Also, $t_{m n}=\frac{1}{m n}+\frac{m n-1}{m n}=1$ and hence corresponding term in H.P. is 1 .
195. Let the three numbers in H.P. are a, b, c then $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ will be in A.P. Given, $a+b+c=$ $37, \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{4}$. Let d be the c.d. of the A.P. then $\frac{3}{b}=\frac{1}{4} \Rightarrow b=12$ $\Rightarrow \frac{12}{1-12 d}+12+\frac{12}{1+12 d}=37 \Rightarrow d=\frac{1}{60}$. So the numbers are $15,12,10$.
196. $\because a, b, c$ are in H.P. $\therefore b=\frac{2 a c}{a+c}$.

$$
\text { L.H.S. }=\frac{1}{b-a}+\frac{1}{b-c}=\frac{a+c}{a c-a^{2}}+\frac{a+c}{a c-c^{2}}=\frac{a+c}{a c}=\frac{1}{a}+\frac{1}{c}=\text { R.H.S. }
$$

197. $\because a, b, c$ are in H.P. $\therefore b=\frac{2 a c}{a+c}$.
L.H.S. $=\frac{b+a}{b-a}+\frac{b+c}{b-c}=\frac{a^{2}+3 a c}{a c-a^{2}}+\frac{c^{2}+3 a c}{a c-c^{2}}=\frac{3 a c^{2}+a^{2} c-3 a^{2} c-a c^{2}}{a c(c-a)}=\frac{2 a c^{2}-2 a^{2} c}{a c(c-a)}=2=$ R.H.S.
198. Let d be the c.d. of corresponding A.P., then $\frac{1}{x_{2}}-\frac{1}{x_{1}}=d \Rightarrow x_{1} x_{2}=\frac{x_{1}-x_{2}}{d}$ and similarly, $x_{2} x_{3}=\frac{x_{2}-x_{3}}{d}, x_{3} x_{4}=\frac{x_{3}-x_{4}}{d}, x_{4} x_{5}=\frac{x_{4}-x_{5}}{d}$.

Adding toegther, $\frac{x_{1}-x_{5}}{d}=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{5}=\frac{x_{1} x_{5}}{d}\left[\frac{1}{x_{1}}-\frac{1}{x_{5}}\right]=4 x_{1} x_{5}$. Hence proved.
199. Like previous problem $x_{1}-x_{3}=2 x_{1} x_{3} d$ and $x_{2}-x_{4}=2 x_{2} x_{4} d$ so L.H.S. $=4 x_{1} x_{2} x_{3} x_{4} d^{2}$

And $x_{1}-x_{2}=x_{1} x_{2} d$ and $x_{3}-x_{4}=x_{3} x_{4} d$ so R.H.S. $=4 x_{1} x_{2} x_{3} x_{4} d^{2}$ and thus L.H.S. $=$ R.H.S.
200. Given $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P.

Multiplying with $a+b+c$ and then subtracting 1 from each term we get required condition.
201. Given $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P.

Multiplying each term with $a+b+c$ and then subtracting $a b+b c+c a$ from each term we get the required condition.
202. Given that a, b, c are in A.P. Dividing each term by $a b c$, we get that $\frac{1}{b c}, \frac{1}{c a}, \frac{1}{a b}$ are in A.P. Multiplying each term with $a b+b c+c a$ and then subtracting 1 from each term we get the desired condition.
203. Given that $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P. Multiplying each term with $a+b+c$ and then subtracting 2 from each term we get the desired condition.
204. Given that $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P. Multiplying each term with $a+b+c$ and then subtracting 1 from each term we get the desired condition.
205. Let d be the c.d. of the A.P. and r be the common ratio of the G.P.
$\Rightarrow b-c=-d, c-a=2 d, a-b=-d$ and $y=x r, z=x r^{2}$.
L.H.S. $=x^{b-c} y^{c-a} z^{a-b}=x^{-d}(x r)^{2 d}\left(x r^{2}\right)^{-d}=x^{0} y^{0}=1$.
206. Let a be the first term and d be the c.d. of the A.P. Then,
$\frac{a+(q-1) d}{a+(p-1) d}=\frac{a+(r-1) d}{a+(q-1) d}=\frac{a+(s-1) d}{a+(r-1) d}$
$\Rightarrow \frac{[a+(q-1) d]-[a+(r-1) d]}{[a+(p-1) d]-[a+(q-1) d]}=\frac{[a+(r-1) d]-[a+(s-1) d]}{[a+(q-1) d]-[a+(r-1) d]}$
$\Rightarrow \frac{q-r}{p-q}=\frac{r-s}{q-r}$ which proves the required condition.
207. Let x be the first term and d be the c.d. of the A.P. Then $a=x+(p-1) d, b=$ $x+(q-1) d, c=x+(r-1) d$
$\Rightarrow b-c=(q-r) d, c-a=(r-p) d$ and $a-b=(p-q) d$
Also let m be the first term and n be the common ratio of the G.P. Then $a=m n^{p-1}, b=$ $m n^{q-1}, c=m n^{r-1}$
L.H.S. $=a^{b-c} b^{c-a} c^{a-b}=\left(m n^{p-1}\right)^{(q-r) d}\left(m n^{q-1}\right)^{(r-p) d}\left(m n^{r-1}\right)^{(p-q) d}=m^{0} n^{0}=1=$ R.H.S.
208. Given, a, b, c are in A.P. $\Rightarrow 2 b=a+c$ and b, c, d are in H.P. $\Rightarrow c=\frac{2 b d}{b+d}$
$\Rightarrow b c=\frac{a+c}{2} \frac{2 b d}{b+d}=\frac{(a+c) b d}{b+d} \Rightarrow b^{2} c+b c d=a b b d+b c d \Rightarrow b c=a d$.
209. Given $a^{x}=b^{y}=c^{z}=p($ let $) \Rightarrow a=p^{\frac{1}{x}}, b=p^{\frac{1}{y}}, c=p^{\frac{1}{z}}$.

Also given, a, b, c are in G.P. $\Rightarrow \frac{b}{a}=\frac{c}{b} \Rightarrow p^{\frac{1}{y}-\frac{1}{x}}=p^{\frac{1}{z}-\frac{1}{y}} \Rightarrow \frac{1}{y}-\frac{1}{x}=\frac{1}{z}-\frac{1}{y}$ $\therefore \frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in H.P.
210. $\because \frac{x+y}{2}, y, \frac{y+z}{2}$ are in H.P. $\therefore y=\frac{2\left(\frac{x+y}{2}\right)\left(\frac{y+z}{2}\right)}{\frac{x+y}{2}+\frac{y+z}{2}}$ $\Rightarrow x y+2 y^{2}+y z=x y+y^{2}+z x+y z \Rightarrow y^{2}=z x \Rightarrow a, b, c$ are in G.P.
211. $\because x, y, z$ are in G.P. $\therefore y^{2}=z x$. Also, $x+a, y+a, z+a$ are in H.P. $\Rightarrow y+a=\frac{2(x+a)(z+a)}{x+a+z+a} \Rightarrow$ $x y+y z+2 a y+a x+a z+2 a^{2}=2\left(z x+a z+a x+a^{2}\right) \Rightarrow(y-a)(x+z-2 y)$

But $x+z-2 y \neq 0$ else $x+z=2 y$ i.e. x, y, z are in A.P. $\Rightarrow x=y=z \therefore y=a$.
212. $\because a, b, c$ are in A.P., G.P. and H.P. $\therefore 2 b=a+c, b^{2}=a c, b=\frac{2 a c}{a+c} \Rightarrow\left(\frac{a+c}{2}\right)^{2}=a c \Rightarrow$ $(a+c)^{2}=4 a c \Rightarrow a=c=b$.
213. $\because a, b, c$ are in A.P. $\Rightarrow 2 b=a+c . \because b, c, d$ are in G.P. $\therefore c^{2}=b d . \because c, d, e$ are in H.P. $\therefore d=\frac{2 c e}{c+e}$.
$c^{2}=b d=\frac{a+c}{2} \cdot \frac{2 c e}{c+e} \Rightarrow c(c+e)=(a+c) e \Rightarrow c^{2}=a e \Rightarrow a, c, e$ are in G.P.
214. $\because a, b, c$ are in A.P. $\therefore 2 b=a+c . \because a^{2}, b^{2}, c^{2}$ are in H.P. $\therefore b^{2}=\frac{2 a^{2} c^{2}}{a^{2}+c^{2}}$
$\Rightarrow\left(\frac{a+c}{2}\right)^{2}=\frac{2 a^{2} c^{2}}{a^{2}+c^{2}} \Rightarrow\left(a^{2}+c^{2}\right)(a+c)^{2}=8 a^{2} c^{2} \Rightarrow(a-c)^{2}\left[(a+c)^{2}+2 a c\right]=0$
If $(a-c)^{2}=0 \Rightarrow a=c \Rightarrow a=b=c$ else $(a+c)^{2}+2 a c=0 \Rightarrow a c=-2 b^{2} \Rightarrow b^{2}=$ $-\frac{a}{2} . c \Rightarrow-\frac{a}{2}, b, c$ are in G.P.
215. $a^{b} b^{c} c^{a}=a^{c} b^{a} c^{b} \Rightarrow a^{b-c} b^{c-a} c^{a-b}=1$ which has been proved previously.
216. Let a be the first terms of both the A.P. and G.P. d be c.d. of the A.P. and r be the common ratio of the G.P. Given,
$a+a=1 \Rightarrow a=\frac{1}{2}, a+d+a r=\frac{1}{2} \Rightarrow d=-a r \Rightarrow 2 d=-r$ and $a+2 d+a r^{2}=2 \Rightarrow$ $-r+\frac{r^{2}}{2}=\frac{3}{2} \Rightarrow r^{2}-2 r+3=0$. Now r and sum of fourth term can be easily found.
217. $\because p, q, r$ are in A.P. $\therefore 2 q=p+r$. Also, let $\frac{a-x}{p x}=\frac{a-y}{q y}=\frac{a-z}{r z}=f$
$\therefore p=\frac{a}{f x}-\frac{1}{f}, q=\frac{a}{f y}-\frac{1}{f}, r=\frac{a}{f z}-\frac{1}{f}$. Substituting these in $2 q=p+r$
$\frac{2 a}{f y}-\frac{2}{f}=\frac{a}{f x}-\frac{1}{f}+\frac{a}{f y}-\frac{1}{f} \Rightarrow \frac{2}{y}=\frac{1}{x}+\frac{1}{z} \Rightarrow x, y, z$ are in H.P.
218. Let d be c.d. of the A.P. and d^{\prime} be the c.d. of the A.P. corrsponding to H.P. then, $b=a+(n-1) d$ and $\frac{1}{b}=\frac{1}{a}+(n-1) d^{\prime} \Rightarrow d=\frac{b-a}{n-1}, d^{\prime}=\frac{a-b}{a b(n-1)}$

Product of the r th term of the A.P. and $(n-r+1)$ th term of the H.P. $=[a+(r-$ 1) $\left.\frac{b-a}{n-1}\right] \cdot \frac{1}{\frac{1}{a}+(n-r) \cdot \frac{a-b}{a b(n-1)}}=a b$.
219. Let a, b, c be three consecutive terms of an H.P. then $b=\frac{2 a c}{a+c}$.

Terms after subtraction will be $a-\frac{b}{2}, \frac{b}{2}, c-\frac{b}{2}$. The condition for these to be in G.P. is $b^{2}=(2 a-b)(2 c-b)=4 a c-2 b(a+c)+b^{2} \Rightarrow b=\frac{2 a c}{a+c}$ which is a given.
220. $\because y-x, 2(y-a), y-z$ are in H.P. $\therefore \frac{1}{2(y-z)}-\frac{1}{y-x}=\frac{1}{y-z}-\frac{1}{2(y-a)}=\frac{2 a-y-z}{(y-x)}=\frac{y+z-2 a}{y-z}$ $=\frac{(x-a)+(y-a)}{(x-a)-(y-a)}=\frac{(y-a)+(z-a)}{(y-a)-(z-a)}=\frac{x-a}{y-a}=\frac{y-a}{z-a}$ Hence, $x-a, y-a, z-a$ are in G.P.
221. From given conditions we have $2 b=a+c, q=\frac{2 p r}{p+r}$ and $b^{2} q^{2}=a c p r$. Substituting the values of b and q in third equations, we arrive at
$\left[\left(\frac{a+c}{2}\right)^{2}\left(\frac{2 p r}{p+r}\right)^{2}\right]=a c p r=\frac{(a+c)^{2}}{(r+p)^{2}} \cdot p^{2} r^{2} \Rightarrow \frac{p r}{(r+p)^{2}}=\frac{a c}{(a+c)^{2}}$ $\Rightarrow \frac{(r+p)^{2}}{p r}=\frac{(a+c)^{2}}{a c} \Rightarrow \frac{p}{r}+\frac{r}{p}=\frac{a}{c}+\frac{c}{a}$.
222. From given conditions we have, $2 b=a+x, b^{2}=a y$ and $\frac{2}{b}=\frac{1}{a}+\frac{1}{x} \Rightarrow x=2 b-a, y=\frac{b^{2}}{a}$ and $z=\frac{a b}{2 a-b}$

Now we can substitute in the required result and prove the equality.
223. From given equations $2=x+z$ and $4=z x$, we have to prove that $4=\frac{2 z x}{x+z}$. Substituting the values from given conditions to required equality we find that equality holds.
224. Given that $t_{n}=12 n^{2}-6 n+5$ then $S_{n}=12 \sum_{i=1}^{n} i^{2}-6 \sum_{i=1}^{n} i+5 \sum_{i=1}^{n} 1$

$$
=12 \cdot \frac{n(n+1)(2 n+1)}{6}-6 \frac{n(n+1)}{2}+5 n=n\left[4 n^{2}+6 n+2-3 n-3+5\right]=n\left(4 n^{2}+3 n+4\right) .
$$

225. Clearly $t_{n}=(2 n-1)^{2}=4 n^{2}-4 n+1 \Rightarrow S_{n}=4 \sum_{i=1}^{n} i^{2}-4 \sum_{i=1}^{n} i+\sum_{i=1}^{n} 1$

$$
=4 \frac{n(n+1)(2 n+1)}{6}-4 \frac{n(n+1)}{2}+n=n\left[\frac{4 n^{2}+6 n+2-6 n-6+3}{3}\right]=\frac{n\left(4 n^{2}-1\right)}{3}
$$

226. Clearly, $t_{n}=n(n+1)(n+2)=n^{3}+3 n^{2}+2 n \Rightarrow S_{n}=\sum_{i=1}^{n} i^{3}+3 \sum_{i=1}^{n} i^{2}+\sum_{i=1}^{n} i$
$=\left[\frac{n(n+1)}{2}\right]^{2}+3 \cdot \frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}=\frac{n(n+1)}{2}\left[\frac{n(n+1)}{2}+2 n+1+1\right]=\frac{n(n+1)}{2} \cdot \frac{n^{2}+5 n+4}{2}=$ $\frac{n(n+1)^{2}(n+4)}{4}$.
227. r th term of the series, $t_{r}=r(n-r+1) \Rightarrow S_{n}=n \sum_{r=1}^{n} r-\sum_{r=1}^{n} r^{2}+\sum_{r=1}^{n} r$
$=\frac{n . n(n+1)}{2}-\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}=\frac{n(n+1)}{2}\left[n-\frac{2 n+1}{3}+1\right]=\frac{n(n+1)}{2}\left[\frac{3 n-2 n-1+3}{3}\right]=$ $\frac{n(n+1)(n+2)}{6}$.
228. If you see carefully this series is same as previous problem hence sum will be same.
$t_{n}=1+2+3+\cdots+n=\frac{\left.n^{2}+n\right)}{2} \Rightarrow t_{n}=\frac{1}{2}\left[\sum_{i=1}^{n} i^{2}+\sum_{i=1}^{n} i\right]$
$=\frac{1}{2}\left[\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}\right]=\frac{n(n+1)}{4}\left[\frac{2 n+1}{3}+1\right]=\frac{n(n+1)(n+2)}{6}$.
229. First term contains 1 integer, second term contains 2 and so on. So before t_{n} we will have $1+2+\cdots+(n-1)$ integers i.e. $\frac{n(n-1)}{2}$ integers. So t_{n} will start with $\frac{n(n-1)+2}{2}$ and will have n integers. So $t_{n}=\frac{n^{2}-n+2}{2}$ and now it is trivial to find the sum, which will be $S_{n}=\frac{1}{2} \sum_{i=1}^{n} i^{2}-\frac{1}{2} \sum_{i=1}^{n} i+\sum_{i=1}^{n} 1=\frac{n(n+1)(2 n+1)}{12}-\frac{n(n+1)}{2}+n$ simplification is left to you.
230. Let $n t_{n}$ represent numerator and $d t_{n}$ be the denominator of the nth term t_{n}. Then $n t_{n}=\left[\frac{n(n+1)}{2}\right]^{3}$ and $d t_{n}=\frac{n}{2}[2+(n-1) 2]=n^{2}$
$\Rightarrow t_{n}=\left(\frac{n+1}{2}\right)^{2}=\frac{n^{2}+2 n+1}{2} \Rightarrow S_{n}=\frac{1}{2} \sum_{i=1}^{n} i^{2}+\sum_{i=1}^{n} i+\frac{1}{2} \sum_{i=1}^{n} 1=\frac{n(n+1)(2 n+1)}{12}+\frac{n(n+1)}{2}+\frac{n}{2}$. Simplify and put $n=16$ to arrive at the answer.
231. $t_{n}=\left[(2 n+1)^{3}-(2 n)^{3}\right]=12 n^{2}+6 n+1 \Rightarrow S_{n}=12 \sum_{i=1}^{n} i^{3}+6 \sum_{i=1}^{n} i+\sum_{i=1}^{n} 1=$ $12 \frac{n(n+1)(2 n+1)}{6}+6 \frac{n(n+1)}{2}+n=2 n(n+1)(2 n+1)+3 n(n+1)+n$. Simplify and put $n=10$ to get the answer.
232. $t_{1}=\frac{1}{1}-\frac{1}{2}$, $t_{2}=\frac{1}{2}-\frac{1}{3} \cdots t_{n}=\frac{1}{n}-\frac{1}{n+1}$. Adding $S_{n}=\frac{1}{1}-\frac{1}{n+1}=\frac{n}{n+1}$.
233. $t_{n}=\frac{1}{n(n+1)(n+2)}=\frac{1}{2}\left[\frac{1}{n(n+1)}-\frac{1}{(n+1)(n+2)}\right]=\frac{1}{2}\left[\frac{1}{n}-\frac{2}{n+1}+\frac{1}{n+2}\right]$

Then, $t_{1}=\frac{1}{2.1}-\frac{1}{2}+\frac{1}{2.3}, t_{2}=\frac{1}{2.2}-\frac{1}{3}+\frac{1}{2.4}, t_{3}=\frac{1}{2.3}-\frac{1}{4}+\frac{1}{2.5}, \ldots, t_{n-2}=\frac{1}{2(n-1)}-\frac{1}{n-1}+$ $\frac{1}{2 n}, t_{n-1}=\frac{1}{2(n-1)}-\frac{1}{n}+\frac{1}{2(n+1)}, t_{n}=\frac{1}{2 \cdot n}-\frac{1}{n+1}+\frac{1}{2(n+2)}$
$\Rightarrow S_{n}=\frac{1}{2.1}-\frac{1}{2}+\frac{1}{2.2}+\frac{1}{2(n+1)}-\frac{1}{n+1}+\frac{1}{2(n+2)}=\frac{1}{4}-\frac{1}{2(n+1)}+\frac{1}{2(n+2)} \Rightarrow S_{\infty}=\frac{1}{4}$
234.

$$
\begin{aligned}
& S_{n}=1+5+11+19+\cdots+t_{n-1}+t_{n} \\
& S_{n}=1+5+11+\cdots+t_{n-1}+t_{n}
\end{aligned}
$$

Subtracting, we get $t_{n}=1=[4+6+8+\cdots$ to $(n-1)$ terms $]=1+\frac{n-1}{2}[2.4+(n-2) 2]=$ $n^{2}+n-1 \Rightarrow S_{n}=\sum_{i=1}^{n} i^{2}+\sum_{i=1}^{n} i-\sum_{i=1}^{n} 1=\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}-n=\frac{n\left(n^{2}+3 n-1\right)}{3}$.
235. First person gets 1 repee, second person gets $1+1=2$ rupee, third person gets $2+2=4$ rupee, fourth person gets $4+3=7$ rupee and so on.

$$
\begin{aligned}
& S_{n}=1+2+4+7+\cdots+t_{n} \\
& S_{n}=1+2+4+\cdots+t_{n-1}+t_{n}
\end{aligned}
$$

Subtracting, we get $t_{n}=1+[1+2+3+\cdots$ to $(n-1)$ terms $]=1+\frac{n-1}{2}[2.1+(n-2)]=$ $\frac{n^{2}-n+2}{2}=67 \Rightarrow n^{2}-n-132=0 \Rightarrow n=12$.
236. First term contains 1 integer, second term contains 2 and so on. So before t_{n} we will have $1+2+\cdots+(n-1)$ integers i.e. $\frac{n(n-1)}{2}$ integers. So t_{n} will start with $\frac{n(n-1)+2}{2}$ and will have n integers. So $t_{n}=\frac{n^{2}-n+2}{2}$. This will be the first number in nth group. So sum of nth group $=\frac{n}{2}\left[n^{2}-n+2+n-1\right]=\frac{n\left(n^{2}+1\right)}{2}$.
237.

$$
\begin{aligned}
& S_{n}=1+3+7+15+\cdots+t_{n} \\
& S_{n}=1+3+7+\cdots+t_{n-1}+t_{n}
\end{aligned}
$$

Subtracting, we have $t_{n}=1+[2+4+8+\cdots$ to $(n-1)$ terms $]=1+\frac{2\left(2^{n-1}-1\right)}{2-1}=2^{n}-1 \Rightarrow$ $S_{n}=(2-1)+\left(2^{2}-1\right)+\left(2^{3}-1\right)+\cdots+\left(2^{n}-1\right)=\frac{2\left(2^{n}-1\right)}{2-1}-n=2^{n+1}-2-n$.
238.

$$
\begin{aligned}
S_{n} & =1+2 x+3 x^{2}+\cdots+t_{n} \\
x S_{n} & =\quad 1 . x+2 x^{2}+\cdots+t_{n-1}+t_{n}
\end{aligned}
$$

Subtracting we get $(1-x) S_{n}=1+x+x^{2}+\cdots$ to n terms $-x t_{n}=\frac{1-x^{n}}{1-x}-x . n x^{n-1} \Rightarrow$ $S_{n}=\frac{1-x^{n}}{(1-x)^{2}}-\frac{n x^{n}}{1-x}$.
239. Given

$$
S_{100}=1+2.2+3.2^{2}+4.3^{3}+\cdots+100.2^{99}
$$

$$
2 . S_{100}=\quad 1.2+2.2^{2}+3.2^{3}+\cdots+99.2^{99}+100.2^{100}
$$

Subtracting, we get $-S_{n}=1+\left[2+2^{2}+2^{3}+\cdots\right.$ to 99 terms $]-100.2^{100}$
$S_{n}=100.2^{100}-\frac{2^{100}-1}{2-1}=99.2^{100}+1$.
240. Clearly

$$
\begin{aligned}
S & =1+2^{2} x+3^{2} x^{2}+4^{2} x^{3}+\cdots \text { to } \infty \\
x S & =\quad x+2^{2} x^{2}+3^{2} x^{3}+\cdots \text { to } \infty
\end{aligned}
$$

Subtracting, we get

$$
\begin{aligned}
(1-x) S & =1+3 x+5 x^{2}+7 x^{3}+\cdots \text { to } \infty \\
x(1-x) S & =\quad x+3 x^{2}+5 x^{3}+\cdots \text { to } \infty
\end{aligned}
$$

Again subtracting, $(1-x)^{2} S=1+2 x+2 x^{2}+2 x^{3}+\cdots$ to $\infty=1+\frac{2 x}{1-x}=\frac{1+x}{1-x} \Rightarrow S=$ $\frac{1+x}{(1-x)^{2}}$.
241. $S_{n}=2 n^{2}+4, t_{n}=S_{n}-S_{n-1}=2 n^{2}+4-2(n-1)^{2}-4=4 n-2 \Rightarrow d=t_{n}-t_{n-1}=$ $4 n-2-4(n-1)+2=4$ which is constant therefore the given sequence is in A.P.

Hint: Any sequence which is of the for which sum is of the form $a n^{2}+b n+c$ will lead to an A.P.
242. Given $t_{n}=n(n-1)(n+1)=n^{3}-n \Rightarrow S_{n}=\sum_{i=1}^{n} i^{3}-\sum_{i=1}^{n} i=\left[\frac{n(n+1)}{2}\right]^{2}-\frac{n(n+1)}{2}=$ $\frac{n(n+1)\left(n^{2}+n-2\right)}{4}$.
243. Clearly, $t_{n}=(2 n-1)^{3}=8 n^{3}-12 n^{2}+6 n-1 \Rightarrow S_{n}=8 \sum_{i=1}^{n} i^{3}-12 \sum_{i=1}^{n} i^{2}+6 \sum_{i=1}^{n} i-$ $\sum_{i=1}^{n} 1=2 n^{2}(n+1)^{2}-2 n(n+1)(2 n+1)+3 n(n+1)-n ;$ simplification is left to you.
244. Clearly, $t_{n}=(3 n-2)^{2}=9 n^{2}-12 n+4 \Rightarrow S_{n}=9 \sum_{i=1}^{n} i^{2}-12 \sum_{i=1}^{n} i+4 \sum_{i=1}^{n} 1=$ $\frac{3 n(n+1)(2 n+1)}{2}-6 n(n+1)+4 n$; simplification is left to you.
245. Given series is $1^{2}+3^{2}+5^{2}+\cdots$ to n terms $+2+4+6+\cdots$ to n terms.
$\Rightarrow t_{n}=(2 n-1)^{2}+\frac{n}{2}[2.2+(n-1) 2]=4 n^{2}-4 n+1+n^{2}+n=5 n^{2}-3 n+1$
$\Rightarrow S_{n}=5 \sum_{i=1}^{n} i^{2}-3 \sum_{i=1}^{n} i+\sum_{i=1}^{n} 1=\frac{5 n(n+1)(2 n+1)}{6}-\frac{3 n(n+1)}{2}+n$; simplification is left to you.
246. Case I: When n is even. Let $n=2 m$ then $S=1^{2}+3^{2}+5^{2}+\cdots$ to m terms $-\left[2^{2}+\right.$ $4^{2}+6^{2}+\cdots$ to m terms]
$=\sum_{i=1}^{m}(2 i-1)^{2}-\sum_{i=1}^{m}(2 i)^{2}=-4 \sum_{i=1}^{m} i+\sum_{i=1}^{m} 1=-2 m(m+1)+4 m=-2 m^{2}+2 m$ and then we substitute $m=\frac{n}{2}$.

Case II: When n is odd. Let $n=2 m+1$, then $S=1^{2}+3^{2}+5^{2}+\cdots$ to $(m+1)$ terms $\left[2^{2}+4^{2}+6^{2}+\cdots\right.$ to m terms $]$
$=\sum_{i=1}^{m+1}(2 i-1)^{2}-\sum_{i=1}^{m}(2 i)^{2}=\frac{4(m+1)(m+2)(2 m+3)}{6}-2(m+1)(m+2)+(m+1)-$ $\frac{2 m(m+1)(2 m+1)}{3} ;$ put $m=\frac{n-1}{2}$ and simplify.
247. Clearly, $t_{n}=(2 n-1)(2 n+1)=4 n^{2}-1 \Rightarrow S_{n}=4 \sum_{i=1}^{n} i^{2}-\sum_{i=1}^{n} 1=\frac{2 n(n+1)(2 n+1)}{3}-n ;$ simplification is left to you.
248. Clearly, $t_{n}=n(n+1) \Rightarrow S_{n}=\sum_{i=1}^{n} i^{2}+\sum_{i=1}^{n} i=\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}$; simplification is left to you.
249. Clearly, $t_{n}=n(n+1)^{2}=n^{3}+2 n^{2}+n \Rightarrow S_{n}=\sum_{i=1}^{n} i^{3}+2 \sum_{i=1}^{n} i^{2}+\sum_{i=1}^{n} i=\left[\frac{n(n+1)}{2}\right]^{2}+$ $\frac{n(n+1)(2 n+1)}{3}+\frac{n(n+1)}{2} ;$ simplification is left to you.
250. Clearly, $t_{n}=(n+1) n^{2}=n^{3}+n^{2} \Rightarrow S_{n}=\left[\frac{n(n+1)}{2}\right]^{2}+\frac{n(n+1)(2 n+1)}{6} ;$ simplification is left to you.
251. $t_{n}=1+3+5+\cdots$ upto n terms $=\frac{n}{2}[2.1+(n-1) 2]=n^{2} \Rightarrow S_{n}=\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.
252. $t_{n}=1^{2}+2^{2}+3^{2}+\cdots$ upto n terms $=\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}=\frac{n^{3}+3 n^{2}+n}{6}$.
$S_{n}=\frac{1}{6}\left[\sum_{i=1}^{n} i^{3}+3 \sum_{i=1}^{n} i^{2}+\sum_{i=1}^{n} i\right]=\frac{1}{6}\left[\frac{n^{2}(n+1)^{2}}{4}+\frac{n(n+1)(2 n+1)}{2}+\frac{n(n+1)}{2}\right]$; simplification is left to you.
253. $t_{n}=n(n+1)(2 n+1)=2 n^{3}+3 n^{2}+n \Rightarrow S_{n}=2 \sum_{i=1}^{n} i^{3}+3 \sum_{i=1}^{n} i^{2}+\sum_{i=1}^{n} i=\frac{n^{2}(n+1)^{2}}{2}+$ $\frac{n(n+1)(2 n+1)}{2}+\frac{n(n+1)}{2}$; simplification is left to you.
254. $t_{n}=n(n+1)(n+2)=n^{3}+3 n^{2}+2 n \Rightarrow S_{n}=\sum_{i=1}^{n} i^{3}+3 \sum_{i=1}^{n} i^{2}+2 \sum_{i=1}^{n} i=\frac{n^{2}(n+1)^{2}}{4}+$ $\frac{n(n+1)(2 n+1)}{2}+n(n+1)$; simplification is left to you.
255. $t_{n}=n(2 n+1)^{2}=4 n^{3}+4 n^{2}+n \Rightarrow S_{n}=4 \sum_{i=1}^{n} i^{3}+4 \sum_{i=1}^{n} i^{2}+\sum_{i=1}^{n} i=n^{2}(n+1)^{2}+$ $\frac{2 n(n+1)(2 n+1)}{3}+\frac{n(n+1)}{2} ;$ put $n=20$ and simplify.
256. $t_{r}=r\left(n^{2}-r^{2}\right)=n^{2} r-r^{3} \Rightarrow S=n^{2} \sum_{i=1}^{n} i-\sum_{i=1}^{n} i^{3}=\frac{n^{3}(n+1)}{2}-\frac{n^{2}(n+1)^{2}}{4}$; simplification is left to you.
257. $t_{n}=(2 n+1)^{3}-(2 n)^{3}=12 n^{2}+6 n+1 \Rightarrow S_{n}=12 \sum_{i=1}^{n} i^{2}+6 \sum_{i=1}^{n} i+\sum_{i=1}^{n} 1=2 n(n+$ 1) $(2 n+1)+3 n(n+1)+n$; put $n=10$ to get the answer.
258. $t_{n}=\frac{1}{1+2+3+\cdots \text { to } n \text { terms }}=\frac{2}{n(n+1)}=2\left[\frac{1}{n}-\frac{1}{n+1}\right]$
$t_{1}=2\left[1-\frac{1}{2}\right], t_{2}=2\left[\frac{1}{2}-\frac{1}{3}\right], t_{3}=2\left[\frac{1}{3}-\frac{1}{4}\right], \ldots, t_{n}=2\left[\frac{1}{n}-\frac{1}{n+1}\right]$.
Adding, $S=2\left[1-\frac{1}{n+1}\right]=\frac{2 n}{n+1}$.
259. $S=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\ldots=2\left[\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\cdots\right.$ to $\left.\infty\right]=1$.
260.

$$
S=2+6+12+20+\cdots+t_{n}
$$

$$
S=\quad 2+6+12+\cdots+t_{n-1}+t_{n}
$$

Subtracting, $t_{n}=2+4+6+8+\cdots$ to n terms $=\frac{n}{2}[2.2+(n-1) 2]=n(n+1)=$ $n^{2}+n \Rightarrow S=\sum_{i=1}^{n} i^{2}+\sum_{i=1}^{n} i=\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2} ;$ simplification is left to you.
261.

$$
\begin{aligned}
& S=3+6+11+18+\cdots+t_{n} \\
& S=\quad 3+6+11+18+\cdots+t_{n-1}+t_{n}
\end{aligned}
$$

Subtracting, $t_{n}=3+[3+5+7+\cdots$ to $(n-1)$ terms $]=3+\frac{n-1}{2}[2.3+(n-2) 2]=$ $3+n^{2}-1=n^{2}+2$
$S=\frac{n(n+1)(2 n+1)}{6}+2 n$; simplification is left to you.
262.

$$
\begin{aligned}
& S=1+9+24+46+75+\cdots+t_{n} \\
& S=\quad 1+9+24+46+\cdots+t_{n-1}+t_{n}
\end{aligned}
$$

Subtracting $t_{n}=1+8+15+22+29+\cdots$ to n terms $=\frac{n}{2}[2+(n-1) 7]=\frac{7 n^{2}-5 n}{2}$.
$\Rightarrow S=\frac{7 n(n+1)(2 n 1)}{12}-\frac{5 n(n+1)}{4}$.
263.

$$
\begin{aligned}
& S=2+4+7+11+16+\cdots+t_{n} \\
& S=\quad 2+4+7+11+\cdots+t_{n-1}+t_{n}
\end{aligned}
$$

Subtracting, $t_{n}=2+[2+3+4+5+\cdots$ to $(n-1)$ terms $]=2+\frac{n-1}{2}[2.2+n-1]=$ $2+\frac{n^{2}+2 n-3}{2}=\frac{n^{2}-2 n+1}{2}$.
264.

$$
\begin{aligned}
& S=1+3+6+10+\cdots+t_{n} \\
& S=1+3+6+\cdots+t_{n-1}+t_{n}
\end{aligned}
$$

Subtracting, $t_{n}=1+2+3+4+\cdots$ to n terms $=\frac{n(n+1)}{2}=\frac{n^{2}+n}{2}$
$\Rightarrow S=\frac{n(n+1)(2 n+1)}{12}+\frac{n(n+1)}{4}$. Put $n=10$ to get the answer.
265. First group contains 2 odd numbers, second group contains 4 odd numbers, third group contains 6 odd numbers so $(n-1)$ th group will contain $2 n-2$ odd numbers.

Total no. of odd numbers till $(n-1)$ th group will be $n(n-1)$. So last no. in $(n-1)$ th group will be $1+\left(n^{2}-n-1\right) 2=2 n^{2}-2 n-1$ and hence first number in nth group will be $2 n^{2}-2 n+1$ and there will be $2 n$ odd numbers. So sum of $2 n$ odd numbers starting from $2 n^{2}-2 n+1$ is given by $\frac{2 n}{2}\left[4 n^{2}-4 n+2+(2 n-1) 2\right]=4 n^{3}$.
266. Groups contain $1,3,5, \ldots$ number of terms so nth group will contain $2 n-1$ numbers starting from n. So sum will be $\frac{2 n-1}{2}[2 n+2 n-2]=(2 n-1)^{2}$ which is square of odd positive integer.
267.

$$
\begin{aligned}
& S=2+5+14+41+\cdots+t_{n} \\
& S=\quad 2+5+14+\cdots+t_{n-1}+t_{n}
\end{aligned}
$$

Subtracting $t_{n}=2+\left[3+3^{2}+\cdots\right.$ to $(n-1)$ terms $]=2+\frac{3\left(3^{n-1}-1\right)}{3-1}=\frac{3^{n}+1}{2}$.
$\Rightarrow S=\frac{1}{2}\left[\frac{3\left(3^{n}-1\right)}{2}+n\right]$.
268.

$$
\begin{aligned}
S & =1.1+2.3+4.5+8.7+\cdots+t_{n} \\
2 S & =\quad 2.1+4.3+8.5+\cdots+t_{n-1}+2^{n}(2 n-1)
\end{aligned}
$$

Subtracting, $-S=1.1+[2.2+4.2+8.2+\cdots$ to $(n-1)$ terms $]-2^{n}(2 n-1)$
$S=2^{n}(2 n-1)-1-4\left(2^{n-1}-1\right)$.
269. Clearly, $a_{2 n}-a_{1}=(2 n-1) d \Rightarrow d=\frac{a_{2 n}-a_{1}}{2 n-1}$

Now, $a_{1}^{2}-a_{2}^{2}+a_{3}^{2}-a_{4}^{2}+\cdots+a_{2 n-1}^{2}-a_{2 n}^{2}=\left(a_{1}-a_{2}\right)\left(a_{1}+a_{2}\right)+\left(a_{3}-a_{4}\right)\left(a_{3}+a_{4}\right)+$ $\cdots+\left(a_{2 n-1}-a_{2 n}\right)\left(a_{2 n-1}+a_{2 n}\right)$
$=-d\left(a_{1}+a_{2}+a_{3}+a_{4}+\cdots+a_{2 n-1}+a_{2 n}\right)=-\frac{a_{2 n}-a_{1}}{2 n-1} \cdot \frac{2 n}{2}\left[a_{1}+a_{2 n}\right]=\frac{n}{2 n-1}\left(a_{1}^{2}-a_{2 n}^{2}\right)$.
270. $d=\alpha_{2}-\alpha_{1}=\alpha_{3}-\alpha_{2}=\cdots=\alpha_{n}-\alpha_{n-1}$
$\sin d \sec \alpha_{1} \sec \alpha_{2}=\frac{\sin \left(\alpha_{2}-\alpha_{1}\right)}{\cos \alpha_{1} \cos \alpha_{2}}=\tan \alpha_{2}-\tan \alpha_{1}$. Similarly, $\sin d \sec \alpha_{2} \sec \alpha_{3}=\tan \alpha_{3}-$ $\tan \alpha_{2}$ and so on. $\sin d \sec \alpha_{n-1} \sec \alpha_{n}=\tan \alpha_{n}-\tan \alpha_{n-1}$

Adding we get L.H.S. $=$ R.H.S.
271. L.H.S. $=\frac{1}{a_{1}+a_{n}}\left[\frac{a_{1}+a_{n}}{a_{1} a_{n}}+\frac{a_{1}+a_{n}}{a_{2} a_{n-1}}+\cdots+\frac{a_{1}+a_{n}}{a_{n} a_{1}}\right]=\frac{1}{a_{1}+a_{n}}\left[\frac{a_{1}+a_{n}}{a_{1} a_{n}}+\frac{a_{2}+a_{n-1}}{a_{2} a_{n-1}}+\cdots+\frac{a_{1}+a_{n}}{a_{n} a_{1}}\right]$
$=\frac{1}{a_{1}+a_{n}}\left[\frac{1}{a_{1}}+\frac{1}{a_{n}}+\frac{1}{a_{2}}+\frac{1}{a_{n-1}}+\cdots+\frac{1}{a_{n}}+\frac{1}{a_{1}}\right]=\frac{2}{a_{1}+a_{n}}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}\right)$.
272. $\frac{1}{a_{1}}-\frac{1}{a_{2}}=\frac{a_{2}-a_{1}}{a_{1} a_{2}}=\frac{d}{a_{1} a_{2}} \Rightarrow \frac{1}{a_{1} a_{2}}=\frac{1}{d}\left(\frac{1}{a_{1}}-\frac{1}{a_{2}}\right)$. Similarly $\frac{1}{a_{2} a_{3}}=\frac{1}{d}\left(\frac{1}{a_{2}}-\frac{1}{a_{3}}\right)$ and so on.
$\therefore S=\frac{1}{d}\left(\frac{1}{a_{1}}-\frac{1}{a_{n+1}}\right)=\frac{n}{a_{1} a_{n 1}}$
273. $\because a_{1}=0$ then $a_{2}=d, a_{3}=2 d, \ldots, a_{n}=(n-1) d$ where d is the c.d. of the A.P.
L.H.S. $=\frac{2}{1}+\frac{3}{2}+\frac{4}{3}+\cdots+\frac{n-1}{n-2}-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-3}\right)$
$=(1+1)+\left(1+\frac{1}{2}\right)+\cdots+\left(1+\frac{1}{n-2}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-3}\right)$
$=n-2+\left[\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-2}\right)-\left(1+\frac{1}{2}+\cdots+\frac{1}{n-3}\right)\right]$
$=n-2+\frac{1}{n-2}=\frac{a_{n-1}}{a_{2}}+\frac{a_{2}}{a_{n-1}}=$ R.H.S.
274. L.H.S. $=\sum_{k=1}^{n} \frac{a_{k} a_{k+1} a_{k+2}}{\left(a_{k+1}-d\right)+\left(a_{k+1}+d\right)}=\frac{1}{2} \sum_{k=1}^{n} a_{k} a_{k+2}=\frac{1}{2} \sum_{i=1}^{k}\left(a_{k+1}^{2}-d^{2}\right)=\frac{1}{2} \sum_{k=1}^{n}\left[\left(a_{1}+k d\right)^{2}-\right.$
$\left.d^{2}\right]=\frac{1}{2} \sum_{k=1}^{n}\left[a_{1}^{2}+2 a_{1} d k+\left(k^{2}-1\right) d^{2}\right]$
$=\frac{1}{2}\left[\sum_{k=1}^{n} a_{1}^{2}+2 a_{1} d \sum_{k=1}^{n} k+d^{2} \sum_{k=1}^{n} k^{2}-\sum_{k=1}^{n} d^{2}\right]=\frac{1}{2}\left[n a_{1}^{2}+2 a_{1} d \frac{n(n+1)}{2}+d^{2} \frac{n(n+1)(2 n+1)}{6}-\right.$ $\left.n d^{2}\right]$
$=\frac{n}{2}\left[a_{1}^{2}+(n+1) a_{1} d+\frac{(n-1)(2 n+5)}{6} d^{2}\right]=$ R.H.S.
275. Given, $x^{18}=y^{21} \Rightarrow 18 \log x=21 \log y \Rightarrow \log _{y} x=\frac{7}{6}$

Similarly $y^{12}=z^{28} \Rightarrow \log _{z} y=\frac{4}{3}$ and $x^{18}=y^{28} \Rightarrow \log _{x} z=\frac{9}{14}$
Now it is trivial to prove that $3,3 \log _{y} x, \log _{z} x, 7 \log _{x} z$ are in A.P.
276. Given, $I_{n}=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} n x}{\sin ^{2} x} d x$. Since we have to prove that $I_{1}, I_{2}, I_{3}, \ldots$ are in A.P. we can simply prove that I_{n}, I_{n+1}, I_{n+2} are in A.P. which will be enough to prove the entire sequence. So it is enough to prove that $I_{n}+I_{n+2}-2 I_{n+1}=0$
L.H.S. $=\sin _{0}^{\frac{\pi}{2}} \frac{\sin ^{2}(n+2) x+\sin ^{2} n x-\sin ^{2}(n+1) x}{\sin ^{2} x} d x$

$$
\begin{aligned}
& =\int_{i=0}^{\frac{\pi}{2}} \frac{1-\cos (2 n+4) x+1-\cos 2 n x-2+2 \cos (2 n+2) x}{2 \sin ^{2} x} d x \\
& =\int_{i=0}^{\frac{\pi}{2}} \frac{2 \cos (2 n+2) x-2 \cos (2 n+2) x \cos 2 x}{2 \sin ^{2} x} d x \\
& =\int_{i=0}^{\frac{\pi}{2}} \frac{2 \cos (2 n+2) x \cdot 2 \sin ^{2} x}{2 \sin ^{2} x} d x=\int_{i=0}^{\frac{\pi}{2}} 2 \cos (2 n+2) d x=\left[\frac{\sin (2 n+2) x}{n+1}\right]=0
\end{aligned}
$$

277. Let $a_{1}, a_{2}, a_{3}, \ldots$ be an A.P. which are distinct primes. Clearly $a_{1} \geq 1$. $d=a_{2}-a_{1} \geq 1$. Now $\left(a_{1}+1\right)$ th term $=a_{1}+a_{1} d=a_{1}(1+d)$ which is a composite number. Thus, there cannot be such an A.P.
278. Let the four distinct integers in A.P. be $a, a+d, a+2 d, a+3 d$ where $d>0$. Obviously, the term which is sum of squares of remaining terms will be $a+3 d$.

Let $a+3 d=a^{2}+(a+d)^{2}+(a+2 d)^{2}=3 a^{2}+6 a d+5 d^{2} \Rightarrow 5 d^{2}+a(6 d-1)+5 d^{2}-3 d=0$
$\Rightarrow 9(2 a-1)^{2}-20\left(3 a^{2}-a\right) \geq 0[\because d$ is real $] \Rightarrow-24 a^{2}-16 a+9 \geq 0$
Corresponding roots are $-\frac{4 \pm \sqrt{70}}{12} \Rightarrow-\frac{4-\sqrt{70}}{12} \leq a \leq-\frac{4+\sqrt{70}}{12} \therefore a=-1,0[\because a$ is an integer].
$\Rightarrow a=1$ other roots are not acceptable. Numbers are $-1,0,1,2$.
279. Given, $t_{n}=p+q$ and $t_{n+1}=p-q \Rightarrow d=-2 q$. We also know that
$t_{1}+t_{2 n}=t_{2}+t_{2 n-1}=\cdots=t_{n}+t_{n+1}=2 p$
$t_{1}^{3}+t_{2 n}^{3}=\left(t_{1}+t_{2 n}\right)^{3}-3 t_{1} t_{2 n}\left(t_{1}+t_{2 n}\right)=8 p^{3}-6 p t_{1} t_{2 n}=8 p^{3}+\frac{6 p}{4}\left[\left(t_{1}+t_{2 n}\right)^{2}-\left(t_{1}-\right.\right.$
$\left.\left.t_{2 n}\right)\right]=8 p^{3}-\frac{3 p}{2}\left[4 p^{2}-(2 n-1)^{2} d^{2}\right]=2 p^{3}+6 p q^{2}(2 n-1)^{2}$
$S=2 n p^{3}+6 p q^{2}\left[1^{2}+3^{2}+\cdots+(2 n-1)^{2}\right]$ (we have found $\sum_{i=1}^{n}(2 i-1)^{2}$ so we will use that result)
$=2 n p^{3}+2 p q^{2} \cdot n(2 n+1)(2 n-1)=2 n p\left[p^{2}+\left(4 n^{2}-1\right) q^{2}\right]$.
280. Let a be the first term and d be the c.d. of the A.P. Then,
$S=\frac{n}{2}[2 a+(n-1) d]$
$S_{n}=a^{3}+(a+d)^{3}+(a+2 d)^{3}+\cdots+[a+(n-1) d]^{3}$
$=n a^{3}+3 a^{2} d[1+2+3+\cdots+(n-1)]+3 a d^{2}\left[1^{2}+2^{2}+3^{2}+\cdots+(n-1)^{2}\right]+d^{3}\left[1^{3}+\right.$ $\left.2^{3}+3^{3}+\cdots+(n-1)^{3}\right]$
$=n a^{3}+3 a^{2} d \frac{n(n-1)}{2}+3 a d^{2} \frac{n(n-1)(2 n-1)}{6}+d^{3} \frac{n^{2}(n-1)^{2}}{4}$
$=\frac{n}{2}[2 a+(n-1) d]\left[a^{2}+(n-1) a d+\frac{n(n-1)}{2} d^{2}\right]=S\left[a^{2}+(n-1) a d+\frac{n(n-1)}{2} d^{2}\right]$.
Hence, S is a factor of S_{n}.
281. Let r be a positive integer greater than 1 . If possible, let $m^{r}=(2 k+1)+(2 k+3)+$ $\cdots+(2 k+2 m-1)=\frac{m}{2}[2 k+1+2 k+2 m-1]=2 k+m \Rightarrow k=\frac{m^{r-1}-m}{2}$

Clealry for $r>1, m^{r-1}$ and m are both odd or both even. $\therefore m^{r-1}-m$ is an even number. Thus such an integer k exists.

Also, the first odd inetger $=2 k+1=m^{r-1}-m+1$.
282. Let x be the first term and d be the c.d. of the A.P. Then,

$$
\begin{align*}
x+(x+d)+(x+2 d)+\cdots+[x+ & (n-1) d]=a \\
a & \left.=n x+\frac{d n(n-1)}{2}\right] \tag{2.1}
\end{align*}
$$

Also, $x^{2}+(x+d)^{2}+(x+2 d)^{2}+\cdots+[x+(n-1) d]^{2}=b^{2}$
$=n x^{2}+2 x d[1+2+3+\cdots+(n-1)]+d^{2}\left[1^{2}+2^{2}+\cdots+(n-1)^{2}\right]$

$$
\begin{equation*}
b^{2}=n x^{2}+x d n(n-1)+d^{2} \frac{(n-1) n(2 n-1)}{6} \tag{2.2}
\end{equation*}
$$

Sqauring Eq. 2.1, we have

$$
\begin{align*}
& a^{2}=n^{2} x^{2}+n^{2} x d(n-1)+\frac{n^{2} d^{2}(n-1)^{2}}{4}=a^{2} \\
& \quad n x^{2}+n x d(n-1)+\frac{n d^{2}(n-1)^{2}}{4}=a^{2} \tag{2.3}
\end{align*}
$$

Eq. 2.2 - Eq. 2.3
$\Rightarrow d^{2} \frac{n(n-1)(n+1)}{12}=\frac{n b^{2}-a^{2}}{n} \Rightarrow d= \pm \frac{2 \sqrt{3\left(n b^{2}-a^{2}\right)}}{n \sqrt{n^{2}-1}}$
Now you can find x trivially.
283. $d=a_{2}-a_{1}=a_{3}-a_{2}=\cdots=a_{n}-a_{n-1}$. We have to find
$\sin d\left[\csc a_{1} \csc a_{2}+\csc a_{2} \csc a_{3}+\cdots+\csc a_{n-1} \csc a_{n}\right]$
$=\sin d\left[\frac{1}{\sin a_{1} \sin a_{2}}+\frac{1}{\sin } a_{2} \sin a_{3}+\cdots+\frac{1}{\sin a_{n-1} \sin a_{n}}\right]$
$=\frac{\sin \left(a_{2}-a_{1}\right)}{\sin a_{1} \sin a_{2}}+\frac{\sin \left(a_{3}-a_{2}\right)}{\sin a_{2} \sin a_{3}}+\cdots+\frac{\sin \left(a_{n}-a_{n-1}\right)}{\sin a_{n-1} \sin a_{n}}$
$=\frac{\sin a_{2} \cos a_{1}-\sin a_{1} \cos a_{2}}{\sin a_{1} \sin a_{2}}+\frac{\sin a_{3} \cos a_{2}-\sin a_{2} \cos a_{3}}{\sin a_{2} \sin a_{3}}+\frac{\sin a_{n} \cos a_{n-1}-\sin a_{n-1} \cos a_{n}}{\sin a_{n-1} \sin a_{n}}$
$=\cot a_{1}-\cot a_{2}+\cot a_{2}-\cot a_{3}+\cdots+\cot a_{n-1}-\cot a_{n}=\cot a_{1}-\cot a_{n}$.
284. Let d be common difference of the A.P.
L.H.S. $=\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\cdots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}=\frac{n-1}{\sqrt{a_{1}}+\sqrt{a_{n}}}$
$=\frac{\sqrt{a_{1}}-\sqrt{a_{2}}}{a_{1}-a_{2}}+\frac{\sqrt{a_{2}}-\sqrt{a_{3}}}{a_{2}-a_{3}}+\cdots+\frac{\sqrt{a_{n-1}}-\sqrt{a_{n}}}{a_{n-1}-a_{n}}$
$=-\frac{1}{d}\left[\sqrt{a_{1}}-\sqrt{a_{n}}\right]\left[\because d=a_{2}-a_{1}=a_{3}-a_{2}=\cdots=a_{n}-a_{n-1}\right]$
$=-\frac{n-1}{(n-1) d} \frac{a_{1}-a_{n}}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}=\frac{n-1}{\sqrt{a_{1}}+\sqrt{a_{n}}}\left[\because a_{n}=a_{1}+(n-1) d\right]$.
285. Let d be the common difference of the A.P., then
L.H.S. $=\sum_{2}^{n} \tan ^{-1} \frac{d}{1+a_{n-1} a_{n}}=\sum_{2}^{n} \tan ^{-1} \frac{a_{n}-a_{n-1}}{1+a_{n-1} a_{n}}=\sum_{2}^{n} \tan ^{-1} a_{n}-\tan ^{-1} a_{n-1}\left[\because \tan ^{-1} x-\right.$ $\left.\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y}\right]$
$=\tan ^{-1} a_{2}-\tan ^{-1} a_{1}+\tan ^{-1} a_{3}-\tan ^{-1} a_{2}+\cdots+\tan ^{-1} a_{n}-\tan ^{-1} a_{n-1}=\tan ^{-1} a_{n}-$ $\tan ^{-1} a_{1}=\tan ^{-1} \frac{a_{n}-a_{1}}{1+a_{1} a_{n}}=$ R.H.S.
286. Given, $S_{n}=\frac{1}{a_{1} a_{2}}+\frac{1}{a_{2} a_{3}}-\cdots+\frac{1}{a_{n-1} a_{n}}$
$=\frac{1}{d}\left[\frac{a_{2}-a_{1}}{a_{1} a_{2}}+\frac{a_{3}-a_{2}}{a_{2} a_{3}}+\cdots+\frac{a_{n}-a_{n-1}}{a_{n-1} a_{n}}\right]\left[\because d=a_{2}-a_{1}=a_{3}-a_{2}=\cdots=a_{n}-a_{n-1}\right]$
$=\frac{1}{d}\left[\frac{1}{a_{1}}-\frac{1}{a_{2}}+\frac{1}{a_{2}}-\frac{1}{a_{3}}+\cdots+\frac{1}{a_{n-1}-\frac{1}{a_{n}}}\right]$
$=\frac{1}{d}\left[\frac{1}{a_{1}}-\frac{1}{a_{n}}\right]=\frac{a_{n}-a_{1}}{d a_{1} a_{n}}=\frac{(n-1) d}{d a_{1} a_{n}}\left[\because a_{n}=a_{1}+(n-1) d\right]$
$\Rightarrow a_{a n} S_{n}=n-1$, which does not depend on a or d.
287. We know that $S=\frac{n}{2}\left[t_{1}+t_{n}\right]$ so
$S_{1}=\frac{n}{2}\left[a_{1}+a_{n}\right]=\frac{n}{2}[2 a+(n-1) d]$
$S_{2}=\frac{n}{2}\left[a_{n+1}+a_{2 n}\right]=\frac{n}{2}[2 a+(3 n-1) d]$
$S_{3}=\frac{n}{2}\left[a_{2 n+1}+a_{3 n}\right]=\frac{n}{2}[2 a+(5 n-1) d]$
......
$S_{r}=\frac{n}{2}[2 a+\{(2 r-1) n-1\} d]$
Clearly, $S_{2}-S_{1}=S_{3}-S_{2}=\cdots=S_{r+1}-S_{r}=n^{2} d$ which is an A.P.
288. Let d be the c.d. of the A.P. then $\frac{b-c}{a-b}=\frac{-d}{-d}=1$ which is a rational number.
289. $\tan 70^{\circ}=\tan \left(50^{\circ}+20^{\circ}\right)=\frac{\tan 70^{\circ}+\tan 20^{\circ}}{1-\tan 50^{\circ} \tan 20^{\circ}}$
$\Rightarrow \tan 70^{\circ}-\tan 70^{\circ} \tan 50^{\circ} \tan 20^{\circ}=\tan 50^{\circ}+\tan 20^{\circ}$
$\Rightarrow \tan 70^{\circ}-\cot \left(90^{\circ}-70^{\circ}\right) \tan 50^{\circ} \tan 20^{\circ}=\tan 50^{\circ}+\tan 20^{\circ}$
$\Rightarrow \tan 70^{\circ}-\tan 50^{\circ}=\tan 50^{\circ}+\tan 20^{\circ} \Rightarrow \tan 80^{\circ}=2 \tan 50^{\circ}+\tan 20^{\circ}$
Adding $\tan 20^{\circ}$ to both sides, we have
$\tan 70^{\circ}+\tan 20^{\circ}=2\left(\tan 50^{\circ}+\tan 20^{\circ}\right)$ and thus required condition is proved.
290. Given $\log _{l} x, \log _{m} x, \log _{n} x$ are in A.P. Therefore $2 \log _{m} x=\log _{l} x+\log _{n} x$
$\Rightarrow \frac{2 \log x}{\log m}=\frac{\log x}{\log l}+\frac{\log x}{\log n} \Rightarrow \frac{2}{\log m}=\frac{\log l n}{\log l \log n}$
$\Rightarrow 2 \log n=\frac{\log \ln \log m}{\log l}$ (multiplying with $\log m \log n$ on both sides)
$\Rightarrow \log n^{2}=\log _{l} m \log l n=\log l n^{\log _{l} m} \Rightarrow n^{2}=(l n)^{\log _{l} m} ;$ hence proved.
291. Let b, p, h be base, perpendicular, hypotenuse of the triangle. Let b be smallest then $2 p=h+b \Rightarrow h=2 p-b$

We know that for a right angle triangle $h^{2}=b^{2}+p^{2}$. Substituting for h,
$4 p^{2}-4 b p+b^{2}=b^{2}+p^{2} \Rightarrow 3 p^{2}=4 b p \Rightarrow 3 p=4 b \Rightarrow h^{2}=\frac{16 b^{2}}{9}+b^{2} \Rightarrow h=\frac{5 b}{3}$
$\Rightarrow b: p: h=3: 4: 5$.
292. Let $5^{x}=t$ then for condition for A.P. gives us $a=5 t+\frac{5}{t}+t^{2}+\frac{1}{t^{2}}$

We know that $x+\frac{1}{x} \geq 2 \therefore a \geq 12$.
293. Given $\log 2, \log \left(2^{x}-1\right), \log \left(2^{x}+3\right)$ are in G.P. Therefore, $2 \log \left(2^{x}-1\right)=\log 2+$ $\log \left(2^{x}+3\right)$
$\Rightarrow\left(2^{x}-1\right)^{2}=2.2^{2}+6 \Rightarrow 2^{2 x}-4.2^{x}-5=0 \Rightarrow 2^{x}=5,-1$ however, $2^{x} \neq-1$ so $2^{x}=5 \Rightarrow x=\log _{2} 5$.
294. Let d be the c.d. of the A.P. $\therefore \log _{y} x=1+d \Rightarrow x=y^{1+d}, \log _{z} y=1+2 d \Rightarrow y=$ $z^{1+2 d},-15 \log _{x} z=1+3 d \Rightarrow z=x^{-\frac{1+3 d}{15}}$ $\because x=y^{1+d}=z^{(1+2 d)(1+d)}=x^{-\frac{(1+d)(1+2 d)(1+3 d)}{15}} \Rightarrow(1+d)(1+2 d)(1+3 d)=-15 \Rightarrow$ $(d+2)\left(6 d^{2}-d+8\right)=0$

Discriminant of $6 d^{2}-d+8$ is less than 0 and thus $d=-2$.
$\Rightarrow x=z^{3}, y=z^{-3}$.
295. Let $\sqrt{2}, \sqrt{3}, \sqrt{5}$ be p th, q th and r th term of an A.P. whose c.d. is d.
$\sqrt{3}-\sqrt{2}=(q-p) d$ and $\sqrt{5}-\sqrt{3}=(r-q) d$. Dividing, we get $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{5}-\sqrt{3}}=\frac{q-p}{r-q}=x$, which will be a rational number as p, q, r are integers.

Sqauring $5-2 \sqrt{6}=x^{2}(8-2 \sqrt{15}) \Rightarrow \sqrt{15} x^{2}-\sqrt{6}=\left(8 x^{2}-5\right) / 2=y$ (which will again be a rational number)

Squaring again $15 k^{4}+6-2 \sqrt{90} k^{2}=y^{2} \Rightarrow 15 k^{4}+6-y^{2}=2 \sqrt{90} k^{2}$
L.H.S. is a rational number while R.H.S. is irrational thus our assumption is wrong.
296. Area of r th circle $A_{r}=\pi r^{2}$ and area of $(r+1)$ th circle is $A_{r+1}=\pi(r+1)^{2}$ so the difference is $D_{r}=\pi(2 r+1)$ therefore c.d. $=D_{r+1}-D_{r}=2 \pi$ which is a constant and hence the successive areas of each color is in A.P.
297. $\because x, y, z$ are in A.P. $\therefore 2 y=x+z$. Similarly, $2 \tan ^{-1} y=\tan ^{-1} x+\tan ^{-1} z$

$$
\Rightarrow \frac{2 y}{1-y^{2}}=\frac{x+z}{1-x z} \Rightarrow \frac{x+z}{1-\frac{(x+z)^{2}}{4}}=\Rightarrow 1-z x=1-\frac{(x+z)^{2}}{4} \Rightarrow(z-x)^{2}=0 \Rightarrow x=z=y
$$

298. From given conditiion $\frac{\cos ^{4} \theta}{\cos ^{2} \alpha}+\frac{\sin ^{4} \theta}{\sin ^{2} \alpha}=1=\cos ^{2} \theta+\sin ^{2} \theta$

$$
\Rightarrow \frac{\cos ^{4} \theta}{\cos ^{2} \alpha}\left(\cos ^{2} \theta-\cos ^{2} \alpha\right)=\frac{\sin ^{2} \theta}{\sin ^{2} \alpha}\left(\sin ^{2} \alpha-\sin ^{2} \theta\right)=\frac{\sin ^{2} \theta}{\sin ^{2} \alpha}\left(\sin ^{2} \theta-\sin ^{2} \alpha\right)
$$

$\Rightarrow \frac{\cos ^{2} \theta}{\cos ^{2} \alpha}=\frac{\sin ^{2} \theta}{\sin ^{2} \alpha}$ and thus we prove the required condition because $\frac{\cos ^{2 n+2} \theta}{\cos ^{2 n \alpha}}=\cos ^{2} \theta$.
299. $a_{n+1}-a_{n}=\int_{0}^{\pi} \frac{\sin (2 n+2) x-\sin 2 n x}{\sin x} d x=\int_{0}^{\pi} \frac{2 \cos (2 n+1) x \sin x}{\sin x} d x$
$=\left[\frac{2 \sin (2 n+1) x}{2 n+1}\right]_{0}^{\pi}=0$
Hence, c.d. is 0 making all terms equal and in A.P.
300. $l_{n}+l_{n+2}=\int_{0}^{\frac{\pi}{4}}\left(\tan ^{n} x+\tan ^{n+2} x d x\right)=\left[\frac{\tan ^{n+1} x}{n+1}\right]_{0}^{\frac{\pi}{4}}=\frac{1}{n+1}$.

Thus, $\frac{1}{l_{2}+l_{4}}=3, \frac{1}{l_{3}+l_{5}}=4, \frac{1}{l_{4}+l_{5}}=5, \cdots$, which is an A.P. with a c.d. of 1 .
301. $I_{n+1}-I_{n}=\int_{0}^{\pi} \frac{\cos 2 n x-\cos (2 n+2) x}{\sin ^{2} x} d x=2 \int_{0}^{\pi} \frac{\sin x \sin (2 n+1) x}{\sin ^{2} x} d x$
$D_{n}=2 \int_{0}^{\pi} \frac{\sin (2 n+1) x}{\sin x} d x$
$D_{n+1}-D_{n}=2 \int_{0}^{\pi} \frac{\sin (2 n+3) x-\sin (2 n+1) x}{\sin x} d x=4 \int_{0}^{\pi} \frac{\sin x \cos (2 n+2) x}{\sin x} d x=2\left[\frac{\sin 2(n+1) x}{n+1}\right]_{0}^{\pi}=$ 0
$\Rightarrow D_{1}=\pi \Rightarrow I_{n+1}-I_{n}=\pi$ which is a constant and hence $I_{1}, I_{2}, I_{3}, \ldots$ are in A.P.
302. $\because \alpha, \beta, \gamma$ are in A.P. $\therefore 2 \beta=\gamma+\alpha$
$2 \sin (\alpha+\gamma)=\sin (\beta+\gamma)+\sin (\alpha+\beta) \Rightarrow 2 \sin 2 \beta=2 \sin \left(\frac{\alpha+\beta+2 \beta}{2}\right) \cdot \cos \frac{\gamma-\alpha}{2}$
$\Rightarrow \cos \frac{\gamma-\alpha}{2}=1=\cos 0 \Rightarrow \gamma=\alpha=\beta$ and hence $\tan \alpha=\tan \beta=\tan \gamma$.
303. Let d be the $c . d$ then we have $2 b=a+c$ and $a b c=4 \Rightarrow a c(a+c)=4$. We know that
A.M. \geq G.M $\Rightarrow \frac{a+c}{2} \geq \sqrt{a c} \Rightarrow \frac{(a+c)^{2}}{4}(a+c) \geq 4 \Rightarrow b^{3} \geq 4$ and hence proved.
304. Let $S=\log a+\log \frac{a^{3}}{b}+\log \frac{a^{5}}{b^{2}}+\log \frac{a^{7}}{b^{3}}+\cdots$
$=(\log a+3 \log a+5 \log a+\cdots)-(\log b+2 \log b+\cdots)=\frac{n}{2}[2 \log a+(n-1) 2 \log a]-$ $\frac{n-1}{2}[2 \log b+(n-2) \log b]=\frac{n}{2}[2 n \log a]-\frac{n-1}{2}[2 n \log b]$
$=\log a^{n^{2}}-\log b^{n(n-1)}=\log \frac{a^{n^{2}}}{b^{(n(n-1))}}$.
305. $b=a+d \Rightarrow d=b-a$ and $n=\frac{c-a}{b-a}+1=\frac{b+c-2 a}{b-a}$
$S_{n}=\frac{n}{2}[a+c]=\frac{(b+c-2 a)(a+c)}{2(b-a)}$.
306. Let a be the first term and d be the c.d. of the A.P.
$S_{n+3}=\frac{n+3}{2}[2 a+(n+2) d]$ and $3\left(S_{n+2}-S_{n+1}\right)+S_{n}=3 t_{n+2}+\frac{n}{2}[2 a+(n-1) d]=$ $3[a+(n+1) d]+\frac{n}{2}[2 a+(n-1) d]$
$=\frac{1}{2}[2 a n+n(n-1) d+6 a+6(n+1) d]=\frac{1}{2}\left[2 a(n+3)+\left(n^{2}+5 n+6\right) d\right]=S_{n+3}$.
307. Observe that $2 a b=(a+b)^{2}-\left(a^{2}+b^{2}\right), 2(a b+b c+c a)=(a+b+c)^{2}-\left(a^{2}+b^{2}+c^{2}\right)$. Similarly it can be observed that $2 \sum_{r<s} a_{r} a_{s}=\left(\sum_{i=1}^{n} a_{i}\right)^{2}-\sum_{i=1}^{n} a_{i}^{2}$

Now, $\left(\sum_{i=1}^{n} a_{i}\right)^{2}=\left[\frac{n}{2}\left(2 a_{1}+(n-1) d\right)\right]^{2}$

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=\frac{n}{2}\left[4 a_{1}^{2}+4 a_{1}(n-1) d+(n-1)^{2} d^{2}\right] \tag{2.4}
\end{equation*}
$$

and $\sum_{i=1}^{n} a_{i}^{2}=a_{1}^{2}+\left(a_{1}+d\right)^{2}+\left(a_{1}+2 d\right)^{2}+\cdots+\left[a_{1}+(n-1) d\right]^{2}$

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}^{2}=n a_{1}^{2}+a_{1} d n(n-1)+\frac{d^{2}(n-1) n(2 n-1)}{6} \tag{2.5}
\end{equation*}
$$

Adding Eq. 2.4 and Eq. 2.5, we get the desired answer.
308. Let there be n rows in the equilateral triangle. Then $S=\frac{n(n+1)}{2}$. Now according to given facts, $\frac{n(n+1)}{2}+669=(n-8)^{2} \Rightarrow n=55 \Rightarrow S=1540$.
309. Required sum $=\frac{(1+2+3+\cdots+n)^{2}-\left(1^{2}+2^{2}+3^{2}+\cdots+n^{2}\right)}{2}$
$=\frac{\frac{n^{2}(n+1)^{2}}{4}-\frac{n(n+1)(2 n+1)}{6}}{2}=\frac{\frac{n(n+1)}{2}\left(\frac{n(n+1)}{2}-\frac{2 n+1}{3}\right)}{2}=\frac{1}{24} n\left(n^{2}-1\right)(3 n+2)$.
310. Let a be the first term and d be the c.d. for the given A.P. Let S, S^{\prime} represent the sum for first 24 days and last 18 days. Then,
$S=\frac{24}{2}[2 a+23 d], S^{\prime}=\frac{18}{2}[2(a+24 d)+17 d]$ and
$\frac{24}{2}[2 a+23 d]+\frac{18}{2}[2 a+65 d]=\frac{42}{2}[2 a+41 d]$ and $S=S^{\prime} \Rightarrow \frac{24}{2}[2 a+23 d]=\frac{18}{2}[2 a+65 d]$
Solving these two equations yield the answer as 12096.
311. Let a be the first term and d be the c.d. for the given A.P. Then,
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=n^{2} p$ and $S_{m}=\frac{m}{2}[2 a+(m-1) d]=m^{2} p$
$\Rightarrow 2 a+(n-1) d=2 n p$ and $2 a+(m-1) d=2 m p \Rightarrow(n-m) d=2 p(n-m) \Rightarrow d=2 p$
Substituting this in equation for $S_{n}, 2 a+2(n-1) p=2 n p \Rightarrow a=p$
$\Rightarrow S_{p}=\frac{p}{2}[2 p+2(p-1) p]=p^{3}$.
312. Let $S_{1}, S_{2}, \ldots, S_{n}$ denote the sum of A.P. with c.d. $1,2, \ldots, n$. Then,

$$
t_{r}=1+(n-1) r
$$

$$
S_{1}+S_{2}+\cdots+S_{n}=\sum_{r=1}^{n} t_{r}=n+(n-1) \frac{n(n+1)}{2}=\frac{n}{2}\left(n^{2}+1\right) .
$$

313. $S_{r}=\frac{n}{2}[2 r+(n-1)(2 r-1)]=\frac{n}{2}[2 r+2 r n-2 r-n+1]=\frac{n}{2}[2 r n-n+1]$

$$
\begin{aligned}
& S_{1}+S_{2}+\cdots+S_{m}=\sum_{r=1}^{m} S_{r}=\frac{n^{2} m(m+1)}{2}-\frac{n(n-1) m}{2}=\frac{1}{2}\left[m^{2} n^{2}+m n^{2}-m n^{2}+m n\right]= \\
& \frac{m n}{2}(m n+1) .
\end{aligned}
$$

314. Given below is the diagram for the problem:

serve that these lengths are in A.P.
315. Let p, b, h be the perpedicular, base, hypotenuse of the right angle triangle such that $b<p<h$ and r be the common ratio of the G.P. such that $r>1$. Clearly $h^{2}=p^{2}+b^{2} \Rightarrow$ $b^{2} r^{4}=b^{2} r^{2}+b^{2} \Rightarrow r^{2}=\frac{1+\sqrt{5}}{2}$.

Clearly, the greater acute angle will be opposite to p which we let as θ, then
$\cos \theta=\frac{b}{h}=\frac{1}{r^{2}}=\frac{1}{1+\sqrt{5}}$.
316. Let $27,8,12$ be the p th, q th, k th terms respectively of a G.P. whose first term is a and common ratio is r then $27=a r^{p-1}, 8=a r^{q-1}, 12=a r^{k-1}$.
$\Rightarrow \frac{27}{8}=r^{p-q}=\left(\frac{3}{2}\right)^{3}, \frac{12}{8}=r \& k-q=\frac{3}{2} \Rightarrow r^{p-q}=r^{3(k-q)} \Rightarrow p+2 q-3 k=0$.
The system of solutions of this equation is $p=4 t, q=t, k=2 t$ where $t \in \mathbb{P}$.
317. Let $10,11,12$ be the p th, q th, k th terms respectively of a G.P. whose first term is a and common ratio is r then $10=a r^{p-1}, 11=a r^{q-1}, 12=a r^{k-1}$.
$\Rightarrow \frac{11}{10}=r^{q-p}$ and $\frac{12}{11}=r^{k-q} \Rightarrow\left(\frac{11}{10}\right)^{k-q}=r^{(q-p)(k-q)}$ and $\left(\frac{12}{11}\right)^{q-p}==r^{(k-q)(q-p)}$
$\Rightarrow\left(\frac{11}{10}\right)^{k-q}=\left(\frac{12}{11}\right)^{q-p} \Rightarrow(11)^{k-q+q-p}=10^{k-q} 12^{q-p}=5^{k-q} w^{k+q-2 p} 3^{q-p}$
This is possible only if $k-p=0, k-q=0, k+q-2 p=0$ and $q-p=0$ i.e. $p=q=k=0$ which is not possible as they are distinct.
318. We have $I_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x \cos (n x) d x, I_{n+1}=\int_{0}^{\frac{\pi}{2}} \cos ^{n+1} x \cos [(n+1) x] d x$

$$
I_{n+1}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x[\cos x \cos [(n+1) x] d x
$$

$\cos n x=\cos [(n+1) x-x]=\cos (n+1) x \cos x+\sin (n+1) x \sin x \Rightarrow \cos (n+1) x \cos x=$ $\cos n x-\sin (n+1) x \sin x$
$I_{n+1}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x[\cos n x-\sin (n+1) x \sin x] d x=I_{n}-\int_{0}^{\frac{\pi}{2}} \cos ^{n} x \sin x \sin (n+1) x d x$
$=I_{n}+\left[\frac{\cos ^{n+1} x \sin (n+1) x}{n+1}\right]_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} \cos ^{n+1} x \cos (n+1) x d x[$ we take $u=\sin (n+1) x$ and $\left.v=\cos ^{n} x \sin x\right]$
$=I_{n}+0-0-I_{n+1} \Rightarrow \frac{I_{n+1}}{I_{n}}=2$ and thus, $I_{1}, I_{2}, I_{3}, \ldots$ are in G.P.
319. $I_{1}, I_{2}, I_{3}, \ldots$ will be both in A.P. and G.P.if and only if $I_{1}=I_{2}=I_{3}=\cdots=I_{n}$
$I_{n+1}-I_{n}=\int_{0}^{\pi} \frac{\sin (2 n+1) x}{\sin x} d x-\int_{0}^{\pi} \frac{\sin (2 n-1) x}{\sin x} d x=\int_{0}^{\pi} \frac{\sin (2 n+1) x-\sin (2 n-1) x}{\sin x} d x$
$=\int_{0}^{\pi} \frac{2 \cos 2 n x \sin x}{\sin x} d x=2 \int_{0}^{\pi} \cos 2 n x d x=\frac{2}{2 n}[\sin 2 n x]_{0}^{\pi}=0$
So $I_{n+1}=I_{n}$ also, $I_{1}=\int_{0}^{\pi} \frac{\sin x}{\sin x} d x=\pi$. Hence, $I_{1}=I_{2}=I_{3}=\cdots=I_{n}=\pi$ which proves that the terms are both in A.P. and G.P.
320. Let $a, a r, a r^{2}$ be the sides of the triangle. If $r>1$ then from the properrties of the triangle we have $a r^{2}<a+a r \Rightarrow r^{2}-r-1<0 \Rightarrow r<\frac{1+\sqrt{5}}{2}$. If $r<1$ the the triangle will be formed if $a r+a r^{2}<a \Rightarrow r^{2}+r-1>0 \Rightarrow r>\frac{-1+x s 5}{2}$. Hence we have required inequality.
$321.111 \ldots 1(91$ digits $)=10^{90}+10^{89}+\cdots+10+1=\frac{10^{91}-1}{10-1}$.
Since $91=13 \times 7$ we use 7 to multiply and divide with $10^{7}-1$ which gives us $\frac{10^{91}-1}{10^{7}-1} \cdot \frac{10^{7}-1}{10-1}=\left(10^{84}+10^{83}+\cdots+10+1\right)\left(10^{6}+10^{5}+\cdots+10+1\right)$, which is a composite number.
322. $f(a+k)=f(a)+f(k) \because f(x+y)=f(x) f(y) \forall x, y \in \mathbb{N}$
$\Rightarrow \sum_{k=1}^{n} f(a+k)=\sum_{k=1}^{n} f(a) f(k)=f(a)[f(1)+f(2)+\cdots+f(n)]$
Given, $f(1)=2, f(2)=f(1)+f(1)=f(1) f(1)=2^{2}, f(3)=f(1)+f(2)=f(1) f(2)=$ $2^{3}, \cdots, f(n)=2^{n}$ and $f(a)=2^{a}$
$\Rightarrow \sum_{k=1}^{n} f(a+k)=16\left[2^{n}-1\right] \Rightarrow 2^{a}\left[2+2^{2}+\cdots+2^{n}\right]=2^{a} 2\left(2^{n}-1\right)=16\left(2^{n}-1\right) \Rightarrow a=3$.
323. Number of students giving wrong answers to at least i questions $=2^{n-i}$.

Number of students giving wrong answers to at least $i+1$ questions $=2^{n-i-1}$.
\therefore Number of students giving wrong answers to exactly i questions $=2^{n-i}-2^{n-i-1}$. Also, total no. of students giving wrng answers to exactly n questions $=2^{n-n}=1$
\therefore Total no. of wrong answers $=1\left(2^{n-1}-2^{n-2}\right)+2 .\left(2^{n-2}-2^{n-3}\right)+\cdots+(n-1)\left(2^{1}-\right.$ $\left.2^{0}\right)+n\left(2^{0}\right)=2^{n-1}+2^{n-2}+\cdots+2^{0}=2^{n}-1=2047 \Rightarrow n=11$.
324. $S_{1}=\frac{1}{1-\frac{1}{2}}=2, S_{2}=\frac{2}{1-\frac{1}{3}}=3, S_{3}=\frac{3}{1-\frac{1}{4}}=4, \cdots$ and so on.

We have $S_{1}^{2}+S_{2}^{2}+\cdots+S_{2 n-1}^{2}=2^{2}+3^{2}+\cdots+(2 n-1)^{2}=1^{2}+2^{2}+3^{2}+\cdots+(2 n)^{2}-1=$ $\frac{2 n(2 n+1)(4 n+1)}{6}-1=\frac{n(n+1)(6 n+1)}{3}-1$.
325.

Let $A B C D$ be the first square and length of sides are a. Clearly, sides of second square $=\sqrt{\frac{a^{2}}{4}+\frac{a^{2}}{4}}=\frac{a}{\sqrt{2}} \therefore$. Area of second square $=\frac{a^{2}}{2}$. Area of third square $=\frac{a^{2}}{4}$ and so on.

Total area of innser squares $=\frac{\frac{a^{2}}{2}}{1-\frac{1}{2}}=a^{2}=$ Sum of first square.
326. Let $y=7+2 x \log 25-5^{x-1}-5^{2-x} \Rightarrow \frac{d y}{d x}=4 \log 5-5^{x-1} \log 5+5^{2-x} \log 5=\frac{\log 5}{5^{x+1}}\left(5^{x}-\right.$ 25) $\left(5^{x}+5\right)$

Now $y^{\prime}>0$ if $x>2$ and $y^{\prime}<0$ if $x<2$. Since y has only one local maxima at $x=2$ and has no local minima, therefore y has greatest value at $x=2 \Rightarrow a=2$ which is first term of G.P.
$r=\lim _{x \rightarrow 0} \int_{0}^{x} \frac{t^{2}}{x^{2} \tan (\pi+x)} d t=\lim _{x \rightarrow 0} \frac{\int_{0}^{x} t^{2} d t}{x^{2} \tan x}$
$=\lim _{x \rightarrow 0} \frac{x^{3}}{3 x^{2} \tan x}=\frac{1}{3} \therefore \lim _{n \rightarrow \infty} \sum_{n=1}^{n} a r^{n-1}=\frac{2}{1-\frac{1}{3}}=3$.
327. Let x be the first term and y be the common ratio of the G.P. Then $a=x y^{p-1}, b=$ $x y^{q-1}, c=x y^{r-1}$
$(\log a) \cdot \vec{\imath}+(\log b) \vec{\jmath}+(\log c) \vec{k}=(\log x-1) \cdot(\vec{\imath}+\vec{\jmath}+\vec{k})+p \log y \cdot \vec{\imath}+q \log y \cdot \vec{\jmath}+r \log y \cdot \vec{k}$
Dot products of given vectors $=(\log x-1)(q-r+r-p+p-q)+\log y[p(q-r)+$ $q(r-p)+r(p-q)]=0$

And therefore the vectors are perpendicular to each other.
328. Pollution after first day $=20(1-.8)=4 \%$ and after second day $=4(1-.8)=.8$. Let us say that it takes n days then $20(1-.8)^{n}<.01 \Rightarrow \frac{1}{5^{n}}<\frac{1}{2000} \Rightarrow 5^{n}>2000 \Rightarrow n=5$
329. Let the sides of the triangle are $a, a r, a r^{2}$ where $a>0, r>1$ then from properties of the triangle
$a r^{2}<a r+a \Rightarrow r^{2}-r-1<0 \Rightarrow r=\frac{1 \pm \sqrt{5}}{2} \Rightarrow r>\frac{-1+\sqrt{5}}{2}$
Given that largest angle is twice the smallest one. $\Rightarrow \frac{a}{\sin \theta}=\frac{a r^{2}}{\sin 2 \theta}$
$\Rightarrow 2 \cos \theta=r^{2} \Rightarrow r<\sqrt{2}$ so the range is $(1, \sqrt{2})$.
330. Let r be the common ratio then $b=a r, c=a r^{2}, d=a r^{3}$ then $\frac{a x^{3}+a r x^{2}+a r^{2} x+a r^{3}}{a x^{2}+a r^{2}}=x+r$ leaving no remainder thus given condition is satisfied.
331. Given, $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \leq 0 \Rightarrow(a p-b)^{2}+(b p-c)^{2}+$ $(c p-d)^{2} \leq 0$

However, sum of squares cannot be less than zero. $\Rightarrow p=\frac{b}{a}=\frac{c}{b}==\frac{d}{c}$ thus a, b, c, d are in G.P. with common ratio p.
332. $\because \log _{y} x, \log _{z} y, \log _{x} z$ are in G.P. $\therefore\left(\frac{\log y}{\log z}\right)^{2}=\frac{\log x}{\log y} \cdot \frac{\log z}{\log x}=\frac{\log z}{\log y} \Rightarrow \log y=\log z \Rightarrow y=z$ $2 x^{4}=2 y^{4} \Rightarrow x=y$ and $x y z=8 \Rightarrow x^{3}=8 \Rightarrow x=2 \Rightarrow x=y=z=2$.
333. If a, b, c, d are both in A.P. and G.P. then $a=b=c=d \because b=2 \therefore$ number of such sequences is 1 .
334. We have $\log _{x} a, a^{x / 2}, \log _{b} x$ are in G.P. $\therefore a^{x}=\log _{x} a \log _{b} x=\frac{\log a \log x}{\log x \log b}=\log _{b} a$

Taking log of both sides with base a, we get $x=\log _{a}\left(\log _{b} a\right)$.
335. Let a be the first term and r be the common ratio of the G.P. then
$t_{m+n}=a r^{m+n-1}=p$ and $t_{m-n}=a r^{m-n-1}=q$
Dividing $r^{2 n}=\frac{p}{q} \Rightarrow r=\left(\frac{p}{q}\right)^{\frac{1}{2 n}}$
$\Rightarrow a=p \cdot r^{1-m-n}=p \cdot\left(\frac{p}{q}\right)^{\frac{1-m-n}{2 n}}$
$t_{m}=a r^{m-1}=p \cdot\left(\frac{p}{q}\right)^{\frac{1-m-n}{2 n}} \cdot\left(\frac{p}{q}\right)^{\frac{m-1}{2 n}}=p \cdot\left(\frac{p}{q}\right)^{\frac{-n}{2 n}}=\sqrt{p q}$.
$t_{n}=a r^{n-1}=p \cdot\left(\frac{p}{q}\right)^{\frac{1-m-n}{2 n}} \cdot\left(\frac{p}{q}\right)^{\frac{n-1}{2 n}}=p \cdot\left(\frac{q}{p}\right)^{\frac{m}{2 n}}$.
336. Let a be the first term and d be the c.d. of the A.P. then terms are $a+(p-1) d, a+$ $(q-1) d, a+(r-1) d$, which are in G.P. Let $a+(p-1) d=x, a+(q-1) d=x y, a+$ $(r-1) d=x y^{2}$ where x is the first term and y is the c.r. of the G.P.
$(p-q) d=x(1-r)$ and $(q-r)=x r(1-r)$. Dividing $r=\frac{q-r}{p-q}$.
337. Let a be the first term and r be the c.r. of the G.P. Then,
$S_{1}=a+a r^{2}+a r^{4}+\cdots+a r^{2 n-2}=\frac{a\left(r^{2 n}-1\right)}{r^{2}-1}, S_{2}=a r+a r^{3}+\cdots+a r^{2 n-1}=\frac{a r\left(a r^{2 n}-1\right)}{r^{2}-1}$
Dividing $S_{2} / S_{2}=r$, which is c.r. of the G.P.
338. $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \Rightarrow r S_{n}=\frac{a r\left(r^{n}-1\right)}{r-1}$

$$
\begin{aligned}
& \sum_{n=1}^{n} S_{n}=S_{1}+S_{2}+\cdots+S_{n}=\frac{a(r-1)}{r-1}+\frac{a\left(r^{2}-1\right)}{r-1}+\cdots+\frac{a\left(r^{n-1}-1\right)}{r-1} \\
& (1-r) \sum_{n=1}^{n} S_{n}=a(1-r)+a\left(1-r^{2}\right)+\cdots+a\left(1-r^{n-1}\right)=n a+\frac{a r\left(1-r^{n}\right)}{1-r}
\end{aligned}
$$

$\Rightarrow r S_{n}+(1-r) \sum_{n=1}^{n} S_{n}=n a$.
339. The series is $1+x+x y+x^{2} y+x^{2} y^{2}+\cdots=\left[1+x y+x^{2} y^{2}+\cdots\right]+x\left[1+x y+x^{2} y^{2}+\cdots\right]$ $=\frac{\left(x^{n} y^{n}-1\right)}{x y-1}+\frac{x\left(x^{n} y^{n}-1\right)}{x y-1}=\frac{\left(x^{n} y^{n}-1\right)(1+x)}{x y-1}$.
$340.49=(4 \times 10)+9,4489=\left(4 \times 10^{3}+4 \times 10^{2}\right)+(8 \times 10)+9$ and so on.
$t_{k}=4 \frac{10^{k}-1}{9} \cdot 10^{k}+8 \cdot \frac{10^{k}-1}{9}+1=4 \frac{10^{k}-1}{9} 10^{k}-4 \frac{10^{k}-1}{9}+12 \frac{10^{k}-1}{9}+1$
$=36 \frac{10^{2 k}-2 \cdot 10^{k}+1}{81}+12 \frac{10^{k}-1}{9}+1=\left(6 \frac{10^{k}-1}{9}+1\right)^{2}$.
341. $S_{m}=a+a r+a r^{2}+\cdots+a r^{m-1}=\frac{a\left(r^{m}-1\right)}{r-1}$. Let S be required sum then
$S=\frac{\left(\sum a_{i}\right)^{2}-\sum a_{i}^{2}}{2}=\frac{\left(\frac{a\left(r^{m}-1\right)}{r-1}\right)^{2}-\left[a^{2}+a^{2} r^{2}+\cdots+a^{2} r^{2(m-1)}\right]}{2}$
$2 S=\frac{a^{2}\left(r^{m}-1\right)}{r-1}\left[\frac{r^{m}-1}{r-1}-\frac{r^{m}+1}{r+1}\right]=\frac{r}{r+1} \cdot \frac{a\left(r^{m}-1\right)}{r-1} \cdot \frac{a\left(r^{m-1}-1\right)}{r-1}=\frac{r}{r+1} S_{m} S_{m-1}$.
342. $y=\log _{10} x+\log _{10}(x)^{\frac{1}{2}}+\log _{10}(x)^{\frac{1}{4}}+\cdots=\log _{10} x+\frac{1}{2} \log _{10} x+\frac{1}{4} \log _{10} x+\cdots$
$y=\frac{\log _{10} x}{1-\frac{1}{2}}=2 \log _{10} x$
$\frac{1+3+5+(2 y-1)}{4+7+10+\cdots+3 y+1}=\frac{20}{7 \log _{10} x} \Rightarrow \frac{y^{2}}{\frac{y}{2}[8+(y-1) \cdot 3]}=\frac{40}{7 y}$
$\Rightarrow y=10, x=10^{5}$.
343. Let $a=a_{1}$ be the first term and r to be the common ratio of the G.P., then

$$
S=\frac{a\left(r^{n}-1\right)}{r-1}, P=a^{n} r^{1+2+\cdots+(n-1)}=a^{n} r^{\frac{n(n-1)}{2}}, T=\frac{1}{a} \cdot \frac{1-\frac{1}{r^{n}}}{1-\frac{1}{r}}=\frac{1}{a} \cdot \frac{r^{n}-1}{r-1} \cdot \frac{1}{r^{n-1}}
$$

Clearly, $P^{2}=\left(\frac{S}{T}\right)^{n}$.
344. Let x be the first term and y be the c.r. of the G.P. Then $a=x y^{n-1}$. The next n terms will start from $x y^{n} \Rightarrow b=x y^{n} \cdot y^{n-1}$ and similarlry $c=x y^{2 n} y^{n-1}$

It is clear that $b^{2}=a c$ i.e. a, b, c are in G.P.
345. $S_{1}=a=\frac{a(1-r)}{1-r}, S_{2}=\frac{a\left(1-r^{2}\right)}{1-r}, \cdots, S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$S_{1}+S_{2}+\cdots+S_{n}=\frac{a}{1-r}[1+1+\cdots+$ to n terms $]-\frac{a r}{1-r}\left[1+r+r^{2}+\cdots+r^{n-1}\right]$ $=\frac{n a}{1-r}-\frac{a r\left(1-r^{n}\right)}{(1-r)^{2}}$.
346. $S_{1}=a=\frac{a(1-r)}{1-r}, S_{3}=\frac{a\left(1-r^{3}\right)}{1-r}, \cdots, S_{2 n-1}=\frac{a\left(1-r^{2 n-1}\right.}{1-r}$ $S_{1}+S_{3}+\cdots+S_{2 n-1}=\frac{a}{1-r}[1+1+\cdots+$ to n terms $]-\frac{a r}{1-r^{2}}\left[1+r^{2}+r^{4}+\cdots+r^{2(n-1)}\right]$ $=\frac{n a}{1-r}-\frac{a r\left(1-r^{2 n}\right)}{(1-r)^{2}(1+r)}$.
347. Let a be the first term and r be the common ratio. Then,
$s=\frac{a}{1-r}, \sigma=\frac{a^{2}}{1-r^{2}}, S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$s\left[1-\left(\frac{s^{2}-\sigma^{2}}{s^{2}+\sigma^{2}}\right)^{n}\right]=\frac{a}{1-r}\left[1-\left(\frac{\frac{a^{2}}{(1-r)^{2}}-\frac{a^{2}}{1-r^{2}}}{\frac{a^{2}}{(1-r)^{2}}+\frac{a^{2}}{1-r^{2}}}\right)^{n}\right]=\frac{a}{1-r}\left[1-\left(\frac{\frac{1}{1-r}-\frac{1}{1+r}}{\frac{1}{1-r}+\frac{1}{1+r}}\right)^{n}\right]$.
$=\frac{a\left(1-r^{n}\right)}{1-r}=S_{n}$.
348. $\sum_{i<j} a_{i} a_{j}=\frac{1}{2}\left[\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{2}-\left(a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}\right)\right]$
$=\frac{1}{2}\left[\left(a+a r+\ldots+a r^{n-1}\right)^{2}-\left(a^{2}+a^{2} r^{2}+\ldots+a^{2} r^{2(n-1)}\right)\right]$
$=\frac{1}{2}\left[\frac{a^{2}\left(1-r^{n}\right)^{2}}{(1-r)^{2}-\frac{a^{2}\left(1-r^{2 n}\right.}{1-r^{2}}}\right]=\frac{1}{2}\left[\frac{a^{2}\left(1-2 r^{n}+r^{2 n}\right)}{(1-r)^{2}}-\frac{a^{2}\left(1-r^{2 n}\right)}{1-r^{2}}\right]=\frac{a^{2} r\left(1-r^{n-1}\right)\left(1-r^{n}\right)}{(1-r)^{2}(1+r)}$
349. Let a be the first term and r be the common ratio. Then,
L.H.S. $=\frac{1}{a^{2}-a^{2} r^{2}}+\frac{1}{a^{2} r^{2}-a^{2} r^{4}}+\frac{1}{a^{2} r^{4}-a^{2} r^{6}}+\ldots+\frac{1}{a^{2} r^{2(n-2)}-a^{2} r^{2(n-1)}}$ $=\frac{1}{a^{2}\left(1-r^{2}\right)}\left[1+\frac{1}{r^{2}}+\frac{1}{r^{4}}+\ldots+\frac{1}{r^{2(n-2)}}\right]=\frac{1}{a^{2}\left(1-r^{2}\right)} \cdot \frac{1-\frac{1}{r^{2}(n-1)}}{1-\frac{1}{r^{2}}}=\frac{1}{a^{2}\left(1-r^{2}\right)} \cdot \frac{1-r^{2 n-2}}{1-r^{2}} \cdot \frac{r^{2}}{r^{2 n-2}}$.
350. Let a be the first term and r be the common ratio. Then,
L.H.S. $=\frac{1}{a^{m}+a^{m} r^{m}}+\frac{1}{a^{m} r^{m}+a^{m} r^{2 m}}+\ldots+\frac{1}{a^{m} r^{m(n-2)}+a^{m} r^{m(n-1)}}$
$=\frac{1}{a^{m}\left(1+r^{m}\right)}\left[1+\frac{1}{r^{m}}+\frac{1}{r^{2 m}}+\ldots+\frac{1}{r^{m(n-2)}}\right]=\frac{1}{a^{m}\left(1+r^{m}\right)} \cdot \frac{1-\frac{1}{r^{m}(n-1)}}{1-\frac{1}{r^{m}}}=\frac{r^{m n-m}-1}{a^{m}\left(1+r^{m}\right)\left(r^{m-m}-r^{m n-2 m}\right)}$.
351. Let a be the first term and r be the common ratio. Then,
L.H.S. $=\sqrt{a^{2} r}+\sqrt{a^{2} r^{5}}+\sqrt{a^{2} r^{9}}+\ldots+\sqrt{a^{2} r^{4 n-3}}=a \sqrt{r}\left(1+r^{2}+r^{4}+\ldots+r^{2(n-1)}\right)=$ $a \sqrt{r} \cdot \frac{\left(r^{2 n-1}\right)}{r^{2}-1}$
$\sqrt{a_{1}+a_{3}+\ldots+a_{2 n-1}}=\sqrt{a\left(1+r^{2}+\ldots+r^{2 n-2}\right)}=\sqrt{a \cdot \frac{r^{2 n-1}}{r^{2}-1}}$
$\sqrt{a_{2}+a_{4}+\ldots+a_{2 n}}=\sqrt{\operatorname{ar}\left(1+r^{2}+\ldots+r^{2 n-2}\right)}=\sqrt{a \sqrt{r} \cdot \frac{r^{2 n-1}}{r^{2}-1}}$
$\therefore \sqrt{a_{1} a_{2}}+\sqrt{a_{3} a_{4}}+\sqrt{a_{5} a_{6}}+\ldots+\sqrt{a_{2 n-1} a_{2 n}}=\sqrt{a_{1}+a_{3}+\ldots+a_{2 n-1}} \sqrt{a_{2}+a_{4}+\ldots+a_{2 n}}$.
352. Given $1+x+x^{2}+\ldots+x^{23}=0,1+x+x^{2}+\ldots+x^{19}=0$
$\frac{x^{24}-1}{x-1}=0, \frac{x^{20}-1}{x-1}=0 \Rightarrow x^{24}-1=0, x^{20}-1=0 \therefore x^{20} . x^{4}-1=0 \Rightarrow x^{4}-1=0$
Thus, roots are $-1, \pm i$.
353. $\$ a$ will become $a+r .(a)=a(1+r)$ at the end of second year, $a+a r+r(a+a r)=$ $a+2 a r+a r^{2}=a(1+r)^{2}$ at the end of third year, $a+2 a r+a r^{2}+r\left(a+2 a r+a r^{2}\right)=$ $a+3 a r+3 a r^{2}+a r^{3}=a(1+r)^{3}$ and so on. So amount received for $\$ a$ will be $a(1+r)^{n+1}$

Similarly, amount receoved for $\$ 2 a$ will be $2 a(1+r)^{n}$ and so on.
Thus, total amount received will be $S=a(1+r)^{n+1}+2 a(1+r)^{n}+3 a(1+r)^{n-1}+\ldots+$ $n a(1+r)$
$\frac{S}{1+r}=a(1+r)^{n}+2 a(1+r)^{n-1}+\ldots+(n-1)(1+r)+n a$
Writing first term of second sum against second term of first sum, second term of second sum against third term of first sum and so on and subtracting, we get $\frac{r S}{1+r}=$ $a(1+r)^{n+1}+a(1+r)^{n}+a(1+r)^{n-1}+\ldots+a(1+r)-n a$ $\left.\frac{r S}{1+r}=a(1+r)\left[(1+r)^{n}+(1+r)^{n-1}+\ldots+1\right]\right)-n a$ $S=\frac{a(1+r)^{2}\left[(1+r)^{n}-1\right]}{r^{2}}-\frac{n a(1+r)}{r}$.
354. $\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots \infty\right)=\frac{\frac{1}{3}}{1-\frac{1}{3}}=\frac{1}{2} \Rightarrow(0.16)^{\log _{2.5}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots \infty\right)}=\left(\frac{4}{25}\right)^{\log _{5} \frac{1}{2}}=\left(\frac{1}{2}\right)^{\log _{5} \frac{4}{25}}=$ $\left(\frac{1}{2}\right)^{-2}=4$.
355. $A=1+r^{a}+r^{2 a}+\ldots$ to $\infty=\frac{1}{1-r^{a}} \Rightarrow r=\left(\frac{A-1}{A}\right)^{\frac{1}{a}}$ $B=1+r^{b}+r^{2 b}+\ldots$ to $\infty=\frac{1}{1-r^{b}} \Rightarrow r=\left(\frac{B-1}{B}\right)^{\frac{1}{b}}$.
356. $s_{1}=\frac{1}{1-\frac{1}{2}}=2, s_{2}=\frac{2}{1-\frac{1}{3}}=3, \ldots, s_{n}=\frac{n}{1-\frac{1}{n+1}}=n+1$
$s_{1}+s_{2}+\ldots+s_{n}=2+3+\ldots+(n+1)=\frac{1}{2} n(n+3)$.
357. $S_{1}=\frac{1}{1-\frac{1}{2}}=2, S_{2}=\frac{2}{1-\frac{1}{3}}=3, \ldots S_{n}=\frac{n}{1-\frac{1}{n+1}}=n+1$

General term of numerator $t_{i}=S_{i} S_{n-i+1}=(i+1)(n-i+2)=(n+1) i-i^{2}+(n+1)$ \therefore Sum for numerator $=\sum_{i=1}^{n} t_{i}=\sum_{i=1}^{n}\left[(n+1) i-i^{2}+(n+1)\right]=\frac{n(n+1)^{2}}{2}-\frac{n(n+1)(2 n+1)}{6}+$ $n(n+1)$

Sum for denominator $=1^{2}+2^{2}+\ldots+(n+1)^{2}-1=\frac{(n+1)(n+2)(2 n+3)}{6}-1$
Upon simplification $\lim _{n \rightarrow \infty} \frac{S_{1} S_{n}+S_{2} S_{n-1}+\ldots+S_{n} S_{1}}{S_{1}^{2}+S_{2}^{2}+\ldots+S_{n}^{2}}=\frac{1}{2}$.
358. $f^{\prime}(x)=3 x^{2}+3$ which yields imaginary roots implying that there is no local maxima. However, $3 x^{2}+3$ is positive for all values of x which means that $f(x)$ is monotonically increasing in $[-5,3]$ implying that maximum value will be at $x=3$
$f(3)=27$, also let a to be the first term and r to be the common ratio then given, $a-a r=f^{\prime}(0)=3$. The sum is given as $\frac{a}{1-r}=27$ solving these yields $r=\frac{2}{3},-\frac{4}{3}$ but the series is decreasing so $r=\frac{2}{3}$.
359. Let $S=\frac{5}{13}+\frac{55}{13^{2}}+\frac{555}{13^{3}}+\ldots \infty$
$=\frac{5}{9}\left[\frac{10-1}{13}+\frac{100-1}{13^{2}}+\frac{1000-1}{13^{3}}+\ldots \infty\right]=\frac{5}{9}\left[\frac{10}{13}+\frac{10^{2}}{13^{2}}+\frac{10^{3}}{13^{3}}+\ldots \infty-\frac{1}{13}-\frac{1}{13^{2}}-\frac{1}{13^{3}}-\ldots \infty\right]$
$=\frac{5}{9}\left[\frac{\frac{10}{13}}{1-\frac{10}{13}}-\frac{\frac{1}{13}}{1-\frac{1}{13}}\right]=\frac{5}{9}\left[\frac{10}{13} \cdot \frac{13}{3}-\frac{1}{13} \cdot \frac{13}{12}\right]=\frac{65}{36}$
360. $S=\cos x+\frac{2}{3} \cos x \sin ^{2} x+\frac{4}{9} \cos x \sin ^{4} x+\ldots$
$=\frac{\cos x}{1-\frac{2}{3} \sin ^{2} x}=\frac{3 \cos x}{3-2 \sin ^{2} x}=\frac{3 \cos x}{2+\cos 2 x}$
The term $\frac{3 \cos x}{2+\cos 2 x}$ is finite for all $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
361. Let a be the first term, b be the last term and n be the number of terms of A.P. and G.P.

