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Preface

This is a book on algebra, which, covers basics of algebra till high school level. It covers the
most essential topics to take up a bachelor's course where knowledge of algebra is required.
There is no specific purpose for writing this book. This is a book for self study and is not
recommended for courses in schools and universities. I will try to cover as much as I can and
will keep adding new material over a long period. I have no interest in writing a book in a
fixed way which serves a university or college course as I have always loved freedom. Life,
freedom and honor in that order are important.

Algebra is probably one of the most fundamental subjects in Mathematics as further study
of subjects like trigonometry, coordinate geometry and rest all depend on it. That is the
primary reason I have chosen it to be the first subject in mathematics to be dealt with. It
is very important to understand algebra for the readers if they want to advance further in
mathematics.

How to Read This Book?

Every chapter has theory. Read that first. Make sure you understand that. Of course, you
have to meet the prerequisites for the book. Then, go on and try to solve the problems. In
this book, there are no pure problems. Almost all have answers except those which are of
similar kind and repetitive in nature for the sake of practice. If you can solve the problem
then all good else look at the answer and try to understand that. Then, few days later take
on the problem again. If you fail to understand the answer you can always email me with
your work and I will try to answer to the best of my ability. However, if you have a local
expert seek his/her advice first. Just that email is bad for mathematics.

Note that mathematics is not only about solving problems. If you understand the theory
well, then you will be able to solve problems easily. However, problems do help with the
enforcement of theory in your mind.

I am a big fan of old MIR publisher's problem books, so I emphasize less on theory and
more on problems. I hope that you find this style much more fun as a lot of theory is boring.
Mathematics is about problem solving as that is the only way to enforce theory and find
innovtive techniques for problem solving.

Some of the problems in certain chapters rely on other chapters which you should look
ahead or you can skip those problems and come back to it later. Since this books is meant
for self study answers of most of the problems have been given which you can make use of.
However, do not use for just copying but rather to develop understanding.

Who Should Read This Book?

Since this book is written for self study anyone with interest in algebra can read it. That
does not mean that school or college students cannot read it. You need to be selective as to
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what you need for your particular requirements. This is mostly high school course with a
little bit of lower classes' course thrown in with a bit of detail here and there.

Prerequisite

You should have knowledge till grade 10th course. Attempt has been made to keep it simple
and give as much as background to the topic which is reasonable and required. However,
not everything will be covered below grade 10.

Goals for Readers

The goal of for reading this book is becoming proficient in solving simple and basic problems
of algebra. Another goal would be to be able to study other subjects which require this
knowledge like trigonometry or calculus or physics or chemistry or other subjects. If you can
solve 95% problems after 2 years of reading this book then you have achieved this goal.

All of us possess a certain level of intelligence. At average any person can read this book.
But what is most important is you have to have interest in the subject. Your interest gets
multiplied with your intelligence and thus you will be more capable than you think you can
be. One more point is focus and effort. It is not something new which I am telling but I am
saying it again just to emphasize the point. Trust me if you are reading this book for just
scoring a nice grade in your course then I have failed in my purpose of explaining my ideas.

A lot of problems are given in the book for practice and you should try to solve all of
these. Solutions are given to assist you for understading. However, use them as a last resort.
Slowly more and more problems will be added. There are very easy problems which should
be practiced to progress towards more difficcult problems.

Also, if you find this book useful feel free to share it with others without hesitation as it is
free as in freedom.

Confession

I feel like an absolute thief while writing this book for nothing given in this book is mine.
All of it belongs to others who did the original work and I have just copied shamelessly. T
have nothing new to put in the book. This book is just the result of the pain I feel when I
see young children wasting their life for they are poor. And therefore, this book is licensed
under GNU FDL. Even if [ manage to create few new problems it is still based on knowledge
of other pioneers of the subject but perhaps that is how we are supposed to progress bit-by-
bit.

Acknowledgements
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with Asymptote is that because it uses I'TEX so a huge installation of Texlive is needed.
Metapost on the other hand comes with standalone distribution of ConTEXt.

I would like to thank my parents, wife and son for taking out their fair share of time and
the support which they have extended to me during my bad times. After that I would like
to pay my most sincere gratitude to my teachers particularly H. N. Singh, Yogendra Yadav,
Satyanand Satyarthi, Kumar Shailesh and Prof. T. K. Basu. Now is the turn of people from
software community. I must thank the entire free software community for all the resources
they have developed to make computing better. However, few names I know and here they
go. Richard Stallman is the first, Donald Knuth, Edger Dijkstra, John von Neumann after
that. I am not a native English speaker and this book has just gone through one pair of
eyes therefore chances are high that it will have lots of errors(particularly with commas and
spelling mistakes). At the same time it may contain lots of technical errors. With time and
revisiosn those errors will be removed.

Shiv Shankar Dayashru
Nalanda, 2023



I
Theory and Problems



Chapter 1
Logarithm

Definition: A number z is called the logarithm of a number y to the base b if b* = y, where
b>0,b#1,y>0.

Mathematically, it is represented by the equation log, y = = or b* = y.

Notes:

1. The conditions b > 0,b # 1 and y > 0 are necessary in the definition of logarithm.

2. When b = 1 suppose logarithm is defined, and we have to find the value of log; y. Let
logiy=z=1"=y=1=y.
If log; 2 is defined then 1 = 2. So we see that b = 1 leads to meaningless results. Similarly,
it is true for b # 1.

3. Similarly if y < 0, then b* = y, which is meaningless as L.H.S. is positive while R.H.S. is
negative.

4. Let the condition to be true when b = 0. Thus, 0 = y = 0 = y. Thus, if log 2 is defined
then 0 = 2. Hence, our assumption leads to failure.

5. No number can have two different logarithms to a given base. Assume that a number N
has two different logarithms = and y with base b. Then, log, N = x and logy, N =y
= N=0b"and N =Y
> =VW=r=y

6. When the number or base is negative the value of logarithm comes out to be a complex

number with non-zero imaginary part.
Let loge(—5) = 2 = log.(5.¢'™) = z (In complex numbers ¢™ = —1)

z =log. 5+ im

1.1 Important Results

1.

logy1 =0

Proof: Let logp l =2 =b*"=1=2=0
logyb=1

Proof: Let logpb =2 =0"=b=x=1
plose N _ p

Proof: Let logy N = 2 = b = N = b8 N = N

1.2 Important Formulas



. logpa =

Logarithm

. logp(z.y) =logy x + logy y, (x > 0,y > 0)

Proof: Let logy x = m = b™ = z. Similarly, b" =y

xy = b = b° (say)

m+n=o0 = logy(z.y) =log, z + logy y

Corollary: logy(xyz) = logy x + logy, y + logy, 2

If 2, y < 0, then logy(z.y) = logy || + logy |y

. logb<§> = logy  — logp v, (z,y > 0)

Proof: Let logpz =m = b" =x and logyy =n =" =y
$=0"""and logb<%) =o0=b"=7

ém—n:oélogbG) = logy x — logy, y

1ogb<§> = logy, || — logy |y|, (z,y < 0)

. logy N¥ = klogy N

Proof: Let logy N =2 = b* =N

Let logy NF =y = bW = N = ¥ = 0" = y = ka
= logy N¥ = klog, N

. logy a = log. alogy ¢

Proof: Let logra =2 =b" =a
logca=y=c"=a

logrc=z2z=0b"=c

b*=a=cY =0 =2 =yz=log,a =log.alog,c

log. a

Alternatively, we can also write it as logy a = Tog b

. logyr N = +logy N[b > 0]
Proof: From previous item we can infer that logyx N =

logyx N = 1 logy N[b < 0,k = 2m, m € N]

1
loga, b
Proof: Let logra =2 = 0" =a
Also let logob=y=a"=b=a"=zy=1

!
= logba—wlogﬂ’b

logN __
logb*® —

% logy N
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1.3 Bases of Logarthims

There are two popular bases for logarithms. Common base is 10 and another is e. When
base is 10, logarithm is known as common logarithm and when base is e, logarithm is known
as natural or Napierian logarithm.

log1p x is also written as lgx and log. = as Inx.

1.4 Characteristics and Mantissa

Typically a logarithm will have an integral part and a fractional part. The integral part is
called characteristics and fractional part is called mantissa.

For example, if logax = 4.7 then 4 is characteristics and .7 is mantissa of logarithm. If
characteristics is less that zero then at times it is written with a bar above it. For example,
logz =—5.3=5.3

As you can easily figure out the number of possitive integers having base b and characteristics
nis b" T —pn,
1.5 Inequality of Logarithms

If b > 1 and logy, ©1 > logy x2 then z1 > xo. If b < 1 and log, 1 > logy, x5 then 1 < xa.

1.6 Expansion of Logarithm and Its Graph

The logarithm series is given below:

2 .':U3 .T4
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log x

Figure 1.1 Graph of log 2.

So we can see that rate of increment of logarithm function decreases. Rate of increment of
logarithm function is given by % at any point z, as we will learn when we study Calculus
and derivatives.

1.7 Problems

. 10
1. Find the value of z, where log gz = 3.

2. Prove that logy a.log. b.log, c = 1.

3. Prove that logs loga log, 5625 = 1.

4. If a® + b* = 23ab, then prove that logf%E = %(log a+logh).
5. Prove that 710g}—§+510g§+310g% = log 2.
6. Find the value of logtan 1° + log tan 2° + ... + log tan 89°.

s
7. Evaluate logg tan g.

lo, b
8. Evaluate = Sa2 7
og\/zb

9. Evaluate log, s .008.



10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.1

30.

31.

32.

33.

34.

35.
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Evaluate log,, 5 144.

. Prove that logs logz log, 581 = 1.

Prove that log, x log, y = logy, x log, y.
Prove that logs logs logs 16 = 1.
Prove that log, x = log, zlog. b ...log,, mlog, n

Prove that a® = 10% logyg a.
If a* + b? = Tab, prove that log{% (a+b)} = % (loga + logb).

logalog, b
Prove that m loga b.

Prove that log(1 + 2+ 3) = log 1 + log 2 + log 3.

Prove that 2log(1+2+4+ 7+ 14) =log1 + log 2 + log4 + log 7 + log 14.

Prove that log 2 + 16log%—g+ 1210g%§+ 7log§% =1

logg 11 . logsz 11 1
logs 13 * log sz

Simplify 3v108s2 — gvisz3,

Simplify

Find the least integer n such that 7 > 10°, given that log;o 343 = 2.5353.
If a, b, ¢ are in G.P., prove that log, x, log, =, log. x are in H.P.

Prove that logsin 8z = 3log 2 + log sin « + log cos x + log cos 2z + log cos 4z.
If  =logaq @, y = logs, 2a and z = logy, 3a then prove that zyz + 1 = 2yz.

If a and b are the lengths of the sides and ¢ be the length of the hypotenuse of a right-angle
triangle and ¢ — b # 1 and ¢+ b # 1, prove that log.., a +log._, a = 2log.p alog._p a.

logz logy logz
If y—z  z—x

, then prove that z%yYz* = 1.

yzlog(yz) _ zxlog(zz) _ zylog(zy) 2__ .y _ .2
If T b , prove that z* = y¥ = 2°.

Prove that (yz)logyflogz (Zx)longlogw (xy)logacflogy =1.

1 1

1 —
Prove that logz N + logz N +o Tt logi9ss N~ logiogst N*

If 0 < 2 < 1, prove that log(1 + z) + log(1 4+ 22) 4+ log(1 4+ z%) 4 ... to co = —log(1 — ).

Find the sum of the series log% + bg% + ... up to n terms.

If log4 10 = z, logs 20 = y and logs 8 = z, prove that m+1 + %

If x = log, bc, y = logy, ca, z = log. ab, prove that z+1 + -




36.

37.

38.

39.

40.

41.

42.

43.

44

45.

46.

47.
48.
49.
50.

51.

52.
53.
54.
55.
56.

57.

. Show that
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1 1 -1

1
Prove that 1+logy a+logy ¢ + 1+log. a+log. b + 1+log, b+log, c

Prove that xlogyflogzylonglogmzlogmflogy —1.

loga __ logb __ logc Ty .z
If Y=z = z—wz = z—y Drove that a®bYc* = 1.

If z(y+z—z) _ ylz+z—y)

_ zzty—2)
logx - -

Togy a—y  brove that y*2¥ = 2%z = z¥y".

1 logb logc 21c
1If ;Eg __logb _ logc b+<,b¢+aca.+b =1.

— = o3 pbrove that a

1If logz _ logy _ log =z

r = 7—p = p_g» brOVE that 297"y TP2PTT = gPyd,",
L R 1
If y = aTea= and z = aT-°gav, prove that x = qT-sa=,

Let f(z) = m7 fly) = e/ and z = &/®), prove that z = /).

o 1
~ logazin’

1 1 1 1
logan + logzn + logan tot logazn
Show that 2(loga + loga® 4 loga® + ... +loga™) = n(n + 1) log a.

Find the number of digits in 12'2, without actual computation. [Given log 2 = 0.301 and
log3 = 0.477]

How many positive integers have a characteristics of 2 when base is 3.
Prove that log, x log, y = logy, x log, y.
If a, b, ¢ are in G.P., prove that log, x, logy =, log. z are in H.P.

How many zeros are there between the decimal point and first significant digit in
0.05041°? Given log2 = 0.301, log 3 = 0.477, log 7 = 0.845.

Find the number of digits in 72'% without actual computation. Given log2 = 0.301 and
log 3 = 0.477.

How many positive integers have characteristics 2 when base is 57

If log 2 = 0.301 and log 3 = 0.477, find the number of digits in 3% x 21°.
If log 2 = 0.301 and log3 = 0.477, find the number of digits in 62°.

If log2 = 0.301 and log 3 = 0.477, find the number of digits in 5%5.
Solve log,[1 + logp{1 + log.(1 + log, x)}] = 0.

Solve logr logs(vVz 4 5 + vx) = 0.

Solve the following equations:

58.

59.

60.

logs x + loga(z + 2) = 2.
log,42x + log,(z +2) = g

log(z+ 1) =2logx.



61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

4.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

Logarithm

2log, a + log,, a + 3log,2, a = 0. Given a > 0.
x + logio(1 + 2%) = xlog1p 5 + logio 6.

x%(logg .r)2+logm2—% _ \/5

(x2 + 6)loggz _ (5x)log3 T

(3+ 2\@)75276%9 +(3- Qﬂ)m%ﬁﬁg —6.

logg(%> + (logg )% = 3.

V/loga(z)* + 4logy \/g =2.

2logip x — log, 0.01 = 5.

108sin 2 2108 cos 2 2 + 10gsinz 2 + 10gcos» 2 = 0.
9o +3 4 942 4 gutl _gw | qa—1

log /34in (1 +cosz) = 2.

log1o[198 + Va3 — 22 — 122 + 36] = 2.
If log 2 = 0.30103 and log 3 = 0.47712, solve the equation 23 — 100 = 0.
log, 3log. 3 +1log. 3 =0.
3 81
10g (25 4 3)(67% + 237 + 21) = 4 — log(3, 1 7)(42” + 12z + 9).
loga(2? — 1) = logi(z — 1).
2
10g5<5%“25> =1logs 6+ 1+ 5.
logioo |z +y| = % and log1oy — logio || = logigo 4-
2logs logs z + log: loga(2v/2z) = 1.
logs logs(z 4 7) + logy logi(2® + 7)1 = 2.
4 2 4

14+3+5+...+(2y—1) 20

4+7+10+...4(3y+1) — Tlogioz"

2 1
log1p « + log1g T 4 logig 27 + ... to oo = y and

1843673 — (54\/§)3z74.
4logg3 + 910g24 — 1010gw 83.

34log9(w+l) — 92loga(x+3)
galoga zlogigalog, 5 3108101% — 910g100 z+logy 2

231’+% + 2x+% — 210g2 6.
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87. (5+2v6)" 3+ (5—2v6)" 3 = 10.

88. For x > 1, show that 2logyg, x — log, .01 > 4.

89. Show that |log a + log, b| > 2.

90. Solve logg s(x2 + 8) > logg 39z.

91. Solve log,_2(2z —3) > log,_2(24 — 6x).

92. Find the interval in which z will lie if logg 3(z — 1) < logg.go(z — 1).

93. Solve log: z > log: z.
94. Solve logi logy(z? — 5) > 0.
3

95. Solve log(z* — 22 —2) < 0.
96. Solve log3(z — 1) —loggs(x — 1) > 5.

97. Prove that logs 17 log: 2 loggé > 2.
5

98. Show that logao 3 lies between % and %
99. Show that logig 2 lies between % and %
100. Solve logg.1 (422 — 1) > logg 1 3z.

101. Solve loga(z2 — 24) > logs 5.

1 1
102. Show that Togar + Togar > 2

1

103. Without actual computation find greater among (0.01)% and (0.001)%.
104. Without actual computation find greater among logs 3 and logs 11.
105. Solve logs(z* + 10) > logs 7.

106. Solve z'°#10* > 10.

107. Solve logs  loga, 2logedx > 1.

108. Solve logy = logs 2z + logs x logs 4 > 0.

109. Find the value of logi2 60 if logs 30 = a and log;5 24 = b.

110. If log, x, log = and log, z are in A.P. and x # 1, prove that ¢? = (ac)'8°.

111.1f a = logs v/0.125 and b = 1og3(ﬁ) then find whether a > 0,5 > 0.

112. Which one is greater among cos(log. ) and log.(cos ) if erch< 5

113. If logo « 4 loga y > 6, prove that x +y > 16.



114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

Logarithm 9

If a, b, c eb three distinct positive numbers, each different from 1 such that logy, a log. a —
log, aa + log, blog. b — logy, b + log, clogy ¢ — log. ¢ = 0.

1 1 1
If y = 107 Tes= and z = 107 T°=¥, prove that z = 107 ==,
If n is a natural number such that n = p{'p52ps® ... pi* and p1, P2, P3, ... , P are distinct
primes, then show that logn > klog 2.

The numbers 3, 3log, x, 3log. y, 71og, z form and A.P. then prove that 218 =2t = %,

Prove that logs 18 is an irrational number.

If x,y, z > 1 are in G.P. then prove that Hﬁ, 1+%ny’ Tilz are in H.P.

Find the value of logsg 8, if logzp 3 = a and logsp 5 = b.

Find the value of logs4 168, if log7 12 = a and log;2 24 = b.

If a # 0 and log,(a® + 1) < 0 then find the interval in which z lies.
If log12 18 — a and logay 54 = b, prove that ab+ 5(a — b) = 1.

If a, b, ¢ are in G.P., show that log, z, log x, log.  are in H.P.

If a, a1, a9, ..., a, are in G.P. and b, by, ba, ..., b, in A.P. with positive terms and also the
common difference of A.P. and common rations of G.P. are positive, show that there
exists a system of logarithm for which loga,, — b,, = loga — b for any n. Find the base
of this system.

If logs 2, logs(2® — 5) and log3(2z —g) are in A.P., find the value of z.

Prove that logs 7 is an irraational number.

If logo 5(z — 2) < logp.a5(x — 2), then find the interval in which z lies.



Chapter 2

Progressions

There are three different progressions: arithmetic progression, geometric progression and
harmonic progression. We start this chapter with arithmetic progression or A.P.

2.1 Arithmetic Progressions
Consider sequences like 1,2,3,4,...or —1,—2,—-3,—4,...0r 1,3,5,7,...or a,a+d,a+ 2d, ...

These sequences increase or decrease with a common difference. When quantities increase
or decrease with a common difference they are said to be in Arithmetic Progression. The
common difference can be found by subtracting any term of the series that follows it. For
example for the first series it is 1 and for the last it is d.

Consider the series a,a + d, a + 2d, a + 3d, ...

Simple observation tells us that 1st term is a, 2nd term is a 4 d, the 3rd term is a 4 2d and
hence the nth term will be a + (n — 1) d. These terms are typically written as ¢y, to, 3, ... , t.

2.1.1 nth Term of Arithmetic Progression

Following above discussion, we can clearly say that the nth term of an arithmetic progression
is given by t, = a + (n — 1) d, where a is called the first term and d the common difference.

th=a+ (n—1)d (2.1)

2.1.2 Sum of an Arithmetic Progression
Let S,, represent the sum of first n terms of an arithmetic progression, then we can write.
Sp=a+(a+d)+(a+2d)+-+[a+(n—2)d]+[a+ (n—1)d]
Writing the terms in reverse order we have
Sp=la+(n—1)s]+[a+(n—2)d]+-+ (a+d)+a

Adding term by term, we get

25, =[2a+ (n—1)d]+[2a+ (n—1)d] + - ton terms

2S5, =n[2a+ (n—1)d]

S, :g[2a+ (n—1)d] (2.2)

We also see that S, = 5 (t1 + tn)
We also see that if a series is

n(n+ 1).

; (2.3)

n
142434 4n=>) i=
=0

10
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2.1.3 Arithmetic Mean

When three quantities are in arithmetic progression the quantity in the middle is known to
be arithmetic mean of the other two. For example, if a, b, ¢ are in A.P., then b is said to be
arithmetic mean of a and ¢. In general, it is written b = %=

5 ¢ This can be examined further.
Let b= a+d, then ¢ = a + 2d. Clearly, b = *3°.

It is also possible to insert n» numbers between any two numbers such that all of them are
in A.P. Consider two numbers a and b in between which we want to insert » numbers such
that they are in A.P. Clearly, b will become n + 2th term of A.P. Let common difference

be d then we can writeb=a+ (n+1)d=d = Z;i Now all the n arithmetic means can be
deduced. Let those be m1,m2,---,m,, then m; = a+%:+91~7m2 = a+2(f+_f),~-~ My = a+ﬂgiff“~).
First A.M. = a +d = 2
Second A.M. =a + 2d = MT:—:EH’
nth AM. =a+nd = aninlb
a+ nb
n — 2.4
Con+1 (24)

Suppose there are n terms of an A.P., then the arithmetic mean of those n terms is given
by ti+tot++tn
T e

2.1.4 Deducing Number of Terms

We know that S, =% [2a+ (n—1)d]. Say Sy, a and d are known and we have to evaluate n.
This being a quadratic equaion will have two roots for n. If the results are positive and
integral then there is no problem in interpreting the results. In some cases for a negative
root a suitable interpretation can be given.

Example: How many terms of the series —8, —6, —4, --- must be added for the sum to be
367

2[-16+(n—1)2] =36 =>n*—9n—36=0=n =12, -3

If we take 12 terms of the series, we have —8, —6, —4, —2, 0, 2, 4, 6, 8, 10, 12, 14. The sum of
these terms is 36 and sum of last three terms is also 36 which is represented by n = —3.

2.1.5 Properties of an A.P.

1. If a fixed number is added to or subtracted from each item of a given A.P., then the
resulting is also an A.P., and it has the same common difference as that of the given A.P.

2. If each term of an A.P. is multiplied or divided by a non-zero fixed constant then the
resulting sequence is also an A.P. The common difference is multiplied or divided by the
same factor.

3. If ay, aq, as, ... and by, by, bs, ... are two arithmetic progressions then a; + by, as + bo, az +
bs, --- are also in A.P.
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4. If we have to choose three unknown terms in an A.P. then it is best to choose them as
a—d,a,a+d.

5. If we have to choose four unknown terms in an A.P. then it is best to choose them as
a—3d,a—d,a+d,a+ 3d.

6. In an A.P., the sum of terms equidistant from the beginning and end is constant and is
equal to the sum of first and last term.

7. Any term of an A.P., except the first, is equal to half the sum of terms which are
equidistant from it:

(an—t+ ansk), K <n, and for k=1

l\’)l»i

an =

1
an = 5 (anfl + an+1)

8. tn:SnfSn,l,nZQ

9. Ift, = pn+ qi.e. alinear expression in n then it will form an A.P. of common difference
p = t, — tp—1 and first term p + ¢. For example, if ¢, = 3n + 4, then it is an A.P. of
common difference 3 anda the first term as 7.

10.If S,, = an® + bn + ¢ i.e. a quadratic function in n, then the series in an A.P. where
a = 2a, twice the coefficient of n2.

2.1.6 Sum of Squares and Cubes and More

We observe that

B (i—1)3 =3 3z+1:> 27171 - "+l)+n
(i—1)
(2.5)
Z n+l)+n:>32i2:n3+73n(n+1)—n
: 2
i=0 =0
n n+1 2n +1
RIS o0

Following in a similar fashion, we can show that

- n(n+1))2
S = {w_(Tww)} (2.7)
i=0

More powers can be evaluated in a similar fashion.

2.2 Geometric Progressions

A succession of numbers is said to be in geometric progressions or geometric sequence if the
ratio of any term and the term preceeding it is constant throughout. This constant is called
common ratio of the G.P.
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Example: 1,2, 4, 8, 16, ...
Here, i—f:%: =2,

Also, 1,3,9,27, ... are in geometric progression whose first term is 1 and common ratio is 3.

Also, 2, —4, 8, —16, ... are in geometric progression whose firts term is 2 and common ratio
is —2.

2.2.1 Properties of a G.P.

1. If the each term of a G.P. be multiplied by a non-zero number, then the sequence obtained
is also a G.P.

Proof: Let the given G.P. be a, ar, ar?, ar®, ...

Let k be a non-zero number, the sequence obtained by multiplying each term of the given
G.P. by k is ak, ark, ar’k, ar’k, ...

Clearly, the series is in G.P. with the same common ratio as previous ratio i.e. 7.

2
%, ... we obtain the sequence 7, %, %, ...

Again, dividing each term of G.P. a, ar, ar?, a
It is clear that this new sequence is also a G.P., whose common ratio is .
2. The reciprocals of the terms of a G.P. are also in G.P.

Proof: Let the G.P. be q, ar, ar?, ..., the sequence whose terms are reciprocals of this
GPis< L 1

a’ar’ ar?’

It is clear that this sequence is in G.P., whose first term is % and common ratio is %

2.2.2 Sum of the First n Terms of a G.P.

Let a be the first term and r be the common ratio of a G.P. and S,, be the sum of its first n
terms

Case I: When r # 1
Sp=a+ar—+ar?+ -+ ar" 2+ a1
rS, =ar+ar®+ -+ ar* '+ ar”
Subtracting, we get (1—7)S, =a—ar" =a(l—1r")

) _a(l—=7") a(r"—1)
S = 1—r  r—1

Case II: When r =1

S, =a+a-+ -+ a=na and this G.P. is also an A.P. whose common difference is 0.
2.2.3 Sum of Infinite Terms of a G.P.

If |r| > 1 then sum would be +00. However, if |r| < 1 then sum would be finite.
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We have obtained that S,, = a%::")

a

We see that as n approaches oo, 7" will approach 0. Thus, So = 1=

2.2.4 Recurring Decimals

Recurring decimals are a very interesting and nice example to demonstrate the infinite G.
P. and the value can be obtained by the formula derived in previous section. Consider a
recurring decimal 7.

7= TTT777...t0 o0

=.7+.07+.007 4 .0007 + -

T T T
10 100 © 1000

1L T T
10 102 103

SN BN
- 10 * 102 103

7
9

2.2.5 Geometric Mean

Like arithmetic means; we also have geometric means. Say two numbers a and b are in G.P.
and x is a geometric mean between them then by definition a, z, b will be in G.P. Then,

=>z2=ab=z=+Vab

If Gy, G, ..., G, are n geometric means between two numbers a and b, then G1G> ... G, =

(Vab)"

Proof: b is the n + 2nd term. Thus, b = ar" ! where common ratio is r.

Thus, G1 = ar, Gy = ar?, -, Gy, = ar™

n(n+1)
GGy ...Gy, = a2t = gy 2

= /(ab)"

If a4, as, ..., a, are n positive numbers in G.P. then their geometric mean is given by G =
1

(arag ...an)™

1 1
Thus, first G.M. = ar = a(2) /(n+1)

a

Second G.M. = ar? = a(§)2/(n+l)
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nth GM. = ar”™ = a(g)n/(nﬂ)

2.2.6 Notes

Odd number of terms in a G.P. should be taken as %, %, a, ar, ar?, -
. Even number of terms in a G.P. should be taken as -, %, 5,2 ar, ard, ar®, -

. If ay, ag, ..., an and by, b — 2, ..., b, be two G.P. of common ratios r; and ry then
aiy az ag

a1by, asbs, azbs, ... and B e B also form G.P., where common ratios will be riro

and - respectively.

. Let aq, ao, as, ... be a G.P. of positive terms, then log ai, log as, log as, ... will be an A.P.
and vice-versa.

Let a be the first term and r be the common ratio of the G.P. then a; = ar’~!. Now
loga; = loga + (i — 1) log r which represents ith term of an A.P. with first term as loga
and common difference log r.

+(i-1)d _

Conversely, let us assume that logay, log as, logas, ... are in A.P. then a; = 2
222"~ where z is the base of the logarithm. This shows that ay, as, as, ... will be in
G.P., whose first term is % and whos ecommon ratio is z°.
. Increasing and decreasing G.P.

Case I: Let the first term a be positive. Then if » > 1, then it is an increasing G.P. but
if 0 < 7 < 1 then it is a decreasing G.P.

case II: Let the first term a be negative. Then if » > 1, then it is a decreasing G.P. but
if 0 < r < 1 then it is an increasing G.P.

2.2.7 Arithmetico Geometric Series

If the termms of an A.P. are multiplied y corresponding terms of a G.P., then the new series
obtained is called an Arithmetico-Geometric series.

Exmaple: If the terms of the arithmetic series 2 + 5 + 8 4+ --- are multiplied with the
corresponsing terms of the geometric series x 4+ 22 4+ 2° + -+ then the resulting arithmetico-
geometric series is 2z + 5z + 823 4 -

2.2.8 Sum of n terms of an Arithmetico-Geometric Series

Let ay, as, ..., ay be an A.P. and by, bs, ..., b, be a G.P. Let d be the common difference of
the A.P. and r be the common ratio of the G.P. Also, let a = a; and b = by, then

S, =ab+ (a+d)br+ (a+2d)br* + - +[a+ (n—1)d]br"!
rSp = abr + (a+d)br* + (a+2d)br® + -+ [a+ (n —1)d]br"
= (1—7)8, =ab+dbr +dbr62 + -+ dbr"™' — [a + (n — 1) d] br™

dbr(1—rm™1)
(I—r)—la+ (n—1)d]brm

=ab+
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_ab dbr(L—r""Y)  [a+ (n—1)d]br"
Sn_lfTJr (1—7)2 B 1—r (r#1)

If |r| < 1, then lim 7™ = 0, therefore , sum of an infinite number of terms of an arithmetico-
n—o0

geometric series is given by

ab dbr

Sm:l—r+(1—r)2

2.3 Harmonic Progressions

Consider an A.P. then an H.P. is formed by terms given by reciprocal of terms of the

A.P. respectively. So if the terms of A.P. are ay, ao, ..., a, then terms of H.P. are given by
11 1
arvaz? T ay

When we study H.P. and its properties we do that by studying the properties of the corre-
sponding A.P.

2.3.1 Harmonic Means

Numbers H,, Hs, ..., H, are said to be the n H.M. between two numbers a and b, if
a, Hy, Ho, ..., Hy, b are in H.P. For example, %, %,% are the H.M. between 1 and % because
1,5,3,1,% are in H.P.

Let a and b be the two given quantities and H be the H.M. between them. Then a, H, b will
be in H.P.

1

2, 4.3 will be in H.P.

11
a” b

Let Hy, Ho, ..., Hy, be the n H.M. between two given quantities a and b, and d be the c.d.
of the corresponding A.P. Then a, Hy, Hs, ..., Hy, b will be in H.P.

111 101 . .
-'.E,—,—,-~~,H'L7EW1llbe1nA.P.

L1 1 _ b( +l)

f =g td=Hi=210
_ _ab(n+1)

Hy; = 2;+<271)b

_ ab(n+1)
Hy, = an+b

2.4 Relation between A.M., G.M. and H.M.

Let a and b be two real, positive and unequal quantities and A, G and H be the single A.M.,
G.M. and H.M. between them respectively.
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Then,A:%r—é,G:\/E,H:gﬁ%

AH = ab = G? and thus A, G, H form a G.P.

Similarly it can be probve that A > G > H

For equal a and b, it can be easily verified that A =G =H

2.5 Problems

10.

11.

12.
13.
14.
15.

16.

17.

18.

19.

20.

If nth term of a sequence is 2n? + 1, find the sequence. Is this seuquence in A.P.?
Find the first five terms of the sequence for which ¢t = 1,¢3 =2 and ¢,,10 =t + tp11-
Write the sequence whose nth term is 3n + 5.

Write the sequence whose nth term is 2n? + 3.

) .3
Write the sequence whose nth term is 5.

2,1
~ T.t3-

Write the first three terms of sequence defined by t; = 2, ¢,,41

If nth term of a sequence is 4n? + 1, find the sequence. Is this sequence an A.P.?
If nth term of a sequence is 2an + b, where a, b are constants, is this sequence an A.P.?

Find the 5th term of the sequence whose first three terms are 3, 3,6 and each term after
the second is the sum of two preceding terms.

Consider the sequence defined by t,, = an® +bn +c. If t; =1,t, = 5 and t3 = 11 then
find the value of ¢q¢.

Show that the seuquence 9,12, 15,18, ... is an A.P. Find its 16" term and the general
term.

Show that the sequence log a, log(ab), log(ab?),log(ab®), ... is an A.P. Find its nth term.
Find the sum to n terms of the sequence (t,), where ¢, =5 —6n,n € N.

How many terms are there in the A.P. 3,7, 11, ..., 4077

If a,b, c,d, e are in A.P. find the value of a — 4b + 6¢ — 4d + e.

In a certain A.P. 5 times the 5th term is equal to 8 times the 8th term, then prove that
13th term is zero.

Find the term of the series 25, 22%7 20%7 18%, --- which is numerically smallest positive
number.

A person was appointed in the pay scale of Rs. 700 — 40 — 1500. Find in how many
years he will reach the maximum of the scale.

Find the A.P. whose 7th and 13th terms are respectively 34 and 64.

Is 55 a term of the sequence 1,3, 5,7, ...7 If yes, find which term it is.



21.
22.

23.
24.
25.
26.

27.

28.

29.

30.

31.

32.
33.

34.
35.
36.

37.

38.

39.
40.

41.

42.
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Find the first negative term of the sequence 2000, 1995, 1990, ...

How many terms are identical in two arithmetic progressions 2, 4, 6, 8, ... up to 100
terms and 3,6, 9, ... up to 80 terms.

Find the number of all positive integers of 3 digits which are divisible by 5.
Is 105 a term of the arithmetic progression 4,9, 14, ...7
Find the first negative term of the sequence 999, 995, 991, ....

Each of the series 3+5+7+--and 4+ 7 + 10 + -+ is continued to 100 term. Find how
many terms are identical?

If m times the mth term of an A.P. is equal to n times the nth term, find its (m + n)th
term.

If a, b, ¢ be the pth, gth and rth terms respectively of an A.P., prove that a(q — ) +
b(r—p)+clp—q) =0.

Find the number of integers between 100 and 1000 that are divisible by 7 and not
divisible by 7.

If a, b, ¢ be the pth, gth and rth terms respectively of an A.P., prove that (a —b)r +
(b—c)p+(c—a)g=0.

The sum of three numbers in A.P. is 27 and the sum of their squares is 293. Find the
numbers.

The sum of four integers in A.P. is 24 and their product is 945. Find the numbers.

If the pth term of an A.P. is ¢ and the gth term is p, find the first term and common
difference. Also, show that (p + g)th term is zero.

For an A.P. show that t,,, + tontm = 2tmin.
Divide 15 into three parts which are in A.P. and the sum of their squares is 83.

Three numbers are in A.P. Their sum is 27 and the sum of their squares is 275. Find
the numbers.

The sum of three numbers in A.P. is 12 and the sum of their cubes is 408. Find the
numbers.

Divide 20 into four parts which are in A.P. such that the product of first and fourth is
to product of second and third is 2 : 3.

The sum of three numbers in A.P. is —3 and their product is 8. Find the numbers.

Divide 32 into four parts which are in A.P. such that the ratio of product of extremes
to the product of means is 7 : 15.

If (b+c—a)/a,(c+a—"0)/b, (a+b—c)/c are in A.P. then prove that 1/a,1/b,1/c
are also in A.P.

If a, b, ¢ € R+ form an A.P., then prove that a + 1/bc, b+ 1/ca, ¢ + 1/ab are also in
A.P.



43.

44.

45.

46.

47.

48.

49.
50.

51.

52.

53.

54.

55.

56.

57.

58.
59.
60.

61.

62.

63.
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If a, b, ¢ are in A. P., then prove that a*(b + ¢), b*(c + a), c¢*(a + b) are also in A.P.

If a, b, ¢ are in A.P., then prove that are also in A.P.

1 1 1
Vb+ve’ Verva’ Va+vb

If a, b, ¢ are in A.P., then prove that a(%—O— l), b(l—O—l), C(l—F%) are also in A.P.

(& c a a

If (b—c)? (c —a)? (a—b)? are in A.P. then prove that E"}cv L1 5 are also in A.P.

c—a’a—b
If a, b, ¢ are in A.P. then prove that b+ ¢, ¢ + a,a + b are also in A.P.

1 1 .
5 are in A.P.

If a?, b2, ¢? are in A.P. then prove that b%c, Traraid

If a, b, c are in A.P.; show that 2(a —b) =a—c=2(b—¢).
If a, b, ¢ are in A.P., then prove that (a — ¢)? = 4(b* — ac).

Inan AP.if S, =t; +ta+ - +t, (nodd), So=to+ts+ -+ t,_1, then find the value
of S1/Ss in terms of n.

Find the degree of the equation (1 + z) (14 2%) (1 + =) - (1 + z1°1).

Prove that a sequence is an A.P. if the sum of its terms is of the form An?+ Bn, where
A, B are constants.

If the sequence ay, ay, ..., a, form an A.P., then prove that a? — a3 + a2 — a3 + - +

n

2 2 _ 2 2
Aop—1 = Q2n = 357 (a7 — a3y,)-

Find the sum of first 24 terms of the A.P. ay, as, as, ..., asy, if it is known that a1 + a5 +
a0 + a5 + azo + azqg = 225

If the arithmetic progression whose common difference is non-zero, the sum of first 3n
terms is equal to next n terms. Then, find the ratio of sum of first 2n terms to the sum
of next 2n terms.

If the sum of n terms of a series be 5n2 + 3n, find its nth term. Are the terms of this
series in A.P.?

Find the sum of the series (a + b)? + (a® +b?) + (a — b)? + - to n terms.
Find1-3+4+5—-7+9—11+ - to n terms.

The interior angles of a polygon are in A.P. The smallest angle is 120°and the commnon
difference is 5°. Find the number of sides of the polygon.

25 trees are planted in a straight line at intervals of 5 meters. To water them the
gardener must bring water for each tree separately from a well 10 meters from the first
tree. How far he will have to travel to water all the trees beginning with the first if he
starts from the well.

If @ be the first term of an A.P. and the sum of its first p terms is equal to zero, show

that the sum of the next ¢ terms is — g(fff]f)q.
P

The sum of the first p terms of an A.P. is equal to the sum of its first ¢ terms, prove
that the sum of its first (p + ¢) terms is zero.
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Prove that the sum of latter half of 2n terms of a series in A.P. is equal to the one third
of the sum of first 3n terms.

. If 51,8, S5, ..., Sp be the sum of n terms of arithmetic progressions whose first terms

are respectively 1,2, 3, ... and common differences are 1, 2, 3, ... prove that

np

S14+ S+ 83+ -+ 85, = 1

(n+1)(p+1)
If a, b and ¢ be the sum of p, ¢ and r terms rspectively of an A.P., prove that

g(q—r’)+g(r—p)Jrg(p—Q):0

p
If the sum of m terms of an A.P. is equal to half the sum of (m 4 n) terms and is also
equal to half the sum of (m + p) terms, prove that (m +n) (%—%) = (m+p) (%—%)

If there are (2n + 1) terms in an A.P., then prove that the ratio of sum of odd terms
and the sum of even terms is n + 1 : n.

The sum of n terms of two series in A.P. are in the ration (3n — 13) : (5n + 21). Find
the ratio of their 24th terms.

If the mth term of an A.P. is % and nth term of an A.P. is % then prove that the sum

to mn terms is %
If the sum of m terms of an A.P.is n and the sum of its n terms is m, show that sum
of (m+n) terms is —(m + n).

If S be the sum of 2n + 1 terms of an A.P., and S; that of alternate terms beginning

with the first, then show that Sil = 27:?11

If a, b, ¢ be the 1st, 3rd, nth terms respectively of an A.P., prove that the sum of n
cta c27a2
2 + b—a *

terms is

The sum of n terms of two series in A.P. are in ratio (3n + 8) : (7n + 15). Find the
ratio of their 12th terms.

If the ratio of the sum of m terms and n terms of an A.P. is m? : n2, prove that the
ratio of its mth and nth term wil be (2m —1) : (2n —1).

How many terms are in the G.P. 5, 20, 80, ..., 51207
How many terms are in the G.P. 0.03,0.06,0.12, ..., 3.847

A boy agrees to work at the rate of one rupee the first day, two rupee the second day,
four rupees the third day, eight rupees the fourth day and so on. How much would he
get on 20th day?

The population of a city in January 1987 was 20, 000. It increased at the rate of 2% per
annum. Find the population of the city in January 1997.

The sum of n terms of a sequence is 2" — 1, find its nth term. Is the sequence in G.P.?

If the fifth term of a G.P. is 81 and second term is 24. Find the G.P.
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The seventh term of a G.P. is 8 times the fourth term. Find the G.P. when its 5th term
is 48.

If the 5th and 8th terms of a G.P. be 48 and 384 respectively, find the G.P
If the 6th and 10th terms of a G.P. are llé and 5;@ respectively, find the G.P.

If the pth, gth and rth terms of a G.P. be a,b,c(a,b,c > 0), then prove that (¢—r) loga+
(r—p)logb+ (p—q)logec=0.

If the (p + q)th term of a G.P. is a and the (p — ¢)th term is b, show that its pth term

is \/&5.

If the pth, gth and rth terms of a G.P. be z, y and z respectively, prove that
Ty TP PO =1,

The first term of a G.P. is 1. The sum of third and fifth terms is 90. Find the common
ratio of G.P.

Fifth term of a G.P. is 2. Find the product of its first nine terms.

The fourth, seventh and last term of a G.P. are 10, 80 and 2560 respectively. Find the
first term and number of terms in the G.P.

Three numbers are in G.P. If we double the middle term they form an A.P. Find the
common ratio of the G.P.

If p, ¢ and r are in A.P. show that pth, qth and rth term of a G.P. are in G.P.
If a, b, c and d are in G.P., show that (ab -+ bc + cd)? = (a® 4 b? 4 ) (b* + ¢ 4 d?).

Three non-zero numbers a, b and ¢ are in A.P. Increasing a by 1 or increading ¢ by 2,the
numbers are in G.P. Then find b.

Three numbers are in G.P. whose sum is 70. If the extremes be each multiplied by 4
and the mean by 5, they will be in A.P. Find the numbers.

If the product of three numbers in G.P. be 216 and their sum is 19, find the numbers.

A number consists of three digits in G.P. The sum of the right hand and left hand
digits exceed twice the middle digit by 1 and the sum of left hand and middle digit is
two-third of the sum of the middle and right hand digits. Find the number.

In a set of four numbers, the first three are in G.P. and the last three are in A.P. with
a common difference of 6. If the first number is same as fourth, find the four numbers.

The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the
numbers.

The prodduct of three consecutive terms of a G.P. is —64 and the first term is four
times the third. Find the terms.

Three numbers whose sum is 15 are in A.P. If 1, 4,19 be added to them respectively
the resulting numbers are in G.P. Find the numbers.
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From three numbers in G.P. other three numbers in G.P. are subtracted. Resulting
numbers are found to be in G.P. again. Prove that the three sequences have the same
common ratio.

If a, b, ¢, d are in G.P., show that (b —c)>+ (c —a)?+ (d —b)? = (a — d)*.
If a, b, ¢, d are in G. P., then show that (a®+ b%+ c2) (b% + 2 + d?) = (ad + bc + cd)>.
If a® = bY = ¢* where z, y, z are in G.P., show that log, a = log. b.

If the continued product of three numbers in a G.P. is 216 and the sum of their products
in pairs is 156, find the numbers.

If a, b, ¢, d are in G.P., show that (a + )2, (b+¢)?, (c +d)? are in G.P.
If a, b, ¢, d are in G.P., show that (a —b)? (b—¢)? (¢ —d)? are in G.P.

If a, b, ¢, d are in G.P., show that a®+ b% + ¢%, ab + bc + ¢d, b? + ¢? + d? are in G.P.

1 1

1 .
a2 b (era Are in G.P.

If a, b, ¢, d are in G.P., show that 0
If a, b, ¢, d are in G.P., show that a(b—¢)® = d(a —b)>.

If a, b, ¢, d are in G.P., show that (a +b+c+d)?> = (a+b)*+ (c+d)? +2(b+c)%
If a, b, ¢ are in G.P., show that a2b202($ + b_lg + Cig) =a®+ 0>+

If a, b, ¢ are in G.P., show that (a? —b%) (b + c?) = (b> — c?) (a® + b?).

If a, b, ¢ are in G.P., show that loga, logb, log ¢ are in A.P.

Find 1 +%+%+%+ -+ to n terms.

Find 1 +2444 8+ - to 12 terms.

Find 1 -34+9—27+ - to 9 terms.

Find 1 +%+%+2—17~~ to n terms.

Find the sum of n terms of the series (a4 b) + (a4 2b) + (a® + 3b) + - to n terms.

A man agrees to work at the rate of one dollar the first day, two dollars the second day,
four dollars the third day, eight dollars the fourth day and so on. How much would he
get at the end of 120 days.

Find the sum to n terms of the series 8 + 88 + 888 + .
Find the sum to n terms of the series 6 + 66 + 666 + ---.
Find the sum to n terms of the series 4 + 44 + 444 + ---.

Find the sum to n terms of the series .5 + .55 + .555 + ---.

Find 1—%+i—%tonterms.
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If you had a choice of a salary of a salary of $1000 a day for a month of 31days or $1
for the first day, doubling every day which choice would you make?

How many terms of the series 1 + 3 4 32 4 3% 4 .- must be taken to make 32807

Find the least value of n for which 1+ 3 + 32 + - + 3"~ > 1000.

Find 1+5+1+3 to co.

A person starts collecting $1 first day, $3 second day, $9 third day and so on. What will
be his collection in 20 days.

Find the sum of (2% + 25 +2) + (2" + 5+ 5) + (2% + 75+ 8) + - to n terms.

How many terms of the series 14 2+ 22 + --- must be taken to make 5117

Find the least value of n such that 1+ 2 + 22 + --- 4+ 271 > 300.

Determine the no. of terms of a G.P. if a; = 3, a,, = 96 and S,, = 189.

Express 0.423 as a rational number.
Find § + 7 + g2 + =3 to o0.
Prove that the sum of n terms of the series 11 + 103 4 1005 + -+ is 199 (10" — 1) +n?

Find the sum to n terms of the series (:C + %)2 + (x2 + %)2 + (m3 + %)2 + o

T

If S be the sum, P be the product and R the sum of reciprocals of n terms in G.P.,
prove that P? = (%)n

Find 1+ 1 + i + -+ t0 00 if 2 > 0.

Prove that in an infinite G.P. whose common ratio is r is numerically less than one, the

. . 11—
ratio of any term to the sum of all the succeediing terms is —=.
If 51, S, S, ..., Sp are the sum of infinite geometric series whose first terms are
: 111 1 .
1,2,3, .., p and whose common ratios are 5, 3, 7, "+, 1 respectively, prove that

S1+ 8+ 93+ + 8, =p(p+3)/2.

frx=1+a+a®>+a®+ - toooandy=1+b+b%4b>+ - tooo, show that 1+ ab +

a2b2+a3bg+mtooo=$,WhereO<a<1and0<b<1.

Find the sum to infinity for the series 14 (1 +a)r+ (14+a+a®)r? 4+, where 0 < a < 1
and 0 <r < 1.

After striking the floor a certain ball rebound to %th of the height from which it has
fallen. Find the total distance it travels before coming to rest if it is gently dropped
from a height of 120 meters.

If a be the first term and b be the nth term and p be the product of n terms of a G.P.,
show that p® = (ab)™
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Show that the ratio of sum of n terms of two G.P.'s having the same common ratio is
equal to the ratio of their nth terms.

If S;, So, S5 be the sum of n, 2n, 3n terms respectively of a G.P. show that (Sy —S;)? =
S1(S5—S2).

If S,, denotes the sum of n terms of a G.P.,whose first term is a and common ratio is r,
find S1 4+ So+ -+ Sop—1.

The sum of n terms of a series is a.2" — b, find its nth term. Are the terms of this series
in G.P.

2
Findﬂlp[lJrlizZ (ﬁ%) + tooo] where z > 0.

The sum of an infinite G.P. whose common ratio is numerically less than 1 is 32 and
the sum of their first two terms is 24. Find the terms of the G.P.

The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the squares

of its terms to infinity is %E, find the G.P.

Ifp(z) = (1+a®+a*+- 42" 2)/(1+z+2>+-+2" ') is a polynomial in z, then
find the possible values of n.

b

fr=a+i+%+00,y=b—2+%—ocoand 2 =c+ 5+ 5+ 00, then prove that
zy _ ab
Elmirs
A G.P. consists of an even number of terms. If the sum of all terms is 5 times the sum

of the terms occupying odd places, then find the common ratio.

3n+1

-If sum of n terms of a G.P. is 3 — 7z, then find the common ratio.

In an infinite G.P. whose terms are all positive, the common ratio being less than unity,

prove that any term >, =, < the sum of all the succeeding terms according as the

: 1
common ratio <, =, > 5.

Prove that (666...n digits)? 4 888 ... n digits = 444 ... 2n digits.

Find the sum (z +y) + (22 + 2y + y*) + (2® + 2%y + 2y* + ) + - to n terms.
o0 o0

If the sum of the series Z ™, |r] < 1is S, then find the sum of the series Z r2m,
n=0 n=0

If for a G.P. t,,, = # and t,, = # then find the term ¢, .
2

If a, b, ¢ be three successive terms of a G.P. with common ratio r and a < 0 satisfying
the condition ¢ > 4b — 3a, then prove that r > 3 or r < 1.

If (1— k) (1 + 2z + 42® + 82° + 162* + 322°) = 1 — k5, where k # 1, then find %,

If (a® + b2+ ) (b2 + ¢* + d?) < (ab + be + cd)?, where a, b, ¢, d are non-zero real
numbers, then show that they are in G.P.
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If ai, as, ..., a, are n non-zero numbers such that (a2 4+ a3 + - +a>_,) (a3 + a2 + -+
a?) < (ayaz + agaz + -+ + an_1a,)?, then show that ay, as, ..., a, are in G.P.
a, B be the roots of 2% — 3z 4+ a = 0 and =, § be the roots of 2> — 12z + b = 0 and the

numbers «, (3,7, 0 form an increasing G.P., then find the values of a and b.

There are 4n + 1 terms in a certain sequence of which the first 2n + 1 terms are in A.P.
of common difference 2 and the last 2n + 1 terms are in G.P. of common ratio % If

the middle terms of both the A.P. and G.P. are same then find the mid term of the
sequence.

If f(x) =22+ 1 and three unequal numbers f(z), f(2xz), f(4z) are in G.P, then find
the number of values for z.

Three distinct real numbers, a, b, ¢ are in G.P. such that a + b+ ¢ = ab, then show that
r<—lorz>3.

o0 o0 (o)
Ifx = Za", y = Zb”, z = Zc” where a, b, ¢ are in A.P., such that |a| < 1, |b] <

n=0 n=0 n=0
1, |c| < 1, then show that %, é,% are in A.P. as well.

oo o0
Given that 0 <z < §,§ <y <7 and Z(—l)ktan%z = p, Z(—l)kcot%y = q then
k=0 k=0

oo
. 1
prove that Z tan?® z cot?* y is T
k=0

P g9 PpPq

An equilateral triangle is drawn by joining the mid-points of a given equilateral triangle.
A third equilateral triangle is drawn inside the second in the same manner and the
process is continued indefinitely. If the side of first equilateral triangle is 31/4 inch, then
find the sum of areas of all these triangles.

If S = exp{(1 + | cos z| + cos® x + | cos® z| + cos® z -+ toco) log, 4} satisfies the roots of
the equation t2 — 20t + 64 = 0 for 0 < = < 7 then find the values of z.

If S C (—m, m), denote the set of values of z satisfying the equation

2 3 ot
gltlcosaltcos®at|cos” al+t000 — 43 thoy find the value of S.

If0<z<%and gsin® ztsin®a4--1000 gatisfies the roots of the equation 2 — 9z + 8 = 0,

then find the value of cosx/(cosx + sinz).
If Sy =Y+ then find Y (A —1)8).
r=0 A=1
If a, b, ¢ are in A.P. then prove that 20+ 202+1 9e2+1 410 in G.P. Va # 0.

If a+be® _ bice® _ c+de”
a—be® T b—ce® T c—de®

then prove that a, b, ¢, d are in G.P.

If ,y, z are in G.P. and tan™! &, tan™! ¢, tan! z are in A.P. then prove that z =y = 2
but their common values are not necessarily zero.

If a, b, ¢ are three unequal numbers such that a, b, ¢ are in A.P. and b —a,c— b, a are
in G.P. then prove that a : b:c=1:2:3.
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The sides a, b, ¢ of a triangle are in G.P. such that loga — log 2b, log 2b — log 3¢, log 3¢ —
log a are in A.P., then prove that AABC' is an obtuse angled triangle.

If the roots of the equation az® 4 bx? + cz +d = 0 be in G.P. then prove that ¢*a = b3d.
Find the 100th term of the sequence 1, %, é7 %7

If pth term of an H.P. is ¢r, and ¢th term is rp, prove that rth term is pq.

If the pth, gth and rth terms of an H.P. be respectively a, b and ¢, then prove that
(@q—r)bc+ (r—p)ca+ (p—q)ab=0.

If a, b, c are in H.P., prove that Z:g =2

(&

If a, b, ¢, d are in H.P., then, prove that ab + bc + c¢d = 3ad.

If x1, o, x3, ..., T, are in H.P., prove that z1zs + xax3 + 2324 + - + Tp_12,, = (N —
1) x12y.

b

If a, b, ¢ are in H.P., show that b+c, a

o+ are in H.P.
If a2, b%, ¢? are in A.P. show that b+ ¢, ¢ + a, a + b are in H.P.
Find the sequence whose nth term is 3 . Is this sequence an H.P.?

and

If mth term of an H.P. be n and nth term be m, prove that (m + n)th term =
(mn)th term = 1.

m+n

The sum of three rational numbers in H.P. is 37 and the sum of their reciprocals is %,
find the numbers.

If a, b, c are in H.P., prove that ;- + ;- =1+ 1

If a, b, ¢ are in H.P., prove that 7~ bta 24 g+f —9.

If 21, xo, x3, x4, x5 are in H.P., prove that z1x5 + 2223 + 2324 + 425 = 42125,
If 1, o, x3, x4 are in H.P., prove that (x1 — x3) (x2 — x4) = 4(x1 — x2) (3 — 24).

If b+ ¢, c+a,a+0b are in H.P., prove that ; c7Cia,aﬂ)aremAP.

If b+ ¢, c+a,a+b are in H.P., prove that a2, b%, ¢? are in A.P.

ca ab
If a, b, ¢ are in A.P., prove that awa, totab sates are in H.P.

b c .
If a, b, ¢ are in H.P., prove that b+c = oTa"p oo are in H.P.

b

If a, b, ¢ are in H.P., prove that b+(,(+u,

¢ .
o5 are in H.P.

c, c—a a—b:1

If a, b, c are in A.P.; and z,y, z are in G.P.; show that zb~ Yoz

If pth, gth, rth and sth term of an A.P. be in G.P., prove that p —q,q—r,r — s are in
G.P.
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If pth, gth and rth terms of an A.P. and G.P. both be a, b and ¢, show that
b—cpc—a a—b
a’” b T T = 1.

If a, b, c be in A.P. and b, ¢, d be in H.P., prove that ad = bc.

If a® = bY = ¢® and a, b, ¢ are in G.P., show that z, y, z are in H.P.

It LTJ”’, Y, 1"'52 be in H.P., show that z, y, z are in G.P.

If z,y,z be in G.P., and = + a,y + a, z + a be in H.P., prove that a = y.

If three positive numbers a, b, c are in A.P., G.P. and H.P. as well, then find their values.
If a,b,c bein A.P., b, ¢,d be in G.P. and ¢, d, e be in H.P., prove that a, ¢, e are in G.P.
If a,b,c be in A.P. and a?,b?,¢? be in H.P., prove that — %, b,carein G.P.orelsea=b=c.
If a, bl,)c are the pth, ¢th and rth terms of boht an A.P. and a G.P., prove that a’b°c® =
a“bc’.

An A.P. and a G.P. of positive terms have the same first term. The sum of their first,
second and third terms are respectively 1,% and 2. Show that the sum of their fourth

.19
terms is 3.

[fo-r_ay_a-=z

pT T qy Tz

and p, ¢, 7 be in A.P., show that x, y, z are in H.P.

An A.P. and a H.P. have the same first term a, the same last term b and the same number
of terms n. Prove that the product of the rth term of A.P. and the (n —r + 1)th terrm
of term of H.P. is ab.

Prove that if from each term of the three consecutive terms of an H.P. half the second
term be subtracted the resulting terms are in G.P.

Ify—a2,2(y—a),y— z are in H.P., prove that z — a, y — a, z — a are in G.P.
If a,b,c be in A.P., p,q,r be in H.P, and ap, bg, cr be in G.P., show that £+ 7 =242,

If a,b,z be in A.P., a,b,y be in G.P. and a, b, z be in H.P., prove that 4z(z —y) (y —z) =
y(x —2)%

If z,1,z be in A.P., z, 2, z be in G.P., show that z, 4, z are in H.P.
Find the sum of n terms of the series whose nth term is 12n? — 6n 4 5.
Find the sum to n terms of the series 12 + 32 + 52 + 72 + ...

Find the sum to n terms of the series 1.2.3 +2.3.4 + 3.4.5 + ---.

Find the sum of the series 1.n +2.(n — 1) +3.(n — 2) + -+ + n.1L.

Find the sum to n terms of the series 1+ (1 +2) + (1 +2+3) +---.

Find the sum to n terms of the series 1+ (2+3) + (4 +5+6) +---.
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13423 | 13423433

. .13
230. Find the sum of series 4 + 5 T 10355+ to 16 terms.

231. Find (3% — 2%) + (5% —43) 4+ (73 = 6%) + - to 10 terms.
232. Find T1“2 +§%+ 3% + -+ to n terms.

233. Find the sum of ﬁld + ﬁ + ﬁ + --- to infinity.

234. Find the sum of n terms of the series 1 +5 + 11 + 19 + ---.

235. A sum is distributed among certain number of persons. Second person gets one rupee
more than the first, third person gets two rupees more than the second, fourth person
gets three rupees more than the third and so on. If the first person gets one rupee and
the last person get 67 rupees, find the number of persons.

236. Natural numbers have been grouped in the following way 1, (2,3), (4,5,6),(7,8,9,10), -

Show that the sum of the numbers in the nth group is w

237.Find 14+3 474154 - to n terms.

238. Find 1 4 2z + 322 + 42% + - to n terms.

239. Find 1 + 2.2 + 3.2% + 4.3% + - 4 100.2%.

240. Find 1 4 2%z + 3222 + 4% + - to oo, |z] < 1

241.If the sum of n terms of a sequence be 2n? + 4, find its nth term. Is this sequence in
AP?

242. Find the sum of n terms of the series whose nth term is n(n — 1) (n + 1).
243. Find the sum of the series 1% + 3% + 5% + - to n terms.

244. Find the sum of the series 12 4 4% + 72 + 10? + --- to n terms.

245. Find the sum of the series 12+ 2 + 32 + 4 + 52+ 6 + - to 2n terms.

246. Find the sum of the series 12 — 22 + 3% — 42 4 .. to n terms.

247. Find the sum of the series 1.3 + 3.5 + 5.7 4+ --- to n terms.

248. Find the sum of the series 1.2 +2.3 + 3.4 4 --- to n terms.

249. Find the sum of the series 1.2% + 2.32 + 3.4% + .- to n terms.

250. Find the sum of the series 2.12 + 3.22 4+ 4.3% + - to n terms.

251. Find the sum of the series 1 + (1 +3) + (1 +3+5) + -+ to n terms.

252. Find the sum of the series 12 4 (1% + 22) + (124 2% + 32) + - to n terms.
253. Find the sum of the series 1.2.3 +2.3.5 + 3.4.7 4 --- to n terms.

254. Find the sum of the series 1.2.3 + 2.3.4 + 3.4.5 + --- to n terms.



255.

256.

257.

258.

259.

260.
261.
262.
263.
264.

265.

266.

267.
268.

269.

270.

271.

272.

273.

274.

275.

Progressions 29

Find the sum of the series 1.3% 4 2.5% 4 3.72 4 --- to 20 terms.

Find the sum of the series (n? — 12) 4+ 2(n? — 2%) + 3(n? — 3?) + - to n terms.
Find the sum of the series (3% —2%) 4+ (5% — 43) + (7° — 6®) + - to 10 terms.
Find the sum of the series 1 + ﬁ + 1+++3 + --- to n terms.

Find the sum to infinity of the series 5 4 + 15 4 s T 53 6 s+ 570 10 +

Find the sum of the series 2 + 6 + 12 + 20 + -+ to n terms.

Find the sum of the series 3+ 6 + 11 + 18 4 --- to n terms.

Find the sum of the series 1 +9 + 24 + 46 4 75 + - to n terms.

Find the nth term of the series 2+4+ 7+ 11416 + ---

Find the sum to 10 terms of the series 1 +3 46 + 10 + -

The odd natural numbers have been divided in groups as (1, 3), (5, 7,9, 11),
(13, 15,17, 19, 21, 23), ... Show that the sum of numbers in the nth group is 4n>.

Show that the sum of numbers in each of the following groups is an square of an odd
positive integer (1), (2, 3,4), (3,4,5,6,7), ...

Find the sum to n terms of the series 2+ 5+ 14 + 41 + ---.
Find the sum to n terms of the series 1.1 + 2.3 + 4.5 + 8.7 + ---.
If ay, ag, as, -+, ag, are in A.P., show that a? — a2 + a2 — a2 + - + a2, |, — a2, =

Tnfl (a% - a’%n)'

If a1, ag, as, -+, ay, are in A.P., whose common difference is d show that sind

[secal SecC (xg + sec aig sec g + -+ + Sec (v, 1 sec ozn} = tan a,, — tan a;.

1 1 2

If a1, as, as, ..., a, be in A.P. P o = aras

(2+a++2)

If a1, a9, as, ... be in A.P. such that a; # 0, show that S = + 4+t ="

aijaz = aza3 AnGn+1  A1Gn41’

If ay, a, as, ..., a, be in A.P. and a; = 0, show that 3* + %+ i ag(;};+;}§ +

1 ) _ ap-1 as
an—2 az ap—1’

AkAE+1Qk+2

n
If a1, as, ..., a, are in A.P., whose common difference is d, show that E -
k k+2

k=1
=3[a}+ (n+1)ayd + =20 2],

If 2,y and =z are positive real numbers different from 1, and z'® = y?! = 228, show that
3, 3logy, x, 3log. y, 7log, z are in A.P.
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% sin? nx
Ifr, = / ﬁdaz, then Iy, Io, I3, ... are in A.P.
o @

Can there be an A.P. whose terms are distinct prime numbers?

Four distinct no. are in A.P. If one of these integers is sum of the squares of remaining
three, then 0 must be one of the numbers in A.P.

In an A.P. of 2n terms the middle pair of terms are p 4+ ¢ and p — ¢q. Show that the sum
of cubes of the terms in A.P. are 2np[p® + (4n? — 1) ¢*].

Find the sum S, of the cubes of the first n terms of an A.P. and show that the sum of
the first n terms of the A.P. is a factor of S,,.

Show that any positive integral power (greater than 1) of a positive integer m, is the
sum of m consecutive odd positive integers. Find the first odd integer for m”(r > 1).

If @ be the sum of n terms and b? the sum of the square of n terms of an A.P., find the
first term and common difference of the A.P.

If ay, ag, ... , a, are in A.P., whose common diference is d, then find the sum of the series
sind[cscay cscag + €scag €sc ag + -+ + CSCap_1 CSC Ay, |.
If a1, as, ..., a, are in A.P. where a; > 0V4, show that

1 1 1 n—1

\/a_1+\/a_2 \/a—2+\/a3 Van—1+vVay \/a_1+\/an

n
. . . . _ d
If a1, a0, , a, are in A.P., whose common differemce is d show that E tan ™t T
-1 3
o n-1an
apn—1 @n—a1
tan 1+anar’
If a1, as, ..., a, are the first n items of an A.P. with first term a and common difference d

such that ad > 0. Let S,, = ﬁ + a;ag — ﬁ Prove that the product a;a,S,, does
not depend on a or d.

If ay, as, ..., ayn, Gni1, ... be in A.P., whose common difference is d and S; = a1 + as +
ot ap, S2 = apy1+ -+ agn, S3 = @241 + - + az, Show that Sy, So, Ss, ... are in A.P.
whose common difference is n?d.

If a, b, ¢ are three terms of an A.P. such that a # b, show that (b —c¢)/(a —b) is a
rational number.

Prove that tan 70°, tan 50° + tan 20°, tan 20° are in A.P.

logi m

If log; , log,, z, log, « are in A.P. and x # 1, prove that n? = (nl)

The length of sides of a right angled triangle are in A.P., show that their ratiois 3:4: 5

Find the values of a for which 5% 4 517¢, 5,25% + 257" are in A.P.

If log 2, log(2” — 1) and log(2” + 3) are in A.P., then find .

If 1,log, x, log. y, —15log, 2 are in A.P., then prove that x = Zand y =272
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Show that \/5, \/37 v/5 cannot be terms of a single A.P.

A circle of one centimeter radius is drawn on a piece of paper and with the same center
3n — 1 other circles are drawn of radii 2 cm, 3 cm, 4 cm and so on. The inner circle is
painted blue, the ring between that and next circle is painted red, the next ring yellow
then other rings blue, red, yellow and so on in this order. Show that the successive areas
of each color are in A.P.

If z,y, z(x,y, z #+ 0) are in A.P. and tan™' 2, tan~ 'y, tan™! 2 are also in A.P., then
prove that x =y = z.

cos? 1 sint0
cos?a’ 27 sin?a

If & and « are two real numbers such that are in A.P., prove that

cos?7t29 1 sin?n+26
cos?™ o 727 sin?"a

are also in A.P..

us
Ifa, = / (sin 2nz/sin ) dz, show that ay, as, as, ... are in A.P.
0

Ifl, = 4tan" xdx, show that

0
of A.P.

1 1 1 X
lo+147I3+157 la+16’

--are in A.P. Find the common difference

1—cos2x

Ifr, = / Mdz, then show that Iy, Io, I3, ... are in A.P.
0

If a, B, v are in A.P.and a = sin(8 + ), § = sin(y + «) and v = sin(a + 3) . Prove that
tan o = tan § = tan~y.

Suppose a, b, ¢ are three positive real numbers in A.P., such that abc = 4. Prove that
1
the minimum value of b is 43.

Find the sum of n terms of the series: loga + 10g%3 + logz—z + logz—z + -

The first, second and the last terms of an A.P. are a, b, ¢ respectively. Prove that the
(b+c—2a)(a+c)

sum of al the terms is Sh—a)

If S,, denotes the sum of n terms of an A.P., show that S,,+3 = 3(Sn+2 — Sn+1) + Sn-

If a1, ao, ..., a, are in arithmetic progression with common difference d, prove that
Zaras = %n(n —1[a?+(n—1)ad+ 1—12 (3n% —7n 4 2)d?].

rs

Balls are arranged in rows to form an equilateral triangle. The first row consists of one
ball, the second of two balls and so on. If 669 more balls are added, then all balls can
be arranged in the shape of a square and each of the sides contained 8 balls less than
each side of the triangle did. Determine the initial no. of balls.

Find the sum of the product of the first n natural numbers takes two at a time.

A postman delivered daily for 42 days 4 more letters each day than on the previous
day. The total delivery made for the first 24 days of the period was the same as that
for the last 18 days. How many letters did he deliver during the whole period?
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If S, denotes the sum to n terms of an A.P. and S,, = n2p, S,, = m2p, m # n, prove
that S, = p*

There are n A.P.'s whose common difference are 1,2, 3, ..., n respectively the first term
of each being unity. Prove that the sum of their nth terms is g(n2 +1).