Then c.d. of A.P. $=\frac{b-a}{n-1}$ and c.r. of the G.P. $=\left(\frac{b}{a}\right)^{n-1}$. Let S be the sum of n terms of A.P. and S^{\prime} the sum of n terms of G.P. then $S=\frac{n}{2}(a+b)$
$S^{\prime}=a\left(1+r+r^{2}+\ldots+r^{n-1}\right), S^{\prime}=a\left(r^{n-1}+r^{n-2}+\ldots+1\right)$
$\therefore S^{\prime}=\frac{a}{2}\left[\left(1+r^{n-1}\right)+\left(r+r^{n-2}\right)+\left(r^{k}+r^{n-k-1}\right)+\ldots+\left(r^{n-1}+1\right)\right]$
Now, $\left(r^{k}+r^{n-k-1}\right)-\left(r^{n-1}+1\right)=\left(r^{k}-1\right)+r^{n-1}\left(r^{-k}-1\right)$
$=\left(r^{k}-1\right)\left(1-\frac{r^{n-1}}{r^{k}}\right)=\left(r^{k}-1\right)\left(1-r^{n-k-1}\right) \leq 0$
$\therefore S^{\prime} \leq \frac{a n}{2}\left(1+r^{n-1}\right)=\frac{a n}{2}\left(1+\frac{b}{a}\right)=\left(\frac{a+b}{2}\right) n=S$
$\therefore S \geq S^{\prime}$.
362. Given $a, a_{1}, a_{2}, a_{3}, \ldots$ are in G.P. so $\log a, \log a_{1}, \log a_{2}, \ldots$ are in A.P. Let the common difference of this A.P. be d_{1}. Now $\log a_{n}=\log a+n d_{1}$. Further if d be the common difference of the A.P. b, b_{1}, b_{2}, \ldots then $b_{n}=b+n d$
$\therefore \frac{\log a_{n}-\log a}{b_{n}-b}=\frac{n d_{1}}{n d}=\frac{d_{1}}{d}$
Let $\log x=\frac{d_{1}}{d}$ for a fixed positive real number x.
$\Rightarrow \frac{\log a_{n}-\log a}{b_{n}-b}=\log x \Rightarrow b_{n}-b=\log _{x}\left(\frac{a_{n}}{a}\right) \Rightarrow \log _{x} a_{n}-\log _{x} a=b_{n}-b \Rightarrow \log _{x} a_{n}-b_{n}=$
$\log _{x} a-b$
363. Given $a+m d, a+n d, a+r d$ are in G.P., where a is the first term and d is the c.d. of A.P.
$\Rightarrow(a+n d)^{2}=(a+m d)(a+r d) \Rightarrow d\left(n^{2} d+2 a n\right)=d(a m+a r+m r d) \Rightarrow\left(n^{2}-m r\right) d=$ $a(m+r-r n)$
$\frac{d}{a}=\frac{m+r-2 n}{n^{2}-m r}$
Given, m, n, r are in H.P. $\therefore n=\frac{2 m r}{m+r} \Rightarrow m+r=\frac{2 m r}{n}$
$\therefore \frac{d}{a}=\frac{\frac{2 m r}{n}-2 n}{n^{2}-m r}=-\frac{2}{n} \therefore \frac{a}{d}=-\frac{n}{2}$
364. Let r be the common ratio of the G.P., then $b=a r, c=a r^{2}$. Given, $a-b, c-a, b-c$ are in H.P.
$\therefore c-a=\frac{2(a-b)(b-c)}{a-b+b-c}$
$(c-a)^{2}=2(a-b)(b-c) \Rightarrow\left(a r^{2}-a\right)^{2}=2(a-a r)\left(a r-a r^{2}\right)$
$a^{2}\left(r^{2}-1\right)^{2}=-2 a^{2}(1-r) r(1-r) \Rightarrow(r+1)^{2}=-2 r \Rightarrow 1+4 r+r^{2}=0$
$\Rightarrow a+4 a r+a r^{2}=0 \Rightarrow a+4 b+c=0$.
365. Let d_{1}, d_{2}, d_{3} be the common differences of the A.P.'s.
$\Rightarrow S_{1}=\frac{n}{2}\left[2+(n-1) d_{1}\right] \Rightarrow d=\frac{2\left(S_{1}-n\right)}{n(n-1)}$
Similalrly $d_{2}=\frac{2\left(S_{2}-n\right)}{n(n-1)}, d_{3}=\frac{2\left(S_{3}-n\right)}{n(n-1)}$
$\because d_{1}, d_{2}, d_{3}$ are in H.P. $\therefore \frac{1}{d_{2}}-\frac{1}{d_{1}}=\frac{1}{d_{3}}-\frac{1}{d_{2}}$
$\Rightarrow \frac{n(n-1)}{2\left(S_{2}-n\right)}-\frac{n(n-1)}{2\left(S_{1}-n\right)}=\frac{n(n-1)}{2\left(S_{3}-n\right)}-\frac{n(n-1)}{2\left(S_{2}-n\right)}$
$\Rightarrow \frac{1}{S_{2}-n}-\frac{1}{S_{1}-n}=\frac{1}{S_{3}-n}-\frac{1}{S_{2}-n} \Rightarrow \frac{S_{1}-S_{2}}{\left(S_{1}-n\right)\left(S_{2}-n\right)}=\frac{S_{2}-S_{3}}{\left(S_{3}-n\right)\left(S_{2}-n\right)}$
$\Rightarrow n=\frac{2 S_{3} S_{1}-S_{1} S_{2}-S_{2} S_{3}}{S_{1}-2 S_{2}+S_{3}}$.
366. Let the digits at hundreds, tens and units places be $a, a r$ and $a r^{2}$ and the required number be x, then $x=100 a+10 a+a r^{2}$

Let $y=x-400 \Rightarrow y=100(a-4)+1-a r+a r^{2}$ In the number y, the digit at hundreds place is $a-4$. Clearly
$1 \leq a-4 \leq 5[\because 1 \leq a \leq 9$ and $a-4 \geq 1] \Rightarrow 5 \leq a \leq 9$
According to question $a-4, a r, a r^{2}$ are in A.P. $\therefore 2 a r=a-4+a r^{2} \Rightarrow a(r-1)^{2}=4 \Rightarrow$ $r-1= \pm \frac{2}{\sqrt{a}}$
$\because a$ and $a r$ are integers. $\therefore r$ is a rational number. Thus, a must be a perfect square. $\therefore a=9$
Thus, $r=\frac{5}{3}, \frac{1}{3}$ but $r \neq \frac{5}{3}$ othereise ar $=15 \therefore r=\frac{1}{3} \therefore a r=3, a r^{2}=1$
Hence required number is 931 .
367. Given a, b, c are in G.P. Let r be the common ratio of this G.P. then $b=a r$ and $c=a r^{2}$.

Given, $\log _{c} a, \log _{b} c, \log _{a} b$ are in A.P.
$\Rightarrow \frac{\log a}{\log c}, \frac{\log c}{\log b}, \frac{\log b}{\log a}$ are in A.P.
$\Rightarrow \frac{\log a}{\log a+2 \log r}, \frac{\log a+2 \log r}{\log a+\log r}, \frac{\log a+\log r}{\log a}$ are in A.P.
$\frac{1}{1+2 x}, \frac{1+2 x}{1+x}, 1+x$ are in A.P. where $\frac{\log r}{\log a}=x$
$2\left(\frac{1+2 x}{1+x}=\frac{1}{1+2 x}+1+x\right) \Rightarrow x\left(2 x^{2}-3 x-3\right)=0$
$2 x^{2}-3 x-3=0[\because x \neq 0$, else $\log r=0 \Rightarrow r=1$ which is not possible as a, b, c are distinct $]$
$2 d=1+x-\frac{1}{1+2 x}=\frac{2 x^{2}+3 x}{1+2 x}=\frac{3 x+3+3 x}{1+2 x}=3 \Rightarrow d=\frac{3}{2}$.
368. Let the two numbers be a and b. Since n A.M.'s have been inserted between a and $b \therefore$ common difference of A.P., $d=\frac{b-a}{n+1}$

Now $p=$ first A.M. $=2$ nd term of A.P. $=a+d=\frac{a n+b}{n+1}$
Similarly for harmonic series $q=\frac{a b(n+1)}{b n+a}$
We know that x will not lie between α and β if $(x-\alpha)(x-\beta)>0$
$q-p=-\frac{n(a-b)^{2}}{(b n+a)(n+1)}$
$q-\left(\frac{n+1}{n-1}\right)^{2} p=-\frac{(n+1)(a+b)^{2} n}{(n-1)^{2}(b n+a)}$
$\Rightarrow(q-p)\left[q-\left(\frac{n+1}{n-1}\right)^{2} p\right]=\frac{n^{2}(a-b)^{2}(a+b)^{2}}{(n-1)^{2}(b n+a)^{2}}>0$.
369. Common difference of A.P. $=q-p$ and common ratio of G.P. $=\frac{q}{p}<1$
$s=\frac{p}{1-\frac{q}{p}}=\frac{p^{2}}{p-q}$. Let S_{n} be the sum of n terms of A.P., then
$S_{n}=\frac{n}{2}[2 p+(n-1) d]=n p+\frac{n(n-1) d}{2}=n p+\frac{n(n-1)(q-p) p^{2}}{2 p^{2}}=n p-\frac{n(n-1)}{2} \cdot \frac{p^{2}}{s}$.
370. $\because \log _{x} y, \log _{z} x, \log _{y} z$ are in G.P.
$\Rightarrow\left(\log _{z} x\right)^{2}=\log _{x} y \cdot \log _{y} z \Rightarrow\left(\frac{\log x}{\log z}\right)^{2}=\frac{\log y}{\log x} \cdot \frac{\log z}{\log y}$
$\Rightarrow(\log x)^{3}=(\log z)^{3} \Rightarrow x=z \Rightarrow x=y=z=4 \because x y z=64$ and $2 y^{3}=x^{3}+z^{3}$.
371.2(x+2y) $=x+2 x+y \Rightarrow 3 y=x,(x y+5)^{2}=(y+1)^{2}(x+1)^{2} \Rightarrow\left(3 y^{2}+5\right)= \pm(y+$ 1) $(3 y+1)$
$\Rightarrow y=1, \frac{-1 \pm 2 \sqrt{2} i}{3}, x=3,-1 \pm 2 \sqrt{2} i$.
372. Let $a=3$ be the first term and d be the common difference of the G.P. then, given $(a+9 d)^{2}=(a+d)(a+33 d) \Rightarrow a^{2}+18 a d+81 d^{2}=a^{2}+34 a d++33 d^{2} \Rightarrow d=\frac{a}{3}=1$

So the A.P. is $3,4,5, \ldots$
373. Given, $\sqrt{a b}=\sqrt{c d}, \frac{a^{2}+b^{2}}{2}=\frac{c^{2}+d^{2}}{2} \Rightarrow a b=c d, a^{2}+b^{2}=c^{2}+d^{2}$
$\Rightarrow(a-b)^{2}=(c-d)^{2},(a+b)^{2}=(c+d)^{2} \Rightarrow a=c, b=d$
Thus, arithmetic mean of a^{n} and b^{n} is equal to the arithmetic mean of c^{n} and d^{n} for every integral value of n.
374. Let a be the first term and d be the common difference of A.P. and thus d will be the first term and a be the common ratio of the G.P. Given,
$155=\frac{10}{2}[2 a+(10-1) d] \Rightarrow 2 a+9 d=31$
$d+a d=9 \Rightarrow a=\frac{25}{2}, 2 \Rightarrow d=\frac{2}{3}, 3$
Thus, A.P. is $2,5,8, \ldots$ or $\frac{25}{2}, \frac{79}{6}, \frac{83}{6}, \ldots$ and the G.P. is $3,6,12, \ldots$ or $\frac{2}{3}, \frac{25}{3}, \frac{625}{6}, \ldots$.
375. Since a, b, c are in H.P. therefore $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P.

$$
\begin{aligned}
& \Rightarrow \frac{2}{b}=\frac{1}{a}+\frac{1}{c} \Rightarrow b=\frac{2 a c}{a+c} \Rightarrow \frac{3}{b}-\frac{2}{c}=\frac{1}{a}+\frac{1}{b}-\frac{1}{c} \text { and } \frac{3}{b}-\frac{2}{a}=\frac{1}{b}+\frac{1}{c}-\frac{1}{a} \\
& \left(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right)\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)=\left(\frac{3}{b}-\frac{2}{c}\right)\left(\frac{3}{b}-\frac{2}{a}\right) \\
& =\frac{9 a c-6 a b-6 b c+4 b^{2}}{a c b^{2}}=\frac{4}{a c}+\frac{9}{b^{2}}-\frac{6 b(a+c)}{a c b^{2}} \\
& =\frac{4}{a c}+\frac{9}{b^{2}}-\frac{6 b}{a c b^{2}} \cdot \frac{2}{b}=\frac{4}{a c}-\frac{3}{b^{2}} .
\end{aligned}
$$

376. Because a, b, c are in H.P. therefore $\frac{2}{b}=\frac{1}{a}+\frac{1}{c}$

$$
\begin{aligned}
& \frac{a+b}{2 a-b}+\frac{b+c}{2 c-b}=\frac{\frac{1}{b}+\frac{1}{a}}{\frac{2}{b}-\frac{1}{a}}+\frac{\frac{1}{b}+\frac{1}{c}}{\frac{2}{b}-\frac{1}{c}}=\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}=\frac{c^{2}+a^{2}}{a c}+\frac{a+c}{b} \\
& =\frac{c^{2}+a^{2}}{a c}+\frac{(a+c)^{2}}{2 a c}=\frac{c^{2}+a^{2}}{a c}-2+\frac{(a+c)^{2}}{2 a c}-2+4=\frac{(c-a)^{2}}{a c}+\frac{(a-c)^{2}}{2 a c}+4 \geq 4
\end{aligned}
$$

377. $b-\frac{a+b}{1-a b}=\frac{b+c}{1-b c}-b \Rightarrow \frac{b-a b^{2}-a-b}{1-a b}=\frac{b+c-b+b^{2} c}{1-b c}$
$\Rightarrow \frac{-a\left(1+b^{2}\right)}{1-a b}=\frac{c\left(1+b^{2}\right)}{1-b c} \Rightarrow-a(1-b c)=c(1-a b) \Rightarrow a+c=2 a b c \Rightarrow 2 b=\frac{a+c}{a c}$
$\therefore a, b^{-1}, c$ are in H.P.
378. $x=\frac{1}{1-a}, y=\frac{1}{1-b}, z=\frac{1}{1-c}$
a, b, c are in A.P. $\Rightarrow 1-a, 1-b, 1-c$ are in A.P.
$\Rightarrow \frac{1}{1-a}, \frac{1}{1-b}, \frac{1}{1-c}$ are in H.P. $\Rightarrow x, y, z$ are in H.P.
379. Let $a^{\frac{1}{x}}=b^{\frac{1}{y}}=c^{\frac{1}{z}}=k \Rightarrow a=k^{x}, b=k^{y}, c=k^{z}$
$\because a, b, c$ are in G.P. $\Rightarrow b^{2}=a c \Rightarrow k^{2 y}=k^{x+z} \Rightarrow 2 y=x+z$
$\therefore x, y, z$ are in A.P.
380. $2 b=a+c, m=\frac{2 l n}{l+n}, b^{2} m^{2}=a c l n \Rightarrow\left(\frac{a+c}{2} \cdot \frac{2 l n}{l+n}\right)^{2}=a c l n$

$$
\begin{aligned}
& \Rightarrow \frac{l n}{(l+n)^{2}}=\frac{a c}{(a+c)^{2}} \Rightarrow \frac{(a+c)^{2}}{a c}=\frac{(l+n)^{2}}{l n} \\
& \Rightarrow \frac{a}{c}+\frac{c}{a}=\frac{l}{n}+\frac{n}{l} \Rightarrow a: c=\frac{1}{n}: \frac{1}{l}
\end{aligned}
$$

Now it can be proven that $a: b: c=\frac{1}{n}: \frac{1}{m}: \frac{1}{l}$.
381. The common difference of A.P. $=b-a$, common ratio of G.P. is b / a and common difference for corresponding A.P. of H.P. is $(a-b) / a b$
$n+2$ th term of A.P. $=a+(n+1)(b-a)=(n+1) b-n a$
$n+2$ th term of G.P. $=a r^{n+1}=\frac{b^{n+1}}{a^{n}}$
$n+2$ th term of H.P. $=\frac{1}{\frac{1}{a}+\frac{(n+1)(a-b)}{a b}}=\frac{a b}{(n+1) a-n b}$
These will be in G.P. if
$\frac{[(n+1) b-n a\rfloor a b}{(n+1) a-n b}=\frac{b^{2 n+2}}{a^{2 n}} \Rightarrow(n+1) a^{2 n+1} b^{2}-n a^{2 n+2} b=(n+1) a b^{2 n+2}-n b \cdot b^{2 n+2}$
$\Rightarrow(n+1) a b^{2}\left[a^{2 n}-b^{2 n}\right]=n b\left[a^{2 n+2}-b^{2 n+2}\right] \Rightarrow \frac{b^{2 n+2}-a^{2 n+2}}{a b\left(b^{2 n}-a^{2 n}\right)}=\frac{n+1}{n}$.
382. $a r^{n}-a-n d=a\left(1+\frac{d}{a}\right)^{n}-a-n d\left[\because r=\frac{a+d}{a}\right]$
$=a\left[1+{ }^{n} C_{1}\left(\frac{d}{a}\right)+{ }^{n} C_{2}\left(\frac{d}{a}\right)^{2}+\ldots+{ }^{n} C_{n}\left(\frac{d}{a}\right)^{n}\right]-a-n d$
$=a\left[{ }^{n} C_{2} \frac{d^{2}}{a^{2}}+{ }^{n} C_{3} \frac{d^{3}}{a^{3}}+\ldots+{ }^{n} C_{n} \frac{d^{n}}{a^{n}}\right]>0\left(\because \frac{d}{a}>0\right)$.
383. $A=\frac{a+b}{2}, H=\frac{2 a b}{a+b}, G=\sqrt{a b} \Rightarrow A=k H \Rightarrow(a+b)^{2}=4 k a b \Rightarrow A=k G^{2}$

Let $b=m a \Rightarrow a^{2}\left(1+m^{2}\right)=4 k m a^{2} \Rightarrow 1+m^{2}=4 k m \Rightarrow m=\frac{4 k \pm \sqrt{16 k^{2}-4}}{2}=2 k \pm \sqrt{4 k^{2}-1}$
Also, $(a+b)^{2}=4 k a b \Rightarrow(a-b)^{2}=4 k a b-4 a b \because(a-b)^{2} \geq 0 \therefore k \geq 1$.
384. Since n means are inserted therefore total no. of terms will be $n+2$. Let d be the c.d. of A.P. and d^{\prime} be the c.d of H.P.
$\Rightarrow d=\frac{b-a}{n+1}, d^{\prime}=\frac{a-b}{(n+1) a b} \Rightarrow p=a+r d=\frac{(n+1) a+r(b-a)}{n+1}, \frac{1}{q}=\frac{1}{a}+r \frac{a-b}{(n+1) a b} \Rightarrow q=$ $\frac{(n+1) a b}{r(a-b)+(n+1) b}$
$\frac{p}{a}+\frac{b}{q}=\frac{(n+1) a+r(b-a)}{a(n+1)}+\frac{r(a-b)+(n+1) b}{(n+1) a}=\frac{a+b}{a}$ which is independent of n and r.
385. Let s be the distance between P and Q.

Time taken by train $A=\frac{s}{2 x}+\frac{s}{2 y}=\frac{s(x+y)}{2 x y}=\frac{s}{\text { H.M of } x \text { and } y}$
Time taken by train $B=\frac{2 s}{x+y}=\frac{s}{\text { A.M of } x \text { and } y}$
So, second train wil reach earlier as A.M. \geq H.M.
386. Let d be the common difference of corresponding A.P. Also, let H_{1} and H_{n} be first and last H.M.

$$
\begin{aligned}
& \Rightarrow d=\frac{\frac{1}{c}-\frac{1}{a}}{n+1}=\frac{a c}{a c(n+1)} \\
& \frac{1}{H_{1}}=\frac{1}{a}+\frac{a-c}{a c(n+1)} \Rightarrow H_{1}=\frac{a c(n+1)}{n c+a} \\
& \frac{1}{H_{n}}=\frac{1}{a}+\frac{n(a-n)}{a c(n+1)} \Rightarrow H_{n}=\frac{a c(n+1)}{n a+c}
\end{aligned}
$$

$H_{1}-H_{n}=\frac{a c(n+1)}{n c+a}-\frac{a c(n+1)}{n a+c}=\frac{a c\left(n^{2}-1\right)(a-c)}{\left(n^{1}+1\right) a c+n\left(a^{2}+c^{2}\right)}$
Also, given that n is a root of equation $x^{2}(1-a c)-x\left(a^{2}+c^{2}\right)-(1+a c)=0$
$\therefore n^{2}(1-a c)-n\left(a^{2}+c^{2}\right)-1-a c=0 \Rightarrow n^{2}-1=\left(n^{2}+1\right) a c+n\left(a^{2}+c^{2}\right) \therefore H_{1}-H_{n}=$ $a c(a-c)$.
387. Let d be the common difference for A.P. and d^{\prime} be the common difference for H.P., then
$d=\frac{b-a}{n+1}, d^{\prime}=\frac{\frac{1}{b}-\frac{1}{a}}{n+1}=\frac{a-b}{(n+1) a b}$
$A_{r}=a+r d=a+\frac{r(b-a)}{n+1}=\frac{(n-r+1) a+r b}{n+1}$
$\frac{1}{H_{n-r+1}}=\frac{1}{a}+\frac{(n-r+1)(a-b)}{(n+1) a b}=\frac{(n-r+1) a+r b}{(n+1) a b}$
$\Rightarrow H_{n-r+1}=\frac{(n+1) a b}{(n-r+1) a+r b} \Rightarrow A_{r} H_{n-r+1}=a b$.
388. Consider the equation $(x-1)(x-2)(x-3) \ldots(x-100)=0$. Its roots are $1,2,3, \ldots, 100$

So the equation is a polynomial of x of degree 100. Coefficient of $x^{100}=1$
Now sum of roots of equation taken one at a time
$1+2+3+\ldots+100=(-1)^{1} \frac{\text { coeff. of } x^{99}}{\text { coeff. of } x^{100}}=-$ coeff. of x^{99}
\therefore coeff. of $x^{99}=-(1+2+3+\ldots+100)=-5050$
Sum of products of roots taken two at a time $=$ coeff. of $x^{98}=\frac{1}{2}[(1+2+3+\ldots+$ $\left.100)^{2}-\left(1^{2}+2^{2}+\ldots+100^{2}\right)\right]$
$=\frac{1}{2}\left[5050^{2}-\frac{100 \times 101 \times 102}{6}\right]=12582075$.
389. $t_{1}=12,40,90,168,280,432, \ldots \Delta t_{1}=28,50,78,112,152, \ldots, \Delta^{2} t_{1}=$ $22,28,34,40, \ldots, \Delta^{3} t_{1}=6,6,6, \ldots$
$t_{n}=12+28^{n-1} C_{1}+22 \cdot{ }^{n-1} C_{2}+6 \cdot{ }^{n-1} C_{3}$
$S_{n}=\sum_{n=1}^{n}\left(12+28^{n-1} C_{1}+22 .{ }^{n-1} C_{2}+6 .{ }^{n-1} C_{3}\right)$
$S_{n}=12 n+28 \cdot{ }^{n} C_{2}+22 \cdot{ }^{n} C_{3}+6 \cdot{ }^{n} C_{4}$
$=12 n+28 \cdot \frac{n(n-1)}{2!}+22 \cdot \frac{n(n-1)(n-2)}{3!}+6 \cdot \frac{n(n-1)(n-2)(n-3)}{4!}$
$=\frac{n}{12}(n+1)\left(3 n^{2}+23 n+46\right)$.
390. The series and the successive order differences are:
$10,23,60,169,494, \ldots$
$13,37,109,325, \ldots$
$24,72,216, \ldots$

Here second order differences are in G.P. whose common ratio is 3 . Let $t_{n}=a+b n+$ $c .3^{n-1}$
$\therefore a+b+c=t_{1}=10, a+2 b+3 c=t_{2}=23, a+3 b+9 c=t_{3}=60$
$\Rightarrow a=3, b=1, c=6 \Rightarrow t_{n}=3+n+6.3^{n-1}$
$S_{n}=\sum_{n=1}^{n} t_{n}=\frac{1}{2}\left(n^{2}+7 n-6\right)+3^{n+1}$.
391. Here one factor of the terms is in G.P. i.e. x.

Now the series of the coeff. of terms together with successive order differences are $3,5,9,15,23,33, \ldots$
$2,4,6,8,10, \ldots$
$2,2,2,, 2, \ldots$
$0,0,0, \ldots$
Hence third order differences are constant. Now,
$S=3+5 x+9 x^{2}+15 x^{3}+23 x^{4}+33 x^{5}+\ldots \infty$
$-3 x S=-9 x-15 x^{2}-27 x^{3}-45 x^{4}-69 x^{5}-\ldots$
$3 x^{2} S=9 x^{2}+15 x^{3}+27 x^{4}+45 x^{5}+\ldots$
$-x^{3} S=-3 x^{3}-5 x^{4}-9 x^{5}-\ldots$
Adding, we get $(1-x)^{3} S=3-4 x+3 x^{2}$
$\therefore S=\frac{3-4 x+3 x^{2}}{(1-x)^{3}}$.
392. Let t_{r} denote the r th term of the series $\frac{1}{n(n-1)}+\frac{2}{(n-1)(n-2)}+\ldots+\frac{n-2}{2.3}$, then
$t_{1}=\frac{1}{n(n-1)}=\frac{1}{n-1}-\frac{1}{n}, t_{2}=\frac{2}{n-2}-\frac{2}{n-1}=\frac{2}{n-2}-\frac{1}{n-1}-\frac{1}{n-1}, t_{3}=\frac{3}{n-3}-\frac{3}{n-2}=\frac{3}{n-3}-\frac{2}{n-2}-$ $\frac{1}{n-2}, \ldots, t_{n-2}=\frac{n-2}{2}-\frac{n-2}{3}=\frac{n-2}{2}-\frac{n-3}{3}-\frac{1}{3}$
$t_{1}+t_{2}+\ldots t_{n}=\frac{n-2}{2}\left(-\frac{1}{n}-\frac{1}{n-1}-\frac{1}{n-2}-\ldots-\frac{1}{3}\right)$
$=\frac{n+1}{2}-\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right)$
$\therefore H_{n}^{\prime}=\frac{n+1}{2}-\left(t_{1}+t_{2}+\ldots+t_{n}\right)=1+\frac{1}{2}+\ldots+\frac{1}{n}=H_{n}$.
393. $\tan ^{-1}\left(\frac{x}{1+1.2 x^{2}}\right)=\tan ^{-1}\left(\frac{2 x-x}{1+x .2 x}\right)=\tan ^{-1} 2 x-\tan ^{-1} x$

$$
\tan ^{-1}\left(\frac{x}{1+2.3 x^{2}}\right)=\tan ^{-1}\left(\frac{3 x-2 x}{1+2 x .3 x}\right)=\tan ^{-1} 3 x-\tan ^{-1} 2 x
$$

$\tan ^{-1}\left(\frac{x}{1+n(n+1) x^{2}}\right)=\tan ^{-1}\left(\frac{(n+1) x-n x}{1+n x \cdot(n+1) x}\right)=\tan ^{-1}(n+1) x-\tan ^{-1} n x$
Adding, we get
L.H.S. $=\tan ^{-1}(n+1) x-\tan ^{-1} x=\tan ^{-1}\left(\frac{n x}{1+(n+1) x^{2}}\right)=$ R.H.S.
394. The nth term of the given series is $t_{n}=\frac{n}{1+n^{2}+n^{4}}=\frac{n}{\left(1+n^{2}\right)^{2}-n^{2}}=\frac{1}{2}\left(\frac{1}{1+n^{2}-n}-\frac{1}{1+n^{2}+n}\right)$
$\therefore t_{1}=\frac{1}{2}\left(1-\frac{1}{3}\right), t_{2}=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{7}\right), t_{3}=\frac{1}{2}\left(\frac{1}{7}-\frac{1}{13}\right), \ldots, t_{n}=\frac{1}{2}\left(\frac{1}{1+n^{2}-n}-\frac{1}{1+n^{2}+n}\right)$
Adding, we get
$S=\frac{1}{2}\left(1-\frac{1}{1+n^{2}+n}\right)=\frac{n(n+1)}{2\left(1+n+n^{2}\right)}$.
395. $t_{n}=\tan ^{-1} \frac{2 n}{2+n^{2}+n^{4}}=\tan ^{-1} \frac{2 n}{1+1+n^{2}+n^{4}}=\tan ^{-1} \frac{2 n}{1+1+\left(n^{2}+1\right)^{2}-n^{2}}=\tan ^{-1} \frac{2 n}{1+\left(n^{2}+n+1\right)\left(n^{2}-n+1\right)}$
$=\tan ^{-1} \frac{\left(n^{2}+n+1\right)-\left(n^{2}-n+1\right)}{1+\left(n^{2}+n+1\right)\left(n^{2}-n+1\right)}=\tan ^{-1}\left(n^{2}+n+1\right)-\tan ^{-1}\left(n^{2}-n+1\right)$
$\therefore t_{1}=\tan ^{-1} 3-\tan ^{-1} 1, t_{2}=\tan ^{-1} 7-\tan ^{-1} 3, \ldots, t_{n-1}=\tan ^{-1}\left(n^{2}-n+1\right)-\tan ^{-1}[(n-$ $\left.1)^{2}-(n-1)+1\right]$
$t_{n}=\tan ^{-1}\left(n^{2}+n+1\right)-\tan ^{-1}\left(n^{2}-n+1\right)$
Adding, we get $S_{n}=\tan ^{-1}\left(n^{2}+n+1\right)-\tan ^{-1} 1=\tan ^{-1} \frac{n^{2}+n}{n^{2}+n+2}$.
396. $t_{n}=\frac{n^{4}}{4 n^{2}-1}=\frac{1}{16}\left[\frac{16 n^{4}}{4 n^{2}-1}\right]=\frac{1}{16}\left[\frac{16 n^{4}-1+1}{4 n^{2}-1}\right]=\frac{1}{16}\left[4 n^{2}+1+\frac{1}{(2 n-1)(2 n+1)}\right]$
$=\frac{1}{16}\left[4 n^{2}+1+\frac{1}{2}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)\right]$
$S_{n}=\sum t_{n}=\frac{1}{4} \sum n^{2}+\frac{1}{16} \sum 1+\frac{1}{32} \sum\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)=\frac{1}{4}\left[\frac{n(n+1)(2 n+1)}{6}\right]+\frac{n}{16}+\frac{1}{32}(1-$ $\frac{1}{2 n+1}$)
$=\frac{n}{48}\left(4 n^{2}+6 n+5\right)+\frac{1}{16} \frac{n}{2 n+1}=\frac{n\left(4 n^{2}+6 n+5\right)}{48}+\frac{n}{16(2 n+1)}$.
397. $t_{k}=a_{k} a_{k+1} \ldots a_{k+r-1}, t_{k+1}=a_{k+1} a_{k+2} \ldots a_{k+r} \therefore a_{k+r} t_{k}=a_{k} t_{k+1}$
$\left[a_{1}+(k+r-1) d\right] t_{k}=\left[a_{1}+(k-1) d\right] t_{k+1} \Rightarrow\left[a_{1}+(k-2) d\right] t_{k}-\left[a_{1}+(k-1) d\right] t_{k+1}=$ $-(1+r) d t_{k}$

Thus,
$(a-d) t_{1}-\left(a_{1}+0 d\right) t_{2}=-(1+r) d t_{1}$
$(a+0 d) t_{2}-\left(a_{1}+d\right) t_{3}=-(1+r) d t_{2}$
$\left[a_{1}+(n-2) d\right] t_{n}-\left[a_{1}+(n-1) d\right] t_{n+1}=-(1+r) d t_{n}$
$(a-d) t_{1}-\left[a_{1}+(n-1) d\right] t_{n+1}=-(1+r) d\left[t_{1}+t_{2}+\ldots+t_{n}\right]$
$\therefore t_{1}+t_{2}+\ldots+t_{n}=\frac{a_{n} a_{n+1} \ldots a_{n+r}-a_{0} a_{1} \ldots a_{r}}{(r+1) d}$.
398. Let a be the first term and d be the common difference of A.P. Let t_{k} be the k th term of the given sequence. Then,
$t_{k}=\frac{1}{a_{k} a_{k+1} \ldots a_{k+r-1}}, t_{k+1}=\frac{1}{a_{k+1} a_{k+2} \ldots a_{k+r}} \Rightarrow a_{k} t_{k}=a_{k+r} t_{k+1}$
$[a+(k-1) d] t_{k}-(a+k d) t_{k+1}=d(r-1) t_{k+1} \therefore(a+0 d) t_{1}-(a+d) t_{2}=d(r-1) t_{2}$ $(a+d) t_{2}-(a+2 d) t_{3}=d(r-1) t_{3}$
$[a+(n-2) d] t_{n-1}-[a+(n-1) d] t_{n}=d(r-1) t_{n}$
Adding, we get
$a t_{1}-[a+(n-1) d] t_{n}=d(r-1)\left[t_{2}+t_{3}+\ldots+t_{n}\right]$
$[a+(r-d) d] t_{1}-[a+(n-1) d] t_{n}=d(r-1) S\left[t_{1}+t_{2}+\ldots+t_{n}\right]$
$t_{1}+t_{2}+\ldots+t_{n}=\frac{1}{(r-1) d}\left(\frac{a_{r}}{a_{1} a_{2} \ldots a_{r}}-\frac{a_{n}}{a_{n} a_{n+1} \ldots a_{n+r-1}}\right)$
$S_{n}=\frac{1}{(r-1)\left(a_{2}-a_{1}\right)}\left(\frac{1}{a_{1} a_{2} \ldots a_{r-1}}-\frac{1}{a_{n+1} a_{n+2} \ldots a_{n+r-1}}\right)$.
399. Let t_{i} be the i th term of the series, then
$t_{i}=\frac{1}{i(i+1)(i+2)(i+3)}, t_{i+1}=\frac{1}{(i+1)(i+2)(i+3)(i+4)}$
$\Rightarrow i t_{i}=(i+4) t_{i+1} \Rightarrow i t_{i}-(i+1) t_{i+1}=3 t_{i+1}$
$\therefore 1 . t_{1}-2 t_{2}=3 t_{2}, 2 . t_{2}-3 . t_{3}=3 t_{3}, \ldots,(n-1) . t_{i}-n t_{n}=3 t_{n}$
Adding, we get
$t_{1}-n t_{n}=3\left(t_{1}+t_{2}+\ldots+t_{n}\right) \Rightarrow 4 t_{1}-n t_{n}=3\left[t_{1}+t_{2}+\ldots+t_{n}\right]$
$t_{1}+t_{2}+\ldots+t_{n}=\frac{1}{18}-\frac{1}{3(n+1)(n+2)(n+3)}$.
400. $t_{n}=\frac{n+2}{n(n+1)(n+3)}=\frac{(n+2)^{2}}{n(n+1)(n+2)(n+3)}$

$$
\begin{aligned}
& =\frac{n^{2}+4 n+4}{n(n+1)(n+2)(n+3)}=\frac{n(n+4)}{n(n+1)(n+2)(n+3)}+\frac{4}{n(n+1)(n+2)(n+3)} \\
& =\frac{n(n+1)+3 n}{n(n+1)(n+2)(n+3)}+\frac{4}{n(n+1)(n+2)(n+3)}=\frac{1}{(n+2)(n+3)}+\frac{3}{(n+1)(n+2)(n+3)}+\frac{4}{n(n+1)(n+2)(n+3)}
\end{aligned}
$$

Now that we have found t_{n} we can find S_{n} like previous problem.
$S_{n}=\frac{29}{36}-\frac{1}{n+3}-\frac{3}{2(n+2)(n+3)}-\frac{4}{3(n+1)(n+2)(n+3)}$.
401. $t_{n}=\frac{n}{1.3 .5 .7 \ldots(2 n-1)(2 n+1)}=\frac{1}{2}\left[\frac{1}{1.3 .5 .7 \ldots(2 n-1)}-\frac{1}{1.3 .5 .7 \ldots(2 n+1)}\right]$
$\therefore t_{1}=\frac{1}{2}\left(1-\frac{1}{1.3}\right), t_{2}=\frac{1}{2}\left(\frac{1}{1.3}-\frac{1}{1.3 .5}\right), \ldots, t_{n}=\frac{1}{2}\left(\frac{1}{1.3 .5 .7 \ldots(2 n-1)}-\frac{1}{1.3 .5 .7 \ldots(2 n+1)}\right)$
$S_{n}=\frac{1}{2}\left[1-\frac{1}{1 \cdot 3 \cdot 5.7 \ldots(2 n+1)}\right]$.
402. $t_{n}=\frac{n+1}{(2 n-1)(2 n+1)} \cdot \frac{1}{3^{n}}=\frac{1}{4}\left[\frac{3}{2 n-1}-\frac{1}{2 n+1}\right] \cdot \frac{1}{3^{n}}=\frac{1}{4}\left[\frac{1}{2 n-1} \cdot \frac{1}{3^{n-1}}-\frac{1}{2 n+1} \cdot \frac{1}{3^{n}}\right]$
$\therefore t_{1}=\frac{1}{4}\left(\frac{1}{1.1}-\frac{1}{3} \cdot \frac{1}{3}\right), t_{2}=\frac{1}{4}\left(\frac{1}{3.3}-\frac{1}{5} \cdot \frac{1}{3^{2}}\right), t_{3}=\frac{1}{4}\left(\frac{1}{5} \cdot \frac{1}{3^{2}}-\frac{1}{7} \cdot \frac{1}{3^{3}}\right), \ldots, t_{n}=\frac{1}{4}\left(\frac{1}{2 n-1} \cdot \frac{1}{3^{n-1}}-\right.$ $\left.\frac{1}{2 n+1} \cdot \frac{1}{3^{n}}\right)$
$S_{n}=\frac{1}{4}\left[1-\frac{1}{2 n+1} \cdot \frac{1}{3^{n}}\right]$.
403. $t_{n}=\frac{2 n-1}{3.7 .11 \ldots(4 n-1)}=\frac{1}{2}\left[\frac{1}{3.7 .11 \ldots(4 n-5)}-\frac{1}{3.7 .11 \ldots(4 n+1)}\right]$
$t_{2}=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{3.7}\right), t_{3}=\frac{1}{2}\left(\frac{1}{3.7}-\frac{1}{3.7 .11}\right), \ldots, t_{n}=\frac{1}{2}\left(\frac{1}{3.7 .11 \ldots(4 n-5)-\frac{1}{3.7 .11 \ldots(4 n-1)}}\right)$
$t_{1}+t_{2}+\ldots t_{n}=\frac{1}{3}+\frac{1}{2}\left[\frac{1}{3}-\frac{1}{3.7 .11 \ldots(4 n-1)}\right]$
$S_{n}=\frac{1}{2}-\frac{1}{2} \cdot \frac{1}{3.7 .11 \ldots(4 n-1)}$.
404. $t_{n}=n(1-a)(1-2 a) \ldots[a-(n-1) a], t_{n}=-\frac{1}{a}(1-n a-1)(1-a)(1-2 a) \ldots[a-$
$(n-1) a]=-\frac{1}{a}[(1-a)(1-2 a) \ldots(1-n a)-(1-a)(1-2 a) \ldots\{a+(n-1) a\}]$
$\therefore t_{1}=-\frac{1}{a}[(1-a)-1], t_{2}=-\frac{1}{q a}[(1-a)(1-2 a)-(1-a)], \ldots$
Adding, we get
$S_{n}=\frac{1}{a}[1-(1-a)(1-2 a) \ldots(1-n a)]$.
405. $t_{1}=1, t_{2}=\frac{x}{b_{1}}=\frac{\left(x+b_{1}\right)-b_{1}}{b_{1}}=\frac{x+b_{1}}{b_{1}}-1, t_{3}=\frac{x\left(x+b_{1}\right)}{b_{1} b_{2}}=\frac{\left[\left(x+b_{2}\right)-b_{2}\right]\left(x+b_{1}\right)}{b_{1} b_{2}}=\frac{\left(x+b_{1}\right)\left(x+b_{2}\right)}{b_{1} b_{2}}-\frac{x+b_{1}}{b_{1}}$
$t_{n+1}=\frac{\left(x+b_{1}\right) \ldots\left(x+b_{n}\right)}{b_{1} b_{2} \ldots b_{n}}-\frac{\left(x+b_{1}\right) \ldots\left(x+b_{n-1}\right)}{b_{1} b_{2} \ldots b_{n-1}}$
$\therefore S_{n}=\frac{\left(x+b_{1}\right) \ldots\left(x+b_{n}\right)}{b_{1} b_{2} \ldots b_{n}}$.
406. $n S_{k}(n)=n\left[1^{k}+2^{k}+\ldots+n^{k}\right]=1^{k}+\left(1^{k}+2.2^{k}\right)+\left(1^{k}+2^{k}+3.3^{k}\right)+\ldots+\left(1^{k}+2^{k}+\right.$ $\left.\ldots+n . n^{k}\right)$
$=1^{k+1}+\left[S_{k}(1)+2^{k+1}\right]+\left[S_{k}(2)+3^{k+1}\right]+\ldots+\left[S_{k}(n-1)+n^{k+1}\right]=S_{k}(1)+S_{k}(2)+$ $\ldots+S_{k}(n-1)+S_{k+1}(n)$.
407. $n^{3}>100 \Rightarrow n>4, n^{3}<100000 \Rightarrow n<22$

So $S=5^{3}+6^{3}+\ldots+21^{3}, S^{\prime}=1^{3}+2^{3}+3^{3}+4^{3}$
$S^{\prime}+S-S^{\prime}=1^{3}+2^{2}+\ldots+21^{3}-\left(1^{3}+2^{3}+\ldots+4^{3}\right)=53261$.
408. $S=a+(a+1)+\ldots+(a+n-1),=n a+\frac{n(n-1)}{2}$
$S^{2}=n^{2} a^{2}+n^{2}(n-1) a+\frac{n^{2}(n-1)^{2}}{4}$
$t=a^{2}+(a+1)^{2}+\ldots+(a+n-1)^{2} \Rightarrow n t=n^{2} a^{2}+n^{2}(n-1) a+n \sum_{i=1}^{n-1} i^{2}$
Clearly, $n t-S^{2}$ is independent of a.
409. $\sum_{x=5}^{n+5} 4(x-3)=\sum_{x=1}^{n+5} 4(x-3)-\sum_{x=1}^{4} 4(x-3)=\frac{4(n+5)(n+6)}{2}-12(n+5)-\frac{4.4 .5}{2}+12.4=$
$2 n^{2}+10 n+8$
$\quad \therefore P+Q=12$.

410 . Let S be the sum of series, then
$S=5^{3}+7^{3}+9^{3}+\ldots$ to n terms $+2^{5}\left(3^{3}+4^{3}+5^{3}+\ldots\right.$ to n terms $)$
$=1^{3}+3^{3}+5^{3}+\ldots$ to $(n+2)$ terms $-1^{3}-3^{3}+2^{5}\left(1^{3}+3^{3}+5^{3}+\ldots\right.$ to $n+1$ terms $)-2^{5}$
$=\sum_{i=1}^{n+2}(2 i-1)^{3}-28+2^{5} \sum_{i=1}^{n+1}(2 i-1)^{3}-32=n\left(10 n^{3}+96 n^{2}+243 n+540\right)$.
411. Let S be the sum of the series and $x=\frac{2 n+1}{2 n-1}$, then
$S=x+3 x^{2}+5 x^{3}+\ldots$
$x S=x^{2}+3 x^{3}+\ldots+(2 n-1) x^{n+1}$
$(1-x) S=x+2 x^{2}+2 x^{3}+\ldots=x+2 x^{2}\left(1+x+x^{2}+\ldots\right.$ to $n-1$ terms $)-$ $(2 n-1) x^{n+1}=x+\frac{2 x^{2}\left(1-x^{n-1}\right)}{1-x}-(2 n-1) x^{n+1} S=\frac{x}{1-x}+\frac{2 x^{2}\left(1-x^{n-1}\right)}{(1-x)^{2}}-\frac{(2 n-1) x^{n+1}}{1-x}=$ $\frac{x^{2}-x+2 x^{n+1}-2 x^{2}+(x-1) \cdot(2 n-1) x^{n+1}}{(x-1)^{2}}=n(2 n+1)$.
412. Let S be the sum to n terms and $x=\frac{4 n+1}{4 n-3}$, then
$S=1+5 x+9 x^{2}+13 x^{3}+\ldots$
$x S=x+5 x^{2}+9 x^{3}+\ldots+(4 n+1) x^{n}$
$(1-x) S=1+4 x+4 x^{2}+4 x^{3}+\ldots+4 x^{n-1}-(4 n+1) x^{n}$
$S=\frac{1}{x-1}+\frac{4 x\left(x^{n-1}-1\right)}{(x-1)^{2}}-\frac{(4 n+1) x^{n}}{(x-1)}=4 n^{2}-3 n$.
413. $t_{n}=1.10^{2 n}+2.10^{2 n-1}+3 \cdot 10^{n-2}+\ldots+n \cdot 10^{n+1}+(n+1) 10^{n}+n \cdot 10^{n}+(n-1) 10^{n-2}+$ $\ldots+3.10^{2}+2.10+1$
$=10^{2 n}\left[1+2 \cdot \frac{1}{10}+3 \cdot \frac{1}{10^{2}}+\ldots+n \cdot \frac{1}{10^{n-1}}\right]+\left(1+2 \cdot 10+3 \cdot 10^{2}+\ldots+n \cdot 10^{n-1}+(n+1) 10^{n}\right)=$ $10^{2 n} S_{1}+S_{2} S_{1}=1+2 \cdot \frac{1}{10}+3 \cdot \frac{1}{10^{2}}+\ldots+n \cdot \frac{1}{10^{n-1}}$
$\frac{S_{1}}{10}=\frac{1}{10}+2 \frac{1}{10^{2}}+\ldots+(n-1) \frac{1}{10^{n-1}}+n \cdot \frac{1}{10^{n}}$
$S_{1}=\frac{100}{81}\left(1-\frac{1}{10^{n}}\right)-\frac{90 n}{81.10^{n}}$
$S_{2}=1+2.10+3.10^{2}+\ldots+(n+1) 10^{n}$
$10 S_{2}=10+2 \cdot 10^{2}+\ldots+n \cdot 10^{n}+(n+1) 10^{n+1}$
$S_{2}=\frac{1-10^{n+1}}{81}+\frac{(n+1) 10^{n+1}}{9}$
Substituting S_{1} and S_{2} we obtain t_{n} as $t_{n}=\left(\frac{10^{n+1}-1}{9}\right)^{2}$. Thus, the numbers in the sequence will be square of odd positive integer.
414. $t_{n}=\frac{2 n+1}{1^{2}+2^{2}+\ldots+n^{2}}=\frac{2 n+1}{\frac{n(n+1)(2 n+1)}{6}}=\frac{6}{n(n+1)}$

$$
\therefore t_{1}=\frac{6}{1.2}=6\left(1-\frac{1}{2}\right), t_{2}=\frac{6}{2.3}=6\left(\frac{1}{2}-\frac{1}{3}\right), \ldots, t_{n}=\frac{6}{n(n+1)}=6 \cdot\left(\frac{1}{n}-\frac{1}{n+1}\right)
$$

Adding, we get
$S=\frac{6 n}{n+1}$.
415. $t_{n}=\frac{1}{(1+n x)[1+(n+1) x]}=\frac{1}{x}\left(\frac{1}{1+n x}-\frac{1}{1+(n+1) x}\right)$
$t_{1}=\frac{1}{x}\left(\frac{1}{1+x}-\frac{1}{1+2 x}\right), t_{2}=\frac{1}{x}\left(\frac{1}{1+2 x}-\frac{1}{1+3 x}\right), \ldots$
Adding, we get

$$
S_{n}=\frac{1}{x}\left(\frac{1}{1+x}-\frac{1}{1+(n+1) x}\right)=\frac{n}{(1+x)[1+(n+1) x]}
$$

416. $t_{n}=\frac{a^{n-1}}{\left(1+a^{n-1} x\right)\left(1+a^{n} x\right)}=\frac{1}{(a-1) x}\left(\frac{1}{1+a^{n-1} x}-\frac{1}{1+a^{n} x}\right)$
$t_{1}=\frac{1}{(a-1) x}\left(\frac{1}{1+x}-\frac{1}{1+a x}\right), t_{2}=\frac{1}{(a-1) x}\left(\frac{1}{1+a x}-\frac{1}{1+a^{2} x}\right), \ldots$
Adding, we get
$S=\frac{1}{(a-1) x}\left(\frac{1}{1+x}-\frac{1}{1+a^{n} x}\right)$.
417. $t_{n}=\frac{1}{\sqrt{2 n-1}+\sqrt{2 n+1}}=\frac{\sqrt{2 n+1}-\sqrt{2 n-1}}{2}$
$\therefore t_{1}=\frac{\sqrt{3}}{2}-\frac{1}{2}, t_{2}=\frac{\sqrt{5}}{2}-\frac{\sqrt{3}}{2}, \ldots$
Adding, we get
$S=\frac{\sqrt{2 n+1}-1}{2}$.
418. $t_{k}=a_{k} a_{k+1}, t_{k+1}=a_{k+1} a_{k+2}$
$a_{k+2} t_{k}=a_{k} t_{k+1}$
$\left[a_{1}+(k+1) d\right] t_{k}-\left[a_{1}+(k-1) d\right] t_{k+1}=0$
$\left[a_{1}+(k-2) d\right] t_{k}-\left[a_{1}+(k-1) d\right] t_{k+1}=-3 d t_{k}$
$\therefore\left(a_{1}-d\right) t_{1}-\left(a_{1}+0 d\right) t_{2}=-3 d t_{1}$
$\left(a_{1}+0 d\right) t_{2}-\left(a_{1}+d\right) t_{3}=-3 d t_{2}$
$\left[a_{1}+(n-2) d\right] t_{n}-\left[a_{1}+(n-1)\right] t_{n+1}=-3 d t_{n}$
Adding, we get
$-3 d\left(t_{1}+t_{2}+\ldots+t_{n}\right)=\left(a_{1}-d\right) t_{1} \backslash-\left[a_{1}+(n-1)\right] t_{n+1}$
$S=\frac{[a+(n-1) d](a+n d)[a+(n+1) d]-(a-d) a(a+d)}{3 d}=\frac{n}{3}\left[3 a^{2}+3 n a d+\left(n^{2}-1\right) d^{2}\right]$.
419. $t_{k}=a_{k} a_{k+1} a_{k+2}, t_{k+1}=a_{k+1} a_{k+2} a_{k+3}$
$a_{k+3} t_{k}=a_{k} t_{k+1}$
$\left[a_{1}+(k+2) d\right] t_{k}=\left[a_{1}+(k-1) d\right] t_{k+1}$

$$
\begin{aligned}
& {\left[a_{1}+(k-2) d\right] t_{k}-\left[a_{1}+(k-1) d\right] t_{k+1}=-4 d t_{k}} \\
& \left(a_{1}-d\right) t_{1}-\left(a_{1}+0 d\right) t_{2}=-4 d t_{1} \\
& \left(a_{1}+0 d\right) t_{2}-\left(a_{1}+d\right) t_{3}=-4 d t_{2} \\
& \cdots \\
& {\left[a_{1}+(n-2) d\right] t_{n}-\left[a_{1}+(n-1)\right] t_{n+1}=-4 d t_{n}}
\end{aligned}
$$

Adding, we get
$-4 d\left(t_{1}+t_{2}+\ldots+t_{n}\right)=\left(a_{1}-d\right) t_{1}-\left[a_{1}+(n-1)\right] t_{n+1}$
$S=\frac{[a+(n-1) d](a+n d)[a+(n+1) d][a+(n+2) d]-(a-d) a(a+d)(a+2 d)}{4 d}$
$=\frac{n}{4}\left[4 a^{3}+6(n+1) a^{2} d+2\left(2 n^{2}+3 n-1\right) a d^{2}+\left(n^{3}-2 n^{2}-n-2\right) d^{3}\right]$.
420. $t_{n}=\frac{2 n+1}{n^{2} \cdot(n+1)^{2}}=\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}$
$t_{1}=\frac{1}{1}-\frac{1}{2^{2}}, t_{2}=\frac{1}{2^{2}}-\frac{1}{3^{2}}, \ldots$
Adding, we get
$S=1-\frac{1}{(n+1)^{2}}=\frac{n(n+2)}{(n+1)^{2}}$.
421. $t_{n}=n(n+1), S_{n}=\sum\left(n^{2}+n\right)=\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}$
$\Rightarrow S_{n}=\frac{n(n+1)(n+2)}{3}$
We have proved in earlier that $\sigma_{n}=\frac{1}{18}-\frac{1}{3(n+1)(n+2)(n+3)}$
$\therefore \sigma_{n-1}=\frac{1}{18}-\frac{1}{3 n(n+1)(n+2)}$
Now it is trivial to prove that $18 S_{n} \sigma_{n-1}-S_{n}=-2$.
422. $t_{n}=\frac{2 n+3}{n(n+1)} \cdot \frac{1}{3^{n}}=\left(\frac{3}{n}-\frac{1}{n+1}\right) \cdot \frac{1}{3^{n}}$
$\therefore t_{1}=\left(3-\frac{1}{2}\right) \cdot \frac{1}{3}, t_{2}=\left(\frac{3}{2}-\frac{1}{3}\right) \cdot \frac{1}{3^{2}}, t_{3}=\left(\frac{3}{3}-\frac{1}{4}\right) \cdot \frac{1}{3^{3}}, \ldots$
Adding, we get

$$
S_{n}=1-\frac{1}{n+1} \cdot \frac{1}{3^{n}}
$$

423. $S=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots \infty, S^{\prime}=\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\ldots \infty \Rightarrow 4 S^{\prime}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots \infty$ $4 S^{\prime}=S \Rightarrow S^{\prime}=\frac{S}{4} \therefore \frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \infty \Rightarrow S-S^{\prime}=\frac{3}{4} S=\frac{\pi^{2}}{8}$.
424. In previous problem we have proved that $\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\ldots \infty=\frac{\pi^{2}}{24}$ and $\frac{1}{1^{2}}+\frac{1}{3^{3}}+\frac{1}{5^{2}}+\ldots \infty=$ $\frac{\pi^{2}}{8}$
$\therefore 1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots \infty=\frac{\pi^{2}}{8}-\frac{\pi^{2}}{24}=\frac{\pi^{2}}{12}$.
425. $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n},=n-n+1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$
$=n-(1-1)-\left(1-\frac{1}{2}\right)-\left(1-\frac{1}{3}\right)+\ldots+\left(1-\frac{1}{n}\right)$
$=n-\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\ldots+\frac{n-1}{n}\right)$.
426. We can rewrite the question like $\frac{1}{x+1}-\frac{1}{x+1}-\frac{2}{x^{2}+1}-\frac{4}{x^{4}+1}-\ldots-\frac{2^{n}}{x^{2^{n}}+1}=\frac{2^{n+1}}{x^{2^{n+1}}-1}$
L.H.S. $=\left(\frac{1}{x-1}-\frac{1}{x+1}\right)-\frac{2}{x^{2}+1}-\frac{4}{x^{4}+1}-\ldots-\frac{2^{n}}{x^{2^{n}}+1}$
$=\left(\frac{2}{x^{2}-1}-\frac{2}{x^{2}+1}\right)-\frac{4}{x^{4}+1}-\ldots-\frac{2^{n}}{x^{2^{n}}+1}$
$=\left(\frac{4}{x^{4}-1}-\frac{4}{x^{4}+1}\right)-\ldots-\frac{2^{n}}{x^{2^{n}}+1}$. Progreessing similarly we obtain R.H.S.
427. Multiplying and dividing by $1-\frac{1}{3}$, we get L.H.S. $=\frac{\left(1-\frac{1}{3}\right)}{\left(1-\frac{1}{3}\right)}\left(1+\frac{1}{3}\right)\left(1+\frac{1}{3^{2}}\right)\left(1+\frac{1}{3^{4}}\right) \ldots(1+$ $\left.\frac{1}{3^{2^{n}}}\right)$
$=\frac{1}{\left(1-\frac{1}{3}\right)}\left(1-\frac{1}{3^{2}}\right)\left(1+\frac{1}{3^{2}}\right)\left(1+\frac{1}{3^{4}}\right) \ldots\left(1+\frac{1}{3^{2^{n}}}\right)$
$=\frac{1}{\left(1-\frac{1}{3}\right)}\left(1-\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{4}}\right) \ldots\left(1+\frac{1}{3^{2^{n}}}\right)$
Proceeding similarly we obtain the R.H.S.
428. Since A.M \geq G.M.
$\therefore \frac{x+y}{2} \geq \sqrt{x y}, \frac{y+z}{2} \geq \sqrt{y z}, \frac{x+z}{2} \geq \sqrt{z x}$
$\frac{(x+y)(y+z)(z+x)}{8} \geq x y z \Rightarrow(1-x)(1-y)(1-z) \geq 8 x y z$.
429. Since A.M \geq H.M.

$$
\therefore \frac{a+b+c}{3} \geq \frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}} \Rightarrow(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq 9 .
$$

430. Taking A.M. and G.M of 7 numbers $\frac{a}{2}, \frac{a}{2}, \frac{b}{3}, \frac{b}{3}, \frac{b}{3}, \frac{c}{2}, \frac{c}{2}$, we get

$$
\begin{aligned}
& \frac{2 \cdot \frac{a}{2}+3 \cdot \frac{b}{3}+2 \cdot \frac{c}{2}}{7} \geq\left[\left(\frac{a}{2}\right)^{2}\left(\frac{b}{3}\right)^{3}\left(\frac{c}{2}\right)^{2}\right]^{\frac{1}{7}} \Rightarrow \frac{3}{7} \geq\left(\frac{a^{2} b^{3} c^{2}}{2^{2} 3^{2} 2^{2}}\right)^{\frac{1}{7}} \Rightarrow \frac{3^{7}}{7^{7}} \geq \frac{a^{2} b^{3} c^{2}}{2^{2} 3^{2} 2^{2}} \Rightarrow a^{2} b^{3} c^{2} \leq \frac{3^{10} 0^{4}}{7^{7}} . \\
& \text { 431. } \sum_{i=1}^{n} a_{i} b_{i}=\sum_{i=1}^{n} a_{i}\left(1-a_{i}\right)=\sum_{i=1}^{n} a_{i}-\sum_{i=1}^{n} a_{i}^{2}=n a-\sum_{i=1}^{n}\left(a_{i}-a+a\right)^{2} \\
& =n a-\sum_{i=1}^{n}\left[\left(a_{i}-a\right)^{2}+a^{2}+2 a(a i-a)\right]=n a-\sum_{i=1}^{n}(a i-a)^{2}-n a^{2}+2 a \sum_{i=1}^{n}\left(a_{i}-n a\right) \\
& =n a(1-a)-\sum_{i=1}^{n}\left(a_{i}-a\right)^{2}=n a b-\sum_{i=1}^{n}\left(a_{i}-a\right)^{2}, \because n a+n b=\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=n \therefore a+b=1 .
\end{aligned}
$$

432. Let a_{n+1} be a number such that $\left|a_{n+1}\right|=\left|a_{n}+1\right|$

Squaring all the numbers, we get
$a_{1}^{2}=0, a_{2}^{2}=a_{1}^{2}+2 a_{1}+1, a_{3}^{2}=a_{2}^{2}+2 a_{2}+1, \ldots, a_{n}^{2}=a_{n-1}^{2}+2 a_{n-1}+1, a_{n+1}^{2}=a_{n}^{2}+2 a_{n}+1$
Adding, we get
$a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}+a_{n+1}^{2}=a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}+2\left(a_{1}+a_{2}+\ldots+a_{n}\right)+n$
$\Rightarrow 2\left(a_{1}+a_{2}+\ldots+a_{n}\right)=-n+a_{n+1}^{2} \geq-n \Rightarrow\left(a_{1}+a_{2}+\ldots+a_{n}\right) / n \geq-1 / 2$.
433. We know that A.M. \geq G.M.

$$
\Rightarrow \frac{a+b}{2} \geq \sqrt{a b}, \frac{b+c}{2} \geq \sqrt{b c}, \frac{a+c}{2} \geq \sqrt{a c}
$$

Multiplying, we get $(a+b)(b+c)(c+a) \geq 8 a b c$.
434. We know that A.M \geq H.M.
$\Rightarrow \frac{x+y+z}{3} \geq \frac{3}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}} \Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z} \geq \frac{9}{a}$.
435. We know that A.M \geq G.M. $\Rightarrow \frac{1+3+5+\ldots+(2 n-1)}{n} \geq(1.3 .5 \ldots(2 n-1))^{\frac{1}{n}}$

$$
\Rightarrow \frac{n^{2}}{n} \geq(1.3 .5 \ldots(2 n-1))^{\frac{1}{n}} \Rightarrow n^{n} \geq 1.3 .5 \ldots(2 n-1)
$$

436. We consider seven numbers five of which are $2+x$ and remaining four are $7-x$. Now, we know that $\mathrm{A} . \mathrm{M} \geq$ G.M.
$\Rightarrow \frac{4 \cdot \frac{7-x}{4}+5 \cdot \frac{2+x}{5}}{9} \geq\left[\left(\frac{7-x}{4}\right)^{4}\left(\frac{2+x}{5}\right)^{5}\right]^{\frac{1}{9}} \Rightarrow \frac{9}{9} \geq\left[\left(\frac{7-x}{4}\right)^{4}\left(\frac{2+x}{5}\right)^{5}\right]^{\frac{1}{9}}$
$\Rightarrow(7-x)^{4}(2+x)^{5} \leq 4^{4} .5^{5}$. So the greatest value would be $4^{4} .5^{5}$.
437. We know that A.M \geq H.M.

$$
\begin{aligned}
& \Rightarrow \frac{a+b}{2} \geq \frac{2 a b}{a+b}, \frac{b+c}{2} \geq \frac{2 b c}{b+c}, \frac{c+a}{2} \geq \frac{2 c a}{c+a} \\
& \Rightarrow \frac{a+b+c}{2} \geq \frac{b c}{b+c}+\frac{c a}{c+a}+\frac{a b}{a+b}
\end{aligned}
$$

438. $(a-b)^{2} \geq 0,(b-c)^{2} \geq 0,(c-a)^{2} \geq 0$
$\Rightarrow \frac{(a-b)^{2}}{a b} \geq 0, \frac{(b-c)^{2}}{b c} \geq 0, \frac{(c-a)^{2}}{a c} \geq 0 \Rightarrow \frac{a^{2}+b^{2}}{a b} \geq 2, \frac{b^{2}+c^{2}}{b c} \geq 2, \frac{c^{2}+a^{2}}{c a} \geq 2$
$\Rightarrow \frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c} \geq 6 \Rightarrow \frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c} \geq 6$.
439. We know that A.M. \geq H.M. $\frac{x_{1}+x_{2}+\ldots+x_{n}}{n} \geq \frac{n}{\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}\right)}$
$\Rightarrow\left(x_{1}+x_{2}+\ldots+x_{n}\right)\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}\right) \geq n^{2}$
440. We know that A.M \geq G.M.Considering 1 and $x^{2 n} \Rightarrow \frac{1+x^{2 n}}{2} \geq \sqrt{1 . x^{2 n}}=x^{n}$ Considering 1 and $y^{2 m} \Rightarrow \frac{1+y^{2 m}}{2} \geq \sqrt{1 . y^{2 m}}=y^{m}$

Myltiplying. we get
$\left(1+x^{2 n}\right)\left(1+y^{2 m}\right) \geq 4 x^{n} y^{m} \Rightarrow \frac{x^{n} y^{m}}{\left(1+x^{2 n}\right)\left(1+y^{2 m}\right)} \leq \frac{1}{4}$.
441. Let $b-c=x, c-a=y$ and $a-b=z, \Rightarrow x+y+z=0$. This also implies that $a+b-2 c=x-y, b+c-2 a=y-z, c+a-2 b=z-x$

Clearly, $x+y+z=0$
Given, $\frac{(x-y)^{2}+(y-z)^{2}+(z-x)^{2}}{3}=\frac{x^{2}+y^{2}+z^{2}}{3} \Rightarrow x^{2}+y^{2}+z^{2}-2 x y-2 y z-2 z x=0$
$\Rightarrow(x+y+z)^{2}=4(x y+y z+z x) \Rightarrow x y+y z+z x=0 \Rightarrow(c-a)(a-b)+(a-b)(b-c)+$ $(c-a)(b-c)=0$
$\Rightarrow c a-b c-a^{2}+a b+a b-c a-b^{2}+b c+b c-c^{2}-a b+c a=0 \Rightarrow a b+b c+c a-a^{2}-$ $b^{2}-c^{2}=0 \Rightarrow(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=0 \Rightarrow a=b=c$

Answers of Chapter 3 Complex Numbers

1. Let $z=7+8 i$, and $\sqrt{z}=\sqrt{7+8 i}=x+i y$. Squaring $7+8 i=\left(x^{2}-y^{2}\right)+2 i x y$ Comparing real and imaginary parts $x^{2}-y^{2}=7, x y=4 \Rightarrow x^{2}+y^{2}=\sqrt{113}$. We discaard $-\sqrt{113}$ as that will make x, y complex.
$\Rightarrow x=\frac{\sqrt{7+\sqrt{113}}}{2}, y=\frac{\sqrt{\sqrt{113}-7}}{2}$.
2. Let $\sqrt{a^{2}-b^{2}+2 a b i}=x+i y$, then on squaring and comparison of real and imaginary parts, we have $x^{2}-y^{2}=a^{2}-b^{2}, x y=a b \Rightarrow x^{2}+y^{2}=a^{2}+b^{2} \Rightarrow x=a, y=b$.
3. $\sqrt[4]{81 i^{2}}=\sqrt{ \pm 9 i}$ and now we can solve it like previous problems.
4. Let $z=\frac{x^{2}}{y^{2}}+\frac{y^{2}}{x^{2}}+\frac{1}{2 i}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{31}{16}=\left(\frac{x}{y}+\frac{y}{x}\right)^{2}-2 \frac{i}{4}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{i^{2}}{4}=\left(\frac{x}{y}+\frac{y}{x}-\frac{i}{4}\right)^{2}$
\therefore square root $= \pm\left(\frac{x}{y}+\frac{y}{x}-\frac{i}{4}\right)$.
5. We know that $i^{4}=1$. Let $z=i^{n+80}+i^{n+50}=i^{n+4.20}+i^{n+12.4+2}=i^{n}+i^{n+2}=i^{n}-i^{n}=$ 0 .
6. Let $z=\left(i^{17}+\frac{1}{i^{15}}\right)^{3}=\left(i^{4.4+1}+\frac{1}{i^{4.4-1}}\right)^{3}=(i+i)^{3}=8 i^{3}=-8 i$.
7. Let $z=\frac{(1+i)^{2}}{2+3 i}=\frac{2 i}{2+3 i} \cdot \frac{2-3 i}{2-3 i}=\frac{-6+4 i}{13}$.
8. Let $z=\left(\frac{1}{1+i}+\frac{1}{1-i}\right) \frac{7+8 i}{7-8 i}=\frac{2}{1-i^{2}} \frac{(7+8 i)(7+8 i)}{(7-8 i)(7+8 i)}=\frac{2}{2} \frac{-15+112 i}{49+64}=\frac{-15+112 i}{113}$.
9. Let $z=\frac{(1+i)^{4 n+7}}{(1-i)^{4 n-1}}=\frac{(1+i)^{4(n+2)-1}}{(1-i)^{4 n-1}}=\frac{1-i}{1+i}=\frac{(1-i)^{2}}{1-i^{2}}=\frac{1-2 i+i^{2}}{2}=-i$.
10. Let $z=\frac{1}{1-\cos \theta+2 i \sin \theta}=\frac{1-\cos \theta-2 i \sin \theta}{(1-\cos \theta)^{2}+4 \sin ^{2} \theta}=\frac{1-\cos \theta-2 i \sin \theta}{1-2 \cos \theta+1+3 \sin ^{2} \theta}=\frac{1-\cos \theta-2 i \sin \theta}{2-2 \cos \theta+3 \sin ^{2} \theta}$.
11. Let $z=\frac{(\cos x+i \sin x)(\cos y+i \sin y)}{(\cot u+i)(i+\tan v)}$. Using Euler's formula, we have $z=\frac{e^{i x} \cdot e^{i y}}{\frac{e^{i v}}{\sin u} \cdot \frac{e^{i v}}{\cos v}}=$ $\sin u \cos v \cdot e^{i(x+y-u-v)}=\sin u \cos v \cos (x+y-u-v)+i \sin u \cos v \sin (x+y-u-v)$.
12. $i^{5}=i^{4+1}=i$.
13. $i^{67}=i^{64+3}=i^{3}=-i\left[\because i^{2}=-1\right]$.
14. $i^{-59}=\frac{1}{i^{15 \cdot 4-1}}=i$.
15. $i^{2014}=i^{4.503+2}=i^{2}=-1$.
16. $|a|=-a \Rightarrow \sqrt{a b}=\sqrt{|a| b} i$.
17. Let $z=i^{n}+i^{n+1}+i^{n+2}+i^{n+3}=i^{n}+i . i^{n}-i^{n}-i . i^{n}=0$.
18. $\sum_{n=1}^{13}\left(i^{n}+i^{n+1}\right)=\sum_{i=1}^{13} i^{n}+\sum_{i=1}^{13} i^{n+1}=\left(i+i^{2}+i^{3}+\cdots+i^{13}\right)+\left(i^{2}+i^{3}+i^{4}+\cdots+i^{14}\right)=i-1$.
19. $\frac{2^{n}}{(1+i)^{2 n}}+\frac{(1+i)^{2 n}}{2^{n}}=\frac{2^{n}}{\left(1+i^{2}+2 i\right)^{n}}+\frac{\left(1+i^{2}+2 i\right)^{n}}{2^{n}}=\frac{1}{i^{n}}+i^{n}=\frac{i^{n}}{i^{2 n}}+i^{n}=i^{n}\left(\frac{1}{(-1)^{n}}+1\right)=i^{n}\left[(-1)^{n}+\right.$ $1]$.
20. Let $z=i^{n}+\frac{1}{i^{n}}=\frac{i^{2 n}+1}{i^{n}}$. Substituting $n=1,2,3,4, z=0, \pm 2$ i.e. there exists three different solutions.
21. $4 x+(3 x-y) i=3-6 i$. Comparing real and imaginary parts, $4 x=3,3 x-y=-6 \Rightarrow$ $x=\frac{3}{4} \Rightarrow \frac{9}{4}-y=-6 \Rightarrow y=\frac{33}{4}$.
22. $\left(\frac{1}{3}+i \frac{7}{3}\right)+\left(4+i \frac{1}{3}\right)-\left(-\frac{4}{3}+i\right)=\left(\frac{1}{3}+4+\frac{4}{3}\right)+i\left(\frac{7}{3}+\frac{1}{3}-1\right)=\frac{17}{3}+i \frac{5}{3}$.
23. $\frac{(1+i) x-2 i}{3+i}+\frac{(2-3 i) y+i}{3-i}=i \Rightarrow[(1+i) x-2 i](3-i)+[(2-3 i) y+i](3+i)=i(3+$ i) $(3-i) \Rightarrow(4 x+9 y-3)+i(2 x-7 y-3)=10 i$. Equating real and imaginary parts, $4 x+9 y=3,2 x-7 y=13 \Rightarrow x=3, y=-1$.
24. The multiplicative inverse is $\frac{1}{z}=\frac{1}{4-3 i}=\frac{1}{4-3 i} \cdot \frac{4+3 i}{4+3 i}=\frac{4+3 i}{25}$.
25. Let $x_{1}=2, y_{1}=3, x_{2}=1$ and $y_{2}=12 . \therefore \frac{z_{1}}{z_{2}}=\frac{\left[\left(x_{1} x_{2}+y_{1} y_{2}\right)+i\left(x_{2} y_{1}-x_{1} y_{2}\right)\right]}{x_{2}^{2}+y_{2}^{2}}=\frac{8-i}{5}$.
26. $z_{1}=z_{2} \Rightarrow 9 y^{2}-4-10 x i=8 y^{2}-20 i$. Equating real and imaginary parts, $9 y^{2}-4=$ $8 y^{2} \Rightarrow y= \pm 2$ and $-10 x=-20 \Rightarrow x=-2 \Rightarrow z=x+i y=-2 \pm 2 i$.
27. Let $z=x+i y$ then $|x+i y+1|=x+i y+2(1+i) \Rightarrow \sqrt{(x+1)^{2}+y^{2}}=(x+2)+i(y+2)$. Equating real and imaginary parts, $y+2=0 \Rightarrow y=-2$ and $(x+1)^{2}+y^{2}=(x+2)^{2} \Rightarrow$ $x^{2}+2 x+5=4=x^{2}+4 x+4 \Rightarrow x=\frac{1}{2} \Rightarrow z=\frac{1-4 i}{2}$.
28. Let $z=\frac{1+2 i}{1-3 i}=\frac{(1+2 i)(1+3 i)}{1-(3 i)^{2}}=\frac{1+3 i+2 i+6 i^{2}}{1+9}=\frac{-5+5 i}{10}=-\frac{1}{2}+\frac{1}{2} i$
$\Rightarrow|z|=\sqrt{\left(-\frac{1}{2}\right)^{2}+\frac{1}{2^{2}}}=\frac{1}{\sqrt{2}}$
$\tan \theta=\frac{\frac{1}{2}}{-\frac{1}{2}} \Rightarrow \theta=\tan ^{-1}-1=\frac{3 \pi}{4}$.
29. Given, $\frac{x-3}{3+i}+\frac{y-3}{3-i}=i(3-i)(3+i) \Rightarrow(x-3)(3-i)+(y-3)(3+i)=10 i \Rightarrow 3 x-9+$ $i(3-x)+(3 y-9)+i(y-3)=10 i$

Comparing real and imaginary parts, we get $3 x+3 y-18=0$ and $y-x=10 \Rightarrow x=$ $-2, y=8$.
30. $(1+i)^{2}=1+2 i-i=2 i \Rightarrow(1+i)^{50}=(2 i)^{25}=2^{25} i^{4.6+1}=2^{25} i$ Thus, real part will be 0 .
31. Let $z=x+i y$ then $x+i y+\sqrt{x^{2}+y^{2}}=2+8 i$, Comparing real and imaginary parts, we get $y=8$ and $x+\sqrt{x^{2}+y^{2}}=2 \Rightarrow \sqrt{x^{2}+y^{2}}=2-x$
$\Rightarrow x^{2}+64=4-4 x+x^{2} \Rightarrow x=-15 \Rightarrow z=-15+8 i$.
32. $S=i+2 i^{2}+3 i^{3}+\ldots+100 i^{100} \Rightarrow i S=i^{2}+2 i^{3}+\ldots+99 i^{100}+100 i^{101}$
$\Rightarrow S(1-i)=i+i^{2}+\ldots+i^{100}-100 i^{101}=\frac{i\left(1-i^{101}\right)}{1-i}-100 i^{101}$
$S=\frac{i\left(1-i^{101}\right)}{(1-i)^{2}}-\frac{100 i^{101}}{1-i}$.
33. Consider $t_{1}=\frac{1}{1+i}+\frac{1}{1-i}+\frac{1}{-1+i}+\frac{1}{-1-i}=\frac{1+i+1-i}{1^{2}-i^{2}}+\frac{-1+i-1-i}{(-1)^{2}-i^{2}}=\frac{2}{2}+\frac{-2}{2}=0$
$t_{2}=2\left(\frac{1}{1+i}+\frac{1}{1-i}+\frac{1}{-1+i}+\frac{1}{-1-i}\right)=0$
Similarly all other terms and sum will be zero.
34. Given, $z^{2}-z-5+5 i=0 \Rightarrow D=(-1)^{2}-4 \cdot 1 \cdot(-5+5 i)=21-20 i$ and we will need \sqrt{D}
$\sqrt{D}=\sqrt{b^{2}-4 a c}=\sqrt{21-20 i}= \pm\left[\sqrt{\frac{x^{2}+y^{2}+x}{2}}-i \sqrt{\frac{x^{2}+y^{2}-x}{2}}\right]= \pm(5-2 i)$
$z=\frac{1+5-2 i}{2}$ or $z=\frac{1-5+2 i}{2} \Rightarrow z=3-i, i-2$
Thus, product of real parts $=-2 \times 3=-6$
35. Given, $z^{3}=-\bar{z} \Rightarrow|z|^{3}=|z| \Rightarrow|z|(|z|-1)(|z|+1)=0 \Rightarrow|z|=0,|z|=1[\because|z|+1>0]$ If $|z|=0$, then $z=0$. If $|z|=1 \Rightarrow|z|^{2}=1 \Rightarrow z \bar{z}=1 \Rightarrow z^{3}+\frac{1}{z}=0 \Rightarrow z^{4}+1=0$, which has four distinct roots. Thus, given equation has five roots.
36. Since we have to find real roots, let $z=x$, a real value. The given equation becomes $x^{3}+i x-1=0 \Rightarrow x^{3}=1, x=0$ which is not possible. So there are no real solutions.
37. Let $z=x+i y$, then $\sqrt{x^{2}+y^{2}}>1$, because point A is outside circle.
$\frac{1}{z}=\frac{x-i y}{\sqrt{x^{2}+y^{2}}}$ so $\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{-y}{x^{2}+y^{2}}<1$
This leads to the fact that point E is reciprocal of point A.
38. $z=(3 p-7 q)+i(3 q+7 p)$, which is purely imaginary, $\Rightarrow 3 p-7 q=0$
$\Rightarrow \frac{p}{q}=\frac{7}{3} \Rightarrow \frac{p}{q}+i=\frac{7}{3}+i \Rightarrow \frac{p+i q}{q}=\frac{7+3 i}{3}$
$\Rightarrow p+i q=7+3 i \Rightarrow z=21+9 i+49 i-21=58 i \Rightarrow|z|^{2}=3364$.
39. Given, $\alpha=\left(\frac{a-i b}{a+i b}\right)^{2}+\left(\frac{a+i b}{a-i b}\right)^{2}=\frac{(a-i b)^{4}+(a+i b)^{4}}{(a-i b)^{2}\left(a+(i b)^{2}\right)}$
$=\frac{a^{4}-4 a^{3} . i b+6 a^{2} i^{2} b^{2}-4 a i^{3} b^{3}+b^{4}+a^{4}+4 a^{3} i b+6 a^{2} i^{2} b^{2}+4 a i^{3} b^{3}+b^{4}}{\left(a^{2}+b^{2}\right)^{2}}=\frac{2 a^{4}-12 a^{2} b^{2}+2 b^{4}}{\left(a^{2}+b^{2}\right)^{2}}$, which is purely real.
40. Let $z=x+i y$ then given $|z|=1 \Rightarrow x^{2}+y^{2}=1$

Let $\beta=\frac{z-1}{z+1}=\frac{(x-1)+i y}{(x+1)+i y}=\frac{(x-1)+i y}{(x+1)+i y} \cdot \frac{(x+1)-i y}{(x+1)-i y}$
$=\frac{x^{2}-1+y^{2}+i y(x+1-x+1)}{(x+1)^{2}+y^{2}}=\frac{2 i y}{(x+1)^{2}+y^{2}}$ which is purely imaginary.
41. Let $z=x+i y \Rightarrow x^{2}+(y-3)^{2}=9 \Rightarrow x=3 \cos \theta, y=3 \sin \theta+3$
$z=3[\cos \theta+i(\sin \theta+1)]=3\left[\sin \left(\frac{\pi}{2}-\theta\right)+i\left(1+\cos \left(\frac{\pi}{2}-\theta\right)\right)\right]$
$=3\left[2 \sin \left(\frac{\pi}{4}-\frac{\theta}{2}\right) \cos \left(\frac{\pi}{4}-\frac{\theta}{2}\right)+i 2 \cos ^{2}\left(\frac{\pi}{4}-\frac{\theta}{2}\right)\right]$

$$
\begin{aligned}
& =6 \cos \left(\frac{\pi}{4}-\frac{\theta}{2}\right)\left[\sin \left(\frac{\pi}{4}-\frac{\theta}{2}\right)+i \cos \left(\frac{\pi}{4}-\frac{\theta}{2}\right)\right]=6 \cos \left(\frac{\pi}{4}-\frac{\theta}{2}\right) e^{i\left(\frac{\pi}{4}+\frac{\theta}{2}\right)} \\
& \cot (\arg (z))=\cot \left(\frac{\pi}{4}+\frac{\theta}{2}\right)=\tan \left(\frac{\pi}{4}-\frac{\theta}{2}\right) \\
& \frac{6}{z}=\sec \left(\frac{\pi}{4}-\frac{\theta}{2}\right) e^{-i\left(\frac{\pi}{4}+\frac{\theta}{2}\right)}=\sec \left(\frac{\pi}{4}-\frac{\theta}{2}\right)\left[\sin \left(\frac{\pi}{4}-\frac{\theta}{2}-i \cos \left(\frac{\pi}{4}-\frac{\theta}{2}\right)\right)\right] \\
& =\tan \left(\frac{\pi}{4}-\frac{A}{2}\right)-i \Rightarrow \cot (\arg (z))-\frac{6}{z}=i
\end{aligned}
$$

42. Let $z=r(\cos \theta+i \sin \theta)=\frac{-16}{1+\sqrt{3}}=\frac{-16}{1+i \sqrt{3}} \cdot \frac{1-i \sqrt{3}}{1-i \sqrt{3}}=\frac{-16(1-i \sqrt{3})}{1+3}$
$=-4+i 4 \sqrt{3}$ then $r \cos \theta=4, r \sin \theta=4 \sqrt{3} \Rightarrow r^{2}=64 \Rightarrow r=4, \cos \theta=\frac{-1}{2}, \sin \theta=\frac{\sqrt{3}}{2} \Rightarrow$ $\theta=\frac{2 \pi}{3}$
$\Rightarrow z=8\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$.
43. Let $z=r(\cos \theta+i \sin \theta)$ then because $\arg (z)+\arg (w)=\pi \Rightarrow \arg (w)=\pi-\theta$
$\Rightarrow w=r(-\cos \theta+i \sin \theta)=-r(\cos \theta-i \sin \theta) \therefore r=-\bar{w}$.
44. $x-i y=\sqrt{\frac{a-i b}{c-i d}} \Rightarrow x^{2}-y^{2}-2 i x y=\frac{a-i b}{c-i d}=\frac{(a-i b)(c+i d)}{c^{2}+d^{2}} \Rightarrow x^{2}-y^{2}-2 i x y=\frac{(a c+b d)-i(b c-a d)}{c^{2}+d^{2}}$

Comparing real and imaginary parts, we get $x^{2}-y^{2}=\frac{a c+b d}{c^{2}+d^{2}}, 2 x y=\frac{b c-a d}{c^{2}+d^{2}}$
$\Rightarrow\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)^{2}+4 x^{2} y^{2}=\frac{(a c+b d)^{2}+(b c-a d)^{2}}{\left(c^{2}+d^{2}\right)}=\frac{a^{2} c^{2}+b^{2} d^{2}+b^{2} c^{2}+a^{2} d^{2}}{\left(c^{2}+d^{2}\right)^{2}}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$.
45. We know that for two complex numbers z_{1} and $z_{2},\left|z_{1}\right|+\left|z_{2}\right| \geq\left|z_{1}-z_{2}\right|$
$|z|+|z-2| \geq|z-(z-2)|=|2|=2$. Therefore, minimum value is 2 .
46. $\left|z_{1}+z_{2}+z_{3}\right|=\left|\left(z_{1}-1\right)+\left(z_{2}-2\right)+\left(z_{3}-3\right)+6 \leq\left|z_{1}-1\right|+\left|z_{2}-2\right|+\left|z_{3}-3\right|+6\right.$
$<1+2+3+6=12$. Thus, maximum value of $\left|z_{1}+z_{2}+z_{3}\right|$ is 12 .
47. $|\alpha+\beta|^{2}=(\alpha+\beta)(\overline{\alpha+\beta})=(\alpha+\beta)(\bar{\alpha}+\bar{\beta})=\alpha \bar{\alpha}+\alpha \bar{\beta}+\bar{\alpha} \beta+\beta \bar{\beta}=|\alpha|^{2}+|\beta|^{2}+\alpha \bar{\beta}+\bar{\alpha} \beta$

Similarly, $|\alpha-\beta|^{2}=|\alpha|^{2}+|\beta|^{2}-\alpha \bar{\beta}-\bar{\alpha} \beta$
Thus, $|\alpha|^{2}+|\beta|^{2}=\frac{1}{2}\left(|\alpha+\beta|^{2}+|\alpha-\beta|^{2}\right)$
48. If $|z|=0$ then $\sqrt{x^{2}+y^{2}}=0 \Rightarrow x^{2}+y^{2}=0$

Above is possible if and only if $x=0$ and $y=0 \Rightarrow z=0$.
49. $\frac{z_{1} z_{2}}{z_{1}}=\frac{(1-i)(2+7 i)}{1+i}=\frac{2+7-2 i+7 i}{1+i}=\frac{9+5 i}{1+i}=\frac{9+5 i}{1+i} \cdot \frac{1-i}{1-i}=\frac{9+5+5 i-9 i}{2}=7-2 i \therefore \operatorname{Im}\left(\frac{z_{1} z_{2}}{z_{1}}\right)=-2$.
50. $|z+12-6 i| \leq|z-i|+|12-5 i|<1+13=14$.
51. Given, $|z+6|=|2 z+3|$, let $z=x+i y \Rightarrow(x+6)^{2}+y^{2}=(2 x+3)^{2}+4 y^{2} \Rightarrow x^{2}+12 x+$ $36+y^{2}=4 x^{2}+12 x+9+4 y^{2}$
$\Rightarrow 3 x^{2}+2 y^{2}=27 \Rightarrow x^{2}+y^{2}=9 \Rightarrow|z|=3$.
52. Given $\sqrt{a-i b}=x-i y$, squaring we get $a-i b=x^{2}-y^{2}-2 i x y$. Comparing real and imaginary parts, we get $a=x^{2}-y^{2}, b=2 x y \Rightarrow a+i b=x^{2}-y^{2}+2 i x y=x^{2}+i^{2} y^{2}+$ $2 i x y \Rightarrow \sqrt{a+i b}=x+i y$.
53. $x_{1} x_{2} x_{3} \ldots \infty=\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)\left(\cos \frac{\pi}{2^{2}}+i \sin \frac{\pi}{2^{2}}\right) \ldots \infty=\cos \left(\frac{\pi}{2}+\frac{\pi}{2^{2}}+\ldots \infty\right)+i \sin \left(\frac{\pi}{2}+\right.$ $\left.\frac{\pi}{2^{2}}+\ldots \infty\right)$ $=\cos \frac{\pi}{2} \cdot \frac{1}{1-\frac{1}{2}}+i \sin \frac{\pi}{2} \cdot \frac{1}{1-\frac{1}{2}}=\cos \pi+i \sin \pi=-1$.
54. Given, $\frac{(\cos \theta+i \sin \theta)^{4}}{(\sin \theta+i \cos \theta)^{5}}=\frac{(\cos \theta+i \sin \theta)^{4}}{i^{5}\left(\frac{1}{i} \sin \theta+\cos \theta\right)^{5}}$ $=\frac{(\cos \theta+i \sin \theta)^{4}}{i(\cos \theta-i \sin \theta)^{5}}=\frac{(\cos \theta+i \sin \theta)^{4}}{i(\cos \theta+i \sin \theta)^{-5}}=\frac{1}{i}(\cos \theta+i \sin \theta)^{9}=\sin 9 \theta-i \cos 9 \theta$.
55. $z=\left[\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right]^{5}+\left[\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right]^{5}$ $=\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}+\cos \frac{5 \pi}{6}-i \sin \frac{5 \pi}{6}=2 \cos \frac{5 \pi}{6} \therefore \operatorname{Im}(z)=0$.
56. $z=\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{\frac{3}{4}}=(\cos \pi+i \sin \pi)^{\frac{1}{4}}$, thus general root is $\cos \frac{2 n \pi+\pi}{4}+i \sin \frac{2 n \pi+\pi}{4}$