If Sq, 55, ..., S, are the sum of n terms of m A.P.s whose first terms are 1,2, ..., m and
whose common differences are 1, 3, 5, ..., 2m — 1 respectively, show that Sy + Sy + --- +
S = %mn(mn +1)

A straight line is drawn through the center of a square ABC D intersecting side AB at
point NV so that AN : NB = 1: 2. On this line take an arbitrary point M lying inside
the square. Prove that the distances from M to the sides AB, AD, BC,C D of the square
taken in that order, form an A.P.

If the sides of a right-angled triangle are in G.P., find the cosine of the greater acute
angle.

Does there exist a geometric progression containing 27, 8 and 12 as three of its terms?
If it exists, how many such progressions are possible?

Show that 10, 11, 12 cannot be terms of a G.P.

2
IfI1, = / cos” x cos(nx) dx, then prove that Iy, I, I3, ... are in G.P.
0

sinxT

Let I, = / wdm Show that I3, I, I3, ... are in A.P. as well as in G.P.
0

Prove that the three successive terms of a G.P. will forrn sides of a triangle if the
common ratio r satisfied the inequality % V5-1)<r<sz ( V5 + 1).

Find out whether 111...1(91 digits ) is a prime number.

Find the natural number a for which Z fla+k) =16(2" — 1), where the function f

k=1
satisfied the relation f(x + y) = f(z) f(y) for all natural numbers x, y and further
f1) =2

In a certain test, there are n questions. In this test 2" % students give wrong answers
to at least 7 questions (1 < i < n.) If total no. of wrong answers given is 2047, find the
value of n.

If Sy, Sa, Ss, ..., So,, are the sums of infinite geometric series whose ﬁrst terms are
respectively 1, 2, 3, ..., 2n and common ratio are respectively %7 é7 find the

value of S7 + S%+ -+ 53, ;.

) 2n+1 )

A sqaure is given, a second square is made by joining the middle points of the first
square and then a third square is made by joining the middle points of the sides of
second square and so on till infinity. Show that the area of first square is equal to sum
of the areas of all the succeeding squares.
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If @ is the value of  for which the function 7 + 2z log 25 — 5%~ — 5277 has the greatest
x n

. T t2 . n—1
value and r = alclil}] | Tanmra) dt, find nhj& ; ar™” .
If pth, ¢th, rth terms of a G.P. are positive numbers a, b, ¢ respectively, show that the
vectors (loga).7+ (logb)j+ (log ¢)k and (¢—r)7+ (r—p)j+ (p—q) k are perpendicular.
The pollution in a normal atmosphere is less that 0.01 % . Due to leakage of gas from a
factory the pollution increased to 20 % . If everyday 80% of the pollution us neutralised,
in how many days the atmosphere will be normal?

The sides of a triangle are in G.P. and its largest angle is twice the smallest one. Prove
that the common ratio of the G.P. lies in the interval (1, v/2).

If a, b, ¢, d are in G.P., then prove that az® 4 bz? 4 cx + d is divisible by az? + c.

If a,b, ¢, d, p are real and (a® + b? 4 ¢2) p> — 2(ab+ be + cd) p + (b + ¢ + d?) < 0. Show
that a, b, ¢, d are in G.P. whose common ratio is p.

If 22% = y* + 2% zyz = 8 and log, @, log y,log, z are in G.P., show that x =y =z = 2.
If a,b, ¢, d are in both A.P. and G.P. and b = 2, then find the number of such sequences.
If log, a, a*/?, logy x are in G.P., then find .

The (m +n)th and (m — n)th terms of a G.P. are p and ¢ respectively. Show that mth

m
and nth terms are v/pq and p(%)zn respectively.

If the pth, gth and rth terms of an A.P. are in G.P., then find the common ratio of the
G.P.

A G.P. consists of 2n terms. If the sum of the terms occupying the odd places is S1, and
that of the terms in even places is S, show that the common ratio of the progression
is SQ/Sl.

If S,, denotes the sum of n terms of a G.P. whose first term and common ratio are a
and 7 respectively, show that

n

rSnJr(l—r)ZSn:na

n=1

Find the sum of 2n terms of the series where every even term is x times the term just
before it and every odd term is y times the term just before it, the first term being 1.

Prove that in the sequence of numbers 49, 4489, 444889, ... in which every number is
made by inserting 48 in the middle of previous number as indicated, each number is
the square of an integer.

If there be m quantities in a G.P., whose common ratio is r and .S;,, denotes the sum of
the first m terms then prove that the sum of their products taken two and two together
is HLI Sm Smfl.

Solve the following equations for = and y
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logio z + logio #¥/2 4 logig '/t + - =y
14345+ (2y—1) 20

447410+ +3y+1 Tlogppx

If a4, as, ..., a, are in G.P. and S = a; +as + -+ a,, T = ail—}—aiz—i—m—o—% and
P = aj.as. ... .a, show that P? = (%)n

Let a, b, ¢ be respectively the sums of the first n terms, the next n terms and the next n
terms of a G.P. show that a, b, ¢ are in G.P.

If S,, denotes the sum to n terms of a G.P. whose first term and common ratio are a
na_ _ ar(l—r")

and 7 respectively, then prove that Sy + Sp + -+ S, = 17— =2

If S,, denotes the sum to n terms of a G.P. whose first term and common ratio are a
and r respectively, then prove that S; + S3+ S5+ -+ Sop,_1 = ")

na ar(l—r

1—r  (1-7)2(1+r)

Let s denote the sum of terms of an infinite geometric progression and o2 the sum of

squares of the terms. Show that the sum of first n terms of this geometric progression
$2— g2\
m) ], where ‘7“| < 1.

is given by 3[1 — (

Let aj,a9,as, ... ,a, be a geometric progression with first term a and common ratio r, then

. . _a?r(l—rn ) (1—rm)
the sum of the products a1, as, ..., a, taken two at a time i.e. Z G0 =
i<j

. . . 1 1
If a1, as, as, ... is a G.P. with first term ¢ and common ratio r, show that ot =t
1 %2 27 %3
1 _ ,,>2(17r2'n,72)
=—>

aZ =21 _p2)2"

et e

n—1""

If ay, as, as, ... is a G.P. with first term a and common ratio r, show that Ernjl;awm +
1 2

1

1 rmnTm—1
a;n+a§n, + + a;r,b—l'*'a:? - am,(1+7.m)(rm,n—m,77.mn—2m)'

If a1, as, ..., ao, are 2n positive real numbers which are in G.P. show that vajas +
Vazas+ Vasag + - +Vagn 1020 = Var + a3+ - + agn1Vaz + as + - + agn.

Find the solution of the system of equations 1+ + 22+ + 2 =0and 1 +z + 22 +
etz =0.

A man invests $a at the end of the first year, $2a at the end of the second year, $3a at
the end of the third year, and so on up to the end of nth year. If the rate of interest
is $r per rupee and the interest is compounded annually, find the amount the man will
receive at the end of (n + 1)th year.

1,10
Find the value of (().16)1()222'5(§+32Jr33+ *)

1
FA=1+7r"+72"4- toooand B=1+7r"+r?+. to oo, prove that r = <%>"’:

(52

-
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If 51, s9, ..., S, are the sums of infinite geometric series whose first terms are 1,2,3,...,n
. 11 1 .
and common ratios are 3, 3, -+, 57 respectively, then prove that s; + sz + - + s, =
1
sn(n+3).
If S,, be the sum of infinite G.P.'s whose first term is n and the common ratio is E%-”l?
. 818u+828, 1+ +5nS
ﬁIld llm 1n22;11 2'11
n—o0 ST+S5+-+5%

The sum of the terms of an infinitely decreasing G.P. is equal to the greatest value of
the function f(z) = 2%+ 3z — 9 on the interval [—5, 3], and the difference between the
first and second terms is f/(0). Prove that the common ratio of the progression is %

. . 5 , 55 , 555
Find the sum of the series 13 + 132 T 135 + 00

. . . 2 .
If -5 < < and the sum to infinite number of terms of series cosx + 3 cos sin? z +

%cosmsin4 x 4+ - is finite, then show that z lies in the set (—g, g)
An A.P. and a G.P. with positive terms have the same number of terms and their first
terms as well as the last terms are equal. Show that the sum of A.P. is greater than or
equal to the sum of the G.P.

Given a G.P. and A.P. of positive terms a, a1, as, ..., apn, ... and b, by, ba, ..., by, ...
respectively, with the common ratio of the G.P. being different from 1, prove that there
exists x € R, x > 0 such that log, a,, — b,, = log, a — b, Yn € N.

If the (m + 1)th, (n + 1)th and (r 4+ 1)th terms of an A.P. are in G.P., and m, n, r are
in H.P., show that the ratio of the first term to the common difference of the A.P. is
—n/2.

If a, b, c are in G.P. and a — b, ¢ — a, b — c are in H.P., then show that a + 4b 4 ¢ = 0.

If Sy, S and S5 denote the sum to n(> 1) terms of three sequences in A.P., whose first
25351 —5152— 553

terms are unity and common differences are in H.P., prove that n = 355,15,

Find a three-digit number such that its digits are in G.P. and the digits of the number
obtained from it by subtracting 400 form an A.P.

If a, b, ¢ be distinct positive numbers in G.P. and log. a, log, ¢, log, b be in A.P., prove
that the common difference of the progression is 3/2.

If p be the first of the n arithmetic means between two numbers a and b and ¢ the

first of the n harmonic means between the same two numbers, prove that the value of ¢
. 1102

cannot lie between p and (%:)

An A.P. and a G.P. each has p as first term and ¢ as second term where 0 < g < p.

Find the sum to infinity, s of the G.P., and prove that the sum of first n terms of the

A.P. may be written as np — # . %

If log, y, log. x,log, z are in G.P., xyz = 64 and 23,9°, 2% are in A.P., then find z, y and
z.
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Find all complex numbers z and y such that x,z+ 2y, 2z +y are in A.P. and (y+ 1)2, xy+
5, (z +1)? are in G.P.

Find A.P. of distinct terms whose first term is 3 and second, tenth and thirty fourth
terms form a G.P.

Let a, b, ¢, d be four positive real numbers such that the geometric mean of a and b is
equal to the gerometric mean of ¢ and d and the arithmetic mean of a? and b? is equal
to the arithmetic mean of ¢? and d2. Show that the arithmetic mean of a™ and b" is
equal to the arithmetic mean of ¢" and d" for every integral value of n.

The sum of first ten terms of an A.P. is equal to 155, and the sum of first two terms
of a G.P. is 9. Find these progressions if the first term of the A.P. euqgals the common
ratio of the G.P. and the first term of G.P. equals the common difference of A.P.

If a, b, ¢ be in H.P., prove that (%Jr%—%) (%+%f%) =4_3

ac b2

If a, b, ¢ are positive real numbers which are in H.P. show that ;;bb + ;jfb > 4.
If (a+b)/(1—ab),b, (b+c)/(1—bc) are in A.P., then prove that a, b}, ¢ are in H.P.

Suppose a,b, ¢ are in A.P. and |al, |b|,|c| < 1ifz = 1+a+a®+--00,y = 1+b+b>+ - 00,
z=1+c+ c¢? 4 oo then prove that x, vy, z are in H.P.

1 1 1
If = = bv = ¢* and a, b, ¢ are in G.P. prove that x, y, z are in A.P.

If a, b, c be in A.P., I, m,n be in H.P. and al, bm, cn be in G.P. with common ratio not

o~

equal to 1 and a, b, ¢, [, m, n are positive show that a:b:c= % : % :
An A.P., a G.P. and an H.P. have the same first term a abd same second term b, show
b2n+2_g2n+2 n+1

that n + 2th terms will be in G.P. is i =

ab(b2"—a?™) n °

If an A.P. and a G.P. have the same 1st and 2nd terms then show that every other term
of the A.P. will be less than the corresponding term of G.P. all the terms being positive.

If A, G, H are the arithmetic, geometric and harmonic means of two positive real num-
bers a and b, and if A = kh, prove that A2 = kG?. Find the ratio of a to b. For what
value of k does the ratio exist.

If p be the rth term when n A.M.'s are inserted between a and b and ¢ be the rth term

when n H.M.'s are inserted between a and b, then show that g—i-% is independent of n
and 7.

Two trains A and B start from the same station P at the same time. A covers half
the distance between first station P and second station () with speed z and other half
distance with speed y. Train B covers the whole distance with speed ZTH’ Which train
will reach @) earlier.

If n is a root of equation z2(1 — ac) — x(a®+ ¢*) — (1 +ac) = 0 and if n H.M.'s are
inserted between a and ¢, show that the difference between the first and last mean is
equal to ac(a — ¢).
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If Ay, Ao, ..., A, are the n A.M.'s and Hy, Ho, ..., H, the n H.M.'s between a and b,
show that A, H,_,,1 =abfor 1 <r <n.

Find the coefficient of 2% and x% in the polynomial (z — 1) (x —2) (z — 3) ... (x — 100).
Find the nth term and sum to n terms of the series 12, 40, 90, 168, 280, 432, ...
Find the nth term and the sum to n terms of the series 10, 23, 60, 169, 494, ....

Find the sum of the series 3 + 5z + 922 + 152° + 232* + 332° + - 0.

IfH,L_1+ +3++rand Hy =" — {bn + iy + - + 52 |, show that
~1 -1 -1 S
Show that tan (Ml+f212> + tan (1+2z_312> + -+ 4+ tan (1+n(7f+1)z2)

tan’%ﬁ).

1 2 3
e s T e

Find the sum to n terms of the series

1
Find E tan™ 2+k2+k4

n n(4n?+6n+5)
Show that — 1 3 + 3 5 + 57 + -+ (Zn— 1)(2'n+1) & 48 & + 16(2777;4»1)

If ay, as, ..., Gy, ... are in A.P. with first term a and common difference d, find the sum
for r > 1 of a1as ...ar + azas ... a, 11 + -+ to n terms.

If al, ag, ..., Gy, ... are in A.P. and none of them is zero. Then prove that +
ot - T

a2a3...ar4+1 AnQpitl e Qntr—1 (r—1)(az—a1)

ayas...ar

[ : 3 ]
a1az...ar—1 An+10n+2---Antr—1

: . . R | 1 1
Find the sum to n terms of the series 7557+ 53575 T 556+

Find the sum to n terms of the series % + % + % + -

1 2 3
Find ;5 + 155+ 1355+ to n terms.

2 1 3 1 4 1
Flnd“g 3 §‘53§+g‘?§+ to n terms.

Find the sum of n terms of the series = + 3 =+ 51 7 Tt T 11 =+

Find the sum of the series: 1+2(1—a)+3(1—a)(1—2a)+4(1—a)(1—2a)(1—3a)+
- to m terms.

z(z+b1) z(z+b1)(z+b2)+~“+x(1+b1) (+bi— 1)

. . xT
Find the sum of the series 1 + T, T Dibaba DTy B

Let Si(n) = 1¥ 4+ 28 4 ... 4 n*, show that nSy(n) = Skp1(n) + Sk(n — 1) + Sp(n —2) +
-+ Sk(2) + Sk(l)

Find the sum of all the numbers of the form n® which lie between 100 and 10000.
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If S be the sum of the n consecutive integers beginning with a and ¢ the sum of their
squares, show that nt — 52 is independent of a.

n+5

If Y " 4(z —3) = Pn®+ Qn + R, find the value of P + Q.
x=5

Find the sum to 2n terms of the series 55 + 4.6 + 73 + 4.82 + 93 + 4.10% + ---.

2 3
Find the sum to n terms of the series @Zi) + 3(;22) + 5@22) + e

2 3
Find the sum to n terms of the series 1 + 5(3:1::1,)) + 9(12:1’) + 13(;‘2:&;) 4

Prove that the numbers of the sequence 121, 12321, 1234321, --- are each a perfect square
of an odd integer.

5 7 9

. 3 .
Prove that the sum to n terms of the series Tttt et s

6n/(n+1).

1 1 1
T (12s) T 021730 T Tisa)(irde) T

Find the sum to n terms of the series

1 a a?
1+z)(1+ax) + (1+azx)(1+a?x) + (14+a2%z)(1+a3z) e

Find the sum to n terms of the series T

Find the sum to n terms of the series ﬁi\/E + ﬁi\/g + \/Eiﬁ 4

If a1, a9, ...,ay, ... are in A.P. with first term a and common difference d, then prove that
102+ a2a3 + -+ + Anaps1 = [a+(n—1)d](a+’gg)*(a—d)a(a+d) :g[3a2+ 2and + (n?—1)d?].

If aq, as, ..., an, ... are in A.P. with first term a and common difference d, then prove
that ajasas + asazas + -+ apnGpi1anio =

l[a+(n—1)d](a+nd)[a+(n+1)d][a+(n+2)d]—(a—d)a(a+d)(a+2d)
ad

2[4a® +6(n+ 1)a’d +2(2n® + 3n — 1) ad® + (n® — 2n° —n — 2) d*].
Find the sum to n terms of the series % + % + 3T742 + e

Let S,, denote the sum to n terms of the series 1.2 + 2.3 + 3.4 + --- and o,,_; that to
n—1 terms of the series + 3'4%56 +--- Then prove that 185,0,_1— 5, = —2.

1 1
1.2,3.4+2.3.4.5

Find 1 %+£§.§1§+§?—4.§1§+m to n terms.
Ifliz-i-%-i-%-ﬁ-;lz—f—-"oo:%then ﬁnd%-ﬁ-%-ﬁ-s—lz-ﬁ-“-oo.

st st st 00 =" then find 1 — 5 + & — 15 + - 0.
Ian:1+%+%+--~+%,then prove that H,L:n—<%+§+§+~-~+"771>.
Show that ﬁ+ﬁ+ﬁ+"'+%:;1—%v
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Show that (1-+3) (1+3) (1+5) -~ (14 3h) = 3 (1 5=1)-

If x4+ y+2z=1and z,y, z are positive numbers show that (1—z)(1—y)(1—2z) > 8zyz.
If a>0,b>0and ¢ > 0, prove that (a+b+c)<é+%+%) >9.

Ifa+b+c=3and a>0,b>0,c>0, find the greatest value of a?b3c>.

Let a;+b; =1(: =1,2,...,n) anda:%(al+a2+~-~+an),b:%(b1+b2+~-~+bn),

show that ayby + agby + - + anby, = nab — (a1 — a)> — (ag — a)? — - — (an — a)2
A sequence aq, ag, as, ..., ap, of real numbers is such that a; = 0, |az| = |a; + 1|, |az| =
lag + 1], ..., |an| = |an—1 + 1|. Prove that the arithmetic mean (a; + as + - + a,)/n of

these numbers cannot be less than —1/2.

If a, b, ¢ > 0, show that (a+b) (b+ ¢) (a+ ¢) > 8abe.
If x + y + 2z = a, show that %-i—%-i—%Z
If n is a positive integer, show that n” > 1.3.5... (2n — 1).

Find the greatest value of (7 —z)*(2+2)° if 2 <z < 7.

. b b +b+
If a,b, ¢ > 0, show that %% + 55 + 255 < S5

If a, b, ¢ > 0, show that %ﬁ + Cza 4atb

(&

> 6.
Ifz;>0,i=1,2,3,...,n show that (ac1+332+~--+zn)(zil—i-%—km—i-mi) > n2

If = are positive real numbers and m, n are positive integers, then show that
) 7 b
wrym <1

(1+(L.27L><1+y2'rn) — 4‘

If the arithmetic mean of (b —¢)?, (¢ — a)? and (a — b)? is the same as that of (b4 ¢ —
2a)?, (¢ +a—2b)* and (a + b —2c)?, show that a = b = c.



Chapter 3

Complex Numbers

By definition a complex number has two parts: a real part and an imaginary part. You
already know about real numbers and know about them. However, imaginary numbers is
something different.

3.1 Imaginary Numbers

Imaginary numbers are called so because there cannot be physical representation of these
quantities. Like we use real numbers for counting physical objects we cannot do that with
imaginary numbers. In real world, they do not exist. Square root of negative numbers are
called imaginary numbers. For example, \/.—'1 , \/:§ \/——3 , ... and so on.

We denote v—1 with the Greek symbol ¢, which stands for iota. We also use English letters
ior j to represent this imaginary number. Clearly, i = —1, 4% = —i, i* = 1. If you examine
carefully, you will find that following holds true:

i = 1, = 2 = Land ¢ = —1,Vme P
Gotcha:

Consider the following:
1=VI=vV—lsx—1=vV-1xvV—l=ixi=—1

However, the above result is wrong. The reason being is that for any two real numbers a and
b, vVa * Vb = v/ab holds good if and only if two numbers are either zero or positive. Also,
Vi # v/—1 * —1 because power of — is % which results in —1.

3.2 Definitions Related to Complex Numbers

A complex number is written as a + ib or x 4 iy or a + jb or = + jb. Here, a, b, x, y are all
real numbers. The complex numbers itself is denoted by z. Therefore, we have z = x + iy.
Here, z is called the real part and is also denoted by P(z) and y is called the imaginary
part and is also denoted by J(z).

A complex number is purely real if its imaginary part or y or J(z) is zero. Similarly, a
complex number is purely imaginary if its real part or z or 2R(2) is zero. Clearly, as you can
imagine that there can exist only one number which has both the parts as zero and certainly
that is 0. That is, 0 = 0 + 0.

The set of all complex number is typically denoted by C. Two complex numbers z; and 2z,
are said to be true if there real parts are equal and imaginary parts are equal. That is if
21 = x1 +iy1 and 2o = xo + iyo then z1 must be equal to x5 and similarly for imaginary part
for two complex numbers to be equal.

40
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3.3 Simple Arithmetic Operations
3.3.1 Addition

(a+1ib) + (¢ +id) = (a+¢) +i(b+d)

3.3.2 Subtraction

(a+ib) — (¢ +id) = (a —¢) +i(b—d)

3.3.3 Multiplication

(a+1ib) * (¢ + id) = ac + ibc + iad + bdi® = (ac — bd) + i(bc + ad)
3.3.4 Division

The complex number in denominator must not have both parts as zero. At least one part
must be non-zero.

a+ib _ (a+1b)(c—id) (ac+bd) +i(bc —ad)

c+id  (c+id)(c—id) c? + d?

3.4 Conjugate of a Complex Number

Let z = x + iy be a complex number then its complex conjugate is a number with imaginary
part made negative. It is written as Z = x — iy.Z is the typical representation for conjugate
of a complex number z.

3.4.1 Properties of Conjugates
1. 1=2021=2

Clearly as we know for two complex numbers to be equal, both parts must be equal.
So this is very easy to understand that if 1 = xo and y; = ys then this bidirectional
condition is always satisfied.

2. )=z
z = + 1y, hence, Z = = — iy. Hence, (Z) =z — (—iy) =z + iy = 2
3. z+7=2R()
z2+Z=u+1iy+z—iy = 2z = 2R(2).
4. z—z=2i3(z)
z—Z=w+iy— (v —iy) = 2iy = 2¢T(2)
5. z =7Z < zis purely real.

Clearly, z + iy = x — iy = 2iy = 0 = y = 0. Therefore, z is purely real. Conversely, if z
is purely real then z = x, and thus z = Z.
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z+ 7% =0 < zis purely imaginary.

Clearly, x + iy + ¢ — iy = 0 = 2x = 0. Therefore, z is purely imaginary. Conversely, if z
is purely imaginary then z = iy, and thus z + %z = 0.

7Z=[R(:)] +[3(»)]
Clearly, 2z = (z + iy) (v — iy) = 22 + 3 = [R(2)]> + [3(2)]?

21+2=211+2

z1+ 22 = (1 +iy1) + (zo+iye) = (@1 +22) +i(yr +12) = (21 + 22) —i(y1 + y2) =
1+

(x1—iy1) + (x2—iy2) = Z2

21— 22 =721 — 22

This can be proven like previous item.
21722 = 2122

This can be proven like previous item.
(2)=Zitzn+0

It can be proven by multiplying and dividing by conjugate of denominator and then
applying division formula given above.

If P(2) =ap+ a1z + as?? + ...+ anz", where ag, a1, ..., a, and z are complex numbers,
then

P(z) =ap+ai(z) + @2(2)° + @p(2)" = P(%)

where
P(z)=ap+ a1z +@22+ .. +a,"
If R(z) = 58, where P(z) and Q(z) are polynomials in z, andQ(z) # 0, then
R(z) - £
Q)
If
ai; az as CTI 03 CTS
bl b2 bd ) then z = Fl FQ b73 ’
c1 C2 C3 €1 C2 C3

where a;, b;, ¢;(1 = 1,2, 3) are complex numbers.

3.5 Modulus of a Complex Number

Modulus of a complex number z is denoted by |z| and is equal to the real number /z2 + 2.
Note that |z| > 0Vz € C.

3.5.1 Properties of Modulus
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1. |2]=02=0
Clearly, this means 2>+ 3> =0=2z=0and y=0= 2 = 0.
2. |zl =zl =1—z2l=|-7

Clearly, all result in /22 + 2.
3. —|z] < R(2) < 2.

Clearly, —/2? +y? < = < /22 + o2
4. —|z| <TJ(z) < 2|

Clearly, —/2% + 32 <y < /22 + 42

2Z = |2?

t

Clearly, (z +iy) (z — iy) = 22 + 32 = |2|>.

Following relations are very easy and can be proved by the student. If z; and 25 are two
complex numbers then,

6. ‘2122‘ = |21H2’2|

|z120] = |mi@2 — yaye + i(z1ye + z21)| = V(z1z2—y192)? + (z1y2 + 2291)? =
V(w1 +y1)2 (22 + y2)? = |21]] 2

Z1
Z2

=Elif 2o #=0

e

7.

8. |21+ 22|? = |22+ |22? + Zrze + 2272 = |21 2 + |22 + 2R(21 7).

9. |21 — 2z =212+ |2 — 1z — 217 = |21 2 + |22 + 2R (01 ).

10. |21 + 22 + |21 — 2)? = 2(\21|2 + |22|2).

11.If a and b are real numbers, and z; and 22 are complex numbers, then
lazy + bza|? + |bzy — aze|? = (a® + %) (J21|* + |22/?).

12.1f 29, 20 #= 0, then |21 + 22> = |21 > + ||? = z—; is purely imaginary.

13.1f z; and z are complex numbers then |z; + 22| < |21]| + |22|. This inequality can be
generalized to more terms as well.

14. |21 — 20| < |z1] + |22|, ||71] — |22]| < |21| + |22| and |21 — 22| > ||21] — |22]|. These are trivial
to prove.

3.6 Geometrical Representation

A complex number z which we have considered to be equal to z + iy in our previous repre-
sentations can be represented by a point P whose Cartesian coordinates are (x,y) referred
to rectangular axes Ox and Oy where O is origin i.e. (0,0) and are called real and imaginary
axes respectively. The zy two-dimensional plane is also called Argand plane, complex plane



Complex Numbers 44

or Gaussian plane. The point P is also called the image of the complex number and z is also
called the affix or complex coordinate of point P.

Now as you can easily figure out that all real numbers will lie on real axis and all imaginary
numbers will lie on imaginary axis as their counterparts will be zero.

The modulus is given by the length of segment OP which is equal to OP = /22 + y? = |2|.
This, |z| si the length of the OP. Given below is the graphical representation of the complex
number.

Y

P=x+iy

OP = |7]
arg(z) =0

X

Figure 3.1 Complex number in argand plane

or complex plane.

In the diagram, 6 is known as the argument of z. This is nothing but angle made with
positive direction (i.e. counter-clockwise) of real axis. Now, this argument is not unique.
If 0 is an argument of a complex number z then, 2nmw + theta, where n € I, where I is the
set of integers. The value of argument for which —7 < 6 < 7 is called the principal value of
argument or principal argument.

3.6.1 Different Arguments of a Complex Number

In the diagram, the argument is given as arg(z) = tarf%%)7 this value is for when z in first
quadrant. When z will lie in second, third and fourth quadrants the arguments will be

arg(z) =7 — tan‘(%), arg(z) = —m + tan‘%%) and arg(z) = —tan®” — 1(%)

respecticely.

3.6.2 Polar Form of a Complex Number

If z is a non-zero complex number, then we can write z = r(cos @ + isin @), where r = |z
and 6 = arg(z).

In this case, z is also given by z = r[cos(2nnf) + isin(2nm 4 0)], where n € I.
A Euler's Formula
The complex number cos 6 + i sin 6 is denoted by e or ¢ is 0, where ¢ is the complex number.

3.6.3 Important Results Involving Arguments

If z, 21 and 2z are complex numbers, then
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1. arg((z)) = —arg(z). This can be easily proven as if z =  + iy, then Z = x — 4y i.e. sign
of argument will get a -ve sign as y gets one.

2. arg(z122) = arg(z1) + arg(z2) + 2nm, where

0 if —m < arg(z) +arg(z) < —7
n=¢ 1if —21 < arg(z1) +arg(z) < —m
—1if —7m<arg(z)+arg(zs) <27

3. Similarly, arg(z1zz) = arg(z1) — arg(z2).

W~

.z + 22| = |22 — 22| & arg(z1) — arg(ze) = /2.

Ut

.|z F 22| = |2 F 22| & arg(z1) = arg(z2).
6. |21 4 22|? =77 412 + 2r1rp cos(6) — 6s).

7. |21 — 2|? = 12 + 173 4 2179 cos(0 + 62).

3.7 Vector Representation

Complex numbers can also be represented as vectors. Length of the vector is nothing but
modulus of complex number and argument is the angle which the vector makes with read

—
axis. It is denoted as OP, where OP represents the vector of the complex number z.

3.8 Algebraic Operation's Representation

Let z1 = 21 4+ 1y1 and zo = x5 + iy2 be two complex numbers, which are represented by two
point P; and P, in the following diagrams.

3.8.1 Addition

Now, as we know that z; + 2o = (z1 + z2) + i(y1 + y2). Let us see how it looks using
geometrically:
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Y
P(x +iy)
|
P2(xzo+i i
l
! |
! |
! |
! I
! I
! I
! I
! I
! I
: |
| |
: Pl(w1+zy1) *:K
I I |
1 o
! | | X
0] L M N

Figure 3.2 Complex numbers addition.

Clearly, z = 21 + 20 = 21 + x2 + i(y1 + y2). Let PyM, P,L and PN be parallel to the y-axis;
P K be parallet to the z-axis. This implied that triangle OP, L and PP} K are congruent.

WehavePlK:OL:xlandPgL:PK:yl

Thus, ON = OM + MN = OL+ P K = x4+ 22 and PN = PK + KN = P,L + PM =
Y2 + Y1

So we can say that coordinates of P are (z1 + Z2, y1 + y2) which represents the complex
number z.

We also see that this obeys vector addition i.e. OP; + OP, = OP; + PP = OP

3.8.2 Subtraction

P2(3727 yz)

Pi(z1,91)

P(x1— 2,51 — y2)

P3(—x2, —y2)

Figure 3.3 Complex numbers subtraction
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In Figure 3.3, we first represent —zo by Pj so that P,Pj is bisected at O. Complete the
parallelogram OP; PP;. Then it can be easily seen that P representd the difference z; — z5.

As OP,PPj is a parallelogram so PP = OP5. Using vetor notation, we have, 21 — 2o =
OP, — OP, = 0P, +OP;=0P, + PP = B,P1

It follows that the complex number z; — 25 is represented by the vector P; P>, where points P;
and P; represent the complex numbers z; and zo respectively.

It should be noted that arg(z; — z2) is the angle through which OX must be rotated in the
anticlockwise direction to make it parallel with P; Ps.

3.8.3 Multiplication

A P(’f'17'2.6iwl+92))

5 (r2.€"92) Py (1)
(0,4 02)

Figure 3.4 Complex

numbers subtraction
For multiplication it is convenient to use Euler's formula of complex numbers.

Let 21 = r1e’ and 25 = rgewz, then clealry, z120 = T1T28i(91+02)

3.8.4 Division

P(r1 /r.e91792))
Figure 3.5 Complex numbers division

For division also it is convenient to use Euler's formula of complex numbers.

Let 21 = 1" and 25 = rqe'®2, then clealry, 21/70 = rl/rgeiwl*g?)

3.9 Three Important Results
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@]
Figure 3.6 External angle

— = —
Zl—ZQZOP—OQ:QP
—
~|z1 — 22| = |QP| = QP which is nothing but distance between P and Q.

—
arg(z; — 22) is the angle made by QP with z-axis whis is nothing but 6.

Q(Zz)

R(z3)

! )

A

(21)
s/
7
7
- /
7
- /
1B A -
O

Figure 3.7 Angle relation

between three complex numbers
In Figure 3.7, 0 = a — § = arg(23 — z1) —arg(22 — z1) = 0 = arg ="

Similarly if three complex numbers are vertices of a triangle then angles of those vertices
can also be computed using previous results.

Similarly, for four points to be concyclic where those points are represented by z1, 22, 23
and z4 if

arg 22— 24 21— 23 -0
21— 24 22— 2

3.10 More Roots

3.10.1 Any Root of an Complex Number is a Complex Number
Let = + iy be a complex number, where y # 0.

Let (z+iy)"=a~x+iy=a"
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Now, if a is real, a” will also be real but from above a complex number = + iy is equal to a
real number, ", which is not possible. Hence, it must be complex.

3.10.2 Square Root of a Complex Number
Consider a complex number z = x + iy. Let a + ib be its square root. Then
Vi +iy=a+ib=z+iy= (a®>—b?) + 2abi
Equating real and imaginary parts
z=a’>—0%y=2ab= (a®+0?)? = (a® — b*)* + (2ab)?

From these two equations, we have

2 2 2 __ 2 _
a:iﬂi\w,b:i —szyz

3.10.3 Cube Roots of Unity

Letx:\e/i:>x3—120
S (@—1 (2 +zx+1)=0

—1+V3 . —1+V3i
;fl.e. 1, iz‘fl.

So the three roots are x = 1,

, then w? =

- . .
Tﬁl +Tﬁz, thus, three cube roots are

It can be easily verified that if w =

represented as 1, w and w?. w is the symbol used for representing cube root of unity.
A Important Identities

Following identities can be proved easily. The proof is left as an exercise to the reader.
L 224 z24+1=(z—w)(z—w?)

2. 22—z +1=(z+4+w)(z+w?)

3. 2 tay+y = (z—yw)(z—yw)

4. 2® —azy 4+ = (x4 yw) (z + yw?)

3

5. 284y’ = (x+y) (x4 yw) (2 + yw?)

6. 2°—y’ = (z —y)(z —yw) (x — yo?)