Thus, substituting $n=0,1,2,3$ we find four roots and the product is
$\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)\left(\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right)\left(\cos \frac{7 \pi}{4}+i \sin \frac{7 \pi}{4}\right)$
$=\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)\left(\frac{-1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)\left(\frac{-1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right)$
$=\left(-\frac{1}{2}-\frac{1}{2}\right)\left(\frac{-1}{2}-\frac{1}{2}\right)=-1 .-1=1$.
57. Let $z_{1}=r_{1}(\cos x+i \sin x)$ and $z_{2}=r_{2}(\cos y+i \sin y)$ Then $\left(r_{1} \cos x+r_{2} \cos y\right)^{2}+$ $\left(r_{1} \sin x+r_{2} \sin y\right)^{2}=r_{1}^{2}+r_{2}^{2}+2 r_{2} r_{2}$
$\Rightarrow 2 r_{1} r_{2}(\cos x \cos y+\sin x \sin y)=2 r_{2} r_{2} \Rightarrow \cos (x-y)=1 \Rightarrow x-y=0 \Rightarrow \arg \left(z_{1}\right)-$ $\arg \left(z_{2}\right)=0$.
58. Let $z=1-\sin \alpha+i \cos \alpha=r(\cos \theta+i \sin \theta)$, then $r=\sqrt{(1-\sin \alpha)^{2}+\cos ^{2} \alpha}=$ $\sqrt{2-2 \sin \alpha}$
$\tan \theta=\frac{\cos \alpha}{1-\sin \alpha}=\frac{1-\tan ^{2} \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}-2 \tan \frac{\alpha}{2}}=\frac{1+\tan \frac{\alpha}{2}}{1-\tan \frac{\alpha}{2}}=\tan \left(\frac{\pi}{4}-\frac{\alpha}{2}\right) \Rightarrow \theta=\frac{\pi}{4}-\frac{\alpha}{2}$.
59. Let $z=\left[\frac{1+\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}}{1+\sin \frac{\pi}{8}-i \cos \frac{\pi}{8}}\right]=\left[\frac{1+\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}}{1+\sin \frac{\pi}{8}-i \cos \frac{\pi}{8}}\right] \cdot\left[\frac{1+\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}}{1+\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}}\right]$
$=\frac{\left(1+\sin \frac{\pi}{8}\right)^{2}-\cos ^{2} \frac{\pi}{8}+2 i\left(1+\sin \frac{\pi}{8}\right) \cos \frac{\pi}{8}}{\left(1+\sin \frac{\pi}{8}\right)^{2}+\cos ^{2} \frac{\pi}{8}}=\frac{2 \sin \frac{\pi}{8}+2 \sin ^{2} \frac{\pi}{8}+2 i\left(1+\sin \frac{\pi}{8}\right) \cos \frac{\pi}{8}}{2+2 \sin \frac{\pi}{8}}$ $=\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}=i\left(\cos \frac{\pi}{8}-i \sin \frac{\pi}{8}\right) \Rightarrow z^{8}=i^{8}(\cos \pi-i \sin \pi)=-1$.
60. $z_{1} z_{2} z_{3} z_{4} z_{5}=\cos \left(\frac{2 \pi}{5}+\frac{4 \pi}{5}+\frac{6 \pi}{5}+\frac{8 \pi}{5}+\frac{10 \pi}{5}\right)+i \sin \left(\frac{2 \pi}{5}+\frac{4 \pi}{5}+\frac{6 \pi}{5}+\frac{8 \pi}{5}+\frac{10 \pi}{5}\right)$ $=\cos \frac{30 \pi}{5}+i \sin \frac{30 \pi}{5}=\cos 6 \pi+i \sin 6 \pi=1$.
61. $z_{n}=\cos \left(\frac{1}{2 n+1}-\frac{1}{2 n+3}\right) \cdot \frac{\pi}{2}+i \sin \left(\frac{1}{2 n+1}-\frac{1}{2 n+3}\right) \cdot \frac{\pi}{2}$
$\therefore z_{1} z_{2} z_{3} \ldots \infty=\cos \left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9} \ldots \infty\right) \cdot \frac{\pi}{2}+i \sin \left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9} \ldots \infty\right) \cdot \frac{\pi}{2}$ $=\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}$.
62. Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2} \Rightarrow\left|a z_{1}-b z_{2}\right|^{2}+\left|b z_{1}+a z_{2}\right|^{2}=\left(a x_{1}-b x_{2}\right)^{2}+$ $\left(a y_{1}-b y_{2}\right)^{2}+\left(b x_{1}+a x_{2}\right)^{2}+\left(b y_{1}+a y_{2}\right)^{2}$
$=a^{2} x_{1}^{2}+b^{2} x_{2}^{2}-2 a b x_{1} x_{2}+a^{2} y_{1}^{2}+b^{2} y_{2}^{2}-2 a b y_{1} y_{2}+b^{2} x_{1}^{2}+a^{2} x_{2}^{2}+2 a b x_{1} x_{2}+b^{2} y_{1}^{2}+$ $a^{2} y_{2}^{2}+2 a b y_{1} y_{2}=\left(a^{2}+b^{2}\right)\left(x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}\right)=\left(a^{2}+b^{2}\right)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$.
63. Let $x=y+i z$, then given expression becomes $\frac{A^{2}}{y+i z-a}+\frac{B^{2}}{y+i z-b}+\ldots+\frac{H^{2}}{y+i z-h}=y+i z+l$ $\frac{A^{2}(y-a-i z)}{(y-a)^{2}+z^{2}}+\frac{B(y-b-i z)}{(y-b)^{2}+z^{2}}+\ldots+\frac{H^{2}(y-i z-h)}{(y-h)^{2}+z^{2}}=y+i z+l$. Comparing imaginary parts, we have $-i z\left[\frac{A^{2}}{(y-a)^{2}+z^{2}}+\frac{B^{2}}{(y-a)^{2}+z^{2}}+\ldots+\frac{H^{2}}{(y-a)^{2}+z^{2}}\right]=i z \Rightarrow i z\left[1+\frac{A^{2}}{(y-a)^{2}+z^{2}}+\frac{B^{2}}{(y-a)^{2}+z^{2}}+\right.$ $\left.\ldots+\frac{H^{2}}{(y-a)^{2}+z^{2}}\right]=0$
Clearly the term inside brackets is non-zero. So $z=0$.
64. Let $2^{-x}=p$, then $|1+4 i-p| \leq 5 \Rightarrow(1-p)^{2}+16 \leq 25$
$1-p \leq \pm 3 \Rightarrow p \geq 4,-2 \Rightarrow x \geq-2 \because p \nless 0 \Rightarrow p \in[-2, \infty]$.
65. A unimodular number has a modulus of $1 \cdot \cos \theta+i \sin \theta=\frac{c+i}{c-i}=\frac{c+i}{c-i} \cdot \frac{c+i}{c-i}=\frac{c^{2}-1+2 i c}{c^{2}+1}$ Comparing real and imaginary parts, $\cos \theta=\frac{c^{2}-1}{c^{2}+1} \Rightarrow c= \pm \cot \frac{\theta}{2}$ and $\sin \theta=\frac{2 c}{c^{2}+1} \Rightarrow c=\cot \frac{\theta}{2}, \tan \frac{\theta}{2}$. So the common value is $c=\cot \frac{\theta}{2}$.
66. $\left(z^{3}+3\right)^{2}=-16=16 i^{2} \Rightarrow z^{3}=-3 \pm 4 i \Rightarrow\left|z^{3}\right|=5 \Rightarrow|z|=5^{1 / 3}$.
67. $z=\frac{\sin \frac{x}{2}+\cos \frac{x}{2}-i \tan x}{1+2 i \sin \frac{x}{2}}=\frac{\sin \frac{x}{2}+\cos \frac{x}{2}-i \tan x}{1+2 i \sin \frac{x}{2}} \cdot \frac{1-2 i \sin \frac{x}{2}}{1-2 i \sin \frac{x}{2}}$

Since it is real so imaginary part of this will be $0 . \Rightarrow-\tan x-2 \sin \frac{x}{2} \cos \frac{c}{2}-2 \sin \frac{x}{2} \cos \frac{x}{2}=$ 0
$2 \sin \frac{x}{2}\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)+\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{\cos x}=0 \Rightarrow \sin \frac{x}{2}=0 \Rightarrow x=2 n \pi$ where $n=0,1,2,3 \ldots$
or $\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right) \cos x+\cos \frac{x}{2}=0 \Rightarrow \tan ^{3} \frac{x}{2}-\tan \frac{x}{2}-2=0$
If α is a solution of above then the set of possible values are $x=2 n \pi+2 \alpha$. Solving the cubic equation is left to you.
68. Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ then $\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=\left(x_{1}+x_{2}\right)^{2}+\left(y_{1}+y_{2}\right)^{2}+$ $\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}$ $=2\left(x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}\right)=2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$.
69. Given, $x^{2}-x+1=0 \Rightarrow x=-\omega,-\omega^{2}$

$$
\begin{aligned}
& \sum_{n=1}^{5}\left(x^{n}+\frac{1}{x^{n}}\right)^{2}=\sum_{n=1}^{5}\left(x^{2 n}+\frac{1}{x^{2 n}}+2\right) \\
& =\left(x^{2}+\frac{1}{x^{2}}+2\right)+\left(x^{4}+\frac{1}{x^{4}}+2\right)+\left(x^{6}+\frac{1}{x^{6}}+2\right)+\left(x^{8}+\frac{1}{x^{8}}+2\right)+\left(x^{10}+\frac{1}{x^{10}}+2\right) \\
& =\left(x^{2}+x^{4}+x^{6}+x^{8}+x^{10}\right)+\left(\frac{1}{x^{2}}+\frac{1}{x^{4}}+\frac{1}{x^{6}}+\frac{1}{x^{8}}+\frac{1}{x^{10}}\right)+10 \\
& =\left(\omega^{2}+\omega^{4}+\omega^{6}+\omega^{8}+\omega^{10}\right)+\left(\frac{1}{\omega^{2}}+\frac{1}{\omega^{4}}+\frac{1}{\omega^{6}}+\frac{1}{\omega^{8}}+\frac{1}{\omega^{10}}\right)+10 \\
& =-1-1+10=8
\end{aligned}
$$

70. $3^{49}(x+i y)=\left[i \sqrt{3}\left(\frac{1-i \sqrt{3}}{2}\right)\right]^{100}=i^{100} 3^{50}(-\omega)^{100} \Rightarrow 3^{49}(x+i y)=3^{50} . \omega$ $x+i y=-\frac{3}{2}+\frac{3 \sqrt{3}}{2} i \Rightarrow x=-\frac{3}{2}, y=\frac{3 \sqrt{3}}{2}$.
71. $\left|z_{1}+z_{2}\right|^{2}=x_{1}^{2}+x_{2}^{2}+y_{1}^{2}+y_{2}^{2}+2 x_{1} x_{2}+2 y_{1} y_{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2\left(x_{1} x_{2}+y_{1} y_{2}\right)$

Now, $2 \operatorname{Re}\left(z_{1} \overline{z_{2}}\right)=2 \operatorname{Re}\left[\left(x_{1}+i y_{1}\right)\left(x_{2}-i y_{2}\right)\right]=2 \mathfrak{R}\left[x_{1} x_{2}+y_{1} y_{2}-i\left(x_{1} y_{2}+x_{2} y_{1}\right)\right]=$ $2\left(x_{1} x_{2}+y_{1} y_{2}\right)$

Similalry, $2 \mathfrak{R}\left(\overline{z_{1}} z_{2}\right)=2\left(x_{1} x_{2}+y_{1} y_{2}\right)$.
72. R.H.S. $=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}\right|=\left|\frac{z_{2}+z_{1}}{z_{1} z_{2}}\right|$

Since $\left|z_{1}\right|=\left|z_{2}\right|=1 \therefore\left|z_{1} z_{2}\right|=1$ and thus $\left|z_{1}+z_{2}\right|=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}\right|$.
73. Let $z=x+i y$, then $x^{2}-4 x+4+y^{2}=4 x^{2}-8 x+4+4 y^{2} \Rightarrow 3 x^{2}+3 y^{2}=4 x$ $\Rightarrow 3|z|^{2}=4 \operatorname{Re}(z) \Rightarrow|z|^{2}=\frac{4}{3} \operatorname{Re}(z)$.
74. Given $\sqrt[3]{a+i b}=x+i y \Rightarrow a+i b=(x+i y)^{3}=x^{3}-3 x y^{2}+i\left(3 x^{2} y-y^{3}\right)$

Comparing real and imaginary parts, we have $a=x^{3}-3 x y^{2}, b=3 x^{2} y-y^{3} \Rightarrow \frac{a}{x}=$ $x^{2}-3 y^{2}, \frac{b}{y}=3 x^{2}-y^{2}$
$\therefore \frac{a}{x}+\frac{b}{y}=4\left(x^{2}-y^{2}\right)$.
75. $x+i y=\sqrt{\frac{a+i b}{c+i d}} \Rightarrow(x+i y)^{2}=\frac{a+i b}{c+i d} \Rightarrow\left|(x+i y)^{2}\right|=\left|\frac{a+i b}{c+i d}\right|=\frac{|a+i b|}{|c+i d|} \Rightarrow\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c+d^{2}}$.
76. Let $z=1=\cos 0^{\circ}+i \sin 0^{\circ}=e^{i 2 r \pi} \forall i \in N \Rightarrow \sqrt[n]{z}=e^{\frac{i .2 r \pi}{n}}$. Clearly, $\left|z_{k}\right|=\left|z_{k+1}\right|=1$.
77. $z^{n}=(z+1)^{n} \Rightarrow \frac{z}{z+1}=1^{1 / n}$

This means $\frac{z}{z+1}$ is nth root of unity. $\Rightarrow\left|\frac{z}{z+1}\right|=1$
$\Rightarrow|z|=|z+1| \Rightarrow x^{2}+y^{2}=x^{2}+2 x+1+y^{2} \Rightarrow x=-\frac{1}{2} \Rightarrow \operatorname{Re}(z)<0$.
78. Roots of $1+x+x^{2}=0$ are ω and ω^{2}. Let $f(x)=x^{3 m}+x^{3 n-1}+x^{3 r-2}$ $f(x)=x^{3 m}+\frac{x^{3 n}}{x}+\frac{x^{3 r}}{x^{2}} \Rightarrow f(\omega)=1+\frac{1}{\omega}+\frac{1}{\omega^{2}}=\frac{1+\omega+\omega^{2}}{\omega^{2}}=0$

Similarly $f\left(\omega^{2}\right)=0$. Thus, we see that $f(x)$ has same roots as $1+x+x^{2}=0$. Hence, $f(x)$ will be divisible by $1+x+x^{2}$.
79. $\sqrt{3}+i=2\left(\frac{\sqrt{3}}{2}+i \frac{1}{2}\right)=2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)=2 e^{i \frac{\pi}{6}}$

Similarly, $\sqrt{3}-i=2 e^{-i \frac{\pi}{6}}$
Since imaginary part is what prevents equality we need to get rid of it and the least value for which it will happen is when argument is π. Thus, we need to raise to the power by 6 making $n=6$.
80. $\sqrt{3}-i=2 .\left(\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)$

Thus, $(\sqrt{3}-i)^{n}=2^{n} \Rightarrow 2^{n}\left(\cos \frac{n \pi}{6}-i \sin \frac{\pi}{6}\right)=2^{n}$
$\Rightarrow \cos \frac{n \pi}{6}-i \sin \frac{n \pi}{6}=1 \Rightarrow \frac{n \pi}{6}=2 k \pi \forall k \in I \Rightarrow n=12 k$
Thus, n is a multiple of 12 .
81. Given, $z^{4}+z^{3}+2 z^{2}+z+1=0 \Rightarrow z^{2}\left(z^{2}+z+1\right)+z^{2}+z+1=0$
$\Rightarrow\left(z^{2}+1\right)\left(z^{2}+z+1\right)=0$. If $z^{2}+1=0 \Rightarrow z=i \Rightarrow|z|=1$
If $z^{2}+z+1=0 \Rightarrow z=\omega, \omega^{2} \Rightarrow|z|=1$.
82. $\because z=\sqrt[7]{-1} \Rightarrow z^{7}=-1 \Rightarrow z^{86}+z^{175}+z^{289}=\left(z^{7}\right)^{14} \cdot z^{2}+\left(z^{7}\right)^{25}+\left(z^{7}\right)^{41} z^{2}=z^{2}-1-z^{2}=$ -1
83. Given, $z^{3}+2 z^{2}+3 z+2=0 \Rightarrow z^{3}+z^{2}+2 z+z^{2}+z+2=0 \Rightarrow(z+1)\left(z^{2}+z+2\right)=0$

If $z+1=0 \Rightarrow z=-1$, which is real and is of no interest for us.
If $z^{2}+z+2=0 \Rightarrow z=\frac{-1+i \sqrt{7}}{2}$ which are complex roots of the given equation.
84. $z=\sqrt[5]{1} \Rightarrow z^{5}=1$
$2^{\left|1+z+z^{2}+z^{-2}-z^{-1}\right|}=2^{\left|1+z+z^{2}+z^{3}-z^{4}\right|}\left[\because z^{4}=1 \Rightarrow z^{-1}=\frac{z^{5}}{z}=z^{4}\right]$
$=2^{\left|1+z+z^{2}+z^{3}+z^{4}-2 z^{4}\right|}=2^{\left|\frac{1-z^{5}}{1-z}-2 z^{4}\right|}=2^{\left|2 z^{4}\right|}=2^{2}=4[\because|z|=1]$.
85. Let $S=1+3 z+5 z^{2}+\ldots+(2 n-1) z^{n-1}$
$\Rightarrow z S=z+3 z^{2}+5 z^{3}+\ldots+(2 n-3) z^{n-1}+(2 n-1) z^{n}$
$\Rightarrow(1-z) S=1+2 z+2 z^{2}+2 z^{3}+\ldots+2 z^{n-1}+(2 n-1) z^{n}$
$\Rightarrow(1-z) S=1+2 n-1+2\left[z+z^{2}+\ldots z^{n-1}\right]\left[\because z^{n}=1\right]$
$=2 n+2 .-1\left[\because 1+z+z^{2}+\ldots+z^{n-1}=0\right] \Rightarrow S=\frac{2(n-1)}{1-z}$.
86. Let $z=\sqrt{-1-\sqrt{-1-\sqrt{-1-\infty}}} \Rightarrow z=\sqrt{-1-z}$
$\Rightarrow z^{2}=-1-z \Rightarrow z^{2}+z+1=0 \Rightarrow z=\frac{-1 \pm i \sqrt{3}}{2} \Rightarrow z=\omega, \omega^{2}$.
87. Given, $z=e^{\frac{i 2 \pi}{n}}$, which is nth root of unity.
$\therefore x^{n}-1=(x-1)(x-z)\left(x-z^{2}\left(x-z^{3}\right) \ldots\left(x-z^{n-1}\right)\right.$
Putting $x=11,(11-z)\left(11-z^{2}\right) \ldots\left(11-z^{n-1}\right)=\frac{11^{n}-1}{10}$.
88. Given, $\frac{3}{2+\cos \theta+i \sin \theta}=a+i b \Rightarrow a+i b \frac{3(2+\cos \theta-i \sin \theta)}{5+4 \cos \theta}$

Comparing real and imaginary parts, we get $a=\frac{6+3 \cos \theta}{5+4 \cos \theta}, b=\frac{-3 \sin \theta}{5+4 \cos \theta} \Rightarrow a^{2}+b^{2}=$ $\frac{36+36 \cos \theta+9 \cos ^{2} \theta+9 \sin ^{2} \theta}{(5+4 \cos \theta)^{2}}$
$=\frac{45+36 \cos \theta}{(5+\cos \theta)^{2}}=\frac{9(5+4 \cos \theta)}{(5+4 \cos \theta)^{2}}=\frac{9}{5+4 \cos \theta}, 4 a-3=\frac{24+12 \cos \theta-15-12 \cos \theta}{5+4 \cos \theta}=\frac{9}{5+4 \cos \theta} \Rightarrow a^{2}+b^{2}=$ $4 a-3$.
89. Let $z=x+i y, \Rightarrow|(2 x-1)+2 i y|=|(x-2)+i y| \Rightarrow 4 x^{2}-4 x+1+4 y^{2}=x^{2}-4 x+$ $4+y^{2} \Rightarrow 3 x^{2}+3 y^{2}=3 \Rightarrow x^{2}+y^{2}=1 \Rightarrow|z|=1$.
90. Given, $\frac{1-i x}{1+i x}=m+i n \Rightarrow m+i n=\frac{1-i x}{1+i x} \cdot \frac{1-i x}{1-i x}$
$m+i n=\frac{1-x^{2}-2 i x}{1+x^{2}}$, Comparing real and imaginary parts, $m=\frac{1-x^{2}}{1+x^{2}}, n=\frac{-2 x}{1+x^{2}}$ $\Rightarrow m^{2}+n^{2}=\frac{\left(1-x^{2}\right)^{2}+4 x^{2}}{\left(1+x^{2}\right)^{2}}=1$.
91. We know that the equation of a straight line is given by $\left[\begin{array}{ccc}z & \bar{z} & 1 \\ z_{1} & \overline{z_{1}} & 1 \\ z_{2} & \overline{z_{2}} & 1\end{array}\right]=0$
$\Rightarrow z\left(\overline{z_{1}}-\overline{z_{2}}\right)-\bar{z}\left(z_{1}-z_{2}\right)+z_{1} \overline{z_{2}}-\overline{z_{1}} z_{2}=0$
$\Rightarrow z(1+i-1-i)-\bar{z}(1+i-1+i)+(1+i)^{2}-(1-i)^{2}=0 \Rightarrow z+\bar{z}-2=0$.
92. Given, $5 z_{1}-13 z_{2}+8 z_{3}=0 \Rightarrow z_{2}=\frac{5 z_{1}+8 z_{3}}{5+8}$

This means z_{1} divides the line segment joining z_{1} and z_{2} in the ratio of $5: 8$ which also implies that these three points are collinear. Thus, $\left[\begin{array}{ccc}z_{1} & \overline{z_{1}} & 1 \\ z_{2} & \overline{z_{2}} & 1 \\ z_{3} & \overline{z_{3}} & 1\end{array}\right]=0$
93. We know that length of perpendicular from z_{1} to $\bar{a} z+a \bar{z}+b=0$ is given by $\frac{\left|\bar{a} z_{1}+a \overline{z_{1}}+b\right|}{2|a|}$.

Thus desired length $=\frac{|(2-3 i)(3+4 i)+(2+3 i)(3-4 i)+9|}{2|3-4 i|}=\frac{45}{10}=\frac{9}{2}$.

$\int_{z_{1}}^{z_{2}} b \bar{z}+\bar{b} z=c$
$\frac{z_{1}+z_{2}}{2}$

Since mid-point lies on the given line, therefore $b\left(\frac{\overline{z_{1}}+\overline{z_{2}}}{2}\right)+$ $\bar{b}\left(\frac{z_{1}+z_{2}}{2}\right)=c$

Since line segment joining z_{1} and z_{2} is perpedicular to the given line therefore, Slope of $z_{1} z_{2}+$ Slope of line $=0$
$\Rightarrow \frac{z_{2}-z_{1}}{\overline{z_{2}}-\overline{z_{1}}}-\frac{b}{\bar{b}}=0$
Solving these two equations, we get $\bar{b} z_{2}+b \overline{z_{1}}=c$.
95. Let $z=2-i$ then after rotation new point would be $z \cdot e^{i \pi / 2}=(2-i)\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)=$ $(2-i) i=1+2 i$.
96. Coordinate of z_{0} after moving 5 points horizontally and 3 points vertically away from starting pont would be $6+5 i$.

It then moves in the direction of vecor $\hat{\imath}+\hat{\jmath}$ for $\sqrt{2}$ units. This vector makes angle $\pi / 4$ with x-axis. So new coordinate would be $6+\sqrt{2} \cos \pi / 4+5+\sqrt{2} \sin \pi / 4=7+6 i$.

It then rotates by angle $\pi / 2$ so new coordinate would be $(7+6 i) e^{i \pi / 2}=(7+6 i) i=$ $-6+7 i$.
97. North-East direction makes angle of $\pi / 4$ with x-axis. So coordinates of point 3 units from origin in North-East direction $=3 . e^{i \pi / 4}=3\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=\frac{3}{\sqrt{2}}+i \frac{3}{\sqrt{2}}$.

North-West direction makes angle of $3 \pi / 4$ with x-axis. A disaplacement of 4 units in this direction will mean a shift in coordinates by $4 . e^{i 3 \pi / 4}=4\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)=$ $-\frac{4}{\sqrt{2}}+i \sin \frac{4}{\sqrt{2}}$.

Thus, final coordiate would be sum of the above two i.e. $-\frac{1}{\sqrt{2}}+i \frac{7}{\sqrt{2}}$.
98. Given, $\frac{z_{1}-z_{3}}{z_{2}-z_{3}}=\frac{1-i \sqrt{3}}{2}=\frac{1-i \sqrt{3}}{2} \cdot \frac{1+i \sqrt{3}}{2}$
$=\frac{1+3}{2(1+i \sqrt{3})}=\frac{2}{1+i \sqrt{3}}$
$\Rightarrow \frac{z_{2}-z_{3}}{z_{1}-z_{3}}=\frac{1+i \sqrt{3}}{2}=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$
$\Rightarrow\left|\frac{z_{2}-z_{3}}{z_{1}-z_{3}}\right|=1$ and $\arg \left(\frac{z_{2}-z_{3}}{z_{1}-z_{3}}\right)=\frac{\pi}{3}$
Hence, the triangle is equilateral.
99. Since sides of an equilateral triangle make an angle of 60° with each other, therefore $\frac{z_{3}-z_{1}}{z_{2}-z_{1}}=\cos 60^{\circ} \pm \sin 60^{\circ}=\frac{1 \pm i \sqrt{3}}{2}$
$\Rightarrow 2 z_{3}-2 z_{1}+z 1-z_{2}= \pm i\left(z_{2}-z_{1}\right) \sqrt{3} \Rightarrow\left(2 z_{3}-z_{1}-z_{2}\right)^{2}=3\left(z_{2}-z_{1}\right)^{2} \Rightarrow z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=$ $z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}$
$\Rightarrow z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}-z_{z}^{2}-z_{2}^{2}-z_{3}^{2}+z_{1} z_{2}-z_{1} z_{2}+z_{2} z_{3}-z_{2} z_{3}+z_{1} z_{3}-z_{1} z_{3}=0$
$\Rightarrow\left(z_{1}-z_{2}\right)\left(z_{2}-z_{3}\right)+\left(z_{2}-z_{3}\right)\left(z_{3}-z_{1}\right)+\left(z_{3}-z_{1}\right)\left(z_{1}-z_{2}\right)=0 \Rightarrow \frac{1}{z_{1}-z_{2}}+\frac{1}{z_{2}-z_{3}}+\frac{1}{z_{3}-z_{1}}=$ 0.
100. Since it is an equilateral triangle, therefore centroid and circumcenters would be identical. $\therefore z_{0}=\frac{z_{1}+z_{2}+z_{3}}{3}$

Since it is an equilateral triangle, we have just proven that $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+$ $z_{3} z_{1}$

From first equation, we have $\Rightarrow 9 z_{0}^{2}=z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+2\left(z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right)$
$\Rightarrow 9 z_{0}^{2}=z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+2\left(z_{1}^{2}+z_{2}^{2}+z_{3}^{2}\right) \Rightarrow 3 z_{0}^{2}=z_{1}^{2}+z_{2}^{2}+z_{3}^{2}$.
101. Since right angle is at z_{3}, therefore $\frac{z_{2}-z_{3}}{z_{1}-z_{3}}=e^{i \pi / 2}=i \Rightarrow\left(z_{2}-z_{3}\right)^{2}=-\left(z_{1}-z_{3}\right)^{2} \Rightarrow$ $z_{2}^{2}+z_{3}^{2}-2 z_{2} z_{3}=-z_{1}^{2}-z_{3}^{2}+2 z_{1} z_{3}$
$\Rightarrow z_{1}^{2}+z_{2}^{2}-2 z_{1} z_{2}=-2 z_{3}^{2}+2 z_{2} z_{3}+2 z_{1} z_{3}-2 z_{1} z_{2} \Rightarrow\left(z_{1}-z_{2}\right)^{2}=2\left(z_{1}-z_{3}\right)\left(z_{3}-z_{2}\right)$.
102. Clearly, $\left|z-z_{0}\right|^{2}=r^{2} \Rightarrow\left(z-z_{0}\right)\left(\overline{z-z_{0}}\right)=r^{2} \Rightarrow\left(z-z_{0}\right)\left(\bar{z}-\overline{z_{0}}\right)=r^{2}$
$\Rightarrow z \bar{z}-\bar{z} z_{0}-z \overline{z_{0}}+z_{0} \overline{z_{0}}=r^{2}$.
103. Given, $z=1-t+i \sqrt{t^{2}+t+2}$; comparing real and imaginary parts, we get $x=1-t, y=$ $\sqrt{t^{2}+t+1} \Rightarrow y^{2}=t^{2}+t+2$
$\Rightarrow y^{2}=(1-x)^{2}+(1-x)+2=\left(x-\frac{3}{2}\right)^{2}+\frac{7}{4}$, which is equation of a hyperparabola.
104. Given, $\bar{z}=\bar{a}+\frac{r^{2}}{z-a} \Rightarrow(\bar{z}-\bar{a})(z-a)=r^{2}$, which is equation of a circle with center at a and radius r.
105. Since z_{1} and z_{2} are ends of diameter $\Rightarrow\left|z-z_{1}\right|^{2}+\left|z-z_{2}\right|^{2}=\left|z_{1}-z_{2}\right|^{2} \Rightarrow k=\left|z_{1}-z_{2}\right|^{2}=$ $|2+3 i-4-3 i|^{2}=4$.
106. $z=x+i y$, then $|(x+1)+i y|=\sqrt{2}|(x-1)+i y|$

Squaring both sides, we get $(x+1)^{2}+y^{2}=2\left[(x-1)^{2}+y^{2}\right] \Rightarrow x^{2}+y^{2}-6 x+1=0$, which is equation of a circle.
107. Given, $\left|\frac{z-1}{z-i}\right|=1 \Rightarrow|z-1|=|z-i|$

Let $z=x+i y$, then we have $|(x-1)+i y|=|x+i(y-1)|$
Squaring both sides, we get $\Rightarrow(x-1)^{2}+y^{2}=x^{2}+(y-1)^{2} \Rightarrow 2 x=2 y \Rightarrow x=y$, which is equation of a straight line.
108.

109. Given, $\frac{2}{z_{1}}=\frac{1}{z_{2}}+\frac{1}{z_{3}} \Rightarrow \frac{z_{2}-z_{1}}{z_{3}-z_{1}}=-\frac{z_{2}}{z_{3}} \Rightarrow \arg \left(\frac{z_{2}-z_{1}}{z_{3}-z_{1}}\right)=\pi-\arg \frac{z_{3}}{z_{2}}$
$\Rightarrow \arg \left(\frac{z_{2}-z_{1}}{z_{3}-z_{1}}\right)+\arg \left(\frac{z_{3}-0}{z_{2}-0}\right)=\pi$ Thus, the given points and the origin are concyclic.
110. From the equation of circle, $r^{2}=\left|\omega-\omega^{2}\right|^{2} \Rightarrow r^{2}=|i \sqrt{3}|^{2}=3 \Rightarrow r=\sqrt{3}$.
111. Let $z=x+i y \Rightarrow(x-4)^{2}+y^{2}<(x-2)^{2}+y^{2} \Rightarrow x^{2}-8 x+16<x^{2}-4 x+4 \Rightarrow 4 x>$ $12 \Rightarrow x>3$.
112. Given, $2 z_{1}-3 z_{2}+z_{3}=0 \Rightarrow z_{2}=\frac{2 z_{1}+z_{3}}{3}=\frac{2 z_{1}+z_{3}}{2+1}$

Thus, z_{1} divides the line segement $z_{1} z_{3}$ in the ratio of $2: 1$ i.e. all three points are collinear.
113. Given, $|z+1|=|z-1| \Rightarrow(x+1)^{2}+y^{2}=(x-1)^{2}+y^{2} \Rightarrow x=0$

Also, given that $\arg \frac{z-1}{z+1}=\frac{\pi}{4} \Rightarrow z-1=(z+1) e^{i \pi / 4} \Rightarrow-1+i y=(1+i y)\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$ $\Rightarrow-1+i y=(1+i y)\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right) \Rightarrow y=\sqrt{2}+1$.
114. Given, $|z|^{8}=|z-1|^{8} \Rightarrow|z|=|z-1|, \Rightarrow x^{2}+y^{2}=(x-1)^{2}+y^{2} \Rightarrow x=\frac{1}{2}, y \in(\infty, \infty)$, which is equation of straight line parallel to y-axis at $x=1 / 2$.
115. Given, $z \bar{z}+a \bar{z}+\bar{a} z+b=0 \Rightarrow z \bar{z}+a \bar{z}+\bar{a} z+a \bar{a}=a \bar{a}-b$
$(z+a)(\bar{z}+\bar{a})=|a|^{2}-b$, which is equation of a circle if $|a|^{2}-b>0 \Rightarrow|a|^{2}>b$.
116. Let $z=x+i y$, comparing real and imaginary part gives us $x=\lambda+3, y=\sqrt{3-\lambda^{2}} \Rightarrow$ $y^{2}=3-\lambda^{2}$
$\Rightarrow(x-3)^{2}+y^{2}=3$, which is equation of a circle with center $(3,0)$ and radius $\sqrt{3}$.
117. Let $z=x+i y$, then $|\operatorname{Re}(z)|+|\operatorname{Im}(z)|=k$ will give us four equations. $x+y=k, x-y=$ $k,-x+y=k$ and $-x-y=k$

These lines will intersect at $(k, 0),(0, k),(-k, 0),(0-k)$ giving us a square as locus of z.
118. $z_{2}=z_{1}^{2}+i=i, z_{3}=z_{2}^{2}+i=i-1, z_{4}=z_{3}^{2}+i=(i-1)^{2}+i=-i, z_{5}=z_{4}^{2}+i=i-1, z_{6}=$ $z_{5}^{2}+i=-i$

Thus, we see that it is a cycle between $-i$ and $i-1$ starting at $z_{3} . \Rightarrow z_{111}=z_{3}=i-1 \Rightarrow$ $\left|z_{111}\right|=\sqrt{2}$
119. Given, $z \bar{z}^{3}+z^{3} \bar{z}=350 \Rightarrow z \bar{z}\left(\bar{z}^{2}+z^{2}\right)=350$

Let $z=x+i y$, then given equation becomes $2\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)=350 \Rightarrow\left(x^{2}+y^{2}\right)\left(x^{2}-\right.$ $\left.y^{2}\right)=175$

Prime factors of 175 are $5,5,7$ so the only solution which yields integers for x and y are $x^{2}+y^{2}=25, x^{2}-y^{2}=7$
$\Rightarrow x= \pm 4, y= \pm 3$ which gives a rectangle with four points and digonal with a length of 10 units.
120. We know that $z_{1}+z_{2}$ and $z_{1}-z_{2}$ are the diagonals of a quadrilateral. Now diagonals of a parallelogram does not intersect at angle $\pi / 2$ and diagonals of a square and rectangle are equal. Only rhombus satisfies the given criteria of diagonals meeting at right angle and having different lengths. Thus, the given conditions represent a rhombus but not a square.
121. Let $\arg \left(z_{1}\right)=\theta, \arg \left(z_{2}\right)=\theta+\alpha \Rightarrow \frac{a z_{1}}{b z_{2}}=\frac{a\left|z_{1}\right| e^{i \theta}}{b\left|z_{2}\right| e^{i(\theta+\alpha)}}=e^{-i \alpha}$ $\Rightarrow \frac{b z_{2}}{a z_{1}}=e^{i \alpha} \Rightarrow \frac{a z_{1}}{b z_{2}}+\frac{b z_{2}}{a z_{1}}=e^{i \alpha}+e^{-i \alpha}=2 \cos \alpha$

Thus, it will lie on the line segment $[-2,2]$ of the real axis.
122. Since z_{1}, z_{2}, z_{3} are roots of the equation $z^{3}+3 \alpha z^{2}+3 \beta z+\gamma=0 \Rightarrow z_{1}+z_{2}+z_{3}=$ $-3 \alpha, z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}=3 \beta, z_{1} z_{2} z_{3}=\gamma$

We know that for a triangle to be equilateral $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}$
$\Rightarrow\left(z_{1}+z_{2}+z_{3}\right)^{2}=3\left(z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right) \Rightarrow 9 \alpha^{2}=3.3 \beta \Rightarrow \alpha^{2}=\beta$.
123. Given, $z_{1}^{2}+z_{2}^{2}+2 z_{1} z_{2} \cos \theta=0$ Dividing both sides with z_{2}^{2}, we get $\left(\frac{z_{1}}{z_{2}}\right)^{2}+1+2 \frac{z_{1}}{z_{2}} \cos \theta=$ 0

The above equation is a quadratic equation in $\frac{z_{1}}{z_{2}}, \therefore \frac{z_{1}}{z_{2}}=\frac{-2 \cos \theta \pm \sqrt{4 \cos ^{2} \theta-1}}{2}$
$\Rightarrow \frac{z_{1}}{z_{2}}=-\cos \theta \pm i \sin \theta \Rightarrow\left|\frac{z_{1}}{z_{2}}\right|=1 \Rightarrow\left|z_{1}\right|=\left|z_{2}\right| \Rightarrow\left|z_{1}-0\right|=\left|z_{2}-0\right|$
Thus, z_{1}, z_{1} and the origin form an isosceles triangle.
124. Since origin is circumcenter $\Rightarrow\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=|z| \Rightarrow z_{1} \overline{z_{1}}=z_{2} \overline{z_{2}}=z_{3} \overline{z_{3}}=z \bar{z}$
$\because A P \perp B C \therefore \frac{z-z_{1}}{\bar{z}-\bar{z}_{1}}+\frac{z_{2}-z_{3}}{\overline{z_{2}}-\bar{z}_{3}}=0 \Rightarrow \frac{z-z_{1}}{\frac{z \overline{z_{1}}}{z}-\overline{z_{1}}}+\frac{z_{2}-z_{3}}{\frac{z_{3} z_{3}}{z}-\overline{z_{3}}}=0$
$\Rightarrow \frac{z\left(z-z_{1}\right)}{z_{1} \overline{z_{1}}-z \overline{z_{1}}}+\frac{z_{2}\left(z_{2}-z_{3}\right)}{z_{3} \overline{z_{3}}-z_{2} \overline{z_{3}}}=0 \Rightarrow \frac{-z\left(z_{1}-z\right)}{\overline{z_{1}}\left(z_{1}-z\right)}-\frac{z_{2}\left(z_{3}-z_{2}\right)}{\overline{z_{3}}\left(z_{3}-z_{2}\right)}=0 \Rightarrow \frac{-z}{z_{1}}-\frac{z_{2}}{z_{3}}=0 \Rightarrow z=-\frac{z_{1} z_{2}}{z_{3}}$.
125. Given $O A=O B, \Rightarrow\left|z_{1}\right|=\left|z_{2}\right|=l$ (let). Also given, $\arg \left(z_{1}\right)=\alpha+\arg \left(z_{2}\right) \Rightarrow z_{1}=$ $l e^{i\left(\alpha+\arg \left(z_{2}\right)\right)}=l e^{i \arg \left(z_{2}\right)} \cdot e^{i \alpha}=z_{2} e^{i \alpha}$

Now, $z_{1} z_{2}=q \Rightarrow z_{2}^{2} e^{i \alpha}=q$ and $z_{1}+z_{2}=-p \Rightarrow z_{2}\left(1+e^{i \alpha}\right)=-p \Rightarrow 2 z_{2} \cos \frac{\alpha}{2} . e^{i \alpha / 2}=$ $-p \Rightarrow p^{2}=4 z_{2}^{2} \cos ^{2} \frac{\alpha}{2} \cdot e^{i \alpha} \Rightarrow p^{2}=4 q \cos ^{2} \frac{\alpha}{2}$.
126. Let $z+i y$, then $\mathfrak{R}\left(\frac{z+4}{2 x-i}\right)=\mathfrak{R}\left(\frac{x+4+i y}{2 x+i(2 y-1)}\right) \Rightarrow \mathfrak{R}\left(\frac{[(x+4)+i y][(2 x-i(2 y-1))]}{4 x^{2}+(2 y-1)^{2}}\right)=\frac{1}{2}$
$\Rightarrow \frac{2 x(x+4)+y(2 y-1)}{4 x^{2}+(2 y-1)^{2}}=\frac{1}{2} \Rightarrow 16 x+2 y-1=0$, which is equation of a straight line.
127. Since the circle is inscribed in $|z|=2$ so center is origin. Also, since z_{1}, z_{2} and z_{3} are in clockwise direction $z_{2}=z_{1} e^{-i 120^{\circ}}, z_{3}=z_{2} e^{-i 120^{\circ}}$
$\Rightarrow z_{2}=(1+\sqrt{3} i)\left[\left(\cos -120^{\circ}+i \cdot \sin -120^{\circ}\right)\right]=1-\sqrt{3} i \Rightarrow z_{3}=-2$.
128. Given $z_{1}=\frac{a}{1-i} \Rightarrow z_{1}=\frac{a+i a}{2}, z_{2}=\frac{b}{2+i}=\frac{2 b-i b}{5}$ Also given, $z_{1}-z_{2}=1 \Rightarrow 5 a+i 5 a-4 b+$ $i 2 b=10$

Comparing real and imaginary parts, we get $5 a-4 b=10,5 a+2 b=0 \Rightarrow a=\frac{2}{3}, b=-\frac{5}{3}$ Cnetroid is $\frac{z_{1}+z_{2}+z_{3}}{3}=\frac{1}{3}(1+7 i)$.
129. From the quadratic equation we have $z_{1}+z_{2}=-1$ and $z_{1} z_{2}=\frac{\lambda}{2}$. Since $0, z_{1}$, z_{2} form an equilateral triangle, $\Rightarrow z_{1} z_{2}+z_{2} \cdot 0+z_{1} \cdot 0=z_{1}^{2}+z_{2}^{2}+0^{2}$ $\Rightarrow\left(z_{1}+z_{2}\right)^{2}=3 z_{1} z_{2} \Rightarrow(-1)^{2}=3 \cdot \frac{\lambda}{2} \Rightarrow \lambda=\frac{2}{3}$.
130. Let A, B, C represent a, b, c and U, V, W represent $u, v, w . \Rightarrow A B=b-c, B C=c-b=$ $(a-b)(1-r), C A=a-c=r(a-b)$
$\Rightarrow U V=v-u, V W=w-v=(u-v)(1-r), W U=u-w=r(u-v) \Rightarrow \frac{A B}{U V}=\frac{B C}{V W}=\frac{C A}{W U}$ Thus, the triangles are similar.
131. Let z_{1} and z_{2} be points on real axis which circle cuts with. Since these are on real axis and if z represents this points then $z=\bar{z}[\because z=x+i .0]$

Substituting $z=\bar{z}$ in the equation of the circle, we get $z^{2}+(\bar{\alpha}+\alpha) z+r=0$ Since z_{1}, z_{2} are the roots $\therefore z_{1}+z_{2}=-\alpha, z_{1} z_{2}=r$
Length of intercept $=\left|z_{1}-z_{2}\right|=\sqrt{\left(z_{1}-z_{2}\right)^{2}}=\sqrt{\left(z_{1}+z_{2}\right)^{2}-4 z_{1} z_{2}}=\sqrt{(\bar{\alpha}+\alpha)^{2}-4 r}$.
132. Clearly, $a=e^{i \alpha}, b=e^{i \beta}, c=e^{i \gamma}$. Also given, $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=1 \Rightarrow e^{i(\alpha-\beta)}+e^{i(\beta-\gamma)}+e^{i(\gamma-\alpha)}=1$. Comparing real parts, we get $\cos (\alpha-\beta)+\cos (\beta-\gamma)+\cos (\gamma-\alpha)=1$.
133. Let $A\left(z_{1}\right), B\left(z_{2}\right)$ be the centers of given circles and P be the center of the variable circle which touches given circles externally, then
$|A P|=a+r$ and $|B P|=b+r$ where r is the radius of the variable circle. Clearly, $|A P|-|B P|=a-b \Rightarrow| | A P|-|B P||=|a-b|=$ a constant.

Hence, locus of P is a right bisector if $a=b$, a hyperbola if $|a-b|<|A B|$ an empty set of $|a-b|>|A B|$, set of all points on line $A B$ except those which lie between A and B if $|a-b|=|A B| \neq 0$.
134. Let $a+i b=r e^{i \theta}, r^{2}=a^{2}+b^{2} \Rightarrow a-i b=e^{-i \theta}, \tan \theta=\frac{b}{a} \frac{a-i b}{a+i b}=e^{-2 i \theta} \Rightarrow i \log \left(\frac{a-i b}{a+i b}\right)=$ $i \log e^{-2 i \theta}=2 \theta$
$\Rightarrow \tan \left[i \log \left(\frac{a-i b}{a+i b}\right)\right]=\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{2 b / a}{1-b^{2} / a^{2}}=\frac{2 a b}{a^{2}-b^{2}}$.
135. Given, $\left|z_{1}\right|=\left|z_{2}\right|=1 \Rightarrow a^{2}+b^{2}=c^{2}+d^{2}=1 \mathfrak{R}\left(z_{1} \overline{z_{2}}\right)=0 \Rightarrow \mathfrak{R}[(a+i b)(c-i d)]=$ $0 \Rightarrow a c+b d=0$
$a^{2}+b^{2}=c^{2}+d^{2} \Rightarrow(a+i c)^{2}=(d-i b)^{2}[\because a c==b d] \Rightarrow a+i c=d-i b o r-d+i b$ $\Rightarrow a=d$ and $c=-b$ or $a=-d, c=b$
$\Rightarrow a^{2}+c^{2}=b^{2}+d^{2}=1 \Rightarrow\left|w_{1}\right|=\left|w_{2}\right|=1 \Rightarrow \mathfrak{R}\left(w_{1} \overline{w 2}\right)=\mathfrak{R}[(a+i c)(b-i d)]=$ $a b+c d=0$.
136. Let $z_{1}=r(\cos \theta+i \sin \theta)$. Given, $\left|\frac{z_{1}}{z_{2}}\right|=1 \Rightarrow\left|z_{1}\right|=\left|z_{2}\right|=r$. Also given, $\arg \left(z_{1} z_{2}\right)=$ $0 \Rightarrow \arg \left(z_{1}\right)+\arg \left(z_{2}\right)=0$
$\Rightarrow \arg \left(z_{2}\right)=-\theta \Rightarrow z_{2}=r[\cos (-\theta)+i \sin (-\theta)]=r[\cos \theta-i \sin \theta]=\overline{z_{1}} \Rightarrow \overline{z_{2}}=z_{1} \Rightarrow$ $\left|z_{2}\right|^{2}=z_{1} z_{2}$.
137. $t_{n}=(n+1)\left(n+\frac{1}{\omega}\right)\left(n+\frac{1}{\omega^{2}}\right)=n^{3}+n^{2}\left(1+\frac{1}{\omega}+\frac{1}{\omega^{2}}\right)+n\left(1+\frac{1}{\omega}+\frac{1}{\omega^{2}}\right)+1$ $=n^{3}+n^{2}\left(1+\omega+\omega^{2}\right)+n\left(1+\omega+\omega^{2}\right)+1=n^{3}+1 \therefore S_{n}=\sum_{i=1}^{n} t_{i}=\sum_{i=1}\left(i^{3}+1\right)=$ $\frac{n^{2}(n+1)^{2}}{4}+1$.
138. Given $\left|z_{1}+i z_{2}\right|=\left|z_{1}-i z_{2}\right| \Rightarrow\left(z_{1}+i z_{2}\right)\left(\overline{z_{1}}-i \overline{z_{2}}\right)=\left(z_{1}-i z_{2}\right)\left(\overline{z_{1}+i \overline{z_{2}}}\right)$ $\Rightarrow \overline{z_{1}} z_{2}=z_{1} \overline{z_{2}} \Rightarrow \frac{z_{1}}{z_{2}}=\frac{\overline{z_{1}}}{\overline{z_{2}}}$. Thus, $\frac{z_{1}}{z_{2}}$ is purely real.
139. $z=-2+2 \sqrt{3} i=4 \omega \Rightarrow z^{2 n}+2^{2 n} z^{n}+2^{4 n}=4^{2 n}\left[\omega^{2 n}+\omega^{n}+1\right]$

The above expression has value of 0 if n is not a multiple of 3 and $3.4^{2 n}$ if n is multiple of 3 .
140. $x+\frac{1}{x}=2 \cos \theta \Rightarrow x^{2}-2 \cos \theta x+1=0 \Rightarrow x=\frac{2 \cos \theta \pm \sqrt{4 \cos ^{2} \theta-1}}{2}=\cos \theta \pm i \sin \theta=e^{ \pm i \theta}$

Similarly, $y=e^{ \pm i \phi} \Rightarrow \frac{x}{y}+\frac{y}{z}=2 \cos (\theta-\phi)$ and $x y+\frac{1}{x y}=2 \cos (\theta+\phi)$.
141. Given, $\left|z_{1}\right|=\left|z_{2}\right|, \mathfrak{R}\left(z_{1}\right)>0$ and $\Im\left(z_{1}\right)<0 \mathfrak{R}\left(\frac{z_{1}+z_{2}}{z_{1}-z_{2}}\right)=\frac{1}{2}\left(\frac{z_{1}+z_{2}}{z_{1}-z_{2}}+\frac{\overline{z_{1}}+\overline{z_{2}}}{\overline{z_{1}}-\overline{z_{2}}}\right)$ $=\frac{1}{2}\left(\frac{2\left(\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right)}{\left|z_{1}-z_{2}\right|^{2}}\right)=0$ Thus, $\frac{z_{1}+z_{2}}{z_{1}-z_{2}}$ is purely imaginary.
142. Given, $\frac{A B}{B C}=\sqrt{2} \Rightarrow \frac{z_{1}-z_{2}}{z_{3}-z_{2}}=\frac{\left|z_{1}-z_{2}\right|}{\mid z_{3}-z_{2}} \cdot e^{i \pi / 4}$
$=\frac{A B}{B C} \cdot e^{i \pi / 4}=\sqrt{2}\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)=1+i \Rightarrow z_{1}-z_{2}=(1+i)\left(z_{3}-z_{2}\right) \Rightarrow z_{2}=z_{3}+i\left(z_{1}-z_{3}\right)$.
143. Given, $z_{1}\left(z_{1}^{2}-3 z_{2}^{2}\right)=2$ and $z_{2}\left(3 z_{1}^{2}-z_{2}^{2}\right)=11 \Rightarrow z_{1}^{3}-3 z_{1} z_{2}^{2}+i z_{2}\left(3 z_{1}^{2}-z_{2}^{2}\right)=2+11 i \Rightarrow$ $\left(z_{1}+i z_{2}\right)^{3}=2+11 i$, and $\Rightarrow z_{1}^{3}-3 z_{1} z_{2}^{2}-i z_{2}\left(3 z_{1}^{2}-z_{2}^{2}\right)=2-11 i \Rightarrow\left(z_{1}-i z_{2}\right)^{3}=2-11 i$
Multiplying above equations, we get $\left(z_{1}^{2}+z_{2}^{2}\right)^{3}=4+121=125 \Rightarrow z_{1}^{2}+z_{2}^{2}=5$.
144. Given $\sqrt{1-c^{2}}=n c-1 \Rightarrow 1-c^{2}=n^{2} c^{2}-2 n c+1 \Rightarrow \frac{c}{2 n}=\frac{1}{1+n^{2}}$

$$
\begin{aligned}
& \frac{c}{2 n}(1+n z)\left(1+\frac{n}{z}\right)=\frac{1}{1+n^{2}}\left[1+n^{2}+n\left(z+\frac{1}{z}\right)\right] \\
& =\frac{1}{1+n^{2}}\left[1+n^{2}+2 \cos \theta+n\right]=1+\frac{2 n}{1+n^{2}} \cos \theta=1+c \cos \theta .
\end{aligned}
$$

145. If $P(z)$ is any point of the ellipse, then equation of ellipse is given by $\left|z-z_{1}\right|+\left|z-z_{2}\right|=$ $\frac{\left|z_{1}-z_{2}\right|}{e}$

If we put z_{1} or z_{2} in the above equation then L.H.S. becomes $\left|z_{1}-z_{2}\right|$. Thus, for any interior point of the ellipse, we have $\left|z-z_{1}\right|+\left|z-z_{2}\right|<\frac{\left|z_{1}-z_{2}\right|}{e}$

If $P(z)$ lies on the ellipse, we have $\left|z-z_{1}\right|+\left|z-z_{2}\right|=\frac{\left|z_{1}-z_{2}\right|}{e}$. It is given that origin is an internal point, so $\left|0-z_{1}\right|+\left|0-z_{2}\right|<\frac{\left|z_{1}-z_{2}\right|}{e} \Rightarrow e \in\left(0, \frac{\left|z_{1}-z_{2}\right|}{\left|z_{1}\right|+\left|z_{2}\right|}\right)$.
146. Let $z=x+i y$, then we have $|(x-2)+i(y-1)|=|z|\left|\frac{1}{\sqrt{2}} \cos \theta-\frac{1}{\sqrt{2}} \sin \theta\right|$ where, $\theta=\arg (z)$ $\Rightarrow \sqrt{(x-2)^{2}+(y-1)^{2}}=\frac{1}{\sqrt{2}}|x-y|$, which is equation of a parabola.
147. Since $\left|z-z_{1}\right|=\left|z-z_{2}\right|$, therefore z will be one of the vertices of the isosceles triangle where base will be formed by z_{1} and z_{2}.

Also, since $\left|z-\frac{z_{1}+z_{2}}{2}\right| \leq r$ so z will lie on the circle whose center is $\frac{z_{1}+z_{2}}{2}$ and radius is r. Thus, the distance between segment $z_{1} z_{2}$ will be r. Thus, the maximum area of the triangle will be $\frac{1}{2}\left|z_{1}-z 2\right| . r$.
148. Given $\left|z_{1}\right|=1 \Rightarrow a_{1}^{2}+b_{1}^{2}=1,\left|z_{2}\right|=2 \Rightarrow a_{2}^{2}+b_{2}^{2}=4$. Also given $\mathfrak{R}\left(z_{1} z_{2}\right)=0 \Rightarrow$ $a_{1} a_{2}-b_{1} b_{2}=0 \Rightarrow a_{1} a_{2}=b_{1} b_{2}$
$\Rightarrow a_{2}^{2}+b_{2}^{2}=4 a_{1}^{2}+4 b_{1}^{2} \Rightarrow a_{2}^{2}-4 a_{1}^{2}=4 b_{1}^{2}-b_{2}^{2} \Rightarrow a_{2}^{2}-4 a_{1}^{2}+4 i a_{1} a_{2}=4 b_{1}^{2}-b_{2}^{2}+4 i b_{1} b_{2}$ $\Rightarrow\left(a_{2}+2 i a_{1}\right)^{2}=\left(2 b_{1}+i b_{2}\right)^{2} \Rightarrow a_{2}= \pm 2 b_{1}$
$\omega_{1}=a_{1}+\frac{i a_{2}}{2}=a_{1} \pm b_{1} \Rightarrow\left|\omega_{1}\right|=\sqrt{a_{1}^{2}+b_{1}^{2}}=1 \omega_{2}=2 b_{1}+i b_{2}= \pm a_{2}+i b_{2} \Rightarrow\left|\omega_{2}\right|=$ $\sqrt{a_{2}^{2}+b_{2}^{2}}=2 \mathfrak{R}\left(\omega_{1} \omega_{2}\right)=2 a_{1} b_{1}-2 a_{2} b_{2}=0$.
149. Given $z^{2}+a z+a^{2}=0 \Rightarrow z=a \omega, a \omega^{2}$ where ω is cube-root of unity.

Thus, it represents a pair of straight lines and $|z|=|a| \cdot \arg (z)=\arg (a)+\arg (\omega)$ or $\arg (a)+\arg \left(\omega^{2}\right)= \pm \frac{2 \pi}{3}$.
150. Given $x+\frac{1}{x}=1 \Rightarrow x^{2}-x+1=0 \therefore x=-\omega,-\omega^{2}$. Now, for $x=-\omega, p=\omega^{4000}+\frac{1}{\omega^{4000}}=$ $\omega+\frac{1}{\omega}=-1$

Similarly, for $x=-\omega^{2}, p=-1 \Rightarrow 2^{2^{n}}=2^{4 k}=16^{k}=$ a number with last digit as $6 \Rightarrow q=6+1=7 \Rightarrow p+q=-1+7=6$.
151. $A\left(z_{1}\right)=\frac{2 i}{\sqrt{3}}, B\left(z_{2}\right)=\frac{2}{\sqrt{3}}\left(\frac{\sqrt{3}}{2}-i \frac{1}{2}\right)=1-\frac{i}{\sqrt{3}}, C\left(z_{3}\right)=\frac{2}{\sqrt{3}}\left(-\frac{\sqrt{3}}{2}-\frac{i}{2}\right)=-1-\frac{i}{\sqrt{3}}$

Clearly, the points lie on the circle $z=2 / \sqrt{3}$ and $\triangle A B C$ is equilateral and its centroid coincides with circumcentre. Hence,
$z_{1}+z_{2}+z_{3}=0$ and $\overline{z_{1}}+\overline{z_{2}}+\overline{z_{3}}=0$. Clearly, radius of incircle $=\frac{1}{\sqrt{3}}$ hence any point on circle is $\frac{1}{\sqrt{3}}(\cos \alpha+i \sin \alpha) . A P^{2}=\left|z-z_{1}\right|^{2}=|z|^{2}+\left|z_{1}\right|^{2}-\left(z \overline{z_{1}}+\bar{z} z_{1}\right)$
$\Rightarrow A P^{2}+B P^{2}+C P^{2}=3|z|^{2}+\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}-z\left(\overline{z_{1}}+\overline{z_{2}}+\overline{z_{3}}\right)-\bar{z}\left(z_{1}+z_{2}+z_{3}\right)$ $=3 \times \frac{1}{3}+\frac{4}{3}+\frac{4}{3}+\frac{4}{3}-0-0=5$.
152. Let O be the center of the polygon and $z_{0}, z_{1}, \ldots, z_{n-1}$ represent the vertices $A_{1}, A_{2}, \ldots, A_{n} . \therefore z_{0}=1, z_{1}=\alpha, z_{2}=\alpha^{2}, \ldots, z_{n-1}=\alpha^{n-1}$ where $\alpha=e^{i 2 \pi / n}$
$\left|A_{1} A_{2}\right|^{2}=\left|\alpha^{r}-1\right|^{2}=\left|1-\alpha^{r}\right|^{2}=\left|1-\cos \frac{2 r \pi}{n}+i \sin \frac{2 r \pi}{n}\right|^{2}=\left(1-\cos \frac{2 r \pi}{n}\right)^{2}+\sin ^{2} \frac{2 r \pi}{n}=$ $2-2 \cos \frac{2 r \pi}{n}$
$\sum_{r=1}^{n}\left|A_{1} A_{2}\right|^{2}=2(n-1)-2\left[\cos \frac{2 \pi}{n}+\cos \frac{4 \pi}{3}+\ldots+\cos \frac{2(n-1) \pi}{n}\right]=2(n-1)-2$. real part of $\left(\alpha+\alpha^{2}+\ldots+\alpha^{n-1}\right)=2 n\left[\because 1+\alpha+\alpha^{2}+\ldots+\alpha^{n-1}=0\right]$
$\left|A_{1} A_{2}\right|\left|A_{1} A_{3}\right| \ldots\left|A_{1} A_{n}\right|=|1-\alpha|\left|1-\alpha^{2}\right| \ldots\left|1-\alpha^{n-1}\right|=\left|(1-\alpha)\left(1-\alpha^{2}\right) \ldots\left(1-\alpha^{n-1}\right)\right|$
Since $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}$ are roots of $z^{n}-1=0 .(z-1)(z-\alpha)\left(z-\alpha^{2}\right) \ldots\left(z-\alpha^{n-1}\right)=$ $z^{n}-1 \Rightarrow(z-\alpha)\left(z-\alpha^{2}\right) \ldots\left(z-\alpha^{n-1}\right)=\frac{z^{n}-1}{z-1}=1+z+z^{2}+\ldots+z^{n-1}$

Putting $z=1$, we get $\left|(1-\alpha)\left(1-\alpha^{2}\right) \ldots\left(1-\alpha^{n-1}\right)\right|=n \Rightarrow \frac{a}{b}=2$.
153. Let L.H.S. $=z_{1}$ and R.H.S. $=z_{2}$ then $\overline{z_{1}}=\overline{z_{2}} \Rightarrow z_{1} \overline{z_{1}}=z_{2} \overline{z_{2}} \Rightarrow z_{1}^{2}=z_{2}^{2}$ $\Rightarrow\left(1+\frac{x^{2}}{a^{2}}\right)\left(1+\frac{x^{2}}{b^{2}}\right)\left(1+\frac{x^{2}}{c^{2}}\right) \ldots=A^{2}+B^{2}$.
154. Given, $x+i y+\alpha \sqrt{(x-1)^{2}+y^{2}}+2 i=0$. Equating real and imaginary parts, we get $y+2=0 \Rightarrow y=-2$ and $x+\alpha \sqrt{(x-1)^{2}+y^{2}}=0$. Substituting the value of y, we get $\alpha \sqrt{x^{2}-2 x+5}=-x \Rightarrow\left(\alpha^{2}-1\right) x^{2}-2 \alpha^{2} x+5 \alpha^{2}=0$
Because x is real, the discriminant has to be greater than zero. $\Rightarrow 4 \alpha^{4}-20 \alpha^{2}\left(\alpha^{2}-1\right) \geq 0$ $\Rightarrow \alpha^{2}-5 \alpha^{2}+5 \geq 0 \Rightarrow-\frac{\sqrt{5}}{2} \leq \alpha \leq \frac{\sqrt{5}}{2}$.
155. Let $z=x+i y \Rightarrow 2 \sqrt{x^{2}+y^{2}}-4 a(x+i y)+1+i a=0$. Equating real and imaginary parts, we get
$2 \sqrt{x^{2}+y^{2}}-4 a x+1=0$ and $-4 a y+a=0 \Rightarrow y=\frac{1}{4} \Rightarrow 2 \sqrt{x^{2}+\frac{1}{16}}-4 a x+1=0 \Rightarrow$ $4\left(x^{2}+\frac{1}{16}\right)=16 a^{2} x^{2}-8 a x+1$
$x^{2}\left(4-16 a^{2}\right)+8 a x-\frac{3}{4}=0 \Rightarrow x=\frac{-a}{1-4 a^{2}} \pm \frac{1}{4} \frac{\sqrt{4 a^{2}+3}}{1-4 a^{2}}$.
156. $(x+i y)^{5}=\left(x^{5}-10 x^{3} y^{2}+5 x y^{4}\right)+i\left(5 x^{4} y-10 x^{2} y^{3}+y^{5}\right)$. Taking modulus and squaring, we get $\left(x^{2}+y^{2}\right)^{5}=\left(x^{5}-10 x^{3} y^{2}+5 x y^{4}\right)+\left(5 x^{4} y-10 x^{2} y^{3}+y^{5}\right)^{2}$.
157. $(x+i a)(x+i b)(x+i c)=\left[\left(x^{2}-a b\right)+i(a+b) x\right](x+i c)=\left(x^{3}-a b x-a c x-b c x\right)+$ $i\left(c x^{2}-a b c+a x^{2}+b x^{2}\right)$
Taking modulus and squaring, we get $\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)\left(x^{2}+c^{2}\right)=\left[x^{3}-(a b+b c+\right.$ $c a) x]+\left[(a+b+c) x^{2}-a b c\right]^{2}$.
158. Given, $(1+x)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$. Substituting $x=i$, we get

$$
(1+i)^{n}=a_{o}+i a_{1}-a_{2}-i a_{3}+a_{4}+\ldots=\left(a_{0}-a_{2}+a_{4}-\ldots\right)+i\left(a_{1}-a_{3}+a_{5}-\ldots\right)
$$

Taking modulus and squaring, we get $2^{n}=\left(a_{0}-a_{2}+a_{4}-\ldots\right)^{2}+\left(a_{1}-a_{3}+a_{5}-\ldots\right)^{2}$.
159. Let $f(z)=m(z-i)+i$ and $f(z)=n(z+i)+1+i$ where m and n are quotients upon division. Substituting $z=i$ in the first equation and $z=-i$ in the second we obtain $f(i)=i$ and $f(-i)=1+i$.

Let $g(z)$ be the quotient and $a z+b$ be the remainder upong division of $f(z)$ by $z^{2}+1$. Hence we have $f(z)=g(z)\left(z^{2}+1\right)+a z+b$. Substituting $z=i$ and $z=-i$, we get $f(i)=i=a i+b$ and $f(-i)=1+i=-a i+b$. Adding, we get $2 b=1+2 i \Rightarrow b=\frac{1+2 i}{2} \Rightarrow$ $a i=i-\frac{1+2 i}{2}$.
160. Let $z=r_{1} e^{i \theta_{1}}, w=r_{2} e^{i \theta_{2}} . \because|z| \leq 1$ and $|w| \leq 1 \Rightarrow r_{1} \leq 1$ and $r_{2} \leq 1$
$|z-w|^{2}=\left(r_{1} \cos \theta_{1}-r_{2} \cos \theta_{2}\right)^{2}+\left(r_{1} \sin \theta_{1}-r_{2} \sin \theta_{2}\right)^{2}=r_{1}^{2}+r_{2}^{2}-2 r_{2} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)=$ $\left(r_{1}-r_{2}\right)^{2}+2 r_{2} r_{2}-2 r_{2} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)$
$=\left(r_{1}-r_{2}\right)^{2}+4 r_{1} r_{2} \sin \left(\frac{\theta_{1}-\theta_{2}}{2}\right)^{2} \leq\left(r_{1}-r_{2}\right)^{2}+\left(\theta_{1}-\theta_{2}\right)^{2}\left[\because r_{1}, r_{2} \leq 1\right.$ and $\left.\sin \theta \leq \theta\right]$ $=(|z|-|w|)^{2}+[\arg (z)-\arg (w)]^{2}$.
161. Let $z=r e^{i \theta}$, then $\frac{z}{|z|}=e^{i \theta}=\cos \theta+i \sin \theta \Rightarrow\left|\frac{z}{|z|}-1\right|=|(\cos \theta-1)+i \sin \theta|=$ $\sqrt{\cos \theta^{2}-2 \cos \theta+1+\sin ^{2} \theta}$
$=\sqrt{2-2 \cos \theta}=\sqrt{4 \sin ^{2} \frac{\theta}{2}}=2 \sin \frac{\theta}{2} \leq \theta \Rightarrow\left|\frac{z}{|z|}-1\right| \leq|\arg (z)|$.
162. Clearly, $|z-1|=|z-|z|+|z|-1| \leq|z-|z||+||z|-1|=|z|\left|\frac{z}{|z|}-1\right|+||z|-1|$

Using the result of previous problem, we get $|z-1| \leq||z|-1|+|z||\arg z|$.
163. Let $z=r(\cos \theta+i \sin \theta)$, then $\frac{1}{z}=\frac{1}{r}(\cos \theta-i \sin \theta),\left|z+\frac{1}{z}\right|=\left|\left(r+\frac{1}{r}\right) \cos \theta+i\left(r-\frac{1}{r}\right) \sin \theta\right|$
$\Rightarrow\left(r+\frac{1}{r}\right)^{2} \cos ^{2} \theta+i\left(r-\frac{1}{r}\right)^{2} \sin ^{2} \theta=a^{2} \Rightarrow\left(r-\frac{1}{r}\right)^{2}=a^{2}-4 \cos ^{2} \theta$ r will be greatest when $r-\frac{1}{r}$ will be greatets i.e. $\cos \theta=0 \Rightarrow r-\frac{1}{r}=a \Rightarrow r_{\max }=\frac{a+\sqrt{a^{2}+4}}{2}$ Similarly, for lowest value of $r, \cos \theta=1 \Rightarrow r-\frac{1}{r}=a^{2}-4 \Rightarrow r^{2}-\left(a^{2}-4\right) r-1=0$ $r_{\text {min }}=\frac{a^{2}-4-\sqrt{a^{4}-8 a^{2}+20}}{2}$.
164. We have to prove that $\left|z_{1}+z_{2}\right|^{2}<(1+c)\left|z_{1}\right|^{2}+\left(1+\frac{1}{c}\right)\left|z_{2}\right|^{2} \Rightarrow\left(z_{1}+z_{2}\right)\left(\overline{z_{1}}+\overline{z_{2}}\right)<$ $(1+c)\left|z_{1}\right|^{2}+\left(1+\frac{1}{c}\right)\left|z_{2}\right|^{2}$
$\Rightarrow\left|z_{1}\right|^{2}+z_{1} \overline{z_{2}}+z_{2} \overline{z_{1}}+\left|z_{1}\right|^{2}<(1+c)\left|z_{1}\right|^{2}+\left(1+\frac{1}{c}\right)\left|z_{2}\right|^{2} \Rightarrow z_{1} \overline{z_{2}}+z_{2} \overline{z_{1}}<(1+c)\left|z_{1}\right|^{2}+$ $\left(1+\frac{1}{c}\right)\left|z_{2}\right|^{2}$
$\Rightarrow\left(x_{1}+i y_{1}\right)\left(x_{2}-i y_{2}\right)+\left(x_{2}+i y_{2}\right)\left(x_{1}-i y_{1}\right)<\frac{1}{c}\left[c^{2}\left(x_{1}^{2}+y_{1}^{2}\right)+\left(x_{2}^{2}+y_{2}^{2}\right)\right] \Rightarrow 2 c x_{1} x_{2}+$ $2 c y_{1} y_{2}<c^{2} x_{1}^{2}+c^{2} y_{1}^{2}+x_{2}^{2}+y_{2}^{2}$ $\Rightarrow\left(c x_{1}-x_{2}\right)^{2}+\left(c y_{1}-y_{2}\right)^{2}>0$ which is true.
165. Given $\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|=1 \Rightarrow\left|z_{1}-z_{2}\right|^{2}=\left|z_{1}+z_{2}\right|^{2} \Rightarrow\left(z_{1}-z_{2}\right)\left(\overline{z_{1}}-\overline{z_{2}}\right)=\left(z_{1}+z_{2}\right)\left(\overline{z_{1}}+\overline{z_{2}}\right)$ $\Rightarrow 2 z_{1} \overline{z_{2}}=-2 z_{2} \overline{z_{1}} \Rightarrow \overline{\left(\frac{z_{1}}{z_{2}}\right)}=-\frac{z_{1}}{z_{2}} \Rightarrow \frac{z_{1}}{z_{2}}=$ purely imaginary $\Rightarrow i \frac{z_{1}}{z_{2}}=$ real $=x$

Now $\frac{z_{1}+z_{2}}{z_{1}-z_{2}}=\frac{z_{1} / z_{2}+1}{z_{1} / z_{2}-1}=\frac{-i x+1}{-i x-1}=\frac{-1+x^{2}+2 i x}{1+x^{2}}$. If θ is the angle between given lines then $\tan \theta=\arg \frac{z_{1}+z_{2}}{z_{1}-z_{2}}=\frac{2 x}{x^{2}-1}$.
166. Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right), z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$. Also let $a=r \cos \alpha, b=r \sin \alpha$. $\left|a z_{1}+b z_{2}\right|^{2}=\left|r r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) \cos \alpha+r r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \sin \alpha\right|^{2}$
$=r^{2}\left(r 1 \cos \theta_{1} \cos \alpha+r_{2} \cos \theta_{2} \sin \alpha\right)^{2}+r^{2}\left(r_{1} \sin \theta_{1} \cos \alpha+r_{2} \sin \theta_{2} \sin \alpha\right)^{2}=$ $r^{2}\left[r_{1}^{2} \cos ^{2} \alpha+r_{2}^{2} \sin ^{2} \alpha+2 r_{1} r_{2} \cos \alpha \sin \alpha \cos \left(\theta_{1}-\theta_{2}\right)\right]$
$=\frac{r^{2}}{2}\left[r_{1}^{2}(1+\cos 2 \alpha)+r_{2}^{2}(1-\cos 2 \alpha)+2 r_{1} r_{2} \sin 2 \alpha \cos \left(\theta_{1}-\theta_{2}\right)\right] \frac{2\left|a z_{1}+b z_{2}\right|^{2}}{a^{2}-b^{2}}=r_{1}^{2}+r_{2}^{2}+$ $\left(r_{1}^{2}-r_{2}^{2}\right) \cos 2 \alpha+2 r_{2} r_{2} \cos \left(\theta_{1}-\theta_{2}\right) \sin 2 \alpha$
$=A+B \cos 2 \alpha+C \sin 2 \alpha$ where $A=r_{1}^{2}+r_{2}^{2}, B=r_{1}^{2}-r_{2}^{2}, C=2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)$ Clearly, $-\sqrt{B^{2}+C^{2}} \leq B \cos 2 \alpha+C \sin 2 \alpha \leq \sqrt{B^{2}+C^{2}}$
$\therefore A-\sqrt{B^{2}+C^{2}} \leq A+B \cos 2 \alpha+C \sin 2 \alpha \leq A+\sqrt{B^{2}+C^{2}} \therefore A-\sqrt{B^{2}+C^{2}} \leq$ $\frac{2\left|a z_{1}+b z_{2}\right|^{2}}{a^{2}+b^{2}} \leq A+\sqrt{B^{2}+C^{2}}$

Now $B^{2}+C^{2}=r_{1}^{4}+r_{2}^{4}-2 r_{1}^{2} r_{2}^{2}+4 r_{1}^{2} r_{2}^{2} \cos ^{2}\left(\theta_{1}-\theta_{2}\right)$. Again $\left|z_{1}^{2}+z_{2}^{2}\right|=\mid r_{1}^{2}\left(\cos 2 \theta_{1}+\right.$ $\left.i \sin 2 \theta_{1}\right)+r_{2}^{2}\left(\cos 2 \theta_{2}+i \sin 2 \theta_{2}\right) \mid=\sqrt{\left(r_{1}^{2} \cos 2 \theta_{1}+r_{2}^{2} \cos 2 \theta_{2}\right)^{2}+\left(r_{1}^{2} \sin 2 \theta_{1}+r_{2}^{2} \sin 2 \theta_{2}\right)^{2}}$ $=\sqrt{r_{1}^{4}+r_{2}^{4}+2 r_{1}^{2} r_{2}^{2} \cos 2\left(\theta_{1}-\theta_{2}\right)}=\sqrt{r_{1}^{4}+r_{2}^{4}+2 r_{1}^{2} r_{2}^{2}\left[2 \cos ^{2}\left(\theta_{1}-\theta_{2}\right)-1\right]}=\sqrt{B^{2}+C^{2}}$ $A=r_{1}^{2}+r_{2}^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$ Hence, $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-\left|z_{1}^{2}+z_{2}^{2}\right| \leq 2 \frac{\left|a z_{1}+b z_{2}\right|^{2}}{a^{2}+b^{2}} \leq\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+$ $\left|z_{1}^{2}+z_{2}^{2}\right|$.
167. Given $z=\frac{b+i c}{1+a}: \therefore i z=\frac{-c+i b}{1+a} \Rightarrow \frac{1}{i z}=\frac{1+a}{-c+i b}$. Using componendo and dividendo, we get $\Rightarrow \frac{1+i z}{1-i z}=\frac{1+a-c+i b}{1+a+c-i b}$. Also, given $a^{2}+b^{2}+c^{2}=1 \Rightarrow a^{2}+b^{2}=1-c^{2}$
$\Rightarrow(a+i b)(a-i b)=(1+c)(1-c) \Rightarrow \frac{a+i b}{1-c}=\frac{1+c}{a-i b}=\frac{1}{u}$ (say) $\therefore \frac{1+i z}{1-i z}=\frac{a+i b+1-c}{1+c+a-i b}=$ $\frac{a+i b+u(a+i b)}{1+c+u(1+c)}=\frac{a+i b}{1+c}$.
168. We can write that $(x-a)(x-b) \ldots(x-k)=x^{n}+p_{1} x^{n-1}+p_{2} x^{n-2}+\ldots+p_{n-1} x+p_{n}$ Substituting $x=i$, we get $(i-a)(i-b) \ldots(i-k)=i^{n}+p_{1} i^{n-1}+p_{2} i^{n-2}+\ldots+p_{n-1} i+$ p_{n}. Dividing both sides by i^{n}, we get $(1+i a)(1+i b) \ldots(1+i k)=1+\frac{p_{1}}{i}+\frac{p_{2}}{i^{2}}+\ldots$

Taking modulus and squaring, we get $\left(1+a^{2}\right)\left(1+b^{2}\right) \ldots\left(1+k^{2}\right)=\left(1-p_{2}+p_{4}+\ldots\right)^{2}+$ $\left(p_{1}-p_{3}+\ldots\right)^{2}$.
169. $3+2 i$ is one value of x for which $f(3+2 i)=a+i b \Rightarrow x=3+2 i \Rightarrow x^{2}-6 x+13=0$ $f(x)=x^{4}-8 x^{3}+4 x^{2}+4 x+39=\left(x^{2}-6 x+13\right)\left(x^{2}-2 x-21\right)-96 x+312 \Rightarrow$ $f(3+2 i)=-96(3+2 i)+312=24-192 i=a+i b \Rightarrow a: b=1:-8$.
170. Given $\frac{A}{B}+\frac{B}{A}=1 \Rightarrow A^{2}-A B+B^{2}=0$. $A=\frac{B \pm \sqrt{3} i B}{2}=-\omega B,-\omega^{2} B \Rightarrow|A|=|B|$
$|A-B|=|-\omega B-B|$ or $\left|-\omega^{2} B-B\right|=\left|\omega^{2} B\right|$ or $|\omega B| \Rightarrow|A-B|=|B|$. Thus, $|A|=|B|=|A-B|$ making the triangle equilateral.
171. Given $z^{n}=(z+1)^{n} \Rightarrow|z|^{n}=|z+1|^{n} \Rightarrow|z|=|z+1| \Rightarrow x^{2}=\left(x^{2}+2 x+1\right) \Rightarrow 2 x+1=0$, which is the equation of a straight line on which roots of the given equation will lie.
172. Let $z_{1}, z_{2}, z_{3}, z_{4}$ be represented by the points A, B, C, D respectively. $\therefore A D=\left|z_{1}-z_{4}\right|$ and $B C=\left|z_{2}-z_{3}\right|$

Let $a=\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right), b=\left(z_{2}-z_{4}\right)\left(z_{3}-z_{1}\right)$ and $c=\left(z_{3}-z_{4}\right)\left(z_{1}-z_{2}\right) b+c=$ $\left(z_{2}-z_{4}\right)\left(z_{3}-z_{1}\right)+\left(z_{3}-z_{4}\right)\left(z_{1}-z_{2}\right)=-\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)=-a$
$|a|=|b+c| \leq|b|+|c| \Rightarrow\left|-\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)\right|=\left|\left(z_{2}-z_{4}\right)\left(z_{3}-z_{1}\right)\right|+\left|\left(z_{3}-z_{4}\right)\left(z_{1}-z_{2}\right)\right|$ $\Rightarrow A D \cdot B C \leq B D \cdot C A+C D \cdot A B$.
173. Euqation of a line joining points a and $i b$ is $\left[\begin{array}{ccc}z & \bar{z} & 1 \\ a & \bar{a} & 1 \\ i b & i \bar{b} & 1\end{array}\right]=0$ or $(\bar{a}+i \bar{b}) z-(a-i b) \bar{z}-$ $i(a \bar{b}+\bar{a} b)=0$
$\Rightarrow(a+i b) z-(a-i b) \bar{z}-2 a b i=0[\because a, b \in R \therefore a=\bar{a}, b=\bar{b}] \Rightarrow(a+i b) z-(a-i b) \bar{z}=2 a b i$ $\Rightarrow\left(\frac{1}{2 a}-\frac{i}{2 b}\right) z+\left(\frac{1}{2 a}+\frac{i}{2 b}\right) \bar{z}=1$.
174. Let $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$.

Then $r_{1}-r_{2}=\sqrt{\left(r_{1} \cos \theta_{1}-r_{2} \cos \theta_{2}\right)^{2}+\left(r_{1} \sin \theta_{1}-r_{2} \sin \theta_{2}\right)^{2}}$
$\Rightarrow 2 r_{1} r_{2}=2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right) \Rightarrow \cos \left(\theta_{1}-\theta_{2}\right)=\cos 2 n \pi \Rightarrow \arg \left(z_{1}\right)-\arg \left(z_{2}\right)=2 n \pi$.
175. $\triangle A B C$ and $\triangle D O E$ will be similar if $\frac{A C}{A B}=\frac{D E}{D O}$ and $\angle B A C=\angle O D E$
$\Rightarrow\left|\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right|=\left|\frac{z_{5}-z_{4}}{0-z_{4}}\right|$ and $\arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)=\arg \left(\frac{z_{5}-z_{4}}{0-z_{4}}\right)$
$\Rightarrow \frac{z_{3}-z_{1}}{z_{2}-z_{1}}=\frac{z_{5}-z_{4}}{0-z_{4}}$. Solving this yields $\left(z_{3}-z_{2}\right) z_{4}=\left(z_{1}-z_{2}\right) z_{5}$ and hence triangles are similar.
176. Given $O A=1$ and $|z|=1=O P \Rightarrow O A=O P . O P_{0}=\left|z_{0}\right|$ and $O Q=\left|z \overline{z_{0}}\right|=|z|\left|\overline{z_{0}}\right|=\left|z_{0}\right|$ $\Rightarrow O P_{0}=O Q$. Also given that $\angle P_{0} O P=\arg \frac{z_{0}}{z} . \angle A O Q=\arg \left(\frac{1}{z \overline{z_{0}}}\right)=\arg \left(\frac{\bar{z}}{\overline{z_{0}}}\right)[\because z \bar{z}=1]$ $=-\arg \left(\frac{\overline{z_{0}}}{\bar{z}}\right)=-\arg \overline{\left(\frac{z_{0}}{z}\right)}=\arg \left(\frac{z_{0}}{z}\right)=\angle P_{0} O P$ and thus the triangles are congruent.
177. $P=\frac{a z_{2}+b z_{1}}{a+b}, Q=\frac{a z_{2}-b z_{1}}{a-b} O P^{2}=\left|\frac{a z_{2}+b z_{1}}{a+b}\right|^{2}=\left(\frac{a z_{2}+b z_{1}}{a+b}\right)\left(\frac{a \overline{z_{2}}+b \overline{z_{1}}}{a+b}\right)$ $=\frac{1}{a^{2}+b^{2}}\left[a^{2}\left|z_{2}\right|^{2}+b^{2}\left|z_{1}\right|^{2}+a b\left(z_{1} \overline{z_{2}}+\overline{z_{1}} z_{2}\right)\right]$. Similalry $O Q^{2}$ can be computed and the sum be found.
178. Let $c \neq 0$, then $c=-(a+b)$ so we can write $a z_{1}+b z_{2}-(a+b) z_{3}=0 \Rightarrow z_{3}=\frac{a z_{1}+b z_{2}}{a+b}$. Thus, we see that z_{3} divides line segment $z_{1} z_{2}$ in the ratio of $a: b$ making all three of them collinear.
179. Equation of a line passing through origin is $a \bar{z}+\bar{a} z=0$. Let us assume that all the points lie on the same side of the above line, so we have $a \overline{z_{i}}+\bar{a} z_{i}>0$ or <0 for $i=1,2,3, \ldots, n$. Thus, $a \sum_{i=1}^{n} \overline{z_{i}}+\bar{a} \sum_{i=1}^{n} z_{i}>0$ or <0
But it is given that $\sum_{i=1}^{n} z_{i}=0 \Rightarrow \sum_{i=1}^{n} \overline{z_{i}}=0 \therefore a \sum_{i=1}^{n} \overline{z_{i}}+\bar{a} \sum_{i=1}^{n} z_{i}=0$, which is in contradiction with equation above. So all points cannot lie on the same side of line.
180. Let $O A$ and $O B$ be the unit vectors representing z_{1} and z_{2}, then we have $\overrightarrow{O A}=\frac{z_{1}}{\left|z_{1}\right|}, \overrightarrow{O B}=$ $\frac{z_{2}}{\left|z_{2}\right|}$

Therefore equation of bisector will be $z=t\left(\frac{z_{1}}{\left|z_{1}\right|}+\frac{z_{2}}{\left|z_{2}\right|}\right)=\frac{6}{5} t$, where is an arbitrary positive integer.
181. The diagram is given below:

Let $A L$ be perpendicular on $B C$ and H be orthocenter of the $\triangle A B C$.
$\frac{B L}{L C}=\frac{c \cos B}{b \cos C}=\frac{c \sec C}{b \sec B}$, thus L divides $B C$ internally in the ratio of $c \sec C: b \sec B, L=\frac{z_{3} c \sec C+z_{2} b \sec B}{c \sec C+b \sec B}$

$$
\begin{aligned}
& \frac{A H}{H L}=\frac{\Delta A B H}{\Delta H B L}=\frac{\frac{1}{2} A B \cdot B H \sin \angle A B M}{\frac{1}{2} B L \cdot B H \cdot \sin \angle M B C}=\frac{c \cos A}{c \cos B \cos C}[\because \angle A B M= \\
& \left.90^{\circ}-A, \angle M B C=90^{\circ}-C\right] \\
& =\frac{a \cos A}{a \cos B \cos C}=\frac{(b \cos C+c \cos B) \cos A}{a \cos B \cos C}=\frac{b \sec B+c \sec C}{a \sec A} \\
& H=\frac{z_{1} a \sec A+z_{2} b \sec B+z_{3} c \sec C}{a \sec A+b \sec B+c \sec C}
\end{aligned}
$$

Since the above expression is similar w.r.t. A, B and C, therefore it will also lie on the perpendiculars from B and C to opposing sides as well. Thus, orthocenter $H=$ $\frac{z_{1} a \sec A+z_{2} b \sec B+z_{3} c \sec C}{a \sec A+b \sec B+c \sec C}$
$H=\frac{z_{1} k \sin A \sec A+z_{2} k \sin B \sec B+z_{3} k \sin C \sec C}{k \sin A \sec A+k \sin B \sec B+k \sin C \sec C}, H=\frac{z_{1} \tan A+z_{2} \tan B+z_{3} \tan C}{\tan A+\tan B+\tan C}$.
182. The diagram is given below:

Let O be the circumcenter of $\triangle A B C$ where $A=$ $z_{1}, B=z_{2}$ and $C=z_{3} \cdot \frac{B D}{D C}=\frac{\frac{1}{2} B D . O L}{\frac{1}{2} D C . O L}=\frac{\Delta B O D}{\triangle C O D}$
$=\frac{\frac{1}{2} O B \cdot O D \cdot \sin (\pi-2 C)}{\frac{1}{2} O C . O D \sin (\pi-2 C)}=\frac{\sin 2 C}{\sin 2 B}$. Thus, D divides $B C$ internally in the ratio $\sin 2 C: \sin 2 B \Rightarrow D=$ $\frac{z_{3} \sin 2 C+z_{2} \sin 2 B}{\sin 2 C+\sin 2 B}$

The complex number dividing $A D$ internally in the ratio $\sin 2 B+\sin 2 C: \sin 2 A$ is $\frac{z_{1} \sin 2 A+z_{2} \sin 2 B+z_{3} \sin 2 C}{\sin 2 A+\sin 2 B+\sin 2 C}$

Since the above expression is similar w.r.t. A, B and C, therefore it will also lie on the perpendicular
bisectors on $A C$ and $A B$ as well.
Let $B O$ produced meet $A C$ at E and $C O$ produced meet $A B$ at F. We can show that, the complex numner representing the point dividing the line segment $B E$ internally in the ratio $(\sin 2 C+\sin 2 A): \sin 2 B$ and the complex number representing the point dividing the line segment $C F$ internally in the ratio $(\sin 2 A+\sin 2 B): \sin 2 C$ will be each $=\frac{z_{1} \sin 2 A+z_{2} \sin 2 B+z_{3} \sin 2 C}{\sin 2 A+\sin 2 B+\sin 2 C}$

Thus, circumcenter is $\frac{z_{1} \sin 2 A+z_{2} \sin 2 B+z_{3} \sin 2 C}{\sin 2 A+\sin 2 B+\sin 2 C}$
183. Let z be the circumcenter of the triangle represented by $A\left(z_{1}\right), B\left(z_{2}\right)$ and $C\left(z_{3}\right)$ respectively, then $\left|z-z_{1}\right|=\left|z-z_{2}\right|=\left|z-z_{3}\right|$ so we have $\left|z-z_{1}\right|=\left|z-z_{2}\right|$ $\Rightarrow\left|z-z_{1}\right|^{2}=\left|z-z_{2}\right|^{2} \Rightarrow\left(z-z_{1}\right)\left(\bar{z}-\overline{z_{1}}\right)=\left(z-z_{2}\right)\left(\bar{z}-\overline{z_{2}}\right)$
$\Rightarrow z \bar{z}+z_{1} \overline{z_{1}}-\bar{z} z_{1}-z \overline{z_{1}}=z \bar{z}+z_{2} \overline{z_{1}}-\bar{z} z_{2}-z \overline{z_{2}} \Rightarrow z\left(\overline{z_{1}}-\overline{z_{2}}\right)+\bar{z}\left(z_{1}-z_{2}\right)=z_{1} \overline{z_{1}}-z_{2} \overline{z_{2}}$

Similarly considering $\left|z-z_{1}\right|=\left|z-z_{3}\right|$, we will have $\Rightarrow z\left(\overline{z_{1}}-\overline{z_{3}}\right)+\bar{z}\left(z_{1}-z_{3}\right)=$ $z_{1} \overline{z_{1}}-z_{3} \overline{z_{3}}$

We have to eliminate \bar{z} from equation (1) and (2) i.e. multiplying equation (1) with $\left(z_{1}-z_{3}\right)$ and (2) with $\left(z_{1}-z_{2}\right)$, we get following
$z\left[\overline{z_{1}}\left(z_{2}-z_{3}\right)+\overline{z_{2}}\left(z_{3}-z_{1}\right)+\overline{z_{3}}\left(z_{1}-z_{2}\right)\right]=z_{1} \overline{z_{1}}\left(z_{2}-z_{3}\right)+z_{2} \overline{z_{2}}\left(z_{3}-z_{1}\right)+z_{3} \overline{z_{3}}\left(z_{1}-z_{2}\right)$
$\Rightarrow z=\frac{\sum z_{1} \overline{z_{1}}\left(z_{2}-z_{3}\right)}{\sum \overline{z_{1}}\left(z_{2}-z_{3}\right)}$.
184. Let z be the orthocenter of $\triangle A\left(z_{1}\right) B\left(z_{2}\right) C\left(z_{3}\right)$ i.e. the intersection point of perpendiculars on sides from opposite vertices.

Since $A H \perp B C \therefore \arg \left(\frac{z_{1}-z}{z_{3}-z_{2}}\right)= \pm \frac{\pi}{2} \Rightarrow \frac{z_{1}-z}{z_{3}-z_{2}}$ is purely imaginary.
$\Rightarrow \overline{\left(\frac{z_{1}-z}{z_{3}-z_{2}}\right)}=-\left(\frac{z_{1}-z}{z_{3}-z_{2}}\right) \Rightarrow \frac{\overline{z_{1}}-\bar{z}}{\overline{z_{3}}-\overline{z_{2}}}=\frac{z-z_{1}}{z_{3}-z_{2}} \Rightarrow \overline{z_{1}}-\bar{z}=\frac{\left(z-z_{1}\right)\left(\overline{z_{3}}-\overline{z_{2}}\right)}{z_{3}-z_{2}}$
Similarly for $B H \perp A C, \overline{z_{2}}-\bar{z}=\frac{\left(z-z_{2}\right)\left(\overline{z_{1}}-\overline{z_{2}}\right)}{z_{1}-z_{3}}$
Eliminating \bar{z} like last problem we arrive at the desired result.
185. We have $\angle C B A=\frac{2 \pi}{3}$, therefore $\frac{z_{3}-z_{2}}{z_{1}-z_{2}}=\frac{\left|z_{3}-z_{2}\right|}{\left|z_{1}-z_{2}\right|}\left[\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right]=-\frac{1}{2}+\frac{i \sqrt{3}}{2}[\because B C=A B]$ $z_{3}+\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) z_{1}=\left(\frac{3}{2}-\frac{i \sqrt{3}}{2}\right) z_{2}$

Solving this yields $2 \sqrt{3} z_{2}=(\sqrt{3}-i) z_{1}+(\sqrt{3}+i) z_{3}$. Also, since diagonals bisect each other $\Rightarrow \frac{z_{1}+z_{3}}{2}=\frac{z_{2}+z_{4}}{2}, z_{4}=z_{1}+z_{3}-z_{2}$ Substituting the value of z_{2}, we get $2 \sqrt{3} z_{4}=$ $(\sqrt{3}+i) z_{1}+(\sqrt{3}-i) z_{3}$.
186. Since $\angle P Q R=\angle P R Q=\frac{1}{2}(\pi-\alpha) \therefore P Q=P R$ Also, $\angle Q P R=\pi-2\left(\frac{\pi}{2}-\frac{\alpha}{2}\right)=\alpha$ $\therefore \arg \frac{z_{3}-z_{1}}{z_{2}-z_{1}}=\alpha \Rightarrow \frac{z_{3}-z_{1}}{z_{2}-z_{1}}=\frac{P R}{R Q}(\cos \alpha+i \sin \alpha)$
$\Rightarrow \frac{z_{3}-z_{1}}{z_{2}-z_{1}}-1=(\cos \alpha-1)+i \sin \alpha \Rightarrow \frac{z_{3}-z_{2}}{z_{2}-z_{1}}=-2 \sin ^{2} \frac{\alpha}{2}+i 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}$
$\Rightarrow\left(\frac{z_{3}-z_{2}}{z_{2}-z_{1}}\right)^{2}=-4 \sin ^{2} \frac{\alpha}{2}\left[\cos \frac{\alpha}{2}+i \sin \frac{\alpha}{2}\right]^{2}=-4 \sin ^{2} \frac{\alpha}{2}[\cos \alpha+i \sin \alpha]=-4 \sin ^{2} \frac{\alpha}{2} \cdot \frac{z_{3}-z_{1}}{z_{2}-z_{1}}$
$\Rightarrow\left(z_{3}-z_{2}\right)^{2}=4\left(z_{3}-z_{1}\right)\left(z_{1}-z_{2}\right) \sin ^{2} \frac{\alpha}{2}$.
187 . Let C be the center of a regular polygon of n sides. Let $A_{1}\left(z_{1}\right), A_{2}\left(z_{2}\right)$ and $A_{3}\left(z_{3}\right)$ be its three consecutive vertices.
$\angle C A_{2} A_{1}=\frac{1}{2}\left(\pi-\frac{2 \pi}{n}\right) \therefore A_{1} A_{2} A_{3}=\pi-\frac{2 \pi}{n}$
Case I: When z_{1}, z_{2}, z_{3} are in anticlockwise order. $\Rightarrow z_{1}-z_{2}=\left(z_{3}-\right.$ $\left.z_{2}\right) e^{i(\pi-2 \pi / n)}\left[\because A_{1} A_{2}=A_{3} A_{2}\right]$
$z_{1}-z_{2}=\left(z_{2}-z_{3}\right) e^{-i 2 \pi / n}\left[\because e^{i \pi}=-1\right] \Rightarrow z_{3}=z_{2}-\left(z_{1}-z_{2}\right) e^{i 2 \pi / n}$
Case II: When z_{1}, z_{2}, z_{3} are in clockwise order. $\Rightarrow z_{3}-z_{2}=\left(z_{1}-z_{2}\right) e^{i(\pi-i 2 \pi / n)}$ $z_{3}=z_{2}+\left(z_{2}-z_{1}\right) e^{-i 2 \pi / n}$.
188. Let O be the origin and the complex number representing A_{1} be z, then A_{2}, A_{3}, A_{4} will be represented by $z e^{i 2 \pi / n}, z e^{i 4 \pi / n}, z e^{i 6 \pi / n}$. Let $|z|=a$
$A_{1} A_{2}=\left|z-z e^{i 2 \pi / n}\right|=|z|\left|1-\cos \frac{2 \pi}{n}-i \sin \frac{2 \pi}{n}\right|=a \sqrt{\left(1-\cos \frac{2 \pi}{n}\right)^{2}+\sin ^{2} \frac{2 \pi}{n}}=$ $a \sqrt{2\left(1-\cos \frac{2 \pi}{n}\right)}=2 a \sin \frac{\pi}{n}$

Similarly, $A_{1} A_{3}=2 a \sin \frac{2 \pi}{n}$ and $A_{1} A_{4}=2 a \sin \frac{3 \pi}{n}$
Given $\frac{1}{A_{1} A_{2}}=\frac{1}{A_{1} A_{3}}+\frac{1}{A_{1} A_{4}}: \frac{1}{2 a \sin \frac{\pi}{n}}=\frac{1}{2 a \sin \frac{2 \pi}{n}}+\frac{1}{2 a \sin \frac{3 \pi}{n}} \Rightarrow \sin \frac{\pi}{n}\left(\sin \frac{3 \pi}{n}+\sin \frac{2 \pi}{n}\right)=$ $\sin \frac{2 \pi}{n} \sin \frac{3 \pi}{n}$
$\Rightarrow \sin \frac{3 \pi}{n}+\sin \frac{2 \pi}{n}=2 \cos \frac{2 \pi}{n} \sin \frac{3 \pi}{n}=\sin \frac{4 \pi}{n}+\sin \frac{2 \pi}{n} \Rightarrow \sin \frac{3 \pi}{n}=\sin \frac{4 \pi}{n} \Rightarrow \frac{3 \pi}{n}=m \pi+$ $(-1)^{n} \frac{4 \pi}{n}, m=0, \pm 1, \pm 2, \ldots$

If $m=0 \Rightarrow \frac{3 \pi}{n}=\frac{4 \pi}{n} \Rightarrow 3=4$ (not possible). If $m=1 \Rightarrow \frac{3 \pi}{n}=\pi-\frac{4 \pi}{n} \Rightarrow n=7$. If $m=2,3 \ldots,-1,-2, \ldots$ gives values of n which are not possible. Thus $n=7$.
189. Given, $|z|=2$. Let $z_{1}=-1+5 z \Rightarrow z_{1}+1=5 z$.
$\left|z_{1}+1\right|=|5 z|=5|z|=10 \Rightarrow z_{1}$ lies on a circle with center $(-1,0)$ having radius 10 .
190. Given, $|z-4+3 i| \leq 2 \Rightarrow| | z|-|4-3 i|| \leq 2 \Rightarrow| | z|-5| \leq 2 \Rightarrow-2 \leq|z|-5 \leq 2 \Rightarrow 3 \leq$ $|z| \leq 7$.
191. $|z-6-8 i| \leq|4| \Rightarrow-4 \leq||z|-|6+8 i|| \leq 4 \Rightarrow-4 \leq|z|-10 \leq 10 \Rightarrow 6 \leq|z| \leq 14$.
192. The diagram is given below:

Given $z-25 i \leq 15$, which represents a circle having center $(0,25)$ and a radius 15 . Let $O P$ be tangent to the circle at point P, then $\angle X O P$ will represent least value of $\arg (z)$.

Let $\angle X O P=\theta$ then $\angle O C P=\theta$. Now $O C=25, C P=15 \therefore O P=20 \therefore \tan \theta=$ $\frac{O P}{C P}=\frac{4}{3} . \therefore$ Least value of $\arg (z)=\theta=$ $\tan ^{-1} \frac{4}{3}$
193. Given, $\left|z-z_{1}\right|^{2}+\left|z-z_{2}\right|^{2}=k \Rightarrow|z|^{2}+\left|z_{1}\right|^{2}-2 z \overline{z_{1}}+|z|^{2}+\left|z_{2}\right|^{2}-2 z \overline{z_{2}}=k$

$$
\begin{aligned}
& \Rightarrow 2|z|^{2}-2 z\left(\overline{z_{1}}+\overline{z_{2}}\right)=k-\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right) \Rightarrow|z|^{2}-2 z\left(\frac{\left(\overline{z_{1}+z_{2}}\right.}{2}\right)+\frac{1}{4}\left|z_{1}+z_{2}\right|^{2}=\frac{k}{2}+\frac{1}{4}\left[\mid z_{1}+\right. \\
& \left.\left.z_{2}\right|^{2}-2\left|z_{1}\right|^{2}-2\left|z_{2}\right|^{2}\right]
\end{aligned}
$$

$\Rightarrow\left|z-\frac{z_{1}+z_{2}}{2}\right|^{2}=\frac{1}{2}\left[k-\frac{1}{2}\left|z_{1}-z_{2}\right|^{2}\right]$. The above equation represents a circle with center at $\frac{z_{1}+z_{2}}{2}$ and radius $\frac{1}{2} \sqrt{2 k-\left|z_{1}-z_{2}\right|^{2}}$ provided $k \geq \frac{\left|z_{1}-z_{2}\right|^{2}}{2}$.
194. Since $|z-1|=1, z$ represents a circle with center $(1,0)$ and a radius of of 1 . It is shown below:

Now $|z-1|=1$. Let $z=x+i y$ then $x^{2}+y^{2}=2 x$. Also,
$\frac{z-2}{z}=\frac{x-2+i y}{x+i y}=\frac{x^{2}-2 x+y^{2}+2 i y}{x^{2}+y^{2}}=i \frac{y}{x}$
Case I. When z lies in the first quadrant. This implies $\arg (z)=\theta$, where $\tan \theta=\frac{y}{x}: \therefore i \tan [\arg (z)]=i \tan \theta=i \frac{y}{x}$.

Case II. When z lies in the fourth quadrant. Thus, $\arg (z)=2 \pi-\theta$, where $\tan \theta=\frac{-y}{x} \therefore i \tan [\arg (z)]=$ $i \tan (2 \pi-\theta)=i \frac{y}{x}$.
195. Let $z=x+i y$. Now we have $\frac{z-1}{z+1}=\frac{\left(x^{2}-1\right)+y^{2}}{(x+1)^{2}+y^{2}}+i \frac{2 y}{(x+1)^{2}+y^{2}}$
$\therefore \arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{4} \Rightarrow \tan \left(\arg \left(\frac{z-1}{z+1}\right)\right)=\frac{2 y}{x^{2}-1+y^{2}}$
$\Rightarrow x^{2}+y^{2}-1-2 y=0 \Rightarrow x^{2}+(y-1)^{2}=2$, which is equation of a circle having center at $(0,1)$ and radius $\sqrt{2}$.
196. Let $z=x+i y$. Now, $u+i v=(z-1)(\cos \alpha-i \sin \alpha)+\frac{1}{z-1}(\cos \alpha+i \sin \alpha)=(x-$ 1) $\cos \alpha+y \sin \alpha+i[y \cos \alpha-(x-1) \sin \alpha]+\frac{x-1-i y}{(x-1)^{2}+y^{2}}(\cos \alpha+i \sin \alpha)=0$

Equating imaginary parts, we get $v=y \cos \alpha-(x-1) \sin \alpha+\frac{(x-1) \sin \alpha-y \cos \alpha}{(x-1)^{2}+y^{2}}=0 \Rightarrow$ $[y \cos \alpha-(x-1) \sin \alpha]\left[(x-1)^{2}+y^{2}\right]=0$
\therefore Either $y \cos \alpha-(x-1) \sin \alpha=0 \Rightarrow y=\tan \alpha(x-1)$, which is a straight line passing through $(1,0)$ or $(x-1)^{2}+y^{2}-1=0$ which is a circle with center $(1,0)$ and unit radius.
197. Given, $1+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}=0 \Rightarrow\left|a_{1} z\right|+\left|a_{2} z^{2}\right|+\cdots+\left|a_{n} z^{b}\right| \geq 1$ and
L.H.S. $<2|z|+2|z|^{2}+\cdots$ to $\infty\left[\because\left|a_{n}\right|<2\right]$.

Let $|z|<1$ then $\frac{2|z|}{1-|z|}<1 \Rightarrow|z|>\frac{1}{3}$
When $|z|>1$, clearly $|z|>\frac{1}{3}$; hence, z does not lie in the interior of the circle with radius $\frac{1}{3}$.
198. Given, $z^{n} \cos \theta_{0}+z^{n-1} \cos \theta_{1}+\cdots+\cos \theta_{n}=2 \Rightarrow 2=\left|z^{n} \cos \theta_{0}+z^{n-1} \cos \theta_{1}+\cdots+\cos \theta_{n}\right|$ $<\left|z^{n} \cos \theta_{0}\right|+\left|z^{n-1} \cos \theta_{1}\right|+\cdots+\left|\cos \theta_{n}\right|=\left|z^{n}\right|\left|\cos \theta_{0}\right|+\left|z^{n-1}\right|\left|\cos \theta_{1}\right|+\cdots+\left|\cos \theta_{n}\right|$ $\leq|z|^{n}+|z|^{n-1}+\cdots+1<1+|z|+|z|^{2}+\cdots$ to $\infty \Rightarrow 2=\frac{1}{1-|z|} \Rightarrow|z|>\frac{1}{2}[$ when $|z|<1]$

Hence z lies outside the circle $|z|=\frac{1}{2}$. Thus all roots of the given equation lie outside the circle $|z|=\frac{1}{2}$.
199. Recall that points z_{1}, z_{2}, z_{3} are concyclic if $\left(\frac{z_{2}-z_{4}}{z_{1}-z_{4}}\right)\left(\frac{z_{1}-z_{3}}{z_{2}-z_{3}}\right)$ is real. We assume that z_{4} is origin.

Given, $\frac{2}{z_{1}}=\frac{1}{z_{2}}+\frac{1}{z_{3}}=\frac{z_{2}+z_{3}}{z_{2} z_{3}}: z_{1}=\frac{2 z_{2} z_{3}}{z_{1}+z_{3}}$.
Putting the value of z_{1} and z_{4} in the concyclic condition expression we obtain $\left(\frac{z_{2}-z_{4}}{z_{1}-z_{4}}\right)\left(\frac{z_{1}-z_{3}}{z_{2}-z_{3}}\right)=\frac{1}{2}$. Thus, z_{1}, z_{2}, z_{3} lie on a circle passing through origin.
200. The diagram given below:

We have $O P=O A=O B=O C \therefore|z|=\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right| \Rightarrow$

$|z|^{2}=\left|z_{1}\right|^{2}=\left|z_{2}\right|^{2}=\left|z_{3}\right|^{2} \Rightarrow z \bar{z}=z_{1} \overline{z_{1}}=z \overline{z_{2}}=z \overline{z_{3}}$.
Since $A P$ is perpendicular to $B C, \therefore \arg \left(\frac{z_{1}-z}{z_{2}-z_{3}}\right)=\frac{\pi}{2}$ or $\frac{-\pi}{2} \Rightarrow$ $\frac{z_{1}-z}{z_{2}-z_{3}}$ is purely imaginary.
$\Rightarrow \overline{\left(\frac{z_{1}-z}{z_{2}-z_{3}}\right)}=-\frac{z_{1}-z}{z_{2}-z_{3}}$. Solving the above equation gives $z=$ $\frac{z_{2} z_{3}}{z_{1}}$.
201. The diagram is given below:

Let $P(z)$ be the point of intersection and A, B, C, D represent points a, b, c, d respectively. Clearly, P, A, B are collinear. Thus,

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
z & \bar{z} & 1 \\
a & \bar{a} & 1 \\
b & \bar{b} & 1
\end{array}\right]=0 \Rightarrow z(\bar{a}-\bar{b})-\bar{z}(a-b)+} \\
& (a \bar{b}-\bar{a} b)=0
\end{aligned}
$$

Similarly, P, C, D are collinear and thus $\Rightarrow z(\bar{c}-\bar{d})-\bar{z}(c-d)+(c \bar{d}-\bar{c} d)=0$
Eliminating \bar{z} because we have to find z, we have $z(\bar{a}-\bar{b})(c-d)-z(\bar{c}-\bar{d})(a-b)=$ $(c \bar{d}-\bar{c} d)(a-b)-(a \bar{b}-\bar{a} b)(c-d)$.
$\because a, b, c, d$ lie on the circle. $|a|=|b|=|c|=|d|=r \Rightarrow a^{2}=b^{2}=c^{2}=d^{2}=r^{2} \Rightarrow a \bar{a}=$ $b \bar{b}=c \bar{c}=d \bar{d}=r^{2}$
$\Rightarrow \bar{a}=\frac{r^{2}}{a}, \bar{b}=\frac{r^{2}}{b}, \bar{c}=\frac{r^{2}}{c}, \bar{d}=\frac{r^{2}}{d}$
Putting these values in the equation we had obtained, $z\left(\frac{r^{2}}{a}-\frac{r^{2}}{b}\right)(c-d)-z\left(\frac{r^{2}}{c}-\frac{r^{2}}{d}\right)(a-$ $b)=\left(\frac{c r^{2}}{d}-\frac{d r^{2}}{c}\right)(a-b)-\left(\frac{a r^{2}}{b}-\frac{b r^{2}}{a}\right)(c-d)$
Solving this for z, we arrive at desired answer.
202. Given $\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right]=0 \Rightarrow a^{3}+b^{3}+c^{3}-3 a b c=0 \Rightarrow(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=$ 0
$\because z_{1}, z_{2}, z_{3}$ are three non-zero complex numbers, hence $a^{2}+b^{2}+c^{2}-a b-b c-c a=0$ $\Rightarrow(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=0 \Rightarrow a=b=c$. This can be represented by following diagram:

Now $O A=O B=O C$, where O is the origin and A, B
 and C are the points representing z_{1}, z_{2} and z_{3} respectively. $\therefore O$ is the circumcenter of $\triangle A B C$.

Now $\arg \left(\frac{z_{3}}{z_{2}}\right)=\angle B O C=2 \angle B A C=\arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)^{2}$.
203. The diagram is given below:

$$
\begin{aligned}
& z_{2}=\frac{O Q}{O P} z_{1} e^{i \theta}=\cos \theta z_{1} e^{i \theta} \text { and } z_{3}=\frac{O R}{O P} z_{1} e^{i 2 \theta}= \\
& \cos 2 \theta z_{1} e^{i 2 \theta} \\
& \Rightarrow z_{2}^{2}=\cos ^{2} \theta z_{1}^{2} e^{i 2 \theta} \Rightarrow z_{2}^{2} \cos 2 \theta=z_{1} z_{3} \cos ^{2} \theta
\end{aligned}
$$

204. Given circles are $|z|=1 \Rightarrow x^{2}+y^{2}-1=0$ and $|z-1|=4 \Rightarrow x^{2}-2 x+y^{2}-15=0$.

Let the circles cut by these two orthogonally is $x^{2}+y^{2}+2 g x+2 f y+c=0$. Since first circle cuts this family of circles orthoginally, therefore
$2 g .0+2 f .0=c-1 \Rightarrow c=1$ and $2 g(-1)+2 f .0=c-15 \Rightarrow g=7$. Thus, required circles are $x^{2}+y^{2}+14 x+2 f y+1=0 \Rightarrow|z+7+i f|=\sqrt{48+f^{2}}$.
205. Given, $|z+3|=t^{2}-2 t+6$ which is equation of a circle having center $(-3,0)$ and radius $t^{2}-2 t+6$. Let $A=(-3,0)$ and $r_{1}=t^{2}-2 t+6$. In this case z lies on the circle.

Also, $|z-3 \sqrt{3} i|<t^{2}$ implies z lies on the interior of the circle having center $(0,3 \sqrt{3})$ and radius t^{2}. Let $B=(0,3 \sqrt{3})$ and $r_{2}=t^{2} . A B=\sqrt{3^{2}+27}=6 . r_{2}-r_{1}=2(t-3)$

Clearly, when the two circles are disjoint or touching each other no solution is possible. This leads to following cases:

Case I: When $t>3$ i.e. $r 2>r_{1}$. In this case at least one z is possible if $A B<r_{1}+r_{2} \Rightarrow$ $6<2\left(t^{2}-t+3\right) \Rightarrow t<0$ or $t>1 \Rightarrow 3<t<\infty$

Case II: When $t \leq 3$ i.e. $r_{1}>r_{2}$. In this case at least one z will be possible if $\left|r_{1}-r_{2}\right| \leq$ $A B<r_{1}+r_{2}$
$2(3-t) \leq 6<2\left(t^{2}-t+3\right)$ i.e. $t \leq 0$ and $t<0$ or $t>1$ Combining all solutions we gace $1<t<\infty$.
206. Let $z=x+i y \cdot \frac{a z+b}{c z+d}=\frac{a x+b+i a y}{c x+d+i c y}=\frac{(a x+b+i a y)(c x+d-i c y)}{(c x+d)^{2}+c^{2} y^{2}}$
$\mathfrak{I}\left(\frac{a z+b}{c z+d}\right)=\frac{a y(c x+d)-c y(a x+b)}{(c x+d)^{2}+c^{2} y^{2}}=\frac{a d y-b c y}{(c x+d)^{2}+c^{2} y^{2}}$
$\because a d>b c$, therefore the signs of imaginary parts of z and $\frac{a z+b}{c z+d}$ are the same.
207. Given, $z_{1}=\frac{i\left(z_{2}+1\right)}{z_{2}-1} \Rightarrow x_{1}+i y_{1}=\frac{-y_{2}+i\left(x_{2}+1\right)}{\left(x_{2}-1\right)+i y_{2}}=\frac{\left[-y_{2}+i\left(x_{2}+1\right)\right]\left[\left(x_{2}-1\right)+i y_{2}\right]}{\left(x_{2}-1\right)^{2}+y_{2}^{2}}$

Comparing real and imaginary parts, we have
$x_{1}=\frac{-y_{2}\left(x_{2}-1\right)-\left(x_{2}+1\right) y_{2}}{\left(x_{2}-1\right)^{2}+y_{2}^{2}}=\frac{-2 x_{2} y_{2}}{\left(x_{2}-1\right)^{2}+y_{2}^{2}}$ and $y_{1}=\frac{x_{2}^{2}-1-y_{2}^{2}}{\left(x_{2}-1\right)^{2}+y_{2}^{2}}$
Substituting for x_{1} and y_{1} in $x_{1}^{2}+y_{1}^{2}-x_{1}$ we will arrive at the desired result.
208. $(\cos 3 \theta-i \sin 3 \theta)^{6}=\left(e^{-i 3 \theta}\right)^{6}=e^{-i 18 \theta}$ and $(\cos 2 \theta+i \sin 2 \theta)^{5}=\left(e^{i} 2 \theta\right)^{5}=e^{i 10 \theta}$
$(\sin \theta-i \cos \theta)^{3}=\left[(-i)^{3}(\cos \theta+i \sin \theta)^{3}\right]=i . e^{i 3 \theta}$ and $\frac{(\cos 3 \theta-i \sin 3 \theta)^{6}(\sin \theta-i \cos \theta)^{3}}{(\cos 2 \theta+i \sin 2 \theta)^{5}}=$ $i . e^{-i 25 \theta}=\sin 25 \theta+i \cos 25 \theta$.
209. Let $z=x+i y$, then we have $x^{2}-y^{2}+2 i x y+\sqrt{x^{2}+y^{2}}=0$

Equating imaginary parts, we have $2 x y=0$ i.e. either $x=0$ or $y=0$.
If $x=0$, then $-y^{2}+\sqrt{y^{2}}=0 \Rightarrow y^{4}-y^{2}=0 \Rightarrow y=0, y= \pm 1$.
If $y=0$, then $x^{2}+\sqrt{x^{2}}=0$ Since x is real only one solution is possible i.e. $x=0$. Hence, $z=0, \pm i$.
210. Clearly $z=0$ is one of the solutions. For other solutions divide both sides by $|z|^{2}$ which gives us $t^{2}+t+1=0$ where $t=\frac{z}{|z|}$.

The equation $t^{2}+t+1=0$ has two roots i.e. $t=\omega, \omega^{2} \Rightarrow \frac{z}{|z|}=\omega, \omega^{2} \Rightarrow z=k \omega, k \omega^{2}$ where $k=|z|$ is a non-negative real number.
211. Let $z=x+i y$, then $(x+i y) \sqrt{x^{2}+y^{2}}+a(x+i y)+1=0$. Comparing real and imaginary parts, we get
$y \sqrt{x^{2}+y^{2}}+a y=0 \Rightarrow y=0 \because \sqrt{x^{2}+y^{2}}+a \neq 0[\because a>0]$ and $\therefore x \sqrt{x^{2}+0}+a x+1=$ $0 \Rightarrow x^{2}+a x+1=0 \Rightarrow x=\frac{-a \pm \sqrt{a^{2}-4}}{2}$

Clearly, both the values of x are negative, so z is a negative real number.
212. Let $z=x+i y$, then $x^{2}+y^{2}-2 i(x+i y)+2 a(1+i)=0$. Comparing real and imaginary parts, we get
$x^{2}+y^{2}+2 y+2 a=0 \Rightarrow x^{2}+(y-1)^{2}=1-2 a$ and $-2 x+2 a=0 \Rightarrow x=a$
$\Rightarrow(y-1)^{2}=1-2 a-a^{2} \Rightarrow y=1 \pm \sqrt{1-2 a-a^{2}}$. However $1-2 a-a^{2}>0$. Roots of equivalent quadratic equation is $a=\frac{2 \pm \sqrt{8}}{-2} \Rightarrow-1 \pm \sqrt{2}$ but $a>0$ so the range for a is $0<a<\sqrt{2}-1$.
213. i. We have $(3+4 i)^{x}=5^{\frac{x}{2}}$. Squaring both sides $(-7+24 i)^{x}=5^{x} \Rightarrow\left(\frac{-7+24 i}{5}\right)^{x}=1$ which is possible only if $x=0$.
ii. Given $(1-i)^{x}=2^{x} \Rightarrow\left(\frac{1-i}{2}\right)^{x}=1$ which is possible only if $x=0$.
iii. Given $(1-i)^{x}=(1+i)^{x} \Rightarrow\left(\frac{1-i}{1+i}\right)^{x}=1 \Rightarrow(-i)^{x}=1 \Rightarrow x=0,4,8, \ldots, 4 n \forall 4 n \in I$. 214. $z^{3}+2 z^{2}+2 z+1=0 \Rightarrow(z+1)\left(z^{2}+z+1\right)=0 \Rightarrow z=-1, \omega, \omega^{2}$.

When $z=-1, z^{1985}+z^{100}+1=-1+1+1=1 \neq 0$, when $z=\omega, \omega^{1985}+\omega^{100}+1=$ $\omega^{2}+\omega+1=0$ and when $z=\omega^{2}, \omega^{1985 * 2}+\omega^{200}+1=\omega+\omega^{2}+1=0$. Thus common roots are ω, ω^{2}.
215. Adding all equations $\alpha+\beta+\gamma=3 z_{1} \Rightarrow z_{1}=\frac{\alpha+\beta+\gamma}{3}$. Similarly, multiplying second equatin with ω and third equation with ω^{2}, and then adding we have $z_{3}=\frac{\alpha+\beta \omega+\gamma \omega^{2}}{3}$. Similarly, $z_{2}=\frac{\alpha+\beta \omega^{2}+\gamma \omega}{3}$.
$|\alpha|^{2}=\alpha \bar{\alpha}=\left(z_{1}+z_{2}+z_{3}\right)\left(\overline{z_{1}}+\overline{z_{2}}+\overline{z_{3}}\right),|\beta|^{2}=\beta \bar{\beta}=\left(z_{1}+z_{2} \omega+z_{3} \omega^{2}\right)\left(\overline{z_{1}}+\overline{z_{2}} \omega^{2}+\overline{z_{3}} \omega\right)$ and $|\gamma|^{2}=\gamma \bar{\gamma}=\left(z_{1}+z_{2} \omega^{2}+z_{3} \omega\right)\left(\overline{z_{1}}+\overline{z_{2}} \omega+\overline{z_{3}} \omega^{2}\right)\left[\because \bar{\omega}=\omega^{2} \& \overline{\omega^{2}}=\omega\right]$
$\Rightarrow|\alpha|^{2}+|\beta|^{2}+|\gamma|^{2}=3\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}\right)+z_{1}\left[\overline{z_{2}}\left(1+\omega+\omega^{2}\right)+\overline{z_{3}}\left(1+\omega+\omega^{2}\right)\right]+$ $z_{2}\left[\overline{z_{1}}\left(1+\omega+\omega^{2}\right)+\overline{z_{2}}\left(1+\omega+\omega^{2}\right)\right]+z_{3}\left[\overline{z_{1}}\left(1+\omega+\omega^{2}\right)+\overline{z_{2}}\left(1+\omega+\omega^{2}\right)\right]=3\left(\left|z_{1}\right|^{2}+\right.$ $\left.\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}\right)=$ R.H.S.
216. Let $f(x)=(x+1)^{n}-x^{n}-1 . x^{3}+x^{2}+x=0 \Rightarrow x\left(x^{2}+x+1\right)=0 \Rightarrow x=0, \omega, \omega^{2}$. So for $x^{3}+x^{2}+x$ to be a factor of $f(x), f(0)=0, f(\omega)=0, f\left(\omega^{2}\right)=0$.
$f(0)=1^{n}-1=0, f(\omega)=(\omega+1)^{n}-\omega^{n}-1=-\omega^{2 n}-\omega^{n}-1[\because n$ is odd. $]=-(1+$ $\left.\omega^{n}+\omega^{2 n}\right)=0$. Similarly, $f\left(\omega^{2}\right)=0$. Hence proved.
217. Let $f(x, y)=(x+y)^{n}-x^{n}-y^{n} \cdot x y(x+y)\left(x^{2}+x y+y^{2}\right)=0 \Rightarrow x=0, y=0, x=$ $-y, y=x \omega, y=x \omega^{2}$. When $x=0, f(x, y)=0 ; y=0, f(x, y)=0 ; y=-x \Rightarrow f(x, y)=$ $-x^{n}-(-x)^{n}=0[\because n=2 m+1 \forall m \in \mathbb{D}], y=x w \Rightarrow f(x, y)=\left[x^{n}(1+\omega)^{n}-x^{n}-x^{n} \omega^{n}\right]=$ $-x^{n} \omega^{2 n}-x^{n}-x^{n} \omega^{n}=0$, and similarly when $y=x \omega^{2}, f(x, y)=0$. Hence proved.
218. R.H.S. $=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\cdots+\frac{1}{z_{n}}\right|=\left|\frac{\overline{z_{1}}}{\left|z_{1}\right|^{2}}+\frac{\overline{z_{2}}}{\left|z_{2}\right|^{2}}+\cdots+\frac{\overline{z_{n}}}{\left|z_{n}\right|^{2}}\right|$ $=\left|\overline{z_{1}}+\overline{z_{2}}+\cdots+\overline{z_{n}}\right|=\left|\overline{z_{1}+z_{2}+\cdots+z_{n}}\right|=\left|z_{1}+z_{2}+\cdots+z_{n}\right|=$ L.H.S.
219. For any two complex numbers z_{1} and z_{2}, we know that $\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left|z_{1}\right|^{2}+$ $2\left|z_{2}\right|^{2}$. Let $z_{1}=\alpha+\sqrt{\alpha^{2}-\beta^{2}}$ and $z_{2}=\alpha-\sqrt{\alpha^{2}-\beta^{2}}$.

Now $\left(\left|z_{1}\right|+\left|z_{2}\right|\right)^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2\left|z_{1}\right|\left|z_{2}\right|=2|\alpha|^{2}+2\left|\alpha^{2}-\beta^{2}\right|+2|\beta|^{2}=|\alpha+\beta|^{2}+$ $|\alpha-\beta|^{2}+2|\alpha+\beta||\alpha-\beta|$ $=(|\alpha+\beta|+|\alpha-\beta|)^{2} \Rightarrow\left|z_{1}\right|+\left|z_{2}\right|=|\alpha+\beta|+|\alpha-\beta|=$ R.H.S.
220. $\left|z_{1}\right|=\left|z_{1}\right|=1 \Rightarrow a^{2}+b^{2}=c^{2}+d^{2}=1, z_{1} \overline{z_{2}}=a c+b d+i(b c-a d) \because \mathfrak{R}\left(z_{1} \overline{z_{2}}\right)=0 \Rightarrow$ $a c+b d=0 \Rightarrow \frac{a}{d}=-\frac{b}{c}=k$ (say). $\therefore a=k d, b=-k c$.
$\therefore k^{2} d^{2}+k^{2} c^{2}=1 \Rightarrow k^{2}=1 \Rightarrow k= \pm 1$. Now $\left|\omega_{1}\right|=\sqrt{a^{2}+c^{2}}=\sqrt{a^{2}+b^{2}}=1,\left|\omega_{2}\right|=$
$\sqrt{b^{2}+d^{2}}=\sqrt{a^{2}+b^{2}}=1, \omega_{1} \overline{\omega_{2}}=(a+i c)(b-i d) \therefore \therefore \mathbb{R}\left(\omega \overline{\omega_{2}}\right)=a b+c d=0$.
221. Given, $\left|\frac{z_{1}-z_{2}}{1-\overline{z_{1}} z_{2}}\right|<1 \Leftrightarrow\left|\frac{z_{1}-z_{2}}{1-\overline{z_{1}} z_{2}}\right|^{2}<1 \Leftrightarrow\left|z_{1}-z_{2}\right|^{2}<\left|1-\overline{z_{1}} z_{2}\right|^{2}$ $\Leftrightarrow\left(z_{1}-z_{2}\right) \overline{\left(z_{1}-z_{2}\right)}<\left(1-\overline{z_{1}} z_{2}\right) \overline{\left(1-\overline{z_{1}} z_{2}\right)} \Leftrightarrow\left(z_{1}-z_{2}\right)\left(\overline{z_{1}}-\overline{z_{2}}\right)<\left(1-\overline{z_{1}} z_{2}\right)\left(\left(1-z_{1} \overline{z_{2}}\right)\right)$
$\Leftrightarrow\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}>1+\left|z_{1}\right|^{2}\left|z_{2}\right|^{2} \Leftrightarrow 1-\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}+\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}>0 \Leftrightarrow\left(1-\left|z_{1}\right|^{2}\right)\left(1-\left|z_{2}\right|^{2}\right)>$ $0 \Rightarrow\left(1+\left|z_{1}\right|\right)\left(1-\left|z_{1}\right|\right)\left(1+\left|z_{2}\right|\right)\left(1-\left|z_{2}\right|\right)>0$
$\Leftrightarrow\left(1-\left|z_{1}\right|\right)\left(1-\left|z_{2}\right|\right)>0$ which is true as $\left|z_{1}\right|<1$ and $\left|z_{2}\right|<1$.
222. Let $z=x+i y$ then $\frac{z-z_{1}}{z-z_{2}}=\frac{(x-10)+i(y-6)}{(x-4)+i(y-6)}$. Rationalizing $\frac{x^{2}-14 x+40+(y-6)^{2}}{(x-4)^{2}+(y-6)^{2}}+\frac{i 6(y-6)}{(x-4)^{2}+(y-6)^{2}}=$ $a+i b$ (say)
$\because \arg (a+i b)=\frac{\pi}{4} \Rightarrow x^{2}-14 x+40+(y-6)^{2}=6(y-6) \Rightarrow x^{2}+y^{2}-14 x-18 y+112=$ $0 \Rightarrow|z-7-9 i|^{2}=18$. Hence proved.
223. Let $z=x+i y$ then $\frac{3 z-6-3 i}{2 z-8-6 i}=\frac{x-6+i(3 y-3)}{2 x-8+i(2 y-6)}$. Rationalizing $\frac{6 x^{2}+6 y^{2}-36 x-24 y+66+i(12 x-12 y-12)}{(2 x-8)^{2}+(2 y-6)^{2}}=$ $a+i b$ (let)
$\because \arg (a+i b)=\frac{\pi}{4} \Rightarrow 6 x^{2}+6 y^{2}-36 x-24 y+66=12 x-12 y-12 \Rightarrow x^{2}+y^{2}-8 x-$ $2 y+13=0$. Also given, $|z-3+i|=3 \Rightarrow x=-2 y+6$. Substituting this in previously obtained equation, we have
$5 y^{2}-10 y+1=0 \Rightarrow y=1 \pm \frac{2}{\sqrt{5}} \Rightarrow x=4 \mp \frac{4}{\sqrt{5}}$. Hence we have our z.
224. Let $|z|=r_{1},|w|=r_{2}, \arg (z)=\theta_{1}$ and $\arg (w)=\theta_{2}$. Then, $|z-w|^{2}=\left(r_{1} \cos \theta_{1}-\right.$ $\left.r_{1} \sin \theta_{1}\right)^{2}+\left(r_{2} \cos \theta_{2}-r_{2} \sin \theta_{2}\right)^{2}=\left(r_{1}-r_{2}\right)^{2}+2 r_{1} r_{2}-2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)$
$=\left(r_{1}-r_{2}\right)^{2}+4 r_{1} r_{2} \sin ^{2} \frac{\theta_{1}-\theta_{2}}{2} \leq\left(r_{1}-r_{2}\right)^{2}+2.1 .1 .2\left(\frac{\theta_{1}-\theta_{2}}{2}\right)^{2}=(|z|-|w|)^{2}+\left(\theta_{1}-\theta_{2}\right)^{2}$. Hence proved.
225. Let $z=r(\cos \theta+i \sin \theta) \Rightarrow \frac{z}{|z|}=\cos \theta+i \sin \theta \quad \therefore\left|\frac{z}{|z|}-1\right|=|(\cos \theta-1)+i \sin \theta|=$ $\sqrt{(\cos \theta-1)^{2}+\sin ^{2} \theta}=\sqrt{4 \sin ^{2} \frac{\theta}{2}}=2\left|\sin \frac{\theta}{2}\right| \leq|\theta|$.

Now, $|z-|z||=|z-1-(|z|-1)| \geq|z-1|-||z|-1| \therefore|z-1|-||z|-1| \leq|z-|z||$
$\Rightarrow|z-|z||=|r(\cos \theta+i \sin \theta)-r|=\sqrt{4 r^{2} \sin ^{2} \frac{\theta}{2}} \leq 2 r\left|\frac{\theta}{2}\right|=r|\theta|=|z||\arg (z)|$
$\Rightarrow|z-1|-||z|-1| \leq|z||\arg (z)| \Rightarrow|z-1| \leq||z|-1|+|z||\arg (z)|$.
226. Let $z=r(\cos \theta+i \sin \theta)$ then $\frac{1}{z}=\frac{1}{r}(\cos \theta-i \sin \theta)$. Given $\left|z+\frac{1}{z}\right|=a \Rightarrow \left\lvert\,\left(r+\frac{1}{r}\right) \cos \theta+\right.$ $\left.i\left(r-\frac{1}{r}\right) \sin \theta \right\rvert\,=a$
$\Rightarrow\left(r+\frac{1}{r}\right)^{2} \cos ^{2} \theta+\left(r-\frac{1}{r}\right)^{2} \sin ^{2} \theta=a^{2} \Rightarrow\left(r-\frac{1}{r}\right)=a^{2}-4 \cos ^{2} \theta$. Clearly, r will be greatest if $\cos \theta=0 \Rightarrow r^{2}-a r-1=0 \Rightarrow r=\frac{a \pm \sqrt{a^{2}+4}}{2}$. This also implies that z is a purely imaginary number.
227. $\left|z_{1}+z_{2}\right|^{2}<\left|z_{1}\right|^{2}+c\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\frac{1}{c}\left|z_{2}\right|^{2} \Rightarrow\left(z_{1}+z_{2}\right)\left(\overline{z_{1}}+\overline{z_{2}}\right)<\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\frac{c^{2}\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}}{c} \Rightarrow$ $z_{2} \overline{z_{1}}+z_{1} \overline{z_{2}}<\frac{1}{c}\left(c^{2}\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
$\Rightarrow\left(x_{2}+i y_{2}\right)\left(x_{1}-i y_{1}\right)+\left(x_{1}+i y_{1}\right)\left(x_{2}-i y_{2}\right)<\frac{1}{c}\left[c^{2}\left(x_{1}^{2}+y_{1}^{2}\right)+x_{2}^{2}+y_{2}^{2}\right] \Rightarrow\left(c x_{1}-x_{2}\right)^{2}+$ $\left(c y_{1}-y_{2}\right)^{2}>0$ which is true.
228. Given, $\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|=1 \Rightarrow\left|z_{1}-z_{2}\right|^{2}=\left|z_{1}+z_{2}\right|^{2} \Rightarrow\left(z_{1}-z_{2}\right)\left(\overline{z_{1}}-\overline{z_{2}}\right)=\left(z_{1}+z_{2}\right)\left(\overline{z_{1}}+\overline{z_{2}}\right)$
$\Rightarrow-z_{2} \overline{z_{1}}-z_{1} \overline{z_{2}}=z_{2} \overline{z_{1}}+z_{1} \overline{z_{2}} \Rightarrow z_{1} \overline{z_{2}}=-2 z_{2} \overline{z_{1}} \Rightarrow \overline{\left(\frac{z_{1}}{z_{2}}\right)}=-\frac{z_{1}}{z_{2}}$
$\Rightarrow \frac{z_{1}}{z_{2}}$ is purely imaginary $\Rightarrow \frac{i z_{1}}{z_{2}}$ is real, which we take as x.
$\frac{z_{1}+z_{2}}{z_{1}-z_{2}}=\frac{z_{1} / z_{2}+1}{z_{1} / z_{2}-1}=\frac{-i x+1}{-i x-1}=\frac{-1+x^{2}+2 i x}{1+x^{2}}$
If θ is the angle between the lines joining the origin to the points $z_{1}+z_{2}$ and $z_{1}-z_{2}$, then $\tan \theta=\left|\arg \left(\frac{z_{1}+z_{2}}{z_{1}-z_{2}}\right)\right|=\left|\frac{2 x}{x^{2}-1}\right|$.
229. Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right), z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$. Let $\sqrt{a^{2}+b^{2}}=r$. Let $a=$ $r \cos \alpha, b=r \cos \alpha$. Now $\left|a z_{1}+b z_{2}\right|^{2}=\mid r r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) \cos \alpha+r r_{2}\left(\cos \theta_{2}+\right.$ $\left.i \sin \theta_{2}\right)\left.\sin \alpha\right|^{2}$
$=r^{2}\left[r_{1}^{2} \cos ^{2} \alpha+r_{2}^{2} \sin ^{2} \alpha+2 r_{1} r_{2} \cos \alpha \sin \alpha \cos \left(\theta_{1}-\theta_{2}\right)\right]=\frac{r^{2}}{2}\left[r_{1}^{2}+r_{2}^{2}+\left(r_{1}^{2}-r_{2}^{2}\right) \cos 2 \alpha+\right.$ $\left.2 r_{2} r_{2} \cos \left(\theta_{1}-\theta_{2}\right) \sin 2 \alpha\right]$

Thus, $\left|a z_{1}+b z_{2}\right|^{2}=\frac{r^{2}}{2}[A+B \cos 2 \alpha+C \sin 2 \alpha] \Rightarrow \frac{2\left|a z_{1}+b z_{2}\right|^{2}}{r^{2}}[A+B \cos 2 \alpha+C \sin 2 \alpha]$, where $A=r_{1}^{2}+r_{2}^{2}, B=r_{1}^{2}-r_{2}^{2}$ and $C=2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)$.
Since $A-\sqrt{B^{2}+C^{2}} \leq A+B \cos 2 \alpha+C \sin 2 \alpha \leq A+\sqrt{B^{2}+C^{2}}$
$B^{2}+C^{2}=r_{1}^{4}+r_{2}^{4}-2 r_{1}^{2} r_{2}^{2}+4 r_{1}^{2} r_{2}^{2} \cos ^{2}\left(\theta_{1}-\theta_{2}\right)$.
$\left|z_{1}^{2}+z_{2}^{2}\right|=\left|r_{1}^{2}\left(\cos 2 \theta_{1}+i \sin 2 \theta_{1}\right)+r_{2}^{2}\left(\cos 2 \theta_{2}+i \sin 2 \theta_{2}\right)\right|=\sqrt{B^{2}+C^{2}}$. Hence proved.
230. Given $z=\frac{b+i c}{1+a} \Rightarrow i z=\frac{-c+i b}{1+a} \Rightarrow \frac{1+i z}{1-i z}=\frac{1+a-c+i b}{1+a+c-i b}$

Given, $a^{2}+b^{2}+c^{2}=1 \Rightarrow(a+i b)(a-i b)=(1+c)(1-c) \Rightarrow \frac{1+i z}{1-i z}=\frac{a+i b}{1+c}$.
231. Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$. L.H.S. $=\left|a z_{1}-b z_{2}\right|^{2}+\left|b z_{1}-a z_{2}\right|^{2}=\left(a x_{1}-b x_{2}\right)^{2}+$ $\left(a y_{1}-b y_{2}\right)^{2}+\left(b x_{1}-a x_{2}\right)^{2}+\left(b y_{1}-b y_{2}\right)^{2}$
$=\left(a^{2}+b^{2}\right)\left(x_{1}^{2}+y_{1}^{2}\right)+\left(a^{2}+b^{2}\right)\left(x_{2}^{2}+y_{2}^{2}\right)=\left(a^{2}+b^{2}\right)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)=$ R.H.S.
232. Let $\alpha=x_{1}+i y_{1}$ and $\beta=x_{2}+i y_{2}$. Then $|\alpha+\beta|^{2}=\left(x_{1}+x_{2}\right)^{2}+\left(y_{1}+y_{2}\right)^{2}=x_{1}^{2}+x_{2}^{2}+$ $y_{1}^{2}+y_{2}^{2}+2 x_{1} x_{2}+2 y_{1} y_{2}$.
$|\alpha|^{2}=x_{1}^{2}+y_{1}^{2},|\beta|^{2}=x_{2}^{2}+y_{2}^{2}, \mathfrak{R}(\alpha \bar{\beta})=x_{1} x_{2}+y_{1} y_{2}$ and $\mathfrak{R}(\bar{\alpha} \beta)=x_{1} x_{2}+y_{1} y_{2}$. Now it is trivial to prove the equality.
233. $\left|1-\overline{z_{1}} z_{2}\right|^{2}-\left|z_{1}-z_{2}\right|^{2}=\left(1-\overline{z_{1}} z_{2}\right)\left(1-z_{1} \overline{z_{2}}\right)-\left(z_{1}-z_{2}\right)\left(\overline{z_{1}}-\overline{z_{2}}\right)=\left(1-\overline{z_{1}} z_{2}-z_{1} \overline{z_{2}}+\right.$ $\left.\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}\right)-\left(\left|z_{1}\right|^{2}-\overline{z_{1}} z_{2}-z_{1} \overline{z_{2}}+\left|z_{2}\right|^{2}\right)=1-\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}+\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}=\left(1-\left|z_{1}\right|^{2}\right)(1-$ $\left.\left|z_{2}\right|^{2}\right)=$ R.H.S.
234. Consider two complex numbers $z_{1}=a_{1}+i b_{1}$ and $z_{2}=a_{2}+i b_{2}$. Now we have to prove $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$ which can be further extended to prove the result.
$\Rightarrow \sqrt{\left(a_{1}+a_{2}\right)^{2}+\left(b_{2}+b_{2}\right)^{2}} \leq \sqrt{a_{1}^{2}+b_{1}^{2}}+\sqrt{a_{2}^{2}+b_{2}^{2}}$.
Squaring both sides and simplifying
$\Rightarrow a_{1} a_{2}+b_{1} b_{2} \leq \sqrt{\left(a_{1}^{2}+b_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}\right)} \Rightarrow\left(a_{1} a_{2}+b_{1} b_{2}\right)^{2}-\left(a_{1}^{2}+b_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}\right) \leq 0 \Rightarrow$ $-\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2} \leq 0$.
235. Given, $\left|\overline{\overline{z_{1}}-2 \overline{z_{2}}}\right| \frac{2-z_{1} \overline{z_{2}}}{}|=1 \Rightarrow| \overline{z_{1}}-\left.2 \overline{z_{2}}\right|^{2}=\left|2-z_{1} \overline{z_{2}}\right|^{2}$
$\Rightarrow\left(\overline{z_{1}}-2 \overline{z_{2}}\right)\left(z_{1}-2 z_{2}\right)=\left(2-z_{1} \overline{z_{2}}\right)\left(2-\overline{z_{1}} z_{2}\right) \Rightarrow\left|z_{1}\right|^{2}-2 z_{1} \overline{z_{2}}-2 \overline{z_{1}} z_{2}+4\left|z_{2}\right|^{2}=$ $4-2 z_{1} \overline{z_{2}}-2 \overline{z_{1}} z_{2}+\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}$
$\Rightarrow\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}-4\left|z_{2}\right|^{2}-\left|z_{1}\right|^{2}-4=0 \Rightarrow\left|z_{2}\right|=2 \quad \because\left|z_{1}\right| \neq 1$.
236. $\left|\frac{z_{1}+z_{2}}{2}+\sqrt{z_{1} z_{2}}\right|+\left|\frac{z_{1}+z_{2}}{2}-\sqrt{z_{1} z_{2}}\right|$
$=\frac{1}{2}\left|\left(\sqrt{z_{1}}+\sqrt{z_{2}}\right)^{2}\right|+\frac{1}{2}\left|\left(\sqrt{z_{1}}-\sqrt{z_{2}}\right)^{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$
237. We have proven that $\left|a+\sqrt{a^{2}-b^{2}}\right|+\left|a-\sqrt{a^{2}-b^{2}}\right|=|a+b|+|a-b|$. Substituting $a=\beta$ and $b=\sqrt{\alpha \gamma}$ we have

$$
\begin{aligned}
& |\beta+\sqrt{\alpha \gamma}|+|\beta-\sqrt{\alpha \gamma}|=|\alpha|\left(\left|\frac{\beta}{\alpha}+\sqrt{\frac{\gamma}{\alpha}}\right|+\left|\frac{\beta}{\alpha}-\sqrt{\frac{\gamma}{\alpha}}\right|\right) \\
& =|\alpha|\left(\left|-z_{1}-z_{2}+\sqrt{z_{1} z_{2}}\right|+\left|-z_{1}-z_{2}-\sqrt{z_{1} z_{2}}\right|\right)=|\alpha|\left(\left|z_{1}\right|+\left|z_{2}\right|\right)
\end{aligned}
$$

238. We have $|a|=1 \Rightarrow|a|^{2}=1 \Rightarrow a \bar{a}=1 \Rightarrow \bar{a}=\frac{1}{a}$. Thus, $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\bar{a}+\bar{b}+\bar{c}=$ $0[\because a+b+c=0]$
239. $|z+4| \leq 3 \Rightarrow-3 \leq z+4 \leq 4 \Rightarrow 0 \leq z+1 \leq 6$.
240. We have to prove that $\left(\left|z_{1}\right|+\left|z_{2}\right|\right)\left|\frac{z_{1}}{\left|z_{1}\right|}+\frac{z_{2}}{\left|z_{2}\right|}\right| \leq 2\left|z_{1}+z_{2}\right|$. Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$. Then
$\left(\left|z_{1}\right|+\left|z_{2}\right|\right)\left|\frac{z_{1}}{\left|z_{1}\right|}+\frac{z_{2}}{\left|z_{2}\right|}\right|=\left(r_{1}+r_{2}\right)\left|\left(\cos \theta_{1}+\cos \theta_{2}\right)+i\left(\sin \theta_{1}+\sin \theta_{2}\right)\right|=\left(r_{1}+\right.$ $\left.r_{2}\right) \sqrt{2+2 \cos \left(\theta_{1}-\theta_{2}\right)}$

Also, $4\left|z_{1}+z_{2}\right|^{2}=4\left[\left(r_{1} \cos \theta_{1}+r_{2} \cos \theta_{2}\right)^{2}+\left(r_{1} \sin \theta_{1}+r_{2} \sin \theta_{2}\right)^{2}\right]=4\left[r_{1}^{2}+r_{2}^{2}+\right.$ $\left.r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)\right]$ and squaring L.H.S. we have $2\left(r_{1}+r_{2}\right)^{2}\left[1+\cos \left(\theta_{1}-\theta_{2}\right)\right]^{2}$. Clearly, L.H.S. \leq R.H.S.
241. Given equation is $z^{2}+a z+b=0$. Let p, q are two of its roots. Then we have $p+q=-a$ and $p q=b$. Taking modulus of both we have $|p+q|=|a|$ and $|p q|=b$. Now it is required that $|p|=|q|=1$. Therefore we have $|p+q| \leq|p|+|q|=2 \therefore|a| \leq 2$. Similarly, $|b|=$ $|p q|=|p||q|=1$. Since p, q have unit modulii, we can have them as $p=\cos \theta_{1}+i \sin \theta_{1}$ and $q=\cos \theta_{2}+i \sin \theta_{2}$.
$\arg (b)=\arg (p q)=\arg \left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right)=\theta_{1}+\theta_{2}$
$\arg (a)=\arg (p+q)=\arg \left[\left(\cos \theta_{1}+\cos \theta_{2}\right)+i\left(\sin \theta_{1}+\sin \theta_{2}\right)\right]=\arg \left[\left(\cos ^{2} \frac{\theta_{1}}{2}+i^{2} \sin \frac{\theta_{1}}{2}+\right.\right.$ $\left.\left.2 i \sin \frac{\theta_{1}}{2} \cos \frac{\theta_{1}}{2}\right)+\left(\cos ^{2} \frac{\theta_{2}}{2}+i^{2} \sin \frac{\theta_{2}}{2}+2 i \sin \frac{\theta_{2}}{2} \cos \frac{\theta_{2}}{2}\right)\right]$
$=\arg \left[\cos \frac{\theta_{1}+\theta_{2}}{2}+i \sin \frac{\theta_{1}+\theta_{2}}{2}\right]=\frac{\theta_{1}+\theta_{2}}{2}$ and hence $\arg (b)=2 \arg (a)$.
242. Let $z=x+i y$. First we consider first two inequalities $|z| \leq|\Re(z)|+|\mathfrak{I}(z)| \Rightarrow$ $\sqrt{x^{2}+y^{2}} \leq x+y$. Squaring, we have $x^{2}+y^{2} \leq x^{2}+y^{2}+2 x y \Rightarrow 2 x y \geq 0$,
which is true. Now we consider last two inequalities, $|\mathfrak{R}(z)|+|\mathfrak{I}(z)| \leq \sqrt{2}|z| \Rightarrow x+y \leq$ $\sqrt{2\left(x^{2}+y^{2}\right)}$. Squaring, we have $x^{2}+y^{2}+2 x y \leq 2\left(x^{2}+y^{2}\right) \Rightarrow(x-y)^{2} \geq 0$, which is also true.
243. $\left|z-\frac{4}{z}\right|=2 \Rightarrow|z|-\frac{4}{|z|} \geq 2 \Rightarrow|z|^{2}-2|z|-4 \geq 0$. The greatest root of this equation is $\sqrt{5}+1$. Hence proven.
244. Since $\alpha, \beta, \gamma, \delta$ are roots of the equation. $\therefore a(x-\alpha)(x-\beta)(x-\gamma)(x-\delta)=a x^{4}+$ $b x^{3}+c x^{2}+d x+e$. Substituting $x=i$, we get following
$a(i-\alpha)(i-\beta)(i-\gamma)(i-\delta)=a i^{4}+b i^{3}+c i^{2}+d i+e \Rightarrow a(1+i \alpha)(1+i \beta)(1+i \gamma)(1+$ $i \delta)=a-i b-c+i d+e$.

Taking modulus and squaring we get our desired result.
245. $\because \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are the roots of the given equation. $\therefore\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right)=$ $x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}=0$.

Substituting $x=i$, we get following $\left(i-\alpha_{1}\right)\left(i-\alpha_{2}\right) \cdots\left(i-\alpha_{n}\right)=i^{n}+a_{1} i^{n-1}+a_{2} i^{n-2}+$ $\ldots+a_{n-1} i+a_{n}$.

Taking modulus and squaring we get our desired result.
246. Let $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=R . \therefore$ Origin is the circumcenter of triangle. Since triangle is also equilateral circumcenter and centroid coincide. Therefore, origin is also centroid. Thus,

$$
\frac{z_{1}+z_{2}+z_{3}}{3}=0 \Rightarrow z_{1}+z_{2}+z_{3}=0
$$

247. $z_{1}+z_{2}+z_{3}=0$ implies centroid of the triangle is the origin. Circumcenter is also origin as Z_{i} lies on the circle $|z|=1$. Hence, circumcenter is same as centroid making the triangle an equilateral triangle having circumcircle with unit radius.
248. Since the triangle is equilateral therefore the circumcenter and centroid will be same i.e. $z_{0}=\frac{z_{1}+z_{2}+z_{3}}{3}$. Also for equilateral triangle, $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}$.

Squaring the first equation $9 z_{0}^{2}=z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+2\left(z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{2}\right)=z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+$ $2\left(z_{1}^{2}+z_{2}^{2}+z_{3}^{2}\right) \Rightarrow z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=3 z_{0}^{2}$.
249. Since z_{1}, z_{2} and origin form an equilateral triangle we have $z_{1}^{2}+z_{2}^{2}+0^{2}-z_{1} z_{2}-z_{2} .0-$ $z_{1} .0=0$. Hence, proven.
250. From previous probelm z_{1}, z_{2} and origin will form a triangle if $z_{1}^{2}+z_{2}^{2}-z_{1} z_{2}=0$. Therefore, $\left(z_{1}+z_{2}\right)^{2}=3 z_{1} z_{2} \Rightarrow a^{2}=3 b$.
251. Since z_{1}, z_{2}, z_{3} are roots of the equation $z^{3}+3 \alpha z^{2}+3 \beta z+\gamma=0 \Rightarrow z_{1}+z_{2}+z_{3}=$ $-3 \alpha, z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}=3 \beta$ and $z_{1} z_{2} z_{3}=-\gamma$.

Centroid is given by $\frac{z_{1}+z_{2}+z_{3}}{3}=-\alpha$. Triangle will be equilateral if $z_{1}^{2}+z_{2}^{2}+z_{3}^{3}=z_{1} z_{2}+$ $z_{2} z_{3}+z_{3} z_{1} \Rightarrow\left(z_{1}+z_{2}+z_{3}\right)^{2}=3\left(z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right) \Rightarrow \alpha^{2}=\beta$.
252. Given $2 z_{2}=z_{1}+z_{3}$. Clearly, from section formula we can deduce that z_{2} divides line segment joining z_{1} and z_{3} in two equal segments hence the complex numbers are collinear.
253. If z_{1}, z_{2}, z_{3} are collinear then either z_{2} divides $z_{1} z_{3}$ internally/externally or z_{3} divides $z_{1} z_{2}$ internally/externally. Now we can apply the condition for collinearity i.e. $\left|\begin{array}{ccc}z_{1} & z_{2} \\ \overline{z_{1}} & \frac{z_{3}}{z_{2}} & \overline{z_{3}} \\ 1 & 1 & 1\end{array}\right|=0$ and hence we can show desired conditions.
254. z represents the ring between the concentric circles whose center is at $(3,4 i)$ having radii 1 and 2 .
255. Let $z=x+i y \Rightarrow|z|^{2}=x^{2}+y^{2},|z-1|^{2}=(x-1)^{2}+y^{2},|z+1|^{2}=(x+1)^{2}+y^{2}$. From given inequailty $|z+1|^{2}=16+|z-1|^{2}-8|z-1| \Rightarrow 4 x=16-8|z-1| \Rightarrow 4|z-1|^{2}=$ $(4-x)^{2} \Rightarrow 3 x^{2}+4 y^{2}=12$, which is an equation of an ellipse.
256. Let $z=x+i y$, then $x=t+5 \Rightarrow x-5=t$ and $y=\sqrt{4-t^{2}} \Rightarrow y^{2}=4-t^{2} \Rightarrow$ $(x-5)^{2}+y^{2}=4$, which is a circle with center $(5,0)$ and radius 2.
257. Let $z=x+i y$, then $\frac{z^{2}}{z-1}=\frac{\left(x^{2}-y^{2}+2 i x y\right)[(x-1)-i y]}{(x-1)^{2}+y^{2}}$. Since it is real, we can equate the imaginary part to zero.
$\Rightarrow y\left(y^{2}-x^{2}\right)+2 x^{2} y-2 x y=0 \Rightarrow y=0$ or $x^{2}+y^{2}-2 x=0 \Rightarrow(x-1)^{2}+y^{2}=1$. However, $y \neq 0$ else z won't remain a complex number. $\Rightarrow x^{+} y^{2}-2 x=(x-1)^{2}+y^{2}=1$, which represents a circle with center at $(1,0)$ and unit radius.
258. Let $z=x+i y$, then $\left|z^{2}-1\right|=|z|^{2}+1 \Rightarrow\left(x^{2}-y^{2}-1\right)^{+} 4 x^{2} y^{2}=\left(x^{2}+y^{2}+1\right)^{2} \Rightarrow x=0$. Hence, locus of z is a straight line specifically imginary axis.
259. Let $z=x+i y$ then $\frac{y}{x} \geq \tan \frac{\pi}{3} \Rightarrow y \geq \sqrt{3} x$. Similarly, $\frac{y}{x} \leq \tan \frac{3 \pi}{2}=-\infty$.

This represents the set of straight lines whose slope is greater than $\sqrt{3}$ and less than or equal to $-\infty$.
260. Let $z=x+i y$, then $\arg \left(\frac{z-2}{z+2}\right)=\frac{\pi}{3} \Rightarrow \arg \left(\frac{x-2+i y}{x+2+i y}\right)=\frac{\pi}{3}$ $\Rightarrow \arg \left(\frac{x^{2}+y^{2}-4+4 i y}{(x+2)^{2}+y^{2}}\right)=\frac{\pi}{3} \Rightarrow \frac{4 y}{x^{2}+y^{2}-4}=\sqrt{3}$, which is equation of a circle.
261. Let $z=x+i y$. Given, $\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{2} \Rightarrow \arg \left(\frac{(x-1)+i y}{(x+1)+i y}\right)=\frac{\pi}{2} \Rightarrow \frac{2 y}{x^{2}+y^{2}-1}=\infty$.

The above equation implies $x^{2}+y^{2}-1=0$ and $y>0$ which is circle at $(0,0)$ with unit circle above x-axis. The points $(-1,0)$ and $(1,0)$ are excluded because that will make the above equation indeterminate.
262. $\log _{\sqrt{3}} \frac{|z|^{2}-|z|+1}{2+|z|}<2 \Rightarrow \frac{|z|^{2}-|z|+1}{2+|z|}<(\sqrt{3})^{2} \Rightarrow|z|^{2}-4|z|-5<0 \Rightarrow|z|<5$.
263. Clearly A is $(1,0)$ or $(-1,0)$. Let A is $(1,0)$. Then $z=\cos 0^{\circ}+i \sin 0^{\circ}$. Clearly, B and C would be $\cos 120^{\circ}+i \sin 120^{\circ}$ and $\cos 240^{\circ}+i \sin 240^{\circ}$. Similarly, B and C can be found if A is $(-1,0)$.
264. Let z represent A, then $\frac{z-(2-i)}{1+i-(2-i)}=\frac{A M}{M D} e^{\frac{2 \pi i}{2}} \Rightarrow z=(2-i)+\frac{i}{2}(-1+2 i) \Rightarrow z=1-\frac{3}{2} i$ or $3-\frac{i}{2}$.
265. $\frac{z_{1}-z_{2}}{z_{3}-z_{2}}=r^{\frac{i \pi}{2}}=i \Rightarrow z_{3}=-i z_{1}+z_{2}(1+i)$. Similarly, z_{4} can be found.
266. $z_{1}=2\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$. Therefore, $z_{2}=2\left(\cos 180^{\circ}+i \sin 180^{\circ}\right)=-2$ and $z_{3}=2\left(\cos 300^{\circ}+i \sin 300^{\circ}\right)$.
267. We know that three vertices represent an equilateral triangle if $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}-z_{1} z_{2}-$ $z_{2} z_{3}-z_{1} z_{3}=0$. Substituting the respective values, we get
$a^{2}-1+2 a i+1-b^{2}+2 b i-a+b-a b i-i=0 \Rightarrow a^{2}-b^{2}-a+b=0 \Rightarrow(a-b)(a+b+1)=$ 0 . So either $a=b$ or $a+b=-1$ but if we choose $a+b=-1$ then the other part leads us to $a b=3$ which is not possible.

Choosing $a=b$, the imaginary part becomes $2 a+2 b-a b-1=0 \Rightarrow a=2 \pm \sqrt{3}$. But $a=2+\sqrt{3}$ does not make triangle equilateral. So $a=b=2-\sqrt{3}$.
268. Let $O=z$ represent center of the sqsuare then $z=\frac{A+C}{2} \Rightarrow C=4+0 i=4$. $A C=$ $A B \cdot \sqrt{2} \cdot e^{\pi / 4} \Rightarrow B=1+2 i$ and $A D=A B \cdot e^{\pi / 2}=6+3 i$.
269. Let O be the origin and A_{1} the vertex z_{1}. Let the vertex adjacent to A_{1} be A_{2}. Then $z_{2}=$ $z_{1} e^{2 \pi i / n} \because \angle A_{1} O A_{2}=\frac{2 \pi}{n}$. Similarly, $z_{3}, z_{4}, \ldots, z_{n}$ are other vertices in order, then $z_{3}=$ $e^{4 \pi i / n}, z_{4}=e^{6 \pi i / n}, \ldots$. Thus, all vertices are given by $z_{r+1}=z_{1} e^{2 \pi r i / n}=z_{1}(\cos 2 r \pi / n+$ $i \sin 2 r \pi / n), \ldots$, where $r=1,2, \ldots, n-1$.
270. z_{1}, z_{2}, z_{3} are collinear if $\left|\begin{array}{lll}z_{1} & \overline{z_{1}} & 1 \\ z_{2} & \overline{z_{2}} & 1 \\ z_{3} & \overline{z_{3}} & 1\end{array}\right|=0$. Substituting a, b, c in this and expnading the determinant it is trivial to obtain the given condition.
271. $P A^{2}=4 P B^{2} \Rightarrow|z-6 i|^{2}=4|z-3|^{2} \Rightarrow x^{2}+(y-6)^{2}=4\left[(x-3)^{2}+y^{2}\right] \Rightarrow x^{2}+y^{2}-$ $8 x+4 y=0$, which represents a circle with center at $(4-2)$ and radius $\sqrt{20}$. $x^{2}+y^{2}-8 x+4 y=0 \Rightarrow x^{2}+y^{2}=4(2 x)+2 i(2 i y) \Rightarrow|z|^{2}=4(z+\bar{z})+2 i(z-\bar{z})=$ $(4+2 i) z+(4-2 i) \bar{z}$.
272. The diagram is given below:

Let three non-collinear points be $A\left(z_{1}\right), B\left(z_{2}\right)$ and $C\left(z_{3}\right)$. Let $P(x)$ be any point on the circle.

Then either $\angle A C B=\angle A P B$ (when they are in the same segment) or $\angle A C B+\angle A P B=\pi$ (when they are in the opposite segment).

$$
\begin{aligned}
& \arg \left(\frac{z_{3}-z_{2}}{z_{3}-z_{1}}\right)-\arg \left(\frac{z-z_{2}}{z-z_{1}}\right)=0 \text { or } \arg \left(\frac{z_{3}-z_{2}}{z_{3}-z_{1}}\right)+ \\
& \arg \left(\frac{z-z_{1}}{z-z_{2}}\right)=\pi \\
& \arg \left[\left(\frac{z_{3}-z_{2}}{z_{3}-z_{1}}\right)\left(\frac{z-z_{1}}{z-z_{2}}\right)\right]=0 \text { or } \arg \left[\left(\frac{z_{3}-z_{2}}{z_{3}-z_{1}}\right)\left(\frac{z-z_{1}}{z-z_{2}}\right)\right]= \\
& \pi
\end{aligned}
$$

In any case, we get $\frac{\left(z_{3}-z_{2}\right)}{\left(z_{3}-z_{1}\right)} \frac{\left(z-z_{1}\right)}{\left(z-z_{2}\right)}$ is purely real. Hence, proved.
273. Following from previous problem we have one equation for the condition for the four vertices to be cyclic. Also, sum of all four angles of the quadrilateral is equal to be 2π. From these two equations, the results can be deduced.
274. Consider the following diagram:

$\triangle A B C$ and $\triangle P Q R$ will be similar if all their angles are equal and ratios of sides as well.

$$
\begin{aligned}
& \arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)=\arg \left(\frac{z_{3}^{\prime}-z_{1}^{\prime}}{z_{2}-z_{1}^{\prime}}\right) \\
& \frac{A B}{P Q}=\frac{A C}{P R} \text { or } \frac{A C}{A B}=\frac{P R}{P Q} \text { or } \frac{z_{3}-z_{1}}{z_{2}-z_{1}}=\frac{z_{3}^{\prime}-z_{1}^{\prime}}{z_{2}^{\prime}-z_{1}^{\prime}}
\end{aligned}
$$

Simplifying these two equations gives us our determinant.
275. From these two equations we have $r=\frac{c-a}{b-a}$ and $r=\frac{\omega-u}{v-u}$. Equating these two equations and taking modulus and argument, it follows from the previous problem that the two triangles are similar.
276. We know that points on a perpendicular bisector is equidistant from the two points of the line to which it is perperndicular bisector.
$\Rightarrow\left|z-z_{1}\right|=\left|z-z_{2}\right| \Rightarrow\left|z-z_{1}\right|^{2}=\left|z-z_{2}\right|^{2} \Rightarrow\left(z-z_{1}\right)\left(\bar{z}-\overline{z_{1}}\right)=\left(z-z_{2}\right)\left(\bar{z}-\overline{z_{2}}\right)$, which can be written in the form of $\bar{a} z+a \bar{z}+b=0$, which is equation of a straight line.
277. Mid-point of such a diameter is $\frac{z_{1}+z_{2}}{2}$. Let P be a point lying on this circle, which, is represented by complex number z. Thus, the equation of circle is $\left|z-\frac{z_{1}+z_{2}}{2}\right|=\left|z_{1}-\frac{z_{1}+z_{2}}{2}\right|$ or $\left|z-\frac{z_{1}+z_{2}}{2}\right|=\left|z_{2}-\frac{z_{1}+z_{2}}{2}\right|$. Square and simplify to arrive at the equation.
278. The equation can be written as $\left|z-z_{1}\right|=c\left|z-z_{2}\right|$, which, when substituted with $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ gives following
$\left|\left(x-x_{1}\right)+i\left(y-y_{1}\right)\right|=c\left|\left(x-x_{2}\right)+i\left(y-y_{2}\right)\right| \Rightarrow\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}=c^{2}\left\{\left(x-x_{2}\right)^{2}+\right.$ $\left.\left(y-y_{2}\right)^{2}\right\}$, which is equation of a circle.
279. Given, $|z|=1 \Rightarrow 2 z \bar{z}=2 \Rightarrow \frac{2}{z}=2 \bar{z}$ which gives us a circle.
280. Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$. Then L.H.S. $=\left|z_{1}+z_{2}\right|$ $\Rightarrow\left|z_{1}+z_{2}\right|^{2}=r_{1}^{2}+r_{2}^{2}+2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)$.

Similarly, $\left(\left|z_{1}\right|+\left|z_{1}\right|\right)^{2}=\left(r_{1}^{2}+r_{2}^{2}+2 r_{1} r_{2}\right)$.
Thus, $\cos \left(\theta_{1}-\theta_{2}\right)=0 \Rightarrow \arg \left(z_{1}\right)-\arg \left(z_{2}\right)=2 n \pi$.
281. The diagram is given below:

The equation $|z-2+2 i|=1$ represents a circle with center at $(2,-2 i)$ with unity radius. Since, the line between $(2,-2 i)$ and origin will make an angle of 45°. Therefore, P is $2-\frac{1}{\sqrt{2}}+$ $i\left(\frac{1}{\sqrt{2}}-2\right)$.
282. The diagram is given below:

Given equation is a circle with center $(0,5)$ and radius $3 \therefore O C=$ $5, C P=3$.

The point having least argument will have a tangent from origin which makes $\triangle O C P$ right angle triangle.
$\Rightarrow C P=4 \Rightarrow \tan \theta=\frac{4}{3}$. Therefore, the point would be $4(\cos \theta+$ $i \sin \theta)=\frac{12}{5}+\frac{16 i}{5}$.
283. From given equation, $\left(\frac{|z-1|+4}{3|z-1|-2}\right)<\frac{1}{2}$
$\Rightarrow|z-1|>10$. This represents area which lies outside a circle with center at $(1,0)$ and radius 10 .
284. Let $z=x+i y$ then the equation becomes $x^{2}-y^{2}+x+1+i y(1+2 x)=0$. Clearly, imaginary part has to be zero i.e. either $y=0$ or $x=-\frac{1}{2}$. So, it is real and positive for all points on the x-axis. When, $x=-\frac{1}{2}$ the real part becomes $y^{2}=\frac{3}{4}$. Thus, for points $x=-\frac{1}{2}$ and $-\frac{\sqrt{3}}{2}<y<\frac{\sqrt{3}}{2}$ the required condition is satisfied.
285. First equation represents a circle whose center is at $(0, i a)$ and radius equal to $\sqrt{a+4}$. The second equation represents interior of a circle with center at $(2,0)$ and radius unity. Now, for the possibility of existence of z the two circles must intersect each other.
$\Rightarrow \sqrt{a^{2}+4} \leq a+4+1 \Rightarrow a \geq-\frac{21}{10}$ and $a+4-1 \leq \sqrt{a^{2}+4} \Rightarrow a \leq-\frac{5}{6}$. Combining these two gives us the range for values of a.
286. Let $z=x+i y$ then $|z+\sqrt{2}|=\sqrt{x^{2}+2 \sqrt{2} x+2+y^{2}}=t^{2}-3 t+2$ and $|z+i \sqrt{2}|=$ $\sqrt{x^{2}+y^{2}+2 \sqrt{2} y+2}<t^{2}$.

Because $|z+\sqrt{2}|>0 \Rightarrow t^{2}-3 t+2>0 \Rightarrow t<1, t>2$ and $t>0$. Both the equations are circles so they must intersect for t to exist. The distance between centers i.e. $(-\sqrt{2}, 0)$ and $(0,-i \sqrt{2})$ is 2 .
$\Rightarrow r_{1}+r_{2}>2 \Rightarrow 2 t^{2}-3 t+2>2 \Rightarrow t(2 t-3)>0 \Rightarrow t<0, t>\frac{3}{2}$ and $r_{1}<r_{2}+2 \Rightarrow$ $t^{2}-2 t+2<t^{2}+2 \Rightarrow t>0$. Combining all the inequalities, $t>2$.
287. Let $z=x+i y$ then $\sqrt{x^{2}+8 x+16+y^{2}}=\sqrt{a^{2}-12 a+28}$ and $\sqrt{x^{2}-8 \sqrt{3} x+48+y^{2}}<$ 1.

Becaise $|z+4|>0 \Rightarrow a^{2}-12 a+28>0 \Rightarrow a>6+2 \sqrt{2}, a<6-2 \sqrt{2}$ and $a>0$. Both the equations are circles so they must intersect for a to exist. The distance between centers i.e. $(0,-4 i)$ and $(4 \sqrt{3}, 0)$ is 8 .
$\Rightarrow r_{1}+r_{2}>8 \Rightarrow \sqrt{a^{2}-12 a+28}+a>8 \Rightarrow a>9$ and $r_{1}<r_{2}+8 \Rightarrow a<-\frac{9}{7}$. Combining all these inequalities we have $a>9$.
288. Let $z=x+i y \Rightarrow(1+i) z^{2}=(1+i)\left(x^{2}-y^{2}+2 i x y\right) \Rightarrow \Re\left[(1+i) z^{2}\right]=x^{2}-y^{2}-2 x y>$ $0 \Rightarrow x$ has two limits $y(1 \pm \sqrt{2})$.
289. Let $z=x+i y$ then $2 z=|z|+2 i \Rightarrow 2(x+i y)=\sqrt{x^{2}+y^{2}}+2 i y$. Equating real and imaginary parts, $y=1,2 x=\sqrt{x^{2}+1}$. Squaring $4 x^{2}=x^{2}+1 \Rightarrow x= \pm \frac{1}{\sqrt{3}}$.
290. We have earlier proven that if there are two non-parallel lines cutting a circle at a, b and c, d then their point of intersection is given by $\frac{a^{-1}+b^{-1}-c^{-1}-d^{-1}}{a^{-1} b^{-1}-c^{-1} d^{-1}}$. Now if c and d coincide then that line will become a tangent. So putting $d=c$ we have $z=\frac{a^{-1}+b^{-1}-2 c^{-1}}{a^{-1} b^{-1}-c^{-2}}$.
291. Given $a_{1} z^{3}+a_{2} z^{2}+a_{3} z+a_{4}=3 \Rightarrow\left|a_{1} z^{3}+a_{2} z^{2}+a_{3} z+a_{4}\right|=3 \Rightarrow\left|a_{1} z^{3}\right|+\left|a_{2} z^{2}\right|+$ $\left|a_{3} z\right|+\left|a_{4}\right| \geq 3$
$\Rightarrow\left|a_{1}\right|\left|z^{3}\right|+\left|a_{2}\right|\left|z^{2}\right|+\left|a_{3}\right||z|+\left|a_{4}\right| \geq 3 \Rightarrow|z|^{3}+|z|^{2}+|z|+1 \geq 3\left[\because\left|a_{i}\right| \leq 1\right]$
$\Rightarrow 1+|z|+|z|^{2}+|z|^{3}+\cdots$ to $\infty>3 \Rightarrow \frac{1}{1-|z|}>3 \Rightarrow|z|>\frac{2}{3}$, which shows that roots lie outside the circle with center origin and radius $\frac{2}{3}$.
292. The diagram is given below:

Given, $b_{1} z_{1}+b_{3} z_{3}=-\left(b_{2} z_{2}+b_{4} z_{4}\right)$ and $b_{1}+b_{3}=-\left(b_{2}+\right.$ $\left.b_{4}\right) \therefore \frac{b_{1} z_{1}+b_{3} z_{3}}{b_{1}+b_{3}}=\frac{b_{2} z_{2}+b_{4} z_{4}}{b_{2}+b_{4}}$.

This means that the point dividing $A C$ in the ratio $b_{3}: b_{1}$ also divides $B C$ in the ratio $b_{4}: b_{2}$. Let this point be O. Let $b_{1} b_{2}\left|z_{1}-z_{2}\right|^{2}=$ $b_{3} b_{4}\left|z_{3}-z_{4}\right|^{2}$
$\Rightarrow b_{1} b_{2}\left(b_{3}^{2}+b_{4}^{2}-2 b_{3} b_{4} \cos \alpha\right)=b_{3} b_{4}\left(b_{2}^{2}+b_{1}^{2}-2 b_{1} b_{2} \cos \alpha\right)$
$\Rightarrow \frac{b_{3}}{b_{4}}+\frac{b_{4}}{b_{3}}=\frac{b_{1}}{b_{2}}+\frac{b_{2}}{b_{1}} \Rightarrow \frac{b_{3}}{b_{4}}=\frac{b_{1}}{b_{2}}$ or $\frac{b_{2}}{b_{1}}$
If $\frac{b_{3}}{b_{4}}=\frac{b_{1}}{b_{2}}$, then $\frac{b_{3}}{b_{1}}=\frac{b_{4}}{b_{1}} \Rightarrow \frac{A O}{C O}=\frac{B O}{D O}$
$\Rightarrow \triangle A O B \sim \triangle B C O \Rightarrow \angle B A O=\angle C D O \Rightarrow A B \| C D$ which is not possible.
If $\frac{b_{3}}{b_{4}}=\frac{b_{2}}{b_{1}}$ then $\frac{A O}{B O}=\frac{D O}{C O} \Rightarrow \triangle A D O \sim \triangle B C O \Rightarrow \angle D A O=\angle O B C \Rightarrow A, B, C, D$ are concyclic.
293. The diagram is given below:

294. Let $a=\alpha+i \beta$ and $z=x+i y$, then $\bar{a} z+a \bar{z}=0$ becomes as $\alpha x+\beta y=0$ or $y=\left(\frac{-\alpha}{\beta}\right) x$. Its reflection in the x -axis is $y=\frac{\alpha}{\beta} x$ or $\alpha x-\beta y=0 \Rightarrow\left(\frac{a+\bar{a}}{2}\right)\left(\frac{z+\bar{z}}{2}\right)-\left(\frac{a-\bar{a}}{2}\right)\left(\frac{z-\bar{z}}{2}\right)=0$ $\Rightarrow a z+\overline{a z}=0$
295. We have $z=\frac{\alpha+\beta t}{\gamma+\delta t} \Rightarrow t=\frac{\alpha-\gamma z}{\delta z-\beta}$. As t is real, $\frac{\alpha-\gamma z}{\delta z-\beta}=\frac{\bar{\alpha}-\overline{\gamma z}}{\overline{\delta z}-\bar{\beta}}$

$$
\begin{aligned}
& \Rightarrow \Rightarrow(\alpha-\gamma z)(\overline{\delta z}-\bar{\beta})=(\bar{\alpha}-\overline{\gamma z})(\delta z-\beta) \\
& \Rightarrow(\bar{\gamma} \delta-\gamma \bar{\delta}) z \bar{z}+(\gamma \bar{\beta}-\bar{\alpha} \delta) z+(\alpha \bar{\delta}-\beta \bar{\gamma}) \bar{z}=(\alpha \bar{\beta}-\bar{\alpha} \beta)
\end{aligned}
$$

Since $\frac{\gamma}{\delta}$ is real, $\frac{\gamma}{\delta}=\frac{\bar{\gamma}}{\delta}$ or $\gamma \bar{\delta}-\delta \bar{\gamma}=0$.
Thus, $\bar{a} z+a \bar{z}=c$, where $a=i(\alpha \bar{\delta})-\beta \bar{\gamma}$ and $c=i(\bar{\alpha} \beta-\alpha \bar{\beta})$.
Note that $a \neq 0$ for if $a=0$ then $\alpha \bar{\delta}-\beta \bar{\gamma}=0 \Rightarrow \frac{\alpha}{\beta}=\frac{\bar{\gamma}}{\bar{\delta}}=\frac{\gamma}{\delta} \Rightarrow \alpha \delta-\beta \gamma=0$, which is against the hypothesis.

Also, note that $c=i(\bar{\alpha} \beta-\alpha \bar{\beta})$ is a purely real number. Thus, $z=\frac{\alpha+\beta t}{\gamma+\delta t}$ represents a straight line.
296. The solutions are given below:
i. \quad L.H.S. $=\left(3+3 \omega+5 \omega^{2}\right)^{6}-\left(2+6 \omega+2 \omega^{2}\right)^{3}=\left[\left(3+3 \omega+3 \omega^{2}+2 \omega^{2}\right)^{6}-(2+2 \omega+\right.$ $\left.\left.2 \omega^{2}+4 \omega\right)^{3}\right]=\left[\left\{3\left(1+\omega+\omega^{2}\right)+2 \omega^{2}\right\}^{6}\right]-\left[\left\{2\left(1+\omega+\omega^{2}\right)+4 \omega\right\}^{3}\right]$ $=64 \omega^{12}-64 \omega^{3}=0=$ R.H.S. $\left[\because 1+\omega+\omega^{2}=0\right]$.
ii. L.H.S. $=(2-\omega)\left(2-\omega^{2}\right)\left(2-\omega^{10}\right)\left(2-\omega^{11}\right)=(2-\omega)\left(2-\omega^{2}\right)(2-\omega)\left(2-\omega^{2}\right)=$ $\left[(2-\omega)\left(2-\omega^{2}\right)\right]^{2}$ $=\left(4-2 \omega-2 \omega^{2}+\omega^{3}\right)^{2}=\left[5-2\left(\omega+\omega^{2}\right)\right]^{2}=(5+2)^{2}=49=$ R.H.S.
iii. L.H.S. $=(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{4}\right)\left(1-\omega^{5}\right)=(1-\omega)^{2}\left(1-\omega^{2}\right)^{2}=\left(1-\omega-\omega^{2}+\omega^{3}\right)^{2}$ $=[2-(-1)]^{2}=9=$ R.H.S.
iv. L.H.S. $=\left(1-\omega+\omega^{2}\right)^{5}+\left(1+\omega-\omega^{2}\right)^{5}=(-2 \omega)^{5}+\left(-2 \omega^{2}\right)^{5}=-32\left(\omega+\omega^{2}\right)=32=$ R.H.S.
v. L.H.S. $=1+\omega^{n}+\omega^{2 n}$, where $n=3 m \forall m \in \mathbb{L}$. H.S. $=1+\omega^{3 m}+\omega^{6 m}=1+\left(\omega^{3}\right)^{m}+$ $\left(\omega^{3}\right)^{2 m}=1+1+1=3=$ R.H.S.
vi. We have to prove that $1+\omega^{n}+\omega^{2 n}=0$. If $n=3 m+1 \forall m \in \mathbb{\square}$ then L.H.S. $=1+\omega^{3 m+1}+\omega^{6 m+2}=1+\omega+\omega^{2}=0=$ R.H.S.

If $n=3 m+2, \forall m \in \mathbb{\square}$ then L.H.S. $=1+\omega^{3 m+2}+\omega^{6 m+4}=1+\omega^{2}+\omega=0=$ R.H.S.
297. We have $a^{2}+b^{2}+c^{2}-a b-b c-c a=a^{2}+\omega^{3} b^{2}+\omega^{3} c^{2}+\left(\omega+\omega^{2}\right) a b+\left(\omega+\omega^{2}\right) b c+$ $\left(\omega+\omega^{2}\right) c a$
$=\left(a^{2}+a b \omega+c a \omega^{2}\right)+\left(a b \omega^{2}+b^{2} \omega^{3}+b c \omega\right)+\left(c a \omega+b c \omega^{2}+c^{2} \omega^{3}\right)$
$=a\left(a+b \omega+c \omega^{2}\right)+b \omega^{2}\left(a+b \omega+c \omega^{2}\right)+c \omega\left(a+b \omega+c \omega^{2}\right)$
$=\left(a+b \omega+c \omega^{2}\right)\left(a+b \omega^{2}+c \omega\right)$.
298. $x^{3}+y^{3}+z^{3}=(a+b)^{3}+\left(a \omega+b \omega^{2}\right)^{3}+\left(a \omega^{2}+b \omega\right)^{3}=a^{3}+b^{3}+3 a^{2} b+3 a b^{2}+a^{3} \omega^{3}+$ $b^{3} \omega^{6}+3 a^{2} b \omega^{4}+3 a b^{2} \omega^{5}+a^{3} \omega^{6}+b^{3} \omega^{3}+3 a^{2} b \omega^{5}+3 a b^{2} \omega^{4}=3\left[a^{3}+b^{3}+3 a^{2} b(1+\omega+\right.$ $\left.\left.\omega^{2}\right)+3 a b^{2}\left(1+\omega+\omega^{2}\right)\right]=3\left(a^{3}+b^{3}\right)=$ R.H.S.
$x y z=(a+b)\left(a \omega+b \omega^{2}\right)\left(a \omega^{2}+b \omega\right)=(a+b)\left(a^{2}+a b \omega+a b \omega^{2}+b^{2}\right)=(a+b)\left(a^{2}+\right.$ $\left.b^{2}-a b\right)=a^{3}+b^{3}=$ R.H.S.
299. Given below are the factorization of the expressions:
i. $\quad a^{2}-a b+b^{2}=a^{2}+\left(\omega+\omega^{2}\right) a b+b^{2} \omega^{3}=(a+b \omega)\left(a+b \omega^{2}\right)$.
ii. $a^{2}+a b+b^{2}=a^{2}-\left(\omega+\omega^{2}\right) a b+b^{2} \omega^{3}=(a-b \omega)\left(a-b \omega^{2}\right)$.
iii. $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)=(a+b)(a+b \omega)\left(a+b \omega^{2}\right)$.
iv. $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)=(a+b)(a-b \omega)\left(a-b \omega^{2}\right)$.
v. $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=(a+b+c)(a+b \omega+$ $\left.c \omega^{2}\right)\left(a+b \omega^{2}+c \omega\right)$.
300. $x^{3 p}+x^{3 q+1}+x^{3 r+2}$ will be divisible by $x^{2}+x+1$ only if all the factors of $x^{2}+x+1$ satisfy $x^{3 p}+x^{3 q+1}+x^{3 r+2}$.
$x^{2}+x+1=0 \Rightarrow x=\omega, \omega^{2}$. If $x=\omega$ then $x^{3 p}+x^{3 q+1}+x^{3 r+2}=\left(\omega^{3}\right)^{p}+\left(\omega^{3}\right)^{q} . \omega+$ $\left(\omega^{3}\right)^{r} \cdot \omega^{2}=1+\omega+\omega^{2}=0$.

If $x=\omega^{2}$ then $x^{3 p}+x^{3 q+1}+x^{3 r+2}=\left(\omega^{6}\right) p+\left(\omega^{6}\right)^{q} \cdot \omega^{2}+\left(\omega^{6}\right)^{r} \cdot \omega^{4}=1+\omega^{2}+\omega=0$.
Hence proved.
301. Following like previous problem $x^{3}+x^{2}+x+1=(x+1)\left(x^{2}+1\right)=0 \Rightarrow x=-1, \pm i$.

If $x=-1$ then $x^{4 p}+x^{4 q+1}+x^{4 r+2}+x^{4 s+3}=(-1)^{4 p}+(-1)^{4 q+1}+(-1)^{4 r+2}+$ $(-1)^{4 s+3}=1-1+1-1=0$.