7. 24yt 4 —ay —yr— 2z = (x4 yw + 20?) (z + g’ + 2w) or (zw 4 yw? + 2) (zw?® +
yw + 2) or (zw + y + 2w?) (2w’ + y + 2w)

8. 234y + 22 —3Bayz=(z+y+2)(z+yw+ 20?) (z + yw? + 2w)
3.10.4 nth Root of Unity
1=cos0+isin0 = /1= 4/cos0+ isin0
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= cos.%wnjJrisi112k7r where k =0,1,2,3,4, ... (n—1)

n ?
2k7 i2n  idw i2(n—1)7 i2m
— - — 2 n

=e¢n =1,en,en,..,e » =1aa>..,a" !, wherea=en

Similar to cube roots of unity it can be proven that 1 + a + a® + ... + &® ! = 0 and
lLaa? ..a" = (=11

3.11 De Moivre's Theoremm

This theorem's proof uses mathematical induction, so read the chapter on it.
Statement: If n is any integer then (cos@ + isin@)"™ = cosnf + isinnb.
Proof: Case I. When n is 0. Clearly, (cosf +isinf)? =1

Case II. When n is a positive integer. Clearly is it true for n =1

Let it is true for n = m. Then (cos® + isin )™ = cos mf + i sinmd

For n = m + 1, (cos§ + isin®)™ ™! = (cosmf + isinmb) (cos§ + isinf) = cos(m + 1) +
isin(m + 1) 0 [this result comes from trigonometry]
Thus, by mathematical induction we have proven the theorem for positive integers.

1

Case ITI. When 7 is negative number. For n = —1, (cos§ 4 isin )~ = ey

_ cosf—isinf __ 0 i sin 0
= CosZOtsinZg  COSU — 1Sl

Let it be true for n = —m, (cos@ + isin )™ = cosmf — i sin mo

.. — 1 0—1isi 0
For n.= —(m + 1), (cos @ + isin )"+ ):%
= (cosmf —isinm@) (cosf —isinf) = cos(m +1)0 + isin(m +1)0

Thus, it is proven for negative numbers as well. Proof for fractional powers is left as an
exercise.

3.12 Some Important Geometrical Results

3.12.1 Section Formula

Let 21 = z1 + iy1, 22 = x2 + 1y2 then z = x + iy, which divides the previous two points in
the ratio m;nm;n can be given by using the results from coordinate geometry as below:
_mxa+nry  mys+ny

mzo + nzy
Sy = Al 7 = s
m-+n m-+n m-+n

Extending this section formula, we can say that if there is a point which is mid-point i.e.
divides a line in two equal parts, then m = 1 and n = 1 then z is given by %(zl + 29).

3.12.2 Distance Formula

Distance between A(z1) and B(z2) is given by AB = |21 — z3].
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3.12.3 Equation of a Line
The equation between two points z; and 29 is given by the determinant
z z 1
z1 71 1
29 29 1

=0

or,

2721721722
2= n— %

The parametric form is given by z =iz; + (1 —t) 22

3.12.4 Collinear Points

Three points z1, 2o and z3 are collinear if and only if

z1 21 1
29 29 1

=0

3.12.5 Parallelogram

Four complex numbers A(z1), B(z2), C(z3) and D(z4) represent the vertices of a parallelo-
gram if 21 + 23 = 23 + 24.This result comes from the fact that diagonals of a parallelogram
bisect each other.

D(z4) C(z3)

A(z1) B(z2)

Figure 3.8 Parallelogram

3.12.6 Rhombus

Four complex numbers A(z1), B(z2), C(z3) and D(z4) represent the vertices of a rhombus
if 214+ 23 = 224 24 and |24 — 21| = |22 — 21].

D(z4) C(z3)

A(Zl) B(Zz)
Figure 3.9 Rhombus

The diagonals must bisect each other. Thus, z1 + 23 = 22 + z4. Also, four sides of a thombus
are equal i.e. AD = AB = |24 — 21| = |22 — 21|

3.12.7 Square

Four complex numbers A(z1), B(z2), C(z3) and D(z4) represent the vertices of a square if
21+ 23 = 22+ 24, |24 — 21| = |22 — 21| and |25 — 21| = |24 — 22].



Complex Numbers 52

D(z4) C(zs)

A(z1) B(z2)

Figure 3.10 Square

The diagonals must bisect each other. Thus, z; + 23 = 25 + 2z4. Also, four sides of a square
are equal i.e. AD = AB = |24 — 21| = |22 — 21

Also the digonals are equal in length so |25 — 21| = |24 — 22].

3.12.8 Rectangle

Four complex numbers A(z1), B(z2), C(z3) and D(z4) represent the vertices of a square if
21+ 23 = 22+ 24 and |23 — 21| = |24 — 22|

D(Z4) C(Zg)

A=) B(z2)

Figure 3.11 Rectangle

The diagonals must bisect each other. Thus, z; + 23 = 22 + 24. Also, the digonals are equal
in length so |z3 — 21| = |24 — 22|

3.12.9 Centroid of a Triangle

Let A(z1), B(z2) and C(z3) be the vertices of a AABC. Centroid G(z) of the AABC is
the point of concurrence of the medians of all three sides and is given by

_z1t 22+ 23
a 3
A(Zl)

B(Zl) D C(Z3)
Figure 3.12 Centroid of a triangle.
3.12.10 Incenter of a Triangle

Let A(z1), B(z2) and C(z3) be the vertices of a AABC. inceneter I(z) of the AABC is the
point of concurrence of the internal bisectors of and is given by
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_az; + bz +cz3
 a+bitc

where a, b, ¢ are the lengths of the sides.
3.12.11 Circumcenter of a Triangle

Circumcenter S(z) of a AABC is the point of concurrence of perpendicular bisectors of
sides of the triangle. It is given by

(22— 23) |21 + (23 — 21) [z2)* + (21 — 22) |2s|?
Zi(zo — 23) + Za(z3 — 21) + Z3(21 — 22)

|21|2 z1 1

|z2)? 2z 1

|2’3|2 z3 1
B zZ1 2 1
Zo 29 1
Z3 23 1

Also,

_ z18in2A + zp8in 2B + 23 sin 2C
o sin 2A + sin 2B + sin 2C'

3.12.12 Orthocenter of a Triangle

The orthocenter H(z) of the AABC is the point of concurrence of altitudes of the side. It
is given by

22 ZINC1 |21)?NCz NC1

2 m 1|+ |22]? z 1

2 m 1 |23 23 1
°T Z 2NCL

Z9 29 1
z3 23 1

_zitan A4 zptan B+ z3tan C
a tan A + tan B + tan C'

_ziasec A 4 bzg sec B + czzsec C
a asec A+ bsec B+ ¢secC

3.12.13 Euler's Line

The centroid G of a triangle lies on the segment joining the orthocenter H and the circum-
center S of the triangle. G divides the line H and S in the ratio 2 : 1.

3.12.14 Length of Perpendicular from a Point to a Line

Length of a perpendicular of point A(w) from the line az+az+b=0,(a € C,b € R) is
given by
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_ |aw + aw + b|

b 2/al

3.12.15 Equation of a Circle

The equation of a circle with center zp and radius 7 is |z — zg| = r or 2 = 2o+ re, 0 <0< 2r
or 22—202—702+2070—r2 =0

General equation of a circle is 2z —azZ+az+b =0, (a € C,b € R) such that vaa—b > 0.
Center of this circle is —a and radius is aa — b.

An equation of the circle, one of whose diameter is the line segment joining z; and zo is
(z—2)(F—%) + (F—F) (s —2) =0

An equation of the the circle passing through two points z; and z5 is

z z 1
Z1 71 1
zZ2 72 1

(z—21)Z—Z2)+(Z—71) (2 —22) + k =0

where k is a parameter.

3.12.16 Equation of a Circle Passing through Three Points

P(z) ' C(23)
A(z1) Q B(22)

P(z)
Figure 3.13 Circle through three points

We choose any point P(z) on the circle. Two such points are shown in the figure above one
is in same segment with C' and the other one in different segement. So we have

/ACB = /APBor ZACB+ ZAPB =1

z9 Z3 — 22 zZ— Z9
=0or arg +arg =T
Z3— 21

Z3 — 29 z—
arg —a

zZ3— 21 zZ—Z1 zZ— 21

Clearly, in both cases the fraction must be purely real. Thus we can apply the property of
conjugates i.e. z =z which also gives us the condition for four concyclic points.

(z—21)(z3—22)  (2—21) (23— 2)

(z=22)(23—21) (2—29) (23— 21)
From this we can also deduce the condition for four points to be concyclic. Treating P(z)
as just another point D(z4), we can rewrite the abobe result as

(ra—21) (23— 22) _ (za—21) (23— 22)

(a—22) (23— 21) (24— 29) (23— 21)

3.12.17 Finding Loci by Examination
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1. arg(z—2p) =«

If « is a real number and zp is a fixed point, then arg(z — zp) = « represents a vector
starting at zop(exlcluding the point zp) and making an angle o with real z-axis.

Y

/
A

Figure 3.14

Now suppose zq is origin O, then the above equation becomes arg(z) = a, which is a
vector starting at origin and making an angle «, which is a vector starting at origin and
making an angle « with x-axis.

2. If z; and 29 are two fixed points such that |z — 21| = |z — 22| then z represents perpendic-
ular bisector of the segment joining A(z1) and B(z2). And z, 21, 22 will form an isoscles
triangle.

Figure 3.15

lz—=1] _

If z; and 29 are two fixed points and k& > 0, k # 1 is a real number then =

represents a circle.
3. |z— 21|+ |z — 22| = k. Let z; and 23 be two fixed points and k be a positive real number.

i. Refer Figure 3.16, if k > |z — 23|, then |z — z1| 4+ |z — 22| = k represents an ellipse
with foci at A(z1) and B(z2) and length of major axis = k.

Figure 3.16 Locus of an Ellipse

ii. If k= |z — 2], then it represents the line segment joining z; and zs.
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iii. If k < |z — 22|, thne it does not represent any curve/line in Argand plane.
If |z — 21| — |z — 22| = k. Let z; and 2z be two fixed points and k be a positive real number.

i. Refer Figure 3.17, if k # |z — 29|, then it represnts a parabola with foci at A(z;) and

B(ZQ)
A(z> Q(Zz)

Figure 3.17 Locus of a Parabola

ii. If k = |z1 — 22|, then it represents the straight line joining A(z;) and B(z2) but
excluding the segment AB

Figure 3.18

|z — 21> 4 |2 — 2|? = |21 — 22|* If 21 and 2y are two fixed points then it represents a
circle with z; and z5 as the endpoints of one of the diameters.

Az B(z
(1) - (2)
Figure 3.19
arg(ii—i) = a. Let z; and z3 be any two fixed points and « be a real number such that
0<a<m.

i. If0<a<mand a # 7/2, then it represents a segment of a circle passing through
A(Zl) and B(Zz)

A(z1) B(z2)

Figure 3.20
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ii. If @ = /2, then it represents a circle with diameter as the line segment joining A(z)
and B(z3).

/2

Figure 3.21

iii. If @ = 7, then it represents the straight line joining A(z;) and B(z2) but excluding
the line segment AB.

Figure 3.22

iv. If & = 0, then it represents the straight line joining A(z1) and B(z2).

A(z1) B(z2)

Figure 3.23

3.13 Problems

Find the square root of the following complex numbers:

1.

2.

7+ 8i

a® — b2 + 2abi

v —81

Find the square root of

Simplify the following in the form of A +iB

Z"n,+80 + Z"n,+50




10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
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(1 +Z‘>4n+7
(1—i)n—1

1
1—cos0+2isin 0

(cosz+isinz)(cosy+isiny

) .
(cotat7) (i ftanv) Evaluate:

Z~5

Z'67

Z'759

Z~2014

If a < 0,b > 0, then prove that v/ab is equal to /[a]bi.

Prove that ¢" + " "1 4+ ¢"2 4" +3 = .

13
Find the value of the sum Z(z” + 4,
n=1
on (1+1)2’U.

Simplify and find the value of (EER T

Find different values of i" +i~ ", Vn € I.

If 4z + (3 — y) i = 3 — 61, then find the value of z and y.

Find the value of (%—0—2%) + (4+i%) — (—%—b—i).

144)z—2i

Find the real values of x and y, if ( 35t

Find the multiplicative inverse of 4 — 3i.

If z; = 2+ 3i and 23 = 1 + 24, then find the value of z;/zs.

If 1 = 9y2 — 4 — 410z and 29 = 8y2 — 20i such that z; = Z3, then find z = x + dy.

Find z if |z + 1| = 24+ 2(1 4 4), where z € C.

Find the modulus and argument of the complex number

w

z—3 —
[

What is the real part of (1 +14)%.

If a complex number is z, such that z + |z| = 2 + 8¢, then find 2.

Find the sum of sequence S = i + 2i2 + 3:3 + ... up to 100 terms.

Find the value of the sum %ﬂ + % + %ﬂ + ﬁ

n n n
1—i + —1+i + —1—i

Find the product of the real parts of the root z2 — z — 5 + 5i = 0.

(2-3i)y+i __

3—1

= =1, where z,y € R, then find x and y.

o et
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36.
37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.
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Find the number of complex numbers satisfying 2> +Z = 0.
Find the number of real roots of the equation z® + iz —1 = 0.

In the following diagram, if given circle is unit circle then find the reciprocal of point

A.

Figure 3.24

If 2= (3+7i)(p+iq), where p, ¢ € I, is purely imaginary, then find the minimum
value of |z|%

a2 N2
Ifa= (Z;g) + (Zfzg) , Va,b € R, then prove that « is real.

If g = Z} such that |z| = 1, then prove that § is imaginary.

If |z — 3i| = 3 such the arg(z) € (0, g), then find the value of cos(arg(z)) — g.

. —16
Find the polar form of the complex number 53

Let z and w be the two non-zero complex numbers such that |z| = |w| and arg(z) +
arg(w) = m, then prove that z = —w.

Ifx—iy= z:—:s, then prove that (z2 4 y?)? = :2122

Find the minimum value of |z| + |z — 2|.

If |21 — 1] < 1, |22 — 2| < 2 and |23 — 3| < 3, then prove that the maximum value of
|21 + 22 + 23| is 12.

If a, B are two complex numbers, then prove that |a|? + |5]? = % (Ja+ B2 +]a—BJ?).

Show that for z € C, |z| = 0, if and only if z = 0.

If z; and 2 are 1 — ¢ and 2 + 74, then find Im(Z;fz).

If |z — i| < 1, then prove that |z + 12 — 6| < 14.

If |z + 6] = |2z + 3|, then prove that |z| = 3.

If vVa —ib = x — iy, then prove that Va + ib = x + iy.
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54.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.
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If . = cos 5 T+ isin s, then find the value of ;2225 ... to co.

22’

Find the value of fef—g—tl—s—”lg)w
(sin 0+icos 6)2

. Ifz:(§+§)5+(“§——) then find 3(z).

3
Find the product of all values of (cos% + ising)4.

If z; and 29 are two non-zero complex numbers such that|z; + z2| = |21| 4 |22, then find
arg(z1) —arg(zz2).

If z=1—sina + icosa, where o € (0, g), then find the modulus and principal value
of the argument.

1+sing+icosg>8

Find the value of expression ——
l+sing—icosg

It 2 = 2r7r

If 2, = Cos then find 212923 ..

ul +isin
2n+1)(2n+3) (2n+1)(2n+3

If 21, 22 be two complex numbers and a, b are two real numbers, then prove that |az; —
bzo|? + [bz1 + az|® = (a® + 52) (\Zl|2 + |Z2|2)-

Show that the equatlon —+ = b + + =x+1(, where A, B,... H,a,b,...,h and |
are real, cannot have imaginary roots.

Find all real number z, such that |1 + 47 — 277 < 5.

Show that a unimodular complex number, not purely real can be expressed as z—f: for
some real c.

If (224 3)? = —16, then find |2|.

sin3+cos3—itanz

If is real, then find the set of all possible values of x.

142ising
Prove that |2, + 22|* + |21 — 22|? = 2(|21]* + |22[*)

If 22 — 2 + 1 = 0, then find the value of $° _ l(m" + z—ln>5
) = 100
If 3%z 4+ 4y) = <%+ %Ez) , then find z and y.

For any two complex numbers z; and zy, prove that |z + z3|> = |21 >+ | 22> + 2% (2172) =
|2’1|2 =+ |22‘2 + 2%(7122)

1
z1+~

z2|"

If |z1| = |22| = 1, then prove that |21 + 22| =

If |2 — 2| = 2|z — 1|, then prove that |z|? = %iﬁ(z)

If /a +ib = x + iy, then prove that %+ S =4(2% —?).
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If o +iy = ZIZ; then prove that (x4 y?)? = Zjisz
If 24, 29, ..., 2, are cube roots of unity, then prove that |zx| = |zx+1|VEk € [1,n — 1].
If n is a positive integer greater than unity and z is a complex number satisfying the

equation 2" = (1 + z)?2, then prove that 93(z) < 0.

Prove that 3™ + 2®" "' + 2% =2V, n, r € N, is divisible by 1 + 2 + 2.

If (V3+i)"=(v/3—i)" ¥n & N, then prove that minimum value of n is 6.

If (v/3—14)" = 2" n € I, the set of integers, then prove that n is multiple of 12.
If 24 4 2% + 222 + 2 + 1 = 0, then prove that |z| = 1.

If 2 = \7/——17 then find the value of 286 4+ 217 4 2289,

If 2 4+ 222 4+ 32 + 2 = 0, then find all the non-real, complex roots of the equation.
If z is a non-real root of z = \E'/I7 then find the value of 2‘1““2“72“4'.

If 2 is a non-real root of unity, then find the value of 14 3z 4+ 5224 ... 4+ (2n —1) 2" L.

Find the value of \/—1 - \/—1 —v=1—= to oc.

If z = eiQTW, then find the value of (11 — z) (11 — 2%) ... (11 — 2"71).

If ngm = a + ib, then prove that a® + b% = 4a — 3.
If |2z — 1| = |z — 2|, then prove that |z| = 1.

1—ix

If x is real and 77, = m + in, then prove that m?4+n?=1

Find the general equation of the straigt line joining the points z; = 1+7 and zo =1 —1.
If 21, 29, z3 are three complex numbers such that 5z; — 1325 + 823 = 0, then prove that

21711
22721
23731

=0

Find the length of perpendicualr from P(2— 3i) to the line (3+44)z+ (3—4i)Z+9 = 0.

If a point z; is a reflection of a point zp through the line 2z + bz = ¢, b # 0 in the argand
plane, thne prove that bzy + bZ7 = c.

The point represented by the complex number 2 — i is rotated by origin by an angle
/2 in the anti-clockwise direction. Find the new coordinates.

A particle P starts from the point zg = 1 + 2i. It first moves horizontally, away from
origin by 5 units and then vertically, away from origin by 3 units to reach a point z;.
From z; the particle moves v/2 units in the direction of vector 7 + 7 and it then rotaes
about origin in anti-clockwise direction for an angle /2 to reach z5. Find the coordinates
of 2.
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A man walks a distance of 3 units from the origin in North-East direction. Then he
walks 4 units in North-West direction. Find the final coordinates.

If three complex numbers satisfty the relationship 2:2 = 17;‘5, then prove that 21, 2o

and z3 form an equilateral triangle.

If 21, 25 and 23 form an equilateral triangle then prove that zf + zg + zg = 2129+ 2923+

1 1 1
2321, and hence P e M 0.

If 21, 290 and z3 are vertices of an equilateral triangle and zg is the circumcenter then
prove that 325 = 27 + 23 + 23.

If 21, 20 and z3 form a right-angled, isosceles triangle with right angle at z3, then prove
that (21 — 22)% = 2(21 — 23) (23 — 22).

Find the equation of the circle whose center is zg and radius is r.

If z=1—t+iVt?+t+2, where t is a real parameter. Prove that locus of z in argand
plane is a hyperbola.

r2
z—a’

Find the locus of z if Z =a +

If the equation |z — z1|> + |z — 22|> = k represents the equation of a cirlce, where
z1 = 2+ 3i, z9 = 4 + 3i are the ends of a diameter, then find the value of k.

If |2 + 1| = V2|2 — 1|, then show that locus of z is a circle.
Prove that the locus of z given by |§:1 =1 is a straight line.

Find the condition for four complex numbers 21, 22, 23 and z4 to lie on a cyclic quadri-
lateral.

If 21, 29 and z3 are complex numbers, such that Z% = Z% + 213, then show that these points
lie on a circle passing through origin.

If |z — w|? 4 |z — w?|? = r2, where 7 is radius and w, w? are cube roots of unity and ends
of diameter of the circle then find radius.

Find the region represented by |z —4| < |z —2|.
If 229 — 329 + 23 = 0, then find the geometrical relationship between them.

z—1
z+1

If z = 2 + iy, such that |z + 1| = |z — 1| and arg =7, find z and y.

If |2|® = |z — 1|3, then prove that roots of this equation are collinear.
Prove that 2Z 4 aZ + @z + b = 0, represents a circle if |a|*> > b.

If z = (A4 3) +iv3 — X2, where |A| < v/3, then prove that it represents a circle.

If z is a complex number such that |R(z)|+ |J(z)| =k, V k € R, then find the locus
of z.

Consider a sequence of complex numbers such that z, 1 = zi +1, YV n>1, where z; = 0.
Find Z111-
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The complex numbers whose real and imaginary parts are integers and satisfy the
relation 2z% + 2%z = 350, forms a rectangle in the argand plane. Find length of its
diagonals.

If 21, 2o are two complex numbers and arg% but |21 + 22| # |21 — 22| then find the
figure formed by 0, 21, 22 and 21 + 22.

If z; and zy are complex numbers such that a|z;| = b|z2|, a, b € R, then prove that

azy

Tt % lies on the segment [—2, 2] of the real axis.

If 21, 29, 23 are roots of the equation 2%+ 3az? + 38z + v = 0, such that they form an
equilateral triangle then prove that a? = 8.

If 22+ 22+ 221 25 cos @ = 0, then prove that 21, z; and the origin form an isosceles triangle.

A, B and C represent z1, zo and z3 on argnad plane. The circumcenter of this triangle lies
on the origin. If the altitude AD meets circumcircle again at P, then find the complex
number representing P.

If z; and 2, are the roots of the equation z2 4+ pz + ¢ = 0, where p, ¢ can be complex
numbers. Let A, B represent z1, z3 in the complex plane. If ZAOB = a # 0 and OA =
OB, where O is the origin then find p2.

If ER(Q—Z;%) = % then prove that locus of z is a straight line.

If 21, 25 and z3 are vertices of an equilateral triangle inscribed in the circle |z| = 2. If
21, 29, z3 are in clockwise sense then find zy and zs3.
Ifzy =75, 2= 2L+i, z3=a—bi for a,b € R and z; — 25 = 1. Then find the centroid of

the triangle formed by 21, 22 and zs.

Let A € R. If the origin and the non-real roots of 222 4 2z + A = 0 form three vertices
of an equilateral triangle in the argand plane, then find .

If a, b, ¢ and u, v, w are complex numbers such that c = (1—r)a+rband w= (1 —r)u+
rv, where r is a complex number then prove that the triangles are similar.

Find the intercept made by the circle 2Z + @z 4+ aZ + r = 0 on real axis on the complex
plane.

Ifa=cosa+isina,b=cosf+isinf, ¢ = cosy+isiny and %+g+g =1, then find
the value of cos(a — ) + cos(8 — ) + cos(y — ).

Find the locus of the center of a circle which touches the circles |z — 21| = a and
|z — 22| = b externally.

Prove that tan[i 10g<2122)] = afﬁiz.

z1 = a+1ib and zo = ¢ +1id are complex numbers such that |z;| = |z2] = 1 and R(z1%2) =

0. Also, wy = a +ic, wa = b+ id then prove that |wi| = |we| = 1 and R(wiwz) = 0.

Z1
22

If =1 and arg(z122) = 0, then prove that |22\2 = 21 29.
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Find the value of the expression 2(1 +%) (1 +;15> + 3(2 + é) (2 +$> + 4(3 + $> (3 +
L)+t (n+)(n+k)

z1+1iz2

If z; and 29 are two complex numbers satisfying the equation =1 then prove

that 2> is purely real.

If z = —2 4+ 2v/34, then find values of 22" + 22727 4 9247,

If 2cosf =x —0—% and 2cos ¢ =y +%, then find the values ofg-i-%, xy—b—ziy.

The complex numbers z; and 2o such that z; # 2z and |z1| = |22|. If 21 has positive real
Z1+22

part and zo has negative imaginary part, prove that is purely imaginary.

Z1—22

If A(z), B(z1) and C(z3) are the vertices of a AABC in which ZABC = 7 and
g—g = /2, then prove that the value of zo = 23 + (21 — 23).

If 2120 € C, 22 + 22 € R, z1(23 — 322) = 2 and 25(32% — 22) = 11, then find the value of
zf + z% .

If VI—c®=nc—1and z=e”, then find the value of 5~ (1 + nz) (1 + g)

Consider an ellipse having its foci at A(z1) and B(zz) in the argand plane. If the

eccentricity of the ellipse is e and it is known that origin is an interior point of the
ellipse, then prove that e € (0 21— 23] )

7 [z1]+]22]

If|lz—2—1i| = \z\'sin(%— arg(z))l, then find the locus of z.

Find the maximum area of the triangle formed by the complex coordinates zz; and zo,
_ Atz
2

which satisfy the relation |z — 21| = |z — 23| and |z <, where r > |21 — 22].

If z; = a1 + iby and 22 = ag + iby are complex numbers such that |z1] = 1, 21| = 2 and
R(z122) =0, and wy = aq +m72 and wy = 2by + ibg, then prove that |wq| = 1, |we| = 2
and R(wiwq) = 0.

Let z be a complex number and a be a be a real number such that 22 + az + a? = 0,
then prove that i) locus of z is a pair of straight lines ii) arg(z) = + 5 iii) |2| = |a|

If +% =1and p = %0 1 1‘4%)00 and ¢ is the the digit at units place in 22" + 1,neN
and n > 1, then find p + q.

Consider an equilateral triangle A<% e”/2>, B(% e_”/fs) and C(\%e‘ﬁ’rm). If P(z)

is any point on the incircle then find the value of AP%+ BP?+ CP2.

If Ay, As, ..., A, be the vertices of a regular polygon of n sides in a circle of unit radius
and a = ‘A1A2|2 + |A1A3|2 + ...+ |A1An|27 b= ‘A1A2||A1A3| |A1An|, then find %

If (1—0—1’%) <1+i%)<1+i%> ... = A+iB, then prove that (1+Z’—z) (1 +§—§) <1+f—z> =
A%+ B2
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Find the range of real number « for which the equations z + a|z —1|+2i =0; z =z + iy
has a solution. Also, find the solution.

For every real number a > 0, find all the complex numbers satisfying the equation
2|z| —4az +1+ia=0.

Show that (224 y?)° = (2® — 1023y® + 5zy?) + (5zty — 1022y + %)
Express (2 + a?) (22 4+ b?) (2% + ¢?) as sum of two squares.

If (1+2)" =ap+ a1z + asz® + ... + a,z", then prove that 2" = (ag —as + ag —...)> +
(a1 —az+as—..)°%

. Dividing f(z) by z — i, we get i as remainder and if we divide by z + ¢, we get 1+ as

remainder. Find the remainder upon division of f(z) by 2%+ 1.
If |2] < 1, |w| < 1, show that |z — w|? < (|z] — |w|)? + [arg(z) — arg(w)]>.

If z is any complex number, then show that

£ 1] < Jarg(2) .
If z is any complex number, then show that |z — 1| < ||z| — 1| + |2||argz|.

If |z + %| = a, where z is a complex number and a > 0, find the greatest and least values
of |z].

If 21, 22 be complex numebrs and ¢ is a positive number, prove that |z + 22\2 < (1+
o)+ (1+3) 2]

21—29
z1t22
is a real number. Find the angle between the lines from origin to the points z; 4+ 22 and

21 — 29 in terms of x.

If 21 and 25 are two complex numbers such that =1, prove that % = x where x

Let 21, 22 be any two complex numbers and a, b be two real numbers such that a2+ b2 # 0.

2
Prove that |21 |* + [22]® — |21 + 23| < 2% < e+ |22+ |23 + 23]
If b+ic = (1+a)z and a® 4 b® + ¢® = 1, prove that alf(b = }f:;

numbers and z is a complex number.

where a, b, ¢ are real

If a,b,c, ..., k are all n real roots of the equation 2™ + p1z"™ ' + poz™ 2+ ...+ pp_12z +
P = 0, where p1, pa, ..., pn are real, show that (1 +a?) (1 + bz) (14 E)=(1—ps+
pat )2+ (pr—p3t )

If f(z) = 2* — 823 + 42® + 4z + 39 and f(3 +2i) =a +ib, find a : b.

Let A and B be two complex numbers such that %Jr% = 1, prove that the triangle
formed by origin and these two points is equilateral.

If n > 1, show that the roots of the equation z" = (1 + z)" are collinear.
If A, B,C and D are four complex number then show that AD.BC < BD.CA+CD.AB.

If a,b € R and a, b # 0, then show that the equation of line joining a and b is <21a —
, Lo
Q%)er <§5+%>z: 1.
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If z; and 29 are two compelx numbers such that |z1| — |22| = |21 — 22|, then show that
arg(zy) —arg(z2) = 2nm where n € I.

Let A, B, C, D, E be points in the complex plane representing complex numbers
21, 22, 23, Z4, 25 vespectvely. If (z3 — 2z3) 24 = (21 — 22) 25, prove that AABC and ADOE
are similar.

Let z and 2y are two complex numbers and z, zg, 2Zp, 1 are represented by points
P, Py, Q, A respectively. If |z| = 1, show that the triangle POP, and AOQ are congru-
ent and hence |z — zp| = |2Zg — 1|, where O represents the origin.

If the line segment joining z; and 29 is divided by P and @ in the ratio a : b internally
and externally, then find OP% 4+ OQ? where O is origin.

Let 21, 22, 23 be three complex numbers and a, b, ¢ be real numbers not all zero such
that a + b+ ¢ =0 and azy + bzy + cz3 = 0, then show that zi, 29, 23 are collinear.

If 21 4+ 22 + ... + 2, = 0, prove that if a line passes through origin then all these do not
lie of the same side of the line provided they do not lie on the line.

The points z; = 94 12¢ and 2o = 6 — 8¢ are given on a complex plane. Find the equation
of the angle formed by the vector representing z; and zs.

If the vertices of a AABC are represented by z1, 29, 23 respectively, then show that the

., z1asec A+zobsec B+zzcsec C
orthocenter of AABC is ==~ or

z1 tan A+zo tan B+23 tan C
tan A+tan B+tanC

If the vertices of a AABC' are represented by 21, zo and 23 respectively, show that its
z1 8in 2A+ 25 sin 2B+ z3 sin 2C
sin2A+sin2B+sin 2C .

circumcenter is

Show that the circumcenter of the triangle whose vertices are given by the complex

5 is gi — 2x1Zi(za=23)
numbers 21, 22, 23 is given by z = S

Find the orthocenter of the triangle with vertices z1, 2o, 23.

ABCD is a rhombus described in clockwise direction. Suppose that the vertices
A, B, C, D are given by z1, 22, z3, 24 respectively and ZCBA = 27/3. Show that
232 = (V3—i)z1+ (V3 +i)z3and 2324 = (V3 +i) 21 + (V3 — 1) zs.

The points P, @ and R represent the numbers z1, zo and z3 respectively and the angles

of the APQR at Q and R are both %(7‘!’ — ). Prove that (23 — 22)% = 4(23 — 21) (21 —
i 2a

z3) sin” 3.

Points z; and z, are adjacent vertices of a regular polygon of n sides. Find the vertex z3

adjacent to zo(z1 # 23).

Let Ay, Ao, ..., A, be the vertices of an n sided regular polygon such that ﬁ =

o + o find the value of n.

If |z| = 2, then show that the points representing the complex numbers —1 + 5z lie on
a circle.
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If |z — 4+ 3i| < 2, find the least and tghe greatest values of |z| and hence find the limits
between which |z]| lies.

If 2 — 6 — 8i < 4, then find the least and greatest value of z.
If z — 25¢ < 15 then find the least positive value of arg(z).

Show that the equation |z — z1|? + |z — 22|? = k where k € R will represent a circle if

k EZ % |Zl — ZQ|2.

If |z — 1] = 1, prove that

22 — jtan(arg 2).

Find the locus of z if arg(%) =7

If « is real and z is a complex number and v and v be the real and imaginary parts
of (z—1)(cosa —isina) 4+ (z — 1) ! (cosa + isina), prove that the locus of points
representing the complex number such that v = 0 is a circle of unit radius with center
at point (1,0) and a straight line through the center of the circle.

If lap| <2 forn=1,2,3, ... and 1 + a1z + asz® + ... + a,2" = 0, show that z does not

lie in the interior of the circle |z| = %

Show that the roots of the equation 2" cosfy + 2" 'cos; + ... + cosf, = 2, where
01+ 02+ ... + 0, € R lies outside the circle |z| = %

21, 29, Z3 are non-zero, non-collinear complex numbers such that z% = Ziz + Zis, show that
21, 22, 23 lie on a circle passing through origin.

A, B, C are the points representing the complex numbers z1, 2o, 23 respectively on the
complex plane and the circumcenter of the AABC lies on the origin. If the altitude of

the triangle through the vertex A meets the circle again at P, prove that P represents
2023

the complex number =22
1

Two different non-parallel lines cut the circle |z| = 7 at points a, b, ¢, d respectively.
Prove that these two lines meet at a point given by %.
atb cld

Let z1, 22, 23 be three non-zero complex numbners such that zo # 1, a = |z1], b = |29|

abec

2

and ¢ = |z3|. If | b ¢ a|= 0 then show that arg(j—i) = arg(j‘;:zi)
cab

P is a point on a circle with OP as diameter. Two points Q and R are taken such that
ZPOQ = ZQOR = 0. If O is the origin and P, @ and R are represented by the complex
numbers z1, z3 and z3 respectively, show that zg €08 20 = 21 23 cos> 0.

Find the equation in complex variables of all circles which are orthogonal to |z| = 1 and
|z —1| = 4.

Find the real values of the parameter ¢ for which there is at least one complex number
z = x + iy satisfying the condition |z + 3| = t* — 2i + 6 and the ineuqality z — 3v/3i < t2.
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If a, b, c and d are real and ad > bc, show that the imaginary parts of the complex
az+b
ca+d

number z and have the same sign.