If $x=i$, then $x^{4 p}+x^{4 q+1}+x^{4 r+2}+x^{4 s+3}=i^{4 p}+i^{4 q+1}+i^{4 r+2}+i^{4 s+3}=1+i-1-i=0$.
If $x=-i$, then $x^{4 p}+x^{4 q+1}+x^{4 r+2}+x^{4 s+3}=(-i)^{4 p}+(-i)^{4 q+1}+(-i)^{4 r+2}+(-i)^{4 s+3}=$ $1-i-1+i=0$. Hence proved.
302. $p^{3}+q^{3}+r^{3}-3 p q r=(p+q+r)\left(p^{2}+q^{2}+r^{2}-p q-q r-r p\right)=(p+q+r)(p+q \omega+$ $\left.r \omega^{2}\right)\left(p+q \omega^{2}+r \omega\right)$
$p+q+r=3 a+b\left(1+\omega+\omega^{2}\right)+c\left(1+\omega^{2}+\omega\right)=3 a$. Similarly, $p+q \omega+r \omega^{2}=3 c$ and $p+q \omega^{2}+r \omega=3 b$. Hence, $p^{3}+q^{3}+r^{3}-3 p q r=27 a b c$, proved.
303. Let $p=\left(a+b \omega+c \omega^{2}\right)$ and $q=\left(a+b \omega^{2}+c \omega\right)$ then we know that $p^{3}+q^{3}=(p+q)(p+$ $q \omega)\left(p+\omega^{2}\right)$.
$p+q=2 a-b-c, p+q \omega=2 b-c-a, p+q \omega^{2}=2 c-a-b$, and hence
$\left(a+b \omega+c \omega^{2}\right)^{3}+\left(a+b \omega^{2}+c \omega\right)^{3}=(2 a-b-c)(2 b-a-c)(2 c-a-b)$.
304. The solutions are given below:
i. $\quad\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)=\left(a+b \omega+c \omega^{2}\right)(a+$ $\left.b \omega^{2}+c \omega\right)\left(x+y \omega+z \omega^{2}\right)\left(x+y \omega^{2}+z \omega\right)$ $=\left(a+b \omega+c \omega^{2}\right)\left(x+y \omega+z \omega^{2}\right)\left[\left(a+b \omega^{2}+c \omega\right)\left(x+y \omega^{2}+z \omega\right)\right]$
$=\left(a x+c y \omega^{3}+b z \omega^{3}+c x \omega^{2}+b y \omega^{2}+z a \omega^{2}+b x \omega+a y \omega+c z \omega^{4}\right)\left(a x+c y \omega^{3}+b z \omega^{3}+\right.$ $\left.c x \omega+b y \omega^{4}+a z \omega+b z \omega^{2}+a y \omega^{2}+c z \omega^{2}\right)$
$=\left[(a x+c y+b z)(c x+b y+a z) \omega^{2}+(b x+a y+c z) \omega\right][(a x+c y+b z)(c x+b y+$ $\left.a z) \omega+(b x+a y+c z) \omega^{2}\right]$
$=\left(X+Y \omega^{2}+Z \omega\right)\left(X+Y \omega+Z \omega^{2}\right)=\left(X^{2}+Y^{2}+Z^{2}-Y Z-Z X-X Y\right)$.
ii. We just introduce two new factors to previous problem $a+b+c$ and $x+y+z$ and then it is only a matter of simplification to obtain the result.
305. L.H.S. $=\left(\frac{\cos \theta+i \sin \theta}{\sin \theta+i \cos \theta}\right)^{4}=\left(\frac{\cos \theta+i \sin \theta}{i(\cos \theta-i \sin \theta)}\right)^{4}=\frac{e^{i 4 \theta}}{e^{-i 4 \theta}}=e^{i 8 \theta}=\cos 8 \theta+i \sin 8 \theta=$ R.H.S.
306. Roots of the quadratic equation $z^{2}-2 z \cos \theta+1=0$ are given by $z=\cos \theta \pm i \sin \theta$.
$\Rightarrow z^{2}+z^{-2}=\cos 2 \theta \pm i \sin 2 \theta+\cos 2 \theta \mp i \sin 2 \theta=2 \cos 2 \theta=$ R.H.S.
307. $1+i=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$ and $(1-i)=\sqrt{2}\left(\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right)$

$$
\text { L.H.S. }=(1+i)^{n}+(1-i)^{n}=(\sqrt{2})^{n} .2 \cos \frac{n \pi}{4}=2^{\frac{n}{2}+1} \cdot \cos \frac{n \pi}{4}=\text { R.H.S. }
$$

308. $\sum_{k=1}^{6}\left(\sin \frac{2 \pi k}{7}-i \cos \frac{2 \pi k}{7}\right)=-i \sum_{k=1}^{6}\left(\cos \frac{2 \pi k}{7}+i \sin \frac{2 \pi k}{7}\right)$
$=-i \sum_{k=1}^{6} e^{\frac{i 2 \pi k}{7}}=-i\left[e^{\frac{i 2 \pi}{7}}+e^{\frac{i 4 \pi}{7}}+. .+e^{\frac{i 12 \pi}{7}}\right]=-i\left[\left(\frac{1-e^{2 \pi}}{1-e^{\frac{i 2 \pi}{7}}}\right)-1\right]=-i[0-1]=i$.
309. Let $\cot ^{-1} p=\theta$, then $\cot \theta=p$. Now, L. H. S. is
$e^{2 m i \theta}\left(\frac{i \cot \theta+1}{i \cot \theta-1}\right)^{m}=e^{2 m i \theta}\left[\frac{i(\cot \theta-i)}{i(\cot \theta+i)}\right]^{m}$
$=e^{2 m i \theta}\left(\frac{\cos \theta-i \sin \theta}{\cos \theta+i \sin \theta}\right)^{m}$
$=e^{2 m i \theta}\left(\frac{e^{-i \theta}}{e^{i} \theta}\right)^{m}=e^{2 m i \theta} . e^{-2 m i \theta}=e^{0}=1=$ R.H.S.
310. Let $1+\sin \phi+i \cos \phi=r(\cos \theta+i \sin \theta) \therefore 1+\sin \phi=r \cos \theta$ and $\cos \phi=r \sin \theta$

Now $(1+\sin \phi+i \cos \phi)^{n}=r^{n}(\cos n \theta+i \sin n \theta)$. Taking conjugates, we get $(1+\sin \phi-$ $i \cos \phi)^{n}=r^{n}(\cos n \theta-i \sin n \theta)$

From these two, we get $\left(\frac{1+\sin \phi+i \cos \phi}{1+\sin \phi-i \cos \phi}\right)^{n}=\frac{\cos n \theta+i \sin n \theta}{\cos n \theta-i \sin n \theta}=\frac{e^{i n \theta}}{e^{-i n \theta}}$
$=e^{2 i n \theta}=\cos 2 n \theta+\sin 2 n \theta$
$\tan \theta=\frac{\cos \phi}{1+\sin \phi}=\frac{\cos ^{2} \frac{\phi}{2}-\sin ^{2} \frac{\phi}{2}}{\left(\cos \frac{\phi}{2}+\sin \frac{\phi}{2}\right)^{2}}=\frac{\cos \frac{\phi}{2}-\sin \frac{\phi}{2}}{\cos \frac{\phi}{2}+\sin \frac{\phi}{2}}=\frac{1-\tan \frac{\phi}{2}}{1+\tan \frac{\phi}{2}}=\tan \left(\frac{\pi}{4}-\frac{\phi}{2}\right)$
$\therefore \theta=\frac{\pi}{4}-\frac{\phi}{2} \therefore 2 n \theta=\left(\frac{n \pi}{2}-n \phi\right)$. Hence, proved.
311. Let $a=\cos \alpha+i \sin \alpha, b=\cos \beta+i \sin \beta, c=\cos \gamma+i \sin \gamma$

Now, $a+b+c=(\cos \alpha+\cos \beta+\cos \gamma)+i(\sin \alpha+\sin \beta+\sin \gamma)=0+i .0=0$
Now, $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=0[\because a+b+c=0]$ $\therefore a^{3}+b^{3}+c^{3}=3 a b c \therefore \cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma=3 \cos (\alpha+\beta+\gamma)$ and $\sin 3 \alpha+\sin 3 \beta+$ $\sin 3 \gamma=3 \sin (\alpha+\beta+\gamma)$.
312. Proceeding similarly as last problem and with an extra calculation we have
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=(\cos \alpha+\cos \beta+\cos \gamma)-i(\sin \alpha+\sin \beta+\sin \gamma)=0$
$\therefore a^{2}+b^{2}+c^{2}=(a+b+c)^{2}-2(a b+b c+c a)=(a+b+c)^{2}-2 a b c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$
$\Rightarrow 0^{2}-2 a b c .0=0 \therefore$ L.H.S. $=(\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma)+i(\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma)=0$
Equating real and imaginary parts we have our desired result.
313. $t^{2}-2 t+2=0 \Leftrightarrow t=\frac{2 \pm \sqrt{4-8}}{2}=1 \pm i$

Let $\alpha=1+i$ and $\beta=1-i \therefore x+\alpha=(x+1)+i, x+\beta=(x+1)-i$ and $\alpha-\beta=2 i$
Let $x+1=r \cos \phi$ and $1=r \sin \phi$. We have, $\frac{(x+\alpha)^{n}-(x+\beta)^{n}}{(\alpha-\beta)}=\frac{\sin \theta}{\sin ^{n} \theta}$
$\Leftrightarrow \frac{r^{n}(\cos n \phi+i \sin n \phi)-r^{n}(\cos n \phi-i \sin n \phi)}{2 i}=\frac{\sin \theta}{\sin ^{n} \theta} \Leftrightarrow r^{n} \sin n \phi=\frac{\sin \theta}{\sin ^{n} \theta}$
$\Leftrightarrow \frac{\sin n \phi}{\sin ^{n} \phi}=\frac{\sin \theta}{\sin ^{n} \theta} \Leftrightarrow$ one of the values of ϕ is $\theta .\left[\because r \sin \phi=1 \Rightarrow r^{n}=\frac{1}{\sin ^{n} \phi}\right]$
$\therefore x+1=r \cos \theta$ and $1=r \sin \theta$. Dividing and evaluating we get $x=\cot \theta-1$.
314. Given, $(1+x)^{n}=p_{0}+p_{1} x+p_{2} x^{2}+\cdots+p_{n} x^{n}$. Putting $x=i$, we get $(1+i)^{n}=$ $p_{0}+p_{1} i+p_{2} i^{2}+\cdots+p_{n} i^{n}$
$=\left(p_{0}-p_{2}+p_{4}-\cdots\right)+i\left(p_{1}-p_{3}+p_{5}-\cdots\right) \Rightarrow\left[\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\right]^{n}=\left(p_{0}-p_{2}+p_{4}-\right.$ $\cdots)+i\left(p_{1}-p_{3}+p_{5}-\cdots\right)$

Equating real and imaginary parts, we have $p_{0}-p_{2}+p_{4} \cdots=2^{\frac{n}{2}} \cos \frac{n \pi}{4}$ and $p_{1}-p_{3}+$ $p_{5}-\cdots=2^{\frac{n}{2}} \sin \frac{n \pi}{4}$.
315. Given, $\left(1-x+x^{2}\right)^{n}=a_{0}+a_{1}+a_{2} x^{2}+\cdots a_{2 n} x^{2 n}$. Putting $x=1, \omega$ and ω^{2}, we get $1=a_{0}+a_{1}+a_{2}+\cdots+a_{2 n},(-2 \omega)^{n}=a_{0}+a_{1} \omega+a_{2} \omega^{2}+\cdots+a_{2 n} \omega^{2 n},\left(-2 \omega^{2}\right)^{n}=$ $a_{0}+a_{1} \omega^{2}+a_{2} \omega^{4}+\cdots+a_{2 n} \omega^{4 n}$

Adding these we get, $3\left(a_{0}+a_{3}+a_{6}+\cdots\right)=1+(-2)^{n}\left(\omega^{n}+\omega^{2 n}\right)$. Now $\omega=\frac{-1+\sqrt{3} i}{2}=$ $\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$
$\omega^{n}=\cos \frac{2 n \pi}{3}+i \sin \frac{2 n \pi}{3}$. Now $\omega^{2}=\frac{-1-\sqrt{3} i}{2}=\left(\cos \frac{2 \pi}{3}-i \sin \frac{2 \pi}{3}\right) \therefore \omega^{n}+\omega^{2 n}=2 \cos \frac{2 n \pi}{3}=$ $2 \cos \left(n \pi-\frac{n \pi}{3}\right)$ $=2(-1)^{n} \cos \frac{n \pi}{3}$. Thus, $3\left(a_{0}+a_{3}+a_{6}+\cdots\right)=1+(-2)^{n} 2(-1)^{n} \cos \frac{n \pi}{3}=1+2^{n+1} \cos \frac{n \pi}{3}$. $a_{0}+a_{3}+a_{6}+\cdots=\frac{1}{3}\left(1+2^{n+1} \cos \frac{n \pi}{3}\right)$.
316. Given, $(1+x)^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}$. Putting $x=1$ and $x=-1$, we get $2^{n}=c_{0}+c_{1}+c_{2}+\cdots+c_{n}$
and $0=c_{0}-c_{1}+c_{2}-\cdots+(-1)^{n} c_{n}$. Adding these two, we get $2^{n}=2\left(c_{0}+c_{2}+c_{4}+\cdots\right)$ or $c_{0}+c_{2}+c_{4}+\cdots=2^{n-1}$
Putting $x=i$, we get $(1+i)^{n}=c_{0}+c_{1} i+c_{2} i^{2}+c_{3} i^{3}+\cdots+c_{n} i^{n} \Rightarrow\left[\sqrt{2}\left(\cos \frac{\pi}{4}+\right.\right.$ $\left.\left.i \sin \frac{\pi}{4}\right)\right]^{n}=\left(c_{0}-c_{2}+c_{4}-\cdots\right)+i\left(c_{1}-c_{3}+\cdots\right)$ $\Rightarrow 2^{\frac{n}{2}}\left(\cos \frac{n \pi}{4}+i \sin \frac{i \pi}{4}\right)=\left(c_{0}-c_{2}+c_{4}-\cdots\right)+i\left(c_{1}-c_{3}+\cdots\right)$

Equating real parts, we get $c_{0}-c_{2}+c_{4}-\cdots=2^{\frac{n}{2}} \cos \frac{n \pi}{4}$. Adding this result with the one obtained previously, we have $2\left[c_{0}+c_{4}+c_{8}+\cdots\right]=2^{n-1}+2^{\frac{n}{2}} \cos \frac{n \pi}{4}$.
317. $z^{8}+1=0 \Rightarrow z^{8}=-1=\cos \pi+i \sin \pi \therefore z=(\cos \pi+i \sin \pi)^{\frac{1}{8}}=\cos \frac{2 r \pi+\pi}{8}+i \sin \frac{2 r \pi+\pi}{8}, r=$ $0,1,2, \ldots, 7$
$\therefore z=\cos \frac{\pi}{8} \pm \sin \frac{\pi}{8}, \cos \frac{3 \pi}{8} \pm \sin \frac{3 \pi}{8}, \cos \frac{5 \pi}{8} \pm \sin \frac{5 \pi}{8}, \cos \frac{7 \pi}{8} \pm \sin \frac{7 \pi}{8}$
Now, quadratic equation whose roots are $\cos \frac{\pi}{8} \pm \sin \frac{\pi}{8}$, is $z^{2}-2 \cos \frac{\pi}{8} z+1=0$
Similarly, we can find the quadratic equations for remaining three pairs of roots. Thus, $z^{8}+1=\left(z^{2}-2 \cos \frac{\pi}{8} z+1\right)\left(z^{2}-2 \cos \frac{3 \pi}{8} z+1\right)\left(z^{2}-2 \cos \frac{5 \pi}{8} z+1\right)\left(z^{2}-2 \cos \frac{7 \pi}{8} z+1\right)$
Dividing both sides by z^{4}, we get

$$
z^{4}+\frac{1}{z^{4}}=\left(z+\frac{1}{z}-2 \cos \frac{\pi}{8}\right)\left(z+\frac{1}{z}-2 \cos \frac{3 \pi}{8}\right)\left(z+\frac{1}{z}-2 \cos \frac{5 \pi}{8}\right)\left(z+\frac{1}{z}-2 \cos \frac{7 \pi}{8}\right)
$$

Putting $z=\cos \theta+i \sin \theta$, so that $z^{n}+\frac{1}{z^{n}}=2 n \cos n \theta$, we get
$2 \cos 4 \theta=2\left(\cos \theta-\cos \frac{\pi}{8}\right) 2\left(\cos \theta-\cos \frac{3 \pi}{8}\right) 2\left(\cos \theta-\cos \frac{5 \pi}{8}\right) 2\left(\cos \theta-\cos \frac{5 \pi}{8}\right)$
$\therefore \cos 4 \theta=8\left(\cos \theta-\cos \frac{\pi}{8}\right)\left(\cos \theta-\cos \frac{3 \pi}{8}\right)\left(\cos \theta-\cos \frac{5 \pi}{8}\right)\left(\cos \theta-\cos \frac{7 \pi}{8}\right)$
318. Let $z=\cos \theta+i \sin \theta$, then $z^{7}=\cos 7 \theta+i \sin 7 \theta$. If
$\theta=\frac{\pi}{7}, \frac{3 \pi}{7}, \frac{5 \pi}{7}, \frac{7 \pi}{7}, \frac{9 \pi}{7}, \frac{11 \pi}{7}, \frac{13 \pi}{7}$ then $z^{7}=\cos 7 \theta+i \sin 7 \theta=1$ or $z^{7}+1=0$
Thus, $z=\cos \theta+i \sin \theta$, where $\theta=\frac{\pi}{7}, \frac{3 \pi}{7}, \frac{5 \pi}{7}, \frac{7 \pi}{7}, \frac{9 \pi}{7}, \frac{11 \pi}{7}, \frac{13 \pi}{7}$ are the roots of the equation.
Also, when $\theta=\pi, z=-1$. Now, $z^{7}+1=0 \Rightarrow(z+1)\left(z^{6}-z^{5}+z^{4}-z^{3}+z^{2}-z+1\right)=0$
Root of equation $z+1=0$ is $\cos \theta+i \sin \theta$, where $\theta=\pi$
Roots of equation $z^{6}-z^{5}+z^{4}-z^{3}+z^{2}-z+1=0$
are $\cos \theta+i \sin \theta$, where $\theta=\frac{\pi}{7}, \frac{3 \pi}{7}, \frac{5 \pi}{7}, \frac{7 \pi}{7}, \frac{9 \pi}{7}, \frac{11 \pi}{7}, \frac{13 \pi}{7}$
Let $x=\cos \theta$, then $z+\frac{1}{z}=\cos \theta+i \sin \theta+\frac{1}{\cos \theta+i \sin \theta}=2 \cos \theta=2 x$
But $\cos \left(\frac{13 \pi}{7}\right)=\cos \left(2 \pi-\frac{\pi}{7}\right)=\cos \frac{\pi}{7}, \cos \frac{11 \pi}{7}=\cos \frac{3 \pi}{7}, \cos \frac{9 \pi}{7}=\cos \frac{5 \pi}{7}$
Dividing (1) by z^{3}, we get $z^{3}-z^{2}+z-1+\frac{1}{z}-\frac{1}{z^{2}}+\frac{1}{z^{3}}=0$
$\left(z^{3}+\frac{1}{z^{3}}\right)-\left(z^{2}+\frac{1}{z^{2}}\right)+\left(z+\frac{1}{z}\right)-1=0$
$\left(z+\frac{1}{z}\right)^{3}-3 z \cdot \frac{1}{z}\left(z+\frac{1}{z}\right)-\left[\left(z+\frac{1}{z}\right)^{2}-2 z \cdot \frac{1}{z}\right]+z+\frac{1}{z}-1=0$
$\Rightarrow 8 x^{3}-4 x^{2}-4 x+1=0$. Roots of this equation are $\cos \frac{\pi}{7}, \cos \frac{3 \pi}{7}$ and $\cos \frac{5 \pi}{7}$.
319. Given, $z^{10}-1=0 \Rightarrow z^{10}=1=\cos 0+i \sin 0 \therefore z=(\cos 0+i \sin 0)^{\frac{1}{10}}=\cos \frac{2 r \pi}{10}+i \sin \frac{2 r \pi}{10}$ $= \pm 1, \cos \frac{\pi}{5} \pm i \sin \frac{\pi}{5}, \cos \frac{2 \pi}{5} \pm i \sin \frac{2 \pi}{5}, \cos \frac{3 \pi}{5} \pm i \sin \frac{3 \pi}{5}, \cos \frac{4 \pi}{5} \pm i \sin \frac{4 \pi}{5}$

Quadratic equation whose roots are ± 1 is $z^{2}-1=0$. And quadratic equation whose roots are $\cos \frac{\pi}{5} \pm \sin \frac{\pi}{5}$ is $z^{2}-2 \cos \frac{\pi}{5} z+1=0$. Thus,
$z^{10}-1=\left(z^{2}-1\right)\left(z^{2}-2 \cos \frac{\pi}{5} z+1\right)\left(z^{2}-2 \cos \frac{2 \pi}{5} z+1\right)\left(z^{2}-2 \cos \frac{3 \pi}{5} z+1\right)\left(z^{2}-\right.$ $\left.2 \cos \frac{4 \pi}{5} z+1\right)$

Dividing both sides by z^{5}, we get
$z^{5}-\frac{1}{z^{5}}=\left(z-\frac{1}{z}\right)\left(z+\frac{1}{z}-2 \cos \frac{\pi}{5}\right)\left(z+\frac{1}{z}-2 \cos \frac{2 \pi}{5}\right)\left(z+\frac{1}{z}-2 \cos \frac{3 \pi}{5}\right)\left(z+\frac{1}{z}-2 \cos \frac{4 \pi}{5}\right)$
Putting $z=\cos \theta+i \sin \theta$ in the above equation, so that $z^{5}-\frac{1}{z^{5}}=2 i \sin 5 \theta$, we get
$2 i \sin 5 \theta=2 i \sin \theta \cdot 2\left(\cos \theta-\cos \frac{\pi}{5}\right) 2\left(\cos \theta-\cos \frac{2 \pi}{5}\right) 2\left(\cos \theta-\cos \frac{3 \pi}{5}\right) 2\left(\cos \theta-\cos \frac{4 \pi}{5}\right)$
$\therefore \sin 5 \theta=16 \sin \theta\left(\cos \theta-\cos \frac{\pi}{5}\right)\left(\cos \theta-\cos \frac{2 \pi}{5}\right)\left(\cos \theta-\cos \frac{3 \pi}{5}\right)\left(\cos \theta-\cos \frac{4 \pi}{5}\right)$
$=16 \sin \theta\left(\cos \theta-\cos \frac{\pi}{5}\right)\left(\cos \theta+\cos \frac{\pi}{5}\right)\left(\cos \theta-\cos \frac{2 \pi}{5}\right)\left(\cos \theta+\cos \frac{2 \pi}{5}\right)$
$=16 \sin \theta\left(\cos ^{2} \theta-\cos ^{2} \frac{\pi}{5}\right)\left(\cos ^{2} \theta-\cos ^{2} \frac{2 \pi}{5}\right)$
$=16 \sin \theta\left(\sin ^{2} \frac{\pi}{5}-\sin ^{2} \theta\right)\left(\sin ^{2} \frac{2 \pi}{5}-\sin ^{2} \theta\right)$
$=16 \sin \theta \sin ^{2} \frac{\pi}{5} \sin ^{2} \frac{2 \pi}{5}\left(1-\frac{\sin ^{2} \theta}{\sin ^{2} \frac{\pi}{5}}\right)\left(1-\frac{\sin ^{2} \theta}{\sin ^{2} \frac{2 \pi}{5}}\right)$
$=16 \sin \theta \sin ^{2} 36^{\circ} \sin ^{2} 72^{\circ}\left(1-\frac{\sin ^{2} \theta}{\sin ^{2} \frac{\pi}{5}}\right)\left(1-\frac{\sin ^{2} \theta}{\sin ^{2} \frac{2 \pi}{5}}\right)$
$=16 \sin \theta\left(\frac{\sqrt{10-2 \sqrt{5}}}{4}\right)^{2}\left(\frac{\sqrt{10+2 \sqrt{5}}}{4}\right)^{2}\left(1-\frac{\sin ^{2} \theta}{\sin ^{2} \frac{\pi}{5}}\right)\left(1-\frac{\sin ^{2} \theta}{\sin ^{2} \frac{2 \pi}{5}}\right)$
Thus, $\sin 5 \theta=5 \sin \theta\left(1-\frac{\sin ^{2} \theta}{\sin ^{2} \frac{\pi}{5}}\right)\left(1-\frac{\sin ^{\theta}}{\sin ^{2} \frac{2 \pi}{5}}\right)$.
320. Given, $x^{7}+1=0$ or $x^{7}=-1=\cos \pi+i \sin \pi$
$\therefore x=(\cos \pi+i \sin \pi)^{\frac{1}{7}}=\cos \frac{2 r \pi+\pi}{7}+i \sin \frac{2 r \pi+\pi}{7}, r=0,1,2, \ldots, 6$
$=\cos \frac{\pi}{7} \pm i \sin \frac{\pi}{7}, \cos \frac{2 \pi}{7} \pm i \sin \frac{2 \pi}{7}, \cos \frac{3 \pi}{7} \pm i \sin \frac{3 \pi}{7}, \cos \pi+i \sin \pi(=-1)$
$x^{7}+1=(x+1)\left(x^{2}-2 \cos \frac{\pi}{7} x+1\right)\left(x^{2}-2 \cos \frac{2 \pi}{7} x+1\right)\left(x^{2}-2 \cos \frac{3 \pi}{7} x+1\right)$. Putting $x=i$, we get
$i^{7}+1=(1+i)\left(-2 i \cos \frac{\pi}{7}\right)\left(-2 i \cos \frac{2 \pi}{7}\right)\left(-2 i \cos \frac{3 \pi}{7}\right)$
$1-i=8(1+i) \cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{3 \pi}{7}=-8(1-i) \cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{3 \pi}{7}$
$\therefore \cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{3 \pi}{7}=-\frac{1}{8}$.
321. $(\cos \alpha+i \sin \alpha)^{n}=\cos ^{n} \alpha+i .{ }^{n} C_{1} \cos ^{n-1} \alpha \sin \alpha+i^{2} .{ }^{n} C_{2} \cos ^{n-2} \alpha \sin ^{2} \alpha+\cdots+$ $i^{n} .{ }^{n} C n \sin ^{n} \alpha$
$\Rightarrow \cos n \alpha+i \sin n \alpha=\left(\cos ^{n} \alpha-{ }^{n} C_{2} \cos ^{n-2} \alpha \sin ^{2} \alpha\right)+i\left({ }^{n} C_{1} \cos ^{n-1} \alpha \sin \alpha\right)$. Equating imaginary parts, we get
$\therefore \sin n \alpha={ }^{n} C_{1} \cos ^{n-1} \alpha \sin \alpha-{ }^{n} C_{3} \cos ^{n-3} \alpha \sin ^{3} \alpha+\cdots$
$\therefore \sin (2 n+1) \alpha={ }^{2 n+1} C_{1} \cos ^{2 n} \alpha \sin \alpha-{ }^{2 n+1} C_{3} \cos ^{2 n-2} \alpha \sin ^{3} \alpha+\cdots$
$\Rightarrow \sin (2 n+1) \alpha=\sin ^{2 n+1} \alpha\left[{ }^{2 n+1} C_{1} \cot ^{2 n} \alpha-{ }^{2 n+1} C_{3} \cot ^{2 n-2} \alpha+\cdots\right]$
when $\alpha=\frac{\pi}{2 n+1}, \frac{2 \pi}{2 n+1}, \cdots, \frac{n \pi}{2 n+1}, \sin (2 n+1) \alpha=0$
$\therefore \cot ^{2} \frac{\pi}{2 n+1}, \cot ^{2} \frac{2 \pi}{2 n+1}, \cdots, \cot ^{2} \frac{n \pi}{2 n+1}$ are the roots of the equation. From the second term coefficient we get sum of roots in a polynomial.
$\therefore \cot ^{2} \frac{\pi}{2 n+1}+\cot ^{2} \frac{2 \pi}{2 n+1}+\cdots+\cot ^{2} \frac{n \pi}{2 n+1}=\frac{{ }^{2 n+1} C_{3}}{2 n+1} C_{1}$.
322. Let $C=\cos \theta \cos \theta+\cos ^{2} \theta \cos 2 \theta+\cdots+\cos ^{n} \theta \cos n \theta$ and
$S=\cos \theta \sin \theta+\cos ^{2} \theta \sin 2 \theta+\cdots+\cos ^{n} \theta \sin n \theta$
Now, $C+i S=\cos \theta(\cos \theta+i \sin \theta)+\cos ^{2} \theta(\cos 2 \theta+i \sin 2 \theta)+\cdots+\cos ^{n} \theta(\cos n \theta+$ $i \sin n \theta$)
$=\cos \theta \cdot e^{i \theta}+\cos ^{2} \theta \cdot e^{2 i \theta}+\cdots+\cos ^{n} \theta \cdot e^{n i \theta}=x+x^{2}+\cdots+x^{n}$, where $x=\cos \theta e^{i \theta}=$ $\frac{x\left(x^{n}-1\right)}{x-1}=\frac{\cos \theta e^{i \theta}\left(\cos ^{n} \theta e^{i n \theta}-1\right)}{\cos \theta e^{i \theta}-1}$
$=\frac{\cos \theta\left[\cos ^{n} \theta(\cos n \theta+i \sin n \theta)-1\right]}{\cos \theta-e^{-i \theta}}=\frac{\cos \theta\left[\left(\cos ^{n} \theta \cos n \theta-1\right)+i \cos ^{n} \theta \sin n \theta\right]}{\cos \theta-(\cos \theta-i \sin \theta)}$
$=-i \cot \theta\left(\cos ^{n} \theta \cos n \theta-1\right)+i \cos ^{n} \theta \sin n \theta$
Equating imaginary parts, we get
$S=-\cot \theta\left(\cos ^{n} \theta \cos n \theta-1\right)=\cot \theta\left(1-\cos ^{n} \theta \cos n \theta\right)$.
323. L.H.S. $=-3-4 i=5\left(-\frac{3}{5}-i \frac{4}{5}\right)=5\left(\cos \left(\pi+\tan ^{-1} \frac{4}{5}\right)+i \sin \left(\pi+\tan ^{-1} \frac{4}{5}\right)\right)$
$=5 e^{i\left(\pi+\tan ^{-1} \frac{4}{5}\right)}=$ R.H.S.
324. Putting $x^{4}=\frac{\sqrt{3}-1}{2 \sqrt{2}}+\frac{\sqrt{3}+1}{2 \sqrt{2}}$ in polar form we get
$x^{4}=\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}: x=\cos \frac{(24 r+5) \pi}{48}+i \sin \frac{(24 r+5) \pi}{48}, r=0,1,2,4$.
325. L.H.S. $=z_{1} z_{2} z_{3} \ldots=\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)\left(\cos \frac{\pi}{3^{2}}+i \sin \frac{\pi}{3^{2}}\right)\left(\cos \frac{\pi}{3^{3}}+i \sin \frac{\pi}{3^{3}}\right) \ldots$
$=\cos \left(\frac{\frac{\pi}{3}}{1-\frac{1}{3}}\right)+i \sin \left(\frac{\frac{\pi}{3}}{1-\frac{1}{3}}\right)=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}=i=$ R.H.S.
326. Given $p_{0} x^{n}+p_{1} x^{n-1}+p_{2} x^{n-2}+\cdots+p_{n}=0$, prove that $p_{1} \sin \theta+p_{2} \sin 2 \theta+\cdots+p_{n}=$ $0 \Rightarrow p_{0}(\cos n \theta+i \sin n \theta)+p_{1}[\cos (n-1) \theta+\sin (n-1) \theta]+p_{2}[\cos (n-2) \theta+i \sin (n-$ 2) $\theta]+\cdots+p_{n}=0[\because \cos \theta+i \sin \theta]$ is a solution.

Dividing both sides by $\cos n \theta+i \sin n \theta$, we have
$p_{0}+p_{1}(\cos \theta-i \sin \theta)+p_{2}(\cos 2 \theta-i \sin 2 \theta)+\cdots+p_{n}(\cos n \theta-i \sin n \theta)=0$. Equating real and imaghinary parts we have required equations.
327. L.H.S. $=\left(\frac{1+\cos \phi+i \sin \phi}{1+\cos \phi-i \sin \phi}\right)^{n}=\left(\frac{(1+\cos \phi+i \sin \phi)(1+\cos \phi+i \sin \phi)}{(1+\cos \phi)^{2}+\sin ^{2} \phi}\right)^{n}$
$=\left(\frac{1+2 \cos \phi+\cos ^{2} \phi-\sin ^{2} \phi+2 i \sin \phi(1+\cos \phi)}{1+2 \cos \phi+\cos ^{2} \phi+\sin ^{2} \phi}\right)^{n}=\left(\frac{2 \cos \phi(1+\cos \phi)+2 i \sin \phi(1+\cos \phi)}{2 \cos \phi(1+\cos \phi)}\right)^{n}$
$=\left(\cos \phi+i \sin \phi^{n}\right)=\cos n \phi+i \sin n \phi=$ R.H.S.
328. Given $2 \cos \theta=x+\frac{1}{x} \Rightarrow x^{2}-2 \cos \theta x+1=0 \Rightarrow x=\cos \theta \pm i \sin \theta$. Similarly, $y=$ $\cos \phi \pm i \sin \phi$.
i. $\frac{x}{y}=\cos (\theta-\phi) \pm i \sin (\theta-\phi)$ and $\frac{y}{x}=\cos (\phi-\theta) \pm i \sin (\phi-\theta)$
\therefore L.H.S. $=2 \cos (\theta-\phi)=$ R.H.S. $[\because \cos (-\theta)=\cos \theta, \sin (-\theta)=-\sin \theta]$
ii. $x y=\cos (\theta+\phi) \pm i \sin (\theta+\phi), \frac{1}{x y}=\cos (\theta+\phi) \mp i \sin (\theta+\phi)$
\therefore L.H.S. $=2 \cos (\theta+\phi)=$ R.H.S.
iii. $x^{m} y^{n}=(\cos m \theta \pm i \sin m \theta)(\cos n \phi \pm i \sin n \phi)=\cos (m \theta+n \phi) \pm i \sin (m \theta+n \phi)$ and $\frac{1}{x^{m} y^{n}}=\cos (m \theta+n \phi) \mp i \sin (m \theta+n \phi) \therefore$ L.H.S. $=2 \cos (m \theta+n \phi)=$ R.H.S.
iv. $\frac{x^{m}}{y^{n}}=\cos (m \theta-n \phi) \pm i \sin (m \theta-n \phi)$ and $\frac{y^{n}}{x^{m}}=\cos (n \phi-m \theta) \pm i \sin (n \phi-m \theta) \quad \therefore$ L.H.S. $=2 \cos (m \theta-n \phi)=$ R.H.S.
329. Given equation is $x^{2}-2 x+4=0$ whose roots are $\alpha, \beta=1 \pm i \sqrt{3}=2\left(\cos \frac{\pi}{3} \pm i \sin \frac{\pi}{3}\right) \Rightarrow$ $\alpha^{n}, \beta^{n}=2\left(\cos \frac{n \pi}{3} \pm i \sin \frac{n \pi}{3}\right)$ $\therefore \alpha^{n}+\beta^{n}=2^{n+1} \cos \frac{n \pi}{3}=$ R.H.S.
330. Given equation is $x^{2}-2 x \cos \theta+1=0$, whose roots are $\cos \theta \pm i \sin \theta, n$th power of which are $\cos n \theta \pm i \sin n \theta$. Therefore, the equation having these roots are $x^{2}-2 \cos n \theta+1=0$.
331. L.H.S. $=A(\cos 2 \theta+i \sin 2 \theta)+B(\cos 2 \theta-i \sin 2 \theta)=5 \cos 2 \theta+7 i^{2} \sin 2 \theta$.
$\Rightarrow A+B=5, A-B=7 i \Rightarrow A=\frac{5+7 i}{2}, B=\frac{5-7 i}{2}$.
332. Given $x=\cos \theta+i \sin \theta$ and $\sqrt{1-c^{2}}=n c-1$. Squaring the second equaiton $n^{2} c^{2}+$ $c^{2}+2 n c=0 \Rightarrow c=\frac{2 n}{n^{2}+1}$. We have to prove that $1+\cos \theta=\frac{c}{2 n}(1+n x)\left(1+\frac{n}{x}\right)$.
R.H.S. $=\frac{1}{n^{2}+1}\left(1+n^{2}+2 n \cos \theta\right)=1+\frac{2 n}{n^{2}+1} \cos \theta=1+c \cos \theta=$ L.H.S.
333. From the given equality, we have $\left(\frac{1+z}{1-z}\right)^{n}=1 \Rightarrow 1+z=(1-z)\left(\cos \frac{2 r \pi}{n}+i \sin \frac{2 r \pi}{n}\right)$

Let $\frac{2 r \pi}{n}=\theta$ then $1+z=(1-z)(\cos \theta+i \sin \theta) \Rightarrow z((1+\cos \theta)+i \sin \theta)=(\cos \theta-1)+$ $i \sin \theta \Rightarrow z=\frac{(\cos \theta-1)+i \sin \theta}{(1+\cos \theta)+i \sin \theta}$
$z=i \tan \frac{\theta}{2}=i \tan \frac{2 \pi}{n}, r=0,1,2, \ldots,(n-1)$
Clearly, the above equation is invalid if n is even and $r=\frac{n}{2}$ as it will cause the value of tan function to reach infinity.
334. L.H.S. $=\frac{x y(x+y)-(x+y)}{x y(x-y)+(x-y)}$. Dividing numerator and denominator by $x y$

$$
=\frac{x+y-\frac{1}{x}-\frac{1}{y}}{x-y+\frac{1}{y}-\frac{1}{x}}=\frac{\cos \alpha+i \sin \alpha+\cos \beta+i \sin \beta-\cos \alpha+i \sin \alpha-\cos \beta-i \sin \beta}{\cos \alpha+i \sin \alpha-\cos \beta-i \sin \beta-\cos \alpha-i \sin \alpha+\cos \beta-i \sin \beta}=\frac{\sin \alpha+\sin \beta}{\sin \alpha-\sin \beta}=\text { R.H.S. }
$$

335. $(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{3} x^{2}+{ }^{n} C_{3} x^{3}+\cdots$

We know that $\omega, \omega^{2}=\frac{-1 \pm \sqrt{3} i}{2}=-\cos \frac{\pi}{3} \pm \sin \frac{\pi}{3}$.
Putting $x=1, \omega, \omega^{2}$ and adding we get
$2^{n}+2 \cos \frac{n \pi}{3}=3\left[{ }^{n} C_{0}+{ }^{n} C_{3}+{ }^{n} C_{6}+\cdots\right] \Rightarrow{ }^{n} C_{0}+{ }^{n} C_{3}+{ }^{n} C_{6}+\cdots=\frac{1}{3}\left(2^{n}+2 \cos \frac{n \pi}{3}\right)$.
336. Proceeding like previous question,

$$
\begin{aligned}
& 2^{n}={ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+{ }^{n} C_{3}+{ }^{n} C_{4}+{ }^{n} C_{5}+\cdots \\
& \left(-\omega^{2}\right)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} \omega+{ }^{n} C_{2} \omega^{2}+{ }^{n} C_{3} \omega^{3}+{ }^{n} C_{4} \omega^{4}+{ }^{n} C_{5} \omega^{5}+\cdots \\
& \Rightarrow\left(-\omega^{2}\right)^{n+1}={ }^{n} C_{0} \omega^{2}+{ }^{n} C_{1} \omega^{3}+{ }^{n} C_{2} \omega^{4}+{ }^{n} C_{3} \omega^{5}+{ }^{n} C_{4} \omega^{6}+{ }^{n} C_{5} \omega^{7}+\cdots
\end{aligned}
$$

$$
\text { and }(-\omega)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} \omega^{2}+{ }^{n} C_{2} \omega^{4}+{ }^{n} C_{3} \omega^{6}+{ }^{n} C_{4} \omega^{8}+{ }^{n} C_{5} \omega^{10}+\cdots
$$

$$
\Rightarrow(-\omega)^{n+1}={ }^{n} C_{0} \omega+{ }^{n} C_{1} \omega^{3}+{ }^{n} C_{2} \omega^{5}+{ }^{n} C_{3} \omega^{7}+{ }^{n} C_{4} \omega^{9}+{ }^{n} C_{5} \omega^{11}+\cdots
$$

Adding $2^{n-2}+2 \cos \frac{(n-2) \pi}{3}=3\left[{ }^{n} C_{1}+{ }^{n} C_{4}+{ }^{n} C_{7}+\cdots\right] \Rightarrow{ }^{n} C_{1}+{ }^{n} C_{4}+{ }^{n} C_{7}+\cdots=$ $\frac{1}{3}\left[2^{n-2}+2 \cos \frac{(n-2) \pi}{3}\right]$
337. This problem can be solved like previous problem. Put $x=1, \omega, \omega^{2}$ and multiply with $1, \omega, \omega^{2}$ and then add to obtain the result.
338. $C_{0}+C_{1} x+C_{2} x^{2}+C_{3} x^{3}+C_{4} x^{4}+\cdots=(1+x)^{4 n}$. Putting $x=1,-1, i,-i$ and adding $4\left[C_{0}+C_{4}+C_{8}+\cdots\right]=2^{4 n}+(1+i)^{4 n}+(1-i)^{4 n}$ $\Rightarrow C_{0}+C_{4}+C_{8}+\cdots=2^{4 n-2}+(-1)^{n} 2^{2 n-1}$.
339. Given $\left(1-x+x^{2}\right)^{6 n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$. Putting $x=1, \omega, \omega^{2}$ $1^{6 n}=a_{0}+a_{1}+a_{2}+a_{3}+\cdots$ $(-2 \omega)^{6 n}=2^{6 n}=a_{0}+a_{1} \omega+a_{2} \omega^{2}+a_{3} \omega^{3}+\cdots$
$\left(-2 \omega^{2}\right)^{6 n}=2^{6 n}=a_{0}+a_{1} \omega^{2}+{ }_{2} \omega^{4}+a_{3} \omega^{6}+\cdots$
Adding $2^{6 n+1}+1=3\left[a_{0}+a_{3}+a_{6}+\cdots\right] \Rightarrow a_{0}+a_{3}+a_{6}+\cdots=\frac{1}{3}\left[2^{6 n+1}+1\right]$.
340. Proceeding like previous problem we obtain $3\left[a_{0}+a_{3}+a_{6}+\cdots\right]$.
R.H.S. becomes $1^{n}+(-2 \omega)^{n}+\left(-2 \omega^{2}\right)^{n}$ but $-\omega=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$ and $-\omega^{2}=\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}$ and hence we have R.H.S.
341. Clearly, $x^{\prime \prime}=\frac{A A^{\prime}+B B^{\prime}+C C^{\prime}}{3}, y^{\prime \prime}=\frac{A A^{\prime}+B B^{\prime} \omega^{2}+C C^{\prime} \omega}{3}$ and $z^{\prime \prime}=\frac{A A^{\prime}+B B^{\prime} \omega+C C^{\prime} \omega^{2}}{3}$, and $A A^{\prime}+B B^{\prime}+C C^{\prime}=(x+y+z)\left(x^{\prime}+y^{\prime}+z^{\prime}\right)+\left(x+y \omega+z \omega^{2}\right)\left(\left(x^{\prime}+y^{\prime} \omega+\right.\right.$ $\left.z^{\prime} \omega^{2}\right)+\left(x+y \omega^{2}+z \omega\right)\left(\left(x^{\prime}+y^{\prime} \omega^{2}+z^{\prime} \omega\right)=3\left(x x^{\prime}+z y^{\prime}+y z^{\prime}\right)\right.$. Analogously $y^{\prime \prime}=$ $y y^{\prime}+z x+x z^{\prime}, z^{\prime \prime}=z z^{\prime}+x y^{\prime}+y z^{\prime}$.
342. We have the identity $(\alpha \delta-\beta \gamma)\left(\alpha^{\prime} \delta^{\prime}-\beta^{\prime} \gamma^{\prime}\right)=\left(\alpha \alpha^{\prime}+\beta \gamma^{\prime}\right)\left(\gamma \beta^{\prime}+\delta \delta^{\prime}\right)-\left(\alpha \beta^{\prime}+\right.$ $\left.\beta \delta^{\prime}\right)\left(\gamma \alpha^{\prime}+\gamma \alpha^{\prime}+\delta \gamma^{\prime}\right)$

Putting $\alpha=x+y i, \beta=z+t i, \gamma=-(z-t i), \delta=x-y i, \alpha^{\prime}=a+b i, \beta^{\prime}=c+d i, \gamma^{\prime}=$ $-(c-d i)$ and $\delta^{\prime}=a-b i$ then
$\alpha \delta-\beta \gamma=x^{2}+y^{2}+z^{2}+t^{2}$ and $\alpha^{\prime} \delta^{\prime}-\beta^{\prime} \gamma^{\prime}=a^{2}+b^{2}+c^{2}+d^{2}$
$\frac{\Rightarrow \alpha \alpha^{\prime}+\beta \gamma^{\prime}}{\overline{\beta \gamma^{\prime}+\alpha \alpha^{\prime}}}=(a x-b y-c a-d t)+i(b x+a y+d z-c t), \gamma \beta^{\prime}+\delta \delta^{\prime}=\overline{\beta \gamma^{\prime}}+\overline{\alpha \alpha^{\prime}}=$
$\therefore \alpha \beta^{\prime}+\beta \delta^{\prime}=(c x-d y+a z+b t)+i(d x+c y-b z+a t), \gamma \alpha^{\prime}+\delta \gamma^{\prime}=-(c x-d y+a z+b t)+$ $i(d x+c y-b z+a t)$

Thus, $-\left(\alpha \beta^{\prime}+\beta \delta^{\prime}\right)\left(\gamma \alpha^{\prime}+\delta \gamma^{\prime}\right)=(c x-d y+a z+b t)^{2}+(d x+c y-b z+a t)^{2}$
Substituting obtained expression in the original idendity we have the required result.
343. $(\cos \theta+i \sin \theta)^{n}=\cos ^{n} \theta+i^{n} C_{1} \cos ^{n-1} \theta \sin \theta+i^{2 n} C_{2} \cos ^{(n-2)} \theta \sin ^{2} \theta+\cdots+$ $i^{r r} C_{r} \cos (n-r+1) \theta \sin ^{r-1} \theta+\cdots$
Separating real part, $\cos n \theta=\cos ^{n} \theta-{ }^{n} C_{2} \cos ^{n-2} \theta \sin ^{2} \theta+\cdots$

Taking into account the parity of n and dividing both members of these equalities by $\cos ^{n} \theta$, we get the required formulas.
344. Replacing real part with imaginary part in previous problem we arrive at required formula.
345. $\cos \theta=\frac{(\cos \theta+i \sin \theta)+(\cos \theta-i \sin \theta)}{2}$. Let $\cos \theta+i \sin \theta=z$ then $\cos \theta-i \sin \theta=z^{-1}$.
$\therefore \cos ^{2 m} \theta=\left(\frac{z+z^{-1}}{2}\right)^{2 m}=\frac{1}{2^{2 m}} \sum_{k=0}^{2 m}{ }^{2 m} C_{k} z^{2 m-k} . z^{-k}$
Moreover $2^{2 m} \cos ^{2 m} \theta=\sum_{k=0}^{m-1}{ }^{2 m} C_{k} z^{2(m-k)}+{ }^{2 m} C_{m}+\sum_{k=m+1}^{2 m}{ }^{2 m} C_{k} z^{2(m-k)}$
Putting $m-k=-\left(m-k^{\prime}\right)$, we rewrite the sum $\sum_{k^{\prime}=m-1}^{0}{ }^{2 m} C_{2 m-k^{\prime}} z^{-2\left(m-k^{\prime}\right)}=$ $\sum_{k=0}^{m-1}{ }^{2 m} C_{k} z^{-(m-k)}$

And so $2^{2 m} \cos ^{2 m} \theta=\sum_{k=0}^{m-1}{ }^{2 m} C_{k}\left(z^{2(m-k)}+z^{-2(m-k)}\right)+{ }^{2 m} C_{m}$.
However, $z^{2(m-k)}+z^{-2(m-k)}=2 \cos 2(m-k)$.
$\therefore 2^{2 m} \cos ^{2 m} \theta=\sum_{k=0}^{m-1} 2\binom{2 m}{k} \cos 2(m-k) x+\binom{2 m}{m}$.
346. Putting $\theta=\frac{\pi}{2}-\theta$ in the previous problem, we get the required formula.
347. This is deduced like previous problem.
348. This is deduced like previous problem.
349. We have the expression $u_{n}+i v_{n}=(\cos \alpha+i \sin \alpha)+r[\cos (\alpha+\theta)+i \sin (\alpha+\theta)]+\cdots+$ $r^{n}[\cos (\alpha+n \theta)+i \sin (\alpha+n \theta)]$
$=(\cos \alpha+i \sin \alpha)\left[1+(\cos \theta+i \sin \theta)+\cdots+r^{n}(\cos n \theta+i \sin n \theta)\right]$. Putting $z=\cos \theta+$ $i \sin \theta$, then $u_{n}+i v_{n}=(\cos \alpha+i \sin \alpha)\left[1+r z+\cdots+r^{n} z^{n}\right]=e^{i \alpha} \frac{(r z)^{n+1}-1}{r z-1}$

Transforming $\frac{(r z)^{n+1}-1}{r z-1}$, separating real part from the imaginary one.
$\frac{(r z)^{n+1}-1}{r z-1}=\frac{\left[(r z)^{n+1}-1\right][\overline{r z}-1]}{(r z-1)(\overline{r z}-1)}$
$=\frac{r^{n+2}[\cos n \theta+i \sin n \theta]-r[\cos \theta-i \sin \theta]}{1-2 r \cos \theta+r^{2}}+\frac{-r^{n+1}[\cos (n+1) \theta+i \sin (n+1) \theta]+1}{1-2 r \cos \theta+r^{2}}$
Multiplying above with $(\cos \alpha+i \sin \alpha)$ and separating real and imaginary parts we have $u_{n}+i v_{n}=\frac{\cos \alpha-r \cos (\alpha-\theta)-r^{n+1} \cos [\alpha+(n+1) \theta]+r^{n+2} \cos (\alpha+n \theta)}{1-2 r \cos \theta+r^{2}}+$ $i \frac{\sin \alpha-r \sin (\alpha-\theta)-r^{n+1} \sin [\alpha+(n+1) \theta]+r^{n+2} \sin (\alpha+n \theta)}{1-2 r \cos \theta+r^{2}}$.

Note: Putting $\alpha=0, r=1$, we obtain $1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta=\frac{\sin \frac{n+1}{2} \theta \cos \frac{n \theta}{2}}{\sin \frac{\theta}{2}}$ and $\sin \theta+\sin 2 \theta+\cdots+\sin n \theta=\frac{\sin \frac{n+1}{2} \theta \sin \frac{n \theta}{2}}{\sin \frac{\theta}{2}}$.
350. $S+i S^{\prime}=\sum_{k=0}^{n}{ }^{n} C_{k}(\cos k \theta+i \sin k \theta)=\sum_{k=0}(\cos \theta+i \sin \theta)^{k}=(1+\cos \theta+i \sin \theta)^{n}$ $=\left[2 \cos ^{2} \frac{\theta}{2}+2 i \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right]^{n}=2^{n} \cos ^{n} \frac{\theta}{2}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)^{n}$ $=2^{n} \cos ^{n} \frac{\theta}{2}\left(\cos \frac{n \theta}{2}+i \sin \frac{n \theta}{2}\right)$.

Equating real and imaginary parts we have S and S^{\prime}.
351. Put $S=\sin ^{2 p} \alpha+\sin ^{2 p} 2 \alpha+\cdots+\sin ^{2 p} 2 \alpha=\sum_{l=1}^{n} \sin ^{2 p} l \alpha$

But we have proved earlier $\left.\sin ^{2 p} l \alpha=\frac{1}{2^{2 p-1}}\right)(-1)^{p} \sum_{k=0}^{p-1}{ }^{2 p} C_{k} \cos 2(p-k) l \alpha+\frac{1}{2^{2 p}}{ }^{2 p} C_{p}$, therefore
$S=\frac{(-1)^{p}}{2^{2 p-1}} \sum_{k=0}^{p-1}(-1)^{k 2 p} C_{k} \sum_{l=1}^{n} \cos 2(p-k) l \alpha+{\frac{1}{2^{2 p}}}^{2 p} C_{p}$
Put $2(p-k) \alpha=\theta, \sum_{l=1}^{n} \cos 2(p-k) \alpha=\cos \theta+\cdots+\cos n \theta=\frac{\sin \frac{n \theta}{2} \cos \frac{n+1}{2} \theta}{\sin \frac{\theta}{2}}$
Denoting $\frac{\sin \frac{n \theta}{2} \cos \frac{n+1}{2} \theta}{\sin \frac{\theta}{2}}=\sigma_{k}$, we can prove that $\sigma_{k}=0$ if k is of the same parity as $p\{k \equiv p(\bmod 2)\}$ and $\sigma_{k}=-1$ if k and p are of different parity $\{k \equiv p+1(\bmod) 2\}$, and we get
$S=\frac{(-1)^{p+1}}{2^{2 p-1}} \sum_{\substack{k=0 \\ k \equiv p+1(\bmod 2)}}^{p-1}(-1)^{k 2 p} C_{k}+\frac{n}{2^{2 p}}{ }^{2 p} C_{p}$.
Hence, $S=\frac{1}{2^{2 p-1}} \sum_{\substack{k=0 \\ k \equiv p+1(\bmod 2)}}^{p-1}{ }^{2 p} C_{k}+\frac{n}{2^{2 p}}{ }^{2 p} C_{p}$.
But we can prove that $\sum_{\substack{k=0 \\ k \equiv p+1(\bmod 2)}}^{p-1}{ }^{2 p} C_{k}=2^{2 p-2}$ (check binomial theorem chapter) and hence our formula is deduced.
352. Considering the given expression as a polynomial in y we see that at $y=0$ the polynomial vanishes. Therefore, our polynomial is divisible by y. Since it is symmetrical both w.r.t. to x and y this must also be true for x i.e. the polynomial being divisible by x. Hence, the polynomial is divisible by $x y$. Putting $y=-x$ (we do this for checking divisibility by $x+y$), we have $(x-x)^{n}-x^{n}-(-x)^{n}=0$. Consequently, the polynomial is divisible by $x+y$.

Now it remains to prove that the polynomial is divisible by $x^{2}+x y+y^{2}$. Expansind this into linear factors we have $x^{2}+x y+y^{2}=(y-x \omega)\left(y-x \omega^{2}\right)$ where ω is cube root of unity, which leads to $1+\omega+\omega^{2}=0$.

Since $n=3 m+1,3 m+2 \forall m \in 0$, we substitute $y=x \omega$ and $y=x \omega^{2}$ and find that it vanishes for both. Consequently, we have proven the divisibility condition.
353. Let the quantities $-x,-y$ and $x+y$ be the roots of the cubic equation $x^{3}-r x^{2}-p x-q=$ 0 . Then $r=-x-y+x+y=0,-p=x y-x(x+y)-y(x+y), q=x y(x+y)$ reducing our equation to $x^{3}-p x+q=0$.

Putting $(x+y)^{n}-x^{n}-y^{n}=S_{n}$ we find that between successive values of S_{n} their exists relationship $S_{n+3}=p S_{n+1}+q S_{n}$. We will use mathematical induction to prove that S_{n} is divisible by p^{2} with the knowledge that $S_{1}=0$.

Let S_{n} be divisble by p^{2} then let S_{n+6} be also divisible by p^{2}. We have, $S_{n+6}=p S_{n+4}+$ $q S_{n+3}, S_{n+4}=p S_{n+2}+q S_{n+1}$. Therefore,
$S_{n+6}=p\left(p S_{n+2}+q S_{n+1}\right)+q\left(p S_{n+1}+q S_{n}\right)=p^{2} S_{n+2}+2 p q S_{n+1}+q^{2} S_{n}$.
Since by supposition, S_{n} is divisible by p^{2}, it suffices to prove that S_{n+1} is divisible by p. Thus, we only have to prove that given expression is divisible by $x^{2}+x y+y^{2}$ if $n \equiv 2(\bmod 6)$, which can be proved by proceeding like previous problem.
354. Let $f(x)=(\cos \theta+x \sin \theta)^{n}-\cos n \theta-x \sin n \theta$. But $x^{2}+1=(x+i)(x-i)$ and $f(i)=\cos n \theta+i \sin n \theta-\cos n \theta-i \sin n \theta=0$. Similarly, $f(-i)=0$. And hence, required condition is proved.
355. Roots of the equation $x^{2}-2 p x \cos \theta+p^{2}=0$ are $p(\cos \theta \pm \sin \theta)$. Let $f(x)=x^{n} \sin \theta-$ $p^{n-1} x \sin n \theta+p^{n} \sin (n-1) \theta$, then
$f[p(\cos \theta+i \sin \theta)]=p^{n}(\cos n \theta+i \sin n \theta) \sin \theta-p^{n}(\cos \theta+i \sin \theta) \sin n \theta+p^{n} \sin (n-$ 1) θ. Separating real and imaginary parts
$\cos n \theta \sin \theta-\cos \theta \sin n \theta+\sin (n-1) \theta=-\sin (n-1) \theta+\sin (n-1) \theta=0$
and $\sin \theta \sin n \theta-\sin \theta \sin n \theta=0$. Hence, $f(x)$ is divisible by $p(\cos \theta+i \sin \theta)$ and $\operatorname{simi-}$ larly we can prove it for the other root.
356. Let $x^{4}+1=\left(x^{2}+p x+q\right)\left(x^{2}+p^{\prime} x+q^{\prime}\right)=x^{4}+\left(p+p^{\prime}\right) x^{3}+\left(p p^{\prime}+q+q^{\prime}\right) x^{2}+$ $\left(p q^{\prime}+p^{\prime} q\right) x+q q^{\prime}$ which gives us four equations $p+p^{\prime}=0, p p^{\prime}+q+q^{\prime}=0, p q^{\prime}+p^{\prime} q=0$ and $q q=1$.

Assuming $p=0, p^{\prime}=0, q+q^{\prime}=0, q q^{\prime}=1, q^{2}=-1, q= \pm i, q^{\prime}=\mp i$.
Consequently, corresponding factorization has form $x^{4}+1=\left(x^{2}+i\right)\left(x^{2}-i\right)$.
Let $q=q^{\prime}, q^{2}=1, q= \pm 1$. First let $q=q^{\prime}=1$. Then $p p^{\prime}=-2, p+p^{\prime}=0, p^{2}=2, p=$ $\pm \sqrt{2}, p^{\prime}=\mp \sqrt{2}$. The corresponding factorization is $x^{4}+1=\left(x^{2}-\sqrt{2} x+1\right)\left(x^{2}+\right.$ $\sqrt{2} x+1)$.

Then we assume $q=q^{\prime}=-1, p+p^{\prime}=0, p p^{\prime}=2, p= \pm \sqrt{2} i, p^{\prime}=\mp \sqrt{2} i$.
The factorization will be $\left(x^{2}+\sqrt{2} i x-1\right)\left(x^{2}-\sqrt{2} i x-1\right)$.
357. Let $S=\sum_{k=1}^{n-1} x_{k}^{p}=\sum_{k=1}^{n-1} z^{k p}$ where $z=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}$.

Thus, $\sum_{k=1}^{n-1} x_{k}^{p}=1+z^{p}+z^{2 p}+\cdots+z^{(n-1) p}$ but $z^{p}=\cos \frac{2 p \pi}{n}+i \sin \frac{2 p \pi}{n}$. Obviously $z^{p}=1$ if and only if p is divisible by n, in which case $S=n$. If $z^{p} \neq 1$, then $S=\frac{z^{n p-1}}{z^{p}-1}=0 \because z^{n p}=1$.
358. We have $\sum_{k=1}^{n-1}\left|A_{k}\right|^{2}=\sum_{k=1}^{n-1} A_{k} \overline{A_{k}}$.

But $A_{k} \overline{A_{k}}=\left(x+y \epsilon^{k}+z \epsilon^{2 k}+\ldots+w \epsilon^{(n-1) k}\right)\left(\bar{x}+\bar{y} \epsilon^{-k}+\bar{z} \epsilon^{-2 k}+\cdots+\bar{w} \epsilon^{-(n-1) k}\right)$
$=(x \bar{x}+y \bar{y}+\cdots+w \bar{w})+x\left(\bar{y} \epsilon^{-k}+\bar{z} \epsilon^{-2 k}+\cdots+\bar{w} \epsilon^{-(n-1) k}\right)+y \epsilon^{k}\left(\bar{x}+\bar{x} \epsilon^{-2 k}+\cdots+\right.$ $\left.\bar{w} \epsilon^{-(n-1) k}\right)+\cdots+w \epsilon^{(n-1) k}\left(\bar{x}+\bar{y} \epsilon^{-k}+\cdots+\bar{u} \epsilon^{-(n-2) k}\right)$
Therefore, $\sum_{k=1}^{n-1}\left|A_{k}\right|^{2}=n\left(|x|^{2}+|y|^{2}+\cdots+|w|^{2}\right)+x \sum_{k=1}^{n-1}\left(\bar{y} \epsilon^{-k}+\bar{z} \epsilon^{-2 k}+\cdots+\bar{w} \epsilon^{-(n-1) k}\right)+$ $y \sum_{k=1}^{n-1}\left(\bar{x} \epsilon^{k}+\bar{z} \epsilon^{-k}+\cdots+\bar{w} \epsilon^{-(n-2) k}\right)+\cdots+w \sum_{k=1}^{n-1}\left(\bar{x} \epsilon^{(n-1) k}+\bar{y} \epsilon^{(n-2) k}+\cdots+\bar{u} \epsilon^{k}\right)$

But $\sum_{k=1}^{n-1} \epsilon^{l k}=0$ if l is not divisible by n from previous problem. Therefore all the sums in the right vanish and we get
$\sum_{k=0}^{n-1}\left|A_{k}\right|^{2}=n\left(|x|^{2}+|y|^{2}+\ldots+|w|^{2}\right)$.
359. Considering $2 n$th root of unity $x_{s}=\cos \frac{2 s \pi}{n}+i \sin \frac{2 s \pi}{n} \quad(s=1,2,3, \ldots, n)$.

Therefore, $x^{2 n}-1=\prod_{s=1}^{2 n}\left(x-x_{s}\right)=\prod_{s=1}^{n-1}\left(x-x_{s}\right) \prod_{s=n+1}^{2 n-1}\left(x-x_{s}\right)\left(x^{2}-1\right) \because x_{n}=-1, x_{2 n}=$ 1. But $x_{2 n-s}=\overline{x_{s}}$, consequently,
$x^{2 n}-1=\left(x^{2}-1\right) \prod_{s=1}^{n-1}\left(x-x_{s}\right)\left(x-\overline{x_{s}}\right)=\left(x^{2}-1\right) \prod_{s=1}^{n-1}\left(x^{2}-2 x \cos \frac{s \pi}{n}+1\right)$.
360. Considering $2 n+1$ th root of unity $x_{s}=\cos \frac{2(2 s+1) \pi}{2 n+1}+i \sin \frac{(2 s+1) \pi}{2 n+1} \quad(s=1,2,3, \ldots, n)$. Therefore $x^{2 n+1}-1=\prod_{s=1}^{2 n+1}\left(x-x_{s}\right)$. However, $x_{2 n+1}=1$, therefore $x^{2 n+1}-1=(x-1) \prod_{s=1}^{2 n}\left(x-x_{s}\right)$, but $x_{2 n-s}=\overline{x_{s}} \Rightarrow x^{2 n+1}-1=(x-1) \prod_{x=1}^{n}\left(x-x_{s}\right)(x-$ $\left.\overline{x_{s}}\right)=(x+1) \prod_{k=1}^{n}\left(x^{2}-2 x \cos \frac{2 k \pi}{2 n+1}+1\right)$.
361. Considering $2 n+1$ th root of $-1, x_{s}=-\cos \frac{2(2 s+1) \pi}{2 n+1}+i \sin \frac{(2 s+1) \pi}{2 n+1} \quad(s=1,2,3, \ldots, n)$. Therefore $x^{2 n+1}+1=\prod_{s=1}^{2 n+1}\left(x-x_{s}\right)$. However, $x_{2 n+1}=-1$, therefore

$$
\begin{aligned}
& x^{2 n+1}+1=(x+1) \prod_{s=1}^{2 n}\left(x-x_{s}\right), \text { but } x_{2 n-s}=\overline{x_{s}} \Rightarrow x^{2 n+1}+1=(x+1) \prod_{x=1}^{n}\left(x-x_{s}\right)(x- \\
& \left.\overline{x_{s}}\right)=(x+1) \prod_{k=1}^{n}\left(x^{2}+2 x \cos \frac{2 k \pi}{2 n+1}+1\right)
\end{aligned}
$$

362. This problem can be solved like previous problem.
363. We have proven that $x^{2 n}-1=\left(x^{2}-1\right) \prod_{k=1}^{n-1}\left(x^{2}-2 x \cos \frac{k \pi}{n}+1\right)$ $\Rightarrow x^{2 n-2}+x^{2 n-4}+\cdots+x^{2}+1=\prod_{k=1}^{n-1}\left(x^{2}-2 x \cos \frac{k \pi}{n}+1\right)$
Putting $x=1$, we have $n=\prod_{k=1}^{n-1}\left(2-2 \cos \frac{k \pi}{n}\right)=\prod_{k=1}^{n-1} 4 \sin ^{2} \frac{k \pi}{2 n}=$ $2^{2(n-1)} \sin ^{2} \frac{\pi}{2 n} \sin ^{2} \frac{2 \pi}{2 n} \cdots \sin ^{2} \frac{(n-1) \pi}{2 n}$ $\Rightarrow \sin \frac{\pi}{2 n} \sin \frac{2 \pi}{2 n} \cdots \sin \frac{(n-1) \pi}{2 n}=\frac{\sqrt{n}}{2^{n-1}}$.
364. This problem can be solved like previous problem.
365. Since $\cos \alpha+i \sin \alpha$ is the root of the given equation, we have $\sum_{i=0}^{n} p_{k}(\cos \alpha+i \sin \alpha)^{n-k}=$ $0\left(p_{0}=1\right)$
$\Rightarrow(\cos \alpha+i \sin \alpha)^{n} \sum_{k=0}^{n} p_{k}(\cos \alpha+i \sin \alpha)^{-k}=0 \Rightarrow \sum_{k=0}^{n} p_{k}(\cos \alpha k-i \sin \alpha k)=0$.
Hence, $\sum_{k=0}^{n} p_{k} \sin \alpha k=p_{1} \sin \alpha+p_{2} \sin 2 \alpha+\cdots+p_{n} \sin n \alpha=0$.
366. The roots of the equation $x^{7}=1$ are $\cos \frac{2 k \pi}{7}+i \sin \frac{2 k \pi}{7} \quad(k=0,1,2, \ldots, 6)$.

Therefore, the roots of the equation $x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1=0$ will be $x_{k}=$ $\cos \frac{2 k \pi}{7}+i \sin \frac{2 k \pi}{7} \quad(k=1,2,3, \ldots, 6)$.

Putting $x+\frac{1}{x}=y$, then $x^{2}+\frac{1}{x^{2}}=y^{2}-2 y$ and $x^{3}+\frac{1}{x^{3}}=y^{3}-3 y$. Rewriting the above equation $\left(x^{3}+\frac{1}{x^{3}}\right)+\left(x^{2}+\frac{1}{x^{2}}\right)+\left(x+\frac{1}{x}\right)+1=0$.

Clearly, $x_{1}=\overline{x_{6}}, x_{2}=\overline{x_{5}}, x_{3}=\overline{x_{4}}, x_{k}+\frac{1}{x_{k}}=x_{k}+\overline{x_{k}}=2 \cos \frac{2 k \pi}{7}$.
Hence we can say that quantities $2 \cos \frac{2 \pi}{7}, 2 \cos \frac{4 \pi}{7}, 2 \cos \frac{6 \pi}{7}$ are the rootss of the equation $y^{3}+y^{2}-2 y-1=0$.
Let the roots of the cubic equation $x^{3}-a x^{2}+b x-c=0$ be α, β, γ. Then $\alpha+\beta+\gamma=$ $a, \alpha \beta+\beta \gamma+\gamma \alpha=b, \alpha \beta \gamma=c$.

Let the equation, whose roots are $\sqrt[3]{\alpha}, \sqrt[3]{\beta}, \sqrt[3]{\gamma}$, be $x^{3}-A x^{2}+B x-C=0$. Then, $\sqrt[3]{\alpha}+\sqrt[3]{\beta}+\sqrt[3]{\gamma}=A, \sqrt[3]{\alpha \beta}+\sqrt[3]{\beta \gamma}+\sqrt[3]{\gamma \alpha}=B, \sqrt[3]{\alpha \beta \gamma}=C$.

We know that $(m+p+q)^{3}=m^{3}+p^{3}+q^{3}+3(m+p+q)(m p+m q+p q)-3 m p q$. Substituting $\sqrt[3]{\alpha}, \sqrt[3]{\beta}, \sqrt[3]{\gamma}$ and $\sqrt[3]{\alpha \beta}, \sqrt[3]{\beta \gamma}, \sqrt[3]{\gamma \alpha}$ for m, p, q we obtain
$A^{3}=a+3 A B-3 C, B^{3}=b+3 B C A-3 C^{2}$. In our case, $a=-1, b=-2, c=1, C=1$.
Hence, $A^{3}=3 A B-4, B^{3}=3 A B-5$.
Multiplying these equations and putting $A B=z$, we find
$z^{3}-9 z^{2}+27 z-20=0 \Rightarrow(z-3)^{3}+7=0 \Rightarrow z=3-\sqrt[3]{7}$
But $A^{3}=3 z-4 \Rightarrow A=\sqrt[3]{5-3 \sqrt[3]{7}}$ and hence
$\sqrt[3]{\cos \frac{2 \pi}{7}}+\sqrt[3]{\cos \frac{4 \pi}{7}}+\sqrt[3]{\cos \frac{8 \pi}{7}}=\sqrt[3]{\frac{1}{2}(5-3 \sqrt[3]{7})}$.
367. This problem can be solved like previous problem.
368. Squaring the first trimonial, $A^{2}=\left(x_{1}^{2}+2 x_{2} x_{3}\right)+\left(x_{3}^{2}+2 x_{1} x_{2}\right) \omega+\left(x_{2}^{2}+2 x_{1} x_{3}\right) \omega^{2}$.

Then $A^{3}=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+6 x_{1} x_{2} x_{3}\right)+\left(3 x_{1}^{2} x_{2}+3 x_{2}^{2} x_{1}+3 x_{2}^{2} x_{3}\right) \omega+\left(3 x_{1}^{2} x_{3}+3 x_{2}^{2} x_{1}+\right.$ $\left.3 x_{3}^{2} x_{2}\right) \omega^{2}$

Putting $3 \alpha=3 x_{1}^{2} x_{2}+3 x_{2}^{2} x_{1}+3 x_{2}^{2} x_{3}$ and $3 \beta=3 x_{1}^{2} x_{3}+3 x_{2}^{2} x_{1}+3 x_{3}^{2} x_{2}$.
Now $x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=-\left(p x_{1}+q\right)-\left(p x_{2}+q\right)-\left(p x_{3}+q\right)=-3 q$ since $x_{1}+x_{2}+x_{3}=0$.
Moreover, $x_{1} x_{2} x_{3}=-q$, therefore
$A^{3}=-9 q+3 \alpha \omega+3 \beta \omega^{2}$, we also find $B^{3}=-9 q+3 \alpha \omega^{2}+3 \beta \omega$.
Hence, $A^{3}+B^{3}=-18 q-3 \alpha-3 \beta=-27 q$, and similarly, $A^{3} B^{3}=-27 p^{3}$.
369. Let $f(x)=\frac{5 x^{4}+10 x^{2}+1}{x^{4}+10 x^{2}+5}$ then the equation takes the form $f(x) \cdot f(a)=a x$.
$x-f(x)=\frac{(x-1)^{5}}{x^{4}+10 x^{2}+5}$ and $x+f(x)=\frac{(x+1)^{5}}{x^{4}+10 x^{2}+5}$. Dividing,
$\frac{x-f(x)}{x+f(x)}=\left(\frac{x-1}{x+1}\right)^{5}$. Let $\frac{x-1}{x+1}=y$ and $\frac{a-1}{a+1}=b$.
$\Rightarrow x-f(x)=y^{5} x+y^{5} f(x), x\left(1-y^{5}\right)=f(x)\left(1+y^{5}\right) \Rightarrow \frac{f(x)}{x}=\frac{1-y^{5}}{1+y^{5}}$.
Similarly, $\frac{f(a)}{a}=\frac{1-b^{5}}{1+b^{5}}$. So we can write the equation as $\frac{1-y^{5}}{1+y^{5}}=\frac{1+b^{5}}{1-b^{5}} \Rightarrow y^{5}=-b^{5}$.
The last equation has five roots. $y_{k}=-b \epsilon^{k}$, where $\epsilon=\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}$.
But $x=\frac{1+y}{1-y} \Rightarrow x_{k}=\frac{(a+1)-(a-1) \epsilon^{k}}{(a+1)+(a-1) \epsilon^{k}}=\frac{\cos \frac{k \pi}{5}-i a \sin \frac{k \pi}{5}}{a \cos \frac{k \pi}{5}-i \sin \frac{k \pi}{5}}$.
370. $\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{n}=\cos \frac{2 n \pi}{3}+i \sin \frac{2 n \pi}{3}$

Further $\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{n}=\frac{(-1)^{n}}{2^{n}}(1-i \sqrt{3})^{n}=\frac{(-1)^{n}}{2^{n}}\left[1+{ }^{n} C_{1}(-i \sqrt{3})+{ }^{n} C_{2}(-i \sqrt{3})^{2}+\right.$ $\left.{ }^{n} C_{3}(-i \sqrt{3})^{3}+\cdots\right]$
$=\frac{(-1)^{n}}{2^{n}}\left[1-3^{n} C_{2}+\cdots\right]-i \sqrt{3}\left[{ }^{n} C_{1}-3^{n} C_{3}+3^{2 n} C_{5}-3^{3 n} C_{7}+\cdots\right]$

Equating coefficient of i in both the equations, $S=(-1)^{n+1} \frac{2^{n}}{\sqrt{3}} \sin \frac{2 n \pi}{3}$.
371. We have $(1+i)^{n}=1+{ }^{n} C_{1} i+{ }^{n} C_{2} i^{2}+{ }^{n} C_{3} i{ }^{3}+\cdots=1+{ }^{n} C_{1} i-{ }^{n} C_{2}-{ }^{n} C_{3} i+\cdots$

But $1+i=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$
Therefore, $\sigma=1-{ }^{n} C_{2}+{ }^{n} C_{4}-{ }^{n} C_{6}+\cdots=2^{\frac{n}{2}} \cos \frac{n \pi}{4}$,
$\sigma^{\prime}={ }^{n} C_{1}-{ }^{n} C_{3}+{ }^{n} C_{5}-{ }^{n} C_{7}+\cdots=2^{\frac{n}{2}} \sin \frac{n \pi}{4}$.
Hence, if $n=0(\bmod 4)$ i.e. $n=4 m \forall m \in \mathbb{0}$, then $\sigma=(-1)^{m} 2^{2 m}, \sigma^{\prime}=0$. If $n=4 m+1$, then $\sigma=\sigma^{\prime}=(-1)^{m} 2^{2 m}$, for $n=4 m+2, \sigma=0, \sigma^{\prime}=(-1) 2^{2 m+1}$ and for $n=4 n+3, \sigma=$ $(-1)^{m+1} 2^{2 m+1}, \sigma^{\prime}=(-1)^{m} 2^{2 m+1}$.

Answers of Chapter 4 Theory of Equations

1. $x+x^{9}+x^{25}+x^{49}+x^{81}=x\left(1+x^{8}+x^{24}+x^{48}+x^{80}\right)=x\left[\left(x^{80}-1\right)+\left(x^{48}-1\right)+\left(x^{24}-\right.\right.$ 1) $\left.+\left(x^{8}-1\right)+5\right]$.

All terms are divisible by $x\left(x^{2}-1\right)$ except last term $5 x$, and hence, $5 x$ is the remainder.
2. Let $P=x^{9999}+x^{8888}+x^{7777}+\cdots+x^{1111}+1$ and $Q=x^{9}+x^{8}+x^{7}+\cdots+x+1$, then $P-Q=x^{9}\left[\left(x^{10}\right)^{999}-1\right]+x^{8}\left[\left(x^{10}\right)^{888}-1\right]+\cdots+x\left[\left(x^{10}\right)^{100}-1\right]$
But $\left(x^{10}\right)^{n}-1$ is divisible by $x^{10}-1 \forall n \geq 1 . \therefore P-Q$ is divisible by $x^{10}-1$.
Because $x^{9}+x^{8}+x^{7}+\cdots+x+1\left|x^{10}-1 \Rightarrow x^{9}+x^{8}+x^{7}+\cdots+x+1\right| P-Q \Rightarrow$ $x^{9}+x^{8}+x^{7}+\cdots+x+1 \mid P$.
3. We will prove this by contradiction. Suppose that $f(n)=0$, then $f(x-n)$ divides $f(x)$ i.e. $f(x)=(x-n) g(x)$, where $g(x)$ is another polynomial with integral coefficients. Now $f(1)=(1-n) g(1)$ and $f(2)=(2-n) g(2)$. Both of these should be odd numbers but that is not possible as $1-n$ and $2-n$ are consecutive integers. Thus, either $f(1)$ or $f(2)$ should be even, which is a contradiction, and hence, the result.
4. Suppose that there exists such an integer b, such that $f(b)=1993$. Let $g(x)=f(x)-$ 1991. Now, g is a polynomial with integer coefficients and $g\left(a_{i}\right)=0$ for $i=1,2,3,4$.

Thus, $\left(x-a_{1}\right),\left(x-a_{2}\right),\left(x-a_{3}\right)$ and $\left(x-a_{4}\right)$ are all factors of $g(x)$. So $g(x)=(x-$ $\left.a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)\left(x-a_{4}\right) h(x)$, where $h(x)$ is a polynomial with integer coefficients. $g(b)=f(b)-1991=2$ so $g(b)=\left(b-a_{1}\right)\left(b-a_{2}\right)\left(b-a_{3}\right)\left(b-a_{4}\right) h(b)=2$.

Thus, $\left(b-a_{1}\right)\left(b-a_{2}\right)\left(b-a_{3}\right)\left(b-a_{4}\right)$ are all divisors of 2 and distinct. Such values are $1,-1,-2,2$ and $h(b)$ is an integer.
$\therefore g(b)=4 . h(b)=2$, which is not possible. Hence, such an integer does not exist.
5. We know that when coefficients of a polynomial are integers then quadratic surds as roots appear in pairs. Therefore, the other root would be $-\sqrt{5}$ giving us a second degree polynomial $x^{2}-5$. Therefore, we can write the polynomial is of the form $a x^{2}-5 a$.

Second method: Since the order of the surd $\sqrt{5}$ is 2 , we can expect a polynomial of the lowest degree to be a polynomial of degree 2. Let $f(x)=a x^{2}+b x+c, a, b, c \in \mathbb{Q}$. $f(\sqrt{5})=5 a+\sqrt{5} a+c=0$ But $\sqrt{5}$ is irrational so $5 a+c=0$ and $b=0 \Rightarrow c=-5 a$ so the polynomial is of the form $a x^{2}-5 a$ giving us second root at $-\sqrt{5}$.
6. Let $f(x)=x-(\sqrt{5}+\sqrt{2})=[(x-\sqrt{5})-\sqrt{2}]$. Using conjugate as the other zero, we have $f_{1}(x)=[(x-\sqrt{5})-\sqrt{2}][(x-\sqrt{5})+\sqrt{2}]=\left(x^{2}+3-2 \sqrt{5} x\right) \Rightarrow f_{2}(x)=$ $\left[\left(x^{2}+3\right)-2 \sqrt{5} x\right]\left[\left(x^{2}+3\right)+2 \sqrt{5} x\right]=x^{4}-14 x^{2}+9 \Rightarrow f(x)=a x^{4}-14 x^{2}+9 a$, where $a \in \mathbb{Z}, a \neq 0$.
7. Putting $x=0,0=-f(0) \Rightarrow f(0)=0$. Putting $x=1, f(0)=-3 f(1) \Rightarrow f(1)=0$. Similalrly, $f(2)=f(3)=0$. Let is assume $f(x)=x(x-1)(x-2)(x-3) g(x)$, where $g(x)$ is some polynomial. Now using the given relation we have $x(x-1)(x-2)(x-$ 3) $(x-4) g(x-1)=x(x-1)(x-2)(x-3)(x-4) g(x)$
$\Rightarrow g(x-1)=g(x) \forall x \in \mathbb{R}-\{0,1,2,3,4\} \Rightarrow g(x-1)=g(x) \forall x \in \mathbb{R}$ from identity theorem.
$\Rightarrow g(x)$ is periodic. $\Rightarrow g(x)=c \Rightarrow f(x)=c x(x-1)(x-2)(x-3)$
8. Because $f(x)$ is a monic coefficient of highest degree will be 1 . Let $g(x)=f(x)-x$, where $g(x)$ is also a cubic polynomial.
$g(1)=0, g(2)=0, g(3)=0 \Rightarrow g(x)=(x-1)(x-2)(x-3) \Rightarrow f(x)=(x-1)(x-$ 2) $(x-3)+x \Rightarrow f(4)=10$.
9. Let $f(x)=x-(\sqrt{3}+\sqrt{7})=[(x-\sqrt{3})-\sqrt{7}]$. Using conjugate as the other zero, we have $f_{1}(x)=[(x-\sqrt{3})-\sqrt{7}][(x-\sqrt{3})+\sqrt{7}]=\left(x^{2}-4-2 \sqrt{3} x\right) \Rightarrow f_{2}(x)=$ $\left[\left(x^{2}-4\right)-2 \sqrt{3} x\right]\left[\left(x^{2}-4\right)+2 \sqrt{3} x\right]=x^{4}-8 x^{2}+16-12 x^{2}=x^{4}-20 x^{2}+16=0$.
10. Clearly, we will have conjugate roots for the given surds as roots, which would be $2-\sqrt{3}$ and $3-\sqrt{2}$. Therefore, the polynomial would be
$f(x)=[(x-2)-\sqrt{3}][(x-2)+\sqrt{3}][(x-3)-\sqrt{2}][(x-3)+\sqrt{2}]=\left(x^{2}-4 x+4-\right.$
$3)\left(x^{2}-6 x+9-2\right)=\left(x^{2}-4 x+1\right)\left(x^{2}-6 x+7\right)=x^{4}-10 x^{3}+32 x^{2}-34 x+7=0$.
11. Let $y=\sqrt[3]{2}$, then $x=y+3 y^{2}=y(3 y+1)$. Cubing both sides $x^{3}=y^{3}\left(27 y^{3}+27 y^{2}+9 y+\right.$ $1)=2(9 x+55) \Rightarrow x^{3}-18 x-110=0$. This is the minimal polynomial as $[\mathbb{Q}(\sqrt[3]{2}): Q]=$ 3.
12. $x^{n}-n x+n-1=(x-1)\left(x^{n-1}+x^{n-2}+\cdots+x+1\right)-n(x-1)=(x-1)\left[\left(x^{n-1}-\right.\right.$ $\left.1)+\left(x^{n-2}-1\right)+\cdots+(x-1)\right]$, which clearly has a factor $(x-1)^{2}$.
13. Because a, b, c, d, e are all zeroes of the polynomial $6 x^{5}+5 x^{4}+4 x^{3}+3 x^{2}+2 x+1$, therefore, $6(x-a)(x-b)(x-c)(x-d)(x-e)=6 x^{5}+5 x^{4}+4 x^{3}+3 x^{2}+2 x+1$.

Putting $x=1,-6(1+a)(1+b)(1+c)(1+d)(1+e)=-6+5-4+3-2+1=-3 \Rightarrow$ $(1+a)(1+b)(1+c)(1+d)(1+e)=\frac{1}{2}$.
14. Because $1, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}$ are the roots of the equation $x^{n}-1=0$, therefore, $(x-$ 1) $\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n-1}\right)=x^{n}-1 \Rightarrow\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n-1}\right)=x^{n-1}+$ $x^{n-2}+\cdots+x+1$.

Putting $x=1$, in the above equation, we deduce the desired result.
15. Consider a function $g(x)=f(x)-10 x$, then $g(1)=g(2)=g(3)=0$ i.e. $(x-1)(x-$ 2) $(x-3)$ would divide $g(x)$. Since $f(x)$ has a degree of 4 so $g(x)$ will also have a degree of 4. Let $g(x)=(x-t)(x-1)(x-2)(x-3)$ so $f(x)=10 x+(x-t)(x-1)(x-2)(x-3)$.

Now for $x=12,(x-1)(x-2)(x-3)=990$ and for $x=-8,(x-1)(x-2)(x-3)=$ -990.
$\therefore \frac{f(12)+f(-8)}{10}=\frac{10(12-8)+(12-t) 990+(-8-t) .-990}{10}=1984$.
16. Roots of $x^{2}+x+1$ are ω, ω^{2}. Since given polynomial is not divisible by $x^{2}+x+1$, so these roots won't satisfy the given polynomial. Thus,
$\omega^{2 k}+1+(1+\omega)^{2 k}=\omega^{2 k}+1+\left(\omega^{2}\right)^{2 k}=1+\omega^{k}+\omega^{2 k} \neq 0$. We know that $1+\omega^{k}+\omega^{2 k}=3$ when $k=3 n, n \in \mathbb{N}$. Hence, $k=3,6,9, \ldots$.
17. Putting $x=1,-7 P(2)=0 \Rightarrow P(2)=0$. Putting $x=8,0=56 P(8) \Rightarrow P(8)=0$.
$\Rightarrow P(x)=(x-2)(x-8) Q(x) \Rightarrow P(2 x)=(2 x-2)(2 x-8) Q(2 x)$
$\Rightarrow(x-8)(2 x-2)(2 x-8) Q(2 x)=8(x-1)(x-2)(x-8) Q(x) \Rightarrow \frac{Q(2 x)}{Q(x)}=\frac{2 x-4}{x-4} \Rightarrow$ $Q(x)=x-4 \Rightarrow P(x)=(x-2)(x-4)(x-8)$.
18. If $(x-1)^{3}$ divides $f(x)+1$, then $(x-1)^{2}$ divides $f^{\prime}(x)$ and if $(x+1)^{3}$ divides $f(x)-1$ then $(x+1)^{3}$ divides $f^{\prime}(x)$. Since we have to find $f(x)$ of degree $5, f^{\prime}(x)$ will be of degree 4 . So $f^{\prime}(x)=k(x-1)^{2}(x+1)^{2}=k\left(x^{4}-2 x^{2}+1\right)$.

Integrating both sides, $f(x)=K\left(\frac{x^{5}}{5}-\frac{2 x^{3}}{3}+x\right)+c$, where $c \in \mathbb{R}$. Also, $(x-1)^{3}$ divides $f(x)+1 \Rightarrow f(1)+1=0 \Rightarrow f(1)=-1$ and $(x+1)^{3}$ divides $f(x)-1 \Rightarrow f(-1)-1=$ $0 \Rightarrow f(-1)=1$.

Putting $x=1$ in the equation for $f(x), \Rightarrow f(1)=K\left(\frac{1}{5}-\frac{2}{3}+1\right)+c=-1$, and putting $x=-1 \Rightarrow f(-1)=K\left(\frac{-1}{5}+\frac{2}{3}-1\right)+c=1$.

From these two equations we deduce $K=-\frac{15}{8}, c=0$. Thus, our required polynomial is $f(x)=-\frac{3}{8} x^{5}+\frac{5}{4} x^{3}-\frac{15}{8} x$.
19. Since the polynomial equation has rational coefficients the complex roots must appear in conjugate pairs. So we have at least two more roots i.e. $3-2 i$ and $2-3 i$ making out polynomial equation of at least having a degree of 4 . Let us find out the polynomial equation to test if the coefficients with these roots are rational.
$f(x)=a[(x-3-2 i)(x-3+2 i)][x-2-3 i][x-2+3 i]=a\left(x^{4}-10 x^{3}+50 x^{2}-130 x+\right.$ 169), $a \in \mathbb{Q} \backslash\{0\}$.
20. Since all the roots are rational, so they are divisors of -30 . The divisors or -30 are $\pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15$, and ± 30. By applying remainder theorm, we find the roots as $-1,-2,-3$ and 5 .
21. Let the roots be of the form $\frac{p}{q}$, where $(p, q)=1$ and $q>0$. Since $q \mid 2, q$ must be 1 or 2 and $p \mid 6 \Rightarrow p= \pm 1, \pm 2, \pm 3, \pm 6$.
Applying remainder theorem, $f\left(\frac{1}{2}\right)=f\left(\frac{-2}{1}\right)=f\left(\frac{3}{1}\right)=0$. So the three roots of the equation are $\frac{1}{2},-2$, and 3 .
22. $x^{3}-3 x^{3}+5 x-15=\left(x^{2}+5\right)(x-3)=0 \Rightarrow x=3, \sqrt{5} i,-\sqrt{5} i$.
23. Let the roots be of the form $\frac{p}{q}$, where $(p, q)=1$ and $q>0$. Since $q \mid 1 \Rightarrow q= \pm 1$, also $p \left\lvert\, 1 \Rightarrow p= \pm 1 \Rightarrow \frac{p}{q}= \pm 1\right.$. But $f(\pm 1) \neq 0$.
Hence, the given equation has no real roots.
24. Let α and β be the two roots of the given equation, where $\alpha \in \mathbb{Z}$. Then,
$\alpha+\beta=-a$ and $\alpha \beta=b+1 \Rightarrow \beta=-a-\alpha$ is an integer. Also, since $b+1 \neq 0, \beta \neq 0$. From these equations $a^{2}+b^{2}=(\alpha+\beta)^{2}+(\alpha \beta-1)^{2}=\left(1+\alpha^{2}\right)(1+\beta)^{2}$. Hence, $a^{2}+b^{2}$ is a composite number.
25. Let α and β bet the roots of the given equation, then $\alpha+\beta=p, \alpha \beta=p-1$.
$\left(\alpha^{2}+\beta^{2}\right)=(\alpha+\beta)^{2}-2 \alpha \beta=p^{2}-2 p+2=(p-1)^{2}+1$. For the sum to be minimum $(p-1)^{2}$ has to be minimum, which is minimum at $p=1$.
26. Let $x^{3}+a x^{2}+b x+c=0$ be the polynomial, of which α, β and $\alpha \beta$ are the roots and a, b and c are all rationals.

From Vieta's relations $\alpha+\beta+\alpha \beta=-a, \alpha \beta+\alpha^{2} \beta+\alpha \beta^{2}=b, \alpha^{2} \beta^{2}=-c . b=\alpha \beta(1+$ $\alpha+\beta)=\alpha \beta(1-a-\alpha \beta)=(1-a) \alpha \beta-\alpha^{2} \beta^{2}=(1-a) \alpha \beta+c$. As $a \neq-1, \alpha \beta=\frac{b-c}{1-a}$ and since a, b, c are rational $\alpha \beta$ is rational.

Note that $a=1 \Rightarrow 1+\alpha+\beta+\alpha \beta=0 \Rightarrow(1+\alpha)(1+\beta)=0 \Rightarrow \alpha=-1$ or $\beta=-1$, which is not the case.
27. Let the roots be $\alpha, 2 \alpha$ and β, then from Vieta's relations we have $3 \alpha+\beta=\frac{27}{9}=3 \Rightarrow$ $\beta=3(1-\alpha), 2 \alpha^{2}+3 \alpha \beta=\frac{26}{9}$ and $2 \alpha^{2} \beta=\frac{8}{9}$.

From first two equations, we get $2 \alpha^{2}+3 \alpha .3(1-\alpha)=\frac{26}{9} \Rightarrow \alpha=\frac{13}{21}$ or $\frac{2}{3}$. If $\alpha=\frac{13}{21}$ then beta $=\frac{8}{7}$ but then $2 \alpha^{2} \beta=2 \times \frac{169}{144} \times \frac{8}{7} \neq \frac{8}{9}$, which is a contradiction.

So taking $\alpha=\frac{2}{3} \Rightarrow \beta=1$. Hence, $\alpha+2 \alpha+\beta=3,2 \alpha^{2}+3 \alpha \beta=\frac{26}{9}$ and $2 \alpha^{2} \beta=\frac{8}{9}$. Hence, the roots are $\frac{2}{3}, \frac{4}{3}$ and 1 .
28. Suppose the roots are $\alpha, \beta, \gamma, \delta$ and $\alpha \beta=1$. Now $\alpha+\beta+\gamma+\delta=\frac{-24}{6}=-4,(\alpha+$ $\beta)(\gamma+\delta)+\alpha \beta+\gamma \delta=\frac{31}{4} \Rightarrow(\alpha+\beta)(\gamma+\delta)+\gamma \delta=\frac{27}{4}, \gamma \delta(\alpha+\beta)+\alpha \beta(\gamma+\delta)=\frac{-3}{2} \Rightarrow$ $\gamma \delta(\alpha+\beta)+\gamma+\delta=\frac{-3}{2}, \alpha \beta \gamma \delta=-2 \Rightarrow \gamma \delta=-2$.

From second and fourth equation, we have $(\alpha+\beta)(\gamma+\delta)=\frac{35}{6}$ from third and fourth equation, we have $-2(\alpha+\beta)+\gamma+\delta=\frac{-3}{2} \Rightarrow 3(\alpha+\beta)=\frac{15}{2} \Rightarrow \alpha+\frac{1}{\alpha}=\frac{5}{2} \Rightarrow \alpha=2, \frac{1}{2}$. Hence, $\beta=\frac{1}{2}, 2$. Now it is trivial to find γ and δ, which can be found to be $\frac{-1}{2}$ and 4 .
29. Since the coefficients are rational, where $3+\sqrt{2}$ is a root, so $3-\sqrt{2}$ is also a root. Thus, if two other roots are α and β, we have
$\sigma_{1}=\alpha+\beta+3+\sqrt{2}+3-\sqrt{2}=-(-5)=5 \Rightarrow \alpha+\beta=-1$.
$\sigma_{2}=(\alpha+\beta)(3+\sqrt{2}+3-\sqrt{2})+\alpha \beta+(3+\sqrt{2})(3-\sqrt{2})=a \Rightarrow 6(\alpha+\beta)+\alpha+\beta+7=$ $a \Rightarrow \alpha \beta=a-1$.
$\sigma_{3}=\alpha \beta(3+\sqrt{2}+3-\sqrt{2})+(3+\sqrt{2})(3-\sqrt{2})(\alpha+\beta)=-b \Rightarrow 6 \alpha \beta-7=b \Rightarrow \alpha \beta=\frac{7-b}{6}$
$\sigma_{4}=7 \alpha \beta=c \Rightarrow \alpha \beta=\frac{c}{7}$.
We take $\alpha+\beta=-1, \alpha \beta=k$. α and β are roots of the equation $x^{2}+x+k=0$. Since the roots of the given equation are real $\Rightarrow 1-4 k \geq 0 \Rightarrow k \leq \frac{1}{4}$. Now for $a, k=a-1 \Rightarrow a \leq \frac{5}{4}$. So the greatest value of a is $\frac{5}{4}$. For $b, k=\frac{7-b}{6} \Rightarrow b \geq \frac{11}{2}$ so least value of b will be $\frac{11}{2}$. For $c, k=\frac{c}{7} \Rightarrow c \leq \frac{7}{4}$ So the maximum value of c will be $\frac{7}{4}$.

The two other roots can be found as $-\frac{1}{2}$, which is a repeated root.
30. Let the rational roots be of the form $\frac{p}{q}$, then $q \mid 1 \Rightarrow q= \pm 1$ and $p \left\lvert\, 1 \Rightarrow p= \pm 1 \Rightarrow \frac{p}{q}= \pm 1\right.$. But we see that $x=-1$ does not satisfy the equation so $x=1$ is the only root.

Second method: You can observe by looking at the coefficients that it is expansion of $(x-1)^{4}$ as the coefficients are from binomoal theorem. Hence, the root is 1 .
31. Let α, β, gamma, delta are the roots of the equation, then from Vieta's relations $\alpha+$ $\beta+\gamma+\delta=-10$. From question $\alpha+\beta=\gamma+\delta \Rightarrow \alpha \beta=\gamma+\delta=-5$.

Let the roots be of the form $\frac{p}{q}$ then $q \mid 1 \Rightarrow q= \pm 1$ and $p \mid 24 \Rightarrow p=$ $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$. Clearly, ± 12 and ± 24 are not possible values. Testing with other values we find roots as $-1,-2,-3,-4$.
32. Let the rational roots be of the form $\frac{p}{q}$, then $q \mid 6 \Rightarrow q= \pm 1, \pm 2, \pm 3, \pm 6$ and $p \mid-4 \Rightarrow$ $p= \pm 1, \pm 2, \pm 4$.

We find that $-\frac{1}{2}$ and $\frac{4}{3}$ satisfy the given equation and the given equation becomes $(2 x+1)(3 x-4)\left(x^{2}+x+1\right)=0$, which has two more roots ω, ω^{2}, which are cube roots of unity, and are not rational roots.
33. Let the rational roots be of the form $\frac{p}{q}$, then $q \mid 6 \Rightarrow q= \pm 1, \pm 2, \pm 3, \pm 6$ and $p \mid 2 \Rightarrow p=$ $\pm 1, \pm 2$. We see that all coefficients are positive so positive values of $\frac{p}{q}$ will not satisfy the given equation.

From negative values we see that only $x=-1$ satisfies the given equation.
34. Let α, β, γ are the roots of the given equation, then according to the questions $\alpha+\beta=$ $0 \Rightarrow \alpha=-\beta$.

From Vieta's relations $\alpha+\beta+\gamma=-\frac{a}{4} \Rightarrow \gamma=-\frac{a}{4}, \alpha+\beta+\beta \gamma+\alpha+\gamma=\alpha \beta=-\beta^{2}=$ $-\frac{1}{4} \Rightarrow \beta= \pm \frac{1}{2} \Rightarrow \alpha=\mp \frac{1}{2}$ and $\alpha \beta \gamma=-\frac{b}{4} \Rightarrow a+4 b=0$, where $b \in \mathbb{Q}$.
35. Let the roots be $\alpha, \alpha . r, \alpha . r^{2}$ be the roots of the given equation, then from Vieta's relations, we have
$\frac{\alpha}{r}+\alpha+\alpha \cdot r=-a, \frac{\alpha^{2}}{r}+\alpha^{2}+\alpha^{2} . r=b$ and $\alpha^{3}=8 \Rightarrow \alpha=2$.
From first two equations, $\alpha=-\frac{b}{a}=2 \Rightarrow b=-2 a$. Substituting the value of α in the first equation, we have
$2 r^{2}+(a+2) r+2=0$, but r is real so $D \geq 0 \Rightarrow a^{2}+4 a-12=0 \Rightarrow a \in(-\infty, 6) \cup(2, \infty)$.
36. $2 x^{6}+12 x^{5}+30 x^{4}+60 x^{3}+80 x^{2}+30 x+45=2\left(x^{3}+3 x^{2}\right)^{2}+12\left(x^{2}+\frac{5}{2} x\right)^{2}+5(x+3)^{2}=0$, but it could be zero only if
$\left(x^{3}+3 x^{2}\right)=\left(x^{2}+\frac{5}{2} x\right)=x+3=0$.
The last and first condition simplifies to $x=-3$, but it contradicts the seccond. Thus, given polynomial has no real roots.

Second method: Let the roots be of the form $\frac{p}{q}$ then $q \div 2 \Rightarrow q= \pm 1, \pm 2$ and $p \div 45 \Rightarrow$ $p= \pm 1, \pm 3, \pm 5, \pm 9, \pm 15, \pm 45$. Clearly, the roots have to be negative as all coefficients
are positive. But none of the combinations of $\frac{p}{q}$ satisfy the given equation, hence, it has no real roots.
37. $\sin 30^{\circ}=3 \sin 10^{\circ}-4 \sin ^{3} 10^{\circ} \Rightarrow \sin 10^{\circ}$ is a root of $6 x-8 x^{3}=1$. By the rational root theorem, this equation has no rational roots. Therefore, $\sin 10^{\circ}$ is not rational. Since 3 is prime, this equation is the one with least degree having $\sin 10^{\circ}$ as a root.

Second Method: $\sin 10^{\circ}=\cos 80^{\circ}=\cos \frac{4 \pi}{9}$. Let $\omega=e^{2 i \pi / 9}$, then $\omega^{6}+\omega^{3}+1=0$, from which we can calculate that $\omega+\frac{1}{\omega}, \omega^{2}+\frac{1}{\omega^{2}}$ and $\omega^{4}+\frac{1}{\omega^{4}}$ are the roots of $x^{3}-3 x+1=0$. Since $2 \cos 90^{\circ}$ is such a root so $8 x^{3}-6 x+1=0$ is the equation.
38. Following like previous problem $\sin 60^{\circ}=3 \sin 20^{\circ}-4 \sin ^{3} 20^{\circ}$. Putting $x=\sin 20^{\circ}$ and squaring, $64 x^{6}-96 x^{4}+36 x^{2}-3=0$ is the required equation.
39. Following like previous problem $\cos 30^{\circ}=4 \cos ^{3} 10^{\circ}-3 \cos 10^{\circ} \Rightarrow \frac{\sqrt{3}}{2}=4 \cos ^{3} 10^{\circ}-$ $3 \cos 10^{\circ} \Rightarrow 64 x^{6}-96 x^{4}+36 x^{2}-3=0$ is the required equation.
40. Following like previous problems $\cos 60^{\circ}=4 \cos 20^{\circ}-3 \cos 20^{\circ} \Rightarrow 8 x^{3}-6 x-1=0$.
41. Following like previous problems $\tan 30^{\circ}=\frac{3 \tan 10^{\circ}-\tan ^{3} 10^{\circ}}{1-3 \tan ^{2} 10^{\circ}} \Rightarrow \frac{1}{\sqrt{3}}=\frac{3 x-x^{3}}{1-3 x^{2}}$. Squaring, we get $3 x^{6}-27 x^{4}+33 x^{2}-1=0$.
42. Following like previous problems $\tan 60^{\circ}=\frac{3 \tan 20^{\circ}-\tan ^{3} 20^{\circ}}{1-3 \tan ^{2} 20^{\circ}} \Rightarrow \sqrt{3}=\frac{3 x-x^{3}}{1-3 x^{2}}$. Squaring, we get $x^{6}-33 x^{4}+27 x^{2}-3=0$.
43. We have found the equations for $\sin 10^{\circ}$ and $\cos 20^{\circ}$ are $8 x^{3}-6 x+1=0$ and $8 x^{3}-6 x-$ $1=0$. Therefore, the equation having these two as roots must be $\left(8 x^{3}-6 x+1\right)\left(8 x^{3}-\right.$ $6 x-1)=0 \Rightarrow 64 x^{6}-96 x^{4}-36 x^{2}-1=0$.
44. From Vieta's relations $p+q+r=6, p q+q r+r p=3, p q r=-1 \Rightarrow p^{2}+q^{2}+r^{2}=$ $30, p^{3}+q^{3}+r^{3}=159, p^{3} q^{3}+q^{3} r^{3}+r^{3} p^{3}=84$.

Let $A=p^{2} q+q^{2} r+r^{2} p$ and $B=p^{2} r+q^{2} p+r^{2} q$, then $A+B=6\left(p^{2}+q^{2}+r^{2}\right)-$ $\left(p^{3}+q^{3}+r^{3}\right)=21$ and $A B=-\left(p^{3}+q^{3}+r^{3}\right)\left(p^{3} q^{3}+q^{3} r^{3}+r^{3} p^{3}\right)+3=72$.

Thus, possible value of A are $24,-3$.
45. Let $\alpha, \beta, \gamma, \delta$ be the roots of the given equation such that $\alpha \beta=-32$, then from Vietas relations $\alpha+\beta+\gamma+\delta=18, \alpha \beta+\beta \gamma+\gamma \delta+\alpha \gamma+\alpha \delta+\beta \delta=k, \alpha \beta \gamma+\alpha \beta \delta+\alpha \gamma \delta+\beta \gamma \delta=$ -200 and $\alpha \beta \gamma \delta=-1984$.
$\therefore \gamma \delta=\frac{\alpha \beta \gamma \delta}{\alpha \beta}=\frac{-1984}{-32}=62$.
$\therefore-32+\beta \gamma+62+\alpha \gamma+\alpha \delta+\beta \delta=k \Rightarrow \beta \gamma+\alpha \gamma+\alpha \delta+\beta \delta=k-30$. Let $p=\alpha+\beta$ and $q=\gamma+\delta$.
$\therefore-200=-32 q+62 p$ and $p+q=18 \Rightarrow p=4, q=14 \Rightarrow \frac{\alpha+\beta}{2} \frac{\gamma+\delta}{2}=k-30 \Rightarrow k=86$.
46. $x^{2}+y^{2}=1-2 x y \Rightarrow\left(x^{2}+y^{2}\right)^{2}=(1-2 x y)^{2} \Rightarrow x^{t}+y^{4}=2 x^{2} y^{2}-4 x y+1 \Rightarrow 2 x 6 y^{2}-$ $4 x y+1-c=0 \Rightarrow x y=\frac{4 \pm \sqrt{16+8 c-8}}{4}=1 \pm \sqrt{\frac{1+c}{2}}$

Now, $x^{2}+y^{2}=1-2\left(1 \pm \sqrt{\frac{1+c}{2}}\right)=-1 \pm \sqrt{2(1+c)}$,
and $x^{3}+y^{3}=(x+y)^{3}-3 x y(x+y)=2 \pm \frac{3}{2} \sqrt{2+2 c}$.
47. Let $x+y=\alpha$ and $x y=\beta$, then $x^{2}+y^{2}=\alpha^{2}-2 \beta$.

Now, $x^{3}+y^{3}=(x+y)\left(x^{2}+y^{2}+x y\right)=\alpha\left(\alpha^{2}-3 \beta\right)=7 \Rightarrow \alpha^{3}-3 \alpha \beta=7$, and $x^{2}+y^{2}+x+y+x y=4 \Rightarrow \alpha^{2}-2 \beta+\alpha+\beta=4 \Rightarrow \beta=\alpha^{2}+\alpha-4$.

From these two equations $\alpha^{3}-3 \alpha\left(\alpha^{2}+\alpha-4\right)=7 \Rightarrow f(\alpha)=2 \alpha^{3}+3 \alpha^{2}-12 \alpha+7=0$.
Since sum of coefficients is zero, therefore, $\alpha=1$ must be a solution. $\Rightarrow f(1)=0 \Rightarrow$ $f(\alpha)=(\alpha-1)^{2}(2 \alpha+7)=0 \Rightarrow \alpha=1,-\frac{7}{2}$.

When $\alpha=1, \beta=-2$ and when $\alpha=-\frac{7}{2}, \beta=\frac{19}{4}$. Thus, when $\alpha=1, \beta=-2$ we find that (x, y) is $(-2,1)$ or $(1,-2)$. But when $\alpha=-\frac{7}{2}$ and $\beta=\frac{19}{4}$, then x, y are roots of $4 t^{4}+14 t+19=0$, whose discriminant is less than 0 and hence no real roots are possible. Thus, value of x, y is $-2,1$ or $1,-2$.
48. From Vieta's relations $\alpha+\beta+\gamma=\sum \alpha=0, \alpha \beta+\beta \gamma+\gamma \alpha=\sum \alpha \beta=p, \alpha \beta \gamma=\prod \alpha=q$.

Since α, β, γ are roots of $x^{3}+p x+q=0 \Rightarrow \alpha^{3}+p \alpha+q=0, \beta^{3}+p \beta+q=0, \gamma^{3}+p \gamma+q=$ 0

Adding these equations, we have $\sum \alpha^{3}+p \sum \alpha+3 q=0 \Rightarrow \sum \alpha^{3}=-3 q\left[\because \sum \alpha=0\right]$
$\sum \alpha^{2}=\left(\sum \alpha\right)^{2}-2 \sum \alpha \beta=0^{2}-2 p=-2 p$.
Multiplying the given equation by x^{2}, we get $x^{5}+p x^{3}+q x^{2}=0$. Putting $x=\alpha, \beta, \gamma$ and adding, we have
$\sum \alpha^{5}+p \sum \alpha^{3}+q \sum \alpha^{2}=0 \Rightarrow \sum \alpha^{5}=5 p q \Rightarrow \frac{1}{5} \sum \alpha^{3}=p q=\frac{1}{3} \sum \alpha^{2}+\frac{1}{2} \sum \alpha$.
Hence, proved.
49. Following like previous problem and using results from previous problem, multiplying the given equation by x, we have $x^{4}+p x^{2}+q x=0 \Rightarrow \sum \alpha^{4}+p \sum \alpha^{2}+q \sum \alpha=0 \Rightarrow$ $\sum \alpha^{4}=-p \sum \alpha^{2}$.

Multiplying the given equation by x^{4}, we get $x^{7}+p x^{5}+q x^{4}=0 \Rightarrow \sum \alpha^{7}+p \sum \alpha^{5}+$ $q \sum \alpha^{4}=0 \Rightarrow \sum \alpha^{7}=-p \sum \alpha^{5}-q \alpha^{4}=-5 p^{2} q+p q \sum \alpha^{2}=-7 p^{2} q \Rightarrow \frac{\sum \alpha^{7}}{7}=p q \cdot(-q)=$ $\frac{\sum \alpha^{5}}{5} . \frac{\sum \alpha^{2}}{2}$
$\Rightarrow \frac{\alpha^{7}+\beta^{7}+\gamma^{7}}{7}=\frac{\alpha^{5}+\beta^{5}+\gamma^{5}}{5} \times \frac{\alpha^{2}+\beta^{2}+\gamma^{2}}{2}$.
50. Since $\alpha+\beta+\gamma=0$, therefore, α, β, γ are the roots of the equation $x^{3}+p x+q=0 . \Rightarrow$ $\sum \alpha \beta=p$ and $\sum \alpha=-q$ as shown in previous problems.
$\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha)=0^{2}-2 p=-2 p$ and $\sum \alpha^{3}=3 \alpha \beta \gamma=3 q$.
Multiplying $x^{3}+p x+q=0$ with x, we have $x^{4}+p x^{2}+q x=0$. Putting $x=\alpha, \beta, \gamma$ and adding, we have
$\sum \alpha^{4}+p \sum \alpha^{2}+q \sum \alpha=0 \Rightarrow \sum \alpha^{4}=-p \sum \alpha^{2}=2 p^{2}$.