. . . i(za+1 2, .2 . _ x3-y342x,—2ys+1
If 2y =21+ 1y1, 20 = o +iys and 23 = 222771), prove that z7+y7 —x1 = W

cos 30—isin 360)%(sin 0—i cos )3

o e
Sunphfy (cos 20+1isin 20)°

Find all complex numbers such that 22 + |z| = 0.
Solve the equation 22 + z|z| + [2%| = 0.
If @ > 0 and z|z| + az + 1 = 0, show that z is a negative real number.

For every real number a > 0, find all complex numbers z such that |z|*> —2iz +2a(1+1i) =
0.

Find the integral solution of the following equations: i. (3 +4i)" = 57/2ii. (1 —z)" = 27
i, (1—4)% = (1+4)

1985

Find the common roots of the equations 2%+ 2224+ 22+ 1 =0 and 2 +2100 11 =0.

Ifz1+204+23=0, 21+ 20w+ 230.)2 = f and z; + zng + zzw = 7, express 21, 29, 23 in
terms of a, 3, . Hence prove that |a|? 4 |B|% + [y]> = 3(|21]2 + |22) + |23/%).

If n is an odd integer greater than 3, but not a multiple of 3, prove that @2 + 22 + x is
a factor of (z +1)" —z™ — 1.

If n is an odd integer greater than 3, but not a multiple of 3, prove that (z+y)" — 2" —y"
is divisible by zy(z + y) (22 4+ zy + y?).

If |21| = |21| = -+ = |zn| = 1, prove that |21 + 20 + - + 2| = Zil+%+~~+;1;.
If a, B € C, show that |a +v/a? — 82|+ |a— Vo — 52| = |a+ B+ |a— 3.

If 21 = a+ib and 22 = ¢ + id are complex numbers such that |z1] = |22] = 1 and
R (2122) = 0, then show that the pair of complex numbers w; = a + ic and wy = b+ id
satisfy i. |wi| = 1 ii. |we| = 1 iii. R(w1wz) = 0.

Prove that [{2=2| < 1if [z1] < 1, |22| < L.
Let 21 = 10 4+ 67 and 25 = 4 + 6i. If z is any complex number such that the argument

of Z=2! is 3, then prove that |z —7 — 9i| = 3V/2.

Z— 2z

Find all complex numbers z for which arg(iz:gjgz) =7and |z —3+i| =3.
If |2] < 1, |w| < 1, show that |z — w|? < (|z] — |w|)? + (arg(z) — arg(w))>.

If z is any non-zero complex number, show that ||w; — 1| < |arg(z)] and |z — 1] <
Izl = 1] + |2l arg(2) |-

If |z +% = a, where z is a complex number and a > 0, find the greatest value of |z|.
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If 21, 22 are complex numbers and ¢ is a positive number, prove that |z; + 22|2 <
(1+¢)|z]?+ <1 + %) | 22|2.

zZ1—22
z1+22
is a real number. Find the angle between the lines from the origin to the points z1 + 25

and z1 — 29 in terms of z.

If z; and z5 are two complex numbers such that =1, prove that % =z, where =

Let 21, 25 be any two complex numbers and a, b be two real numbers such that a2+ b2 # 0.

2
Prove that |22 4 |20|> — |22 + 23| < 2% < e+ |22+ |22 + 23]
If b+ic = (1+a)z and a® 4 b* + ¢® = 1, prove that al:ZCb = iz; where a, b, ¢ are real

numbers and z is a complex number.

For any two complex numbers z; and z; and any real numbers a and b, show that
laz — bzo|? 4 bz — azs|® = (a® + %) (J21 > + |22%).

If a and § are any two complex numbers, show that |a + 3% = |a|* + |8]? + R(af) +
R(as).

Prove that |1 — Z122|% — |21 — 22|? = (1 — |21]?) (1 — |22/?).

n

2 2
Ifa;,b; € R,i=1,2,...,n, show that (Za) + (Zb) < (Z ./a§+b§>
1 i=1 n=1

2

=
Let ?:Z?z:z =1 and |22| # 1, where z; and z2 are complex nubers, show that |z1]| = 2.
If 21 and 23 are complex numbers and u = \/21 22, prove that |z1| + |22| = % + u| +

z1t+2z2

_u|

If 2, and 2, are roots of the equation az® + 28z + = 0, then prove that |a|(|z1 |+ |z2|) =

8+ Vay|+8—Vay|

If a, b, ¢ are complex numbers such that a + b+ c = 0 and |a| = |b| = |¢|] = 1, find the
1,11
value of -+ + <.

If |z + 4| < 3, find the least and greatest value of |z + 1].

Show that for any two non-zero complex numbers z; and zo, (|21] + |22]) <

2|Zl + 2’2‘

zZ1 z2
EAREES

Show that the necessary and sufficient condition for both the roots of the equation
224+ az + b = 0 to be unimodular are |a| < 2, |b| = 1 and arg(b) = 2arg(a).

If z is a complex number, show that |z| < |R(2)| +|3(2)| < V2|z].
If ‘z — %| = 2, show that the greatest value of |z| is v/5 + 1.

If o, B, 7, & be the real roots of the equation az* + bz + ¢s? + dz + e = 0, show that
aA?(1+a?) (1+8°) (149 (1+6%) = (a—c+e)’ + (b—d)*
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Ifa; € R,i=1,2,...,n and a1, ag, ..., ay are the roots of the equation " + a;z" ! +
n

apx™ %+ ...+ a, 124 a, =0, show that H(l +a?)=(1—ag+as—..)%+ (a1 —az+...)
i=1

If the complex numbers z1, 2o, 23 are the vertices of an equilateral triangle such that

|z1| = |22| = |z3|, prove that z; + 22 + 23 = 0.

If 21+ 224+ 23 = 0 and |z1| = |22| = |z3] = 1, then prove that the complex numbers

21, 29, 23 are the vertices of an equilateral triangle inscribed in a unit circle.

If 21, 20, 23 be the vertices of an equilateral triangle whose circumcenter is zg, then prove
that 27 + 23 + 23 = 322.

Prove that the complex numbers z; and z5 and the origin form an equilateral triangle
if 22+ 22 — 2120 = 0.

If z; and 2 be the roots of the equation z? + az + b = 0, then prove that the origin, 2
and z form an equilateral triangle if a® = 3b.

Let 21, 2o and z3 be the roots of the equation z* 4+ 322 4 38z + v = 0, where o, 3 and v
are complex numbers and that these represent the vertices of A, B and C of a triangle.
Find the centroid of AABC. Show that the triangle will be equilateral, if o = .

If 21, 29, 23 are in A.P., prove that they are collinear.

If 21, 2o and z3 are collinear points in argand plane then show that one of the following
holds: —Zl|22 - 23| + 22|23— 21‘ + 23‘2’1 —ZQ| B O7 Zl|22— 23| — 22‘23—21| +23|Zl — 22‘ =
0, Zl|22 — 2’3‘ + 22|23 — Zl| — 23|Zl — ZQ| =0.

What region in the argand plane is represented by the inequality 1 < |z — 3 — 44| < 2.
Find the locus of point z if |z — 1| + |z + 1] < 4.

If z=1t+5+1iv4—t? and t is real, find the locus of z.

VIf % is real, show that locus of z is a circle with center (1,0) and radius unity.

If |22 — 1| = |2|> + 1, show that locus of z is a straight line.

Find the locus of the point z if § < arg(z) < ?Tr

Find the locus of the point z if arg(z+2> = g

Show that the locus of the point z satisfying the condition drg( % is the semicircle

above z-axis, whose diameter is the joints of the points (—
these points.

( 0) excluding

|22 =2 +1

R < 2

Find the locus of the point z if log,

If O be the center of the circle circumscribing the equilateral AABC and its radius be
unity and A lies on the z-axis. Find the complex numbers represented by B and C.
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ABCD is a rhombus. Its diagonals AC and BD intersect at a point M and satisfy
BD = 2AC. If the points D and M represent the complex numbers 1 + i and 2 — 4
respectively, then find the complex number represented by A.

If 21, 29, 23 and 24 are the vertices of a square taken in anticlockwise order, prove that
z3=—iz1+ (14+i) 22 and z4 = (1 — 1) 21 + i29.

Let 21, 22 and z3 are vertices of an equilateral triangle in the circle |z| = 2. If z; =1 +i\/§,
then find z9 and z3.

If @ and b are real numbers between 0 and 1 such that points 23 = a + 7, 2o = 1 + b1,
and z3 = 0 form an equilateral triangle, then find a and b.

Let ABCD be a square described in the anticlockwise sense in the argand plane. If A
represents 3 + 57 and the center of the square represents %—0— gz Find the numbers
represented by B, C and D.

Find the vertices of a regular polygon of n sides, if its center is located at origin and
one of its vertices is z.

Prove that the points a(cosa + isina), b(cos 8 + isin §) and c(cosy + isin+y) in the
argand plane are collinear, if besin(8 — ) + casin(y — a) + absin(a — §) = 0.

A represents the number 67, B the number 3 and P the complex number z. If P moves
such that PA: PB =2: 1, show that 2z = (4 + 2¢) 2 + (4 — 2i) Z. Also, show that the
locus of P is a circle, find its radius and center.

Show that if the points 21, 29, 23 and z4 taken in order are concyclic, then the expression

(z3—21)(2a—22)

(za—22)(2a=21) is purely real.

Let z1, 29, z3 and z4 be the vertices of a quadrilateral. Prove that the quadrilateral is
cyclic if 2120 + 2324 = 0 and 21 + 22 = 0.

Show that the triangles whose vertices are z1, 29, 23 and 21, 25, 24 are similar if

2 21 1
29 25 1
z3 25 1

=0

If a, b, c and u, v, w are the complex numbers representing two triangles such that
c=(l—r)a+rband w= (1—r)u+rv, where r is a complex number, prove that the
two triangles are similar.

Find the equation of perpendicular bisector of the line segment joining points z; and zs.

Find the equation of a circle having the line segment joining z; and 25 as diameter.

z—21
Z—2o

If

= ¢, ¢ # 0, then show that locus of z is a circle.
If |z] = 1, find the locus of the point %

If for any two complex numbers z1 and 29, |21 + 22| = |21| + |22|, prove that arg(z1) —
arg(zg) = 2nm.
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Find the complex number z, the least in absolute value, which satisfies the condition
|z —242i| =1.

Find the point in the first quadrant, on the curve |z — 5i] = 3, whose argument is
minimum.

Find the set of points of the cooradinate plane, which satisfy the inequality

|z—1|+4
10g1/2(3\zz—1\—2) >1

Find the set of all points on the zy-plane whose coordinates satisfy the following con-
dition: the number 22 4 z + 1 is real and positive.

Find the real values of the parameter a for which at least one complex number z satisfies
the equality |z — az| = a + 4 and the inequality |z — 1] < 1.

Find the real values of the parameter ¢ for whihc at least one complex number z satisfied
the equality |z 4+ v/2| = 2 — 3t + 2 and the inequality |z + iv/2| < t2.

Find the real value of a for which there is at least one complex number satisfying

|z + 4i| = Va? — 12a + 28 and |z — 4V/3| < 1.

Find the set of points belonging to the coordinate plane zy, for which the real part of
the complex number (14 7) 2% is positive.

Solve the equation 2z = |z| + 2¢ in complex numbers.

Three points represented by the complex numbers a, b, ¢ lie on a circle with center O

and radius r. The tangent at ¢ cuts the chord joining the points a, b at z. Show that
1 b 1_ 1

p=

Show that all roots of the equation a; 23+ a2+ asz + ay = 3, where la;] <1,i=1,2,3,4

lie outside the circle with center as origin and radius %

Given that Z b; = 0 and Z b;z; = 0, where b;s are non-zero real numbers, no three
i=1 i=
of z;'s form a straight line. Prove that z;'s are concyclic if byba|z1 — 22| = bgby|2z3 — Z4|

A cubic equation f(x) = 0 has one real root « and two complex roots 3 + ivy. Points
A, B and C represent these roots. Show that the roots of the derived equation f’(z) =0
are complex if A falls inside one of the two equilateral triangles described on base BC.

Prove that the reflection of @z + az = 0 in the real axis is @z + az = 0.

If o, 8,7, 6 are four complex numbers such that 3 is real and ad — 3y # 0, then prove

that z = jigf ,t € R represents a straight line.

If w, w?

are cube roots of unity, then prove that
i (34 3w+ 5w?)8 — (24 6w+ 2w?)3 = 0.

i, (2—w)(2—w?)(2—w'®)(2—w) =49.
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iii. (1—w)(1—w?)(1-w!)(1-u)=9.

iv. (1—w+w?)’+ (1 +w—w?)> =32

v. 1+ w"+w? =3, where n > 0,n € I and is a multiple of 3.

vi. 1+w" +w?® =0, where n > 0,n € I and is not a multiple of 3.
Resolve into linear factors a? + b2 + ¢ — ab — be — ca.

Ifox=0a+by=aw+ b’ 2z = aw® + bw, prove that 23 + 3> + 2> = 3(a® + b3) and
ryz = a® + b>.

Resolve into linear factors:

i a?—ab+0?

ii. a4+ ab+b?

iii. a®+ b

iv. a®—0?

v. a®+ b3+ ¢ — 3abe

Show that 37 + 2391 4+ 237 %2 where p, g, are positive integers is divisible by 2+ z + 1.

Show that 2P 4 24971 4 ¢47+2 4 24543 where p, ¢, r, s are positive integers is divisible
by 23+ 22+ + 1.

Ip=a+b+ec,qg=a+bw+cw? r=a+bw?+ cw, where w is a cube root of unity,
prove that p® + ¢* + 3 — 3pgr = 27abc.

If w is a cube root of unity, prove that (a 4 bw + cw?®)® + (a + bw? + cw)® = (20 — b —
¢)(2b—a—c)(2c—a—0).

Ifar+cy+bz=X,cx+by+az=Y,bc+ ay+ cz = Z, show that

i (P40 + P —ab—bec—ca) (P FyP+ P2 —ay—yr—z2x) = X2+ Y2+ 722 - XY —
YZ-ZX

it (a®+ 5%+ —3abe) (23 +y® + 22 — 3zyz) = X3+ Y3+ 23 - 3XYZ

N4
Prove that (M) = cos 86 + i sin 86.

sin @+1cos 6
If 22— 2zcos + 1 =0, show that 2%+ 272 = 2 cos 26.

: ; 2+1 us
Prove that (1+4)" + (1 —i)" = 2"/*"1 cos .

6
Show that the value of E(sinzixC — i cos #) is 1.
k=1

2micot L p(pi+1\™
Show that e“™*° p(;;j) =1.
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Prove that (%)n = cos(% — nng) +i sin(% — nqu).

If sin +sin B + siny = cos a + cos B + cosy = 0, show that cos 3a + cos 33 + cos 3y =
3cos(a + B+ ) and sin 3a + sin 38 + sin 3y = 3sin(a + 8+ 7).

If sin a 4 sin 8 + siny = cos a + cos B + cosy = 0, show that cos2a 4 cos 23 + cos 2y =
sin 2 4 sin 25 + sin 2y = 0.

If a, 8 are the roots of the equation t2 — 2t + 2 = 0, show that a value of z, satisfying
(l_tﬁl&;(;_t@L = j;’fleg is x =cotf — 1.

If (142)" = po+ prz + paa® + ... + paa”, show that po— pa+ py— ... = 2"/> cos % and
pP1—p3+ps—..= 2"/2sin%

If (1—z+ xz) = ag + a1 + asx® + ... + agnz®™, show that ag + as + ag + .
%(1+2”+1 cos%).

If n is a positive integer and (14 2)™ = ¢o+ c12 + co2® + ... + ¢,&", show that ¢co+ ¢4 +
cs+ ... — 9gn— 2+2n/21 IZT

Solve the equation z8 4+ 1 = 0 and deduce that cos46 = 8(6059 — cos%) (cos 0 — cos 3~875>

57 Ve
(cos@ — cos«g») (cos@ — cos«s»).

3T
COS =

Prove that the roots of the equation 8z% — 422 — 42 + 1 = 0 are cosZ = COS 57"

7

Solve the equation z'° —1 = 0 and deduce that sin 50 = 5sin 9(1 — ;LG) <1 — ﬂ)

3
n%g sin2 ="

5t

Solve the equation 7 + 1 = 0 and deduce that cosZ = COS 37 COs = = —%.

2 27 2 nmw
Form the equation whose roots are cot? 2n +1+ €Ot 54, -+, €Ot 575, and hence find the
2 2w 2 nw
value of cot? 2n+1 +cot gog + ...+ cot 5T

If & + kn, show that cosfsinf + cos?0sin20 + ... + cos"fsinnd = cotf(1 —
cos™ @ cosnh).

Show that —3 — 4i = 5e/(T+tan " 4/3),

Solve the equation 2v/2x* = (V3 —1) +i(v3 + 1).

If 2, = cos% + isin%, prove that z12523 ... to 0o = 1.

If cosf + isin@ is a solution of the equation poz™ + p1z"™ * + paz™ 2 4 - + p, = 0,
prove that p;sinf + pysin20 + -+ p, = 0 and pg + pacosf + --- + p,cosnfd =0, p; €
Ri=1,23 ..,n

Show that (m—:zigi)n = cosn¢ + isin ¢.

If 2cosf = x +% and 2cos¢ =y +%, then prove that
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+¥=2cos(0 —¢),

<8

ii. :vy+~wl»— 2cos(0+ ¢),

ili. ™" + g = 2cos(m0 + n¢), and

m

iv. Z" + L5 = 2 cos(mlf — ng).

If o, B are the roots of the equation 22 — 2z + 4 = 0, prove that a" + 8" = 2"*! cos o

Find the equation whose roots are nth powers of the roots of the equation 2 — 2z cos 6 +

1=0.

Find the values of A and B, where Ae*’ + Be % = 5 cos 20 — 7sin 26.

If £ = cosf +isin 6 and V1 —c? = nc — 1, prove that 1+ ccosf = 5~ (1 +nz) (1 +2).

Show that the roots of equation (1+ z)" = (1 —2)" are itan"=,r=10,1,2, ..., (n — 1)

excluding the value when n is even and r = 3.

If x = cosa + isina, y = cos 8 + isin 3, show that Eiig;ggﬁ; = zi;lztziﬁg

Show that "Cyy + "Cy + "Cq + -+ = 5 [2” + 2cos %]

Show that "C, +"C,+"C;+ - = % [2” 24 2coslm 32) ]

Show that N, + "Cg + "Cy + -+ = % [2"*2 + 2 cos (n”)ﬂ]

If C, stands for *"C,., prove that Co+ Cy + Cg + - = 24772 4 (—1)" 22"~ L,

If (1 -+ $2)6n = ap+ a1& + asz? + -, show that ag+ az + ag + ... = %(26n+1 +1)

If (1—x+ 2" = a0+ a1z + asa® + -, show that ag + a3 + ag + ... = %(1 +

(—1)montt cos%)

Let A=x4y+2,A =a' 4y +2,AA =2"+y"+2" . B=c+yw+ 2 B =2/ +y'w+
"w?, BB =",y w, "W, C = &+ yw? + 2w, C’ = Ja'y'w2 + 2w, CC" = 2" +y"w? + 2w,

then find z”, y” and z” in terms of z,y, z and a2/, y'2

Prove the equaity (ax — by — cz — dt)? + (bx + ay — dz + ct)? + (cx + dy + az — bt)? +

(dz—cy+bz+at)? = (> + 0>+ +d>) (> + >+ 22+ t%)

Prove the equality: zngfz =1 - "Cytan®6 + "Cytan’0 — ... + A, where A =

(—1)"2tan™ @ if n is even, A = (—1)""Y/2 "¢ tan™ @ if n is odd.

Prove the equality: 32 n0 —n Gy tanf —" Cstan® 0 +™ Cstan® 0 — ... + A, where A =

cos™ 0 T

(—=1)»=2/2rC,  tan™ 10 if nis odd, A = (—1)™?.tan™ @ if n is odd.

Prove the following equality:
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m—1
2m 2m
2m 2m
24" cos®M x = kE:OQ( A >0052(m k)x+<m>

Prove the following equality:

—

=~ 2m 2m
22Mgin?m g = (—1)m+k2( )Cos2(m—k)m+ ( )
= k m
Prove the following equality:
- 2m +1
22 cos® M = "2 ( . ) cos(2m — 2k + 1)z
k=0
Prove the following equality:

m
22M gin?m Tl g — Z(—l)m”“Q <2mk+ 1) cos(2m —2k+1)x
k=0

Let u, = cosa + rcos(a + 0) 4+ r?cos(a + 20) + ... + " cos(a + nb), v, = sina +
rsin(a+ 0) 4+ r?sin(a + 260) 4 ... + " sin(« + nd), then show that

_cosa—rcos(a—0) —r""cos[a+ (n+1)0] + "2 cos(a + nb)
N 1—2rcosf+r?

n )

_sina—rsin(a—0) —r"sinfa+ (n + 1) 0] + " sin(a + nb)
N 1—2rcosf+r?

n

Simplify the following sums:

S = 1+ncose+ﬁgb——i—1~zc0529+ .= Z”C’kcos/w, ["Co=1]
1.2 =

S’=1+nSin¢9+ﬁ/—(ﬂl—%—QsinQ€+...: " Cysinkd, ["Cy=1]
: k=0

Ifa= % and p < 2n(p a popsitive integer), then prove that

1 1.35....(2p—1
sin?? a 4 sin?? 2a 4 ... 4+ sin?’ na = = + nM

2 24...2p
Prove that (z +y)" — 2™ — y" is divisible by zy(z + y) (2* + 2y + »?) if n is an odd
number and not divisible by 3.

Prove that (z +%)" — 2™ —y™ is divisible by zy(z 4+ y) (2 + zy +y*)? if n, when divided
by 6 has a remainder of 1.
Prove that the polynomial (cos + x sin )™ — cos nf — x sin nf is divisible by 2%+ 1.

-1

Prove that the polynomial 2" sin§ — p"~'2 sinnf + p" sin(n — 1) is divisible by 2> —

2px cos 0 + p°.

Find out for what values of p and ¢ the binomial z* + 1 is divisible by &2 + pz + ¢.

. Find the sum of the pth(p € P) power of the roots of the equation z” = 1.
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Let € = cosv + mmzv, YV n e P, and let Ay =z + ye + ze2F 4+ - + weP= Dk, (k=
0,1,2,...,n—1) where z, v, 2, ..., w are n arbitrary complex numbers. Prove that
n—1

S AP = n(la + [y + ... + [w]?)
k=0

n—1

Prove the identity 22" — 1 = (2% — 1)

=

x2—2xcos%ﬂ+ 1).

=
Il

1

Prove the identity 2" ™! —1 = (z — 1)

s

2 2km
(:v —2xcosm+ 1).
k

1

=

Prove the identity 22" "' +1 = (z 4+ 1) <x2 + 2x cos;nk—fl + 1).

>
Il

1

n—1
Prove the identity 2" +1 = H <x2 — 22 cos (2k2+n1)” + 1).
k=0

(n— 1)7r7 NG

2n 2n-T'

. . . . T . 27
If n is even, then prove the identity sins-sin...sin

. . . 27 4T 2nm (—1)n/2
If n is even, then prove the identity cosg 75 cosg5 ... cos55 S

Prove that if cosa + isin« is the solution of the equation ™ + p12™ ! + - 4 p, = 0,
then py sina + pg sin 2a + -+ + p,, sinna = 0(pl, p2, ..., p, are real).

Prove the identity \/cos = \/cos = \/cos == {/% (5—3V7).
Prove the identity \/cosv + \/cos iy \/cos = \/ (39 —6).

% are complex roots of unity

Let A = 11 + Tow + z3w?, B = 21 + 22w? + T3w, where w, w

and x1, o, z3 are roots of the cubic equation 2® 4+ pz 4+ ¢ = 0. Prove that A® and B?

are the roots of the quadratic equation z2 + 27qx — 27p3 = 0.

(52*+1022+1) (5a*+10a2+1)
(z44+1022+1) (a*+10a2%+5)

Solve the equation = ax.

Find the magnitude of the sum S = "C| — 3"Cy + 3*"C5 — 3°"C, + ---.
Find the magnitude of the follwing sums:
o=1=-"Cy+"Cy—"Cs+
o' ="C, ="Cy+"C5—"Cr+



Chapter 4

Polynomials and Theory of Equations

4.1 Polynomial Functions

A function of the form f(z) = a,2", Q12" 14+ a1z + ag is callled a polynomial function
where a; € C, where i = 0,1,2,...,n ie. i > 0 and 7 € [. Since a; € C, it is evident
that a; € R because R C C. This equation will be called an equation of degree n if and
only if a,, # 0. a,, is called leading coefficient of the polynomial. If the leading coefficient is 1
then the polynomial is also callled monic polynomial. A polynomial with one term is called
monomila, with two terms, a binomial and with three terms it is called a trinomial. The
most useful trinomials are quadratic equations, which we will study further in this chapter.
If f(z) = ao, then it is called a constant polynomial. If n = 0 implies f(z) = ag, which will
be a polynomial of degree 0. If f(z) = 0, then it is callled zero polynomial, in this case the
degree is defined as —oo to satisfy the first two properties given below. We take domain and
range of these polynimoials or functions as set of complex numbers, C. A real number r or
a complex number z, for which f(r) =0 or f(z) =0, then r and z are called zeros, roots or
solutions of the polynomial.

If f(x) is a polynomial of degree p, and g(x) is a polynomial of degree ¢, then

1. f(z) £ g(x) is a polymial of degree max(p, q),

2. f(z).g(x) is a polynomial of degree p + ¢, and

3. f(g(z)) is a polynomial of degree p.q, where g(z) is not a constant polynomial.

The f(x) shown at the beginning is a polynomial in one variable, and similarly, we can have
polynomials in 2, 3, ..., m variables. The domain of such a polynomial of m variables is set
of ordered m tuple of complex numbers and range is C.

4.2 Division of Polynomials

If P(z) and D(z) are any two polynomials such that D(x) # 0, then two unique polynomilas
Q(z) and R(z) can be found such that P(z) = D(z).Q(z) + R(z). Here, the degree of R(x)
would be less than the degree of D(z) or R(x) = 0. Like numbers Q(z) denotes the quotient,
and is called so, while R(z) is called the remainder.

Particulalrly, if P(x) is a polynomial with complex coeflicients and z is a complex number,
then a polynomial Q(z) of degree 1 less than P(x) will exist such that P(z) = (z—2)Q(z) +
R, where R is a complex number.

4.3 Remainder Theorem

Theorem 1

If f(z), a polynomial, is divided by (x — ), then the remainder is f(a).

78
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fle)=(z-a)Q@)+R= fla) = (a—a)Q(z)+ R= R = f(a). o

4.4 Factor Theorem

Theorem 2
f(x) has a factor (x — «), if and only if, f(a) =0
Proof

Following from remainder theorem, described above, if R = f(a) = 0, then f(a) = (z —
a)Q(x), and thus, f(z) has a factor (z — «). O

4.5 Fundamental Theorem of Algebra

Every polynomial of degree greater or equal than one has at least one root/solution/zero
in the complex numbers. We can also say that for f(z) introduced in the beginning with
n > 1, then there exists a z € C, such that

f(2)=an2"+a? '+t arz+ag=0.

Now it is trivial to deduce that an nth degree polynomial will have exactly n roots i.e.
f(2) = al@ — a1) (2 — az) -+ (z — an 1) (& — an).

Notes:
1. Some of the roots of the polynomial may have repetition.

2. If a root « repeats m times, then m is called multiplicity of the root « or « is called m
fold root.

3. Quadratic surds of the form Va + \/E, where va and /b are irrational numbers, then
it will have its conjugate as a root. Similarly, if a complex root occurs, then it always
occurs in pair with its complex conjugate as another root of the polynomial. However,
if the coefficients are complex numbers then it is not mandatory for complex roots to
appear in conjugate pairs.

4.6 Ildentity Theorem

Theorem 3

If f(x), a polynomial of degree n, vanishes for at least n + 1 distinct values of x, then it is
identically 0.

Proof

We have f(z) = a(x — a1) (x — az) (¢ — an—1) (x — o), and we let that it vanishes for
Qnt1, then

f(x) = a(an+1 - al) (an+1 - Ozz) (an+1 - anfl) (an+1 - an) =0
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Because a1 is different from ag, as, ..., a,_1, @, none of the terms will vanish, which
implies that a = 0= f(z) = 0. O

Corollary 1

Consider two poynomials f(x) and g(x) having degrees p and q respectively, such that p < q.
If both of them have equal value for g+ 1 distinct values of x, then they must be equal.

Proof

Let h(z) = f(z) — g(z). This implies that the degree of h(x) is at most ¢ and it vanishes
for ¢+ 1 distinct values of z. = h(x) = f(z) —g(z) =0 = f(z) = g(x). O

Corollary 2

If f(x) is a periodic polynomial with some constant period T i.e. f(x) = f(x +T) Vz €R,
then f(z) =c.

Proof
Let f(0) = @, then f(0) = f(T) = f(2T') = -~ = ¢. Thus, polynomials f(z) and g(z) = ¢
take same values for infinite number of points. Hence, they must be identical. O

4.7 Rational Root Theorem

Theorem 4

If p,q € Z,q #= 0 such that they are relatively prime i.e. ged(p,q) = 1, then if% s a root of

the equation anz™ + apn_12™ 1+ -+ a1z + ag = 0, where ag, a1, ..., An_1, an € | and a, =0,
then p is a divisor of ag and q that of an,.

Proof

P

Since g Is a root, we have

n n—1
aﬂ(ﬂ) +an_1<8) +~~-+a1£+a0:0
q q q

= anp" + an-1p" g+ arg"  p +agg” =0
= a1 p" a1 p" g b apg” 4 agg T = —an

Everything on L.H.S. is integer and p, g are relatively prime therefore ¢ must divide a,.
Similalry, it can be proven that ag is divisible by q. O

Corollary 3

If roots of " + an_12" 1+ -+ a1z + ap = 0, where 0 < i < n—1 is an integer and
coefficients are also integer, are integer then all the roots divide ag.

Proof

This corollary is a direct result from previous corollary. O
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4.8 Vieta's Relations

If a1, as, ..., a,, are n roots of the equation a,z™ + " 4t az + ag = 0, then
n
__ Gn-1 . Gn-2 o _ __@n-3 | _ (_1\n a0
E :Oéz‘—* net, E ajoy =2, E Q00 = — =, ,Q1Qs ... o = (—1) o
i=0 1<i<j<n 1<i<j<k<n
These relations are denoted as o1, 09, ..., 0y, as well. These relations are known as Vieta's
relations.

4.9 Symmetric Functions

Consider functions a+b+¢,a?+b%+c2, (a—b)*+ (b—c)?+ (c—a)? and (a+b) (b+c) (c+a)
in which the terms can be interchanged without changing the overall function. Functions
demonstrating such behavior are known as symmetric functions.

In general, if a function is of n variables then this definition warrants that any two variable
can be interchanged without changing the function. Thus, we see that Vieta's relations are
symmetric functions.

4.10 Common Roots of Polynomial Equations

If v is a common root of the polynomial equations f(z) =0 and g(x) = 0, if and only if, it
is a root of the HCF of the polynomilas f(x) and g(z). The HCF of two polynomials can
be found exactly like HCF of two integers using Euclid's method.

4.11 Irreducabilty of Polynomials

When we talk of irreducability we talk in terms of set to which the coefficients of the
polynomial belong. The set could be Q, z, R or C.

An irreducible polynomial is, a non-constant polynomial which cannot have non-constant
factors in the same set as coefficients of the polynomial itself.

Consider following example:

1 22—52+6=(z—2)(z—3)
4 2 2

3. 22—5=(z—V5)(z+5)

4. 224+ 9= (2 +3i) (x — 3i)

Over [, first is reducible while other are irreducible, over Q first two are reducible bit last
two are not, over R, first three are reducible but last one is not and over C all are reducible.

4.12 Eisenstein's Irreducibility Criterion Theorem

Theorem 5

Consider the polynomial f(2) = apz™ + an 12" 1 + -+ a12 + ag with integer coefficients.
If there exists a prime p such that the following three conditions apply
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1. p divides each a; for 0 <i <mn,
2. p does not divide a,, and
3. p? does not divide ao,

then f(x) is irreducible over rational numbers and integers.

Proof

If possible, let us assume that f(x) = g(x).h(z) such that g(z) = bpa® + by_12" ! + - +
bz + by and h(z) = art+ e 127+ 4 1 + ¢, where by, ¢, €ZV i =0,1,2, ... by #+=
,a# 01 <k Il<n—1.

Comparing leading coefficient on both sides, we have a,, = byc;. Aspta, = ptbee;=p}t by
and p f ¢.

Similarly, ag = boco. As plag and p? } ag = plboco, but both by and ¢ cannot be divided by p.
Without loss of generality, we suppose p|by and p } ¢g. Suppose i be the smallest index such
that b; is not divisible by p. There is such an index ¢ since p } by, where 1 < i < k. Depending
oniand k, for i < k,a; =b;co+b;_1¢1+ -+ igc; and for i > k,a; = bjcg+b;_1¢1+ -+ b;_pxe.

We have pla; and by supposition p divides each one of by, by, ..., b;—1 = p|b;co. But p } ¢o =
plb;, which is a contradiction, and therefore, f(z) is irreducible. O

4.13 Quadratic Equations

An equation of the form az? + bz + ¢ = 0, where a, b, ¢ € C, the set of complex numbers, is
called a quadratic equation. The numbers a, b, ¢ are called it coefficients of the equation. The
quantity b2 — 4ac is called the discriminant of the equation. It is represented by D or A. A
quadratic equation represents a parabola geometrically.

Examples:

1. 42 +4z+1=0,a=4,b=4,c=1

2. 72% 410 = 0 is not a quadratic equation.

3. 322—2z"2+7=0isnot a quadratic equation.
4. 222 —4=0,a=2,b=0,c=—4

The quadratic equation is called incomplete if one of the coefficients b or ¢ is zero. Thus, the
last example above represents an incomplete quadratic equation.

An expression of the form az? + bz + ¢ is called a quadratic expression while other elements
are same as a quadratic equation.

If two expression in x are equal for all values of x then this statement of equality between
the two expression is called an identity.

f(x) =0 is said to be an indentity in z if it is satisfied by all values of z in the domain of
f(x). Thus, an indentity in z is satisfied by all values of z while an equation is satisfied for
particular values of x.
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Example: (z +1)? = 2> + 2z + 1 is an identity in .
Two equations are called identical equations if they have same roots.

Example: z° — 5z + 4 = 0 and 2% — 10z + 8 = 0 are indentical equations because both
have same roots 1 and 4.