Similarly, $x^{5}+p x^{3}+q x^{2}=0 \Rightarrow \sum \alpha^{5}=-p \sum \alpha^{3}-q \sum \alpha^{2}=5 p q$.
$\therefore 3\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)\left(\alpha^{5}+\beta^{5}+\gamma^{5}\right)=3 \times-2 p \times 5 p q=5 \times(-3 q) \times 2 p^{2}=5\left(\alpha^{3}+\beta^{3}+\right.$ $\left.\gamma^{3}\right)\left(\alpha^{4}+\beta^{4}+\gamma^{4}\right)$.

Hence, proved.
51. Suppose that $a^{3}+b^{3}=c^{3}+d^{3}$ and $a+b=c+d=m$ (say), then $(a+b)^{3}=(c+d)^{3} \Rightarrow$ $3 a b(a+b)=3 c d(c+d) \Rightarrow a b=c d=n$ (say).

If a, b are the roots of a quadratic equation, then the equation is $x^{2}-m x+n=0$. But $a+b=m$ and $a b=n$. So a and b are roots of this equation, and thus, c and d are also the roots of the equation. But a quadratic equation can have at most two distinct roots.

Hence, our supposition is incorrect. Hence, proved.
52. Let x, y, z be the roots of the cubic equation $t^{3}-a t^{2}+b t-c=0$, then $x+y+z=$ $a, x y+y z+z x=b \Rightarrow 2 x y+2 y z+2 z x=2 b=(x+y+z)^{2}-\left(x^{2}+y^{2}+z^{2}\right)=9-3 \Rightarrow$ $b=3$.

Substituting x, y, z in our equation and adding, we get $\left(x^{3}+y^{3}+z^{3}\right)-a\left(x^{2}+y^{2}+z^{2}\right)+$ $b(x+y+z)-3 c=0 \Rightarrow c=1$.

Thus, our equation becomes $t^{3}-3 t^{2}+3 t-1=0 \Rightarrow(t-1)^{3}=0$, thus roots are $1,1,1$. And hence, $x=y=z=1$.
53. $x y+y z+z x=\frac{1}{2}\left[(x+y+z)^{2}-\left(x^{2}+y^{2}+z^{2}\right)\right]=2$.

We know that $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right) \Rightarrow x y z=-\frac{2}{3}$. $x^{4}+y^{4}+z^{4}=\left(x^{2}+y^{2}+z^{2}\right)^{2}-2\left[(x y)^{2}+(y z)^{2}+(z x)^{2}\right]=25-2\left[(x y+y z+z x)^{2}-\right.$ $\left.2\left(x y^{2} z+z x y^{2}+x y z^{2}\right)\right]=25-2[4-2 x y z(x+y+z)]=9$.
54. For roots to be equal the discriminant has to be zero.
$D=4(1+3 m)^{2}-4(1+m)(1+8 m)=0 \Rightarrow 4\left(1+9 m^{2}+6 m-1-9 m-8 m^{2}\right)=0 \Rightarrow$ $m^{2}-3 m=0 \therefore m=0,3$
55. Discriminant of the equation is: $D=(c+a-b)^{2}-4(b+c-a)(a+b-c)=4\left(b^{2}-4 a c\right)$

Given $a+b+c=0 \Rightarrow b=-(a+c)$. Substituting in above equation, $D=4\left\{(a+c)^{2}-\right.$ $4 a c\}=4(a-c)^{2}=$ a perfect square and thus roots are rational.
56. Discriminant of the equation is: $D=4(a c+b d)^{2}-4\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=-4(a d-b c)^{2}$. Roots are real if $D \geq 0$ i.e. $-4(a d-b c)^{2} \geq 0 \Rightarrow(a d-b c)^{2} \leq 0$

But since $(a c-b d)^{2} \nless 0 \therefore(a d-b c)^{2}=0$ i.e. $D=0$ (because roots are real). Thus, if roots are real they are equal.
57. Let $A=a(b-c), B=b(c-a)$ and $c=c(a-b)$ Clearly, $A+B+C=0$. Since roots are equal i.e. $D=0 \therefore B^{2}-4 A C=0$

Substituting for $B,\left[-(A+C)^{2}-4 A C\right]=(A-C)^{2}=0 \Rightarrow A=C \Rightarrow 2 a c=a b+c b \Rightarrow$ $b=\frac{2 a c}{a+c}$.

Thus, a, b, c are in H. P.
58. Given equation is $(b-x)^{2}-4(a-x)(c-x)=0 \Rightarrow-3 x^{2}+2(2 a+2 c-b) x+b^{2}-4 a c=0$

Discriminant of the above equation is: $D=4(2 a+2 c-b)^{2}+12\left(b^{2}-4 a c\right)=8[(a-$ $\left.b)^{2}+(b-c)^{2}+(c-a)^{2}\right] \because a, b, c$ are real $\therefore D>0$ unless $a=b=c$.

Hence, roots are real unless $a=b=c$.
59. Discriminant of the equations are $p^{2}-4 q$ and $r^{2}-4 s$.

Adding them we have $p^{2}+r^{2}-4(q+s)=p^{2}+r^{2}-2 p r=(p-r)^{2} \geq 0$.
Thus, at least one of the discriminant is greater than zero and that equation has real roots.
60. Since $x^{2}-2 p x+q=0$ has equal roots $D=0 \Rightarrow 4 p^{2}-4 q=0 \Rightarrow p^{2}=q$.

Discriminant of the second equation: $D=4(p+y)^{2}-4(1+y)(q+y)=4\left[p^{2}+2 y+\right.$ $\left.y^{2}-q-q y-y-y^{2}\right]$

Substituting for $q, D=-4 y(p-1)^{2}$. Roots of the equation will be real and distinct only if $D \geq 0$ but $(p-1) \geq 0$ if $p \neq 1$. Thus, y has to be negative as well.
61. Since roots of equation $a x^{2}+2 b x+c=0$ are equal $\therefore 4 b^{2}-4 a c \geq 0$. Discriminant of the equation $a x^{2}+2 m b x+n c=0$ is $4 m^{2} b^{2}-4 a n c$.

Since $m^{2}>n>0$ and $b^{2} \geq a c 4 m^{2} b^{2}-4 a n c>0$. Thus, roots of the second equation are real.
62. Given $a x+b y=1 \Rightarrow y=\frac{1-a x}{b}$, substituting this in second equation, $c x^{2}+d\left(\frac{1-a x}{b}\right)^{2}=$ $\frac{b^{2} c x^{2}+d(1-a x)^{2}}{b^{2}}=1$
$\Rightarrow\left(b^{2} c+d a^{2}\right) x^{2}-2 a d x+d-b^{2}=0$. Since first two equations have one solution this equation will also have only one solution which means roots will be equal i.e. $D=0$
$\Rightarrow 4 a^{2} d^{2}-4\left(b^{2} c+a^{d}\right)\left(d-b^{2}\right)=0 \Rightarrow b^{2}\left(b^{2} c+a^{2} d-c d\right)=0 \because b^{2} \neq 0 \therefore b^{2} c+a^{2} d-c d=$ $0 \Rightarrow b^{2} c+a^{d}=c d$

Dividing both sides by $c d$ we have
$\frac{b^{2}}{d}+\frac{a^{2}}{c}=1 \Rightarrow x=\frac{2 a d}{2\left(b^{2} c+a^{2} d\right)}=\frac{a}{c}$. Substituting for y, we get $y=\frac{b}{d}$.
63. Let the roots of the equation be α and $r \alpha$.

Sum of roots $=\alpha+r \alpha=-\frac{b}{a} \Rightarrow \alpha=-\frac{b}{a(r+1)}$.
Product of roots $=r \alpha^{2}=\frac{r b^{2}}{a^{2}(1+r)^{2}}=\frac{c}{a} \Rightarrow \frac{b^{2}}{a c}=\frac{(r+1)^{2}}{r}$.
64. Let the roots of the equation be α and 2α. Sum of roots $=3 \alpha=-\frac{l}{l-m} \Rightarrow \alpha=-\frac{l}{l-m}$.

Product of roots $=2 \alpha^{2}=\frac{1}{l-m}$. Substituting for $\alpha, \frac{2 l^{2}}{9(l-m)^{2}}=\frac{1}{l-m} \Rightarrow 2 l^{2}-9 l+9 m=$ $0[\because l \neq m$ else it would not be a quadratic equation $]$.

Since l is real, therefore discriminant of this equation would be $\geq 0, \Rightarrow 81-72 m \geq$ $0 \therefore m \leq \frac{9}{8}$.
65. Let the roots be α and α^{n}, then sum of roots $=\alpha+\alpha^{n}=-\frac{b}{a}$ and product of roots $=\alpha^{n+1}=\frac{c}{a}$.

From products, we have $\alpha=\left(\frac{c}{a}\right)^{\frac{1}{n+1}}$. From sum we have $a \alpha^{n}+a \alpha+b=0$.
Substituting value of α from above $\Rightarrow a\left(\frac{c}{a}\right)^{\frac{n}{n+1}}+a\left(\frac{c}{a}\right)^{\frac{1}{n+1}}+b=0$. From this we arrive at our desired equation.
66. Let the roots be $p \alpha$ and $q \alpha$.

Sum of roots $=(p+q) \alpha=-\frac{b}{a}$ and product of roots $=p q \alpha^{2}=\frac{c}{a}$.
From equation for product of roots, we have $\alpha^{2}=\frac{c}{a p q} \therefore \alpha=\sqrt{\frac{c}{a p q}}$.
Substituting this in sum of roots and solving we arrive at desired equation.
67. The questions are solved below:
i. $\quad \alpha+\beta=-p$ and $\alpha \beta=q$. Now, $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}=\frac{\alpha^{3}+\beta^{3}}{\alpha \beta}$

$$
=\frac{(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)}{\alpha \beta}=\frac{p\left(3 q-p^{2}\right)}{q} .
$$

ii. $\left(\omega \alpha+\omega^{2} \beta\right)\left(\omega^{2} \alpha+\omega \beta\right)=\omega^{3} \alpha^{2}+\omega^{4} \alpha \beta+\omega^{2} \alpha \beta+\omega^{3} \beta^{2}$

$$
=\alpha^{2}+\omega \alpha \beta+\omega^{2} \alpha \beta+\beta^{2}=\alpha^{2}-\alpha \beta+\beta^{2}=(\alpha+\beta)^{2}-3 \alpha \beta=p^{2}-3 q
$$

68. Rewriting the equation we have $\left(A+c m^{2}\right) x^{2}+A m x+A m^{2}=0$.

Sum of roots $=\alpha+\beta=-\frac{A m}{A+c m^{2}}$ and product of roots $=\alpha \beta=\frac{A m^{2}}{A+c m^{2}}$
The expression to be evaluated is $A\left(\alpha^{2}+\beta^{2}\right)+A \alpha \beta+c \alpha^{2} \beta^{2}$.
$=A\left[(\alpha+\beta)^{2}-2 \alpha \beta\right]+A \alpha \beta+c(\alpha \beta)^{2}$.
$=A\left[\frac{A^{2} m^{2}}{\left(A+c m^{2}\right)^{2}}-\frac{2 A m^{2}}{A+c m^{2}}\right]+\frac{A^{2} m^{2}}{A+c m^{2}}+\frac{c A^{2} m^{4}}{\left(A+c m^{2}\right)^{2}}=0$.
69. Sum of roots $=\alpha+\beta=-\frac{b}{a}$ and product of roots $=\alpha \beta=\frac{c}{a}$.

Now, $a\left(\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}\right)+b\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)=\frac{a\left(\alpha^{3}+\beta^{3}\right)}{\alpha \beta}+\frac{b\left(\alpha^{2}+\beta^{2}\right)}{\alpha \beta}$
$=a \frac{\left[(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)\right]}{\alpha \beta}+\frac{b\left[(\alpha+\beta)^{2}-2 \alpha \beta\right]}{\alpha \beta}$. Substituting for sum and product of the roots
$=\frac{a\left[\left(-\frac{b}{a}\right)^{3}-3 \cdot \frac{c}{a}\left(-\frac{b}{a}\right)\right]}{\frac{c}{a}}+\frac{b\left[\left(-\frac{b}{a}\right)^{2}-2 \frac{c}{a}\right]}{\frac{c}{a}}$
Solving this we get the desired result.
70. Since a and b are the roots of the equation $x^{2}+p x+1=0$ we have $a+b=-p$ and $a b=1$.

Similarly, since c and d are the roots of the equation $x^{2}+q x+1=0$ we have $c+d=-p$ and $c d=1$.

Now $(a-c)(b-c)(a+d)(b+d)=\left(a b-b c-a c+c^{2}\right)\left(a b+b d+a d+d^{2}\right)=[a b-$ $\left.c(a+b)+c^{2}\right] \cdot\left[a b+d(a+b)+d^{2}\right]$
$=\left[1+p c+c^{2}\right] .\left[1-p d+d^{2}\right]$ (putting the values of $a+b$ and $\left.a b\right)=1+c p+c^{2}-p d-$ $c d p^{2}-c^{2} p d+d^{2}+c p d^{2}+c^{2} d^{2}$
$=1+\left(c^{2}+d^{2}\right)+c^{2} d^{2}-c d p^{2}+p(c-d)+c p d(d-c)=1+\left[(c+d)^{2}-2 c d\right]+c^{2} d^{2}-$ $c d p^{2}+p(c-d)+c p d(d-c)$.

Substituting for $c+d$ and $c d, 1+q^{2}-2+1-p^{2}+p(c-d)+p(d-c)=q^{2}-p^{2}$.
71. Let α and β be the roots of the equation $x^{2}+p x+q=0$ then $\alpha+\beta=-p$ and $\alpha \beta=q$.

Also, let γ and δ be the roots of the equation $x^{2}+q x+p=0$ then $\gamma+\delta=-q$ and $\gamma \delta=p$.

Now, given is that roots differ by the same quantity so we can say that, $\alpha-\beta=\gamma-\delta \Rightarrow$ $(\alpha-\beta)^{2}=(\gamma-\delta)^{2}$
$(\alpha+\beta)^{2}-4 \alpha \beta=(\gamma+\delta)^{2}-4 \gamma \delta \Rightarrow p^{2}-4 q=q^{2}-4 p \Rightarrow p^{2}-q^{2}+4(p-q)=0 \Rightarrow$ $(p-q)(p+q+4)=0$

Clearly, $p \neq q$ else equations would be same $\therefore p+q+4=0$.
72. Since α, β are the roots of the equation $a x^{2}+b x+c=0 \therefore a \alpha^{2}+b \alpha+c=0$ and $a \beta^{2}+b \beta+c=0$.
and $\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$. Also, given $S_{n}=\alpha^{n}+\beta^{n}$. Now, $a S_{n+1}+b S_{n}+c S_{n-1}$
$=a\left(\alpha^{n+1}+\beta^{n+1}\right)+b\left(\alpha^{n}+\beta^{n}\right)+c\left(\alpha^{n-1}+\beta^{n-1}\right)=\alpha^{n-1}\left(a \alpha^{2}+b \alpha+c\right)+\beta^{n-1}\left(a \beta^{2}+\right.$ $b \beta+c)=\alpha^{n-1} .0+\beta^{n-1} .0$
$\therefore S_{n+1}=-\frac{b}{a} S_{n}-\frac{c}{a} S_{n-1}$
Substituting $n=4$ we have
$S_{5}=-\frac{b}{a} S_{4}-\frac{c}{a} S_{3}=-\frac{b}{a}\left(-\frac{b}{a} S_{3}-\frac{c}{a} S-2\right)-\frac{c}{a} S_{3}=\left(\frac{b^{2}}{a^{2}}-\frac{c}{a}\right) S_{3}+\frac{b c}{a^{2}} S_{2}$
Proceeding similarly we have the solution as

$$
=-\frac{b}{a^{5}}\left(b^{2}-2 a c\right)^{2}+\frac{\left(b^{2}-a c\right) b c}{a^{4}}
$$

73. Let α and β be the roots of the equation $a x^{2}+b x+c=0$. Given, $\alpha+\beta=\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}} \Rightarrow$ $\alpha+\beta=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha^{2} \beta^{2}}$ $-\frac{b}{a}=\frac{\frac{b^{2}}{a^{2}}-2 \frac{c}{a}}{\frac{c^{2}}{a^{2}}}=\frac{b^{2}-2 a c}{c^{2}} \Rightarrow-b c^{2}=a b^{2}-2 a^{2} c \Rightarrow c a^{2}=\frac{a b^{2}+b c^{2}}{2}$

Thus, $b c^{2}, c a^{2}, a b^{2}$ are in A. P.
74. Rewriting the equation $m^{2} x^{2}+\left(2 m-m^{2}\right) x+3=0$.

Since α and β are the roots of the equation $\alpha+\beta=-\frac{2 m-m^{2}}{m^{2}}=\frac{m-2}{m}$ and $\alpha \beta=\frac{3}{m^{2}}$
Given, $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{4}{3} \Rightarrow \frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=\frac{4}{3}$
$3\left(\alpha^{2}+\beta^{2}\right)=4 \alpha \beta \Rightarrow 3\left[(\alpha+\beta)^{2}-2 \alpha \beta\right]=4 \alpha \beta \Rightarrow 3(\alpha+\beta)^{2}-10 \alpha \beta=0 \Rightarrow 3\left[\left(\frac{m-2}{m}\right)^{2}-\right.$
$\left.\frac{10}{m^{2}}\right]=0$
$\Rightarrow m^{2}-4 m-6=0$
Since m_{1}, m_{2} are two values of m we have $m_{1}+m_{2}=4$ and $m_{1} m_{2}=-6$. Now, $\frac{m_{1}^{2}}{m_{2}}+\frac{m_{2}^{2}}{m_{1}}=$ $\frac{m_{1}^{3}+m_{2}^{3}}{m_{1} m_{2}}=\frac{\left(m_{1}+m_{2}\right)^{3}-3 m_{1} m_{2}\left(m_{1}+m_{2}\right)}{3 m_{1} m_{2}}=-\frac{68}{3}$.
75. Let α and β be the roots of the equation $a x^{2}+b x+c=0 ; \gamma$ and δ are the roots of the equation $a_{1} x^{2}+b_{1} x+c_{1}=0$, then
$\alpha+\beta=-\frac{b}{a}, \alpha \beta=\frac{c}{a}$ and $\gamma+\delta=-\frac{b_{1}}{a_{1}}, \gamma \delta=\frac{c_{1}}{a_{1}}$
According to question, $\frac{\alpha}{\beta}=\frac{\gamma}{\delta}$. By componendo and dividendo,
$\frac{\alpha-\beta}{\alpha+\beta}=\frac{\gamma-\delta}{\gamma+\delta}$. Squaring both sides
$\Rightarrow\left(\frac{\alpha-\beta}{\alpha+\beta}\right)^{2}=\left(\frac{\gamma-\delta}{\gamma+\delta}\right)^{2} \Rightarrow \frac{(\alpha+\beta)^{2}-4 \alpha \beta^{2}}{(\alpha+\beta)}=\frac{(\gamma+\delta)^{2}-4 \gamma \delta}{(\gamma+\delta)^{2}}$
$\Rightarrow \frac{b^{2}-4 a c}{b^{2}}=\frac{b_{1}^{2}-4 a_{1} c_{1}}{b_{1}^{2}} \Rightarrow-4 a c b_{1}^{2}=-4 a_{1} c_{1} b^{2} \Rightarrow\left(\frac{b}{b_{1}}\right)^{2}=\frac{a c}{a_{1} c_{1}}$.
76. Since irrational roots appear in pairs and are conjugate. Thus, if first root is $\alpha=\frac{1}{2+\sqrt{5}}$ $\alpha=\frac{1}{2+\sqrt{5}} \frac{2-\sqrt{5}}{2-\sqrt{5}}=\frac{2-\sqrt{5}}{4-5}=-2+\sqrt{5}$

Then second root would be $\beta=-2+\sqrt{5} \Rightarrow \alpha+\beta=-4$ and $\alpha \beta=-1$
Therefore, the equation is $x^{2}-(\alpha+\beta) x+\alpha \beta=0 \Rightarrow x^{2}+4 x-1=0$.
77. Since α and β are the roots of the equation $\therefore \alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$. Sum of the roots for which quadratic equation is to be found $=\frac{1}{a \alpha+b}+\frac{1}{a \beta+b}$

$$
=\frac{a(\alpha+\beta)+2 b}{a^{2} \alpha \beta+a b(\alpha+\beta)+b^{2}}=\frac{a\left(-\frac{b}{a}\right)+2 b}{a^{2} \cdot \frac{c}{a}+a v\left(-\frac{b}{a}\right)}+b^{2}=\frac{b}{a c}
$$

Product of the roots $=\left(\frac{1}{a \alpha+b}\right)\left(\frac{1}{a \beta+b}\right)=\frac{1}{a^{2} \alpha \beta+a b(\alpha+\beta)+b^{2}}=\frac{1}{a^{2} \cdot \frac{c}{a}+a b\left(-\frac{c}{a}\right)+b^{2}}=\frac{1}{a c}$.
Therefore, the equation is $x^{2}-\frac{b}{a c} x+\frac{1}{a c}=0 \Rightarrow a c x^{2}-b x+1=0$.
78. Given equation is $(x-a)(x-b)-k=0 \Rightarrow x^{2}-(a+b) x+a b-k=0$.

Since c, d are roots of this equation $\Rightarrow c+d=a+b$ and $c d=a b-k$.
The equation where roots are a, b is $x^{2}-(a+b) x+a b=0 \Rightarrow x^{2}-(c+d) x+c d+k=0$.
79. Correct equation is $x^{2}+13 x+q=0$ and incorrect equation is $x^{2}+17 x+q=0$.

Roots of correct incorrect equation are -2 and -15 . Thus $q=30$.
Therefore, correct equation is $x^{2}+13 x+30=0$ and thus roots are $-3,-10$.
80. Clearly, $\alpha+\beta=-p$ and $\alpha \beta=q$. Substituting $x=\frac{\alpha}{\beta}$ in the given equation we have
$q \frac{\alpha^{2}}{\beta^{2}}-\left(p^{2}-2 q\right) \frac{\alpha}{\beta}+q=0 \Rightarrow q \alpha^{2}-\left(p^{2}-2 q\right) \alpha \beta+q \beta^{2}=0$
$q\left(\alpha^{2}+\beta^{2}\right)-\left(p^{2}-2 q\right) q=0 \Rightarrow q\left[(\alpha+\beta)^{2}-2 \alpha \beta\right]-\left(p^{2}-2 q\right) q=0$
$q\left(p^{2}-2 q\right)-\left(p^{2}-2 q\right) q=0 \Rightarrow 0=0$. Thus, $\frac{\alpha}{\beta}$ is a root of the given equation.
81. Let α and β be the roots of $x^{2}-a x+b=0$ and α be the common and equal root from the second equation $x^{2}-p x+q=0$.

Thus, $\alpha+\beta=a, \alpha \beta=b$ and $2 \alpha=p, \alpha^{2}=q \Rightarrow b+q=\alpha \beta+\alpha^{2}=\alpha(\beta+\alpha)=\frac{p}{2} a=\frac{a p}{2}$.
82. Let α be the common root. Then, we have $a \alpha^{2}+2 b \alpha+c=0$ and $a_{1} \alpha^{2}+2 b_{1} \alpha+c_{1}=0$.

Solving equations by cross-multiplication we have $\frac{\alpha^{2}}{2\left(b c_{1}-b_{1} c\right)}=\frac{\alpha}{\left(c a_{1}-a_{1} c\right)}=\frac{1}{2\left(a b_{1}-a_{1} b\right)}$.
From first two we have α as $\alpha=\frac{2\left(b c_{1}-b_{1} c\right)}{c a_{1}-a_{1} c}$ and from last two we have α as $\alpha=\frac{c a_{1}-a c_{1}}{2\left(a b_{1}-a_{1} b\right)}$
Equating we get, $\frac{2\left(b c_{1}-b_{1} c\right)}{c a_{1}-a_{1} c}=\frac{c a_{1}-a c_{1}}{2\left(a b_{1}-a_{1} b\right)} \Rightarrow\left(c a_{1}-a c_{1}\right)^{2}=4\left(a b_{1}-a_{1} b\right)\left(b c_{1}-b_{1} c\right)$
Given, $\frac{a}{a_{1}}, \frac{b}{b_{1}}, \frac{c}{c_{1}}$ are in A. P., let d be the common difference.
$\left(\frac{c}{c_{1}}-\frac{a}{a_{1}}\right)^{2} c_{1}^{2} a_{1}^{2}=4\left(\frac{a}{a_{1}}-\frac{b}{b_{1}}\right) a_{1} b_{2}\left(\frac{b}{b_{1}}-\frac{c}{c_{1}}\right) b_{1} c_{1}$
$(2 d)^{2} c_{1}^{2} a_{2}^{2}=4(-d) a_{1} b_{1}(-d) b_{1} c_{1} \Rightarrow 4 d^{2} c_{1}^{2} a_{1}^{2}=4 d^{2} a_{1} c_{1} b_{1}^{2} \Rightarrow c_{1} a_{1}=b_{1}^{2}$.
Thus, a_{1}, b_{1}, c_{1} are in G. P.
83. Let α be the common root between first two, β be the common root between last two and γ be the common root between first and last equations.

Thus, α and β are the roots of the first equation. $\Rightarrow \alpha+\gamma=-p_{1}, \alpha \gamma=q_{1}$
Similarly, $\alpha+\beta=-p_{2}, \alpha \beta=q_{2} \Rightarrow \beta+\gamma=-p_{3}, \beta \gamma=q_{3}$
L.H.S. $=\left(p_{1}+p_{2}+p_{3}\right)^{2}=4(\alpha+\beta+\gamma)^{2}$ and R.H.S. $=4\left(p_{1} p_{2}+p_{2} p_{3}+p_{1} p_{3}-q_{1}-q_{2}-q_{3}\right)$
$=4[(\alpha+\gamma)(\alpha+\beta)+(\alpha+\beta)(\beta+\gamma)+(\alpha+\gamma)(\beta+\gamma)-\alpha \gamma-\alpha \beta-\beta \gamma]$
$=4\left(\alpha^{2}+\beta^{2}+\gamma^{2}+2 \alpha \beta+2 \alpha \gamma+2 \beta \gamma\right)=4(\alpha+\beta+\gamma)^{2}$.
Hence, proven that L.H.S. $=$ R.H.S.
84. Let α be the common root then we have, $\alpha^{2}+c \alpha+a b=0$ and $\alpha^{2}+b \alpha+c a=0$.

By cross-multiplication, we get the solution as $\frac{\alpha^{2}}{a c^{2}-a b^{2}}=\frac{\alpha}{a b-a c}=\frac{1}{b-c}$.

From first two we have $\alpha=\frac{a c^{2}-a b^{2}}{a b-a c}=-(b+c)$. From last two we have $\alpha=a$.
Equating these two we get $a=-(b+c) \Rightarrow a+b+c=0$. Let the other root of the equations be β and β_{1} then we have
$\alpha \beta=a b$ and $\alpha \beta_{1}=c a \therefore \beta=b$ and $\beta_{1}=c$. Equation whose roots are β and β_{1} is
$x^{2}-\left(\beta+\beta_{1}\right) x+\beta \beta_{1}=0 \Rightarrow x^{2}-(b+c)+b c=0 \Rightarrow x^{2}+a x+b c=0$.
85. Clearly, root of the equation $x^{2}+2 x+9=0$ are imaginary and since they appear in pairs both the roots will be common and thus the ratio of the coefficients of the terms will be equal. $\Rightarrow a: b: c=1: 2: 9$.
86. Let α be a common root. Then, we have $3 \alpha^{2}-2 \alpha+p=0$ and $6 \alpha^{2}-17 \alpha+12=0$.

Solving by cross-multiplication $\frac{\alpha^{2}}{-24+17 p}=\frac{\alpha}{6 p-36}=\frac{1}{-39}$.
From first two we have $\alpha=\frac{17 p-24}{6 p-36}$ and from last two we have $\alpha=\frac{6 p-36}{-39}=-\frac{2 p-12}{13}$.
Equating these two and solving for p we get $p=-\frac{15}{4},-\frac{8}{3}$.
87. When $x=0,|x|^{2}-|x|-2=|0|^{2}-|0|-2=-2 \neq 0$. Since it is not satisfied by $x=0$ it is an equation.
88. When $x=-a$ the equation is satisfied. Similarly, it is satisfied by values of x being $-b$ and $-c$. The highest power of x occurring is 2 and is true for three distinct values of x therefore it cannot be equation but an identity.
89. Since both the equations have only one common root so the roots must be rational as irrational and complex roots appear in pairs. Thus, the roots of these two equations must be rational and therefore the discriminants must be perfect squares. Therefore, $b^{2}-a c$ and $b_{1}^{2}-a_{1} c_{2}$ must be perfect squares.
90. Equating the coefficients for similar powers of x, we get, coefficient of $x^{2}: a^{2}-1=0 \Rightarrow$ $a= \pm 1$.

Coefficient of $x: a-1=0 \Rightarrow a=1$. Constant term: $a^{2}-4 a+3=0 \Rightarrow a=1,3$.
The common value of a is 1 which will make this an identity.
91. Given, $\left(x+\frac{1}{x}\right)^{2}=4+\frac{3}{2}\left(x-\frac{1}{x}\right) \Rightarrow\left(x+\frac{1}{x}\right)^{2}-4-\frac{3}{2}\left(x-\frac{1}{x}\right)=0 \Rightarrow\left\{\left(x-\frac{1}{x}\right)^{2}+4 x \frac{1}{x}\right\}-$ $\frac{3}{2}\left(x-\frac{1}{x}\right)-4=0$

Substituting $a=x-\frac{1}{x} \Rightarrow a^{2}-\frac{3}{2} a=0 \Rightarrow 2 a^{2}-3 a=0 \therefore a=0, \frac{3}{2}$
$x-\frac{1}{x}=0 \Rightarrow x= \pm 1 \Rightarrow x-\frac{1}{x}-\frac{3}{2} \Rightarrow x=2,-\frac{1}{2}$.
92. Given equation is $(x+4)(x+7)(x+8)(x+11)+20=0$.

Rewriting the equation, $[(x+4)(x+11)][(x+7)(x+8)]+20=0$
$\Rightarrow\left(x^{2}+15 x+44\right)\left(x^{2}+15 x+56\right)+20=0$. Substituting $a=x^{2}+15 x$, we get $(a+$ 44) $(a+56)+20=0 \Rightarrow a=-46,-54$

If $a=-46 \Rightarrow x^{2}+15 x+46=0 \Rightarrow x=\frac{-15 \pm \sqrt{41}}{2}$. If $a=-54 \Rightarrow x^{2}+15 x+54=0 \Rightarrow$ $x=-6,-9$.
93. Given equation is $3^{2 x+1}+3^{2}=3^{x+3}+3^{x}$. Let $3^{x}=a$, then we have $3 a^{2}+9=28 a \Rightarrow$ $3 a^{2}-28 a+9=0$.
$\Rightarrow a=\frac{1}{3}, 9$. If $a=\frac{1}{3} \Rightarrow x=-1$. If $a=9 \Rightarrow x=2$.
94. Clearly, $(5+2 \sqrt{6})^{x^{2}-3}(5-2 \sqrt{6})^{x^{2}-3}=1$. Let $(5+2 \sqrt{6})^{x^{2}-3}=1$ then $(5-2 \sqrt{6})^{x^{2}-3}=\frac{1}{y}$.

The given equation becomes $y+\frac{1}{y}=10$ where $y=(5+2 \sqrt{6})^{x^{2}-3} \Rightarrow y^{2}-10 y+1=0$.
Solving the equation we have roots as $y=5 \pm 2 \sqrt{6} \therefore x^{2}-3= \pm 1 \Rightarrow x= \pm 2, \pm \sqrt{2}$.
95. Let the speed of the bus $=x \mathrm{~km} /$ hour \therefore the speed of car $=x+25 \mathrm{~km} /$ hour.

Time taken by bus $=\frac{500}{x}$ hours and by car $=\frac{500}{x+25}$ hours. Given, $\frac{500}{x}=\frac{500}{x+25}+10 \Rightarrow$ $x^{2}-25 x+1250=0$.
$x=-50,25$ but x cannot be negative as it is a scalar quantity. Thus, speed of car $=$ $50 \mathrm{~km} /$ hour.
96. Given equation is $(a+b)^{2} x^{2}-2\left(a^{2}-b^{2}\right) x+(a-b)^{2}=0$. Discriminant $=4\left(a^{2}-b^{2}\right)^{2}-$ $4(a+b)^{2}(a-b)^{2}=0$. Since discriminant is zero, roots are equal.
97. Given equation is $3 x^{2}+7 x+8=0$. Discriminant $D=49-96<0$.

Since it is negative roots will be complex and conjugate pair.
98. Given equation is $3 x^{2}+(7+a)+8-a=0$. Discriminant $D=(7+a)^{2}+12 a$

For roots to be equal it has to be zero. $\Rightarrow a^{2}+26 a+49=0 \Rightarrow a=13 \pm 6 \sqrt{6}$.
99. It is given that roots are equal i.e. discriminant is zero. $\Rightarrow 4(a c+b d)^{2}-4\left(a^{2}+b^{2}\right)\left(c^{2}+\right.$ $\left.d^{2}\right)=0 \Rightarrow a^{2} c^{2}+b^{2} d^{2}-2 a b c d-a^{2} c^{2}-a^{2} d^{2}-b^{2} c^{2}-b^{2} d^{2}=0$ $\Rightarrow(a d-b c)^{2}=0 \Rightarrow a d=b c \Rightarrow \frac{a}{b}=\frac{c}{d}$.
100. Discriminant is $4(c-a)^{2}-4(b-c)(a-b)$ $=c^{2}+a^{2}-2 a c-a b+b^{2}+a c-b c=a^{2}+b^{2}+c^{2}-a b-b c-a c=\frac{1}{2}\left[(a-b)^{2}(b-c)^{2}(c-\right.$ $a)^{2}$].
Clearly the above expression is either greater than zero or equal to zero. Hence, roots are real.
101. Given equation is $x^{2}-x+x^{2}-(a+1) x+a+x^{2}-a x=0 \Rightarrow 3 x^{2}-2(a+1)+a=0$.

Discriminant $D=4(a+1)^{2}-12 a=a^{2}+2 a+1-3 a=a^{2}-a+1=(a-1)^{2}+a$
which is greater than zero for all a and hence roots are real.
102. Discriminant of the equation $D=b^{2}-4 a c$. Given, $a+b+c=0 \Rightarrow b=-(a+c)$.

Substituting value of $b, D=(a+c)^{2}-4 a c=(a-c)^{2}$, which is either zero or positive. Hence, roots are rational.
103. $D=(c+a-2 b)^{2}-4(b+c-2 a)(a+b-2 c)=c^{2}+a^{2}+4 b^{2}+2 a c-4 b c-4 a b-4 b a-$ $4 b^{2}+8 b c-4 c a-4 b c+8 c^{2}+8 a^{2}+8 a b-8 c a$
$\Rightarrow 9 a^{2}+9 c^{2}-18 c a=9(a-c)^{2} \geq 0$ which is a perfect square. Hence, roots are rational.
104. Given $r=k+\frac{s}{k} \Rightarrow r^{2}=k^{2}+\frac{s^{2}}{k^{2}}+2 s$
$\Rightarrow r^{2}-4 s=k^{2}+\frac{s^{2}}{k^{2}}+2 s-4 s \Rightarrow r^{-} 4 s=k^{2}+\frac{s^{2}}{k^{2}}-2 s=\left(k-\frac{s}{k}\right)^{2}$
Clearly, $r^{2}-4 s \geq 0$ if r, s, k are rationals which is discriminant of the given equation. Thus, roots will be rational provided given condition is met.
105. The given equation is $(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$
$\Rightarrow 3 x^{2}-(a+b+b+c+c+a) x+a b+b c+c a=0 \Rightarrow D=4(a+b+c)^{2}-12(a b+b c+c a)$
$=4 a^{2}+4 b^{2}+4 c^{2}-4 a b-4 b c-4 a c=2\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]$.
This cannot be zero unless $a=b=c$, which is the required condition for the roots to be equal.
106. Given equation is $a^{2}\left(b^{2}-c^{2}\right) x^{2}+b^{2}\left(c^{2}-a^{2}\right) x+c^{2}\left(a^{2}-b^{2}\right)=0$
$D=b^{4}\left(c^{2}-a^{2}\right)^{2}-4 a^{2} c^{2}\left(b^{2}-c^{2}\right)\left(a^{2}-b^{2}\right)=b^{4} c^{4}+b^{4} a^{4}-2 b^{4} a^{2} c^{2}-4 a^{4} b^{2} c^{2}+4 a^{2} b^{4} c^{2}-$ $4 a^{4} c^{4}+4 a^{2} b^{2} c^{4}$
$=b^{4} c^{4}+b^{4} a^{4}+2 b^{4} a^{2} c^{2}-4 a^{4} b^{2} c^{2}-4 a^{4} c^{4}+4 a^{2} b^{2} c^{4}=\left(b^{2} c^{2}+b^{2} a^{2}-2 a^{2} c^{2}\right)^{2} \geq 0$, which is a perfect square, and thus, roots will be rational.
107. $D=16 a^{2} b^{2} c^{2} d^{2}-4\left(a^{4}+b^{4}\right)\left(c^{4}+d^{4}\right)=4\left[4 a^{2} b^{2} c^{2} 2 d^{2}-a^{4} c^{4}-a^{4} d^{4}-b^{4} c^{4}-b^{4} d^{4}\right]$ $=-4\left[\left(a^{2} c^{2}+b^{2} d^{2}\right)^{2}\left(a^{2} c^{2}+b^{2} d^{2}\right)^{2}\right]$. Thus, if the roots are real then discriminant has to be zero because else it can be only negative and then roots wont remain real.
108. $D=4 q^{2}-4 p r=4\left(q^{2}-p r\right)$. Since p, q, r are in H. P. $\Rightarrow q=\frac{2 p r}{p+r}$ Substituting for q, we get $D=4\left[\frac{4 p^{2} r^{2}}{(p+r)^{2}}-p r\right]=4\left[\frac{4 p^{2} r^{2}-p^{3} r-p r^{3}-2 p^{2} r^{2}}{(p+r)^{2}}\right]$ $=4\left[\frac{2 p^{2} r^{2}-p^{3}-r^{3}}{(p+r)^{2}}\right]=4\left[\frac{p r\left(2 p r-p^{2}-r^{2}\right)}{(p+r)^{2}}\right]$ $=4\left[\frac{-p r(p-r)^{2}}{(p+r)^{2}}\right]$. Since p and r have the same sign discriminant is bound to be negative and roots will be complex numbers.
109. Discriminant of $b x^{2}+(b-c) x+(b-c-a)=0, D_{1}=(b-c)^{2}-4 b(b-c-a)=$ $b^{2}+c^{2}-2 b c-4 b^{2}+4 b c+4 a b$

Discriminant of $a x^{2}+2 b c+b=0, D_{2}=4 b^{2}-4 a b$. Now, if $D_{2}<0$
$D_{1}=(b+c)^{2}-\left(4 b^{2}-4 a b\right)>0$ and thus roots will be real. However, if $D_{1}<0$ i.e. roots are imaginary then we have
$D_{1}=(b+c)^{2}-\left(4 b^{2}-4 a b\right)<0 \Rightarrow 4 b^{2}-4 a b>0 \because\left[(b+c)^{2}>0\right]$.
Then roots of equation $a x^{2}+2 b x+b=0$ will be real.
110. From first equation $x=\sqrt{\frac{1-b y^{2}}{a}}$ and from second equation $x=\frac{1-b y}{a}$.

Equating the values obtained $\left(\frac{1-b y}{a}\right)^{2}=\frac{1-b y^{2}}{a}$
$1+b^{2} y^{2}-2 b y=a-a b y^{2} \Rightarrow\left(b^{2}+a b\right) y^{2}-2 b y+1-a=0$
Values of x will be equal if values of y are equal i.e. discriminant of above equation is zero.
$\Rightarrow 42 b^{2}-4\left(b^{2}+a b\right)(1-a)=0 \Rightarrow 4 b^{2}-4 b^{2}+4 b^{2} a-4 a b+4 a^{2} b=0$
$\left(a^{2} b+a b^{2}-a b\right)=0 \Rightarrow a b(a+b)=a b \Rightarrow a+b=1$.
111. Substituting $y=m x+c$ in $x^{2}+y^{2}=a^{2}$, we get $x^{2}+m^{2} x^{2}+2 c m x+c^{2}-a^{2}=0$

For roots to be equal, discriminant must be zero. $D=4 c^{2} m^{2}-4\left(1+m^{2}\right)\left(c^{2}-a^{2}\right)=0$ $\Rightarrow c^{2} m^{2}-c^{2}+a^{2}-c^{2} m^{2}+a^{2} m^{2}=0 \Rightarrow c^{2}=a^{2}\left(1+m^{2}\right)$.
112. Clearly, roots are $\alpha, \alpha+1$. Sum of roots $=\alpha+\alpha+1=\frac{5 a+1}{4} \Rightarrow \alpha=\frac{5 a-3}{8}$.

Product of roots $=\alpha(\alpha+1)=\frac{5 a}{4}$. Substituting value of α from above
$\left(\frac{5 a-3}{8}\right)^{2}+\frac{5 a-3}{8}=\frac{5 a}{4} \Rightarrow \frac{25 a^{2}-30 a+9+40 a-24-80 a}{64}=0$
$\Rightarrow 25 a^{2}-70 a-15=0 \Rightarrow 5 a^{2}-14 a-3=0 \Rightarrow a=3,-\frac{1}{5}$.
If $a=3 \Rightarrow \alpha=\frac{3}{2}$ else if $a=-\frac{1}{5} \Rightarrow \alpha=-\frac{1}{2}$.
Now it is trivial to calculate the value of β.
113. Let one of the roots is α then second root is $\frac{1}{\alpha}$.

Product of roots $=\alpha * \frac{1}{\alpha}=\frac{k}{5} \Rightarrow k=5$.
114. (a) The equation is :math: $(5+4 m) x^{2}-(4+2 m) x+2-m=0$

For roots to be equal discriminant has to be zero.
$4(2+m)^{2}-4(5+4 m)(2-m)=0 \Rightarrow 4+4 m+m^{2}-10-3 m+4 m^{2}=0$
$5 m^{2}-m-6=0 \Rightarrow m=1,-\frac{6}{5}$
(b) Product of roots $=\frac{2-m}{5+4 m}=2 \Rightarrow 2-m=10+8 m \Rightarrow-\frac{8}{9}$
(c) Sum of roots $=\frac{4+2 m}{5+4 m}=6 \Rightarrow m=-\frac{13}{11}$
115. Let one root be α then the second root is $n \alpha$.

Sum of roots $(n+1) \alpha=-\frac{b}{a} \Rightarrow \alpha=-\frac{b}{(n+1) a}$
Product of roots $n \alpha^{2}=\frac{c}{a}$
Substituting value of α from the earlier equation
$\frac{n b^{2}}{(n+1)^{2} a^{2}}=\frac{c}{a} \Rightarrow(n+1)^{2} c a=n b^{2}$.
116. Following from previous problem $n=\frac{3}{4}$ and substituting in final solution

$$
\left(\frac{3}{4}+1\right)^{2} c a=\frac{3}{4} b^{2} \Rightarrow 12 b^{2}=49 a c
$$

117. From earlier problem, we have $a=4, b=a, c=3$ and $n=\frac{1}{2}$

Substituting in the final relation we have, $\frac{9}{4} \cdot 3 \cdot 4=\frac{1}{2} a^{2} \Rightarrow a^{2}=54$.
Discriminant of the second equation, $D=9-4\left(a^{2}-2 a\right)<0$, and thus roots are imaginary.
118. Let α, β be the roots of the given equation.

Sum of roots, $\alpha+\beta=p$ and product of the roots $\alpha \beta=q$
Given, $\alpha+\beta=m(\alpha-\beta)$. Squaring, $(\alpha+\beta)^{2}=m^{2}(\alpha-\beta)^{2}$ $p^{2}=m^{2}(\alpha+\beta)^{2}-4 m^{2} \alpha \beta=m^{2} p^{2}-4 m^{2} q \Rightarrow p^{2}\left(m^{2}-1\right)=4 m^{2} q$.
119. Let α, β be the roots of the given equation. Sum of roots, $\alpha+\beta=p$ and product of the roots $\alpha \beta=q$

Given, $\alpha-\beta=1$. Squaring we have,

$$
\begin{aligned}
& \Rightarrow(\alpha-\beta)^{2}=1 \Rightarrow(\alpha+\beta)^{2}-4 \alpha \beta=1 \Rightarrow p^{2}-4 q=1 . \text { Also, }\left[(\alpha-\beta)^{2}+2 \alpha \beta\right]^{2}=(1+2 q)^{2} \\
& \Rightarrow\left(\alpha^{2}+\beta^{2}\right)^{2}=\alpha^{4}+\beta^{4}+2 \alpha^{2} \beta^{2}=\alpha^{4}+\beta^{4}-2 \alpha^{2} \beta^{2}+4 \alpha^{2} \beta^{2}=\left(\alpha^{2}-\beta^{2}\right)^{2}+4 q^{2} \\
& \Rightarrow\left[(\alpha+\beta)^{2}(\alpha-\beta)^{2}\right]+4 q^{2}=p^{2}+4 q^{2}
\end{aligned}
$$

120. The given equation is $a(x-b)+b(x-a)=m(x-a)(x-b) \Rightarrow m x^{2}-x m(a+b)-$ $m a b-a x+a b-b x+a b=0$
$\Rightarrow m x^{2}-x(m+1)(a+b)-a b(m-2)=0$. If roots are equal in magnitude but opposite in sign then sum would be zero.
$\Rightarrow(m+1)(a+b)=0 \Rightarrow m=-1$ or $a+b=0$.
121. Let α, β be the roots of the equation.

Sum of roots, $\alpha+\beta=-\frac{b}{a}$ and product of roots, $\alpha \beta=\frac{c}{a}$.
Difference of roots, $\alpha-\beta=k$ as given.
Squaring we get, $(\alpha-\beta)^{2}=k^{2} \Rightarrow(\alpha+\beta)^{2}-4 \alpha \beta=k^{2}$

$$
\frac{b^{2}}{a^{2}}-4 \frac{c}{a}=k^{2} \Rightarrow b^{2}-4 a c=k^{2} a^{2}
$$

122. Let α be one of the roots of the equation $a x^{2}+b x+c=0$. Clearly, α^{2} will be the other root.

Sum of roots, $\alpha+\alpha^{2}=-\frac{b}{a}$ and product of the roots $\alpha^{3}=\frac{c}{a}$. Cubing sum of roots,

$$
\begin{aligned}
& \frac{b^{3}}{a^{3}}=-\alpha^{3}(\alpha+1)^{3}=-\frac{c}{a}\left(\alpha^{3}+3 \alpha(\alpha+1)+1\right) \\
& \frac{b^{3}}{a^{3}}=-\frac{c}{a}\left(\frac{c}{a}-\frac{3 b}{a}+1\right)
\end{aligned}
$$

Simplifying we get the desired relationship.
123. Let α be one of the roots of the equation $a x^{2}+b x+c=0$. Clearly, α^{2} will be the other root.

Sum of roots, $\alpha+\alpha^{2}=-p$ and product of roots $\alpha^{3}=1$.
Thus, α is cube root of unity. If $\alpha=-1$ then $p=-2$
else if it is one of the complex numbers then we know that $1+\omega+\omega^{2}=0$ which makes $p=1$.
124. Let α be one of the roots of the equation $a x^{2}+b x+c=0$. Clearly, α^{2} will be the other root.

Sum of roots, $\alpha+\alpha^{2}=-p$ and product of roots $\alpha^{3}=q$
$p^{3}=-\alpha^{3}(\alpha+1)^{3}=-q\left(\alpha^{3}+3 \alpha(\alpha+1)+1\right)=-q(q-3 p+1)$
$\Rightarrow p^{3}-q(3 p-1)+q^{2}=0$.
125. The solution is given below:
i. $\quad \alpha+\beta=-\frac{3}{2}$ and $\alpha \beta=\frac{4}{2}=2$.

$$
\Rightarrow \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=\frac{9}{4}-4=-\frac{7}{4}
$$

ii. $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}$

Substituting for numerator from previous part,

$$
\Rightarrow \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=-\frac{7}{8} .
$$

126. Sum of roots, $\alpha+\beta=-\frac{b}{a}$ and product of roots, $\alpha \beta=\frac{c}{a}$

$$
\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}=\frac{\alpha^{3}+\beta^{3}}{\alpha \beta}=\frac{(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)}{\alpha \beta}=\frac{-\frac{b^{3}}{c^{3}}+\frac{3 c b}{a}}{\frac{c}{a}}=\frac{3 a b c-b^{3}}{a^{2} c} .
$$

127. Sum of roots, $\alpha+\beta=-\frac{b}{a}$ and product of roots, $\alpha \beta=\frac{b}{a}$

Given expression is, $\sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}+\sqrt{\frac{b}{a}}=\frac{\alpha+\beta}{\sqrt{\alpha \beta}}+\sqrt{\frac{b}{a}}=\frac{-\frac{b}{a}}{\sqrt{\frac{b}{a}}}+\sqrt{\frac{b}{a}}=0$.
128. Product of the roots of the first equation is b^{2} and sum of roots of the second equation is $2 b$.

Geometric mean of the roots of the first equation $=$ square root of product of roots $=$ $\sqrt{b^{2}}=b$.

Arithmetic mean of the roots of the second equation $=$ half of sum of roots $=\frac{2 b}{2}=b$ and thus both are equal.
129. Let α, β be the roots of the equation.

Sum of roots, $\alpha+\beta=-\frac{q}{p}$ and product of roots, $\alpha \beta=\frac{r}{p}$.
Given, sum of roots is equal to sum of square of roots. $\therefore \alpha+\beta=\alpha^{2}+\beta^{2}$
$-\frac{q}{p}=(\alpha+\beta)^{2}-2 \alpha \beta=\frac{q^{2}}{p^{2}}-\frac{2 r}{p} \Rightarrow 2 p r=p q+q^{2}$.
130. Let α, β be the roots of the equation. Sum of roots, $\alpha+\beta=p$ and product of roots, $\alpha \beta=q$.
$\frac{\alpha^{2}}{\beta^{2}}+\frac{\beta^{2}}{\alpha^{2}}=\frac{\alpha^{4}+\beta^{4}}{(\alpha \beta)^{2}}=\frac{\left(\alpha^{2}+\beta^{2}\right)^{2}-2 \alpha^{2} \beta^{2}}{\alpha^{2} \beta^{2}}=\frac{\left[(\alpha+\beta)^{2}-2 \alpha \beta\right]^{2}}{\alpha^{2} \beta^{2}}-2$
$=\frac{\left(p^{2}-2 q\right)^{2}}{q^{2}}-2=\frac{p^{4}}{q^{2}}-\frac{4 p^{2}}{q}+2$.
131. Let α, β be the roots of the equation. Sum of roots, $\alpha+\beta=-\frac{b}{a}$ and product of roots, $\alpha \beta=\frac{c}{a}$
$\Rightarrow \frac{1}{(a \alpha+b)^{2}}+\frac{1}{(a \beta+b)^{2}}=\frac{(a \alpha+b)^{2}+(a \beta+b)^{2}}{[(a \alpha+b)(a \beta+b)]^{2}}$
$\Rightarrow \frac{a\left(\alpha^{2}+\beta^{2}\right)+2 a b(\alpha+\beta)+2 b^{2}}{\left(a^{2} \alpha \beta+2 a b(\alpha+\beta)+b^{2}\right)^{2}}$
Substituting for sum of roots, product of roots and $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$ and simplifying
$=\frac{b^{2}-2 a c}{c^{2} a^{2}}$.
132. Rewriting the equation we have $\lambda x^{2}+x(1-\lambda)+5=0$.

Since α and β are the roots therefore, we have $\alpha+\beta=\frac{\lambda-1}{\lambda}$ and $\alpha \beta=\frac{5}{\lambda}$.
Given, $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{4}{5}$
$\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta} \Rightarrow \frac{(\lambda-1)^{2}-10 \lambda}{5 \lambda}=\frac{4}{5}$
$\Rightarrow(\lambda-1)^{2}-10 \lambda=4 \lambda \Rightarrow \lambda^{2}-16 \lambda+1=0 \therefore \lambda_{1}+\lambda_{2}=16$ and $\lambda_{1} \lambda_{2}=1$.
i. $\frac{\lambda_{1}}{\lambda_{2}}+\frac{\lambda_{2}}{\lambda_{1}}=\frac{\left(\lambda_{1}+\lambda_{2}\right)^{2}-2 \lambda_{1} \lambda_{2}}{\lambda_{1} \lambda_{2}}$

Substituting the values for sum and product we have, result as 254.
ii. $\frac{\lambda_{1}^{2}}{\lambda_{2}}+\frac{\lambda_{2}^{2}}{\lambda_{1}}=\frac{\lambda_{1}^{3}+\lambda_{2}^{3}}{\lambda_{1} \lambda_{2}}=\frac{\left(\lambda_{1}+\lambda_{2}\right)^{3}-3 \lambda_{1} \lambda_{2}\left(\lambda_{1}+\lambda_{2}\right)}{\lambda_{1} \lambda_{2}}$
$=4048$.
133. For the first equation $\alpha+\beta=-p$ and $\alpha \beta=q$ and similarly for the second $\gamma+\delta=-r$ and $\gamma \delta=s$.
i. $\quad(\alpha+\gamma)(\alpha+\delta)(\beta+\gamma)(\beta+\delta)=\left[\alpha^{2}+\alpha(\gamma+\delta)+\gamma \delta\right]\left[\beta^{2}+\beta(\gamma+\delta)+\gamma \delta\right]$ $=\left(\alpha^{2}-r \alpha+s\right)\left(\beta^{2}-r \beta+s\right)=\left(\alpha^{2} \beta^{2}-r \alpha \beta^{2}+s \beta^{2}-r \alpha^{2} \beta-r^{2} \alpha \beta-r s \beta+s \alpha^{2}-\right.$ $\left.r s \alpha+s^{2}\right)$
$=q^{2}-r \alpha \beta(\alpha+\beta)+s\left(\alpha^{2}+\beta^{2}\right)+r^{2} p-r s(\alpha+\beta)+s^{2}=q^{2}+p r s+s\left(p^{2}-2 q\right)+$
$r^{2} p-r s q+s^{2}$
ii. $(\alpha-\gamma)(\beta-\delta)+(\beta-\gamma)(\alpha-\delta)=\alpha \beta-\alpha \delta-\beta \gamma+\gamma \delta+\alpha \beta-\beta \delta-\alpha \gamma+\gamma \delta$ $=2 \alpha \beta+2 \gamma \delta-(\alpha+\beta)(\gamma+\delta)=2 q+2 s-p r$.
iii. $(\alpha-\gamma)^{2}+(\beta-\delta)^{2}+(\beta-\gamma)^{2}+(\alpha-\delta)^{2}$

$$
\begin{aligned}
& =2\left(\alpha^{2}+\beta^{2}+\delta^{2}+\gamma^{2}\right)-2(\alpha+\beta)(\gamma+\delta)=2\left[(\alpha+\beta)^{2}-2 \alpha \beta+(\gamma+\delta)^{2}-2 \gamma \delta\right]- \\
& 2(\alpha+\beta)(\gamma+\delta) \\
& =2\left[p^{2}+r^{2}-2 q-2 s\right]-2 p r
\end{aligned}
$$

134. $\alpha+\beta=p$ and $\alpha \beta=q$

Now, R.H.S. $=(\alpha+\beta)\left(\alpha^{n}+\beta^{n}\right)-\alpha \beta\left(\alpha^{n-1}+\beta^{n-1}\right)=\alpha^{n+1}+\beta^{n+1}=$ L.H.S.
135. $\alpha+\beta=\gamma+\delta=-p, \alpha \beta=-q$ and $\gamma \delta=r$ Also, since α, β are roots of $x^{2}+p x+q=$ $0, \therefore \alpha^{2}+p \alpha+q=0$ and $\beta^{2}+p \beta+q=0$.

Now, $(\alpha-\gamma)(\alpha-\delta)=\alpha^{2}-\alpha(\gamma+\delta)+\gamma \delta=\alpha^{2}+p \alpha-r=-q-r=-(q+r)$, and similarly, $(\beta-\gamma)(\beta-\delta)=-(q+r)$.
136. Clearly, $\alpha+\beta=2 p, \alpha \beta=q$ and $\gamma+\delta=2 r, \gamma \delta=s$
i. $\frac{\alpha}{\beta}=\frac{\gamma}{\delta}$. By componendo and dividendo

$$
\Rightarrow \frac{\alpha+\beta}{\alpha-\beta}=\frac{\gamma+\delta}{\gamma-\delta}
$$

Squaring, $\left(\frac{\alpha+\beta}{\alpha-\beta}\right)^{2}=\left(\frac{\gamma+\delta}{\gamma-\delta}\right)^{2}$

$$
1-\frac{4 \alpha \beta}{(\alpha+\beta)^{2}}=1-\frac{4 \gamma \delta}{(\gamma+\delta)^{2}} \Rightarrow \frac{q}{p^{2}}=\frac{s}{r^{2}} .
$$

ii. Since $\alpha, \beta, \gamma, \delta$ are in G. P. Hence, $\frac{\alpha}{\beta}=\frac{\gamma}{\delta}$ and then we can proceed like previous part.
iii. Since $\alpha, \beta, \gamma, \delta$ are in A. P. Hence, $\alpha-\beta=\gamma-\delta$

$$
\Rightarrow(\alpha+\beta)^{2}-4 \alpha \beta=(\gamma+\delta)^{2}-4 \gamma \delta \Rightarrow 4 p^{2}-4 q=4 r^{2}-4 s \Rightarrow s-q=r^{2}-p^{2}
$$

137. Clearly, $\alpha+\beta=-\frac{2 b}{a}$ and $\alpha \beta=\frac{c}{a}$ for $a x^{2}+2 b x+c=0$ and $\alpha+\beta+2 k=-\frac{2 B}{A}$ and $(\alpha+k)(\beta+k)=\frac{C}{A}$ for $A X^{2}+2 B x+C=0$.

Given expression can be rewritten as $\frac{b^{2}}{a^{2}}-\frac{c}{a}=\frac{B^{2}}{A^{2}}-\frac{C}{A}$ $\frac{(\alpha+\beta)^{2}}{4}-\alpha \beta=\frac{(\alpha+\beta+2 k)^{2}}{4}-(\alpha+k)(\beta+k) \Rightarrow(\alpha-\beta)^{2}=(\alpha+k-\beta-k)^{2}$, which is true.
138. Proceeding like previous problem, we have to prove that $\frac{b^{2}-4 a c}{B^{2}-4 A C}=\frac{a^{2}}{A^{2}} \Rightarrow \frac{b^{2}}{a^{2}}-\frac{4 c}{a}=$ $\frac{B^{2}}{A^{2}}-\frac{4 C}{A} \Rightarrow(\alpha+\beta)^{2}-4 \alpha \beta=(\alpha+\beta+2 k)^{2}-4(\alpha+k)(\beta+k)$ $\Rightarrow(\alpha-\beta)^{2}=(\alpha+k-\beta-k)^{2}$, which is true.
139. Let α, β be the roots of $x^{2}+2 p x+q=0$ and γ, δ be the roots of $x^{2}+2 q x+p=0$ $\alpha+\beta=-2 p$ and $\gamma+\delta=-2 q$. Also, $\alpha \beta=q$ and $\gamma \delta=p$

Given that roots differ by a constant term say $k . \therefore \alpha+k=\gamma$ and $\beta+k=\delta$
Thus, $\alpha+\beta+2 k=-2 q \Rightarrow-2 p+2 k=-2 q \Rightarrow k=p-q \Rightarrow \gamma \delta=\alpha \beta+(\alpha+\beta) k+k^{2}=p$
Also, $q-2 p k+k^{2}=p \Rightarrow-2 p+k=1 \Rightarrow p+q+1=0$.
140. Clearly, $\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$.
i. Sum of these roots is $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=\frac{b^{2}-2 a c}{a c}$

Product of these roots is 1 . Therefore, such an equation is $x^{2}-\frac{b^{2}-2 a c}{a c} x+1=0$.
ii. Sum of these roots is $\frac{\alpha^{3}+\beta^{3}}{\alpha \beta}=\frac{(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)}{\alpha \beta}=\frac{3 a b c-b^{3}}{a^{2} c}$.

Product of these roots is $\alpha \beta=\frac{c}{a}$. Therefore, an equation whose roots were these is $x^{2}-\frac{3 a b c-b^{3}}{a^{2} c} x+\frac{c}{a}=0$.
iii. Sum of these roots is $(\alpha+\beta)^{2}+(\alpha-\beta)^{2}=2(\alpha+\beta)^{2}-4 \alpha \beta=\frac{2 b^{2}}{a^{2}}-\frac{4 c}{a}$.

Product of these roots is $(\alpha+\beta)^{2}(\alpha-\beta)^{2}=(\alpha+\beta)^{2}\left[(\alpha+\beta)^{2}-4 \alpha \beta\right]=\frac{b^{2}}{a^{2}}\left(\frac{b^{2}}{a^{2}}-\frac{4 c}{a}\right)$.
So the equation is $x^{2}-\left(\frac{2 b^{2}}{a^{2}}-\frac{4 c}{a}\right) x+\frac{b^{2}}{a^{2}}\left(\frac{b^{2}}{a^{2}}-\frac{4 c}{a}\right)=0$.
iv. Sum of these roots is $\frac{1-\alpha}{1+\alpha}+\frac{1-\beta}{1+\beta}=\frac{1+\beta-\alpha-\alpha \beta+1+\alpha-\beta-\alpha \beta}{1+(\alpha+\beta)+\alpha \beta}$
$=\frac{2-2 \alpha \beta}{1+(\alpha+\beta)+\alpha \beta}=\frac{2\left(1+\frac{b}{a}\right)}{1-\frac{b}{a}+\frac{c}{a}}=\frac{2(a+b)}{a-b+c}$.
Product of these roots is $\frac{1-\alpha}{1+\alpha} \cdot \frac{1-\beta}{1+\beta}=\frac{1-(\alpha+\beta)+\alpha \beta}{1+(\alpha+\beta)+\alpha \beta}=\frac{1+\frac{b}{a}+\frac{c}{a}}{1-\frac{b}{a}+\frac{c}{a}}=\frac{a+b+c}{a-b+c}$.
Therefore, the equation is $(a-b+x) x^{2}-2(a+b) x+(a+b+c)=0$.
v. Sum of these roots is $\frac{1}{(\alpha+\beta)^{2}}+(\alpha-\beta)^{2}=\frac{a^{2}}{b^{2}}+\left[(\alpha+\beta)^{2}-4 \alpha \beta\right]=\frac{a^{2}}{b^{2}}+\left[\frac{b^{2}}{a^{2}}-\frac{4 c}{a}\right]$.

Product of these roots is $\frac{1}{(\alpha+\beta)^{2}} \cdot(\alpha-\beta)^{2}=\frac{1}{(\alpha+\beta)^{2}} \cdot\left[(\alpha+\beta)^{2}-4 \alpha \beta\right]=\frac{a^{2}}{b^{2}}\left[\frac{b^{2}}{a^{2}}-\frac{4 c}{a}\right]=$ $\frac{b^{2}-4 a c}{b^{2}}$.

Now it is trivial to deduce the equation.
141. Let the roots of the equation $a x^{2}+b x+c=0$ are p and q, then $p+q=-\frac{b}{a}$ and $p q=\frac{c}{a}$.
(a) The reciprocal of roots are $\frac{1}{p}$ and $\frac{1}{q}$. Sum of these is $\frac{p+q}{p q}=-\frac{b}{c}$ and product is $\frac{1}{p q}=\frac{a}{c}$. Therefore, the equation is $c x^{2}+b x+a=0$.
(b) Let one of the roots is p then the other will be $-p$. Sum will be 0 and product will be $-\frac{c}{a}$. Therefore, the equation is $a x^{2}-c=0$.
142. Clearly, $\alpha+\beta=-p$ and $\alpha \beta=q$.
(a) $\alpha^{4}+\beta^{4}=\left(\alpha^{2}+\beta^{2}\right)-2 \alpha^{2} \beta^{2}=\left[(\alpha+\beta)^{2}-2 \alpha \beta\right]^{2}-2 \alpha^{2} \beta^{2}=\left[p^{2}-2 q\right]^{2}-2 q^{2}=$ $p^{4}-4 p^{2} q+2 q^{2}$.
(b) $\alpha^{-4}+\beta^{-4}=\frac{\alpha^{4}+\beta^{4}}{\alpha^{4} \beta^{4}}=\frac{p^{4}-4 p^{2} q+2 q^{2}}{q^{4}}$.
143. Clearly, $\alpha+\beta=p$ and $\alpha \beta=q$.
i. Sum of these roots is $\frac{q}{p-\alpha}+\frac{q}{p-\beta}=\frac{2 p q-q(\alpha+\beta)}{p^{2}-p(\alpha+\beta)+\alpha \beta}=\frac{p q}{q}=p$.

Product of these roots is $\frac{q}{p-\alpha} \cdot \frac{q}{p-\beta}=\frac{q^{2}}{q}=q$.
Thus the eqation of these new roots remain same i.e. $x^{2}-p x+q=0$.
ii. Sum of these roots is $\alpha+\beta+\frac{1}{\alpha}+\frac{1}{\beta}=\alpha+\beta+\frac{\alpha+\beta}{\alpha \beta}=p+\frac{p}{q}=\frac{p(1+q)}{q}$.

Product of these roots is $\left(\alpha+\frac{1}{\beta}\right)\left(\beta+\frac{1}{\alpha}\right)=\alpha \beta+\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+\frac{1}{\alpha \beta}=q+\frac{1}{q}+\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=$ $\frac{q^{2}+1}{q}+\frac{p^{2}-2 q}{q}$.

Now deducing the equation is trivial.
144. Because $5+3 i$ is a complex root the other root will be complex conjugate i.e. $5-3 i$. Thus, equation having these complex roots will be $x^{2}-10 x+34=0$.
145. Because $3+4 i$ is a complex root the other root will be complex conjugate i.e. $3-4 i$. Thus, equation having these complex roots will be $x^{2}-6 x+25=0$.
146. Roots are given by $\frac{-2 \pm \sqrt{4+16}}{6}=\frac{-1 \pm \sqrt{5}}{4}$. Now $\frac{\sqrt{5}-1}{4}=\cos 72^{\circ}$ and $-\frac{\sqrt{5}+1}{4}=-\cos 36^{\circ}=$ $\cos 216^{\circ}=\cos \left(3.72^{\circ}\right)$

Now, $\cos 3 x=4 \cos ^{3} x-3 \cos x$, therefore if one root is α then the other would be $4 \alpha^{3}-3 \alpha$.
147. Clearly, by observation α, β are roots of the eqation $x^{2}-5 x+3=0 . \Rightarrow \alpha+\beta=5$ and $\alpha \beta=3$.

Now, $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=\frac{5(\alpha+\beta)-6}{3}=\frac{19}{3}$.
148. Correct value of $p=-11 . q$ is $4 \times 6=24$. Hence, the correct equation is $x^{2}-11 x+24=0$. Hence roots are 8,3 .
149. Correct value of q is 2 . p is $-(6-1)=5$. Hence, the correct equation is $x^{2}-5 x+2=0$.
150. From first student the correct value of $q=6 \times 2=12$. From second student the correct value of $p=-(2+-9)=7$. Hence the correct equation is $x^{2}+7 x+12=0$ giving us 3,4 as correct roots.
151. We have $\alpha+\beta=-p, \alpha \beta=q, \alpha_{1}+\beta_{1}=p, \alpha_{1} \beta_{1}=q$.

Now, $\frac{1}{\alpha_{1} \beta}+\frac{1}{\alpha \beta_{1}}+\frac{\alpha \alpha_{1}}{+} \beta \beta_{1}=\frac{(\alpha+\beta)\left(\alpha_{1}+\beta_{1}\right)}{\alpha \beta \alpha_{1} \beta_{1}}=\frac{p q}{q p}=1$
and $\left(\frac{1}{\alpha_{1} \beta}+\frac{1}{\alpha \beta_{1}}\right)\left(\frac{1}{\alpha \alpha_{1}}+\frac{1}{\beta \beta_{1}}\right)=\frac{1}{\alpha_{1}^{2} \alpha \beta}+\frac{1}{\alpha_{1} \beta_{1} \beta^{2}}+\frac{1}{\alpha_{1} \beta_{1} \alpha^{2}}+\frac{1}{\alpha \beta \beta_{1}^{2}}$
$=\frac{1}{\alpha \beta}\left[\frac{1}{\alpha_{1}^{2}}+\frac{1}{\beta_{1}^{2}}\right]+\frac{1}{\alpha_{1} \beta_{1}}\left[\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}\right]=\frac{1}{q}\left[\frac{\alpha_{1}^{1}+\beta_{1}^{2}}{\alpha_{1}^{2} \beta_{1}^{2}}\right]+\frac{1}{p}\left[\frac{\alpha^{2}+\beta^{2}}{\alpha^{2} \beta^{2}}\right]$
$=\frac{p^{3}+q^{3}-p q}{p^{2} q^{2}}$. Therefore, the equation with these as roots is
$x^{2}-x+\frac{p^{3}+q^{3}-p q}{p^{2} q^{2}}=0$.
152. We know that complex roots always appear in pair and as $2+\sqrt{3} i$ is a complex root the other root will be its complex conjugate i.e. $2-\sqrt{3} i$. Hence, $p=-4$ and $q=13$ makring the equation $x^{2}-4 x+13=0$.
153. $\frac{1}{2+\sqrt{3}}=2-\sqrt{3}$ which is an irrational root and the other root will be its conjugate i.e. $2+\sqrt{3}$ hence the equation will be $x^{2}-4 x+1=0$
154. Since α, β are roots of the equation $x^{2}-p x+q=0, \alpha+\beta=p$ and $\alpha \beta=q$.

Let us assume that $\alpha+\frac{1}{\beta}$ is a root of $q x^{2}-p(1+q) x+(1+q)^{2}=0$ then it must satisfy the equation. Substituting the values we have
$\alpha \beta \frac{(\alpha \beta+1)^{2}}{\beta^{2}}-\frac{(\alpha+\beta)(1+\alpha \beta)(\alpha \beta+1)}{\beta}+(1+\alpha \beta)^{2}=0$
$(\alpha \beta+1)^{2}\left[\alpha \beta-(\alpha+\beta) \beta-\beta^{2}\right]=0$
\because L.H.S. $=$ R.H.S. it is proven that $\alpha+\frac{1}{\beta}$ is a root of the given equation.
155. One of the given equations is $2 x^{2}+3 x-2=0 \Rightarrow(2 x-1)(x+2)=0$ so the roots are $x=\frac{1}{2},-2$. Putting these two in the equation $3 x^{2}+4 m x+2=0$ we obtain two values $-\frac{7}{4},-\frac{11}{8}$ for m.
156. Let p be the common root then it must satisfy both the equations i.e. $p^{2}-11 p+a=0$ and $p^{2}-14 p+2 a=0$. Equating a from both equations $11 p-p^{2}=\frac{14 p-p^{2}}{2} \Rightarrow p^{2}-8 p=$ $0 \Rightarrow p=0,8 \Rightarrow a=0,24$.
157. The condition for having common roots is obtained by cross-multiplication:

$$
\begin{aligned}
& \left(b a-c^{2}\right)\left(c a-b^{2}\right)=\left(a^{2}-b c\right)^{2} \Rightarrow a^{2} b c-a b^{3}-a c^{3}+b^{2} c^{2}=a^{4}-2 a^{2} b c+b^{2} c^{2} \Rightarrow \\
& 3 a^{2} b c-a b^{3}-a c^{3}-a^{4}=0 \\
& a\left(3 a b c-b^{3}-c^{3}-a^{3}\right)=0 \because a \neq=0 \Rightarrow a^{3}+b^{3}+c^{3}-3 a b c=0 \Rightarrow(a+b+c)\left(a^{2}+b^{2}+\right. \\
& \left.c^{2}-a b-b c-c a\right)=0 \\
& \Rightarrow a+b+c=0 \text { or } a=b=c
\end{aligned}
$$

158. Proceeding as in last example, condition for common root is

$$
\begin{aligned}
& (10 m-189)(9-10)=(21-m)^{2} \Rightarrow 189-10 m=441-42 m+m^{2} \Rightarrow m^{2}-32 m+252= \\
& 0 \Rightarrow m=18,14
\end{aligned}
$$

Roots of $x^{2}+10 x+21=0$ are $-3,-7$. When $m=18$ roots of $x^{2}+9 x+18=0$ are $-3,-6$.

In that case equation formed with -7 and -6 is $x^{2}+13 x+42=0$ When $m=14$ roots of $x^{2}+9 x+14=0$ are $-2,-7$.

In that case equation formed with -3 and -2 are $x^{2}+5 x+6=0$.
159. Following condition for common roots, we have
$(-3+120)(10+3)=(3+36)^{2} \Rightarrow 117 * 13=39^{2}$ which is true and thus equations have a common root.

Roots of $x^{2}-x-12=0$ are $4,-3$ and roots of $3 x^{2}+10 x+3=0$ are $-3,-\frac{1}{3}$ and thus common root is -3 .
160. Condition for common root is given below:
$(p-q)(3 q-2 p)=(3-2)^{2} \Rightarrow(2 p-3 q)(p-q)+1=0 \Rightarrow 2 p^{2}+3 q^{2}-5 p q+1=0$.
161. The condition for common root is $(b-c)(a-b)=(a-c)^{2}$
$\Rightarrow a b-a c-b^{2}+b c=a^{2}+c^{2}-2 a c \Rightarrow a^{2}+b^{2}+c^{2}-a b-a c-b c=0$
$\Rightarrow \frac{1}{2}(a-b)^{2}(b-c)^{2}(c-a)^{2}=0 \Rightarrow a=b=c$.
162. Let α be the common root then
$\frac{\alpha^{2}}{p q_{1}-p_{1} q}=\frac{\alpha}{q-q_{1}}=\frac{1}{p_{1}-p}$. Clearly, the root is either $\frac{p q_{1}-p_{1} q}{q-q_{1}}$ or $\frac{q-q_{1}}{p_{1}-p}$.
163. Condition for having common root is: $(-4 b+3 c)(-6 a-2 b)=(4 a-2 c)^{2}$. Solving this gives us required equation.
164. Condition for having a common root is:
$\left[(r-p)(q-r)-(p-q)^{2}\right]\left[(p-q)(q-r)-(r-p)^{2}\right]=\left[(q-r)^{2}-(p-q)(r-p)\right]^{2}$, which is an equality and hence the equations have a common root.

165 . Let α be a common root then
$\frac{\alpha^{2}}{a b^{2}-a c^{2}}=\frac{1}{b-c}=\frac{1}{a c-a b} \Rightarrow \alpha=-a(b+c)$ or $\alpha=-\frac{1}{a}$.
Let α, β be roots of first and α, γ be roots of the second equation. Then, $\alpha+\beta=-a b$ and $\alpha \beta=c$ also, $\alpha+\gamma=-a c$ and $\alpha \gamma=b$
$\Rightarrow 2 \alpha+\beta+\gamma=-a(b+c)$ and $\alpha^{2} \beta \gamma=b c$
Equation formed by β and γ would be $x^{2}-(\beta+\gamma) x+\beta \gamma=0$.
For either values of α equation is $x^{2}-a(b+c) x+a^{2} b c=0$.
166. Let α is a common root then $x^{2}-p x+q=0$ and $x^{2}-a x+b=0$. Let β be the second root of the first equationa then $\frac{1}{\beta}$ will be the second root of the second equation.

Clearly, $\alpha+\beta=p, \alpha \beta=q, \alpha+\frac{1}{\beta}=a, \frac{\alpha}{\beta}=b$.
$\therefore(q-b)^{2}=\left(\alpha \beta-\frac{\alpha}{\beta}\right)^{2}$,
$b q(p-a)^{2}=\frac{\alpha}{\beta}(\alpha \beta)\left(\beta-\frac{1}{\beta}\right)^{2}=\left(\alpha \beta-\frac{\alpha}{\beta}\right)^{2}$. Hence, proved.
167. It is a quadratic equation but satisfied by three values of $x=1,2,3$ therefore it is an identity.
168. It is a quadratic equation but satisfied by three values of $x=a, b, c$ therefore it is an identity.
169. Let $x^{5}=y$ then equation becomes $3 y^{2}-2 y-8=0$.

Since it is satisfied by two distinct values and it is a quadratic equation therefore it is an equation.
170. $\frac{(x+2)^{2}-(x-2)^{2}}{x^{2}-4}=\frac{5}{6}$

$$
\Rightarrow \frac{8 x}{x^{2}-4}=\frac{5}{6} \Rightarrow 5 x^{2}-20-48 x=0 \Rightarrow x=10,-\frac{2}{5} .
$$

171. Let $x=y^{2} \Rightarrow \frac{2 y+1}{3-y}=\frac{11-3 y}{5 y-9}$
$\Rightarrow 10 y^{2}-13 y-9=33-20 y+3 y^{2} \Rightarrow 7 y^{2}+7 y-42=0 \Rightarrow y=2,-3$
$\Rightarrow x=4,9$ but $x=9$ does not apply to the equation and is an impossible solution.
172. $(x+1)(x-3)(x+2)(x-4)=336 \Rightarrow\left(x^{2}-2 x-3\right)\left(x^{2}-2 x-8\right)=336$

Let $x^{2}-2 x-3=y \Rightarrow y(y-5)=336 \Rightarrow e y^{2}-5 y-336=0 \Rightarrow y=21,-16$
$\Rightarrow x=-4,6,1 \pm 2 \sqrt{3} i$.
173. Squaring $x+1+2 x-5+2 \sqrt{(x+1)(2 x-5)}=9 \Rightarrow 2 \sqrt{(x+1)(2 x-5)}=13-3 x$

Squaring again $4(x+1)(2 x-5)=9 x^{2}-78 x+169 \Rightarrow x^{2}-66 x+189=0 \Rightarrow x=3,63$.
We see that $x=63$ does not satisfy the equation hence the only solution is $x=3$.
174. We have $2^{2 x}+2^{x+2}-32=0 \Rightarrow\left(2^{x}-4\right)\left(2^{x}+8\right)=0$. However, $2^{x} \neq 8 \Rightarrow 2^{x}=4 \Rightarrow x=2$.
175. Let the speed be $x \mathrm{~km} /$ hour. Then, from the statement $\frac{800}{x}=\frac{800}{x+40}+\frac{2}{3}$

Solving we get $x=200 \mathrm{~km} /$ hour.
176. Let width be w meter. Thus, $(w+8)(w-2)=119 \Rightarrow w^{2}+6 w-135=0 \Rightarrow w=9,-15$ but width cannot be negative. Length is 11 m .
177. Equivalent equation is $-x^{2}+3 x+4=0$ and roots are $-1,4$.

Since coefficient of x^{2} is -ve the expression will be + ve if x lies between the root.
Therefore, for $-x^{2}+3 x+4>0$ the range is $]-1,4[$.
178. $5 x-1<(x+1)^{2} \Rightarrow x^{2}-3 x+2>0$.

Roots of equivalent equation $x^{2}-3 x+2=0$ are $x=2,1$.
Since coefficient of x^{2} is positive, x must lie outside the range of $[1,2]$ for the expression to be positive.

Now considering, $(x+1)^{2}<7 x-3 \Rightarrow x^{2}-5 x+4<0$
Roots of the equivalent equation $x^{2}-5 x+4=0$ are $x=1,4$ and for expression to be negative x must lie inside the open interval $] 1,4[$.

Therefore, the only integral value satisfying the original expression is 3 .
179. $\frac{8 x^{2}+16 x-51}{(2 x-3)(x+4)}>3 \Rightarrow \frac{2 x^{2}+x-15}{2 x^{2}+5 x-12}>0$
$2 x^{2}+x-15=0$ has roots $x=-3, \frac{5}{2} \Rightarrow 2 x^{2}+5 x-12=0$ has roots $x=-4, \frac{3}{2}$
Thus, the inequality will hold true for $x<-4$ and $-3<x<\frac{3}{2}$ and $x>\frac{5}{2}$.
180. Let $y=\frac{x^{2}-3 x+4}{x^{2}+3 x+4} \Rightarrow(y-1) x^{2}+3(y+1) x+4(y-1)=0$

Since x is real, the discriminant will be greater that $0 \Rightarrow 9(y+1)^{2}-16(y-1)^{2} \geq 0$ $-7 y^{2}+50 y-7 \geq 0$. The roots are 7 and $\frac{1}{7}$

Since coefficient of y^{2} is negative, for the expression to be positive y has to lie between the open interval formed by its roots i.e. $] \frac{1}{7}, 7[$
181. Let $y=\frac{x^{2}+34 x-71}{x^{2}+2 x-7} \Rightarrow(y-1) x^{2}+2(y-17) x+(71-y)=0$

Since x is real, the discriminant will be greater that $0 \Rightarrow 4(y-17)^{2}-4(y-1)(71-7 y) \geq$ 0
$\Rightarrow y^{2}-14 y+45 \geq 0$. Its roots are 5 and 9
Since coefficient of y^{2} is positive, therefore for the expression to be positive y has to lie outside the open interval formed by its roots. Thus, the expression has no value between 5 and 9 .
182. Let $y=\frac{4 x^{2}+36 x+9}{12 x^{2}+8 x+1} \Rightarrow 4(3 y-1) x^{2}+4(2 y-9) x+y-9=0$.

Since x is real, the discriminant will be greater that $0 \Rightarrow 16(2 y-9)^{2}-16(3 y-1)(y-$ 1) $\geq 0 \Rightarrow y^{2}-8 y+72 \geq 0$

Corresponding equation is $y^{2}-8 y+72=0 \Rightarrow D=64-288=-224<0$
Since coefficient of y^{2} is positive and discriminant is less than 0 therefore $y^{2}-8 y+72 \geq 0$ holds true for all value of y. Therefore, the expression can take any value.
183. Let $y=\frac{(x-a)(x-c)}{x-b} \Rightarrow x^{2}-(a+c+y) x+a c+y b=0$

Since x is real, the discriminant will be greater that 0
$\Rightarrow(a+c+y)^{2}-4(a c+y b) \geq 0 \Rightarrow y^{2}+2(a+c-2 b) y+(a-c)^{2} \geq 0$.
Corresponding equation is $y^{2}+2(a+c-2 b) y+(a-c)^{2}=0$. Discriminant of above equation is $D=-16(a-b)(b-c)$

If $a>b>c$ then $D<0$ and if $a<b<c$ then also $D<0$.
Since coefficient of y^{2} is positive and $D<0$ the expression $y^{2}+2(a+c-2 b) y+(a-c)^{2} \geq$ 0 is true for all real values of y.

Therefore, the given expression is capable of holding any value for the given conditions.
184. Given $x+y=k$ (say, a constant). Let $z=x y$, then $z=x(k-x) \Rightarrow x^{2}-k x+z=0$.

Since x is real, $D \geq 0$ for the above equation.
$k^{2}-4 z \geq 0 \Rightarrow z \leq \frac{k^{2}}{4}$
Hence, the maximum value of $z=\frac{k^{2}}{4}$.
Thus, $x^{2}-k x+\frac{k^{2}}{4}=0 \Rightarrow\left(x-\frac{k}{2}\right)^{2}=0 \Rightarrow x=\frac{k}{2}$.
$\therefore y=\frac{k}{2}$ and thus $x y$ is maximum when $x=y$.
185. Let $y=3-6 x-8 x^{2} \Rightarrow 8 x^{2}+6 x+y-3=0$. Since x is real, $D \geq 0$ for the this equation.
$\Rightarrow 36-32(y-3) \geq 0 \Rightarrow y \leq \frac{33}{8}$. Hence, maximum value of $y=\frac{33}{8}$
$\Rightarrow 64 x^{2}+48 x+9=0 \Rightarrow(8 x+3)^{2}=0 \Rightarrow x=-\frac{3}{8}$.
186. Let $y=\frac{12 x}{4 x^{2}+9} \Rightarrow 4 y x^{2}-12 x+9 y=0$. Since x is real, $D \geq 0$ for the above equation.
$\Rightarrow 144-144 y^{2} \geq 0 \Rightarrow y^{2} \leq 1 \Rightarrow-1 \leq y \leq 1 \Leftrightarrow|y| \leq 1 \Leftrightarrow\left|\frac{12 x}{4 x^{2}+9}\right| \leq 1$
Now, $\left|\frac{12 x}{4 x^{2}+9}\right|=1 \Leftrightarrow 4|x|^{2}-12|x|+9=0 \Rightarrow(2|x|-3)^{2}=0 \Rightarrow|x|=\frac{3}{2}$.
187. $x^{2}+9 y^{2}-4 x+3=0$. Since x is real, $D \geq 0$ for the above equation.
$\Rightarrow(-4)^{2}-4\left(9 y^{2}+3\right) \geq 0 \Rightarrow 9 y^{2}-1 \leq 0 \Leftrightarrow y^{2} \leq \frac{1}{9} \Rightarrow-\frac{1}{3} \leq y \leq \frac{1}{3}$
The given equation can also be written as $9 y^{2}+x^{2}-4 x+3=0$. Since y is real, $D \geq 0$ for the above equation.
$\Rightarrow-36\left(x^{2}-4 x+3\right) \geq 0 \Rightarrow x^{2}-4 x+3 \leq 0$
Since coefficient of x^{2} is positive, it must lie between its root for the above expression to be negative. Therefore, x must lie between 1 and 3 .
188. Given expression is $x^{2}-a x+1-2 a^{2}>0$

Since x is real the discriminant of the corresponding equation has to be negative for it to be positive for all values of x.
$a^{2}-4\left(1-2 a^{2}\right)<0 \Leftrightarrow 9 a^{2} \leq 4 \Rightarrow-\frac{2}{3}<a<\frac{2}{3}$.
189. Let α be a common factor, therefore it will satisfy both the equations.
$\alpha^{2}-11 \alpha+a=0$ and $\alpha^{2}-14 \alpha+2 a=0$. By cross-multiplication
$\frac{\alpha^{2}}{-22 a+14 x}=\frac{\alpha}{a-2 a}=\frac{1}{-14+11} \Rightarrow \frac{\alpha^{2}}{-8 a}=\frac{\alpha}{-a}=-\frac{1}{3}$
From first two we have $\alpha=8$ and from last two we have $\alpha=\frac{a}{3} \therefore a=24$.
190. $y=m x$ is a factor of $a x^{2}+b x y+c y^{2}$ means $a x^{2}+b x y+c y^{2}$ will be zero when $y=m x$.
$a x^{2}+b x . m x+c m^{2} x^{2}=0 \Rightarrow c m^{2}+b m+a=0$. Similarly, $a_{1} m^{2}+b_{1} m+c_{1}=0$ since $m y-x$ is a factor of $a_{1} x^{2}+b_{1} x y+c_{1} y^{2}$

Solving these two equations in m by cross-multiplication $\frac{m^{2}}{b c_{1}-a b_{1}}=\frac{m}{a a_{1}-c c_{1}}=\frac{1}{c b_{1}-b a_{1}}$
From first two we get, $m=\frac{b c_{1}-a b_{1}}{a a_{1}-c c_{1}}$, and from last two we get, $m=\frac{a a_{1}-c c_{1}}{c b_{1}-b a_{1}}$
Equating the two values of m obtained, we get $\left(b c_{1}-a b_{1}\right)\left(c b_{1}-b a_{1}\right)=\left(a a_{1}-c c_{1}\right)^{2}$.
191. We know that $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c$ can be resolved into two linear factors if and only if
$a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0$ and $h^{2}-a b>0$. Given expression is $2 x^{2}+m x y+$ $3 y^{2}-5 y-2$

Here, $a=2, h=\frac{m}{2}, b=3, g=0, f=\frac{-5}{2}, c=-2 \Rightarrow h^{2}-a b=\frac{m^{2}}{4}-6>0 \Rightarrow m^{2}>24$
Applying the second condition, $-12-\frac{25}{2}+\frac{m^{2}}{2}=0 \Rightarrow m^{2}=49 \therefore m= \pm 7$.
192. Given expression is $a x^{2}+b y^{2}+c z^{2}+2 a y z+2 b z x+2 c x y$
$=z^{2}\left[a\left(\frac{x}{z}\right)^{2}+b\left(\frac{y}{z}\right)^{2}+c+2 a \frac{y}{z}+2 b \frac{x}{z}+2 c \frac{x y}{z^{2}}\right]$
$=z^{2}\left(a X^{2}+b Y^{2}+c+2 a Y+2 b X+2 c X Y\right)$ where $X=\frac{x}{z}, Y=\frac{y}{z}$. Now this will resolve in linear factors if
$a b c+2 a b c-a . a^{2}-b . b^{2}-c . c^{2}=\Rightarrow a^{3}+b^{3}+c^{3}=3 a b c$.
193. Given expression is $2 x^{2}-y^{2}-x+x y+2 y-1$

Corresponding equation is $2 x^{2}-y^{2}-x+x y+2 y-1=0 \Rightarrow x=$ $\frac{1-y \pm \sqrt{(1-y)^{2}+8\left(y^{2}-2 y+1\right)}}{4} \Rightarrow x=1-y,-\frac{1-y}{2}$.

Therefore, required linear factors are $x+y-1$ and $2 x-y+1$.
194. Corresponding quadratic equation is $x^{2}+2(a+b+c) x+3(a b+b c+c a)=0$. It will be a perfect square if its discriminant is zero.

$$
\begin{aligned}
& \Rightarrow 4(a+b+c)^{2}-4.3(a b+b c+c a)=0 \Rightarrow a^{2}+b^{2}+c^{2}-a b-b c-c a=0 \\
& \Rightarrow \frac{1}{2}(a-b)^{2}(b-c)^{2}(c-a)^{2}=0 \Rightarrow a=b=c
\end{aligned}
$$

195. Discriminant of the given equation is $D=36-72<0$.

Now since coefficient of x^{2} is less than zero the expression is always positive.
196. $8 x-15-x^{2}>0 \Rightarrow x^{2}-8 x+15<0 \Rightarrow(x-3)(x-5)<0$.

The above is true if x lies in the open interval $] 3,5[$.
197. $-x^{2}+5 x-4>0 \Rightarrow x^{2}-5 x+4<0 \Rightarrow(x-4)(x-1)<0$.

The above is true if x lies in the open interval $] 1,4[$.
198. $x^{2}+6 x-27>0 \Rightarrow(x+9)(x-3)>0$. This is true if $x<-9$ or $x>3$.
199. $\frac{4 x}{x^{2}+3} \leq 1 \Rightarrow x^{2}+3 \leq 4 x \Rightarrow x^{2}-4 x+3 \leq 0$
$\Rightarrow(x-3)(x-1) l e 0$, This is true for closed interval $[1,3]$.
200. $x^{2}-3 x+2>0 \Rightarrow(x-2)(x-1)>0$. This is true for $x>2$ or $x<1$.
$x^{2}-3 x-4 \leq 0 \Rightarrow(x-4)(x+1) \leq 0$. This is true for $-1 \leq x \leq 4$.
Thus values of x which satisfy both are $-1 \leq x<1$ and $2<x \leq 4$.
201. Since roots of $a x^{2}+b x+c$ are imaginary, therefore discriminant is negative. $\Rightarrow b^{2}-4 a c<$ 0.

Discriminant of $a^{2} x^{2}+a b x+a c$ is $D=a^{2} b^{2}-4 a^{3} c=a^{2}\left(b^{2}-4 a c\right)<0$.
But coefficient of the expression is positive hence it will be always positive.
202. Let $y=\frac{x^{2}-2 x+4}{x^{2}+2 x+4} \Rightarrow(y-1) x^{2}+2(y+1) x+4(y-1)=0$

Since x is real discriminant will be greater or equal to zero.
$\Rightarrow 4(y+1)^{2}-16(y-1)^{2} \geq 0 \Rightarrow y^{2}+2 y+1-4 y^{2}+8 y-4 \geq 0 \Rightarrow-3 y^{2}+10 y-3 \geq 0$.
Roots of corresponding equation are $\frac{1}{3}, 3$. Since coefficient of y^{2} is negative, for above to be true y must lie between $\frac{1}{3}$ and 3 .
203. Let $y=\frac{2 x^{2}-3 x+2}{2 x^{2}+3 x+2} \Rightarrow 2(y-1) x^{2}+3(y+1) x+2(y-1)=0$

Since x is real discriminant will be greater or equal to zero.
$\Rightarrow 9(y+1)^{2}-16(y-1)^{2} \geq 0 \Rightarrow 9 y^{2}+18 y+9-16 y^{2}+32 y-16 \geq 0 \Rightarrow-7 y^{2}+50 y-7 \geq 0$
Roots of the corresponding equation are $\frac{1}{7}, 7$. Since coefficients of y^{2} is negative, for the above to be true y must lie between $\frac{1}{7}$ and 7 .
204. Let $y=\frac{x^{2}-2 x+p^{2}}{x^{2}+2 x+p^{2}} \Rightarrow(y-1) x^{2}+2(y+1) x+(y-1) p^{2}=0$.

Since x is real, discriminant of above equation has to be greater or equal to zero.

$$
\Rightarrow 4(y+1)^{2}-4 p^{2}(y-1)^{2} \geq 0 \Rightarrow\left(1-p^{2}\right) y^{2}+2\left(1+p^{2}\right) y+1-p^{2} \geq 0
$$

Since $p>1$ coefficient of y^{2} is negative and thus y must lie between its roots for the above to be true.
The roots are $y=\frac{-2\left(1+p^{2}\right) \pm \sqrt{4\left(1+p^{2}\right)^{2}-4\left(1-p^{2}\right)^{2}}}{2\left(1-p^{2}\right)}$
$y=\frac{p-1}{p+1}, \frac{p+1}{p-1}$.
205. Let $y=\frac{(x-1)(x+3)}{(x-2)(x+4)} \Rightarrow y=\frac{x^{2}+2 x-3}{x^{2}+2 x-8} \Rightarrow(y-1) x^{2}+2(y-1) x^{2}+3-8 y=0$.

Since x is real, discriminant must be greater than or equal to 0 .
$4(y-1)^{2}+4(y-1)(8 y-3) \geq 0 \Rightarrow y^{2}-2 y+1+8 y^{2}-11 y+3 \geq 0 \Rightarrow 9 y^{2}-13 y+4 \geq 0$.
For above to be true y must not lie between 1 and $\frac{4}{9}$.
206. Let $y=\frac{x+a}{x^{2}+b x+c^{2}} \Rightarrow y x^{2}+(b y-1) x-a+c^{2} y=0$.

Since x is real, discriminant must be greater than or equal to 0 .
$\Rightarrow(b y-1)^{2}-4 y\left(c^{2} y-a\right) \geq 0 \Rightarrow b^{2} y^{2}-2 b y+1+4 a y-4 c^{2} y^{2} \geq 0 \Rightarrow\left(b^{2}-4 c^{2}\right) y^{2}+$ $2(2 a-b) y+1 \geq 0$.

Discriminant of corresponding equation is $D=4(2 a-b)^{2}-4\left(b^{2}-4 c^{2}\right)=4\left[4 a^{2}+b^{2}-\right.$ $\left.4 a b-b^{2}+4 c^{2}\right]=16\left(a^{2}+c^{2}-a b\right)$.

Given $b^{2}>4 c^{2}$ and $a^{2}+c^{2}>a b$ therefore $D<0$ and coefficient of y^{2} is negative. Therefore, y is capable of assuming any value.
207. Let $y=\frac{x^{2}-b c}{2 x-b-c} \Rightarrow x^{2}-2 y x+(b+c) y-b c=0$

Since x is real, discriminant must be greater than or equal to 0 .
$\Rightarrow 4 y^{2}-4(b+c) y+4 b c \geq 0 \Rightarrow y^{2}-(b+c) y+b c \geq 0$.
For above to be true y must not lie between b and c.
208. Given $x^{2}-x y+y^{2}-4 x-4 y+16=0 \Rightarrow x^{2}-(y+4) x+y^{2}-4 y+16=0$

Since x is real, discriminant has to be greater than or equal to 0 .
$\Rightarrow(y+4)^{2}-4\left(y^{2}-4 y+16\right) \geq 0 \Rightarrow y^{2}+8 y+16-4 y^{2}+16 y-64 \geq 0$
$\Rightarrow-3 y^{2}+24 y-48 \geq 0 \Rightarrow y^{2}-8 y+16 \leq 0 \Rightarrow(y-4)^{2} \leq 0$
The above inequality is only satisfied by $y=4$. However, if $y=4$ the given equation becomes
$x^{2}-8 x+16=0$ which is again only satisfied by $x=4$.
209. Given $x^{2}+12 x y+4 y^{2}+4 x+8 y+20=0 \Rightarrow x^{2}+4(1+3 y) x+4\left(y^{2}+2 y+5\right)=0$

Since x is real, discriminant has to be greater than or equal to zero.
$\Rightarrow 16(1+3 y)^{2}-16\left(y^{2}+2 y+5\right) \geq 0 \Rightarrow 1+6 y+9 y^{2}-y^{2}-2 y-5 \geq 0$
$\Rightarrow 8 y^{2}+4 y-4 \geq 0 \Rightarrow 2 y^{2}+y-1 \geq 0 \Rightarrow(2 y-1)(y+1) \geq 0$

Therefore, y cannot lie between -1 and $\frac{1}{2}$. Rewriting the equation in terms of y
$4 y^{2}+4(3 x+2) y+x^{2}+4 x+20=0$.
Since x is real, discriminant has to be greater than or equal to zero.
$\Rightarrow(3 x+2)^{2}-x^{2}-4 x-20 \geq 0 \Rightarrow 8 x^{2}+8 x-16 \geq 0 \Rightarrow x^{2}+x-2 \geq 0$
Therefore, x cannot lie between -2 and 1 .
210. Let x be the length and y be the breadth then $x+2 y=600$ and we have to maximize $x y$.
$x y=x \frac{600-x}{2}=z($ say $) x^{2}-600 x+2 z=0$.
Since x is real, discriminant has to be greater than or equal to zero.
$\Rightarrow 360000-8 z \geq 0 \Rightarrow z \leq 45000$. Thus, maximum area is 45000 mt . sq.
Substituting, $x^{2}-600 x+90000=0 \Rightarrow(x-300)^{2}=0 \Rightarrow x=300 \Rightarrow y=150$.
211. If $y-m x$ is a factor then equation reduces to $b m^{2}+2 h m+a=0$ and if $m y+x$ is a factor then it reduces to $a m^{2}-2 h m+b=0$. By cross-multiplication we have
$\frac{m^{2}}{-2 h(a+b)}=\frac{m}{a^{2}-b^{2}}=\frac{1}{2 h(a+b)}$. Thus, condition becomes $a+b=0$ or $4 h^{2}+\left(a^{2}-b^{2}\right)=0$.
212. Roots of equation $P(x) Q(x)=0$ will be the roots of equation $P(x)=0$ i.e. $a x^{2}+b x+$ $c=0$ and $Q(x)=-a x^{2}+b x+c=0$

Let D_{1} and D_{2} be the discriminants of two equations, then $D_{1}+D_{2}=b^{2}-4 a c+b^{2}+$ $4 a c=2 b^{2}>0$.

Hence, $P(x) Q(x)=0$ has at least two real roots.
213. Let D_{1} be the discriminant of $b x^{2}+(b-c) x+b-c-a=0$ and D_{2} be discriminant of $a x^{2}+2 b x+b=0$, then
$D_{1}+D_{2}=(b-c)^{2}-4 b(b-c-a)+4 b^{2}-4 a b=(b+c)^{2} \geq 0$. Hence, if $D_{2}<0$, then $D_{1}>0$.

Therefore, roots of $b x^{2}+(b-c) x+b-c-a=0$ will be real if roots of $a x^{2}+2 b x+b=0$ are imaginary and vice versa.
214. Let $a=2 m+1, b=2 n+1, c=2 r+1$. Now $D=(2 n+1)^{2}-4(2 m+1)(2 r+1)$
$=($ an odd number $)-($ an even number $)=$ an odd number.
If possible, let D be a perfect square then it has to be square of an odd number.
$\Rightarrow(2 k+1)^{2}=(2 n+1)^{2}-4(2 m+1)(2 r+1) \Rightarrow(2 m+1)(2 r+1)=(n+k+1)(n-k)$.
If n and k are both odd or even then $n-k$ will be even or zero. However, if one is odd and one is even then $(n+k+1)$ will be even. So, R. H. S. is an even while L. H. S. is an odd number. Thus, D cannot be a perfect square. Hence, roots cannot be a rational numbers.
215. Let D_{1} be discriminant of $a x^{2}+2 b x+c=0$ then $D_{1}=4 b^{2}-4 a c=4 k$, where $k=b^{2}-a c$.

Let D_{2} is discriminant of $(a+c)\left(a x^{2}+2 b x+c\right)=2\left(a c-b^{2}\right)\left(x^{2}+1\right)$
$\Rightarrow D_{2}=4(a+c)^{2} b^{2}-4\left(a^{2}+b^{2}+k\right)\left(b^{2}+c^{2}+k\right)=-D 1\left[4 b^{2}+(a-c)^{2}\right] \Rightarrow D_{2}<$ $0 \because D_{1}>0$.

Therefore, roots of second equation are non-real complex numbers.
216. $D=4\left[\left({ }^{n} C_{r}\right)^{2}-{ }^{n} C_{r-1}{ }^{n} C_{r+1}\right]=4(a-b)$, where $a=\left({ }^{n} C_{r}\right)^{2}, b={ }^{n} C_{r-1}{ }^{n} C_{r+1}$ $\Rightarrow \frac{a}{b}=\left(1+\frac{1}{r}\right)\left(1+\frac{1}{n-r}\right)>1 \Rightarrow a>b \Rightarrow D>0$.

Thus, roots of given equation are real and distinct.
217. Let $y=e^{\sin x}$ then given equation becomes
$y-\frac{1}{y}-4=0 \Rightarrow y=2 \pm \sqrt{5} \therefore e^{\sin x}=2 \pm \sqrt{5}$ $\sin x=\log _{e}(2-\sqrt{5})$ is not defined.
$\sin x=\log _{e}(2+\sqrt{5})>1$ is not possible. Hence, roots of given equation cannot be real.
218. Given equation is $a z^{2}+b z+c+i=0 . z=\frac{-b \pm \sqrt{b^{2}-4 a(c+i)}}{2 a}=\frac{-b \pm(p+i q)}{2 a}$
where $\sqrt{b^{2}-4 a(c+i)}=p+i q$. Now $b^{2}-4 a c=p^{2}-q^{2}$ and $-4 a=2 q p$
Since z is purely imaginary $\frac{-b \pm p}{2 a}=0 \Rightarrow \pm p=b \Rightarrow-4 a=2(\pm) q \Rightarrow q= \pm \frac{2 a}{b}$
Then, $b^{2}-4 a c=b^{2}-\frac{4 a^{2}}{b^{2}} \Rightarrow c=\frac{a}{b^{2}} \Rightarrow a=b^{2} c$.
219. $D=a^{2}-4 b$. Let a be an odd number then D is an odd number and a perfect square as roots are rational. Let $D=(2 n+1)^{2}$, and $a=2 m+1$ where $m, n \in I$.

Now roots $=\frac{-(2 m+1) \pm(2 n+1)}{2}=\frac{\text { an even no. }}{2}=$ an integer.
Similarly, it can be proven when a is an even no. then roots are integers.
220 . Let α, β be integral roots of the given equation. $\alpha+\beta=-7$ and $\alpha \beta=14\left(q^{2}+1\right)$. $\frac{\alpha \beta}{7}=2\left(q^{2}+1\right)=$ an integer.
$\therefore \alpha \beta$ is divisible by 7 and 7 is a prime number.
\therefore at least one of α and β must be a multiple of 7 .
Let $\alpha=7 k$, where $k \in I \Rightarrow \beta=-7(k+1)$
Thus, $-\frac{2\left(q^{2}+1\right)}{7}=-7 k(k+1)=$ an integer
Let $f(q)=q^{2}+1$ then it can be shown that $f(1), f(2), \ldots, f(7)$ are not divisible by 7 . $f(q+7)=q^{2}+1+14 q+49$ which is not divisible by 7 as $q^{2}+1$ is not divisible by 7 .

Hence, α, β cannot be integers.
221. Given equation is $\left[a^{3}(b-c)+b^{3}(c-a)+c^{3}(a-b)\right] x^{2}-\left[a^{3}\left(b^{2}-c^{2}\right)+b^{3}\left(c^{2}-a^{2}\right)+\right.$ $\left.c^{3}\left(a^{2}-b^{2}\right)\right] x+a b c\left[a^{2}(b-c)+b^{2}(c-a)+c^{2}(a-b)\right]=0$

But $a^{3}(b-c)+b^{3}(c-a)+c^{3}(a-b)=-(a-b)(b-c)(c-a)(a+b+c)$ and $a^{3}\left(b^{2}-c^{2}\right)+$ $b^{3}\left(c^{2}-a^{2}\right)+c^{3}\left(a^{2}-b^{2}\right)=-(a-b)(b-c)(c-a)(a b+b c+c a)$ and $a^{2}(b-c)+b^{2}(c-a)+$ $c^{2}(a-b)=-(a-b)(b-c)(c-a)$ the above equation becomes
$(a+b+c) x^{2}-(a b+b c+c a) x+a b c=0$.
Roots are $\frac{\left(a b+b c+c a \pm \sqrt{(a b+b c+c a)^{2}-4 a b c(a+b+c)}\right)}{2(a+b+c)}$, which will be equal if $D=0$.
If $\frac{1}{\sqrt{a}} \pm \frac{1}{\sqrt{b}} \pm \frac{1}{c}=0 \Rightarrow \frac{\sqrt{b c} \pm \sqrt{c a} \pm \sqrt{a b}}{\sqrt{a b c}}=0$
$\Rightarrow \sqrt{b c} \pm \sqrt{c a} \pm \sqrt{a b}=0$. Squaring
$b c+c a+a b \pm 2 \sqrt{a b c}(\sqrt{a} \pm \sqrt{b} \pm \sqrt{c})=0 \Rightarrow(b c+c a+a b)^{2}=4 a b c(a+b+c+\sqrt{b c} \pm$ $\sqrt{c a} \pm \sqrt{a b}) \Rightarrow D=0$ i.e. roots are equal.
222. Product of roots $=\frac{k+2}{k}=\frac{c}{a} \Rightarrow k=\frac{2 a}{c-a}$

Sum of roots $=\frac{k+1}{k}+\frac{k+2}{k+1}=-\frac{b}{a}$. Substituting for k
$\frac{c+a}{2 a}+\frac{2 c}{c+a}=-\frac{b}{a} \Rightarrow \frac{(a+c)^{2}+4 a c}{2 a(a+c)}=-\frac{b}{a}$
$\Rightarrow a(a+c)^{2}+4 a^{2} c=-2 a b c-2 a^{2} b \Rightarrow(a+c)^{2}+4 a c=-2 b c-2 a b \Rightarrow(a+b+c)^{2}=$ $b^{2}-4 a c$.
223. Given, $f(x)=a x^{2}+b x+c$ and that α, β are the roots of the equation $p x^{2}+q x+r=0$.
$\Rightarrow \alpha+\beta=-\frac{q}{p}$ and $\alpha \beta=\frac{r}{p}$.
Now $f(\alpha) f(\beta)=\left(a \alpha^{2}+b \alpha+c\right)\left(a \beta^{2}+b \beta+c\right)$
$=a^{2} \alpha^{2} \beta^{2}+b^{2} \alpha \beta+c^{2}+a b \alpha \beta(\alpha+\beta)+a c\left(\alpha^{2}+\beta^{2}\right)+b c(\alpha+\beta)$
$=a^{2} \frac{r^{2}}{p^{2}}+b^{2} \frac{r}{p}+c^{2}-a b \frac{r}{p} \frac{q}{p}+a c\left(\frac{q^{2}}{p^{2}}-\frac{2 r}{p}\right)-b c \frac{q}{p}$
$=\frac{1}{p^{2}}\left[a^{2} r^{2}+b^{2} r p+c^{2} p^{2}-a b r q+a c q^{2}-2 a c r p-b c q p\right]=\frac{1}{p^{2}}\left[(c p-a r)^{2}+b^{2} r p-b c q p-\right.$ $\left.a b r q+a c q^{2}\right]$
$=\frac{1}{p^{2}}\left[(c p-a r)^{2}-(b p-a q)(c q-b r)\right]$
Now since α, β are the roots of the equation $p x^{2}+q x+r=0$
Therefore, if $a x^{2}+b x+c=0$ and $p x^{2}+q x+r=0$ have to have a common root then it has to be either α or β.
$f(\alpha)=0$ or $f(\beta)=0 \therefore f(\alpha) f(\beta)=0 \Rightarrow(c p-a r)^{2}-(b p-a q)(c q-b r)=0$
$\therefore b p-a q, c p-a r, c q-b r$ are in G. P.
224. From the given equations it follows that q and r are roots of the equation
$a(p+x)^{2}+2 b p x+c=0 \Rightarrow a x^{2}+2(a+b) p x+c=0$.
Product of roots $q r=\frac{a p^{2}+c}{a}=p^{2}+\frac{c}{a}$
225 . Since α, β are the roots of the equation $x^{2}-p x-(p+c)=0$
$\alpha+\beta=p$ and $\alpha+\beta=-(p+c)$. Now $(\alpha+1)(\beta+1)=-p-c+p+1=1-c$.
$\Rightarrow \frac{\alpha^{2}+2 \alpha+1}{\alpha^{2}+2 \alpha+c}+\frac{\beta^{2}+2 \beta+1}{\beta^{2}+2 \beta+c}=\frac{(\alpha+1)^{2}}{(\alpha+1)^{2}-(1-c)}+\frac{(\beta+1)^{2}}{(\beta+1)^{2}-(1-c)}$
$=\frac{(\alpha+1)^{2}}{(\alpha+1)^{2}-(\alpha+1)(\beta+1)}+\frac{(\beta+1)^{2}}{(\beta+1)^{2}-(\alpha+1)(\beta+1)}=\frac{(\alpha+1)^{2}}{(\alpha+1)(\alpha-\beta)}+\frac{(\beta+1)^{2}}{(\beta+1)(\beta-\alpha)}=1$. Hence, proved.
226. α, β are the roots of the equation $x^{2}+p x+q=0 . \therefore \alpha+\beta=-p$ and $\alpha \beta=q$

Since α, β are the roots of the equation $x^{2} 2 n+p^{n} x^{n}+q^{n}=0$.
Substituting it follows that α^{n}, β^{n} are the roots of the equation $y^{2}+p^{n} y+q^{n}=0$
$\therefore \alpha^{n}+\beta^{n}=(-p)^{n}$ and $\alpha^{n} \beta^{n}=q^{n} \Rightarrow(\alpha+\beta)^{n}=(-p)^{n}=p^{n}[\because \mathrm{n}$ is even $]$.
Thus, $\alpha^{n}+\beta^{n}+(\alpha+\beta)^{n}=0$
Dividing by β^{n} we have $\left(\frac{\alpha}{\beta}\right)^{n}+1+\left(\frac{\alpha}{\beta}+1\right)^{n}=0$
Dividing by α^{n} we have $\left(\frac{\beta}{\alpha}\right)^{n}+1+\left(\frac{\beta}{\alpha}+1\right)^{n}=0$
From last two equations it is evident that $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ are roots of the equation $x^{n}+1+$ $(x+1)^{n}=0$.
227. Let α and β are the roots of the given equation.

Since roots are real and distinct $D>0 \Rightarrow a^{2}-4 b>0 \Rightarrow b<\frac{a^{2}}{4}$
Again it is given that $|\alpha-\beta|<c \Rightarrow(\alpha-\beta)^{2}<c^{2}$ $(\alpha+\beta)^{2}-4 \alpha \beta<c^{2} \Rightarrow a^{2}-4 b<c^{2} \Rightarrow 4 b>a^{2}-c^{2} \Rightarrow \frac{a^{2}-c^{2}}{4}<b<\frac{a^{2}}{4}$.
228. Given, $a x^{2}+b x+c-p=0$ for two integral values of x say α and β.

Then, $\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c-p}{a}$
If possible, let $a x^{2}+b x+c-2 p=0$ for some integer k.
$a k^{2}+b k+c-p=p \Rightarrow k^{2}-(\alpha+\beta) k+\alpha \beta=\frac{p}{a} \Rightarrow(k-\alpha)(k-\beta)=$ an integer $=\frac{p}{a}$
But since p is prime this cannot hold true unless $a=p$ or $a=1$
$a=p[\because a>1] \Rightarrow(k-\alpha)(k-\beta)=1$ which implies that $k-\alpha=k-\beta=1$, which is not possible since $\alpha \neq \beta$

Thus, we have a contradiction. Hence, $a x^{2}+b x+c \neq 2 p$ for any integral value of x.
229. $\alpha+\beta=-p, \alpha \beta=q, \alpha^{4}+\beta^{4}=r, \alpha^{4} \beta^{4}=s$

Let D be the discriminant of $x^{2}-4 q x+2 q^{2}-r=0$ then
$D=16 q^{2}-4\left(2 q^{2}-r\right)=8 q^{2}+4 r=8 \alpha^{2} \beta^{2}+4\left(\alpha^{4}+\beta^{4}\right)=4\left(\alpha^{2}+\beta^{2}\right)^{2}$
$D \geq 0$ hence roots of the third equation are always real.
230. $\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a} \Rightarrow \alpha_{1}-\beta=-\frac{b_{1}}{a_{1}}$ and $-\alpha_{1} \beta=\frac{c_{1}}{a_{1}}$
$\Rightarrow \alpha+\alpha_{1}=-\left(\frac{b}{a}+\frac{b_{1}}{a_{1}}\right)$.
Also, dividing $\alpha+\beta$ by $\alpha \beta, \frac{1}{\beta}+\frac{1}{\alpha}=-\frac{b}{c}$
Similarly, dividing $\alpha_{1}-\beta$ by $-\alpha_{1} \beta, \frac{1}{\alpha_{1}}-\frac{1}{\beta}=-\frac{b_{1}}{c_{1}}$
Thus, $\frac{1}{\alpha}+\frac{1}{\alpha_{1}}=-\left(\frac{b}{c}+\frac{b_{1}}{c_{1}}\right)$
Equation whose roots are α and α_{1} is
$x^{2}-\left(\alpha+\alpha_{1}\right) x+\alpha \alpha_{1}=0 \Rightarrow \frac{x^{2}}{-\left(\alpha+\alpha_{1}\right)}+x-\frac{\alpha \alpha_{1}}{\alpha+\alpha_{1}}=0$
$\frac{x^{2}}{\frac{b}{a}+\frac{b_{1}}{a_{1}}}+x+\frac{1}{\frac{b}{c}+\frac{b_{1}}{c_{1}}}=0$.
231. Let α and β be roots of such quadratic equation given by $x^{2}+p x+q=0$
$\Rightarrow \alpha+\beta=-p$ and $\alpha \beta=q$. Now quadratic equation whose roots are α^{2} and β^{2} is $x^{2}-\left(\alpha^{2}+\beta^{2}\right) x+\alpha^{2} \beta^{2}=0 \Rightarrow x^{2}-\left(p^{2}-2 q\right) x+q^{2}=0$.

But the equation remains unchanged, therefore,
$\frac{1}{1}=\frac{p}{p^{2}-2 q}=\frac{q}{q^{2}} \Rightarrow q=q^{2} \Rightarrow q(q-1)=0 \Rightarrow q=0,1$
If $q=0 \Rightarrow p=0,-1$ and if $q=1 \Rightarrow p=-2,1$. Thus, four such quadratic equations are possible.
232. Given $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in A. P. and a, b, c are in G. P.

Equations $a x^{2}+2 b x+c=0$ and $d x^{2}+2 e x+f=0$ will have a common root if
$\frac{2(b f-e c)}{c d-a f}=\frac{c d-a f}{2(a e-b d)} \Rightarrow 4(b f-e c)(a e-b d)=(c d-a f)^{2}$
$4\left[\left(\frac{f}{c}-\frac{e}{b}\right) b c\right]\left[\left(\frac{e}{b}-\frac{d}{a}\right) a b\right]=\left(\frac{d}{a}-\frac{a}{f}\right)^{2} a^{2} c^{2}$
$4 k . k . b^{2}=4 k^{2} a c$ where k is the c.d. of the A. P. i.e. $b^{2}=a c$ which is true because a, b, c are in G. P.
233. Let α be the common root and β_{1} another root of $x^{2}+a x+12=0, \beta_{2}$ be another root of $x^{2}+b x+15=0$ and β_{3} be a root of $x^{2}+(a+b) x+36=0$.
$\Rightarrow \alpha+\beta_{1}=-a$ and $\alpha \beta_{1}=12, \alpha+\beta_{2}=-b$ and $\alpha \beta_{2}=15$, and $\alpha+\beta_{3}=-(a+b)$ and $\alpha \beta_{3}=36$.

Thus, $2 \alpha+\beta_{1}+\beta_{2}=\alpha+\beta_{3} \Rightarrow \alpha=\beta_{3}-\beta_{1}-\beta_{2}$ and $\alpha\left(\beta_{3}-\beta_{1}-\beta_{2}\right)=36-12-15=9$ $\Rightarrow \alpha^{2}=9 \Rightarrow \alpha= \pm 3$ but $\alpha>0 \Rightarrow \alpha=3 \Rightarrow \beta_{1}=4, \beta_{2}=5, \beta_{3}=12$.
234. Given $m\left(a x^{2}+2 b x+c\right)+p x^{2}+1 q x+r=n(x+k)^{2}$. Equating coefficients for powers of x, we get $m a+p=n, m b+q=n k, m c+r=n k^{2} \Rightarrow m(a k-b)+p k-q=0 \Rightarrow m=-\frac{p k-q}{a k-b}$ $\Rightarrow m(b k-c)+q k-r=0 \Rightarrow m=-\frac{q k-r}{b k-c}$.

Equating values for $m,(a k-b)(q k-r)=(p k-q)(b k-c)$.
235. Given equation is $x^{3}-x^{2}+\beta x+\gamma=0$. Let it roots x_{1}, x_{2}, x_{3} be $a-d, a, a+d$ respectively.
$\Rightarrow a-d+a+a+d=1 \Rightarrow a=\frac{1}{3} \Rightarrow(a-d) a+a(a+d)+(a-d)(a+d)=\beta \Rightarrow$ $3 a^{2}-d^{2}=\beta \Rightarrow 1-3 \beta=3 d^{2}$
$(a-d) a(a+d)=\gamma \Rightarrow a\left(a^{2}-d^{2}\right)=\gamma \Rightarrow 1+27 \gamma=9 d^{2}$
Since d is real $\therefore 1-3 \beta \geq 0 \Rightarrow \beta \leq \frac{1}{3}$ and $1+27 \gamma \geq 0 \Rightarrow \gamma \geq-\frac{1}{27}$.
236 . Let α be a common root, then
$\alpha^{3}+3 p \alpha^{2}+3 q \alpha+r=0 \quad \ldots \quad$ (1) and $\alpha^{2}+2 p \alpha+q=0 \quad \ldots$
$(1)-\alpha(2)$ gives us $\Rightarrow p \alpha^{2}+2 q \alpha+r=0 \quad \ldots \quad$ (3)
By cross multiplication between (2) and (3)
$\frac{\alpha^{2}}{2\left(p r-q^{2}\right)}=\frac{\alpha}{p q-r}=\frac{1}{2\left(q-p^{2}\right)}$
Equating for values of α we get the desired condition.
237 . Let α be a common root, then
$\alpha^{3}+2 a \alpha^{2}+3 b \alpha+c=0 \quad \ldots \quad(1)$ and $\alpha^{3}+a \alpha^{2}+2 b \alpha=0 \quad \ldots$
Since $c \neq 0$, therefore $\alpha=0$ cannot be a common root. Therefore, from (2)
$\alpha^{2}+a \alpha+2 b=0$.
$(1)-\alpha(2) \Rightarrow a \alpha^{2}+b \alpha+c=0 \quad \ldots \quad \mathrm{x}(4)$
Solving (3) and (4) by cross-multiplication yields the desired result.
238. Given equation is $x^{3}+a x+b=0$ and α, β, γ be its real roots. Then we have
$\alpha+\beta+\gamma=0 \quad \ldots \quad$ (1) $\alpha \beta+\beta \gamma+\alpha \gamma=a \quad \ldots \quad$ (2) $\alpha \beta \gamma=-b$
Let $y=(\alpha-\beta)^{2}$, then $y=(\alpha+\beta)^{2}-4 \alpha \beta \Rightarrow y=\gamma^{2}+\frac{4 b}{\gamma} \Rightarrow \gamma^{3}-y \gamma+4 b=0$.
Also, γ is a root of the original equation.
$\gamma^{3}+a \gamma+b=0 \Rightarrow(a+y) \gamma-3 b=0 \Rightarrow \gamma=\frac{3 b}{a+y}$
$\Rightarrow \frac{27 b^{3}}{(a+y)^{3}}+a\left(\frac{3 b}{a+y}\right)+b=0 \Rightarrow y^{3}+6 a y^{2}+9 a^{2} y+4 a^{3}+27 b^{2}=0$
We would have got same equation if we would have chosen $y=(\beta-\alpha)^{2}$ or $y=(\gamma-\alpha)^{2}$.
Hence, product of roots $-\left(4 a^{3}+27 b^{2}\right)=(\alpha-\beta)^{2}(\beta-\gamma)^{2}(\gamma-\alpha)^{2} \geq 0 \therefore 4 a^{3}+27 b^{2} \leq 0$.
239. α is a root of the equation $a x^{2}+b x+c=0 \therefore a \alpha^{2}+b \alpha+c=0$

Similarly, $-a \beta^{2}+b \beta+c=0$. Let $f(x)=\frac{a}{2} x^{2}+b x+c=0 \Rightarrow f(\alpha)=-\frac{a}{2} \alpha^{2}$,
and $f(\beta)=\frac{3}{2} \beta^{2} \therefore f(\alpha) f(\beta)=-\frac{3}{4} a^{2} \alpha^{2} \beta^{2}<0[\because \alpha, \beta \neq 0]$
$\therefore f(\alpha)$ and $f(\beta)$ have opposite signs. Therefore, $f(x)$ will have exactly one root between α and β.
240. Let $f(x)=a x^{2}+b x+c=0$. Since equation $a x^{2}+b x+c=0$ i.e. equation $f(x)=0$ has no real root, therefore, $f(x)$ will have same sign for real values of x.
$\therefore f(1) f(0)>0 \Rightarrow(a+b+c) c>0$.
241. Let $f(x)=(x-a)(x-c)+\lambda(x-b)(x-d)$. Given $a>b>c>d$, now $f(b)=$ $(b-a)(b-c)<0$, and $f(d)=(d-a)(d-c)>0$

Since $f(b)$ and $f(d)$ have opposite signs, therefore equation $f(x)=0$ will have one real root between b and d.

Since one root is real and a, b, c, d, λ are all real the other root will also be real.
242. Let $f^{\prime}(x)=a x^{2}+b x+c$, then $f(x)=a \frac{x^{3}}{3}+b \frac{x^{2}}{2}+c x+k=\frac{2 a x^{3}+3 b x^{2}+4 c x+6 k}{6}$,
$\Rightarrow f(1)=\frac{2 a+3 b+6 c+6 k}{6}=k$. Again, $f(0)=k$
Thus, $f(0)=f(1)$ hence equation will have at least one root between 0 and 1 which implies that it will have a real root between 0 and 2 .
243. Let $f(x)=\int\left(1+\cos ^{8} x\right)\left(a x^{2}+b x+c\right) d x$ then $f^{\prime}(x)=\left(1+\cos ^{8} x\right)\left(a x^{2}+b x+c\right)$.

Given, $\int_{0}^{1}\left(1+\cos ^{8} x\right)\left(a x^{2}+b x+c\right) d x=\int_{0}^{2}\left(1+\cos ^{8} x\right)\left(a x^{2}+b x+c\right) d x$. $\Rightarrow f(1)-f(0)=f(2)-f(0) \Rightarrow f(1)=f(2)$.

Therefore, equation $f(x)=0$ has at least one root between 1 and 2 which implies that $a x^{2}+b x+c$ has a root between these two limits as $1+\cos ^{8} x \neq 0$.
244. Given equation $f(x)-x=0$ has non-real roots where $f(x)=a x^{2}+b x+c$ is a continuous function.
$\therefore f(x)-x$ has same sign for all $x \in R$. Let $f(x)-x>0 \forall x \in R$
$\Rightarrow f(f(x))-f(x)>0 \forall x \in R \Rightarrow f(f(x))-x=f(f(x))-f(x)+f(x)-x>0 \forall x \in R$
Hence it has no real roots.
245. Let $f(x)=a x^{2}-b x+c=0$ and that α, β be its roots. Then, $f(x)=a(x-\alpha)(x-\beta)$.

Given $\alpha \neq \beta, 0<\alpha<1,0<\beta<1$ and $a, b, c \in N$
Since quadratic equation has both roots between 0 and 1 , therefore
$f(0) f(1)>0$ but $f(0) f(1)=c(a-b+c)=$ an integer
Thus, $f(0) f(1) \geq 1 \Rightarrow a \alpha(1-\alpha) a \beta(1-\beta)=a^{2} \alpha \beta(1-\alpha)(1-\beta)$.
Let $y=\alpha(1-\alpha) \Rightarrow \alpha^{2}-\alpha+y=0$.
Since α is real : $1-4 y \geq 0 \Rightarrow y \leq \frac{1}{4} \Rightarrow \alpha=\frac{1}{2}$ max value.
Similarly, maximum value of $\beta=\frac{1}{2}$.
Maximum value of $: f(0) f(1)<\frac{a^{2}}{16}>1 \Rightarrow a>4 \Rightarrow a=5$ [least integral value]
Since $a x^{2}-b x+c=0$ has real and distinct roots $\Rightarrow b^{2}>4 a c[\because a \geq 4, c \geq 1]$ $\Rightarrow b^{2} \geq 20 \Rightarrow b \geq 5$.
246. Proceeding from previous question, $b^{2}-4 a c>0 \Rightarrow b^{2}>4.5 .1[\because c \geq 1] \Rightarrow b=5 \Rightarrow$ $\log _{5}(a b c) \geq 2$.
247. Given equation is $a x^{2}+b x+6=0$. Let $f(x)=a x^{2}+b x+6$

Since the equation has imaginary roots or real and equal roots, $f(0)=6>0 \therefore f(x) \geq 0$ for all real x
$\Rightarrow f(3) \geq 0 \Rightarrow 9 a+3 b+6 \geq 0 \Rightarrow 3 a+b \geq-2$ and hence least value is -2.
248 . Let α, β, γ be the roots of the equation. Then,
$f(x)=2 x^{3}-\frac{\alpha+\beta+\gamma}{2} x^{2}+\frac{\alpha \beta+\beta \gamma+\gamma \alpha}{2} x-\frac{\alpha \beta \gamma}{2}=0$
Clearly, all roots have to be negative for signs to be satisfied as $a, b>0$.
$f(0)=4>0 \therefore f(1)>0$ because sign of $f(x)$ will not change for all x.
$2+a+b+4>0 \Rightarrow a+b>-6$.
249. $f(x)=x^{3}+2 x^{2}+x+5=0$ and $f^{\prime}(x)=3 x^{2}+4 x+1$ which has roots -1 and $-\frac{1}{3}$.
$f(0)=5$ and $f(x)$ is increasing in $(0, \infty)$ therefore it will have no root in $[0, \infty[$.
$f(-2)=3>0$ and $f(-3)=-7<0$.
Since $f(-2)$ and $f(-3)$ are of opposite sign therefore equation $f(x)=0$ will have one root between -2 and -3 and this will be only one root as $f(x)$ is increasing in $]-\infty,-1] \Rightarrow[\alpha]=-3$.
250. Given equation is $\left(x^{2}+2\right)^{2}+8 x^{2}=6 x\left(x^{2}+2\right)$. Let $y=x^{2}+2$ then above equation becomes $y^{2}+8 x^{2}=6 x y \Rightarrow y=4 x, 2 x$.

If $y=4 x \Rightarrow x^{2}-4 x+2=0 \Rightarrow x=2 \pm \sqrt{2}$.
If $y=2 x \Rightarrow x^{2}-2 x+2=0 \Rightarrow x=1 \pm i$.
251. Given equation is $3 x^{3}=\left(x^{2}+\sqrt{18} x+\sqrt{32}\right)\left(x^{2}-\sqrt{18} x-\sqrt{32}\right)-4 x^{2} \Rightarrow 3 x^{3}=x^{4}-$ $(\sqrt{18} x+\sqrt{32})^{2}-4 x^{2}$ $\Rightarrow x^{2}(3 x+4)=x^{4}-2(3 x+4)^{2} \Rightarrow x^{2} y=x^{4}-2 y^{2}$ where $y=3 x+4 \Rightarrow y=-x^{2}, \frac{x^{2}}{2}$. If $y=-x^{2} \Rightarrow x=\frac{-3 \pm \sqrt{7} i}{2}$ and if $y=\frac{x^{2}}{2} \Rightarrow x=3 \pm \sqrt{17}$.
252. Clearly, $(15+4 \sqrt{14})^{t}(15-4 \sqrt{14})^{t}=(225-224)^{t}=1$. Let $(15+4 \sqrt{14})^{t}=y$, then $(15-4 \sqrt{14})^{t}=\frac{1}{y}$.

Substituting for the given equation
$y+\frac{1}{y}=30 \Rightarrow y^{2}-30 y+1=0 \Rightarrow y=15 \pm 4 \sqrt{14}$
If $y=15+4 \sqrt{14} \Rightarrow t=1$, then $x^{2}-2|x|=1 \Rightarrow|x|^{2}-2|x|-1=0$
$\Rightarrow|x|=1+\sqrt{2} \therefore x= \pm(1+\sqrt{2})$
If $y=15-4 \sqrt{14} \Rightarrow t=-1 \Rightarrow|x|^{2}-2|x|+1=0 \Rightarrow|x|=1 \Rightarrow x= \pm 1$.
253. Given equation is $x^{2}-2 a|x-a|-3 a^{2}=0$. When $a=0$ equation becomes $x^{2}=0 \Rightarrow x=0$

Let $a<0$.
Case I: When $x<a$ then equation becomes
$x^{2}+2 a(x-a)-3 a^{2}=0 \Rightarrow x^{2}+2 a x-5 a^{2}=0 \Rightarrow x=-a \pm \sqrt{6} a$
Since $x<a, x=-a-\sqrt{6} a$ is not acceptable.
Case II: When $x>a$ the equation becomes

$$
x^{2}-2 a x-a^{2}=0 \Rightarrow x=a \pm \sqrt{2} a
$$

Since $x>a, x=a+\sqrt{2} a$ is not acceptable.
Clearly, $x=a$ does not satisfy the equation.
254. $x^{2}-x-6=0 \Rightarrow x=-2,3$

Case I: When $x<-2$ or $x>3$ then $x^{2}-x-6>0$
Then equation becomes $x^{2}-x-6=x+2 \Rightarrow x^{2}-2 x-8=0$
$x=-2,4$ but $x=-2$ is not acceptable as $x<-2$
Case II: When $-2<x<3 x^{2}-x-6<0$
Then equation becomes $-\left(x^{2}-x-6\right)=x+2 \Rightarrow x^{2}-4=0 \Rightarrow x=2$ because $x=-2$ is not acceptable.

Case III: Clearly $x=-2$ satisfies the equation by $x=3$ does not.
255. $|x+2|=0 \Rightarrow x=-2$ and $\left|2^{x+1}-1\right|=0 \Rightarrow 2^{x+1}=1 \Rightarrow x=-1$

Case I: When $x<-2$ then $x+2<0$ and $2^{x+1}-1<0$

Equation becomes $2^{-(x+2)}-\left[-\left(2^{x+1}-1\right)\right]=2^{x+1}+1$
$\Rightarrow x=3$
Case II: When $-2<x<1$ then $x+2>0$ and $2^{x+1}-1<0$
Equation becomes $2^{x+2}-\left[-\left(2^{x+1}-1\right)\right]=2^{x+1}+1$
$\Rightarrow x=1$
Case III: When $x>-1$ then $x+2>0$ and $2^{x+1}-1>0$
Equation becomes $2^{x+2}-\left(2^{x+1}-1\right)=2^{x+1}+1$
$\Rightarrow x+2=x+2$
which is true for all x but only values for $x>-1$ are acceptable.
Case IV: Clearly, $x=-2$ does not satisfy the equation but $x=-1$ satisfies it.
256. Given equation is $3^{x}+4^{x}+5^{x}=6^{x}$. Then,
$\left(\frac{3}{6}\right)^{x}+\left(\frac{4}{6}\right)^{x}+\left(\frac{5}{6}\right)^{x}=1$
Clearly, $x=3$ satisfies the equation.
When $x>3,\left(\frac{3}{6}\right)^{x}+\left(\frac{4}{6}\right)^{x}+\left(\frac{5}{6}\right)^{x}<1$
When $x<3,\left(\frac{3}{6}\right)^{x}+\left(\frac{4}{6}\right)^{x}+\left(\frac{5}{6}\right)^{x}>1$
Therefore, $x=3$ is the only solution.
257. Proceeding as previous problem $x=2$ is the only solution.
258. $x=[x]+\{x\}$, given equation is $4\{x\}=x+[x] \Rightarrow\{x\}=\frac{2}{3}[x]$
$\because 0<\{x\}<1 \therefore 0<\frac{2}{3}[x]<1 \Rightarrow 0<[x]<\frac{3}{2} \Rightarrow[x]=1$
$\therefore\{x\}=\frac{2}{3} \Rightarrow x=\frac{5}{3}$.
259. Given, $[x]^{2}=x(x-[x]) \Rightarrow[x]^{2}=([x]+\{x\})\{x\}[\because x=[x]+\{x\}]$
$y^{2}=(y+z) z$, where $y=[x]$ and $z=\{x\} \Rightarrow z^{2}+y z-y^{2}=0 \Rightarrow z=\frac{-y \pm \sqrt{5} y}{2}$
Since $0<z<1$ it implies that
if $z=-\frac{\sqrt{5}+1}{2} y$, then
$0>y>-\frac{2}{\sqrt{5}+1} \Rightarrow-\frac{\sqrt{5}-1}{2}<y<0$ is not possible as y is an integer.
If $z=\frac{\sqrt{5}-1}{2} y$ then $0<y<\frac{2}{\sqrt{5}-1} \Rightarrow y=1 \Rightarrow z=\frac{\sqrt{5}-1}{2}$ and $x=y+z=\frac{\sqrt{5}+1}{2}$.
260. Let $y=m x$ the equations become $x^{3}\left(1-m^{3}\right)=127$ and $x^{3}\left(m-m^{2}\right)=42$.

Dividing we get $\frac{1-m^{3}}{m-m^{2}}=\frac{127}{42} \Rightarrow \frac{1+m+m^{2}}{m}=\frac{127}{42}[\because m=1]$ does not satisfy the equations. $\Rightarrow m=\frac{7}{6}, \frac{6}{7}$. Substituting we get $x=-6, y=-7$ and $x=7, y=6$.
261. Solving first two equations by cross-multiplication $\frac{x}{7}=\frac{y}{7}=\frac{z}{7}$ or $x=y=z=k$.

Substituting in third equation $k= \pm \sqrt{7}$.
262. Let $x=u+v$ and $y=u-v$ then first equation becomes $(u+v)^{4}+(u-v)^{4}=82$ $\Rightarrow u^{4}+6 u^{2} v^{2}+v^{4}=41$

Second equation becomes $2 u=4 \Rightarrow u=2$. Substituting in this equation $v= \pm 5 i, \pm 1$ $\therefore x=2 \pm 5 i, 3,1$ and $y=2 \mp 5 i, 1,3$.
263. Let $y=2^{x}>0$ then give equation becomes $\sqrt{a(y-2)+1}=1-y \Rightarrow y^{2}-(a+2) y+2 a=$ 0 .
$y=2, a$ but $y=2$ does not satisfy the equation. When $y=a$ then $\sqrt{a(a-2)+1}=$ $1-a \Rightarrow a \leq 1$
$\therefore 0<a \leq 1[\because y>0] \Rightarrow y=a \Rightarrow x=\log _{2} a$, where $0<a \leq 1$
When $a>1$, given equation has no solution.
264. Given $(x-5)(x+m)=-2$. Since x and m are both integers, therefore, $x-5$ and $x+m$ are also integers.

So we have following combination of solutions:
$x-5=1$ and $x+m=2$ then $x=6, m=-8$
$x-5=2$ and $x+m=-1$ then $x=7, m=-8$
$x-5=-1$ and $x+m=2$ then $x=4, m=-2$
$x-5=-2$ and $x+m=1$ then $x=3, m=-2$
Thus, $m=-8,-2$.
265. Multiplying the equations we get $(x y)^{x+y}=(x y)^{2 n} \therefore x+y=2 n$ where $x y \neq 1$.
$\Rightarrow x^{2}=y$ then $x+x^{2}=2 n \Rightarrow x=\frac{-1 \pm \sqrt{1+8 n}}{2}$
But $x>0 \therefore x=\frac{-1+\sqrt{1+8 n}}{2} \Rightarrow y=x^{2}=\frac{1+4 n-\sqrt{1+8 n}}{2}$.
266. Let $y=12^{|x|}$, then given equation becomes $y^{2}-2 y+a=0 \Rightarrow y=1 \pm \sqrt{1-a}$ $|x|=\log _{12}(1+\sqrt{1-a})$ as $y=1-\sqrt{1-a}$ has to be rejected as $y>1$.

But $\sqrt{1-a}$ has to be real $1-a \geq 0 \Rightarrow a \leq 1$

For $\log _{12}(1+\sqrt{1-a})$ to be defined $1+\sqrt{1-a}>0 \therefore x= \pm \log _{12}(1+\sqrt{1-a})$.
267. Let $m=2 p+1$ and $n=2 q+1$ the $D=4(2 p+1)^{2}-8(2 q+1)=$ an even no.

Let D be a perfect square then it has to be perfect square of an even no. Let that no. be $2 r$ then
$4 r^{2}=4(2 p+1)^{2}-8(2 q+1) \Rightarrow 2(2 q+1)=(2 p+1-r)(2 p+1+r)$.
Clearly, if r is an even no. then L. H. S. is an even and R. H. S. is even no which is not possible.

Let r is an odd no. then R. H. S. is product of 2 even numbers. Let $2 p+1-r=2 k$ and $2 p+1+r=2 l$
$2(2 q+1)=4 k l$ which is an odd no. $2 q+1$ having equality to even no. $2 k l$ which is again not possible. Thus, under the given conditions equation cannot have rational roots.
268. Equation representing points of local extrema is $f^{\prime}(x)=3 a x^{2}+2 b x+c=0$.

Let one of these points is α and then second would be $-\alpha$.
Sum of these roots $=\alpha-\alpha=-\frac{2 b}{3 a} \Rightarrow b=0$.
Product of roots $=-\alpha^{2}=\frac{c}{3 a}$ but since roots are opposite in equation it implies that a and c have opposite signs.
$\therefore b^{2}-4 a c=-4 a c>0$ therefore roots of $a x^{2}+b x+c$ will have real and distinct roots.
269. Given equation is $\frac{(x-a)(a x-1)}{x^{2}-1}=b$.
$a x^{2}-\left(1+a^{2}\right) x+a=b x^{2}-b \Rightarrow(a-b) x^{2}-\left(1+a^{2}\right) x+a+b=0$.
Discriminant $D^{2}=\left(1+a^{2}\right)^{2}-a^{2}+b^{2}=1+a^{2}+a^{4}+b^{2}>0[\because b \neq 0]$
Therefore, roots can never be equal.
270. Given equation is ${ }^{n} C_{r} x^{2}+2^{n} C_{r+1} x+{ }^{n} C_{r+2}=0$. Let D be discriminant, then we have to prove that
$D=4 \operatorname{left}\left({ }^{n} C_{r+1}\right)-4\left({ }^{n} C_{r} \cdot{ }^{n} C_{r+2}\right)>0$
$\Rightarrow\left[\frac{n!}{(r+1)!(n-r-r)!}\right]^{2}-\frac{n!}{r!(n-r)!} \cdot \frac{n!}{(r+2)!(n-r-2)!}=\frac{n!^{2}}{r!(r+1)!(n-r-1)!(n-r-2)!}\left[\frac{1}{(r+1)(n-r-1)}-\right.$ $\left.\frac{1}{(n-r)(r+2)}\right]>0$
$\Rightarrow n r+2 n-r^{2}-2 r-\left[n r+n-r^{2}-r-r-1\right]>0 \Rightarrow n-1>0$.
From given conditions minimum value of n is 4 , hence above condition is true proving that roots are real.
271. $D=c^{2}\left(3 a^{2}+b^{2}\right)^{2}+4 a b c^{2}\left(6 a^{2}+a b-2 b^{2}\right)=c^{2}\left(9 a^{4}+b^{4}+6 a^{2} b^{2}+4 a^{3} b+4 a^{2} b^{2}-8 a b^{3}\right)$ $=c^{2}\left(3 a^{2}-b^{2}+4 a b\right)^{2}$, which is a perfect square and hence roots are rational.
272. $\sqrt{\frac{m}{n}}+\sqrt{\frac{n}{m}}+\frac{b}{\sqrt{a c}}=0$
L.H.S. $=\sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}+\frac{b}{\sqrt{a c}}$
$=\frac{\alpha+\beta}{\sqrt{\alpha \beta}}+\frac{b}{\sqrt{a c}}=\frac{-\frac{b}{a}}{\sqrt{\frac{c}{a}}}+\frac{b}{\sqrt{a c}}=0$.
273 . Let α be the root, then the second root would be α^{3}.
Product of roots $=\alpha^{4}=a \Rightarrow \alpha=a^{\frac{1}{4}}$.
Sum of roots $=\alpha+\alpha^{3}=-f(a) \Rightarrow f(a)=-a^{\frac{1}{4}}-a^{\frac{3}{4}}$.
Therefore, the general equation in x would be $f(x)=-x^{\frac{1}{4}}-x^{\frac{3}{4}}$.
274 . Since α, β are roots of the equation $x^{2}-p x+q=0$ therefore
$\alpha+\beta=p$ and $\alpha \beta=q$
$\left(\alpha^{2}-\beta^{2}\right)\left(\alpha^{3}-\beta^{3}\right)=(\alpha-\beta)^{2}(\alpha+\beta)\left[\left(\alpha^{2}+\beta^{2}\right)+\alpha \beta\right]=\left(p^{2}-4 q\right) p\left(p^{2}+q\right)$, and $\alpha^{3} \beta^{2}+\alpha^{2} \beta^{3}=\alpha^{2} \beta^{2}(\alpha+\beta)=p q^{2}$

Therefore, the equation would be

$$
x^{2}-p\left[\left(p^{2}-4 q\right)\left(p^{2}+q\right)+q^{2}\right] x+p^{2} q^{2}\left(p^{2}-4 q\right)\left(p^{2}+q\right)=0
$$

275. $\alpha+\beta=b$ and $\alpha \beta=c$. Then proceeding like previous problem,
$\left(\alpha^{2}+\beta^{2}\right)\left(\alpha^{3}+\right.$ beta $\left.^{3}\right)=\left[(\alpha+\beta)^{2}-2 \alpha \beta\right]\left[(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)\right]=\left(b^{2}-2 c\right)\left(b^{3}-3 b c\right)$, and
$\alpha^{5} \beta^{3}+\alpha^{3} \beta^{5}-2 \alpha^{4} \beta^{4}=\alpha^{3} \beta^{3}\left(\alpha^{2}+\beta^{2}-2 \alpha \beta\right)=c^{3}\left(b^{2}-4 c\right)$.
Therefore, the equation would be $x^{2}-\left[\left(b^{2}-2 c\right)\left(b^{3}-3 b c\right)+c^{3}\left(b^{2}-4 c\right)\right] x+\left(b^{2}-2 c\right)\left(b^{3}-3 b c\right) c^{3}\left(b^{2}-4 c\right)=0$.

276 . Let α, β be the roots then $\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$.
According to the question $\alpha+\beta=\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$

$$
\begin{aligned}
& \Rightarrow-\frac{b}{a}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha^{2} \beta^{2}} \Rightarrow-\frac{b}{a}=\frac{\frac{b^{2}}{a^{2}}}{\frac{c^{2}}{a^{2}}}-2 \frac{1}{\frac{c}{a}} \\
& \Rightarrow-\frac{b}{a}=\frac{b^{2}}{c^{2}}-2 \frac{a}{c} \Rightarrow \frac{b^{2}}{a c}+\frac{b c}{a^{2}}=2 .
\end{aligned}
$$

277. Given, $T=2 \pi \sqrt{\frac{h^{2}+k^{2}}{g h}}$. Squaring, $h^{2}+k^{2}=\frac{T^{2} g h}{4 \pi^{2}}$
$\Rightarrow h^{2}-\frac{T^{2} g h}{4 \pi^{2}}+k^{2}=0$. Clearly, h_{1} and h_{2} are two possible roots of above equation, where $h_{1}+h_{2}=\frac{T^{2} g}{4 \pi^{2}}$ and $h_{1} h_{2}=k^{2}$.
278. Clearly, $\alpha_{1}+\alpha_{2}=-p$ and $\alpha_{1} \alpha_{2}=q, \beta_{1}+\beta 2=-r$ and $\beta_{1} \beta_{2}=s$.

Solving the two equations in y and z by elimination we have
$\frac{\alpha_{1}}{\alpha_{2}}=\frac{\beta_{1}}{\beta_{2}}=k \Rightarrow \frac{p^{2}}{r^{2}}=\frac{\left(\alpha_{1}+\alpha_{2}\right)^{2}}{\left(\beta_{1}+\beta_{2}\right)^{2}}=\frac{\alpha_{1}^{2}\left(1+k^{2}\right)}{\beta_{1}\left(1+k^{2}\right)}=\frac{\frac{\alpha_{1} \alpha_{2}}{k}}{\frac{\beta_{1} \beta_{2}}{k}}=\frac{q}{s}$.
279. $-(1+\alpha \beta)=-\left(\frac{a+c}{a}\right)$.
H. M. of α and $\beta=\frac{2 \alpha \beta}{\alpha+\beta}=-\frac{2 c}{b}$, but since a, b, c are in H. P. it becomes $=-\frac{2 c}{\frac{2 a c}{a+c}}=-\left(\frac{a+c}{a}\right)=-(1+\alpha \beta)$.
280. Given equation is $x+1=\lambda x-\lambda^{2} x^{2} \Rightarrow \lambda^{2} x^{2}+(1-\lambda) x+1=0$.
$\Rightarrow \alpha+\beta=\frac{\lambda-1}{\lambda^{2}}$ and $\alpha \beta=\frac{1}{\lambda^{2}}$.
Also given that, $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=r-2$
$\Rightarrow \alpha^{2}+\beta^{2}=(r-2) \alpha \beta \Rightarrow(\alpha+\beta)^{2}=r \alpha \beta$
$\frac{(\lambda-1)^{2}}{\lambda^{4}}=\frac{r}{\lambda^{2}} \Rightarrow \lambda_{1}+\lambda_{2}=\frac{2}{1-r}$ and $\lambda_{1} \lambda_{2}=\frac{1}{1-r}$.
Now it is trivial to deduce the desired result.
281. Let α, β be roots of $a x^{2}+b x+c=0$ then
$\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$.
According to question, $\frac{1}{\alpha}+\frac{1}{\beta}=-\frac{m}{l}$ and $\frac{1}{\alpha \beta}=\frac{n}{l}$.
From product of roots, $\frac{c}{a}=\frac{l}{n}$ and from sum of roots $\frac{b}{c}=\frac{m}{l}$.
282. Let the roots are $l, l m, l m^{2}, l m^{3}$ which is an increasing G. P.

Sum of roots for first equation $=l(1+m)=3$
Sum of roots for second equation $=\operatorname{lm}^{2}(1+m)=12 \Rightarrow m^{2}=4 \Rightarrow m=2$ because G. P. is increasing.
$\Rightarrow l=1$.
$\Rightarrow A=l^{2} m=2$ and $B=l^{2} m^{5}=32$.
283. For first equation, $p+q=2$ and $p q=A$. For second equation, $r+s=18$ and $r s=B$.

Let a be the first term and d be the common difference, then
$p=a-3 d, q=a-d, r=a+d, s=a+3 d$.
Substituting in sums we have $2 a-4 d=2$ and $2 a+4 d=18: \therefore a=5$ and $d=2$
$\therefore p=-1, q=3, r=7, s=11 \therefore A=-3$ and $B=77$.
284. $\alpha+\beta=-a$ and $\alpha \beta=-\frac{1}{2 a^{2}}$. Now, $\alpha^{4}+\beta^{4}=\left((\alpha+\beta)^{2}-2 \alpha \beta\right)^{2}-2 \alpha^{2} \beta^{2}$
$=2+a^{4}+\frac{1}{2 a^{4}}$.
Let $a^{4}+\frac{1}{2 a^{4}}=y \Rightarrow 2 a^{8}-2 a^{4} y-1=0$.
Since a is real. $\therefore y^{2}-2 \geq 0 \Rightarrow y \geq \sqrt{2}\left[\because a^{4} \geq 0\right] \Rightarrow \alpha^{4}+\beta^{4} \geq 2+\sqrt{2}$.
285. $\alpha+\beta=p$ and $\alpha \beta=q$.
$\alpha^{\frac{1}{4}}+\beta^{\frac{1}{4}}=\sqrt[4]{\left(\alpha^{\frac{1}{4}}+\beta^{\frac{1}{4}}\right)^{4}}$
$=\sqrt[4]{\alpha+\beta+6 \sqrt{\alpha \beta}+4 \sqrt[4]{\alpha \beta\left(\alpha^{2}+\beta^{2}\right)}}=\sqrt[4]{p+6 \sqrt{q}+4 \sqrt[4]{q\left(p^{2}-2 q\right)}}$.
286 . Let α, beta be roots of first equation and γ, δ be that of second equation.
$\alpha+\beta=\frac{b}{a}, \alpha \beta=\frac{c}{a}$ and $\gamma+\delta=\frac{c}{b}, \gamma \delta=\frac{a}{b}$
According to question, $\alpha-\beta=\gamma-\delta \Rightarrow(\alpha+\beta)^{2}-4 \alpha \beta=(\gamma+\delta)^{2}-4 \gamma \delta$
$\Rightarrow \frac{b^{2}}{a^{2}}-\frac{4 c}{a}=\frac{c^{2}}{b^{2}}-\frac{4 a}{b} \Rightarrow b^{4}-a^{2} c^{2}=4 a b\left(b c-a^{2}\right)$.
287. A cubic equation whose roots are α, β, γ is given by $f(x)=(x-\alpha)(x-\beta)(x-\gamma)$
$\therefore f^{\prime}(x)=(x-\alpha)(x-\beta)+(x-\beta)(x-\gamma)+(x-\alpha)(x-\gamma)$
Now it is trivial to prove that a sign change occurs for the given limits for $f^{\prime}(x)$ and thus a root lies in these limits.
288. Let $x_{1}, x_{2}, \ldots, x_{n}$ are the n roots of the given polynomial equation. If all the roots are equal then we will have the relationship
$\left(x_{1}-x_{2}\right)^{2}+\left(x_{1}-x_{3}\right)^{2}+\cdots+\left(x_{1}-x_{n}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+\cdots+\left(x_{2}-x_{n}\right)^{2}+\cdots+\left(x_{n-1}-\right.$ $\left.x_{n}\right)^{2}>0$
$\Rightarrow(n-1)\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)-2\left(x_{1} x_{2}+x_{1} x_{3}+\cdots+x_{1} x_{n}+x_{2} x_{3}+x_{2} x_{4}+\cdots+x_{2} x_{n}+\right.$ $\left.\cdots+x_{n-1} x_{n}\right)>0$
$\Rightarrow(n-1)\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)+(2 n-2)\left(x_{1} x_{2}+x_{1} x_{3}+\cdots+x_{1} x_{n}+x_{2} x_{3}+x_{2} x_{4}+\cdots+\right.$ $\left.x_{2} x_{n}+\cdots+x_{n-1} x_{n}\right)-2 n\left(x_{1} x_{2}+x_{1} x_{3}+\cdots+x_{1} x_{n}+x_{2} x_{3}+x_{2} x_{4}+\cdots+x_{2} x_{n}+\cdots+\right.$ $\left.x_{n-1} x_{n}\right)>0$
$\Rightarrow(n-1)\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{2}-2 n\left(x_{1} x_{2}+x_{1} x_{3}+\cdots+x_{1} x_{n}+x_{2} x_{3}+x_{2} x_{4}+\cdots+x_{2} x_{n}+\right.$ $\left.\cdots+x_{n-1} x_{n}\right)>0$

Now from polynomial $x_{1}+x_{2}+\cdots+x_{n}=-a_{1}$ and $x_{1} x_{2}+x_{1} x_{3}+\cdots+x_{1} x_{n}+x_{2} x_{3}+$ $x_{2} x_{4}+\cdots+x_{2} x_{n}+\cdots+x_{n-1} x_{n}=a_{1}$.
$\therefore(n-1) a_{1}^{2}-2 n a_{2}>0$. But it is given that $(n-1) a_{1}^{2}-2 n a_{2}<0$, hence all the roots cannot be equal.
289. Since $\alpha, \beta, \gamma, \delta$ are in A. P. let $\alpha=l-3 m, \beta=l-m, \gamma=l+m, \delta=l+3 m$ where l is the first term and m is the common difference of $\mathrm{A} . \mathrm{P}$.
$\alpha+\beta=-\frac{b}{a}, \alpha \beta=\frac{c}{a}$ and $\gamma+\delta=-\frac{q}{p}, \gamma \delta=\frac{r}{p}$
$\frac{D_{1}}{D_{2}}=\frac{b^{2}-4 a c}{q^{2}-4 p r}=\frac{\frac{b^{2}}{a^{2}}-\frac{4 c}{a}}{\frac{a}{a^{2}}} \bar{p}^{2}-\frac{4 r}{p} \frac{a^{2}}{p^{2}}=\frac{(\alpha-\beta)^{2}}{(\gamma-\delta)^{2}} \frac{a^{2}}{p^{2}}=\frac{4 d^{2}}{4 d^{2}} \frac{a^{2}}{p^{2}}$.
290. R.H.S. $=\frac{q^{2}-4 p r}{p^{2}}=\frac{q^{2}}{p^{2}}-4 \frac{r}{p}=(\alpha+\beta+2 h)^{2}-4(\alpha+h)(\beta+h)$ $=(\alpha+h-\beta-h)^{2}=(\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4 \alpha \beta=\frac{b^{2}}{a^{2}}-4 \frac{c}{a}=\frac{b^{2}-4 a c}{a^{2}}=$ L.H.S.
291. L.H.S. $=2 h=(\alpha+h+\beta+h)-(\alpha+\beta)=-\frac{q}{p}-\left(\frac{b}{a}\right)=\frac{b}{a}-\frac{q}{p}=$ R.H.S.
292. $\alpha+\beta=-\frac{b}{a}, \alpha \beta=\frac{c}{a}$ and $\alpha^{4}+\beta^{4}=-\frac{m}{l}, \alpha^{4} \beta^{4}=\frac{n}{l}$.

Discriminant of given quadratic equation, $D=16 a^{2} c^{2} l^{2}-4 a 2^{l}\left(2 c^{2} l+a^{2} m\right)=8 a^{2} c^{2} l^{2}-$ $4 a^{4} l m$
$=4 a^{4} l^{2}\left(2 \frac{c^{2}}{a^{2}}-\frac{m}{l}\right)=4 a^{4} l^{2}\left(2 \alpha^{2} \beta^{2}+\alpha^{4}+\beta^{4}\right)=2 a^{4} l^{2}\left(\alpha^{2}+\beta^{2}\right)^{2}$.
Therefore, roots of the given equation can be computed which are found to be ($\alpha+$ $\beta)^{2},-(\alpha+\beta)^{2}$ which are equal and opposite in sign.
293. $\alpha+\beta=-\frac{b}{a}, \alpha \beta=\frac{c}{a}$ and $\gamma+\delta=-\frac{m}{l}, \gamma \delta=\frac{n}{l}$

Equation whose roots are $\alpha \gamma+\beta \delta$ and $\alpha \delta+\beta \gamma$ is

$$
\begin{aligned}
& x^{2}-(\alpha \gamma+\beta \delta+\alpha \delta+\beta \gamma) x+(\alpha \gamma+\beta \delta)(\alpha \delta+\beta \gamma)=0 \\
& \Rightarrow x^{-}(\alpha+\beta)(\gamma+\delta) x+\left(\left(\alpha^{2}+\beta^{2}\right) \gamma \delta+\left(\gamma^{2}+\delta^{2}\right) \alpha \beta\right)=0 \\
& \Rightarrow a^{2} l^{2} x^{2}-a b l m x+\left(b^{2}-2 a c\right) l n+\left(m^{2}-2 l n\right) a c=0
\end{aligned}
$$

294. Since p and q are roots of the equation $x^{2}+b x+c=0$ therefore $p+q=-b$ and $p q=c$

Equation whose roots are b and c is $x^{2}-(b+c) x+b c=\Rightarrow x^{2}+(p+q-p q) x-$ $p q(p+q)=0$.
295. p and q are roots of the equation $3 x^{2}-5 x-2=0$.
$\Rightarrow p+q=\frac{5}{3}$ and $p q=-\frac{2}{3}$.
Equation whose roots are $3 p-2 q$ and $3 q-2 p$ is
$x^{2}-(p+q) x-6 p^{2}-6 q^{2}+13 p q=0 \Rightarrow 3 x^{2}-5 x-100=0$.
296. Sum of roots $=2 \alpha=-p$ and product of roots $=\alpha^{2}-\beta=q \Rightarrow \beta=\frac{p^{2}-4 q}{4}$.

Equation whose roots are $\frac{1}{\alpha} \pm \frac{1}{\sqrt{\beta}}$ is $x^{2}-\frac{2}{\alpha} x+\frac{1}{\alpha^{2}}-\frac{1}{\beta}=0$
$\Rightarrow x^{2}+\frac{2}{p} x+\frac{1}{p^{2}}-\frac{4}{p^{2}-4 q}=0 \Rightarrow\left(p^{2}-4 q\right)\left(p^{2} x^{2}+4 p x\right)=16 q$.
297. Sum of roots is $\alpha^{2}\left(\frac{\alpha^{2}-\beta^{2}}{\beta}\right)+\beta^{2}\left(\frac{\beta^{2}-\alpha^{2}}{\alpha}\right)$

$$
=\frac{\left(\alpha^{2}-\beta^{2}\right)\left(\alpha^{3}-\beta^{3}\right)}{\alpha \beta}=\frac{(\alpha+\beta)(\alpha-\beta)^{2}\left(\alpha^{2}+\beta^{2}+\alpha \beta\right)}{\alpha \beta}=\frac{p}{q}\left(p^{2}-4 q\right)\left(p^{2}-q\right)
$$

Product of roots is $-\alpha \beta\left(\alpha^{2}-\beta^{2}\right)^{2}=-q(\alpha-\beta)^{2}(\alpha+\beta)^{2}=-p^{2} q\left(p^{2}-4 q\right)$.
Hence the equation having these as roots is $q x^{2}-p\left(p^{2}-q\right)\left(p^{2}-4 q\right) x-p^{2} q^{2}\left(p^{2}-4 q\right)=$ 0.
298. Solving the system of equations, we have $u=-\frac{1}{3}, v=\frac{2}{3}$ and $w=\frac{5}{3}$.

Now, $(b-c)^{2}+(c-a)^{2}+(d-b)^{2}=a^{2}+2 b^{2}+2 c^{2}+d^{2}-2 b c-2 c a-2 b d$, but because a, b, c, d are in G.P. therefore, $a d=b c, c a=b^{2}$ and $b d=c^{2} \Rightarrow a^{2}+2 b^{2}+2 c^{2}+d^{2}-$ $2 b c-2 c a-2 b d=(a-d)^{2}$.

Rewriting the first quadratic equaiton, $\left(\frac{1}{u}+\frac{1}{v}+\frac{1}{w}\right) x^{2}+\left[(b-c)^{2}+(c-a)^{2}+(d-\right.$ b) $\left.{ }^{2}\right] x+u+v+w=0$ becomes
$\Rightarrow-\frac{9}{10} x^{2}+(a-d)^{2} x+2=0 \Rightarrow 9 x^{2}-10(a-d)^{2} x-20=0$. Equation whose roots will be reciprocal of this equation will be $\frac{9}{x^{2}}-\frac{10(a-d)^{2}}{x}-20=0 \Rightarrow 20 x^{2}+(a-d)^{2} x-9=0$, which is what we had to prove.
299. Because $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are roots of the equation $\left(\beta_{1}-x\right)\left(\beta_{2}-x\right) \ldots\left(\beta_{n}-x\right)+A=0$, therefore
$\left(\beta_{1}-\alpha_{1}\right)\left(\beta_{2}-\alpha_{2}\right) \ldots\left(\beta_{n}-\alpha_{n}\right)+A=0$.
Therefore, equation having $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ as roots is
$\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{n}\right)+A=0$.
300. Given $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are roots of the equation $x^{n}+a x+b=0$.
$\Rightarrow\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right)=x^{n}+n a x-b$
$\Rightarrow \lim _{x \rightarrow \alpha_{1}}\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right) \cdots\left(x-\alpha_{n}\right)=\frac{x^{n}+\text { nax }-b}{x-\alpha_{1}}$
Applying L'Hospital's rule, $\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right) \cdots\left(\alpha_{1}-\alpha_{n}\right)=n x^{n-1}+n a=n\left(x^{n-1}+a\right)$.
301. We have $1+\alpha^{2}=(\alpha+i)(\alpha-i)$ and so on for other terms of the first given root $\left(1+\alpha^{2}\right)\left(1+\beta^{2}\right)\left(1+\gamma^{2}\right)\left(1+\delta^{2}\right)$.
Let $P(x)=x^{4}+q x^{2}+r x+t$ then $\left(1+\alpha^{2}\right)\left(1+\beta^{2}\right)\left(1+\gamma^{2}\right)\left(1+\delta^{2}\right)=P(i) P(-i)=$ $(1-q+t+r i)(1-q+t-r i)=(1-q+t)^{2}+r^{2}$.

Hence sum of $\left(1+\alpha^{2}\right)\left(1+\beta^{2}\right)\left(1+\gamma^{2}\right)\left(1+\delta^{2}\right)$ and 1 is $(1-q+t)^{2}+r^{2}+1$ and product is $(1-q+t)^{2}+r^{2}$. Thus, we deduce the equation as

$$
x^{2}-\left[(1-q+t)^{2}+r^{2}+1\right] x+(1-q+t)^{2}+r^{2}=0 .
$$

302. Given α, β, γ are roots of $x^{3}+p x+q=0$, so we have
$\alpha+\beta+\gamma=0, \alpha \beta+\beta \gamma+\gamma \alpha=p, \alpha \beta \gamma=-q$.
Now sum of $\frac{\alpha+1}{\alpha}, \frac{\beta+1}{\beta}, \frac{\gamma+1}{\gamma}$ is $\frac{3 \alpha \beta \gamma+\alpha \beta+\beta \gamma+\alpha \gamma}{\alpha \beta \gamma}=\frac{3 q-p}{q}$.
Product of these roots taken two at a time is $\frac{3 \alpha \beta \gamma+2(\alpha \beta+\beta \gamma+\alpha \gamma)+\alpha+\beta+\gamma}{\alpha \beta \gamma}=\frac{3 q-2 p}{q}$

Product of all taken together is $\frac{\alpha \beta \gamma+\alpha \beta+\beta \gamma+\gamma \alpha+\alpha+\beta+\gamma+1}{\alpha \beta \gamma}=\frac{q-p-1}{q}$.
Thus the cubic equation having these roots is $x^{3}-\frac{3 q-p}{q} x^{2}+\frac{3 q-2 p}{q} x-\frac{q-p-1}{q}=0 \Rightarrow$ $q x^{3}+(p-3 q) x^{2}+(3 q-2 p) x+1+p-q=0$.
303. Given equations are $a x^{2}+b x+c=0$ and $a_{1} x^{2}+b_{1} x+c_{1}=0$. Let α be the root which satisfies first equation and its reciprocal satisfies the second equation. Then,
$a \alpha^{2}+b \alpha+c=0$ and $\frac{a_{1}}{\alpha^{2}}+\frac{b_{1}}{\alpha}++c_{1}=0 \Rightarrow c_{1} \alpha^{2}+b_{1} \alpha+a_{1}=0$.
By cross multiplication $\alpha=\frac{c c_{1}-a a_{1}}{a b_{1}-b c_{1}}=\frac{b a_{1}-b_{1} c}{c c_{1}-a a_{1}} \Rightarrow\left(a a_{1}-c c_{1}\right)^{2}=\left(b c_{1}-a b_{1}\right)\left(b_{1} c-a_{1} b\right)$.
304. Let $(\alpha, \beta),(\beta, \gamma),(\gamma, \alpha)$ be three pairs of roots which satisfy the given equation. Then, we have
$\alpha+\beta=-p, \beta+\gamma=-q, \alpha+\gamma=-r$, and hence, sum of all the common roots is obtained by adding these three equations
$\alpha+\beta+\gamma=-\frac{p+q+r}{2}$.
305. The second equation is $(2 x \sin \theta-1)^{2}=0$ i.e. it has only one root, $x=\frac{1}{2 \sin \theta}$. Since it has a common root with first equation and first equation has equal roots then that implies that first equation also has one root which is $\frac{1}{2 \sin \theta}$.

Observing that coefficients in first equation are cyclic we deduce that $x=1$ will satisfy the equation. Hence, $\frac{1}{2 \sin \theta}=1 \Rightarrow \sin \theta=\frac{1}{2}$.
$\Rightarrow \theta=n \pi+(-1)^{n} \frac{\pi}{6}$, is the general solution of θ.
306. Let α is a root of $x^{2}-x+a=0$ then 2α will be a root of $x^{2}-x+3 a=0$. Thus,
$\alpha^{2}-\alpha+a=0$ and $4 \alpha^{2}-2 \alpha+3 a=0$. By cross-multiplication, we have
$\frac{\alpha^{2}}{-3 a+2 a}=\frac{\alpha}{3 a-4 a}=\frac{1}{-2+4} \Rightarrow a^{2}=-2 a \Rightarrow a=0,-2$.
However, it is given that $a \neq 0, \therefore a=-2$.
307. If $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ are the two solutions, then y_{1}, y_{2} are the two solutions of the quadratic in y. Then we will have two cases:

Case I: $x_{1}=y_{1}, x_{2}=y_{2}$. In this case the equation becomes $x^{2}+2 l x+m=0$ therefore $a=2 l, m=b$.

Case II: $x_{1}=y_{2}, x_{2}=y_{1}$. In this case $x_{1} y_{1}+l\left(x_{1}+y_{1}\right)+m=0$. Replacing y_{1} with x_{2}, we get $b-a l+m=0$.
308. Given that roots of the equation $10 x^{3}-c x^{2}-54 x-27=0$ are in H.P. Therefore if we replace x with $\frac{1}{x}$ then roots will be in A.P.
$\Rightarrow \frac{10}{x^{3}}-\frac{c^{2}}{x}-\frac{54}{x}-27=0 \Rightarrow 27 x^{3}+54 x^{2}+c x-10=0$.
Let the roots are $a-d, a, a+d$, then sum of roots $3 a=-\frac{54}{27} \Rightarrow a=-\frac{2}{3}$, which is a root of the equation. Substituting this in new equation we find $c=9$.
309. Given that a, b, c are the roots of the equation $x^{3}+p x^{2}+q x+r=0$ such that $c^{2}=-a b$. $\Rightarrow a+b+c=-p, a b+b c+c a=q$ and $a b c=-r \Rightarrow c^{3}=-a b c=r$. $p q=-(a+b+c)(a b+b c+c a)=-\left[a^{2} b+a b c+c a^{2}+a b^{2}+b^{2} c+a b c+a b c+b c^{2}+c^{2} a\right]=$ $-\left(a^{2} b+a b c++c a^{2}+a b^{2}+b^{2} c+a b c+a b c-a b^{2}-a^{2} b\right)$
$=-\left(3 a b c+a^{2} c+b^{2}\right) \therefore p q-4 r=-r-a^{2} c-b^{2} c \Rightarrow(p q-4 r)^{3}=-c^{3}\left(a^{2}+b^{2}+c^{2}\right)$.
L.H.S. $=\left(p^{2}-2 q\right)^{3} . r=-\left[(a+b+c)^{2}-2(a b+b c+c a)\right] \cdot c^{3}=-c^{3}\left(a^{2}+b^{2}+c^{2}\right)=$ R.H.S.
310. If $\alpha+i \beta$ is one root of $x^{3}+q x+r=0$ then $\alpha-i \beta$ will be another root. Let γ be the third root.

Sum of roots $2 \alpha+\gamma=0 \Rightarrow \gamma=-2 \alpha$. Since γ is a root of given equation, therefore $(-2 \alpha)^{3}-2 q \alpha+r=0$, and hence we have our equation is $x^{3}+q x-r=0$.
311. Clearly, $\alpha+\beta+\gamma=-\frac{1}{2}, \alpha \beta+\beta \gamma+\gamma \alpha=0, \alpha \beta \gamma=2$.

We have to find $\sum\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)=\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+\frac{\beta}{\gamma}+\frac{\gamma}{\beta}+\frac{\alpha}{\gamma}+\frac{\gamma}{\alpha}$
$=\frac{1}{\alpha}(\beta+\gamma)+\frac{1}{\beta}(\gamma+\alpha)+\frac{1}{\gamma}(\alpha+\beta)=\frac{1}{\alpha}\left(-\frac{1}{2}-\alpha\right)+\frac{1}{\beta}\left(-\frac{1}{2}-\beta\right)+\frac{1}{\gamma}\left(-\frac{1}{2}-\gamma\right)$
$=-\frac{1}{2}\left(\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}\right)-3=-\frac{1}{2}\left(\frac{\alpha \beta+\beta \gamma+\gamma \alpha}{\alpha \beta \gamma}\right)-3=-3$.
312. Given equations are $x^{3}+p x^{2}+q x+r=0$ and $x^{3}+p^{\prime} x^{2}+q^{\prime} x+r^{\prime}=0$. Let α, β are common roots. Then putting α and β in the equations and subtracting
$\left(p-p^{\prime}\right) \alpha^{2}+\left(q-q^{\prime}\right) \alpha+\left(r-r^{\prime}\right)=0$ and $\left(p-p^{\prime}\right) \beta^{2}+\left(q-q^{\prime}\right) \beta+\left(r-r^{\prime}\right)=0$.
Thus, the quadratic equation whose roots are α, β is $\left(p-p^{\prime}\right) x^{2}+\left(q-q^{\prime}\right) x+\left(r-r^{\prime}\right)=0$.
313. Let α, β, γ are the roots the given equation and are in G.P. Then, $\beta^{2}=\alpha \gamma$ and also $\alpha \beta \gamma=-\frac{d}{a} \Rightarrow \beta=-\left(\frac{d}{a}\right)^{1 / 3}$.

Substituting the value of β thus obtained in the given equation
$a\left(-\frac{d}{a}\right)+3 b\left(-\frac{d}{a}\right)^{2 / 3}+3 c\left(-\frac{d}{a}\right)^{1 / 3}+d=0 \Rightarrow a c^{3}=b^{3} d$, which the needed condition.
314. Let α, β, γ are the roots of the equation $x^{3}-p x^{2}+q x-r=0$, then
$\alpha+\beta+\gamma=p, \alpha \beta+\beta \gamma+\gamma \alpha=q, \alpha \beta \gamma=r$.
Mean of H.P. $=\beta=\frac{3 \alpha \beta \gamma}{\alpha \beta+\beta \gamma+\gamma \alpha}=\frac{3 r}{q}$. Substituting this in given equation $\left(\frac{3 r}{q}\right)^{3}-p\left(\frac{3 r}{q}\right)^{2}+q \frac{3 r}{q}-r=0 \Rightarrow 27 r^{3}-9 p q r^{2}+2 r q^{3}=0 \Rightarrow 27 r^{2}+2 q^{3}=9 p q r$.
315. Let α, β, γ be the roots of the given equation. Also given that $f(0)$ and $f(-1)$ are odd. $f(0)=$ odd $\Rightarrow d=$ odd, $f(-1)=-1+b-c+d=$ odd $\Rightarrow b-c=$ odd.

Also, $\alpha \beta \gamma=-d=$ odd which implies α, β, γ are all odd. However,
$b-c=-[(\alpha+\beta+\gamma)-(\alpha \beta+\beta \gamma+\gamma \alpha)]=-[$ odd - odd $]=$ even
which contradicts the assumption that all roots are integers.
316. Let α, β, γ are roots of the equation $2 x^{3}+a x^{2}+b x+4=0$, then
$\alpha+\beta+\gamma=-\frac{a}{2}, \alpha \beta+\beta \gamma+\gamma \alpha=\frac{b}{a}$ and $\alpha \beta \gamma=-2$.
Since all coefficients are positive hence all roots are negative. Let $\alpha=-p, \beta=-q$ and $\gamma=-r$, then
$p+q+r=\frac{a}{2}, p q+q r+r p=\frac{b}{2}$ and $p q r=2$.
Now A.M \geq G.M. $\Rightarrow \frac{p+q+r}{3} \geq(p q r)^{\frac{1}{3}} \Rightarrow \frac{a}{6} \geq 2^{1 / 3}$
also, because A.M. \geq G.M $\Rightarrow \frac{p q+q r+r p}{3} \geq(p q r)^{2 / 3} \Rightarrow b \geq 6.4^{1 / 3}$
Adding we arrive at the required inequality.
317. Given equations are $a_{1} x^{3}+b_{1} x^{2}+c_{1} x+d_{1}=0$ and $a_{2} x^{3}+b_{2} x^{2}+c_{2} x+d_{2}=0$. Let α be a common repeated root then
$a_{1} \alpha^{3}+b_{1} \alpha^{2}+c_{1} \alpha+d_{1}=0$ and $a_{2} \alpha^{3}+b_{2} \alpha^{2}+c_{2} \alpha+d_{2}=0$
Multiplying first equation by a_{2} and second equation by a_{1} and subtracting, we get $\left(a_{2} b_{2}-a_{1} b_{2}\right) x^{2}+\left(a_{2} c_{1}-a_{1} c_{2}\right) x+\left(a_{2} d_{1}-a_{1} d_{2}\right)=0$

Also, the derivatives will be equal to zero because they have a common root i.e.
$3 a_{1} x^{2}+2 b_{1} x+c_{1}=0$ and $3 a_{2} x^{2}+2 b_{2} x+c_{2}=0$ and hence the condition is

$$
\left|\begin{array}{ccc}
3 a_{1} & 2 b_{1} & c_{1} \\
3 a_{1} & 2 b_{1} & c_{1} \\
a_{2} b_{1}-a_{1} b_{2} & a_{2} c_{1}-a_{1} c_{2} & a_{2} d_{1}-a_{1} d_{2}
\end{array}\right|=0
$$

318. Given equations are $a_{1} x^{2}+b_{1} x+c_{1}=0$ and $a_{2} x^{3}+b_{2} x^{2}+c_{2} x+d_{2}=0$. Because cubic equation has a repeated root therefore its derivative will be equal to 0 , and hence
$3 a_{2} x^{2}+2 b_{2} x+c_{2}=0$. Multiplying first equation by $a_{2} x$ and second by a_{1} and subtracting, we get
$\left(a_{1} b_{2}-a_{2} b_{1}\right) x^{2}+\left(a_{1} c_{2}-a_{2} c_{1}\right) x+a_{1} d_{2}=0$ and thus from these three equations we have

$$
\left|\begin{array}{ccc}
a_{1} & b_{1} & c_{1} \\
3 a_{2} & 2 b_{1} & c_{2} \\
a_{1} b_{2}-a_{2} b_{1} & a_{1} c_{2}-a_{2} c_{1} & a_{1} d_{2}
\end{array}\right|=0
$$

319. Given that α, β, γ are roots of $x^{3}-a x^{2}+b x-c=0$ then we have
$\alpha+\beta+\gamma=a, \alpha \beta+\beta \gamma+\gamma \alpha=b$ and $\alpha \beta \gamma=c$.
We know that if a, b, c are sides of a triangle and perimeter is $2 s$ then area is given by $\sqrt{s(s-a)(s-b)(s-c)}$, therefore area of required triangle is
$\Delta=\frac{1}{4} \sqrt{(\alpha+\beta+\gamma)(\alpha+\beta-\gamma)(\alpha-\beta+\gamma)(\beta+\gamma-\alpha)}$
$=\frac{1}{4} \sqrt{a\left(\alpha \beta^{2}+\beta \gamma^{2}+\gamma \alpha^{2}+\alpha^{2} \beta+\beta^{2} \gamma+\gamma^{2} \alpha-\alpha^{3}-\beta^{3}-\gamma^{3}-2 \alpha \beta \gamma\right)}$
$=\frac{1}{4} \sqrt{a\left[4\left(\alpha \beta^{2}+\beta \gamma^{2}+\gamma \alpha^{2}+\alpha^{2} \beta+\beta^{2} \gamma+\gamma^{2} \alpha+3 \alpha \beta \gamma\right)\right.}$ - (square root continued)
$\sqrt{\left.\left(\alpha^{3}+\beta^{3}+\gamma^{3}+3 \alpha^{2} \beta+3 \alpha \beta^{2}+3 \beta \gamma^{2}+3 \beta^{2} \gamma+3 \alpha \gamma^{2}+3 \alpha^{2} \gamma+6 \alpha \beta \gamma\right)-8 \alpha \beta \gamma\right]}$
$=\frac{1}{4} \sqrt{a\left[4(\alpha+\beta+\gamma)(\alpha \beta+\beta \gamma+\gamma \alpha)-(\alpha+\beta+\gamma)^{3}-8 \alpha \beta \gamma\right]}$
$=\frac{1}{4} \sqrt{a\left(4 a b-a^{3}-8 c\right)}$, hence proved.
320. Given $a<b<c<d$ and $\mu(x-a)(x-c)+\lambda(x-b)(x-d)=0$. Let $f(x)=\mu(x-$ a) $(x-c)+\lambda(x-b)(x-d)=0$
$f(a)=\lambda(a-b)(a-d), f(c)=\lambda(c-b)(c-d) \Rightarrow f(a) f(c)<0$ and similarly $f(b) f(d)<$ 0 . Thus the equation has one root between a and c and second root between b and d which implies that both the roots are real for real μ and λ.
321. Let $f(x)=3 x^{5}-5 x^{3}+21 x+3 \sin x+4 \cos x+5=0$ then $f(\infty)=-\infty$ and $f(\infty)=\infty$. $f^{\prime}(x)=15 x^{4}-15 x^{2}+21+3 \cos x-4 \sin x=15\left(x^{4}-2 x^{2}+1+x^{2}\right)+6+3 \cos x-4 \sin x>$ $0 \forall x \in(-\infty, \infty)$ which means $f(x)$ is increasing.
Thus, we see that $f(x)$ can have only one real root.
322. The plot is given below(not in linear scale):

$f^{\prime}(x)=3 x^{2}-20 x-11=0 \Rightarrow x=\frac{10 \pm \sqrt{133}}{3}$ which shows two points in the graph where tangent is parallel to x-axis. We see that after the higher value of this root the graph is increasing and cuts x-axis. So we substitute the increasing values of x to obtain the integral part of root. $x=\frac{10+\sqrt{133}}{3} \approx 7.16$. We find that $f(8)<f(9)<f(10)<f(11)<0$ but $f(12)>0$. So the root lies between 11 and 12, and hence the integral part is $[x]=11$.
323. $f(x)=(x-m)\left(b_{n} x^{n}+\cdots+b_{0}\right)=(x-m) g(x)$ for some $b_{0}, \ldots, b_{m} \in \mathbb{Z}$. Then
$f(0)=-m \cdot g(0)$ and $f(1)=(1-m) \cdot g(1)$ but either $-m$ or $1-m$ is even. Observe that $f(0)=a_{n}$ and $f(1)=\sum_{i=0}^{n} a_{i}$.
324. Let $g(x)=e^{x} f(x)$ then $g^{\prime \prime}(x)=e^{x}\left[f(x)+2 f^{\prime}(x)+f^{\prime \prime}(x)\right] . \therefore$ Roots of equation $f(x)+$ $2 f^{\prime}(x)+f^{\prime \prime}(x)=0$ will be same as those of equation $g^{\prime \prime}(x)=0$ as $e^{x} \neq 0$.
Also, since $e^{x}>0$, therefore roots of the equation $f(x)=0$ and $g(x)=0$ will be same.
Clearly, $g(x)=0$ will have α, beta, γ as roots and hence $g^{\prime}(x)=0$ will have roots a between α and beta and a root b between β and γ. Hence equation $g^{\prime \prime}(x)=0$ will have a root between a and b, which obviously lies between α and γ.
325. The plot is given below(not in linear scale):

Let $f(x)=x^{4}-4 x^{3}-8 x^{2} \Rightarrow f^{\prime}(x)=4 x^{3}-12 x^{2}-16 x=4 x(x-4)(x+1)$ so at $x=-1,0,4$ there will be tangents and the direction of $f(x)$ will change.

From the graph it is clear that for $f(x)+a=0$ to have four real roots $0 \leq a \leq 3$.
326. Let α, β be two distinct roots of the given equation. Then $\alpha+\beta=-\frac{b}{a}, \alpha \beta=\frac{c}{a}$. Using
A.M \geq G.M. For $0<\alpha, 1-\alpha, \beta, 1-\beta<1$

So $\frac{1-\alpha+\alpha}{2} \geq \sqrt{\alpha(1-\alpha)} \Rightarrow \alpha(1-\alpha) \leq \frac{1}{4}$
Similarly $\beta(1-\beta) \leq \frac{1}{4} \Rightarrow \alpha \beta(1-\alpha)(1-\beta)<\frac{1}{16}$
$\Rightarrow \alpha \beta[1-(\alpha+\beta)+\alpha \beta]<\frac{1}{16} \Rightarrow 16 c(a-b+c)<a^{2}$
However, $\min [c(a-b+c)]=1$ so $a^{2}>16$ Thus, $a_{\min }=5$.
Now $2<\alpha+\beta<4 \Rightarrow 2 a<b<4 a \Rightarrow b_{\text {min }}=11$.
327. Let $f(x)=(x-1)^{5}+(x+2)^{7}+(7 x-5)^{9}-10$ then $f(-\infty)=-\infty$ and $f(\infty)=\infty$. $f^{\prime}(x)=5(x-1)^{4}+7(x+2) 6+63(7 x-5)^{8}>0$ which makes $f(x)$ and increasing function, which means it can cut x-axis only once; yielding only one root.
328. Given, $\sqrt{2(x+3)}-\sqrt{x+2}=3$. Squaring $2 x+6+x+2-2 \sqrt{2(x+3)(x+2)}=9$.

Squaring again, $\Rightarrow 8(x+2)(x+3)=(1-3 x)^{2} \Rightarrow x^{2}-46 x-47=0 \Rightarrow x=47,-1$.
Substituting these in the original equation, we quickly find that $x=47$ is the actual root and $x=-1$ is the extraneous root. Hence, $\tan \theta=47, \tan \phi=-1$, and hence $\tan (\theta+\phi)=\frac{23}{24}$ and $\cot (\theta-\phi)=-\frac{23}{24}$.
329. Case I: When $x<-1$ then the equation becomes $-x-1+x-3 x+3+2 x-4=$ $x+2 \Rightarrow 2 x=-4 \Rightarrow x=-2$.

Case II: When $-1<x<0$, then $x+1+x-3 x+3+2 x-4=x+2 \Rightarrow x=x+2$, which is not possible.

Case III: When $0<x<1$, then $x+1-x-3 x+3+2 x-4=x+2 \Rightarrow-x=x+2 \Rightarrow$ $x=-1$, which is not possible.

Case IV: When $1<x<2$, then $x+1-x+3 x-3+2 x-4=x+2 \Rightarrow 5 x-6=$ $x+2 \Rightarrow x=2$, which is not possible.

Case V: When $x \geq 2$, then $x+1-x+3 x-3-2 x+4=x+2 \Rightarrow x+2=x+2$, which is true.

Hence, the solution is $x=-2, x \geq 2$.
330. Case I: When $x<-1$, then $\frac{1}{2^{x+1}}-2^{x}=-2^{x}+1+1 \Rightarrow x=-2$.

Case II: When $-1<x<0$, then $2^{x+1}-2^{x}=-\frac{1}{2^{x}}+1+1 \Rightarrow 2^{2 x+1}-3.2^{x}+1=0 \Rightarrow$ $2^{x}=0,2^{x}=\frac{1}{2}$, which is not possible.

Case III: When $x \geq 0,2^{x+1}-2^{x}=2^{x}-1+1 \Rightarrow 0=0$.
Hence, the solution is $x=-2, x \geq 0$.
331. Case I: When $x<0, y<0$, then $x^{2}-2 x+y=1, x^{2}-y=1 \Rightarrow x=\frac{1-\sqrt{5}}{2}, y=\frac{1-\sqrt{5}}{2}$

Case II: When $x<0, y>0$, then $x^{2}-2 x+y=1, x^{2}+y=1 \Rightarrow-2 x=0, y=1$
Case III: When $0<x<2, y<0$, then $-x^{2}+2 x+y=1, x^{2}-y=1 \Rightarrow 2 x=2, y=0$
Case IV: When $0<x<2, y>0$, then $-x^{2}+2 x+y=1, x^{2}+y=1 \Rightarrow-2 x^{2}+2 x=$ $0, x=0,1, y=1,0$

Case V: When $x>2, y<0$, then $x^{2}-2 x+y=1, x^{2}-y=1 \Rightarrow 2 x^{2}-2 x=2 \Rightarrow x=$ $\frac{1 \pm \sqrt{2}}{2}<2$, which is not possible.

Case VI: When $x>2, y>0$, then $x^{2}-2 x+y=1, x^{2}+y=1 \Rightarrow x=0, y=1$, which is not possible.

Hence, the solution is $x=0, y=1, x=y=\frac{1-\sqrt{5}}{2}, x=1, y=0$.
332. Given equation is $\left|x^{2}+4 x+3\right|+2 x+5=0 \Rightarrow|(x+1)(x+3)|+2 x+5=0$.

Case I: When $x<-3$, then $x^{2}+4 x+3+2 x+5=0 \Rightarrow x^{2}+6 x+8=0 \Rightarrow x=$ $\frac{-6 \pm \sqrt{4}}{2}, \Rightarrow x=-4,-2$. But $x=-2$ is not possible.

Case II: When $-1<x<-3$, then $-x^{2}-4 x-3+2 x+5=0 \Rightarrow x^{2}+2 x-2=0 \Rightarrow$ $x=-1 \pm \sqrt{3}$. But $x=-1+\sqrt{3}$ is not possible.

Case III: When $x>-1$, then $x^{2}+4 x+3+2 x+5=0 \Rightarrow x=-4,-2$, which is not possible.

Hence, the solution is $x=-4,-1-\sqrt{3}$.
333. Given equation upon simplification is $x^{4}+6 x^{3}-9 x^{2}-162 x-243=0$ and $x \neq-3$.

Let us assume that $x^{4}+6 x^{3}-9 x^{2}-162 x-243=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)$. Comparing coefficients,
$a+c=6, b+d+a d=-9, a d+b c=-162, b d=-243$, which is four equations with four unknowns. Solving these, we have $a=-3, b=-9, c=9, d=27$, and hence, the solution is
$x=\frac{3 \pm 3 \sqrt{5}}{2}, \frac{-9 \pm 3 \sqrt{3} i}{2}$.
334. Given equation is $\frac{1}{[x]}+\frac{1}{[2 x]}=\{x\}+\frac{1}{3}$. We observe that $[x]$ cannot be negative because that will make L.H.S. negative while R.H.S. is positive.

Case I: When $\{x\} \geq \frac{1}{2}$, then $2[x]=2[x]+1$. Putting $[x]=n$, where $n \in \mathbb{P}$.
Given equation is $\{x\}=\frac{1}{n}+\frac{1}{2 n+1}-\frac{1}{3}$. Putting $x=1,2,3, \ldots$ we observe that $\{x\}$ is not satisfied and the function is decreasing in nature.

Case II: When $\{x\}<\frac{1}{2}$, then $\{x\}=\frac{1}{n}+\frac{1}{2 n}-\frac{1}{3}$.
$\Rightarrow\{x\}=\frac{6+3-2 n}{6 n}$, now we see that numerator becomes negative once $n \geq 5$, thus those values are ruled out. We see that $x=2,3,4$ are the only values which satisfy the given conditions.
335. Let $k=\log _{a} x \log _{10} a \log _{a} 5=\log _{a} 5^{\log _{10} x}$, then $a^{k}=5^{\log _{10} x}=5^{l}\left(\right.$ let $\left.\log _{10} x=l\right)$.

Let $m=\log _{10}\left(\frac{x}{10}\right)=\log _{10} x-1=l-1$ and $n=\log _{100} x+\log _{4} 2=\frac{1}{2} \log _{10} x+\frac{1}{2} \log _{2} 2=$ $\frac{l+1}{2}$.
$\therefore 9^{n}=9^{\frac{l+1}{1}}=3^{l+1}=3.3^{l}$.
According to question $\frac{6}{5} .5^{l}-\frac{3^{l}}{3}=3.3^{l} \Rightarrow 5^{l-2}=3^{l-2}$, which is possible only if $l=2 \Rightarrow$ $x=100$.
336. $5^{\frac{1}{x}}+125=5^{\log _{5} 6+1+\frac{1}{2 x}}=5^{\log _{5} 6} \cdot 5 \cdot 5^{\frac{1}{2 x}}$
$\Rightarrow 5^{\frac{1}{x}}+125=6 \cdot 5 \cdot 5^{\frac{1}{x}} \Rightarrow k^{2}+125=30 k$, where $k=5^{\frac{1}{2 x}}$
$\Rightarrow k=5,25 \Rightarrow x=\frac{1}{2}, \frac{1}{4}$.
337. Taking \log of both sides with base x, we have
$\frac{2}{3}\left[\left(\log _{2} x\right)^{2}+\log _{2} x-\frac{5}{4}\right]=\frac{1}{2} \log _{x} 2$
$\Rightarrow \frac{2}{3}\left[\left(\log _{2} x\right)^{2}+\log _{2} x-\frac{5}{4}=\frac{1}{2 \log _{2} x}\right]$ (Putting $\log _{2} x=y$)
$\Rightarrow y^{2}+y-\frac{5}{4}=\frac{3}{4 y} \Rightarrow 4 y^{3}+4 y^{2}-5 y-3=0$.
Observing that sum of coefficients is zero, we quickly deduce that $y=1$ is one of the solution. Thus, the above equation is reduced to
$4 y^{2}+8 y+3=0 \Rightarrow y=-\frac{1}{2},-\frac{3}{2}$.
And hence, $x=2, \frac{1}{\sqrt{2}}, \frac{1}{2 \sqrt{2}}$.
338. Given $3 x^{2}=8[x]-1$. Let $[x]=1$, then $x=\sqrt{\frac{7}{3}}$ and when $[x]=2 \Rightarrow x=\sqrt{5}$. However, when $[x]=3, x=\sqrt{\frac{23}{3}}<3$, which is not possible. Further values are not possible because if we increase $[x]$ linearly then L.H.S. will increase exponentially.