Note:

1. Two equations in z are indentical if and only if the coefficients of similar power of z in
the two equations are proportlonal Thus if az?+ bz +c=0and ayz?+ bz +c¢ =0
are identical equations, then = b% =z

2. An equation remains unchanged if it is multiplied or divided by non-zero number.

An expression of the form agz™ + a1z" 4+ a2z™ 2+ ... + an_12 + ag, where ag, a1, as, ..., an

are constants (ag # 0) and n is a positive integer is called a polynomial in x of degree n.

As a special case a constant is also called a polynomial of degree zero.

4.14 Rational Expression or Rational Function

%) where P(z) and Q(z) are polynomials in z, is called a

An expression of the form ©)

rational expression.

9

In the particular case, when Q(x) i (3 reduces to a polynomial. Thus,

every polynomial is a rational expression but the converse is not true.

Examples:
x?—5x+4
1. —/——
1
2. =

4.15 Roots of a Quadratic Equation

The values & for which the equation ax? + bz + ¢ = 0 are satisfied are called roots of the
equation. They are also called roots of the quadratic expression az? 4 bz + ¢

Every quadratic equation has at most two roots. Let az? + bz 4+ ¢ = 0, where a #+0

Multiplying both sides of the equation with a

a*z?+ abr +ac=0=> (az)2+2.az.g—|—b;+ac—b£:0
1

2 2_ —b4+/b2—
(az—i—g) :b 4ac:>x: b+ 21:1 4ac

These are two roots of the quadratic equation. Let us suppose the above quadratic equation
has three roots «, 8 and 7. These roots will satisfy the above equation. Thus,

ac?+ba+c=0,a82+b8+c=0,av +by+c=0
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Subtracting the first two, we get (a — ) [a(a+ 8) +b] =0
catBralatB)+b=0

Similarly, a(a +v) +b=0

Subtracting these two, we get a(aw —) =0

va#0~a=xy

Thus, a quadratic equation has at most two roots.

4.16 Sum and Product of the Roots

From the two obtained we observe that o+ 8 = —g and aff =<

a

4.17 Nature of Roots

For equation az?+ bz + ¢ = 0 when a, b, ¢ are real.
1. When D <0

In this case, both roots will be either imaginary or complex numbers depending on
whether b is zero or not. These roots of conjugate of each other.

2. When D=0
In this case, both roots will be equal.
3. When D >0

In this case, both roots will be equal and unqual. If D is not a perfect square then roots
are irrational and come as a pair of conjugate irrational numbers.

4. When D is a perfect square and a, b, ¢ are rationals.

In this case, both roots are real and unequal.

4.17.1 Conjugate Roots

Imaginary /complex roots of a quadratic equation with real coefficients always occur in con-
jugate pair.

Let o + i be a root of the quadratic equation az? + bz + ¢ = 0, where a, b, ¢ are real
numbers. Thus,

ala+iB)2+b(a+if) +c=0
= (a0 —aB?+ba+c)+ (2aaBf+bB8)i =0
Equating real and imaginary parts

ac® —af 4+ ba+c=0,2a08+b5=0



Polynomials and Theory of Equations 85

Using a — i3 as the second root of the equation
a(a—iB)? +b(a —iB) + ¢ = (aa® — afB62 + ba + ¢) + (2aaB + bB) i
=0+1.0

Thus, we see that a — if also satisfied the equation and is second root of the equation.
Similarly, if the roots are irrational they also appear as conjugate pair.

4.18 Quadratic Expression and its Graph

Let f(z) = az? + bz + ¢, where a,b,c € R and a # 0.

Fz) = a[<x+%)2+4a6_62} (4.1)

4a?
4.18.1 When a Quadratic Equation is Always Positive/Negative

It follows from Eq. 4.1, that f(z) > 0(< 0) V 2 € R if and only if @ > 0(< 0) and D =
b%2—4ac < 0. See Figure 4.1(Figure 4.2). Also, it follows from eq:1 that f(x) > 0(<0) V2 € R
if and only if a > 0(< 0) and D = b*> — 4ac = 0. in this case f(z) < 0(< 0) for each
z € R, x # —b/2a, and the graph of y = f(x) touches the z-axis at x = —b/2a.

V

D=b*—4dac<0

(x)>0VzeR

A(—=b/2a, (4ac — b*)/4a)

1 »l
>

O -b/2a

Figure 4.1 When quadratic equation is always positive

4.19 Sign of a Quadratic Equation

If D =b%—4ac > 0, then eq. Equation 4.1 can be written as

flz) = a[<x+2%>2 (@ﬂ

2a

R

a 2a

=a(z—a)(z—p)
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-b/2a
T

ol
-

|
'A(—b/Qa, (4ac — b%)/4a)
(r)<OVzeRr

D=0b*—4ac<0
a<0

Figure 4.2 When quadratic equation is always negative

v
D=b%>—4ac>0
a>0
y = f(x)
-b/2a .
0 ' >
A(=b/2a, (4ac — b*)/4a)

Figure 4.3 When D > (0 and a > 0
If D =0b>—4ac >0 and a > 0, then (See Figure 4.3)

; >0forz<aorz>p
T) =
>0fora<z<f=0forz=0qa,p

If D =b? —4ac > 0 and a < 0, then (See Figure 4.4)
fle)y={<0forz<aorz>pF>0fora<z<fB=0forz=0qa,p
Note that if @ > 0, then f(x) attains the least value at = —b/2a, a value which is achieved

by differentiating the function once and at this point the tangent to parabola has slope 0.

The least value is given by
f(—i> _4ac—62
2a) 4da

2

5 and value of function has the same formula

If a < 0, then f(x) is maximum at value z = —
which is for least value shown above.
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v
A(=b/2a, (4ac — b*)/4a)
| L
0O -b/2a
D =b? —4dac >0
a<0 y = f(x)

Figure 4.4 When D > 0 and a < 0

4.20 Position of Roots

Conditions for both roots to be more than a real number &

A(=b/2a, (4ac — b*)/4a)

Figure 4.5 When D > 0 and a > 0

Form the Fig. Figure 4.5, we note that both the roots are more than k if and only if
D >0, k< —oand f(k) > 0.

In case a < 0, from Fig. Figure 4.6, both the roots are more than k if and only if D > 0, k <
b
~3q and f(k) < 0.

Combining the above two equations, we get the condition for the roots to be more than a
real number k if and only if D > 0, k < 75% and af(k) > 0. Similarly, condition for the

roots to be more than a real number k if and only if D > 0, k > 75% and af(k) > 0.

Conditions for a real number k to lie between two roots
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A(=b/2a, (4ac — b*)/4a)

A

D=0bv*—4ac>0
a>0

Figure 4.6 When D > 0 and a < 0

Similarly, the real number k lies between the roots of the quadratic equation if and only if a
and f(k) are of opposite signs, i.e. if and only if a > 0, D >0, f(k) <0Oora <0, D>
0, f(k)>0.

Combining these two, we get D > 0, af(k) < 0 as the condition for k to lie between two
roots.

Conditions for exactly one root to lie in between (ki, k2) where k; < ko

If @ > 0, then exactly one root lies in the interval (ki, k2) if and only if f(k1) > 0 and
f(k2) < 0. Also, same is true if anad only if f(k;) < 0 and f(kz) > 0. Combining these two
we get f(ki1) f(ke) < 0. This condition is also true if a < 0.

Conditions for both roots to lie in between (ki, k2) where k; < k2

If @ > 0, both the roots will lies in the interval (ki, ko) if and only if D > 0, k; < 7,2% <
ka, f(k1) > 0and f(k1) > 0. In case a < 0, the conditions are D > 0, k1 < 75% <k flk1)<
0 and f(k1) < 0.

Conditions for the quadratic equation to have repeated roots

The quadratic equation f(2) = ax? + bz + ¢ = 0, a # 0 has a repeated root if and only if
f(a) = f/(a) = 0, where « is the repeated root. In this case, f(z) = a(z — a)? In fact,
a = —b/2a. Geometrically, the z-axis will be a tangent to the parabola at z = —b/2a. See
Figure 4.7 and Fig. Figure 4.8.

bf Conditions for two quadratic equations to have one common root

Consider two quadratic equations az? + bz + ¢ = 0 and a’z® 4 b’z + ¢’ = 0 having a common
root . Clearly, this common root will satisfy both the equations, i.e. aa® + ba + ¢ = 0 and
ado?+ba+c¢ =0.

Solving these two equations, we get
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Figure 4.7 f(Oé) =0, f'(a) =0

Figure 4.8 f(a) =0, f’(a) =0
a? . « _ 1
b/ —bc a'c—ac’ ab —a'b

o2 bc’ —b'c a’c— ac’
o’ = a=
ab’ —a’b’ ab’ —a’b

Eliminating «, we get
(a'c —ac’)? = (bc’ —V'c) (ab’ — a’b)
This is the required condition for two quadratic equations to have one common root.

y=ar’+br+cy=adz>+bz+c

NV

Figure 4.9 Common roots

To obtain the common root make coefficients of z? in both the equations same and subtract
one equation from the other to obtain a linear equation in z, which you can solve to obtain
the common root.

For having both roots common the two equations must be identical i.e. % = g = %
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y=dz*>+Vz+¢

v,

y=azx’+br+c

Figure 4.10 Common roots

4.21 General Quadratic Equation in z and y

The general quadratic equation in z and y is given by ax? + 2hay + by + 29z + 2fy +c¢ =0

. —2(hy + g) £ /4(hy + ¢)*> — 4a(by® + 2fy + c)
a 2a

= a+hy+g=+/(h>—ab)y’+2(gh—af)y+g>—ac

It can be resolved into two linear factors if (h? — ab)y® + 2(gh — af)y + g® — ac is a perfect
square and h? —ab > 0.

The condition for (h% — ab)y? + 2(gh — af)y + g°> — ac to be a perfect square is that its
discriminant is 0, i.e.

4(gh —af)?—4(h? —ab) (¢* —ac) =0

= abc+2fgh —af?—bg? —ch®>=0

4.22 Equations of Higher Degree

The equation f(z) = agz" + a1z" '+ a0z 2+ ... 4 an_12 +a, = 0, where ag, ay ..., a, € C,
the set of complex numbers and ag # 0, is said to be an equation of degree n. An equation
of degree n has exactly n roots. Let aq, ag, ..., a, € C be the n roots. Then

f@)=a(z—a1) (x —ag) ... (x —ay)

Z aj az n Gn
Q= ——, aiaj:_7"'7Hai:(_1) -
ao ao ag

4.23 Cubic and Biquadratic Equation

If a, B, v are the roots of az® + bz + cx + d = 0, then

b c d
a+ﬂ+7=fa,aﬁ+57+7a=a,aﬂv=fa
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Also, if o, 8,7, § are the roots of the equation az? + bz® + ca2® + d 4+ e = 0, then

b
a+ﬁ+v+6:—E,a6+a7+a5+ﬂv+ﬁé+75:§

d
afy +afd+ ayd + pyd = —aaﬁ'yé :2

4.24 Transformation of Equations

Let the given equation be

f(z) =apz™ + a1z '+ az" 2+ .. 4 ap1z+a, =0 (4.2)

1. To form an equation whose roots are k(% 0) times roots of the Equation 4.2, replace x

by z/k.

To form an equation whose roots are the negatives of the roots of Equation 4.2, replace x

n73, "

by —z. Alternatively, change the sign of the coefficients of 2"~ 1, 5 ...etc. in eq:2.

To form an equation whose roots are k more than the roots of Equation 4.2, replace x
by x — k in eq:2.

. to form an equation whose roots are reciprocals of roots in Equation 4.2, replace x by
1/z in eq:2 and then multiply both sides by z".

To form an equation whose roots are squares of roots in Equation 4.2, replace by v/.

Then you can collect all terms involving v/z on one side and square both sides followed
by simplification.

To form an equation whose roots are cubes of roots in Equation 4.2, replace by /.

Then you can collect all terms involving ¥ and /22 on one side and cube both sides
followed by simplification.

4.25 Descartes Rule

1. The maximum no. of positive real roots of Equation 4.2 is the number of changes of sign

of coefficients from positive to negative and negative to positive.

2. The maximum no. of negtive real roots of Equation 4.2 is the number of changes of sign of

coefficients from positive to negative and negative to positive in the equation f(—z) = 0.

4.26 Hints for Solving Polynomial Equations

1. To solve the equation of the form (z —a)?" + (z —b)*" = A, where n € P, put y = . — %2

a+b
5

2. To solve the equation of the form ag(f(z))** +ay(f(z))" +az2 =0, put (f(z))™ = y then

we obtain two roots yi, y2 to solve again for f(z) = y1, f(z) = y2.

3. An equation of the form (az? + bz + ¢1) (ax? + bz + ¢3) ... (ax® + bz + ¢,) = A can be

solved by putting az? + bx = y.
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An equation of the form (z — a) (z —b) (z — ¢) (x — d) = Az? where ab = cd, can be

reduced to a product of two quadratic polynomials by putting y = « + %b.

An equation of the form (z —a)(z—b)(z —c)(r—d) = A, wherea <b<c<d,b—a=

. _ a+b+c+d
d — c can be solved by putting y = z — ——F——.

A polynomial f(z,y) is said to be symmetric if f(z,y) = f(y, z) V z,y. All symmetric
polynomials can be represented as a function of z 4+ y and zy.

4.27 Problems

10.

11.

12.

13.

14.

15.

What is the remainder when z + 2% 4+ 22° + 2% + 28 is divided by 2% — 2?

Prove that the polynomial 2999 4 28388 4 27777 ... 4 2111 4 1 is divisible by & + 2% +
4+l

If f(z) is a polynomial with integral coefficients and suppose that f(1) and f(2) are
both odd, then prove that there exists no integer n for which f(n) = 0.

If f is a polynomial with integer coefficients such that there exists four distinct integers
a1, az, as, and a4 such that f(a1) = f(a2) = f(asz) = f(ag) = 1991, show that there
exists no integer b, such that f(b) = 1993.

Find a polynomial function of lowest degree with integral coefficients with /5 as one
of its roots.

Find a polynomial of the lowest degree with integer coefficients whose one of the zeroes

is V5 + V2.
If f(z) is a polynomial such that z.f(x —1) = (z —4) f(z)V = € R. Find all such f(z).

Let f(z) be a monic cubic equation such that f(1) =1, f(2) = 2, f(3) = 3 then find
f4).

Find a fourth degree equation with rational coefficients, one of whose roots is, \/5 + \/7 .

Form the equation of the lowest degree with rational coefficients which has 2 4+ /3 and
3+ /2 as two of its roots.

Find a polynomial equation of the lowest degree with rational coefficients whose one

root is /2 + 3V/4.
Show that (z —1)% is a factor of 2™ —nz +n — 1.

If a, b, ¢, d, e are all zeroes of the polynomial 6z° 4+ 5z + 42 + 322 + 2z + 1, find the
value of (1+a)(1+b)(1+¢)(1+d)(1+e).

If 1, a1, as, ..., a, 1 be the roots of the equation ™ — 1, n € N, n > 2, show that
n=(1—-a1)(l—ag)(1—ap1).

If f(z) = 2* = az®+ ba? + cx + d is a poynomial such that f(1) = 10, f(2) = 20, f(3) =
30, find the value of 1(—1—2—%)&@.



16.

17.

18.

19.

20.

21.

22.

23.

24.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
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If the polynomial z?* + 1 + (z+ 1)21ﬂ is not divisible by 22+ z + 1, then find the value
of k€ N.

Find all polynomials P(x) with real coefficients such that (z —8) P(2z) = 8(x—1) P(z).

If (z — 1)% divides f(z) + 1 and (z + 1)® divides f(z) — 1, then find the polynomial
f(x) of degree 5.

Find the polynomial equation of lowest degree with rational coefficients, two of whose
roots are 3 + 2¢ and 2 + 3i.

Find the roots of the equation z* + 2® — 1922 — 49z — 30, if all roots are rational numbers.
Find the rational roots of 223 — 3z — 11z + 6 = 0.

Solve 23 — 32 + 5z — 15 = 0.

Show that f(z) = 2'%°° — 25 4+ 2 + 1 = 0 has no rational roots.

If 22+ ax +b+1 =0, where a,b € Z and b # —1, has a root in integers then prove
that a2 + b? is composite.

. For what values of p, will the sum of squares of the roots 2> — pz +p —1 = 0 be

minimum?

Let a, 8 be two real numbers not equal to —1, such that «, § and a3 are the roots of a
cubic polynomial with rational coefficients. Prove or disprove that o is rational.

Find the roots of the cubic equation 92> — 2722 + 262 — 8 = 0, given that one of the
roots of the equation is double the other.

If the product of two roots of the equation 4z* — 2423 + 3122 + 6z —8 = 0 is 1, find all
the roots.

One root of the equation z* — 52° + az? + be + ¢ = 0 is 3 + /2. If all the roots of the
equation are real, find extremum values of a, b, ¢; given that a, b and ¢ are rational.

Find the rational roots of the equation z* — 42® + 622 — 42 + 1 = 0.

Solve the equation z* 4+ 102% 4 3522 4 50z + 24 = 0, if some of two of its roots is equal
to the sum of the other two roots.

Find the rational roots of 6z* + 2° — 322 — 9z — 4 = 0.
Find the rational roots of 62* + 352 + 6222 + 352 + 2 = 0.

Given that the sum of two of the roots of 4z° + ax? — x + b = 0 is zero, where a,b € Q.
Solve the equation for all values of a and b.

Find all a, b such that 2 4+ az® + be — 8 = 0 are real and in G.P.
Show that 225 + 122° + 30z* + 602> + 8022 + 30z + 45 = 0 has no real roots.

Construct a polynomial equation, of the least degree with rational coefficients one of
whose roots is sin 10°.



38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.
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Construct a polynomial equation, of the least degree with rational coefficients one of
whose roots is sin 20°.

Construct a polynomial equation, of the least degree with rational coefficients one of
whose roots is cos 10°.

Construct a polynomial equation, of the least degree with rational coefficients one of
whose roots is cos 20°.

Construct a polynomial equation, of the least degree with rational coefficients one of
whose roots is tan 10°.

Construct a polynomial equation, of the least degree with rational coefficients one of
whose roots is tan 20°.

Construct a polynomial equation, of the least degree with rational coefficients two of
whose roots are sin 10° and cos 20°.

If p, ¢, 7 are the real roots of 2® — 622 + 3z + 1 = 0, determine the possible values of
p*q+¢*r +rp.

The product of two of the four roots of the equation z* — 18z° + ka2 + 200z — 1984 = 0
is 32. Determine the value of k.

Ifz+y=1and z* + y* = ¢, find 2% + 3 and 22 + ¢? in terms of c.

Find all z and y that satisfy 23+ 3% = 7 and 22 + >+ 2+ y + 2y = 4.

If a, B, v are the roots of the equation 3 + pz + ¢ = 0, then prove that W =

aB+B3+43 a24324~2
3 X 5 .

If o, B, v are the roots of the equation z* + pz + ¢ = 0, then prove that W =

QB+ 545 a2+ B2+42
5 X 5 .

If a + B+~ = 0, then show that 3(a”® + > ++2) (a® + 8°+7°) = 5(a® + 8 ++%) (a* +
Bt

Show that there does not exist any distinct natural numbers a, b, ¢ and d such that
A+ =c+danda+b=c+d.

Determine all the roots of the system of simultaneous equations © +y + z = 3, % 4y +
22=3,and 2> + 13+ 22 =3.

Given real numbers .y, z, such that z + y+ 2 =3, 22+ + 22 =5, 23+ 3+ 2 =7,
find z* + y* + 2%,

For what values of (1 +m)a® —2(1 +3m)x + (14 8m) = 0 has equal roots?

Ifa+b+c=0and a,b,c are rational. Prove that the roots of the equation (b+c—a) =2+
(c+a—>b)z+ (a+b—c) =0 are rational.

Show that if the roots of the equation (a2 4 b?) 2% + 2(ac + bd) x + ¢* 4+ d* = 0 are real,
they will be equal.
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58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.
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If the roots of the equation a(b— c)z?+b(c —a)z + c(a —b) = 0 be equal, prove that
a, b, c are in H.P.

If a4+ b+ c¢=0and a,b, ¢ are real, prove that equation (b —z)?—4(a—z)(c —x) =0
has real roots and roots will not be equal unless a = b = c.

Show that if p, g, r, s are real numbers and pr = 2(g + s) then at least one of the
equations z2 + pz + ¢ = 0 and 22+ rz + s = 0 has real roots.

If the equation z2 — 2pz + ¢ = 0 has two equal roots, then the equation 1+y) z? —
2(p+y)x + (¢ +y) = 0 will have its roots real and distinct only when y is negative
and p is not unity.

If the equation az?+ 2bz + ¢ = 0 has real roots. a, b, ¢ being real numbers and if m and n
are real numbers such that m? > n? > 0 then prove that the equation az?+ 2mbz + nc =
0 has real roots.'

If theq equations az + by = 1 and cz? + dy? = 1 have only one solution, prove that

a? | b2 _a _ b
7+7—1andx—;7y—g

If r be the ratio of the roots of the equation az?+ bx + ¢ = 0, show that (Tt—”z =

If one root of the eq. (I —m)x? + Iz + 1 = 0 be double of the other and if I be real,

show that m < g

If one root of the quadratic equation az? + bx + ¢ = 0 is equal to the nth power of the
other, then show that

(acn)l/(n+1) + (anc)l/(n+1) +b=0

If the roots of the equation az?+ bz + ¢ = 0 be in the ratio p : ¢, show that

ﬁ_i_\/é_‘_\/gz()
q p a

If & and B be the roots of the equation 22 + px + ¢ = 0. Find the value of the following
in the terms of p and q.

[y

i Z+E
ii. (wa+ w?B) (w?a + wp), where w an imaginary cube root fo unity.

If o and 3 be the roots of the equation A(z? +m?) + Amz + cm?z? = 0, prove that
A(a® + %) + AaB + ca’f? = 0.

a2

If & and 8 be the roots of the eugation az?+ bz 4 ¢ = 0, prove that a(ﬁ + %) + b(% +
By =b.

If @ and b are the roots of the equation 22+ pz 4+ 1 = 0 and ¢ and d are the roots of
the equation 2 4 gz 4+ 1 = 0, show that ¢*> — p? = (a —¢) (b —c¢) (a + d) (b + d).

If the roots of the equation z? + pz + ¢ = 0 differ from the roots of the equation
z? + gz + p = 0 by the same quantity, show that p + ¢+ 4 = 0.
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If a, 8 are the roots of the equation az? + bz 4+ ¢ = 0 and S, = o" + ", show that
aSp.+1+ bS, + ¢S,—1 =0 and hence find Ss.

If the sum of roots of the equation ax? + bc 4+ ¢ = 0 is equal to the sum of the squares
of their reciprocals, show that bc?, ca?, ab? are in A.P.

If o and S8 be the values of & obtained from the equation m?(2® — x) 4+ 2ma + 3 = 0 and
if my and mso be the two values of m for which « and 8 are connected by the relation

5 + 58— 3, find the value of mi o m2

If the ratio of the roots of the equation az?+ bz + ¢ = 0 be equal to the roots of equation

2
a12% 4+ b1z + ¢; = 0, prove that (b—bl> =

ca
ciar’

Find the quantity equation with the rational coefficients one of whose roots is 5T \f

If @ and 8 be the roots of the equation ax? + bz + ¢ = 0, find the quantity equation

1
whose roots are -— and aﬂﬂ)
If ¢, d are the roots of the equation (z — a) (z —b) = k, show that a, b are the roots of
the equation (z —c)(z—d) + k=0

The coefficients of z in the equation 2 + px + ¢ = 0 was wrongly written as 17 in place
of 13 and roots were found to be —2 and —15. Find the roots of the correct equation.

If & and 8 be the roots of the equation z? + pz + ¢ = 0, show that % is a root of the
equation gz — (p® — 2¢)x + ¢ = 0.

If 22 — az + b = 0 and 2% — pz + ¢ = 0 have a common root and the second equation

has equal roots then show that b+ ¢ = %

If az? + 2bz + ¢ = 0 and a1z + 2b12 + ¢1 = 0 have a common root and <
A.P., show that a1, b1, c; are in G.P.

a0 by 7Clareln

If each pair of the following three equations 2% + pyz + q1 = 0, 2% + paz + g2 = 0, 2% +
p3x + g3 = 0 have exactly one root in common, then show that (p; + ps + p3)? =
4(p1p2 + paps + p3p1 — @1 — G2 — q3)-

If the equations 2 + cx + be = 0 and 22 + bz 4 ca = 0 have a common root, show that
a+ b+ ¢ = 0; show that other roots are given by the equation 2> + ax + bc = 0.

If a, b, ¢ € R and equations az? + bz + ¢ = 0 and 22 + 22 4+ 9 = 0 have a common root,
show that a:b:c=1:2:0.

Find the value of p if the equation 3z? — 2z + p = 0 and 622 — 17z + 12 = 0 have a
common root.

Show that |2|? — || — 2 = 0 is an equation.

Show that (Z+Z)Ec a; + ((??EHG; + ((TZ;E?Q = 1 is an indenity.

If a, b, ¢, a1, by, ¢; are rational and equations az? 4+ 2bx + ¢ = 0 and a122 +2bjz +¢1 =0
have one and only one root in common, prove that b — ac and b% — a1cy must be perfect
squares.



90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

Polynomials and Theory of Equations 97

If (> —1)2% 4+ (a — 1)z + a® — 4a + 3 = 0 be an indentity in 2, then find the value of a.
Solve <x+%)2 = 4+%(x+%),

Solve (z+4)(z+7)(z +8) (x +11) +20 = 0.

Solve 3%F1 4+ 3% = 3773 4 37,

Solve (54 2v6)™ 3 + (5 — 2v/6)* % = 10.

A car travels 25 km per hour faster than a bus for a jouney of 500 km. The bus takes
10 hours more than the car. Find the speed of the bus and the car.

Show that the roots of the equation (a + b)%z% — 2(a® — b%)2 + (a — b)? = 0 are equal.
Show that the equation 3z% 4 7z + 8 = 0 cannot be satisfied by any real values of z.
For what values of a will the roots of the equation 32% 4+ (7 4+ a)z + 8 — a = 0 be equal.

If the roots of the equation (a” + b?)z? + 2(ac + bd) x + (¢* + d?) = 0 are equal then
show that a : b =c: d.

Prove that the roots of the equation (b —c¢)a? + 2(c —a)x + (a — b) = 0 are always
real.

Show that the roots of the equation ﬁ + % + ﬁ = 0 are real for all real values of a.
Show that if @ + b + ¢ = 0, the roots of the equation az? + bz + ¢ = 0 are rational.

Prove that the roots of the equation (b4 ¢ —2a)x?+ (c+a—2b)z + (a +b—2¢) =0
are rational.

Show that the roots of the equation 2 + rz 4+ s = 0 will be rational if r = k + %, where
r, s and k are rational.

Prove that roots of the equation (z —a)(x —b) + (z —b) (z —¢) + (z —¢)(x —a) =0
are always real and cannot be equal unless a = b = c.

If a, b, ¢ are rational, show that the roots of the equation a?(b* — ¢?) 22 +b*(c®> — a?)x +

c(a? — b%) = 0 are rational.

Show that the roots of the equation (a* + b*)x? + 4abedz + c* + d* = 0 cannot be
different, if real.

If p, g, r are in H.P. and p and r are of the same sign, prove that the roots of the
equation pz? 4 2¢gz + 7 = 0 will be complex.

Prove that the roots of the equation ba?® + (b —c¢)z 4 (b — ¢ — a) = 0 are real if those
of equation ax? + 2bxz + b = 0 are imaginary and vice-versa.

Prove that the values of = obtained from the equations az? + by? =1 and az + by = 1
will be equal if a + b = 1.

Prove that the values of z obtained from the equations 22 + y? = a? and y = ma + ¢
will be equal if ¢? = a?(1 + m?).
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The roots of the equation 42% — (5a 4 1)z + 5a = 0 are a and 3. If 8 = 1 + a, calculate
the possible values of a, o and .

If one root of the equation 522 4+ 13z + k = 0 be reciprocal of another, find k.

Find the values of m, for which the equation 52% — 4z + 2 + m(42? — 2z — 1) = 0 has
(a) equal roots, (b)the products of root is 2, and (c¢) the sum of roots is 6.

Find the relation between the coefficients of the quadratic equal az? + bz + ¢ = 0 if one
root is n times the another.

If the roots of the equation az?®+ bz 4 ¢ = 0 are in the ratio 3 : 4, prove that 12b% = 49ac.

If the roots of the equation 422 + axz 4+ 3 = 0 are in the ratio 1 : 2, show that the roots
of the equation az?® + 3z + a = 2 are imaginary.

If one root of the equation 22 — pz + ¢ = 0 be m times their difference, prove that
p2(m?* —1) = 4m>q.
If the difference of the roots 22 — px + ¢ = 0 is unity, then prove that p?> — 4¢ = 1 and
P’ +4q = (1+29)%

Find the condition that the equation ﬁ + % = m may have roots equal in magnitude
but opposite in sign.

Find the relation between coefficients of the euqation az? + bz + ¢ = 0 if one root
exceeds other by k.

If one root of the equation ax?+ bz + ¢ = 0 be square of the other, show that b> + a%c +
ac? = 3abe.
Determine the value p for which one root of the equation z2 4 pz + 1 = 0 is the square

of the other.

If one root of the equation 2%+ pz + ¢ = 0 be the square of the other then show that
p’—aBp—1)+¢°=0.

If «, B be the roots of the equation 222 + 3z + 4 = 0. Find the values of

i. o+ p?

oo, B

11. B + a

If «, 8 are the roots of the equation az? + bz + ¢ = 0, find the values of % + %2 in terms

of a,b,c.
If o, 8 are the roots of the equation az? + bz + ¢ = 0, prove that \/% + \/§ + \/g =0.

Show that the two equations z2 — 2ax + b? = 0 and 22 — 2bx + b2 = 0 are such that the
G.M. of the roots of one is equal to the A.M. of the roots of the another.

If sum of the roots of the equation pz?+ gz 4+ = 0 be equal to the sum of their squares,
show that 2pr = pg + ¢
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If a, B be the roots of the equation 2> — pz 4+ ¢ = 0, prove that %; + g—; = %;f — isf + 2.

If «, B be the roots of the equation ax? + bz + ¢ = 0, find the value of (753%@)7 + (“aEITbF

If «, B be the roots of the equation )\(x2 —z)+x+5=0and if \; and Ay are the two

values for which the roots «, 8 are connected by the relation %+ g = %, then prove that
i 2+32=254

i, 31422 = 4048

If o, B be the roots of the equation 2% + px + ¢ = 0 and ~, § be the roots of the equation
22 +rz+ s =0, find the values of

Lo (a+7)(a+0)(B+7)(B+9)

i (a=7)(B=0)+(B—-7)(a=0)

iii. (a—7)2+ (8—06)%+(8—7)2+ (a—6)?

If o, B be the roots of the equation z? — pz + ¢ = 0 and v, = a” + 3", prove that

Unt1 = PVn—1—QqVn—-1.

If av, B be the roots of the equation 22+ paz+¢ = 0 and 7, § those of equation a2+ pz +r =
0, prove that (a —v)(a—0) = (8—7)(B—9) = —(¢g+7).

If o, B be the roots of the equation 2% — 2pxz + ¢ = 0 and =, § those of equation
22 —2rz + s =0 and if

i. «d = By, prove that ps = r?q.
ii. a,f, 7,0 bein G.P., prove that p*s = rq
iii. @, B8, 7,0 be in A.P., prove that s — ¢ = r* — p2.

If the roots of the equation az? + 2bxz + ¢ = 0 be a and f3, and those of the equation

Az? 4 2Bz + C =0 be o+ k and 3 + k, prove that Bbjjzcc =

If the roots of the equation az? + bz + ¢ = 0 be « and A3, and those of the equation

Az’ 4+ Bz +C=0bea+kand 8+ k, provethat]g:—m:j—z.

If the roots of the equation x2 4+ 2px + ¢ = 0 and 22 + 2¢gx + p = 0 differ by a constant
then show that p+¢+1=0.

If o, B be the roots of the equation ax?+ bz + ¢ = 0 then find the equations whose roots
are

. «@
i3 and =
e [e%

11. ? and —

iii. (a+6)?and (o — )2
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Find those equations whose roots are (a) reciprocal of the roots of (b) equal in magnitude
but opposite in sign to the roots of the equation az? + bz + ¢ = 0.

If o, B be the roots of the equation 2 + pz + ¢ = 0, find the value of (a) a* + * (b)
4 4
a "+ p

If o, B be the roots of the equation z? — pa 4+ ¢ = 0, find the equation whose roots are

_a
p—a

: _a_
i and e

ii. a—i—éandﬂ—‘—é
Find the values of p and ¢ such that the equation 2 + pz + ¢ = 0 has 5 + 3i as a root.
Form the quadratic equation whose one root is 3 + 4i.

If one root of the equation 4z% + 2z — 1 = 0 be « then prove that its second root is
402 — 3a.

[e3

If a # B and o? = 5a— 3, 32 = 58 — 3, form the quadratic equation whose roots are 3

and 2.
«

In copying a quadratic equation of the form 2 4+ px 4+ g = 0, the coefficient of z was
wrongly written as —10 in place of —11 and the roots were found to be 4 and 6. Find
the roots of the correct equation.

In writing a quadratic equation of the form z2 + pz 4+ ¢ = 0, the constant term was
wrongly written as —6 in place of 2 and the roots were found to be 6 and —1. Find the
correct equation.

Two candidaes attempt to solve a quadratic equation of the form 22 4+ pz 4+ ¢ = 0. One
starts wiith a wrong values of p and finds the roots to be 2 and 6. The other starts with
a wrong value of ¢ and finds the roots too be 2 and —9. Find the correct roots.

If «, B be the roots of the quadratic equation z? + pz + ¢ = 0 and a1, 81 be the roots

of the equation 22 — pz + ¢ = 0. Form the quadratic equation whose roots are %ﬁ + ﬁ

1 1
and E + m
If 2 +/3i is a root of the equation 2 4 px 4+ g = 0, where p, ¢ are real, then find them.

. . . o1
Find the equation whose one root is Panvet

If o, B are the roots of equation ? — px 4+ ¢ = 0, show that a + % is a root of equation
g® —p(l+q)a+(1+4q)°=0.

Determine the value of m for which 322 + 4ma + 2 = 0 and 222 4+ 3z — 2 = 0 may have
a common root.
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Find the value of a if 22 — 112 + a = 0 and 2? — 142 + 2a = 0 have a common root.

If the equations az? + bx 4+ = = 0 and bz? + cx + a = 0 have a common root then show
eithera+b+c=0ora=b=c.

Find the value of m so that equations x2 + 10z 4 21 = 0 and 22 4 9z + m = 0 may have
a common root. Find also the equation formed by the other roots.

Show that the equations z2 — 2 — 12 = 0 and 3z2 + 10z + 3 = 0 have a common root.
Also, find the common root.

If the equations 322 + pz 4+ 1 = 0 and 222 4 gz + 1 = 0 have a common root, show that
2p? + 3¢ — 5pg +1=0.

Show that the equation az?+ bz + ¢ =0 and 22 + = + 1 = 0 cannot have a common
root unless a = b = c.

If the equations 22 + pz 4+ ¢ = 0 and x2 + p1z + ¢1 = 0 have a common root, show that

PO1—P19 ) 4701

it mus ither .
t must be eithe = p

Prove that the two quadratic equations az? + bz 4+ ¢ = 0 and 222 — 3z 4+ 4 = 0 cannot
have common root unless 6a = —4b = 3c.

Prove that the equations (¢ —r)2?+ (r—p)z+p—g=0and (r—p)z’+ (p—q)z +
q —r = 0 have a common root.

If the equations 22 + abz + ¢ = 0 and 22 + acz + b = 0 have a common root, prove that
their other roots satisfy the equation 2% — a(b -+ ¢) x + a®bc = 0.

If the equations 2 — pz + ¢ = 0 and z? — az + b = 0 have a common root and the other
root of the second equation is the reciprocal of the other root of the first, then prove
that (¢ —b)% = bg(p — a)>.

Show that (z —2) (z —3) —8(z — 1) (x —3) + 9(x — 1) (x — 2) = 22? is an identity.
2a=b)(z=c) , b*(z—a)(z—c) *z—a)(z=b) _ 2 ; ;

Show that a(afb)(afc; + (bgi(gwic)c + C(ia‘;(cib) = z” is an identity.

Show that 32'° — 225 + 8 = 0 is an equation.

Solve the equation i{% — g—;_;% = %,

. 2Vz4l _ 11-3Vz
Solve the equation e yily s

Solve the equation (z + 1) (z +2) (z — 3) (z —4) = 336.
Solve the equation vz + 1+ v/2x —5 = 3.
Solve the equation 22% + 2%+2 — 32 = (.

A pilot flies an aircraft with a cetain speed for a distance of 800 km. He could have
saved 40 minutes by increasing the average speed of the aircraft by 40 km/hour. Find
the average speed of the aircraft.
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The length of a rectangle is 2 meters more than its width. If the length is increased
by 6 meters and width is decreased by 2 meters, the area becomes 119 sq. mt. Find the
dimensions of original rectangle.

Find the range of values of z for which —z2 4 3z +4 > 0.

Find all integral values of z for which 5z — 1 < (z +1)? < 7z — 3.

Find all values of z for which the inequality %% > 3 holds.

z2-3x+4

Show that the expression T804

lies between 7 and % for real values of x.

L @2434z-71
If 2 be real, prove that the expression %;:—2—37 has no value between 5 and 9.
422 +36x+9

If x be real, show that the expression 1927 18011

can have any real value.

Prove that if = is real, the expression Qﬁ%):(—b@:ﬂ is capable of assuming all values if

a>b>cora<b<ec.
If x + y is constant, prove that xy is maximum when z = y.

If z be real, find the maximum value of 3 — 6z — 822 and the corresponding value of z.

12z

7| < 1 for all real values of z or the equality being satisfied only if [z = g

Prove that ‘

Prove that if the equation 2% + 9y — 4z + 3 = 0 is satisfied for real values of  and y, =

must lie between 1 and 3, and y must lies between —% and %

Find the value of a for which 22 — azx + 1 — 2a2 > 0 for all real values of x.
Determine a such that z2 — 112 4+ a and 2% — 14z + 2a may have a common factor.

Find the condition that the expressions az? + bxy + c¢y? and a2 + byzy + ¢1y? may
have factors y — mz and my — x respectively.

Find the values of m for which the expression 2% + may + 3y> — 5y — 2 can be resolved
into two linear factors.

If the expression az? + by? + c2% + 2ayz + 2bzx + 2cay can be resolved into two rational
factors prove that a® + b3 + ¢ = 3abe.

Find the linear factors of 222 — y? — z 4+ zy + 2y — 1.

Show that the expression 22 + 2(a + b + ¢) 2 + 3(ab + bc + ca) will be a perfect square
ifa=b=c.

If z is real, prove that 222 — 6z + 9 is always positive.
Prove that 82 — 15 — 2 > 0 for limited values of z and also find the limits.
Find the range of the values of x for which —22 + 52 — 4 > 0.

Find the range of the values of z for which 22 + 62 — 27 > 0.
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Find the solution set of inequation —— > 1, z € R.

Find the real values of x which satisfy 2 — 3z +2 > 0 and 2? — 3z — 4 < 0.

If = be real and the roots of the equation az? + bz + ¢ = 0 are imaginary, prove that
a’z? + abx + ac is always positve.

Prove that the expression Z 2 lies between and 3 for real values of x.

z° +2z+4

If x be real, show that % lies between 7 and =

Ifp > 1 and z is real, show that 22240 Jios hetween 2L and P+1

2 +2x+p? p+1

if  be real, prove that the expansion %——%—%{% does not lie between and 1.

if a® + ¢® > ab and b? > 4¢? for real x, show that > cannot lie betwen two limits.

2+b +

show that if x real, the expression - has no real value between b and c.

2$b

show that no real values of  and y besides 4 can satisfy the equation z2 — zy + 3 —
4o —4y +16 = 0.

prove that if 2 4+ 12zy + 4y + 4z + 8y + 20 = 0 is satisfied by real values of = and y, x

cannot lies between —2 and 1 whereas y cannot lie betweenn —1 and %

a rectangular field, one of whose sides is a straight edge of a river is to be enclosed
by 600 meters of fencing on the remaining three sides. what would be the length and
breadth of the rectangle if the ecnlosed area is to be as large as possible.

find the condition that the expression ax? + 2hay + by? may have two factors of the
form y — mz and my + x.

if p(z) = az® 4 bz + ¢ and ¢(x) = —az® + bz + ¢, where ac # 0, show that the equation
p(z).q(x) = 0 has at least two real roots.

prove that the roots of the equation bx? 4 (b —c)x + b —c —a = 0 are real if those of
equation az? + 2bx + b = 0 are imaginary and vice-versa, where a, b, ¢ € r.

if a, b, ¢ are odd numbers, show that the roots of the equation az? + bz + ¢ = 0 cannot
be rational.

if roots of the equation axz? + 2bx + ¢ = 0 are real and distinct, then show that the roots
of the equation (a + ¢) (az? + 2bx + ¢) = 2(ac — b?) (2 4 1) are complex numbers and
vice-versa.

if n, 7 € p such that 0 < r < n, then show that the roots of the quadratic equation
"C,_x* +"C.x +"C, | = 0 are real and distinct.

sin x —sinx
— €

show that the equation e — 4 = 0 has no real solutions.

if a, b, ¢ are non-zero, real numbers and the equation az® + bz + ¢ + i = 0 have purely
imaginary roots then prove that a = b%c.
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if @ and b are integers and the roots of the equation 2%+ az + b = 0 are rational, show
that they will be integers.

show that the quadratic equation 2%+ 7z — 14(q2 + 1) = 0, where ¢ is an integer has
no integral roots.

solve the equation a®(b —¢) (z — b) (x — ¢) + b*(c —a) (z — a) (x — ¢) + *(a — b) (x —
a) (z —b) = 0. also show that the roots are equal if % + % + % =0.

if roots of the equation az®+ bz +c¢ = 0 be k—zl and ]1%% prove that (a+b-+ 6)2 =b%—4ac.

if f(z) = az®+ bz + ¢, and «, B be the roots of the equation pz? + gz 4 = 0, show that
fla) f(B) = (Cp_ar>2_(b52_aq)(Cq_bT>, hence or otherewise, show that if ax? 4+ bx + ¢ = Oa

nd pa? + gz + 7 = 0 have a common root, then bp — aq, cp — ar and c¢q — br are in g.p.

if a(p + q)* 4 2pbg + ¢ = 0 and a(p + r)> + 2bpr + ¢ = 0, then show that gr = p® + s

If a, B are the roots of the equation x> — p(z + 1) — ¢ = 0, show that (a+1)(8+1) =
2492041 | B2428+1
1 — c. Hence, prove that % + gziggic =

If a, B be the roots of the equation 22+ pz + ¢ = 0 and 2°" + p"z" + ¢" = 0, where n
is an even integer, prove that %,g are the roots of the equation " +1+ (z+1)" = 0.

If the roots of the equation 22 — az + b = Obe real and differ by less than ¢, the show
a2762

that b must lie between —;

2
a
and .

Let a, b and ¢ be interger with a > 1, and let p be a prime number. Show that if
ax? + bz + ¢ = p for two distinct integral values of z, then it cannot be equal to 2p for
any integral value of x.

If @ and S are the roots of equation z2 + pz 4+ ¢ = 0 and o, % are the roots of the

2

equation 22 —rz + s = 0, show that the equation z? — 4gz + 1¢> — r = 0 has real roots.

If o, B are the roots of the equation az?+ bz + ¢ = 0 and ay, —f are those of equation
a1z + b1 4 ¢1 = 0, show that «, oy are the roots of the equation
2
T 1
_b—ﬁﬁ—x—k—b b1:O.

ay c ' c

How many quadratic equations are possible which remains unchanged when its roots
are squared?

If a,b, c are in G.P. then show that the equations az?+ 2bz +c¢ = 0 and dz? +2ex+ f =0

have a common root if 7, 2, % are in H.P.

If the three equations a® + ax +12 = 0,22 + bz + 15 =0 and 22 + (a + b)x + 36 = 0
have a common root, find a, b and the roots of the equaiton.

If m(az? + 2bx + ¢) + px® 4 2qx + r cab be expressed in the form of n(x + k)2, then
show that (ak —b) (¢k —r) = (pk — q) (bk —¢).
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The real numbers xo, o, T3 satisfying the equation z® — z? 4 Sz 4 v = Oare in A.P. Find
the intervals in which 8 and ~ must lie.

If equations 2° + 3pz? + 3¢z +r = 0 and 2% + 2pz + ¢ = 0 have a common root, show
that 4(p* — q) (¢° — pr) = (pg —r)*.

If ¢ # 0 and the equations z® + 2ax? 4 3bz + ¢ = 0 and 2® + az? + 2bz = 0 have a
common root, show that (¢ — 2ab)? = (2b% — ac) (a® — b).

If equation 2 4 az + b = 0 have only real roots, then prove that 4a® + 27b% < 0.

Let « be a root of az? + bz + ¢ = 0 and 8 be a root of —az? + bz + ¢ = 0 show that
there exists a root of the equation %1’2 + bx + ¢ = 0 that lie between o and § or S and «
as the case may be(a, 8 # 0)

If a, b, ¢ € R, a # 0 and the quadratic equation az? + bz + ¢ = 0 has no real root then
show that (a +b+c¢)c > 0.

If a < b < ¢ < d, then show that the quadratic equation (xz —a) (x —¢) + A(z —b) (z —
d) = 0 has real roots for all real values of .

If az + 3b + 6¢ = 0, (a, b, c € R) then show that the equation az® + bx + ¢ = 0 has at
least one root between 0 and 2.

1 2

If a, b, ¢ be non-zero real numbers such that / (1 + cos® x(az? + bz + c)dr = / (1+
0 0

cos® ) (ax? + bx + ¢) dz, show that the equation az” 4+ bx + ¢ = 0 has at least one real

root between 1 and 2.

Let f(x) = az®+ bx + ¢, where a,b,c € R and a # 0. If f(x) = = has non-real roots,
show that the equation f(f(z)) = x has all non-real roots.

Let a, b, ¢ € P and consider all quadratic equations of the form az? — bz + ¢ = 0, which
have two distinct real roots in ]0, 1[. Find the least positive integers a and b for which
such a quadratic equation exist.

If equation az? — bz + ¢ = 0 have two distinct real roots in (0,1),a,b,c €N, then prove
that logs(abc) > 2.

If equation az? 4 bz + 6 = 0 does not have two distinct real roots, then find the least
value of 3a + b.

If equation 22 + az? + bz + 4 = 0 has three real roots, where a, b > 0, show that
a+b>—6.

Show that equation z® 4 22% 4z + 5 = 0 has only real root « such that [a] = —3, where
[x] denotes the integral part of x.

Solve (2% +2)? + 822 = 62) (22 + 2).
Solve 32° = (m2 +v18x + \/3_2) (a:2 — 18z — \/3_2) — 422
Solve (15 + 4v/14)" + (15 — 41/14)" = 30, where t = 22 — 2||.

For a < 0, determine all the roots of the equation z* — 2a|z — a| — 3a® = 0.
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Find all solution of equation |z2 — & — 6] = = + 2, where z is a real number.
Solve the equation 21#+2 — 2741 — 1| = 2241 4

Solve 3% + 4% + 5% = 67.

Solve (V2 +/3)" + V2 -3 =2°.

Let {z} and [x] denote the fractional and integral part of a real number z respectively.
Solve 4{z} = = + [z].

For the same notation as previous problem, solve [z]? = z(z — [x]).

Solve 23 — ¢® = 127, 2%y — xy® = 42.

Solve the system of equations z — 2y + z = 0, 4z — y — 3z = 0, 2% — 2zy + 3xz = 14.
Solve zt + y* =82, 2+ y = 4.

Solve \/a(2*—2)+1=1-2%z R

If z € [, find the integral values of m satisfying the equation (z —5) (x +m) + 2 = 0.

Find 1l the positive solutions of the system of equations z**¥ = ™ and y* ¥ = z>"y",

where n > 0.
Solve the equation (144/*l —2(12)*l + ¢ = 0) for every value of the parameter a.

If m and n are odd integers, show that the equation 22 + 2mz + 2n = 0 cannot have
rational roots.

If f(x) = ax® + ba® + cx + d has local extrema at two points of opposite sign, then
prove that the roots of the equation ax? + bz + ¢ = 0 are real and distinct.

(z—a)(az—1)

z2—1

If a,b € R, b # 0, prove that the roots of the quadratic equation = b, can

never be equal.

If n,r € P such that 7 < n, then show that the roots of the quadratic equation "C,.x? +
2"C, 12 +"C, 5 =0 are real.

If a, b, ¢ are rational, show that the roots of the equation abc®z? + 3aca + b*ca — 6a% —
ab + 2b% = 0 are rational.

If the roots of the equation az? + bz + ¢ = 0 be in the ratio m : n, prove that \/% +
n b
\/; +==0.

If one root of the equation 2® + zf(a) + a = 0 is equal to the third power of the other,
determin the function f(z).

If o, B are the roots of the equation 2 — pz + ¢ = 0, then find the quadratic equation
the roots of which are (a% — ?) (o® — %) and o35% + o252

If o, 8 are the roots of the equation 2% — bz + ¢ = 0, then find the quadratic equation
the roots of which are (o + %) (o + 8%) and o°8% + o35° — 201
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If the sum of the roots of the quadratic equation an + bz 4+ ¢ = 0 is equal to the sum

of squares of their reciprocals, then show that + z =2.

The time of oscillation of a rigid body about a horizontal axis at a distance h from the

C.G. is given by T' =27 h2 +k , where k is a constant. Show that there are two values

of h for a given value of T. If h1 and hs are two values of h, show that hq + hy = gT

and hihy = K.

If oy, g be the roots of the equation x2 + pz + ¢ = 0 and B, B2 be the roots of

z2 + rz + s = 0 and the system of equations aqy + asz = 0 and B1y + B2z = 0 has
2

non-trivial solutions then show that % = 2.

If a, b, ¢ are in H.P. and «, 8 be the roots of axz? + bz + ¢ = 0, show that —(1 + af) is

the H.M. of o and £.

If o, B are roots of the equation z + 1 = Az (1 — Az) and if A\, A2 are the two values of A
r+1>2
r—1

determined from the equation %—l— g = r — 2, show that i—z + ;\—é +2= 4<
2 1

If the roots of equation ax? 4+ bz + ¢ = 0 are reciprocals of those Iz + mz 4+ n = 0, then
prove that a:b:c=mn:m:I, where a,b, c,l, m,n are all non-zero.

If 21, x5 be the roots of the equation 2 — 3z + A = 0 and z3, 24 be those of equation
22 — 122 4+ B = 0 and x1, &2, 3, 4 be an increasing G.P., find A and B.

Let p and ¢ be roots fo the equation #2 — 2z + A = 0 and let » and s be the roots of
the equation 22 — 18z + B=0.If p < ¢ < 7 < s are in A.P., find the values of A and B.

Let o, 8 be the roots of the equation 22+ az — %@2 =0, a being a real parameter, prove
that a* + 8% > 2 + V2.

If o, 8 be the roots of the equation #2 — pz + ¢ = 0 and a > 0, 8 > 0, then find the
value of o'/* + 61/4.

If the difference between roots of the equation az? — bz + ¢ = 0 is samc as the difference
between the roots of equation bx? — ca +a = 0, then show that b* — a®c? = 4ab(bc —a?).

If f(z) = 0 is a cubic equation with real roots «, /J’ ~ on order of magnitudes, show that
one root of the equation f’(z) = 0 lies between & 5(a+0) and % 5(2a 4 ) and the other
root lies between + 5(B4+7) and % 5(28+7).

Show that the roots of the polynomial equation z" + a12" " + asz™ 2+ ... 4+ a, =0
cannot be all real if (n — 1) a? — 2nay < 0.

Let D; be the discriminant and «, 8 be the roots of the equation az? + bz + ¢ = 0
and D, be the discriminant and v, § be the roots of the equation pz?+ qz +r = 0. If
a, 3,7, are in A.P., then prove that Dy : Dy = a2 : p2.

If o, B be the roots of the equatio az? + bz + ¢ = 0 and a + h, 8+ h be those of equation

pa? + qz +r = 0, then show that =32 Pdac _ ¢ ;;1’".
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If a, B be the roots of the equation az? 4+ bz + ¢ = 0 and « + h, 3 + h be those of
a

equation pz? 4 gz + r = 0, then show that 2h = 3 -
If o, 8 be the real and distinct roots of the equation az®+ bz + ¢ = 0 and o, 8* be those of
equation lz% 4+ mx 4+ n = 0,prove that the roots of equation a’lz? — 4aclz + 2z%1 4 a’*m =
0 are real and opposite in sign.

If a, B be the roots of equation ax?+ bz 4 ¢ = 0 and ~, § those of equation Iz +ma +n =
0, then find the equation whose roots are ay + 5d and «d + 3.

If p, ¢ be the roots of the equation z2 + bz 4 ¢ = 0, prove that b and ¢ are the roots of
the equation 2+ (p +q — pg)x — pg(p +q) = 0.

If 3p? = 5p + 2 and 3¢% = 5¢ + 2, where p # 1, obtain the equation whose roots are
3p — 2q and 3q — 2p.

If o 4 /3 be the roots of the equation x2 + pz 4+ ¢ = 0, prove that é:l: ﬁ will be the
roots of the equation (p* — 4q) (p2x? + 4px) = 164.

If «, B be the roots of the equation z2 — pz + ¢ = 0, form the equation whose roots are
(12 2
a2<7 — ﬁ) and ﬂ2<% — a).

Let a, b, ¢, d be real numbers in G.P. If u, u, w satisfy the system of equations u + 2v +
3w = 6, du + 5v 4+ 6w = 12, 6u + 9v = 4, then show that the roots of the equation
(%—f—%—l—%)ﬁ—&— [(b—c)?+(c—a)’+(d—b)?|z4+u+v+w=0and 2022 +10(a —d)*z —

9 = 0 are reciprocals of each other.

If o, g, ..., @y, be the roots of equation (81 — ) (B2 — ) ... (B — ) + A =0, find the
equation whose roots are (31, B2, ..., Bn.
If aq, ag, ..., ay, be the roots of equation 2" + nax — b = 0, show that (a; — as) (e —

as) ... (a1 — an) = n(z" 1+ a).

If a, 8,7, 0 be the real roots of the equation z* + gz + rz + ¢ = 0, find the quadratic
equation whose roots are (1 +a?) (1 + £2) (1 ++%) (1 +6%) and 1.

If o, 8, v be the roots of the equation z3 + pz + ¢ = 0, find the cubic equation whose
atl B+l y+1

roots are o ' B Ty
Show that one of the roots of the equation az?+ bz + ¢ = 0 may be reciprocal of of one
of the roots of ayz? + b1z + ¢1 = 0 if (aa; — cc1)? = (bey — aby) (bic — arh).

If every pair of the equations 22 + pz + qr = 0,22+ qa+ pr =0 and 2® + rz + pg =0
have a common root, find the sum of the three common roots.

If equation a?(b* — ¢?)a? + b*(c? — a?)z + c*(a® — b?) = 0 has equal roots and has
common root with the equation 422 sin? @ — 4z sinf + 1 = 0,find the value of 6.

If a 0, find the value of a for which one of the roots of equation 2% — x 4+ 3a = 0 is
double the roots of the equation 2 — z + a = 0.

If by eliminating = between the equations 22+ az + b = 0 and zy + l(z4+y)+m=0,
a quadratic equation in terms of y is formed whose roots are same as those of original
quadratic equation in x, then prove that either a = 2] or b =m or b+ m = al.
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The roots of equation 10z — c2? — 5dx — 27 = 0 are in H.P., then find c.

If a, b, ¢ are the roots of the equation z® + p2? + gz + r = 0 such that ¢ = —ab, show
that (2¢ — p?)3.r = (pg — 4r)3.

Let a+1if, o, § € R be roots of the equation 3+ gz +7 =0, ¢, € R. Find a real cubic
equation independent of o and 3, whose one root is 2a.

If o, 3, v be the roots of the equation 2z° 4+ 22 — 7 = 0, show that E(% + g) = -3.

The equations 2> + pz? + gz +r = 0 and 2® 4+ p’z? + ¢’z + " = 0 have two common
roots, find the quadratic equations whose roots are these common roots.

Find the condition that the roots of equation az® + 3bx? + 3cx + d = 0 may be in G.P.
Find the condition that the roots of equation z® — pz? + gz — r = 0 may be in H.P.

If f(z) = 2+ ba? + cx +d and f(0), f(—1) are odd integers, prove that f(z) = 0
cannot have all integral roots.

If equation 223 + az® + bz + 4 = 0 has three real roots (a,b > 0), prove that a +b >
1 1

6(23 +43).

Find the condition that a12® + b12% + c1z + di = 0 and asz® + baz® + oz + do = 0 have
a common pair of repeated roots.

Let a be a non-zero real root of the equation ajz? + b1z + ¢; = 0. Find the condition
for o to be repeated root of the equation ao> + by + cox + dy = 0.

If «, 3, v are real roots of the equation z° — az? + bz — ¢ = 0, prove that the area of

the triangle whose sides are a, 3, v is %\/a(ﬁ‘ab —a’—8c).

If a < b < ¢ < d, then show that the quadratic equation u(z —a) (z —c) + A(x —b) (z —
d) = 0 has real roots for all real 1 and .

Show that equation 3z® — 5z + 21z + 3sinz + 4cosz + 5 = 0 can have at most one
real root.

Find the integral part of the greatest root of equation #® — 1022 — 11z — 100 = 0.

If n € N, ag, a1, as, ..., a, € I and a,, and ag + a1 + ... + a,, are odd numbers, show that

equation agz™ + a1z ' 4+ agx" 2 + ... + ap_1x + an = 0 cannot have integeral roots.

If the cubic equation f(x) = 0 has three real roots «, 3,y such that o < 8 < =, show
that the equation f(z) + 2f'(z) + f”(z) = 0 has a root between a and +.

Find the values of a for which all the roots of the equation z* — 423 — 822 + a = 0 are
real.

If the equation az® — bz + ¢ = 0 has two distinet real roots between 1 and 2 where
a, b, c € N, show that ¢ > 5 and b > 11.

Show that the equation (z —1)° 4+ (z +2)" 4 (72 — 5)? = 10 has exactly one real root.
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Find the value of tan(f + ¢) and cot(d — ¢) where tanf and tan¢ are respectively
actual and extraneous root of the equation v2x + 6 — vz + 2 = 3.

Solve |z + 1| — |z| + 3|z — 1| — 2|z — 2| = = + 2.
Solve 2/e+1 — 97 — |27 _ 1] 4 1.
Solve |2? — 2z +y = 1,2° + |y| = 1.
Solve |2? + 4z + 3| + 22 + 5 = 0.
9

Solve 22 + ﬁ =27.

Solve ﬁ + ﬁ ={z} + %, where [z] denotes the integral part of z and {z} =z — [z].
Solve galogﬂ zlogipaloge b __ 310510(11—0) _ 9log100 z+logy 2.

1
Solve log5<55 + 125) =logs 6+ 1+ %

2 5
Solve mg[(logg z)%+logs 172] _ \/5

Find all the real solutions of the equation 3z — 8[x] + 1 = 0.

If > 1, solve the equation (£ + V& — 1) 2% + (t — V2 — 1) 2* = 2¢.

Obtain real solutions of the simultaneous equation
zy+3y—ax+4y—7=0

2ey+1y?— 20 —2y+1=0

x
Solve 2271 27242 = 3.

1
r— ac+§_ 22171‘

1
Solve 4* —3 2=13

Solve log1[98 + Va? — 22 — 12z + 36] = 2.

Solve loga, + 3(622 4+ 23z + 21) = 4 — logs,, 7(4a% 4 122 4 9).
Prove that 2z% + 1402 — y* = 0 has no integral solution.
Solve for z, |z — 1|1°g3””2721°g“"9 =(z—1)".

co 3.1
sin“ r—3sinz+5
Solve (cosx) 2 2=1.

Find the integral values of a for which the equation (z + a)(z + 1991) + 1 = 0 has
integral roots.

Solve 25 ¢ 4 5(2005" %) = 7,



350.

351.

352.

353.

354.

355.

356.

357.

358.

359.

360.

361.

362.

363.

364.

365.

Polynomials and Theory of Equations 111

Solve x + logio(1 + 2%) = xlog10 5 + log1o 6.

If a > 0, solve the equation log,(ax).log,(az) + log,z2(a) = 0.

Solve V11z — 6 + vz — 1 = 4z + 5.

Solve V322 — 7z — 30 — V222 — To — 5 = 2 — 5.
If z and y satisfy the equations y = 2[x] + 3 and y = 3[z — 2] simultaneously, determine
[z +y].

n
If x € R and ay, ao, ..., a, € R, then find the value for which Z(J: — ai)2 is least.
i=1

Let there be a quotient of two natural numbers in which the denominator is one less
than the square of the numerator. If we add two to both nuerator and denominator,
the quotient will exceed %, and if we subtract 3 from both numerator and denominator,

the quotient will be between 0 and 1—10. Determine the quotient.

Let f(z) be a quadratic expression which is positive for all real z. If g(z) = f(x) +
f'(z) + f”(z), the for all real z, show that g(z) > 0.

By considering the quadratic equation f(z) = (a1z + by)% + (agx + b2)2 + ... + (anz +
b,)?, prove the inequality (a1b + asbs + ... + anby)>.

Find the real values of m for which the equation z(x 4+ 1) (z +m) (z +m + 1) = m?
has four real roots.

Find all real values of a for which the equation z*+ (a —1)2*+ 2%+ (a — 1)z +1=0
possesses at least two distinct negative roots.

Find the real values of the parameter a for which the equation z*+ 2a2® + 22+ 2az +1 =
0 has at least two distinct negative roots.

Ifa,b,c € R and a # 0, solve the following system of equation in n unknowns z1,zs, ..., z,
aa:f+bx1+c:x2

ax%+b3:2+c:x3

axi-ﬁ—bxn-i-c:xl
when (a) (b—1)% < 4ac (b) (b—1)% = 4ac (c) (b—1)% > 4ac.
Solve the inequality logz<x2 — 1%) > 4.

Find the values of m for which every solution of the inequality log, 2 > logy(z + 2) is
2 2

a solution of the ineuqality 4922 — 4m* < 0.

Find all values of a for which the inequality, 1 + logs(z? + 1) > logs(az? + 4z + a) is
valid for all real z.
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Find the values of the parameter a for which 1+ 10g2(2x2 + 2z + g) > logy(az? + a) is
satisfied by at least one real x.

Prove that the minimum value of (ﬁi}l@iﬂ’ T > —cis (\/a —c+Vb— 0)2.

ctx

If z, a, b are real, prove that 4(a — 2) (z — a + Va2 + b2) % o + b2

2
If 3 is such that sin 23 # 0, show that for real = the expression 22::322422;;‘1; always lies
-2 sin2
between 22:22 and :22%

2a(x—1)sin? o 2a

Show that for all real values of z, the expression 75— cannot lie between 2s sin” 5

x2—sin’
and 2a cos? 5

Show that the expression tan(z + «)/tan(z — «) cannot lie between tan2<§ — a) and
tan2<% + oa).

ar?+3z—4

Prove that for real values of z the expression >
3r—4x*+a

may have any value provided a
lies between 1 and 7.

(az—b)(dz—c)
(bz—a)(cz—d)
a® —b? and ¢? — d? have the same sign.

Prove that the expression will take all real values when z is real provided



Chapter 5

Permutations and Combinations

In this chapter we will study basic principles of counting, permutations and combinations.
This study will enable you to further study the branch of mathematics called combinatorics.
You would have certainly encountered a combinatorical problem in your life. It would be
really surprising if you have not. Have you ever solved a Sudoku puzzle or Rubik's cube?
Have you ever counted the number of poker hands that are full houses in order to determine
the odds against a full house? Have you ever attempted to trace through a network without
removing your pencil from paper and without tracing any part of network more than once?
These are all combinatorical problems. As you can see that combinatorics has evolved from
mathematical games.

With the invention of modern computers, we are enabled to solve more and more problems
of combinatorics which were earlier not feasible due to calculations involved. The computer
programs are often based on combinatorical algorithms which determine the speed and effi-
ciency of the solution. Analysis of these programs and algorithms require sound knowledge
of combinatorical mathematics and thinking. In computer science we write test cases for our
programs, and those test cases can be enumerated by applying permutations and combina-
tions on input data and states produced in the program. Combinatorics is a powerful tool
for making sure that the tester does not miss any test case, which in mission-critical pro-
grams is of paramount importance.

The best way to learn combinatorics is to solve a lot of problems. This is in general true for
all branches of mathematics but even more so for combinatorics because a problem which
appears simple may be quite difficult to solve or require critical thinking. By solving problems
of different kinds, and by repeating them the concepts will be enforced and discipline will
develop.

We start with four basic counting principles and then we will progress into permutations
and combinatins. To study the topic of permutations and combinations it is required to have
basic knowledge in set theory which the reader is expected to know.

5.1 Four Basic Counting Principles

Let S be a set. A partition of S is a collection of S1, Ss, ..., Sy, of subsets of S such that
each element in S is in exactly one of these subsets:

S=5USU..US,
SN S;=o(i # j)

Thus, the sets S1, Sa, ..., Sy, are pairwise disjoint sets, and their union is S. The subsets
S1, 59, ..., Sy, are called the parts of the partition. Note that by this definition a part of the
partition may be empty, but usually there is no advantage in considering partitions with
one or more empty sets. The number of objects of a set S is denoted by |S|, and is called
the size of S.

113
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5.1.1 Addition Principle

Suppose that a S is partitioned into pairwise disjoint partys Si, So, ..., Sp. The number of
objects in S can be determined by finding the number of objects in each of the parts, and
adding the numbers so obtained:

[S| = |S1] + |S2] + ... |Sm]-

If the sets Sy, 59, ..., Sy, are allowed to overlap, then a more profound principle, the inclusion-
exclusion principle can be used to count the number of objects in S.

We need to be careful when partitioning S into too many parts. For example, if we partition
S into parts in such a way that each part contains only one element then addition princinple
is becomes counting the number of parts, which is basically same as listing all objects of S.
Thus the art of applying addition princinple is to partition the set .S into not too many parts.

Example: In a university there are four mathematics courses, two economics courses, and
three lietrature courses. A student is allowed to enroll into one course at most. Thus, we see
that a student can take a course in 4 + 2 + 3 = 9 ways.

Next principle is multiplication principle which will be stated for two sets, but it can be
generalized to any finite number of sets.

5.1.2 Multiplication Principle

Let S be a set of ordered pairs (a, b), where the first object comes from a set of size p, and
for each choice of object a there are g choices for object b. Then the size of S is p X ¢:

IS|=pxq

As in basic arithmetic multiplication is repeated addition, similarly multiplication principle
is actuallly a consequence of the addition principle i.e. repeated addition. Let a1, as, ..., ap
be p different choices for the object a. We partition .S into parts Si, Ss, ..., S, where S; is
the set of ordered pairs in S with first object a;(i = 1,2, ..., p). The size of each S; is ¢;
hence, by the addition principle,

|S| = |S1] + |Sa| + ... + [Sp]
=q+q+..+q(pgs)
=pxq

The multiplication principle can be stated in another way as: If a first task has p outcomes,
and no matter what the outcome of of the first task, a second task has ¢ outcomes i.e.
outcomes for two tasks are mutually exclusive, then the two tasks can be performed in p x ¢
outcomes.

Example: Pencil comes in two different lengths, four different hardness, and three different
thickness. How many different types of pencils are there?

The pencil has three different properties, which are exclusive of each other, and thus, we can
apply multiplication principle. Hence, number of different types of pencils is 2 x 4 x 3 = 24.

Example: The number of ways a man, woman, boy, and girl can be selected from three
men, three women, five boys and four girls is 3 x 3 x 5 x 4 = 180.
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Example: Determine the number of positive integers that are factors of the number
23 % 31 x 5% x 77

The numbers 2, 3, 5, and 7 are prime numbers. By the fundamental theorem of arithmetic,
each factor is of the form

2" x 37 x 5% x 7!

where 0 <37 <2,0<57<3,0<k<5,and0<[<7. There are three choices for 7, four for j, six
for k, and eight for [. By multiplication principle, the number of factors is 3 x 4 x 6 x 8 = 576.

In the multiplication principle the g choices for object b may vary with the choices of a. The
only requirement is that there be the same number ¢ of choices, not necessarily the same
choices.

Example: How many two-digit numbers have distinct, and nonzero digits?