Thus, two possible values are $\sqrt{\frac{7}{3}}$ and $\sqrt{5}$.
339. Let $y=t+\sqrt{t^{2}-1}$, then $\frac{1}{y}=t-\sqrt{t^{2}-1}$ and $y+\frac{1}{y}=2 t$

Thus, the given equation becomes $y^{x^{2}-2 x}+\frac{1}{y^{x^{2}-2 x}}=y+\frac{1}{y}$
Let $z=y^{x^{2}-2 x}$, then given equation is $z-y+\frac{1}{z}-\frac{1}{y}=0$
$\Rightarrow(z-y)\left(1-\frac{1}{z y}\right)=0 \Rightarrow z=y$ or $z=\frac{1}{y} \Rightarrow x=1,1 \pm \sqrt{2}$.
340. Multiplying first equation by 2 and subtracting, we get
$5 y^{2}+10 y-15=0 \Rightarrow y^{2}+2 y-3=0 \Rightarrow y=-3$, 1. If $y=-3,-3 x+27-x-12-7=$ $0 \Rightarrow-4 x+8=0 \Rightarrow x=2$. If $y=1, x+3-x+4-7=0 \Rightarrow 0=0$ so all values of $x \in \mathbb{R}$ will satisfy the equation.
341. We have $2^{x-1} \cdot 27^{\frac{x}{x+2}}=3$. Taking log with base 2 , we have

$$
\begin{aligned}
& x-1+\frac{2 x-2}{x+2} \log _{2} 3=0 \Rightarrow x-1-\frac{2 x-2}{x+2}+\frac{2 x-2}{x+2}\left(\log _{2} 3+\log _{2} 2\right)=0 \\
& \Rightarrow \frac{x^{2}-x}{x+2}+\frac{2 x-2}{x+2} \log _{2} 6=0 \Rightarrow \frac{x-1}{x+2}\left(x+\log _{2} 6\right)=0 \Rightarrow x=1,-2 \log _{2} 6 .
\end{aligned}
$$

342. We have $4^{x}-3^{x-\frac{1}{2}}=3^{x+\frac{1}{2}}-2^{2 x-1} \Rightarrow 2^{2 x}+2^{2 x-1}=3^{x+\frac{1}{2}}+3^{x-\frac{1}{2}}$ $\Rightarrow 2^{2 x-1} .3=3^{x-\frac{1}{2}} .4 \Rightarrow 2^{2 x-3}=3^{x-\frac{3}{2}}$. $x=\frac{3}{2}$ is a solution which satisfies both sides, and is the only solution.
343. We have $\log _{10}\left[98+\sqrt{x^{3}-x^{2}-12 x+36}\right]=2$. Taking antilog,

$$
\sqrt{x^{3}-x^{2}-12 x+36}=2 \Rightarrow x^{3}-x^{2}-12 x+32=0 \Rightarrow(x+4)\left(x^{2}-5 x+8\right)=0 .
$$

We find that the only real solution is $x=-4$.
344. Given, $\log _{2 x+3}\left(6 x^{2}+23 x+21\right)=4-\log _{3 x+7}\left(4 x^{2}+12 x+9\right) \Rightarrow \log _{2 x+3}(2 x+3)(3 x+$ 7) $=4-\log _{3 x+7}(2 x+3)^{2}$
$\Rightarrow 1+\log _{2 x+3}(3 x+7)=4-2 \log _{3 x+7}(2 x+3) \Rightarrow \log _{2 x+3}(3 x+7)-\log _{3 x+7}(2 x+3)=3$
Let $\log _{2 x+3}(3 x+7)=z$ then $\log _{3 x+7}(2 x+3)=\frac{1}{z}$, and given equation becomes
$z+\frac{2}{z}=3 \Rightarrow z=1,2 \Rightarrow 2 x+3=3 x+7 \Rightarrow x=-4$, which is not possible as $2 x+3>0$ and $3 x+7=(2 x+3)^{2} \Rightarrow 4 x^{2}+9 x+2=0 \Rightarrow x=-\frac{1}{4},-2$, but again $x=-2$ is not possible as it makes $2 x+3<0$.
Hence, the only possible solution is $x=-\frac{1}{4}$
345. Rewriting the given equation $y^{4}-2 x^{4}=1402 \Rightarrow\left(y^{2}+\sqrt{2} x^{2}\right)\left(y^{2}-\sqrt{2} x^{2}\right)=701 \times 2$

Suppose x, y are integers then $x^{2}, y^{2}>0$, which implies $y^{2}+\sqrt{2} x^{2}=701$ and $y^{2}-\sqrt{2} x^{2}=2$. Adding, $2 y^{2}=703$, which has no integral solution.
346. Given equation is $|x-1|^{\log _{3} x^{2}-2 \log _{x} 9}=(x-1)^{7}$. Clearly, $x>1$ for $\log _{x} 9$ to be defined. So the equation becomes
$(x-1)^{\log _{3} x^{2}-2 \log _{x} 9}=(x-1)^{7}$, taking log of both sides
$\left(2 \log _{3} x-4 \log _{x} 3-7\right)[\log (x-1)]=0$. So either
$2 \log _{3} x-4 \log _{x} 3-7=0$ or $\log (x-1)=0 \Rightarrow x-1=1 \Rightarrow x=2$.
Let $\log _{3} x=z$ then $\log _{x} 3=\frac{1}{z}$, so we have
$2 z^{2}-7 z-4=0 \Rightarrow z=4,-\frac{1}{2}$ which gives us $x=81, \frac{1}{\sqrt{3}}$ but $x>1$ so $x=81$ is the second solution.
347. One of the solutions is $\cos x=1$ which will make exponent $\frac{1}{2}$ equalizing both sides. Thus, $x=2 n \pi$ is our first solution.

The second solution can be obtained by setting exponent to zero i.e. $\sin ^{2} x-\frac{3}{2} \sin x+\frac{1}{2}=$ 0 giving us $\sin x=1, \frac{1}{2}$ but if $\sin x=1$ then $\cos x=0$, which makes th equation invalid.

Therefore, $\sin x=\frac{1}{2}$ is our second solution. Thus, $x=n \pi+(-1)^{n} \frac{\pi}{6}, n \in \mathbb{0}$.
348. We have the equation $(x+a)(x+1991)+1=0 \Rightarrow(x+a)(x+1991)=-1$

Either $x+a=1$ and $x+1991=-1 \Rightarrow a=1993$ or $x+a=-1$ and $x+1991=1 \Rightarrow$ $a=1989$.
349. Given equation is $2^{\sin ^{2} x}+5\left(2^{\cos ^{2} x}\right)=7 \Rightarrow 2^{\sin ^{2} x}+\frac{10}{\sin ^{2} x}=7$.

Let $2^{\sin ^{2} x}=y$, then the equation becomes $y+\frac{10}{y}=7 \Rightarrow y^{2}-7 y+10=0 \Rightarrow y=2,5$.
Now $y=5$ makes $\sin ^{2} x>1$, which is not possible. If $y=2 \Rightarrow 2^{\sin ^{2} x}=2 \Rightarrow \sin x=$ $\pm 1 \Rightarrow x=n \pi+(-1)^{n}\left(\pm \frac{\pi}{2}\right)$.
350. Given equation is $x+\log _{10}\left(1+2^{x}\right)=x \log _{10} 5+\log _{10} 6 \Rightarrow x\left(1-\log _{10} 5\right)+\log _{10}(1+$ $\left.2^{x}\right)=\log _{10} 6$
$\Rightarrow x\left(\log _{10}-\log _{10} 5\right)+\log _{10}\left(1+2^{x}\right)=\log _{10} 6 \Rightarrow x \log _{10} 2+\log _{10}\left(1+2^{x}\right)=\log _{10} 6$
$\Rightarrow \log _{10} 2^{x}\left(1+2^{x}\right)=\log _{10} 6 \Rightarrow 2^{x}\left(1+2^{x}\right)=6 \Rightarrow 2^{x}=2,-3$ but for real values of $x, 2^{x} \neq-3$, thus, $2^{x}=2 \Rightarrow x=1$.
351. Given equation is $\log _{a}(a x) \cdot \log _{x}(a x)+\log _{a^{2}}(a)=0 \Rightarrow\left(1+\log _{a} x\right)\left(1+\log _{x} a\right)+\frac{1}{2}=0$ $\Rightarrow 2\left(\log _{a} x\right)^{2}+5 \log _{a} x+2=0 \Rightarrow \log _{a} x=-2,-\frac{1}{2} \Rightarrow x=\frac{1}{a^{2}}, \frac{1}{\sqrt{a}}$.
352. Given equation is $\sqrt{11 x-6}+\sqrt{x-1}=\sqrt{4 x+5}$, squaring, we get
$11 x-6+4 x+5+2 \sqrt{(11 x-6)(x-1)}=4 x+5 \Rightarrow \sqrt{(11 x-6)(x-1)}=-4 x+6$
Squaring again, $11 x^{2}-17 x+6=16 x^{2}-48 x+36 \Rightarrow 5 x^{2}-31 x+30=0 \Rightarrow x=\frac{6}{5}, 5$ but $x=5$ does not satisfy the given equation, and is result of squaring.
353. Given equation is $\sqrt{3 x^{2}-7 x-30}-\sqrt{2 x^{2}-7 x-5}=x-5$. Sqauring, $3 x^{2}-7 x-30=(x-5)^{2}+2 x^{6}-7 x-5+2(x-5) \sqrt{2 x^{2}-7 x-5}$
$\Rightarrow(x-5)\left(5-\sqrt{2 x^{2}-7 x-5}\right)=0$, so $x=5$ is one of the solutions. The other solution will be given by
$5=\sqrt{2 x^{2}-7 x-5}$, squaring again, $2 x^{2}-7 x-30=0 \Rightarrow x=6,-\frac{5}{2}$, but $x=-\frac{5}{2}$ does not satisfy the equation.

Hence, $x=5,6$ are the solutions.
354. Given euations are $y=2[x]+3$ and $y=3[x-2] \Rightarrow y=3[x]-6$. Solving yields $y=21,[x]=9$ giving $[x+y]=30$.
355. $\sum_{i=1}^{n}\left(x-a_{i}\right)^{2}=n x^{2}-2\left(a_{1}+a_{2}+\cdots+a_{n}\right) x+\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)$, which is a quadratic equation in x and coefficient of x^{2} is $n>0$, therefore, this quadratic equation will have least value at $x=\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}$.
356. Let the quotient be $\frac{n}{n^{2}-1}, n \in \mathbb{N}$. According to question,
$\frac{n+2}{n^{2}-1+2}>\frac{1}{3} \Rightarrow n^{2}-3 n-5<0 \Rightarrow \frac{3}{2}-\frac{\sqrt{29}}{2}<n<\frac{3}{2}+\frac{\sqrt{29}}{2}$.
Also, $0<\frac{n-3}{n^{2}-1-3}<\frac{1}{10} \Rightarrow 0<\frac{n-3}{n^{2}-4}<\frac{1}{10}$
Taking the first inequality, $\frac{n-3}{n^{2}-4}>0 \Rightarrow-2<n<2$ or $3<n<\infty$.
Taking the second inequality $\frac{n-3}{n^{2}-4}<\frac{1}{10} \Rightarrow \frac{n^{2}-10 n+26}{10\left(4-n^{2}\right)}<0 \Rightarrow-n<-2$ or $n>2$.
Thus, we have $3<n<\frac{3}{2}+\frac{\sqrt{29}}{2} \Rightarrow n=4$ (since n is a natural number)
Thus, we deduce the quotient to be $\frac{4}{4^{2}-1}=\frac{4}{15}$.
357. Let $f(x)=a x^{2}+b x+c$, then $g(x)=f(x)+f^{\prime}(x)+f^{\prime \prime}(x)=a x^{2}+b x+c+2 a x+b+2 a=$ $a x^{2}+(b+2 a) x+2 a+b+c$.
Given $a x^{2}+b x+c>0 \forall x \in \mathbb{R}: b^{2}-4 a c<0$ and $a>0$.
Discriminant of $g(x), D=(b+2 a)^{2}-4 a(2 a+b+c)=\left(b^{2}-4 a c\right)-4 a^{2}<0$ and $a>0$.
Thus, $g(x)>0 \forall x \in \mathbb{R}$.
358. From given equation it is clear that $f(x) \geq 0 \forall x \in \mathbb{R}$ and
$f(x)=\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right) x^{2}+2\left(a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}\right) x+\left(b_{1}^{2}+b_{2}^{2}+\cdots+b_{n}^{2}\right) \geq 0 \forall x \in \mathbb{R}$
\therefore Discriminant of its corresponsing equation $D \leq 0$, because coefficient of x^{2} is positive.
$\Rightarrow 4\left(a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}\right)^{2}-4\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+\cdots+b_{n}^{2}\right) \leq 0$
$\Rightarrow\left(a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}\right)^{2} \leq\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+\cdots+b_{n}^{2}\right)$.
359. Given equation is $x(x+1)(x+m)(x+m+1)=m^{2} \Rightarrow\left[x^{2}+(m+1) x+m\right]\left[x^{2}+(m+\right.$ 1) $x]=m^{2}$
$\Rightarrow y^{2}+m y-m^{2}=0$, where $y=x^{2}+(m+1) x . \therefore y=\frac{-m \pm \sqrt{5}}{2}$
$\Rightarrow 2 x^{2}+2(m+1) x-(\sqrt{5}-1) m=0$ and $2 x^{2}+2(m+1) x+(\sqrt{5}+1) m=0$. Thus, given equation will have four real roots if these two equations have two real roots each.
$\therefore 4(m+1)^{2}+8(\sqrt{5}-1) m>0$ and $4(m+1)^{2}-8(\sqrt{5}+1) m>0$
$\Rightarrow m^{2}+2 \sqrt{5} m+1>0$ and $m^{2}-2 \sqrt{5} m+1>0$. Thus, $|m|>2+\sqrt{5}$ or $|m|<\sqrt{5}-2$.
360. Given equation is $x^{4}+(a-1) x^{3}+x^{2}+(a-1) x+1=0 \Rightarrow\left(x+\frac{1}{x}\right)^{2}-2 \cdot x \cdot \frac{1}{x}+(a-$

1) $\left(x+\frac{1}{x}\right)+1=0$
$\Rightarrow y^{2}+(a-1) y-1=0$, where $y=x+\frac{1}{x}$
$\therefore y=\frac{-(a-1) \pm \sqrt{(a-)^{2}+4}}{2}=-\frac{(a-1) \mp \sqrt{(a-1)^{2}-4}}{2}$
$\Rightarrow 2 x^{2}+\left[(a-1)-\sqrt{(a-1)^{2}+4}\right] x+2=0$ and $2 x^{2}+\left[(a-1)+\sqrt{(a-1)^{2}+4}\right] x+2=0$
Let α, β be roots of first and γ, δ be the roots of second, then
$\alpha+\beta=-\frac{(a-1)-\sqrt{(a-1)^{2}+4}}{2}$ and $\alpha \beta=1, \gamma+\delta=-\frac{(a-1)+\sqrt{(a-1)^{2}+4}}{2}$ and $\gamma \delta=1$
$\because \sqrt{(a-1)^{2}+4}>a-1$, therefore, $\alpha+\beta>0$ and $\alpha \beta>0$, which means α, β are positive. Thus, the equation $2 x^{2}+\left[(a-1)+\sqrt{(a-1)^{2}+4}\right] x+2=0$ must have two negative roots.

For both roots to be negative $D>0 \Rightarrow\left[(a-1)+\sqrt{(a-1)^{2}+4}\right]^{2}-16>0$
$\Rightarrow a-1+\sqrt{(a-1)^{2}+4}-4>0\left[\because a-1+\sqrt{(a-1)^{2}+4}\right]+4>0$
$\Rightarrow \sqrt{(a-1)^{2}+4}>5-a \Rightarrow a \geq 5$ or $(a-1)^{2}+4>(5-a)^{2}$ where $a>5$.
$\Rightarrow \frac{5}{2}<a<\infty$.
361. Given equation is $x^{4}+2 a x^{3}+x^{2}+2 a x+1=0 \Rightarrow x^{2}+\frac{1}{x^{2}}+2 a\left(x+\frac{1}{x}\right)+1=0$
$\Rightarrow\left(x+\frac{1}{x}\right)^{2}-2 \cdot x \cdot \frac{1}{x}+2 a\left(x+\frac{1}{x}\right)+1=0 \Rightarrow y^{2}+2 a y-1=0$, where $y=x+\frac{1}{x}$
$\Rightarrow y=-a \pm \sqrt{a^{2}+1}$. When $y=-a+\sqrt{a^{2}+1}=x+\frac{1}{x} \Rightarrow x^{2}+\left(a-\sqrt{a^{2}+1}\right) x+1=0$, and, when $y=-a-\sqrt{a^{2}+1}=x+\frac{1}{x} \Rightarrow x^{2}+\left(a+\sqrt{a^{2}+1}\right) x+1=0$.

Let α, β be roots of first equation and γ, δ be roots of second equation. Then,
$\alpha+\beta=\sqrt{a^{2}+1}-a, \alpha \beta=1$ and $\gamma+\delta=-\left(a+\sqrt{a^{2}+1}\right), \gamma \delta=1$.
Clearly α, β are both imaginary or positive so from question γ, δ both must be negative. $\Rightarrow D \geq 0$, which leads to
$\left(a+\sqrt{a^{2}+1}\right)^{2}-4>0 \Rightarrow \sqrt{a^{2}+1}>2-a \Rightarrow \frac{3}{4}<a<\infty$.
362. Given system of equations can be written as $a x_{1}^{2}+(b-1) x_{1}+c=x_{2}-x_{1}, a x_{2}^{2}+$ $(b-1) x_{1}+c=x_{3}-x_{2}, \ldots, a x_{n-1}^{2}+(b-1) x_{n-1}+c=x_{n}-x_{n-1}, a x_{n}^{2}+(b-1) x_{n}+c=$ $x_{1}-x_{n}$
$\therefore f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)=0$
Case I: When $(b-1)^{2}-4 a c<0$.
In this case $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)$ will have same sign as that of $a \therefore f\left(x_{1}\right)+f\left(x_{2}\right)+$ $\cdots+f\left(x_{n}\right) \neq 0$.

Hence, the given system of equations has no solution.
Case II: When $(b-1)^{2}-4 a c=0$.
In this case $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right) \geq 0$ or $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right) \leq 0$, From (1), $f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)=0 \Rightarrow f\left(x_{1}\right)=f\left(x_{2}\right)=\cdots=f\left(x_{n}\right)=0$

But $f\left(x_{i}\right)=0 \Rightarrow a x_{i}^{2}+(b-1) x_{i}+c=0 \Rightarrow x_{i}=\frac{1-b}{2 a}$
$\therefore x_{1}=x_{2}=\cdots=x_{n}=\frac{1-b}{2 a}$.
Case III: When $(b-1)^{2}-4 a c>0$.
Roots of equation $a x^{2}+(b-1) x+c=0$ are $\alpha, \beta=\frac{1-b \pm \sqrt{(1-b)^{2}-4 a c}}{2 a}$.
If $x_{1}, x_{2}, \ldots, x_{n}$ lie between α and β, then $f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right) \neq 0$ (because it is <0 or >0 as $a>0$ or $a<0$)

If $x_{1}, x_{2}, \ldots, x_{n}$ lie in $(-\infty, \alpha)$ or (β, ∞) then also $f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right) \neq 0$.
If all roots are either α or β then $f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)=0$.
363. Case I: When $x>1$. We will have $x^{2}-\frac{3}{16}>0 \Rightarrow x<-\frac{\sqrt{3}}{4}$ or $x>\frac{\sqrt{3}}{4}$, and $x^{2}-\frac{3}{16}>$ $x^{4} \Rightarrow \frac{1}{4}<x^{2}<\frac{3}{4}$.

Thus, we see that no value of x satisfies all these inequalities at the same time.
Case II: When $x<1$. We will have $x^{2}-\frac{3}{16}>0$, which will impose same set of inequalities, and $x^{2}-\frac{3}{16}<x^{4} \Rightarrow x^{2}<\frac{1}{4}$ or $x^{2}>\frac{3}{4}$.

Thus, $\left(\frac{\sqrt{3}}{4}, \frac{1}{2}\right) \cup\left(\frac{\sqrt{3}}{2}, 1\right)$ represents the set of solution.
364. Given $\log _{\frac{1}{2}} x^{2} \geq \log _{\frac{1}{2}}(x+2) \Rightarrow x^{2} \leq x+2 \Rightarrow x^{2}-x-2 \leq 0 \Rightarrow-1 \leq x \leq 2, x \neq 0$. For lagrithm to be defined $x \neq 0$ and $x>-2$.

Also, $49 x^{2}-4 m^{4} \leq 0 \Rightarrow-\frac{2}{7} m^{2} \leq \frac{2}{7} m^{2}$.
According to question, $[-1,2] \subseteq\left[-\frac{2}{7} m^{2}, \frac{2}{7} m^{2}\right]$
$\therefore-\frac{2}{7} m^{2} \leq-1 \Rightarrow m^{2} \geq \frac{7}{2}$ and $\frac{2}{7} m^{2} \geq 2 \Rightarrow m^{2} \geq 7$.
Thus, $-\infty<m \leq-\sqrt{7}$ or $\sqrt{7} \leq m<\infty$.
365. We have to find a for which $1+\log _{5}\left(x^{2}+1\right) \geq \log _{5}\left(a x^{2}+4 x+a\right)$ is valid $\forall x \in \mathbb{R}$.
$\Rightarrow \log _{5} 5+\log _{5}\left(x^{2}+1\right) \geq \log _{5}\left(a x^{2}+4 x+a\right) \Rightarrow 5\left(x^{2}+1\right) \geq a x^{2}+4 x+a$
$\Rightarrow(5-a) x^{2}-4 x+5-a \geq 0$
$D \leq 0 \Rightarrow 16-4\left(5-a^{2}\right) \leq 0 \Rightarrow a \leq 3$ or $a \geq 7$ and $5-a>0 \Rightarrow a<5$. Combining $-\infty<a \leq 3$.
For $\log _{5}\left(a x^{2}+4 x+a\right)$ to be defined $a x^{2}+4 x+a>0$ for all real x. So $D<0 \Rightarrow$ $16-4 a^{2}<0 \Rightarrow a<-2$ or $a>2$ and $a>0$. Combining $2<a<\infty$.

Thus, common values are given by $2<a \leq 3$.
366. $2 x^{2}+2 x+\frac{7}{2}>0 \forall x \in \mathbb{R}$ because discriminant of corresponding equation is less than 0 and coefficient of x^{2} is greater than 0 .

Thus, $\log _{x}\left(2 x^{2}+2 x+\frac{7}{2}\right)$ is defined $\forall x \in \mathbb{R}$.
For $\log _{x} a\left(x^{2}+1\right)$ to be defined $0<a<\infty$.
Given equation is $1+\log _{2}\left(2 x^{2}+2 x+\frac{7}{2}\right) \geq \log _{2}\left(a x^{2}+a\right) \Rightarrow \log _{2} 2+\log _{2}\left(2 x^{2}+2 x+\frac{7}{2}\right) \geq$ $\log _{2}\left(a x^{2}+a\right)$
$\Rightarrow \log _{2} 2\left(2 x^{2}+2 x+\frac{7}{2}\right) \geq \log _{2}\left(a x^{2}+a\right) \Rightarrow 4 x^{2}+4 x+7 \geq a x^{2}+a$
$\Rightarrow(4-a) x^{2}+4 x+7-a \geq 0$. Let D be discriminant of corresponding equation, then
$D=16-4(4-a)(7-a)=4\left(4-a^{2}+11 a-28\right)=-4(a-3)(a-8)$.
When $D>0, a \neq 4,3<a<8$
When $D=0 \Rightarrow a=3,8$. When $a=3$, the equation becomes $x^{2}+4 x+4 \geq 0 \forall x \in \mathbb{R}$.
When $a=8$, the equation becomes $-(2 x-1)^{2}=0$, when $x=\frac{1}{2}$.
When $a=4$, the equation becomes $4 x+3 \geq 0$ for infinitely many real values of x.
The equation will be satisfied for $a<4$ and $D<0 \Rightarrow(a-3)(a-8)>0 \Rightarrow a<3$ or $a>8 \therefore-\infty<a<3$.

Combining all these we get possible values of a by $-\infty<a \leq 8$.
367. Let $a-c=\alpha, b-c=\beta, c+x=u$, then for $\sqrt{a-c}$ and $\sqrt{b-c}$ to be real $\alpha, \beta \geq 0$.

Also, as $x>-c \Rightarrow u>0$.
Let $x m y=\frac{(a+x)(b+x)}{c+x}=\frac{(u+\alpha)(u+\beta)}{u}=\frac{u^{2}+(\alpha+\beta) u+\alpha \beta}{u}=u+\alpha+\beta+\frac{\alpha \beta}{u}$
$\Rightarrow u^{2}+(\alpha+\beta-y)+\alpha \beta=0$, and because u is real.
$\therefore(\alpha+\beta-y)^{2}-4 \alpha \beta \geq 0 \Rightarrow y^{2}-2(\alpha+\beta) y+(\alpha-\beta)^{2} \geq 0$
Corresponding roots are $y=\frac{2(\alpha+\beta) \pm \sqrt{4(\alpha+\beta)^{2}-4(\alpha-\beta)^{2}}}{2}=\alpha+\beta \pm 2 \sqrt{\alpha \beta}$
$=(\sqrt{\alpha}+\sqrt{\beta})^{2},(\sqrt{\alpha}-\sqrt{\beta})^{2}$
But if $y \leq(\sqrt{\alpha}-\sqrt{\beta})^{2} \Rightarrow y-(\alpha+\beta)+2 \sqrt{\alpha \beta} \leq 0$ is not posssible, because $y-\alpha-\beta=$ $u+\frac{\alpha \beta}{u}>0$.

Thus, least values of y is $(\sqrt{\alpha}+\sqrt{\beta})^{2}=(\sqrt{a-c}+\sqrt{b-c})^{2}$.
368. Let $y=4(a-x)\left[x-a+\sqrt{a^{2}+b^{2}}\right]=4 z(-z+k)$, where $z=a-x$ and $k=\sqrt{a^{2}+b^{2}} \Rightarrow$ $4 x^{2}-4 k z+y=0$

Because z is real, therefore, $D \geq 0 \Rightarrow 18 k^{2}-16 y \geq 0 \Rightarrow y \leq\left(a^{2}+b^{2}\right)$
$\Rightarrow y \ngtr a^{2}+b^{2}$.
369. Let $y=\frac{x^{2}+2 x \cos 2 \alpha+1}{x^{2}+2 x \cos 2 \beta+1} \Rightarrow(y-1) x^{2}+2(y \cos 2 \beta-\cos 2 \alpha)+y-1=0$

Because x is real, therefore, $D \geq 0 \Rightarrow 4(y \cos 2 \beta-\cos 2 \alpha)^{2}-4(y-1)^{2} \geq 0$
$\left(1-\cos ^{2} 2 \beta\right) y^{2}+2(\cos 2 \alpha \cos 2 \beta-1) y+1-\cos ^{2} 2 \alpha \leq 0 \Rightarrow \sin ^{2} 2 \beta y^{2}+2(\cos 2 \alpha \cos 2 \beta-$ 1) $y+\sin ^{2} 2 \alpha \leq 0$

Roots of corresponding equation are $\frac{2(1-\cos 2 \alpha \cos 2 \beta) \pm 4 \sin (\alpha-\beta) \sin (\alpha+\beta)}{2 \sin ^{2} 2 \beta}$
$=\frac{\sin ^{2} \alpha}{\sin ^{2} \beta}, \frac{\cos ^{2} \alpha}{\cos ^{2} \beta}$, which are real and unequal and dicriminant is also greater than zero. Coefficient of y^{2} is also greater than zero.

Thus, y does not lie between the roots.
370. Let $y=\frac{2 a(x-1) \sin ^{2} \alpha}{x^{2}-\sin ^{2} \alpha} \Rightarrow y x^{2}-2 a \sin ^{2} \alpha x+(2 a-y) \sin ^{2} \alpha=0$.

Because x is real, therefore, $D \geq 0 \Rightarrow 4 a^{2} \sin ^{4} \alpha-4 y(2 a-y) \sin ^{2} \alpha \geq 0 \Rightarrow a^{2} \sin ^{2} \alpha-$ $y(2 a-y) \geq 0 \Rightarrow y^{2}-2 a y+a^{2} \sin ^{2} \alpha \geq 0$.

Roots of the corresponding equation are $y=2 a \sin ^{2} \frac{\alpha}{2}, 2 a \cos ^{2} \frac{\alpha}{2}$.
Hence, y does not lie between these roots.
371. Let $y=\tan (x+\alpha) / \tan (x-\alpha)=\left(\frac{p+q}{1-p q}\right)\left(\frac{1+p q}{p-q}\right)$, where $p=\tan x$ and $q=\tan \alpha$.
$\Rightarrow y=\frac{q p^{2}+\left(1+q^{2}\right) p+q}{-q p^{2}+\left(1+q^{2}\right) p-q}$
$\Rightarrow q(y+1) p^{2}+\left(1+q^{2}\right)(1-y) p+q(1+y)=0$, but p is real, and hence $D \geq 0$.
$\Rightarrow\left(1+q^{2}\right)^{2}(1-y)^{2}-4 q^{2}(1+y)^{2} \geq 0 \Rightarrow\left(1-q^{2}\right)^{2} y^{2}-2\left[\left(1+q^{2}\right)^{2}+4 q^{2}\right] y+\left(1-q^{2}\right)^{2} \geq 0$
Disrciminant of corresponding equation is $64\left(1+q^{2}\right)^{2} q^{2}$ and roots are $\left(\frac{1-q}{1+q}\right)^{2},\left(\frac{1+q}{1-q}\right)^{2}$

So roots are $\left(\frac{1-\tan \alpha}{1+\tan \alpha}\right)^{2},\left(\frac{1+\tan \alpha}{1-\tan \alpha}\right)^{2}=\tan ^{2}\left(\frac{\pi}{4}-\alpha\right), \tan ^{2}\left(\frac{\pi}{4}+\alpha\right)$.
Since roots are real and unequal and the coefficient of y^{2} is greater than zero, and hence, y cannot lie between the given values.
372. Let $y=\frac{a x^{2}+3 x-4}{3 x-4 x^{2}+a} \Rightarrow(4 y+a) x^{2}+3(1-y) x-(a y+4)=0$.

Since x is real, therefore, $D \geq 0 \Rightarrow 9(1-y)^{2}+4(4 y+a)(a y+4) \geq 0 \Rightarrow(9+16 a) y^{2}+$ $2\left(2 a^{2}+23\right) y+9+16 a \geq 0$

Discriminant of corresponding equation $D^{\prime}=4\left(2 a^{2}+23\right)^{2}-4(9+16 a)^{2}=16(a+$ $4)^{2}(a-1)(a-7)$

If $1<a<7 \Rightarrow D^{\prime}<0$ and $9+16 a>0$, then $(9+16 a) y^{2}+2\left(2 a^{2}+23\right) y+9+16 a>$ $0 \forall y \in \mathbb{R}$.

Hence, given expression can assume any value if $1<a<7$.
373. Let $y=\frac{(a x-b)(d x-c)}{(b x-a)(c x-d)}=\frac{a d x^{2}-(b d+a c) x+b c}{b c x^{2}-(a c+b d) x+a d}$
$\Rightarrow(b c y-a d) x^{2}+(1-y)(b d+a c)+a d y-b c=0$.
Because x is real, therefore, $D \geq 0$
$\Rightarrow(b d+a c)^{2}(1-y)^{2}-4(b c y-a d)(a d y-b c) \geq 0 \Rightarrow(b d-a c)^{2} y^{2}-2\left[(b d+a c)^{2}-\right.$ $\left.2\left(a^{2} d^{2}+b^{2} c^{2}\right)\right] y+(b d-a c)^{2} \geq 0$
Discriminant of corresponding equation $D^{\prime}=-16(a d-b c)\left(a^{2}-b^{2}\right)\left(c^{2}-d^{2}\right)$
Because $a^{2}-b^{2}$ and $c^{2}-d^{2}$ are having same sign, therefore, $D^{\prime} \leq 0$.
Hence, y can have any real value.

Answers of Chapter 5

Permutations and Combinations

1. Given, ${ }^{n} P_{4}=360 \Rightarrow n(n-1)(n-2)(n-3)=3 \times 4 \times 5 \times 6 \Rightarrow n=6$.
2. Given, ${ }^{n} P_{3}=9240 \Rightarrow n(n-1)(n-2)=20 \times 21 \times 22 \Rightarrow n=22$.
3. Given, ${ }^{10} P_{r}=720=8 \times 9 \times 10 \Rightarrow r=3$.
4. Given, ${ }^{2 n+1} P_{n-1}:{ }^{2 n-1} P_{n}=3: 5 \Rightarrow \frac{(2 n+1)!}{(n+2)!} \cdot \frac{(2 n-1)!}{(n-1)!}=\frac{3}{5} \Rightarrow \frac{(2 n+1) 2 n}{n(n+1)(n+2)}=\frac{3}{5}$ $\Rightarrow 3 n^{2}-11 n-4=0 \Rightarrow n=4,-\frac{1}{3}$, but n is an integer. Hence, $n=4$.
5. Given, ${ }^{n} P_{4}=12 \times{ }^{n} P_{2} \Rightarrow n(n-1)(n-2)(n-3)=12 \times n(n-1) \Rightarrow n^{2}-5 n-6=$ $0 \Rightarrow n=6,-1$.

But $n>0 \Rightarrow n=6$ is the only solution.
6. Given, ${ }^{n} P_{5}=20 \times{ }^{n} P_{3} \Rightarrow(n-3)(n-4)=20 \Rightarrow n^{2}-7 n-8=0 \Rightarrow n=8,-1$.

But $n>0 \Rightarrow n=8$ is the only solution.
7. Given, ${ }^{n} P_{4}:{ }^{n+1} P_{4}=3: 4 \Rightarrow \frac{n!}{(n-4)!} \cdot \frac{(n-3)!}{(n+1)!}=\frac{3}{4}$
$\Rightarrow \frac{(n-3)}{n+1}=\frac{3}{4} \Rightarrow 4 n-12=3 n+3 \Rightarrow n=15$.
8. Given ${ }^{20} P_{r}=6840=18 \times 19 \times 20 \Rightarrow r=3$.
9. Given, ${ }^{k+5} P_{k+1}=\frac{11(k-1)}{2} .{ }^{k+3} P_{k} \Rightarrow(k+5)(k+4)(k+3) \cdots 6.5=\frac{11(k-1)}{2} .(k+3)(k+$ 2) $\cdots 5.4$
$\Rightarrow(k+5)(k+4)=22 k-22 \Rightarrow k^{2}-13 k+42=0 \Rightarrow k=6,7$.
10. Given, ${ }^{22} P_{r+1}:{ }^{20} P_{r+2}=11: 52 \Rightarrow \frac{22!}{(21-r)!} \cdot \frac{(18-r)!}{20!}=\frac{11}{54}$
$\Rightarrow \frac{22.21}{(21-r)(20-r)(19-r)}=\frac{11}{52} \Rightarrow(21-r)(20-r)(19-r)=42.52=12.13 .14 \Rightarrow r=7$.
11. Given, ${ }^{m+n} P_{2}=90 \Rightarrow(m+n)(m+n-1)=10.9 \Rightarrow m+n=10$, and
${ }^{m-n} P_{2}=30 \Rightarrow(m-n)(m-n-1)=6.5 \Rightarrow m-n=6 \Rightarrow m=8, n=2$.
12. Given, ${ }^{12} P_{r}=11880 \Rightarrow \frac{12!}{(12-r)!}=9 \times 10 \times 11 \times 12 \Rightarrow r=4$.
13. Given, ${ }^{56} P_{r+6}:{ }^{54} P_{r+3}=30800: 1 \Rightarrow \frac{56!}{(50-r)!} \cdot \frac{(51-r)!}{54!}=30800$
$\Rightarrow 56 \times 55 \times(51-r)=30800 \Rightarrow 51-r=10 \Rightarrow r=41$.
14. $n .{ }^{n} P_{n}=n . n!=(n+1-1) . n!=(n+1)!-n!$. Similarly, $(n-1) \cdot{ }^{n-1} P_{n-1}=n!-$ $(n-1)!, \ldots, 2 .{ }^{2} P_{2}=3!-2!, 1 .{ }^{1} P_{1}=2!-1!$.
Adding these, we obtain L.H.S. $=(n+1)!-1!={ }^{n+1} P_{n+1}-1=$ R.H.S.
15. Given, ${ }^{n} C_{30}={ }^{n} C_{4} \Rightarrow \frac{n!}{30!(n-30)!}=\frac{n!}{4!(n-4)!}$

Equating $n-30=4$ and $n-4=30$, we obtain $n=34$ from both.
16. Given, ${ }^{n} C_{12}={ }^{n} C_{8} \Rightarrow \frac{n!}{(n-12)!12!}=\frac{n!}{(n-8)!8!} \Rightarrow n-12=8$ and $n-8=12$. Thus, $n=20$
${ }^{20} C_{17}=\frac{20!}{17!3!}=\frac{20 \times 19 \times 18}{3 \times 2}=1140$, and ${ }^{22} C_{20}=\frac{22!}{20!2!}=\frac{22 \times 21}{2}=231$.
17. Given, ${ }^{18} C_{r}={ }^{1} C_{r+2} 8 \Rightarrow \frac{18!}{(18-r)!r!}=\frac{18!}{(r+2)!(16-r)!} \Rightarrow 18-r=r+2 \Rightarrow r=8$ and $r=$ $16-r \Rightarrow r=8$.
${ }^{r} C_{6}={ }^{8} C_{6}=\frac{8!}{6!2!}=28$.
18. Given, ${ }^{n} C_{n-4}=15 \Rightarrow \frac{n!}{(n-4)!4!}=15 \Rightarrow n(n-1)(n-2)(n-3)=3 \times 4 \times 5 \times 6 \Rightarrow n=6$.
19. Given, ${ }^{15} C_{r}:{ }^{1} C_{r-1} 5=11: 5 \Rightarrow \frac{15!}{(15-r)!r!} \cdot \frac{(r-1)!(16-r!)}{15!}=\frac{11}{5} \Rightarrow \frac{16-r}{r}=\frac{11}{5} \Rightarrow r=5$.
20. Given, ${ }^{n} P_{r}=2520 \Rightarrow \frac{n!}{(n-r)!}=2520$ and ${ }^{n} C_{r}=21 \Rightarrow \frac{n!}{(n-r)!r!}=21$
$\Rightarrow \frac{2520}{r!}=21 \Rightarrow r!=120 \Rightarrow r=5 \Rightarrow n(n-1)(n-2)(n-3)(n-4)=2520=7 \times 6 \times$ $5 \times 4 \times 3 \Rightarrow n=7$.
21. We know that ${ }^{n} C_{r}={ }^{n} C_{n-r} \Rightarrow{ }^{20} C_{13}={ }^{20} C_{7}$ and ${ }^{20} C_{14}={ }^{20} C_{6}$.
$\therefore{ }^{20} C_{13}+{ }^{20} C_{14}-{ }^{20} C_{6}-{ }^{20} C_{7}=0$.
22. Given, ${ }^{n} C_{r-1}=36 \Rightarrow \frac{n!}{(n-r+1)(r-1)!}=36,{ }^{n} C_{r}=84 \Rightarrow \frac{n!}{(n-r)!r!}=84$, and $\frac{n!}{(n-r-1)!(r+1)!}=$ 126.

Dividing first two, $\frac{r}{n-r+1}=\frac{3}{7} \Rightarrow 3 n=10 r-3$, and dividing last two $\frac{r+1}{n-r}=\frac{2}{3} \Rightarrow 2 n=5 r+3$. Solving these two equations, we have $n=9, r=3$.
23. Thoudand's place can be filled in 5 ways, hundred's place can be filled in 4 ways, ten's place can be filled in 3 ways and unit's place can be filled in 2 ways.

Thus, total number of 4 digit numbers is $5 \times 4 \times 3 \times 2=120$.
Alternatively, it is ${ }^{5} P_{4}=120$.
24. Hundred's place can be filled in 3 ways excluding $0,2,3$, ten's place can be filled in 5 ways and unit's place can be filled in 4 ways.

Thus, no. of numbers between 400 and 1000 is $5 \times 4 \times 3=60$.
25. Case I: When the number is of three digits i.e. between 300 and 1000 .

Hundred's place can be filled in 3 ways using 3 , 4 or 5 , ten's place can be filled in 5 ways and unit's place can be filled in 4 ways.

Thus, total no. of three digit numbers is $5 \times 4 \times 3=60$.
Case II: When the number is of four digits i.e. between 1000 and 3000 .

Thousand's place can be filled in 2 ways using 1 or 2 . Three remaining places can be filled in ${ }^{5} P_{3}$ ways i.e. 60 ways.

Therefore, total no. of four digit numbers is $2 \times 60=120$.
Thus, total no. of numbers between 300 and 3000 is $60+120=180$.
26. Case I: When 2 is at thousands place.

Hundred's placec can be filled in 4 ways using $3,4,5,6$. Two remaining places can be filled in ${ }^{5} P_{2}$ i.e. 20 ways. Number of numbers formed in this case is $4 \times 20=80$.

Case II: When thousands place is occupied by $3,4,5$ or 6 .
We see that there are four ways to fill thousands place. Three remaining placed can be filled in ${ }^{6} P_{3}$ i.e. 120 ways. Number of numbers formed in this case is $4 \times 120=480$.

Hence, total no. of numbers is $80+480=560$.
27. Case I: When the number is of one digit.

There will be four positive numbers excluding 0 .
Case II: When the number is of two digits.
Ten's place can be filled in 4 ways using $1,2,3$ or 4 . Unit's place can be filled in ${ }^{4} P_{1}$ ways. Total no. of one digit numbers is $4 \times{ }^{4} P_{1}=16$.

Case III: When the number is of three digits.
Hundred's place can be filled in 4 ways like previous case. Remaining two places can be filled in ${ }^{4} P_{2}$ ways. Total no. of three digit numbers is $4 \times{ }^{4} P_{2}=48$.

Case IV: When the number is four digits.
Thousand's place can be filled in 4 ways like previous case. Remaining three places can be filled in ${ }^{4} P_{3}$ ways. Total no. of four digit numbers is $4 \times{ }^{4} P_{3}=96$.

Case V: When the number is of five digits.
Ten thousand's place can be filled in 4 ways. Remaining four places can be filled in ${ }^{4} P_{4}$ ways. Total no. of five digit numbers is $4 \times{ }^{4} P_{4}=96$.

Thus, total no. of numbers formed is $4+16+48+96+96=260$.
28. Total no. of numbers will be ${ }^{4} P_{4}=24$. Now since there are 4 digits and 24 numbers each no. will occur at each place for 6 times. Thus, sum of digits at each place would be $6(1+2+3+4)=60$.

Therefore, sum of all numbers $60(1+10+100+1000)=66660$.
29. When any digit except 0 will occupy unit's place the thousand's place has to be occupied by the other two digits. Thus, total no. of such numbers is $3 \times 2 \times{ }^{2} P_{2}=12$. Thus, 4 numbers for each of positive digits.

When one of $1,2,3$ occupy thousand's place total no. of numbers is $3 \times{ }^{3} P_{3}=18$. Thus, 6 numbers for each of the positive digits.

Sum of digits at units, tens and thousands place will be $4(1+2+3)=24$ and sum of digits at thousands place will be $6(1+2+3)=36$.

Thus, sum of numbers formed is $24(1+10+100)+36 \times 1000=38,664$.
30. Each of the four digits $1,2,2,3$ occurs at each place $\frac{{ }^{3} P_{3}}{2!}$ i.e. 3 times. Thus, sum of digits at each place is $3(1+2+2+3)=24$.

Thus, sum of numbers formed $24(1+10+100+1000)=26,664$.
31. Each friennd can be sent invitation by one servant. Since there are three servants each friend can receive an invitaion in three ways. Thus, total no. of ways of sending invitations is $3^{6}=729$.
32. Each prize can be given to any boy. Thus, each prize can be given in 7 ways, and hence, three prizes can be given in $7^{3}=543$ ways.
33. Each arm can occupy four positions, and thus, five arms can have $4^{5}=1024$ ways. But when all arms are in rest position no signal can be made. Hence, total no. of signal is $1024-1=1023$ ways.
34. Each ring of lock can have one of the ten letters, then three rings can have 10^{3} combinations of the letters. However, one of the combinations will be a successful combination.

Thus, total no. of possible unsuccessful attempts that can be made is $1000-1=999$.
35. We have to find numbers which are greater than 1000 but not greater than 4000 i.e. $1000<x \leq 4000$ which is same as $1000 \leq x<4000$.

Now thousands place can be filled with 1, 2 , 3 i.e. in 3 ways. Hundreds, tens and units place can be filled in 5 ways each.

Thus, total no. of numbers which can be formed is $3 \times 5^{3}=375$.
36. There are three groups. We can arrange three groups in 3 ! ways. 8 Indians can be arranged among themselves in 8 ! ways, 4 Ameriacans in 4 ! ways and 4 Englishmen in 4! ways.

Thus, required answer is $3!8!4!4$!.
37. Total no. of volumes is $4+1+1+1=7$. We can arrange these volumes in 7 ! ways. 8 books volume can be arranged in 8 ! ways, volume having 5 books can be arranged in 5 ! ways and volume of 3 books can be arranged in 3 ! ways.

Thus, required no. of arrangements is $7!8!5!3!$.
38. Taking all copies of the same book as one, we have 5 books, which can be arranged in 5 ! ways.

All copies being identical can be arranged only in 1 way. Thus, required no. of arrangements is $5!=120$.
39. The no. of permutations of the 10 papers without restriction is 10 !.

We find our no. of ways in which the best and worst paper come together then subtract from total no. of permutations to get the no. of permutations in which they never come together.

Taking the best and the worst paper as one paper we have 9 papers, which can be arranged in 9 ! ways, but the two papers can be arranged among themselves in 2 ! ways. Thus, total no. of permutatiosn in which both the papers are toegther is $9!2$!.

Thus, no. of permutations in which both are not together is $10!-9!2!=8.9$!.
40. Total no. ways in which all of them can be seated is $(5+3)!=8$!. Taking all the girls as one total no. of persons is 6 .

The no. of ways in which these can be seated is 6 !, but the 3 girls can be arranged in 3 ! ways. Thus, total no. of ways, when all three girls are together can be seate, is $6!3$!.

Thus, total no. of ways in which all girls are not together is $8!-6!3!=36,000$.
41. Let us first position I.A. students. $* I A * I A * I A * I A * I A * I A * I A *$. The IA indicated the position where I.A. students sit and $*$ indicated the positions where I.Sc. students can sit. We observe that there are 8 open places where I.Sc. students can sit.

Now, 7 I.A. students can be seated in 7 ! ways and 8 I.Sc. students can be seated in ${ }^{8} P_{5}$ ways.

Thus, no. of required arrangements is $7!\cdot \frac{8!}{3!}$.
42. Positioning the boys first, we have $* B * B * B * B * B * B * B *$, where B s represents the 7 boys and $*$ s represents the open positions for girls.

7 boys can be arranged in 7 ! ways and 3 girls can be seated in ${ }^{8} P_{3}$ ways. Thus, required no. of seating arrangememnts is $7!\cdot \frac{8!}{5!}=42.8$!.
43. Case I: When a boy sits at the first place. The possible arrangement in this case is $B G B G B G B G$, where B represents a boy and G represents a girl. Now, 4 boys and 4 girls can be arranged among themselves in 4! ways. Thus, no. of possible seating arrangement in this case is $4!4$!.

Case II: When a girl sits at the first place. Like previous case the possible no. of seating arrangements is same i.e. 4 ! 4 !.

Thus, total no. of seating arrangements is $2.4!4!=1152$.
44. Possible arrangements will have the form $B G B G B G B$, where B represents a boy, and G represents a girl. 4 boys can be seated in 4 ! ways and 3 girls can be seated in 3 ! ways.

Thus, total no. of seating arrangements is 4 ! 3!.
45. There are 12 letters in the word civilization; out of which 4 are i's and other are different.

Therefore, total no. of permutations is $\frac{12!}{4!}$, which included the word civilization itself.
46. There are 10 letters in the word university; out of which 4 are vowels, and i occurs twice. The consonants do not have repetition.

Treating the 4 vowels as one letter, because they have to appear together, we have 7 letters. These 7 letters can be arranged in 7 ! ways. But the four vowels can be arranged among themselves in $\frac{4!}{2!}$ ways.

Thus, total no.of words possible is $7!\frac{4!}{2!}$.
47. There are 8 letters in the word director; out of which 3 are vowels, and r occurs twice. Thus, total no. of words is $\frac{8!}{2!}$.

When the vowels are together, taking them as one letter, we have 6 letters, which can be arranged in $\frac{6!}{2!}$, but the three vowels can be arranged in 3 ! ways among themselves, making the total no. of words in which vowels are together $3!\frac{6!}{2!}$.

Thus, no. of words in which all three vowels are not together is $\frac{8!}{2!}-3!\frac{6!}{2!}$.
48. There are 7 letters in the word welcome; out of which e occurs twice. Thus, total no. of words that can be formed is $\frac{7!}{2!}$.

If ' o ' comes at end then we will have 6 letters left giving us total no. of words as $\frac{6!}{2!}$.
49. There are 10 letters in the word California; out of which 5 are consonants without repetition and 5 vowels with a and i occurring twice.

Thus, consonants can be arranged in 5 ! ways and vowels can be arranged in $\frac{5!}{2!2!}$ ways.
Thus, total no. of words possible such that consoanats and vowels occupy their respective places is $\frac{5!5!}{2!2!}$.
50. There are 6 letters in the word pencil with two vowels and three even positions. Thus, vowels can be arranged in ${ }^{3} P_{2}=6$ ways.

Rest four positions can be filled in $4!=24$ ways. Thus, total no. of words is $24 \times 6=144$.
51. From 5 letters $5!=120$ words can be formed. Consider the form of word when no two vowels are together. $V C V C V$, where C represents consonants and V represents the vowels.

Clearly, consonants can be arranged in 2! ways and vowels can be arranged in ${ }^{3} P_{3}=$ $3!=6$ ways.

Thus, no. of words where vowels are not together is $2 \times 6=12$.
52. There are seven digits given and we have to form numbers greater than one million, which implies all seven digits will have to used. Among the given digits 3 comes thrice and 2 comes twice. Thus, total no. of numbers which can be formed is $\frac{7!}{3!2!}=420$.

However, these numbers also contain the numbers where zero is the first digits making them less than one million. No. of such numbers is $\frac{6!}{3!2!}=60$.

Hence, no. of numbers greater than one million is $420-60=360$.
i. Total no. of persons is $5+4=9$. With no restirctions they can be seated at a round table in $(9-1)!=8$! ways.
ii. Treating all British as a single person because they have to be together we have 6 persons which can be seated in 5! ways. But 4 Britishers can be arranged among themselves in 4! ways making the total no. of ways $5!4$!.
iii. This is equal to $8!-5!4$! from previous parts.
iv. First we seat the 5 Indians in 4! ways. Then that will leave 5 positions open for Britishers between Indians to sit, which gives us ${ }^{5} P_{4}$ ways. Thus, total no. of ways in which no two Britishers are together is $4!5$!.
54. 5 Indians can be seated in a circle in 4! ways. We will have 5 positions between Indians in which we can seat 5 Britishers in ${ }^{5} P_{5}=5$! ways.

Thus, total no. of required ways is $5!4$!.
55. Taking the two delegates who have to always sit together as a single person we have 19 persons which can be seated in 18 ! ways around a round table.

However, the two delegates themselves can be arranged in 2 ! ways making the required no. of ways 18 ! 2 !.
56. No. of four digit numbers which can be formed with $1,2,4,5,7$ i.e. 5 digits is ${ }^{5} P_{4}=120$.
57. Units place cannot be filled with 0 so it can be filled in 4 ways using one of $1,2,3,4$. Rest four positions can be filled in ${ }^{4} P_{4}=4!=24$ ways.

Thus, no. of 5 digit numbers is $4 \times 24=96$.
58. No. of given digits is 7 and we have to make numbers between 100 and 1000 i.e. three digit numbers. Since there is no zero in the given digits the required no. of numbers is ${ }^{7} P_{3}=210$.
59. Units place be filled in 5 ways excluding 0 and two remaining places can be filled by remaining 5 digits in ${ }^{5} P_{2}=20$ ways.

Thus, total no. of required numbers is $5 \times 10=100$.
60. We have 10 digits. Units place can be filled in 9 ways excluding 0 . Rest 8 places can be filled using remaining 9 digits in ${ }^{9} P_{8}=9$! ways.

Thus, total no. of 9 digit numbers with no repetition is 9.9!.
61. Thousannds place can be filled in 5 ways excluding 0 . Rest three places can be filled using remaining 5 digits in ${ }^{5} P_{3}=60$ ways.

Thus, no. of required numbers is $5 \times 60=300$.
62. Thousands place can be filled in 2 ways using either 5 or 9 . Rest three places can be filled in 3 ! ways using remaining three digits.

Thus, no. of required numbers is $2.3!=12$.
63. Case I: When the number is of three digits.

Hundreds place can be filled in 3 ways using 3 , 4 or 5 . Remaining two places can be filled in ${ }^{5} P_{2}=20$ ways using remaining 5 digits.

Thus, no. of three digit numbers is $3 \times 20=60$.
Case II: When the number is of four digits.
Thousands place can be filled in 3 ways using 1, 2 or 3 . Remaining three place can be filled in ${ }^{5} P_{3}=60$ ways using remaining 5 digits.

Thus, no. of four digit numbers is $3 \times 60=180$.
Thus, no. of required numbers is $60+180=240$.
64. Since the number has to be divisible by 5 the units place digit has to be either 0 or 5 .

Case I: When 0 is at units place. Rest three places can be filled in ${ }^{4} P_{3}=24$ ways using remaining 4 digits.

Thus, no. of four digit numbers in this case is 24 .
Case II: When 5 is at units place. Thousands place can be filled in 3 ways using 4, 6 or 7 . Remaining three places can be filled in ${ }^{3} P_{2}=6$ ways using remaining 3 digits.

Thus, no. of four digit numbers in this case is $3 \times 6=18$.
Hence, total no. of required numbers is $18+24=42$.
65. Since the number has to be even, therefore, units place can be filled by either 2 or 4 i.e. in 2 ways. Rest four places can be filled in ${ }^{4} P_{4}=4!=24$ ways.

Thus, total no. of 5 digit numbers is $2 \times 24=48$.
66. Since the no. has to be divisible by 5 units place can be occupied only by 0 and 5 .

Case I: When the no. is of one digit. There are two such numbers 0 and 5.
Case II: When the no. is of two digits. If 0 occurs at units place then tens place can be filled in 9 ways giving us 9 numbers. However, when 5 occurs at units place then tens place can be filled in 8 ways giving us 8 numbers. Thus, total no. of two digits numbers is 17 .

Caae III: When the no. is of three digits. If 0 occurs at units place then remaining two places can be filled in ${ }^{9} P_{2}=72$ ways. If 5 is at units place then hundreds place can be filled in 8 ways excluding zero and tens place can be filled in 8 ways using remaining 8 digits. Thus, in this case otal no. of numbers is $72+8 \times 8=136$.

Thus, total no. of numbers is $2+17+136=155$.
67. Hundreds place can be filled in 5 ways excluding 0 . Rest of two places can be filled in ${ }^{5} P_{2}=20$ ways.

Thus, total no. of numbers is $5 \times 20=100$.

For odd numbers, units place can be filled in 2 ways using 5 or 7 . Hundreds place can be filled in 4 ways excluding 0 and units place can also be filled in 4 ways using remaining digits.

Thus, total no. of odd numbers is $2 \times 4 \times 4=32$.
68. Case I: When the no. is of one digit. There are three such numbers 0,2 and 4 .

Case II: When the no. is of two digits. When units place is occupied by 0 , tens place can be filled in 4 ways, making no. of such numbers 4 . If units place is occupied by 2 or 4 i.e. in two ways then tens place can be filled in 3 ways excluding 0 , making no. of such numbers $2 \times 3=6$.

Thus, no. of two digit numbers is $4+6=10$.
Case III: When the no. is of three digits. When units place is occupied by 0 , remaining two places can be filled in ${ }^{4} P_{2}=12$ ways, making no. of such numbers 12 . If units place is occupied by 2 or 4 i.e. in two ways then hundreds place can be filled in 3 ways excluding 0 and tens place can be filled in 3 ways using remaining three digits, making no. of such numbers $2 \times 3 \times 3=18$.

Thus, no. of three digit numbers is $12+18=30$.
Case IV: When the no. if of four digits. When units place is occupied by 0 , remaining three places can be filled in ${ }^{4} P_{3}=24$ ways, making no. of such numbers 24 . Following similarly, when units place is occupied by 2 or 4 , no. of such numbers is $2 \times 3 \times 3 \times 2=36$.

Thus, no. of four digit numbers is $24+36=60$.
Case V: When the no. is of five digits. In this case, units place must be occupied by 0 and not by 2 or 4 . Then remaining 4 places can be filled in ${ }^{4} P_{4}=24$ ways.

Thus, total no. of even numbers is $3+10+30+60+24=127$.
69. Once we fix 5 at tens place we have 5 open places and 5 different digits, which can be arranged in ${ }^{5} P_{5}$ ways.

Thus, no. of required numbers is 120 .
70. We have 7 digits, and have to form four digit numbers. No. of such numbers possible is ${ }^{7} P_{4}=840$.

We have to find numbers greater than 3400 . First we compute numbers between 3400 and 4000 . The thousands place can be filled only by 3 and hundreds place can be filled by $4,5,6$ and 7 i.e. 4 ways. Remaining two positions can be filled in ${ }^{5} P_{2}=20$ ways. Thus, no. of numbers between 3400 and 4000 is $4 \times 20=80$.

Now we compute numbers greater than 4000 . Thousands place can be filled by $4,5,6$ and 7 i.e. in 4 ways. Rest three places can be filled in ${ }^{6} P_{3}=120$ ways. Thus, no. of such numbers is $4 \times 120=480$.

Thus, no. of numbers greater than 3400 is $80+480=560$.
71. Since positions of 3 and 5 are fixed rest two positions can be filled with three remaining digits in ${ }^{3} P_{2}=6$ ways. Thus, no. of such numbers is 6 .
72. Thousands place can be filled in 5 ways excluding 0 . Rremaining three places can be filled in ${ }^{5} P_{3}=60$ ways using the five remaining digits. Thus, total no. of four digit numbers is $5 \times 60=300$.

For numbers to be greater than 3000 , thousands place has to be filled by 3,4 and 5 i.e. 3 ways. Remaining three places can be filled in ${ }^{5} P_{3}=60$. Thus, no. of numbers greater than 3000 is $3 \times 60=180$.
73. Case I: When the no. is of one digit. Total no. of numbers possible in this case is 7 including 0 .

Case II: When the no. is of two digits. Tens place can be filled in 6 ways excluding 0 and units place can be filled in 6 ways with remaining digits.

Thus, no. of two digit numbers is $6 \times 6=36$.
Case III: When no. is of three digits. Following similarly the no. of numbers is $6 \times 6 \times$ $5=180$.

Case IV: When the no. is of four digits. Following similarly the no. of numbers is $6 \times 6 \times 5 \times 4=720$.

Case V: When the no. is of five digits. Following similarly the no. of numbers is $6 \times 6 \times 5 \times 4 \times 3=2160$.

Case VI: When the no. is of six digits. Following similarly the no. of numbers is $6 \times 6 \times 5 \times 4 \times 3 \times 2=4320$.

Case VII: When the no. is of seven digits. Following similarly the no. of numbers is $6 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=4320$.

Thus, total no. of numbers is $7+36+180+720+2160+4320+4320=11743$
74. We have 5 digits so when all of them are taken at a time then no. of possible numbers is ${ }^{5} P_{5}=120$.

Each digit will occupy each place for 24 numbers. Thus, sum of all numbers at any place is $24(1+3+5+7+9)=600$. Therefore, sum of all such numbers is $600(1+10+100+$ $1000+10000)=6,666,600$.
75. We have 4 digits with 3 occurring twice. Thus, total no. of numbers is $\frac{4 P_{4}}{2!}=12$. Now each of the digits will occur at each place $\frac{12}{4}=3$ times.

Thus, sum of digits at each place is $3(3+2+3+4)=36$. Thus, sum of all possible numbers is $36(1+10+100+1000)=39,996$.
76. Let us fix 2 at units place. Then, ten thousands place can be filled in 3 ways using 4, 6, 8 and remaining two places can be filled in ${ }^{3} P_{3}=3$! ways. Thus, total no. of numbers is $3 \times 6=18$.

Number of numbers when 2 is at ten throusands place is ${ }^{4} P_{4}=24$. Thus, each positive digit will occur at units, tens, hundreds and thousands place 18 times and at thousands place 24 times.

Sum of the digits at units, tens, hundreds and thousands place will be each $18(2+4+$ $6+8)=360$ and sum of digits at ten thousands place is $24(2+4+6+8)=480$.

Thus, sum of all numbers will be $360(1+10+100+1000)+480 \times 10000=5,199,960$.
77. Total no. of five digit numbers possible is ${ }^{5} P_{5}=120$ where each digit will appear at each position $\frac{120}{5}=24$ times.

Thus, sum of digits at each place is $24(3+4+5+6+7)=600$. Therefore, sum of all such numbers is $600(1+10+100+1000+10000)=6,666,600$.
78. Let us fix 2 at units place. Then, thousands place can be filled in 2 ways using 3 or 5 and remaining two places can be filled in ${ }^{2} P_{2}=2$ ways. Thus, total no. of numbers is $2 \times 2=4$.

Number of numbers when 2 is at thousands place is ${ }^{3} P_{3}=6$. Thus, each positive digit will occur at units, tens, hundreds and thousands place 4 times and at thousands place 6 times.

Sum of digits at units, tens and hundreds place will eb each $4(2+3+5)=40$ and sum of digits at thousands place will be $6(2+3+5)=60$.

Thus, sum of all numbers will be $40(1+10+100)+60 \times 1000=64,440$.
79. Each letter can be put in any one of the four letter boxes. Thus, 5 letters can be posted in 4^{5} ways.
80. Each prize can be given in 5 ways. So three prizes can be given in 5^{3} ways.
81. Each thing can be given in p ways to p person. Thus, n things can be given in p^{n} ways.
82. Each monkey can have a master in m ways. Thus, n monkeys can have a master in m^{n} ways.
83. First prize in mathematics and physics can be given in 10 ways and second prize in 9 ways. In chemistry, first prize can be given in 10 ways.

Thus, total no. of ways is $10 \times 9 \times 10 \times 9 \times 10=81,000$.
84. The first animal can be picked in 3 ways with the possibility of it being a cow, a calf or a horse. Similarly, second animal can be picked in 3 ways. Proceeding this way all 12 animals for the stall can be picked in 3 ways.

Thus, total no. of making the shipload is 3^{12}.
85. Each delegate can be put in a hotel in 6 ways. Therefore, 5 delegates can be put in 6^{5} ways.
86. Ten thousands place can be filled in 4 ways exluding 0 . Rest 4 places can be filled in 5 ways each. Thus, total no. of 5 digits numbers is $4 \times 5^{4}=2,500$.
87. Each ring can be put in a finger in 4 ways i.e. by putting it in any finger. Thus, 6 rings can be put in 4 fingers in 4^{6} ways.
88. Thousands place can be filled in 3 ways using 3,4 or 5 . Remaining places can be filled in 6^{3} ways using any of the digits. But one of these numbers will be 3000 itself.

Thus, no. of four digit numbers which can be made is $3 \times 6^{3}-1$.
89. When the number plate is of three digits, each place can be filled in 9 ways excluding zero. This gives us 9^{3} number plates. Similalry, when the number plate is of four digits the no. of possible number plates is 9^{4}.

Thus, total no. of number plates is $9^{3}+9^{4}=10 \times 9^{3}=7,290$.
90. Each question can be answered in 4 ways, therefore, 10 questions can be answered in 4^{10} ways.

Second part: First question can be answered in 4 ways. Now this choice won't be available for the second answer so there are 3 ways. Similarly, for third and so on. Thus, total no. of ways is 4×3^{9}.
91. Treating all volumes of a book as one book we have four books which can be arranged in 4! ways. However, books having 3 volumes can be arranged in 3 ! ways among themselves and similarly books having 2 volumes can be arranged in 2 ! ways among themselves.

Thus, total no. of arranging given books is $4!3!3!2!2$!.
92. There are 14 books having different no. of copies. Treating all copies as one book we still have 14 books which can be arranged in 14! ways.

Since copies are identical there is only one way to arrange them among themselves. Thus, total no. of arranging the given books is 14 !.
93. Treating people of different nationalities as one person we have three persons, which can be arranged in 3 ! ways. Now 10 Indians can be arranged in 10 ! ways among themselves, 5 Americans can be arranged in 5 ! ways among themselves and 5 Britished can be arranged in 5 ! ways as well.

Thus, total no. of ways of seating them is $3!10!5!5$!.
94. The pattern would be $G B G B G B G B G B G B G$ where B shows boys position and G indicates possible positions of girls. Boys can be arranged in 6! ways. For girls, there are 7 open positions and 4 girls can be seated in ${ }^{7} P_{4}=\frac{7!}{3!}$ ways.

Thus, total no. of ways of seating them is $6!\cdot \frac{7!}{31}$.
95. n books can be arranged in n ! ways. Now we will find the no. of arrangements when two given books which do not have to be together are together. Treating the two books as one book we have $n-1$ books which can be arraned in $(n-1)$! ways. But the two books can be arranged in 2 ways among themselves, making the total no. of arrangements is 2. $(n-1)$!.

Thus, no. of arrangements when the two books are not together is $n!-2 \cdot(n-1)!=$ $(n-2) \cdot(n-1)$!.
96. From previous problem, we find the answer to be $4.5!=480$.
97. Following like previous problem, we find theh answer to be 480 .
98. Following like previous problem on boys and girls we first seat the 15 I.Sc. students in 15 ! ways which gives us 16 open positions for B.Sc. students, which can be seated in ${ }^{16} P_{12}$.

Thus, total no. of ways of seating the students is $15!{ }^{16} P_{12}$.
99. First we arrange black balls which will give us 20 positions in between them and on the edges for white balls. Since the balls are identical we can choose 18 positions out of 20 for white balls in ${ }^{20} C_{18}=190$ ways.
100. First we place p positive signs which will give us $p+1$ positions for negative signs between them and on the edges. Since signs are identical we can choose n positions out of $p+1$ in ${ }^{p+1} C_{n}$ ways.
101. m men can be seated in m ! ways which will have $m+1$ positions between them and on the edges for women so that no two women sit together. Now n women can be arranged in these $m+1$ positions in ${ }^{m+1} P_{n}=\frac{(m+1)!}{(m-n+1)!}$ ways.
Thus, total no. of ways to seat them is $\frac{m!(m+1)!}{(m-n+1)!}$.
102. Following like previous problem, we have $m=5, n=3$, so the answer woulld be $\frac{5!6!}{3!}$.
103. We have 12 alphabets excluding c's out of which 5 are a's, 3 are b's, $1 \mathrm{~d}, 2$ e's and 1 f , so these can be arranged in $\frac{12!}{5!3!2!}$ ways. Now these 12 alphabets will create 13 positions between them and on the edges which are to be filled by 3 c's in ${ }^{13} P_{3}$ ways.
Thus, total no. of arrangements is $\frac{12!}{5!3!2!} \times \frac{13!}{10!}$.
104. The word banana has ' a ' repeating 3 times and ' n ' repeating twice while total no. of alphabets is 6 .

Hence, to no. of different permutations is $\frac{6!}{3!2!}$.
105. There are 13 alphabets in the word "circumference". 'c' comes thrice, ' r ' comes twice, ' e ' comes thrice and rest come once.

Thus, total no. of words that can be made is $\frac{13!}{3!3!2!}$.
106. Three copies of four books means 12 books with repetition of copies. Thus, total no. of arragements on the shelf is $\frac{12!}{3!3!3!3!}$.
107. There are 12 alphabets in the word "Independence". ' n ' comes thrice, ' d ' comes twice, ' e ' comes four times, and rest come once.

Thus, total no. of words that can be made is $\frac{12!}{4!3!2!}$.
108. There are 8 alphabets in the word "Principal", of which, 'p' comes twice, 'i' comes twice and rest occur once. Treating all vowels as one alphabet we have 6 alphabets which can be arranged in $\frac{6!}{2!}$ ways.

However, the vowels themselves can be arranged among themselves in $\frac{3!}{2!}$ ways. Thus, total no. of words is $\frac{6!3!}{2!2!}$.
109. There are 11 alphabets in the word "Mathematics", of which, ' m ' comes twice, ' a ' comes twice, ' t ' comes twice and rest comes once. Thus, no. of words that can be formed is $\frac{11!}{2!2!2!}$. Treating all vowels as one alphabet and all consonants as another we have two alphabets which can be arranged in 2 ! ways. But 4 vowels can be arranged in $\frac{4!}{2!}$ ways and 7 consonants can be arranged in $\frac{7!}{2!2!}$ ways.

Thus, total no. of such words is $\frac{2!7!4!}{2!2!2!}$.
110. There are 8 alphabets in the word "Director", of which, r comes twice and rest come once. Since the vowels have to come together, therefore we treat them as one alphabet making a total of 6 alphabets which can be arranged in $\frac{6!}{2!}$ ways.

However, the three vowels can be arranged in 3! ways among themselves making no. of such words $\frac{6!3!}{2!}$.
111. There are 8 alphabets in the word "Plantain", of which, 'a' and ' n ' come twice and rest come once. Since the vowels have to come together, therefore we treat them as one alphabet making a total of 6 alphabets which can be arranged in $\frac{6!}{2!}$ ways.

However, the three vowels can be arraned in $\frac{3!}{2!}$ ways among themselves making no. of such words $\frac{6!3!}{2!2!}$.
112. There are 12 letters in the word "Intermediate", of which, ' e ' comes thrice, ' i ' and ' t ' comes twice and rest come once.

We first arrange vowels which can be done in $\frac{6!}{3!2!}$. Now because relative order does not change we have six positions for consonants giving us total no. of ways of arranging them as $\frac{6!}{2!}$.

Thus, total no. of such words is $\frac{6!6!}{3!2!2!}$.
113. There are 8 letters in the word "Parallel", of which, 'a' comes twice, ' 1 ' comes thrice and rest comes once.
Total no. of arrangements is $\frac{8!}{3!2!}$. Treating all the ls as one letter we have 6 letters which can be arranged in $\frac{6!}{2!}$ ways in which all 1 l will be together.

Therefore, no. of words in which all ls are not together is $\frac{8!}{3!2!}-\frac{6!}{2!}=3000$.
114. The parts are solved below:
i. Fixing ' D ' at the first position; rest four positions can be filled in ${ }^{4} P_{4}$ ways. Thus, no. of such words is $4!=24$.
ii. Fixing 'I' at the end; rest four positions can be filled in ${ }^{4} P_{4}$ ways. Thus, no. of such words is $4!=24$.
iii. Fixing 'l' in the middle; rest four positions can be filled in ${ }^{4} P_{4}$ ways. Thus, no. of such words is $4!=24$.
iv. Fixing ' D ' and ' I '; rest three positions can be fillled in ${ }^{3} P_{3}$ ways. Thus, no. of such words is $3!=6$.
115. There are 7 unique letter in the word "Violent" with 3 vowels. There are 4 odd places so three vowels can be arranged in ${ }^{4} P_{3}=4$! ways. Rest 4 consonants can be arrannged in $4!=24$ ways. Thus, total no. of such words is $24 \times 24=576$.
116. There are 3 distinct consonants and 3 vowels, where 'o' repeats once in the word "Saloon". Since consonants and vowels have to occupy alternate place we will have two patterns. $V C V C V C$ and $C V C V C V$, where C represents consonants and V represents vowels.

Three consonants can be arranged in 3 ! arrangements and 3 vowels can be arranged in $\frac{3!}{2!}$ arrangement. Thus, total no. of arrangements is $3!3!=36$.
117. There are 4 consonants and 3 vowels in the word "Article". Clearly, there are three even places which are to be occupied by vowels in 3! arrangements and consonants can be arranged in 4 ! arrangements for remaining 4 positions.

Thus, total no. of words is $4!3!=144$.
118. Since the number has to be greater than 4 million and we are given 7 digits the ten millions place can be occupied by either 4 or 5 in 2 ways.

Remaning digits can be arranged in $\frac{6!}{2!2!}=180$ arrangements as 2 and 3 repeat once. Thus, total no. of required numbers is $2 \times 180=360$.
119. In the given digits 2 comes thrice and 3 comes twicec so the no. of numbers is $\frac{7!}{3!2!}=420$.

For odd numbers units place is to be occupied by 1,3 or 5 . When 1 or 5 occupy units place remaining positions can be filled in $\frac{6!}{3!2!}=60$ ways making the number $2 \times 60=120$.

When one of the 3 's occupy units place rest of the positions can eb filled in $\frac{6!}{3!}=120$ ways. Thus, total no. of odd numbers is $120+120=240$.
120. There are four odd digits with both 1 and 3 repeating. The even no. 2 repeats once. In a 7 digits number there are four odd places which can be filled by odd numbers in $\frac{4!}{2!2!}=6$ ways.

Even places can be filled by 2 and 4 can be filled in $\frac{3!}{2!}=3$ ways. Thus, no. of required numbers is $6 \times 3=18$.
121. Case I: When the no. if is five digits.

When ten thousands place is occupied by 2,3 or 4 remaining four places can be filled in $\frac{{ }^{5} P_{4}}{2!}=60$ ways, making such numbers $60 \times 3=180$ in number.

When ten thousands place is occupied by 1 remaining four places can be filled in ${ }^{5} P_{4}=$ 120 ways.

Thus, total no. of five digit numbers is $180+120=300$.
Case II: When the no. is of six digits.
When hundred thousands place is occupied by 2,3 or 4 remaining five places can be filled in $\frac{{ }^{5} P_{5}}{2!}=60$ ways, making such numbers $60 \times 3=180$ in number.

When hundred thousands place is occupied by 1 remaining four places can be filled in ${ }^{5} P_{5}=120$ ways.

Thus, total no. of six digit numbers is $180+120=300$.
Thus, total no. of numbers is $300+300=600$.
122. When the digits are repeated thousands place can be filled in 5 ways excluding 0 . Remaining 3 positions can be filled by 6 digits in 6^{3} ways.

Thus, no. of such numbers is $5 \times 6^{3}=1080$.
To find the no. of numbers where at least one digit is repeated we find the no. of numbers where no digit is repeated and subtract it from previously obtained result.

For no repetition, thousands placec can be filled in 5 ways exluding 0 . Remaning 3 places can be filled by 5 digits in ${ }^{5} P_{3}=60$ ways.

Thus, no. of numbers without repetition is $60 \times 5=300$.
Thus, no. of numbers where at least one digit is repeated is $1080-300=780$.
123. There are a total of 9 flags, of which, 2 are red, 2 are blue and 5 are yellow. Thus, total no. of signals that can be made by using all of them at the same time is $\frac{9!}{2!2!5!}$.
124. When all are of same color ${ }^{6} P_{1}$ signals can be made. When all are of two colors ${ }^{6} P_{2}$ signals can be made and so on.

Thus, total no. of signals is ${ }^{6} P_{1}+{ }^{6} P_{2}+{ }^{6} P_{3}+{ }^{6} P_{4}+{ }^{6} P_{5}+{ }^{6} P_{6}=1956$.
125. Case I: When 'e' is in first place. Remaining four places can be filled in 4 ! ways.

Case II: When ' e' is in second place. First place can be filled in 3 ways and remaining 3 places in 3! ways.

Case III: When 'e' is in third place. First two places in 3×2 ways and remaining two places in 2! ways.

Case IV: When 'e' is in fourth place. First three places in 3! ways and last place with 'i'.

Thus, total no. of words is $4!+3 \times 3!+6 \times 2!+3!=60$.
Second method: Total no. of words is 5 !. In half of these 'e' will come before 'i' and in half of them after it. Thus, no. of words is $\frac{5!}{2}=60$.
126. No. of ways in which 5 men can sit around a round table is $(5-1)!=24$ arrangements.
127. When there is no restriction we have 10 girls and boys. Thus, total no. of arrangements would be 9 !.

When no girls are to sit together we first seat the boys in 4 ! arrangements giving us five open positions. These can be filled by 5 girls in 5 ! ways.

Thus, total no. of seating arrangements is $4!5$!.
128. Treating all girls as a single girl we have 7 boys and girls which can be seated in 6 ! ways. But the 4 girls can be arranged in 4! ways among themselves.

Thus, total no. of seating arrangements is $6!4!$.
129. The line can start with boys so we first seat the boys put the boys in 5 ! ways followed by girls in between boys in 5! ways. This can be repeated starting with girls in same manner.

Thus, no. of lines that can be formed is $2.5!5!$.
For a round table we have already solved previously giving us $4!5$! no. of arrangements.
130. 6 boys can be seated first in 5 ! ways giving us 6 open places in which girls can be seated in ${ }^{6} P_{5}$ ways. Thus, total no. of seating arrangements is $5!6!$.
131. Since in a necklace clockwise and anticlockwise does not matter, therefore, total no. of necklaces that can be made using 50 pearls is $\frac{49!}{2!}$.
132. Treating the two particular delegates as one delegate we have 19 delegates which can be seated in 18 ! ways. But the two delegates can be seated in 2 ! ways among themselves.

Thus, total no. of seating arrangements is $18!2$!.
133. The question effectively asks for alternate seating arrangements among gentlemen and ladies. Thus, followin from problem solved previously total no. of seating arrangements would be 4 ! 3 !.
134. 7 Englishmen can be seated in 6 ! ways giving us 7 open places which can be filled by 6 Indians in ${ }^{7} P_{6}$ ways.

Thus, total no. of seating arrangements is $6!7!$.
135. We know that if ${ }^{n} C_{x}={ }^{n} C_{y}$ then either $x=y$ or $x+y=n$. Given, ${ }^{15} C_{3 r}={ }^{15} C_{r+3}$ therefore either $3 r=r+3$ or $3 r+r+3=15$.

However, $3 r=r=3 \Rightarrow r=\frac{3}{2}$, which is not possible, therefore, $3 r+r+3=15 \Rightarrow r=3$ must be the case.
136. Given, ${ }^{n} C_{6}:{ }^{n-3} C_{3} \Rightarrow \frac{n!}{6!(n-6!)} \cdot \frac{3!(n-6)!}{(n-3)!}=\frac{33}{4}$

$$
\Rightarrow \frac{n!}{(n-3)!} \cdot \frac{3!}{6!}=\frac{n(n-1)(n-2)}{6.5 .4}=\frac{33}{4} \Rightarrow n(n-1)(n-3)=11.10 .9 \Rightarrow n=11
$$

137. Given, ${ }^{47} C_{4}+\sum_{j=1}^{5}{ }^{52-j} C_{3}$

$$
\begin{aligned}
& ={ }^{47} C_{4}+\left({ }^{51} C_{3}+{ }^{50} C_{3}+{ }^{49} C_{3}+{ }^{48} C_{3}+{ }^{47} C_{3}\right)=\left({ }^{47} C_{4}+{ }^{47} C_{3}\right)+\left({ }^{51} C_{3}+{ }^{50} C_{3}+{ }^{49} C_{3}+\right. \\
& ={ }^{4} C_{4} 8+\left({ }^{51} C_{3}+{ }^{50} C_{3}+{ }^{49} C_{3}+{ }^{48} C_{3}+{ }^{47} C_{3}\right)\left[\because{ }^{n} C_{r}+{ }^{n} C_{r+1}={ }^{n+1} C_{r+1}\right]
\end{aligned}
$$

Repeating this we have the expression equal to ${ }^{52} C_{4}$.
138. Let p be the product of r consecutive integers starting from n. Then, $p=n(n+1)(n+$ 2) $\cdots(n+r-1)$
$\Rightarrow \frac{p}{r!}=\frac{n(n+1)(n+2) \cdots(n+r-1)}{r!}=\frac{1.2 .3 \ldots .(n-1) n(n+1)(n+2) \cdots(n+r-1)}{1.2 .3 \cdots \cdots(n-1) \cdot r!}$
$=\frac{(n+r-1)!}{(n-1)!r!}={ }^{n+r-1} C_{r}$, which would be an integer, and hence, p is divisible by $r!$.
139. A triangle is formed with three vertices so the problem is essentially about choosing 3 out of m i.e. ${ }^{m} C_{3}=\frac{m(m-1)(m-2)}{6}$.
140. Number of children is 8 . No. of children to be taken at a time is 3 . Out of 8 children 3 can be selected in ${ }^{8} C_{3}$ ways. Hence, the man has to go to zoo ${ }^{8} C_{3}=56$ times.

Number of selection of 3 children out of 8 children including a particular child is $1 \times$ ${ }^{7} C_{2}=21$. Hence, a particular child will go 21 times to the zoo.
141. Let there be n students. No. of ways in which 2 students can be selected out of n is ${ }^{n} C_{2}$ i.e. we have ${ }^{n} C_{2}$ pairs.

But, for each pair of students no. of cards sent is 2 . Thus, total no. of cards sent is 2. ${ }^{n} C_{2}=n(n-1)=600 \Rightarrow n=25$ because $n \neq-24$.

Second method: Each student sends cards to $n-1$ students. Thus, total no. of cards sent is $n(n-1)=600 \Rightarrow n=25$.
142. A polygon of m sides will have m vertices. When any two vertices of the polygon are joined, either a diagonal or a side is formed.

Total no. of selections of 2 points taken at a time from m points is ${ }^{m} C_{2}$.
143. Total no. of persons is $6+4=10$. Total no. of selections of 5 persons out of 10 is ${ }^{10} C_{5}$.

Number of selections when no lady is taken is ${ }^{6} C_{5}$.
Thus, no. of selections when at least one lady is present is ${ }^{1} C_{5} 0-{ }^{6} C_{5}=252-6=246$.
144. (a) Total no. of selections of 3 points out of 10 points is ${ }^{10} C_{3}=120$. Number of selections of 3 points out of 4 collinear points is ${ }^{4} C_{3}=4$.

Thus, no. of triangles formed is $120-4=116$.
(b) Total no. of selections of 2 points out of 10 points is ${ }^{10} C_{2}=45$. No. of selection of points when only one line is formed is ${ }^{4} C_{2}=6$

Therefore, no. of straight lines formed is $45-{ }^{4} C_{2}+1=40$. (We take 1 line formed from four collinear points)
(c) Total no. of selections of 4 points out of 10 points is ${ }^{10} C_{4}=210$. No. of selection of points when no quadrilateral is formed is ${ }^{4} C_{3} \cdot{ }^{6} C_{1}+{ }^{4} C_{4} \cdot{ }^{6} C_{0}=25$.

Thus, no. of quadrilaterals formed is $210-25=185$.
145. Zero or more oranges can be selected from 4 oranges in 5 ways because oranges are identical. Similalry, the no. of selection for apples would be 6 and for mangoes it would be 7 .

Thus, no. of selections when all three types of fruits are selected from is $5 \times 6 \times 7=210$. But one of these selections will contain 0 fruits.

Thus, required no. of selections is 209.
146. No. of selections by which 1 or more green dye can be chosen is ${ }^{5} C_{1}+{ }^{5} C_{2}+{ }^{5} C_{3}+$ ${ }^{5} C_{4}+{ }^{5} C_{5}=2^{5}-1$. No. of selections by which 1 or more blue dye can be chosen is ${ }^{4} C_{1}+{ }^{4} C_{2}+{ }^{4} C_{3}+{ }^{4} C_{4}=2^{4}-1$. No. of selections by which 0 or more red dye can be chosen is ${ }^{3} C_{0}+{ }^{3} C_{1}+{ }^{3} C_{2}+{ }^{3} C_{3}=2^{3}=8$.

Thus, required no. of selections is $21 \times 15 \times 8=3720$.
147. Factos of 216, 000 are $52 \mathrm{~s}, 33 \mathrm{~s}$ and 25 s . Zero or more 2 s can be selected in $5+1=6$ ways. Zero or more 3 s can be selected in $3+1=4$ ways. Zero of more 5 s can be selected in $2+1=3$ ways.

Thus, no. of divisors is $6 \times 4 \times 3-1=71$ because one of these would contain no factor. Adding 1 to the no. of divisors we have total no. of divisors as 72 .
148. A student can fail in one, two, three, four or all of five subjects. Thus, no. of ways of failing is ${ }^{5} C_{1}+{ }^{5} C_{2}+{ }^{5} C_{3}+{ }^{5} C_{4}+{ }^{5} C_{5}=2^{5}-1=31$.
149. Each person can be given 4 things. No. of ways of giving 4 things out of 12 to the first person is ${ }^{12} C_{4}$. Then, 8 things remain. No. of ways of giving 4 things out of 8 to the second person is ${ }^{8} C_{4}$. Now third person can receive 4 things out of 4 in ${ }^{4} C_{4}$ ways.

Thus, required no. of ways is ${ }^{12} C_{4} \times{ }^{8} C_{4} \times{ }^{4} C_{4}=\frac{12!}{(4!)^{3}}$.
No. of ways in which 12 things can be divided equally among 3 sets is $\frac{12!}{(4!)^{3} \cdot 3}$.
150. There are 11 letters in the word "Examination" in which three occur in pairs i.e. 'A', ' N ' and ' I '. The different letters are E, X, A, M, I, N, T, O i.e. 8 .

Case I: When two pairs of identical letters are chosen.
The two pairs can be chosen from three in ${ }^{3} C_{2}=3$ ways. These letters can be arranged among themselves in $\frac{4!}{2!2!}=6$ ways. Thus, total no. of words formed is $3 \times 6=18$.

Case II: When one pair of identical letters is chosen and remaining two letters are different.

The pair of identical letters can be chosen in ${ }^{3} C_{1}=3$ ways. The two different letters can be chosen in ${ }^{7} C_{2}=21$ ways. These letters can be arranged in $\frac{4!}{2!}$ ways.

Thus, total no. of words formed is $3 \times{ }^{7} C_{2} \times \frac{4!}{2!}=756$.
Case III: When all four letters are different.
No. of words that can be formed is ${ }^{8} P_{4}=1680$.
Thus, total no. of words formed is $756+18+1680=2454$.
151. We need to select 4 vertices out of n of a polygon to form a quadrilateral. No. of selections of 4 points is ${ }^{n} C_{4}$.
152. No. of ways of selecting 3 friends out of 7 is ${ }^{7} C_{3}=35$. Thus, no. of parties that can be given is 35 .

Suppose a particular friends is mandatory in a party then 2 other friends can be selected in ${ }^{6} C_{2}$ ways. Thus, no. of parties a particular friend will attend is ${ }^{6} C_{2}=15$.
153. If p things always occue then we have to select remaning $r-p$ things out of $n-p$ ways, which is ${ }^{n-p} C_{r-p}$.
154. (a) If a particular member is always added then we have to choose 5 more from remaining 11, which is ${ }^{11} C_{5}$.
(b) If a particular member is always excluded then we have to chhose 6 more from remaining 11 , which is ${ }^{11} C_{6}$.
155. (a) Total no. of ways of seating 6 students is ${ }^{6} P_{6}=720$. Now we will put C and D together and subtract that from total no. of ways to find no. of ways of seating them when C and D are not together.

Treating C and D as one student we have 5 students which can be seated in ${ }^{5} P_{5}=120$ ways. But these two can be arranged among themseleves in 2 ! ways making total no. of ways $120 \times 2=240$.

Thus, no. of ways of seating these 6 students together when C and D are not together is $720-240=480$.
(b) If C is always included then we need to select 3 more from remaining 5 , which can be done in ${ }^{5} C_{3}=10$ ways.
(c) Since E is always excluded we have only 5 students left. Thus, following previous part it can be done in ${ }^{4} C_{3}=4$ ways.
156. Let there be n stations. To print a ticket we need a source station and a desination station. So different tickets which can be printed with n stations is ${ }^{n} C_{2}$, which is 105 in our case.
$\therefore \frac{n!}{(n-2)!2!}=105 \Rightarrow n(n-1)=210=14.15 \Rightarrow n=15$.
157. No. of ways to select 2 points to form a straight line out of 15 points is ${ }^{15} C_{2}=105$. This will include 2 points out of 6 collinear points which will actually contain only 1 straight line out of it. So no. of ways to choose 2 points out of these 6 points is ${ }^{6} C_{2}=15$. Thus, total no. of straight lines formed is $105-10+1=91$.

No. of ways of choosing 3 points out of 15 is ${ }^{15} C_{3}=455$. We have to not consider cases when all three points aree selected from collinear points as those won't form a triangle. No. of selections of 3 points out of collinear points is ${ }^{6} C_{3}=20$.

Thus, total no. of triangles formed is $455-20=435$.
158. No. of ways of choosing 4 points out of 10 is ${ }^{10} C_{4}=210$. When 3 or 4 points are chosen from 5 collinear pooints the quadrilateral won't be formed. When we choose 3 points from collinear points we have ${ }^{5} C_{3}=10$ ways, and 1 remaining point from 5 non-collinear points in 5 ways. Thus, total no. of such selections is $10 \times 5=50$.

When all four points are chosen from collinear points; this can be done in ${ }^{5} C_{4}=5$ ways.
Thus, total no. of quadrilaterals formed is $210-50-5=155$.
159. There is a total of 12 points and we can choose 3 points from these in ${ }^{12} C_{3}=220$ ways. However, these points must not come from points of same side.

Thus, no. of triangles formed is $220-{ }^{3} C_{3}-{ }^{4} C_{3}-{ }^{5} C_{3}=205$.
160. We need one goalkeeper in the team and two are available so goalkeeper can be chosen in 2 ways. Rest of 10 players can be chosen from remaining 12 players in ${ }^{12} C_{10}=66$ ways.

Thus, no. of ways in which a team of 11 out of 14 can be formed is $2 \times 66=122$.
161.2 men can be chosen from 5 men in ${ }^{5} C_{2}=10$ ways. Similarly, 2 women from 6 women can be chosen in ${ }^{6} C_{2}=15$ ways.

Thus, total no. of ways of forming the committee is $10 \times 15=150$.
162. Since each boy is to receive one article at least one boy will receive 2 articles. These two articles can be given to one of the boys in ${ }^{8} C_{2}$ ways. The second article can be given in ${ }^{7} C_{1}$ ways and so on.
Since first article can be given to any of the seven boys the above result if multiplied by 7 will give us total no. of ways of distributing the articles.
Thus, total no. of ways is $7\left({ }^{8} C_{2}+{ }^{7} C_{1}+{ }^{6} C_{1}+{ }^{5} C_{1}+{ }^{4} C_{1}+{ }^{3} C_{1}+{ }^{2} C_{1}+{ }^{1} C_{1}\right)$.
163. Case I: When there are 3 ladies in the committee.

No. of ways of choosing 3 ways out of 4 ladies is ${ }^{4} C_{3}$. Remaining 2 members can be selected out of 7 men is ${ }^{7} C_{2}$ ways. Thus, no. of such committees is ${ }^{4} C_{3} \times{ }^{7} C_{2}$.

Case II: When there are 4 ladies in the committee.
No. of ways of choosing 4 ways out of 4 ladies is ${ }^{4} C_{4}$. Remaining 1 member can be selected out of 7 men is ${ }^{7} C_{1}$ ways. Thus, no. of such committees is ${ }^{4} C_{4} \times{ }^{7} C_{1}$.
Thus, total no. of committees is $84+7=91$.
164. There are three cases. Two questions from first group and four questions from second group, three questions from each group, and four questions from first group and two questions from second group.

This can be done in ${ }^{5} C_{2} \times{ }^{5} C_{4}+{ }^{5} C_{3} \times{ }^{5} C_{3}+{ }^{5} C_{4} \times{ }^{5} C_{2}=50+100+50=200$.
165. 3 students can be chosen from 20 students in ${ }^{20} C_{3}$ ways.
(a) When a particular professor is included the second professor for the committee out of remaining 9 professors can be included in ${ }^{9} C_{1}$ ways.
Thus, total no. of such committees is ${ }^{20} C_{3} \times{ }^{9} C_{1}$.
(b) When a particular profession is always excluded then two professors can be chosen from remaining 9 in ${ }^{9} C_{2}$ ways.
Thus, total no. of such committees is ${ }^{20} C_{3} \times{ }^{9} C_{2}$.
Thus, total no. of committees is ${ }^{20} C_{3} \times{ }^{9} C_{1}+{ }^{20} C_{3} \times{ }^{9} C_{2}$.
166. The committee can comprise of $1,2,3,4$ or 5 girls, which can be selected out of 7 girls in ${ }^{7} C_{1},{ }^{7} C_{2},{ }^{7} C_{3},{ }^{7} C_{4}$ or ${ }^{7} C_{5}$ ways respectively.
Remaining 4, 3, 2, 1 boys can be selected out of 6 boys in ${ }^{6} C_{4},{ }^{4} C_{3},{ }^{4} C_{2},{ }^{4} C_{1}$ ways respectively.

Thus, no. of ways in which committee can be formed is ${ }^{7} C_{1} \times{ }^{6} C_{4}+{ }^{7} C_{2} \times{ }^{6} C_{3}+{ }^{7} C_{3} \times$ ${ }^{6} C_{2}+{ }^{7} C_{4} \times{ }^{6} C_{1}+{ }^{7} C_{5} \times{ }^{6} C_{0}$.
167. (a) When there are no restrictions the committees can be formed by choosing 5 out of $6+4=10$ persons, which is ${ }^{10} C_{5}=252$.
(b) When no lady is selected no. of ways to form committess is ${ }^{6} C_{5}=6$. Thus, no. of committees when at least one lady is selected is $252-6=246$.
168. Total no. of committees would be ${ }^{12} C_{5}$. No. of committees comprising only of men would be ${ }^{8} C_{5}$.
Thus, no. of committees including at least one lady would be ${ }^{12} C_{5}-{ }^{8} C_{5}=736$.
169. Out of 6 hockey players $4,5,6$ hockey players can be selected in ${ }^{6} C_{4},{ }^{6} C_{5},{ }^{6} C_{6}$ ways respectively. Remaining 8, 7, 6 players can be chosen from remaining 9 players in ${ }^{9} C_{8},{ }^{9} C_{7},{ }^{9} C_{6}$ ways respectively.

Thus, no. of ways in which players can be selected is ${ }^{6} C_{4} \times{ }^{9} C_{8}+{ }^{6} C_{5} \times{ }^{9} C_{7}+{ }^{6} C_{6} \times{ }^{9} C_{6}=$ $15 \times 9+6 \times 36+1 \times 84=435$.
170. Total no. of selections of 5 out of $7+4=11$ persons is ${ }^{11} C_{5}$. When no ladies are selected, no. of ways of forming the boat party is ${ }^{7} C_{5}$.

Thus, no. of ways of forming boat party when at least one lady is selected is ${ }^{11} C_{5}-{ }^{7} C_{5}=$ 771.
171. Since girls are not to be outnumbered we have to have $3,4,5$ or 6 girls out of 6 in the committee, which can be done in ${ }^{6} C_{3},{ }^{6} C_{4},{ }^{6} C_{5}$ or ${ }^{6} C_{6}$ ways respectively.

Remaining 3, 2, 1 positions can be filled from 4 boys in ${ }^{4} C_{3},{ }^{4} C_{2},{ }^{4} C_{1}$ ways respectively.
Thus, total no. of ways in which committee can be formed is ${ }^{6} C_{3} \times{ }^{4} C_{3}+{ }^{6} C_{4} \times{ }^{4} C_{2}+$ ${ }^{6} C_{5} \times{ }^{4} C_{1}+{ }^{6} C_{6}=20 \times 4+15 \times 6+6 \times 4+1=195$.
172. No. of relatives which can be invited is $5,6,7$ out of 8 relatives in ${ }^{8} C_{5},{ }^{8} C_{6},{ }^{8} C_{7}$ ways. Remaining 2, 1 friends can be chosen from remaining 4 friends which are no relatives in ${ }^{4} C_{2},{ }^{4} C_{1}$ ways.

Thus, no. of ways in which invitations can be made is ${ }^{8} C_{5} \times{ }^{4} C_{2}+{ }^{8} C_{6} \times{ }^{4} C_{1}+{ }^{8} C_{7}=$ $56 \times 6+28 \times 4+8=336+112+8=456$.
173. The students can choose to answer the question paper in 4 ways. 5 questions from first paper and 2 from second paper, 2 questions from first paper and 5 questions from second paper, 4 questions from first paper and 3 from second paper, and 3 questions from first paper and 3 questions from second paper.

Because both papers contain 6 questions each the no. of ways for first and second method will be same and ways for third and fourth method will be same as well. So we can find no. of ways in two cases and multiply the sum by 2 to arrive at the answer.

Case I: When the student chooses first or second method.
5 questions can be chosen out of 6 in ${ }^{6} C_{5}$ ways and 2 questions can be chosen out of 6 in ${ }^{6} C_{2}$ ways.

Thus, no. of selections in this case is ${ }^{6} C_{5} \times{ }^{6} C_{2}=6 \times 15=90$.
Case II: When the student chooses third or fourth method.
Following like previous case, no. of selections in this case is ${ }^{6} C_{4} \times{ }^{6} C_{3}=15 \times 20=300$.
Thus, total no. of selections of questions is $2(90+300)=780$.
174. We can choose 1 point out P and Q in ${ }^{2} C_{1}$ and 2 from remaining other 8 points in ${ }^{8} C_{2}$ ways, making no. of triangles ${ }^{2} C_{1} \times{ }^{8} C_{2}=56$. Clearly, half of these would include P but exclude Q. Thus, 28 triangles will include P and exclude Q.

In second case, both P and Q would be chosen in 1 way and 1 point from the other line would be chosen in ${ }^{8} C_{1}=8$ ways. This gives us 8 triangles.

Thus, total no. of triangles is $56+8=64$.

III License

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3 .

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties-for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus published on the MMC site.
"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization.
"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BYSA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:
" Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License"."

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with ... Texts." line with this:
" with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST."

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

[^0]: 1 Thus, a cardinal rule of sets is broken by multisets because a set is not supposed to have duplicates or repeated elements. The set $\{a, a, b\}$ is same as the set $\{a, b\}$ but not so for multisets
 ${ }^{2}$ In standard set-theory's notation, we could denote the multiset M using ordered pairs as $\{(a, 3),(b, 2)\}$

[^1]: ${ }^{1}$ In no circumstance, we need to consider different sizes of ∞.