A two-digit number ab can be regarded as an ordered pair (a, b), where a is the tens digit,
and b is the units digit. Both are not allowed to be 0, and they must be different. Thus, we
see that there are 9 ways to choose a, which are 1,2, ..., 9. Once a is chosen we cannot use
the same digit for b, which means we are left with 8 choices for b. Here we see that choice
of a makes a difference on what choices b has. However, for multiplication principle to be
applicable what matters is that the number of choices remain constant which is 8 in this
case. Applying multiplication principle, we arrive at the answer of the question as 9 x 8 = 72.

There is another way to arrive at the same result. Total number of two-digit number is
90,10,11,12,...,99. Of these 90 numbers 9 have a zero in them(10, 20, 30, ..., 90), and 9 have
repeated digits(11,22,...,99). Thus, total number of required numbers equals 90 —9—9 = 72.

We can derive two important ideas from the previous example. First is that it is possible
to solve a counting problem in many ways. The second idea is that to find the number of
objects in a set A (in this csae the set of two-digit numbers with nonzero, and distinct digits)
it may be easier to find the number of objects in a larger set U containing S (the set of
all two-digit numbers), and then subtract the number of objects of U that do not belong
to A (the two-digit numbers containing 0 or repeated digit). This leads us to subtraction
principle.

5.1.3 Subtraction Principle:
Let A be a set, and let U be a larger set containing A. Let
A=U\A={zcU:z¢ A}
be the complement of A in U. Then the numebr |A| of object in A is given by the rule
4] = U] - 4]

The set U is usually some natural set containing all the objects under discussion (it is called
universal set). Using the subtraction principle should be used only if it is easier to count the
number of object in U nd A tha to count the number of objects in A.

Example: Most websites on internet have a lower limit of 8 characters as password length.
Suppose if these passwordss are to made up of the digits 0, 1, 2, ..., 9, and the lowercase
letters a, b, ¢, ..., z then how many passwords will have a repeated symbol?



Permutations and Combinations 116

There are a total of 10 digits, and 26 letters i.e. 36 symbols. So by two applications of
multiplication principle, we get

|U| = 36% = 2,821, 109, 907, 456
and
\Z| = 36.35.34.33.32.31.30.29 = 1, 220, 096, 908, 800
Therefore,
|A] = |U| —|A| = 1, 601, 012, 998, 656.
Now we will formulate the last principle of counting principles.
5.1.4 Division Principle

Let S be a finite set that is partitioned into k parts in such a way that each part contains
the same number of objects. Then the number of parts in the partition is given by the rule

_ S|
" number of objects in a part

Example; There are 240 rats in a collection of cages. If each cage contains 2 rats, the
number of cages equals

240
- = 120.

Interesting problems of division principle will be found in the problems section.
Most counting problems can be classified as one of the following types:
1. Count the number of ordered arrangements or ordered selection of objects
i. without repeating any object,
ii. with repetion(perhaps limited) of objects permitted.
2. Count the number of unordered arrangements or unordered selection of objects
i. without repeating any object,
ii. with repetion(perhaps limited) of objects permitted.

We can represent repetition, and nonrepetition of objects as selection from a set, and a
multiset. The latter might prove to be more useful in some cases. A multiset is like a set
except that its members need not be distinct.! For example, a multiset M with three a's,
two b's i.e. 5 elements of 2 different types. We usually indicate a multiset by specifying the
number of times different types of elements occur in it. Thus, M is denoted by {3.a, 2.b}.%
The numbers 3, and 2 are the repetition members of the multiset M. Thus we can extrapolate

Thus, a cardinal rule of sets is broken by multisets because a set is not supposed to have duplicates or repeated
elements. The set {a, a, b} is same as the set {a, b} but not so for multisets

2 In standard set-theory's notation, we could denote the multiset M using ordered pairs as {(a, 3), (b, 2)}
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that a set is a multiset with all repetition numbers equal to 1. Often there is no limit on
number of repetitions i.e. infinite repetitions are allowed.!

5.2 Factorial of n

Factorial of n is denoted by n!. In the old style it is written as |n. n! is given by the first n
natural numbers, i.e.

n!l=1234...(n—1).n
Also, 0! = 1, which we will prove later.

Permutation means arrangement of objects along with selection. In the permutation of object
order matter. If order of object changes then their permutation also changes. Combination
of objects means selection of objects in such a way that order does not matter.

5.3 Permutation of Sets

Let r € P. By an r-permutation of a set S of n elements has a meaning of an ordered(by
definition of permutation) arrangement of r of the n elements(r < n). If S = {a, b, ¢}, then
the three 1-permutations of S are

ab c,
the six 2-permutations of S are
ab ac ba be ca cb,
and the six 3-permutations of S are
abc acb bac bca cab cba.
There are no 4-permutations of S because that will violate the assumption that r < n.

The r-permutations of an n-element set is denoted by P(n,r) or ,P. or "P,. If r > n then
"P. = 0. Clearly, "P; = n for each n € P.

For n and r positive integers with r < n,
"Pr=nx(n—1)x.x(n—r+1).

Permutation of n objects taken r at a time is equivalent ot filling r different vacant spots
from n different objects. We can fill first spot by n ways, second spot can be filled by
remaining objects i.e. n — 1 ways, and proceeding this way we find that rth spot can be
filled in n — r + 1 ways. Thus total number of ways is

nx(n—1)x..(n—r+1).
We can rewrite the above as

nx(n—1)..(n—r+1)x(n—r)x..2x1
(n—=r)yx(n—r—1)x..2x1

L Inno circumstance, we need to consider different sizes of co.
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n!

(n—r)!

Alternatively, first place can be filled in n ways. Rest of r — 1 spots from n — 1 objects can
be filled in "' P,_; ways. Thus, "P, = n." ' P,_;. Similarly, " 'P,_; = (n — 1)." ?P,_,.
Proceeding this way we find that "~" "' P, = n —r + 1. Multiplying and cancelling common
factors, we get "P,=nx (n—1) X ... x (n —r+1).

The number of permutations of n elements is " P,, = g—!! = nl. If we follow first result then it
is evident that 0! = 1.

5.3.1 Meaning of ﬁ, keP

n!

We have " P, = (Tf'—r)‘, Putting r =n + k, we have " Py, 1|, = R But the number of ways of

arranging n + 1 objects out of n different objects = 0 = (%k), =0.

Note: Although (—k)! has no meaning by the definition of factorial but if we consider the
above result then the formula for permutation becomes valid even for r > n.

5.3.2 Circular Permutation

Let us consider arranging objects along a circle. Let us consider that four persons A, B, C,
and D are sitting around a table. We can have following arrangements:

Figure 5.1

As shown four persons are sitting around a round table, and four anticlockwise rotations
have lead to four arrangements. But if A, B, C, D are sitting in a row, and then are shiftedd
such that last occupies the place of first, then the four arrangements will be different. Thus,
if there are n objects then for each circular arrangement there are nn linear arrangements.
But for n different objects total number of linear arrengements are n! so the total number
of circular arrangements are

n!

Thus, we can say that number of circular r-permutations of a set of n elements is given by

"P, n!

r  r(n—r)!

5.3.3 Clockwise and Anti-Clockwise Arrangements

When clockwise and anticlockwise arranegemnts are same then total number of permutations
will become half of what we computed in previous case i.e.

"P. n!

2r ~ 2r(n—r)!
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5.4 Combination of Sets

Consider a set S having n elements. A combination of a set S has a meaning of an unordered
selection of the elements of S. The result of each selection is a subset A of the elements of
S : A CS. Thus, the terms combination and subset are interchangeable.

Now let r be a non-negative integer. By an r-combination of a set S of n elements, we
understand an unordered selection of r of the n objects of S. The result will be an r-subset
of S.

If S ={a,b,c,d}, then
{a,b,c}, {a,b,c}, {a, c,d}, {b, c,d}

are the four 3-subsets of S. We denote the number of r-subsets or r-combinations of an
n-element set by (T:) or ,C, or "C,. Obviously,

(n>:0 if r > n.
r

Also,

(0>:0 if r>0.

r

The following facts are easy to figure out for each non-negative integer n

(0)=()= (=2 ()=

For 0 <r <mn,
"P.=rI"C,.
Hence,
ne = n!
rl(n—r)!

Let S be an n-element set. Each r-permutation of S arises from following tasks
1. Choose r elements from S.
2. Arrange the chose r elements in some order.

The number of ways to carry out first task, by definition, is "C,. The number of ways to
carry out second task is " P, = r!. By the multiplication principle, we have "P,. = r!" C,.
Now applying the formula for permutations, we have

n!

Cr = ri(n—r)l"

5.5 Permutation of Multisets

Let S be a multiset with objects of k different types, where each object can be repeated
infinitely. Then the number of r-permutations of S is k".
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To prove this, we can choose the first item to be an object of any one of the k types. Since the
number of repetitions are infinite the second item can be also chose in k ways. In fact, any
item can be chosen in k ways due to infinite repetition. Following, multiplication principle,
total number of such permutations is k'.

Let S be a multiset with objects of k different types with finite repetition numbers
n1, Na, ..., N respectively. Let the size of S be n = ny + ns + ... + ng. Then the number of
permutations of S equals

n!
mlng!...ngl’

We can calculate this by thinking in terms of n places, and we want to put exactly one of the
objects of S in each of the places. We have n; objects of one type in S, so we must choose
a subset of n; places from the set of n places. We can do this in "C,,, ways. After this we
have n — n; places left, and we have ny objects of second type. So following similarly we can
do this in "~ ™C,,, ways. Following this way invoking multiplication principle, the number
of permutations of S equals

nOnl-n_n]Cn2~n_n1_n2Cn3 St > VS an

which gives
n! (n—mnq)! (n—mn1—n2)! (n—n1—mn2—..—nk_1)!
nil(n —mn1)! nal(n —ny —no)! nzgl(n —ny —na—n3)! " nglin —ng —ng — ... —ny)!

which after cancellation, reduces to

n!
ni!na! ... nyg!

Let n be a positive integer, and let nq,no, ... ,nx be positive integers with n = ny +ns+... +ng.
The number of ways to partition a set of n objects into k labeled boxes in which Box 1
contains nj objects, Box 2 contains ng objects, ..., Box k contains nj objects equals

n!

If the boxes are not labeled, and ny; = no = ... = ny, then the number of partitions equals

n!
k'nilng!...ng!l”

We can calculate this by direct application of the multiplication principle. So we first choose
n1 objects for the first box, then ns of the remaining n — ny objects for the second box and
so on. By the multiplication principle, the number of ways is

nCnl.nfnlch.nfnlfnzcns Gt St > IR VS an
which is same as the last result, i.e.

n!
nl!ng! nk'

If boxes are not labeled and n; = ny = ... = ny, then the result has to be divided by k!
because for each way of distributing the objects into the k unalbeled boxes there are k! ways
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in which we can attach the labels to the boxes. Thus, using the division principle, we arrive
at the result as

n!
ni!lng!...ong!’

5.6 Combination of Multisets

If S is a multiset, then an r-combination of S is an unorndered selection of r of the objects
of S. Thus, an r-combination of S is itslef a multiset, a submultiset of S of size r, or, for short,
an r-submultiset. If S has n objects, then there is only one n-combination of S, namely, S
itself. If S contains objects of k different types, then there are k1l-combinations of S.

Let S be a multiset with objects of k types, each with an infinite repetitions, then the number
of r-combinations of S equals

r+k—1CT _r+k—1 Ck—l-
Let k types of objects of S be ay, as, ..., ax so that
S = {c0.a1, 00.as, ..., 00.a) }

Any r-combination of S is of the form {x;.a1, 3.0, ..., vx.ar}, where x1, xo, ..., 2} are non-
negative integers with x; + xs + ... + xx = r. The converse is also true. Thus, the number
of r-combinations of S equals the number of solutions of the equation

1+ T2+ ... Fxp =1

We will show that the number of solutions of this equation is given by number of permuations
of the multiset

T={r1, (k—1).%}

of r + k — 1 objects of two different types. Given a permuation of T, the k — 1x's divide
the r1s into k groups. Let there be x11s to the left of the first *, x91s between the first and
second x, ..., and zx1s to the right of last *. Clearly, x1 + 22 + ... + 1 = r. The converse of
this is also true. Thus, required combination is given by the formula

r+kflc _rt+k—1 C/c 1
r= 1.

5.7 Some Important Indentities
1. "Po=r""1P_ +" 1 P.

2. "Cp="Chp_,.

3. "Ch 14" Cp =",

4. "C.="Cs=>r=sorr+s=n.

5. "C,=""tlng (1< <n).

6. If n is even, then the greatest value of "C, is "C,,, where m = n/2. If n is odd, then the
greatet value is "C,,, where m = (n—1)/2 or m = (n +1)/2.



10.

11.

12.
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Ifn=2m+1,then"Co <" C1 <" C3 < ... <" Cpp, =" Crui1. "Coi1 >" Crpan > ... >" Ch.
Ifn=2m+1,then "Cy <" C1 <" Co < ... <" Cp, >" Crppr1 >" Cpppi1 > ... >" Cy.
"Co+"C1+" Co+ ... +" C,, =27,

"Co+"CL4+" Cod ... =" CL+" Cy + ... = 271,

2 1 2 1 2 1 2 1 2 1 2 1 2 1
TG+ O 4 AT G, =T O =T O T O AT O =
221,

r"C,=n""1C,_;.

5.8 Some Useful Results

Number of selections of r objects out of n different objects:

1.

2.

10.

11.

12.

13.

When p paticular objects are always included = Cp,.""PC,_, =""P C,_,.
When p paticular objects are excluded =""? C,.

Number of selections of r objects out of n different objects such that p particular objects
are not together in any selection =" C, =""? C,_,,.

Number of selection of r consecutive objects out of n objects in a row =n —r + 1.

Number of selection of r consecutive objects out of n objects along a circle = n when
r <mn,1 when r =n.

Number of selections of zero or more objects out of n different objects =" Cy +" C; +"
Co+ .47 C, = 2"

Number of selections of one or more objects out of n different objects =" C; +" Cy +
e+ C=2"—1.

Number of selections of zero or more objects out of n identical objects = n + 1.
Number of selections of one or more objects out of n identical objects = n.

Number of selection of one or more objects from (p + ¢ + r) objects, out of which r
objects are identical and of one type, ¢ objects are identical and of second type, r objects
are identical and of third type = (p+1)(¢+1)(r+1) — 1.

Number of selection of one or more objects from (p + ¢ + r + n) objects, out of which r
objects are identical and of one type, ¢ objects are identical and of second type, r objects
are identical and of third type and rest n are different = (p+1) (¢+ 1) (r +1) ("Co +"
Ci4"Co+ .. 4"Cr)—1=(p+ 1) (g+1)(r+1)2" -1

Number of ways of distributing n different objects among 3 persons such that they gey
x,y, z objects =" C,.""*C,.""*V(C,.3! = _nl 3.

zlylz!”

Number of ways of distributing n different objects in 5 sets having a, b, ¢, d, e objects(a +
b+c+d+d=n):
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i. When two sets have equal number of objects and three sets have equal number of
. !
objects = e
ii. When all sets have equal number of objects = #{;,65,
14. Number of ways of distributing n different objects among 5 persons

i. When all person get different number of objects = #ﬁd!e!ﬁl.

ii. When two persons get equal number of objects and three get equal number of objects

n!
= alblcldlel213! .

iii. When all get equal number of objects = a!blc?(!i!ew 5l = a!bIZ!!d!e!'

5.9 Permutations with Repetitions

The objective is to find permutation of r objects out of n objects of which p are of one
type, ¢ of second type and so on.

Let the different objects be denoted by a, b, c, ...

Consider the product

140 a’z? aPx? 1 br  b2z? bz
+F+T+...+T +ﬁ+T+...+T

Required number of permutations = sum of all possible terms of the form = p!zl!mapbq
where p+q+...=1

=rl. coeff. of " in [(1+%+§—!2+...+%T)(1+%+§—!2+...+Z—?)...]

5.10 Combinations with Repetitions

The objective is to find combinations of r objects out of n objects under different cases of
repetitions. To begin with we consider combinations of r objects taken out of n objects of
which p are of one type, ¢ of the second type and so on.

Let the different things be denoted by the letters a, b, ...

Consider the product (1 4 az + a?z? + ... + aP2?) (1 + bz + b%2% 4+ ... + b%?) ... All the
terms in the product is of the same degree in the letters a, b, ... as in x. The coefficient
of " in the product is the number of ways of taking r of the letters a, b, ... with the
restriction that maximum number of a's is p, maximum number of b's is ¢ and so on. Coeff.
of 2" will not change if @ = b = ... = 1. Thus required number of combinaitons = Coeff. of "
in(1+z+a>+. +2)Q+z+2®+...+2%) ..

Similarly, number of combinaitons of r objects out of n objects of which p are of one type, ¢
are of second type and (n — p — q) things are all different = Coeff. of 2" in [(1 + = + 2% +
et ) A +z+2+ . +2)(14+2)(1+2)... to (n—p— q)factors ]

= Coeff. of 2" in [(14+ 2+ 22+ ... +2P)(I+z+ 2%+ .. +29) (14+2)(1+2)" P79
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Similarly, number of combinations of r objects out of n objects of which p are of one type, ¢
are of second type and so on, when each thing is taken at least once = Coeff. of z" in
[(x+22+..+2P)(z+ 2>+ ... +29)...]

= Coeff. of "% in [(14+ 2+ 22+ ... +2P) (1 +z+ 2% + ... + 29)

If n is a negative integer, then (1+ )" =1+ fz + %xg + ... to oo [this comes from

binomial theorem)]

So if n is a positive inetger then (14+2)™" =1+ 5z + %;ﬁ + ... to o0

Coeff. of 2" in (1 — )™ =""""1 C, which is number of ways in which 7 identical objects
can be distributed among n persons can get zero of more objects = Coeff. of 2" in (1+ z +

2T = (kwl)n =[1—2"™H (1 —-2)™].

1-x

= Coeff. of 2" in (1 —2)™" (leaving powers higher than z7) =""""1 C,.

5.11 Integral Solutions of Equations

As we have proved earlier, for equation x1 + x2 + ... + &, = n is equivalent of distributing r
identical objects among n persons when each person getting zero or more things ="*"~* C,

Similarly, number of non-negative integral solutions of equation = + 2y + 3z + 4w = n, equals
coeff. of 2™ in [(1 —2z) 1 (1—2)2(1—2) 31 —2)].

Similarly, number of positive integral solutions of equation x + 2y 4+ 3z + 4w = n, equals
coeff. of "~ (1243 iy (1 — )T (1—2)2(1—2) 3 (1 —2)™4].

5.12 Geometrical Applications of Combinations

Some basic geometrical results involving combinations are given below:
1. n non-concurrent and non-parallel straight lines, points of intersection are " C.

2. The number of straight lines constructed out of n points, when no three points are
collinear, are "Cj.

3. Given n points, if m are collinear, then number of straight lines possible are "Cy —™
Cy+ 1.

4. In a polygon, total number of diagonals out of a n points, when no three points are

) -3
collinear, are MQ—J

5. Number of triangles formed from n points, when no three points are collinear, are "Cs.
6. Number of triangles formed out of n points in which m are collinear, "C3 —™ Cj.

7. Number of triangles constructed out of n points, when none of the side is common with
the sides of polygon, are "Cs —" C; =" C,."4C}.
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8. Number of parallelogram constructed by two system of parallel lines, when first set
contains m parallel lines and second set contains n parallel lines, are "Cy x™ Cl.

9. Number of squares formed by two system of parallel lines in which first set is perpendic-

ular to second set of lines, when first set contains m parallel lines and second set con-
m—1

tains n parallel lines is Z (m—r)(n—r); m<n.
r=1

5.13 Number of Divisors and Sum of Divisors

Let n = pi*.p3? ... pp* where p1, pa, ..., pi, are distinct prime numbers and nq, no, ..., ng € P.
Obvously, any divisor of n is of the form d = p]™.py"2 ... p;"* where m1, mo, ... € N such that
0<m; <ngi=1,2, ..,k Therefore, the total no. of divisors for n will be equal to the
number of ways of selecting at least one from n; identical prime numbers p;, no primes po
and so on. The number of such ways is

These divisors will also include 1 and n, so obviously, number of divisors other than 1 and n
is

The sum of all divisors for n is given by

na

ni
PIPIE Z PP
_ p?ﬁ—l -1 p;lz-#l -1 kaJrl 1
p1—1 p2—1 70 ppe—1

5.14 Exponent of Prime p in n!

Let E,(m) denote the exponent of the prime p in the positive integer m. We have
Ey(n!) = Ep[1.2.34...(n—1).n]

The last integer amongst 1, 2, 3, ..., (n — 1), n which is divisible by p is [n/p]p, where [z]
denotes the greatest integer < z. Therefore,

Ey(n!) = Ep(p.2p.3p {%p})

because the remaining integers from the set (1,2, 3, ..., (n — 1), n) are not divisible by p.

E,(n!) = [%} + Ep(1.2.3... ED

The last integer amongst 1, 2, ..., [n/p] which is divisible by p is

-3
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Proceeding similarly,

where p* < n < pti

5.15 Inclusion-Exclusion Principle

We have seen examples of subtraction principle. Inclusion exclusion principle is an extension
of subtraction principle. In this type of problems, it is easier to make an indect coutnt of
object in a set rather than to count the objects directly. Consder following examples:

Example: Count the permutations i1is...4, of 1,2, ..., n in which 1 is not in the first
position i.e i1 # 1.

The number of permutations of {1, 2, ..., n} with 1 in the first position is the same as the
number (n — 1)! of permutations of 2, 3, ..., n. Since the total umber permutations is n!,
required number of permutations is n! — (n — 1)l = (n—1).(n — 1)!.

Definition: The number of objects of the set S that have none of the properties Py, P, ..., P,
is given by the alternating expression

[AiNnAsn...N Ayl =
S| =D 1A+ JANAjl =D AN Aj0 Agl + oo+ (=)™ [A1 N Ap N A,

where the first sum is over all 1-subsets of {i} of {1, 2, ..., m}, the second sum is over all
2-subsets {i, j} of {1, 2, ..., m} the third sum is all over 3-subsets {3, j, k} of {1,2, ..., m},
and so until the mth sum over all m-subsets of {1, 2, ..., 2} of which the only one is itself.

The subtraction principle is the simplest instance of inclusion-exclusion principle. As a first
generalization of the substraction principle, let S be a finite set of objects, and let P; and P»
be two "properties" that each objects in S may or may not possess. We wish to count
the number of object in S that have neither the properties of P; and P,. Extending the
subtracting principle, we can do this by first including of all objects of S in our count, then
excluding all objects that have property P1 and excluding all objects that have property P,
and then noting that we have excluded objects having both properties twice, readmitting all
such objects once. Let A; be the subset of objects of S that have property Ay, and let A3 be
the subset that have property P;. Then A consists of those which do not have property Pj,
and similarly A, consists of those which do not have property P». The objects of set AN A,
are those that have neither property P; nor property P;. Thus, we have

|A1 N Ay| = |S| — |A1] — |Aa| + |41 N Agl.

To further prove this, we argue as follows. Consider an object & which has neither the
property Pj, nor the property P,. In this case the contribution towards the count by this
object would be 1 — 0 — 0+ 0 = 1. Next, we consider if the object = has property P, then
its contribution is 1 — 1 — 0+ 0 = 0. Similarly, if it has property P, then its contribution is
1—0—14 0 = 0. For the last possibility when = has both the properties its contribution
is1—1—1+1=0. As it is obvious any object will fall in either of these four possibilities
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and the total contribution is 1 only when it has neither of the properties. The inclusion-
exclusion principle stated above is generalizatio of this two property example. We will now
establish the validity of the general case.

First, we conisder an object = with none of the properties. Its contribution to the right side
would be 1 —04+0—0+ ...+ (—1)™0 = 1 since it is in .S but in none of the other sets.
Now consider an object y with exactly n > 1 of the properties. The contribution of y
to |S| =1 =" Cp. Its contribution to Y |A;| is n =" C; since it has exactly n of the
properties and so it is a member of exactly n of the sets out of Ay, Ao, ..., A,,. Similarly, the
contribution of y to Y |4; N A;| is "C5 sinc ewe may select a pair of the properties y has in
"(Cy ways. Following similarly, the net contribution of y is

"Co—"C1+"Co— ...+ (-1)™" Cyy
which equal
"Co—"Cr1+"Co— ...+ (=) C,
because
n<m

and "Cy = 0 if & > n. The last expression is 0 from binomial theorem. Following similarly,
we prove the inclusion-exclusion principle.

Definition: The number of objects of S which have at least one of the properties
Py, P, ..., P, is given by

AU Ay U ..U Ay | =
D 1Al =D TTAN A+ D AN AjN Ay — o+ ()™ AN Ap N0 Ay

The set A; U AxU...U A,, consiste of all those objects in S which possess at least one of the
properties. Also,

|AJU AU .. UA,| =S| —|[A U Ay U...UA,,|
From Demorgan's law
AU AU UA,| = A1 NnAN...N A,

Following result from previous definition, we have the required equality.

5.16 Derangements

Consider following problems. At a party 14 gentlemen check their overcoats. In how many
ways can their overcoats be returned so that no gentleman get their own overcoat? In a
cricket team there are 11 players who bat in a certain order. In how many ways those can
bat so that no player bats at their pre-determined position? This type of problems fall in
the category of following general problem.

Given an n-element set S in which each element has a specified position. We have to find
the number of permutations of S in which no element is in its specified position. This can
be exemplified by a set S = {1, 2, ..., n} in which location of each integer is that specified
by its position in the sequence 1,2, ..., n. A derangement {1, 2, ..., n} is a permutation of
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i18y ...0n of 1,2, ..., n sucb that i.1,4y # 2, ..., 4, # n. Derangement of such an n-element
set is denoted by D,,

Forn>1

PRETERE .

ﬁ+ﬁ_§+"'+(_l)na

Let T' be the set of all n! permutations of X. For j =1, 2,...,n let P; be the property that,
in a permutation, j is in its proper position. Let A; denote the set of permutations with
property P;. Thus,

D,=]ANAyN..NA,|
The permutations in A; are of the form 1is ... 45, where i ... 3, is a permutation of {2, ... ,n}.
Thus, |[A1] = (n—1)!. We can write the general form as [A;| = (n — 1)!. For A; N Ag, two
elements have to be in the proper position. So, |4; N Ax| = (n — 2)!. For any integer k with
1<k<n, |[A1NAyN..N A = (n— k)l Since there are "C}, subsets of T, applying the
inclusion and exclusion principle, we obtain

Dy =nl =" Ci(n — 1)1 +" Coln — 2)! — ... + (—=1)"" C,,0!

1 1 1 1

5.17 Problems

1. If"P, =360, find n.

2. If "P3 = 9240, find n.

3. If'9P. =720, find r.

4. If?Hlp,_ 2l p o —3:5, find n.
5. If"Py =12 x" P, find n.

6. If "P5 =20 x "P;, find n.

7. If"Py:"tP, =34, find n.

8. If?°P — 6840, find r.

9. IfF5p,, =1ED 3P find k.
10. 2P, 12 P ,y=11:52, find r.
11. If ™" P, =90 and ™ " P, = 30, find m and n.
12. If 2P, = 11880, find r.

13. If°°P, ¢ :°* P.,3 =30800: 1, find r.

14. Prove that 'P, +2.2P, +33P;+ .+ n."P, =""' P, ; — 1.



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Permutations and Combinations 129

If "Cyo = "C,, find n.

If "C1y = "Cy, find "Cy7 and 22C,,.

If 18C, = 8C, ., find "Cs.

If "C,,_4 = 15, find n.

If5C, . ®C._; =11:5, find r.

If "P, = 2520 and "C,. = 21, find 7.

Prove that 2°Cy3 + 20y, — 2°Cy — 2°C, = 0.
If"C,_1=36,"C, =84 and "C,, =126, find n and r.

How many numbers of four digits can be formed with digits 1, 2, 3,4 and 5 if repetition
of digits is not allowed?

How many numbrs between 400 and 1000 can be made with the digits 2, 3,4, 5,6 and 0,
with no repetitions?

Find the number of numbers between 300 and 3000 that can be formed with the digits
0,1,2,3,4 and 5 with no repetitions.

How many numbers of four digits greater than 2300 can be formed with digits
0,1,2,3,4,5 and 6 with no repetitions?

How many numbers can be formed by using any number of digits 0, 1, 2, 3 and 4 with
no repetitions?

How many numbers of four digits can be formed with the digits 1, 2,3 and 47 Find the
sum of those numbers.

Find the sum of all four digit numbers that can be formed with the digits 0, 1,2 and 3.
Find the sum of all four digits that can be formed with 1, 2,2 and 3.

A person has to send invitation to 6 friends. In how many ways can he send invitations
to them if he has 3 servants?

In how many ways 3 prizes can be given away to 7 boys when each is eligible for any
number of prizes?

A telegraph has 5 arms and each arm is capable of 4 distinct positions, including the
position of rest. What is the total number of signals that can be made?

A letter lock consists of three ring each marked with 10 different letters. In how many
ways is it possible to make an unsuccessful attempts to open the lock?

How many numbers greater than 1000 but less than 4000 can be formed with the digits
0, 1,2, 3 and 4 with repetitions allowed?

In how many ways can 8 Indians, 4 Americans and 4 Englishmen be seated in a row so
that persons of same nationality sit together?
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There are 20 books of which 4 are single volume and the other are books of 8, 5 and 3
volumes. In how many ways can all these books are arranged on a shelf so that volumes
of the same book are not separated?

A library has two books each having three copies and three other books each having
two copies each. In how many ways can all these books be arranged in a shelf so that
copies of same books are not separated?

In how many ways 10 examination papers be arranged so that the best and worst papers
never come together?

There are 5 boys and 3 girls. In how many ways can they be seated in a row so that
not all girls sit together?

In how many ways can 7 I.A. and 5 I.Sc. students can be seated in a row so that no
two of the I.Sc. students sit together?

In a class there are 7 boys and 3 girls. In how many different ways can they can be
seated in a row so that no two of the three girls are consecutive?

In how many ways 4 boys and 4 girls can be seated in a row so that boys and girls
alternate?

In how many ways 4 boys and 3 girls can be seated in a row so that boys and girls
alternate?

In how many ways can the letters of the word “civilization” be rearranged?

How any different words can be formed from the word “university” so that all vowels
are together?

In how many ways can the letters of the word “director” be arranged so that vowles are
never together?

How many words can be formed by rearranging the letter of the word “welcome”? How
many of them end with ‘0’?

How many words can be formed with the letters of the word “California” in such a way
that vowels occupy vowels' position and consonants occupy consonants' position?

How many different words can be formed with the letters of the word “pencil” when
vowels occupy even place?

How many different words can be formed with five given letters of which three are vowel
and two are consonants? How many will have no two vowels together?

How many numbers greater than a million can be formed with the digits 2, 3, 0, 3,4, 2
and 37

In how many ways 5 Indians and 4 British can be seated at a round table if
i. there is no restriction?

ii. all British sit together?

iii. all 4 British do not sit together?

iv. no two British sit together?
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In how many ways 5 Indians and 5 British can be seated along a circle so that they are
alternated?

A round table conference is to be held between 20 delegates of 20 countries. In how
many ways can they be seated if two particular delegates are always to sit together?

How many numbers of four digits can be formed with the digits 1, 2,4, 5, 7 with no
repetitions?

How many numbers of 5 digits can be formed with the digits 0, 1, 2, 3 and 47

How many numbers between 100 and 1000 can be formed with the digits 1,2, 3,4,5,6
and 7; with no repetitions?

How many numbers between 100 and 1000 can be formed with the digits 0, 2, 3, 4, 8
and 9; with no repetitions?

Find the total no. of nine digit numbers which have all different digits.

How many number between 1000 and 10000 can be formed with the digits 0, 1, 2, 3, 4
and 5; with no repetitions?

How many different numbers greater than 5000 can be formed with the digits 0, 1, 5
and 9; with no repetitions?

Find the number of numbers between 300 and 4000 that can be formed with the digits
0,1,2,3,4 and 5; with no repetitions?

How many numbers of four digits divisible by 5 can be formed with the digits 0, 4, 5, 6
and 7; with no repetitions?

How many even numbers of 5 digits can be formed with the digits 1, 2, 3,4 and 57

How many numbers less than 1000 and divisible by 5 can be formed, in which no digit
repeats?

How many numbers between 100 and 999 can be formed with the digits 0, 4, 5, 6, 7
and 87 How many of them are odd?

Find the number of even numbers that can be formed with the digits 0, 1, 2, 3 and 4;
with no repetitions?

Find the number of numbers of six digits with the digit 1,2, 3,4, 5 and 6, in which 5
alwyas occupied tens place; with no repetitions.

A number of four different digit is formed using the digits 1,2, 3,4, 5,6 and 7. How
many such numbers can be formed? How many of them are greter than 34007

Find the number of numbers of 4 digits formed with the digits 1,2, 3,4 and 5, in which 3
occurs in the thousand's place and 5 occurs in the unit's place.

Find the number of numbers of 4 digits formed with the digits 0, 1, 2, 3, 4 and 5; with
no repetitions. How many of these are greter than 30007

How many number of numbers can be formed by using any number of digits 0,1,2,3,5,7
and 97
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How many different numbers can be formed with the digits 1, 3,5, 7 and 9; when taken
all at a time and what is their sum?

Find the sum of all four digit numbers that can be foemd with the digits 3, 2, 3, 4.

Find the sum of all numbers greater than 10000 formed with the digits 0, 2,4, 6 and &;
with no repetitions.

Find the sum of all five digit numbers with the digits 3,4, 5,6 and 7; with no repetitions.
Find the sum of all four digit numbers that can be formed with 0, 2, 3 and 5.

A servant has to post 5 letters and there are 4 letter boxes. In how many ways he can
post the letters?

In how many ways can 3 prizes be given to 5 students, when each student is eligible for
any number of prizes?

In how many ways can n things be given to p persons? Each person can get any number
of things(n > p).

There are m men and n monkeys(m < n). If a man can have any number of monkeys,
in how many wasy every monkey have a master?

In how many ways the following 5 prizes be given to 10 students? First and second in
mathematics; first and second in chemistry and first in physics?

There are stalls for 12 animals in a ship. In how many ways the shipload can be made
if there are cows, calves and horses to transported with each being 12 in number?

In how many ways 5 delegates be put in 6 hotels of a city of there is no restriction?

Find the numbers of 5 digits that can be formed with the digits 0, 1, 2, 3 and 4 if
repetition is allowed.

In how many ways rings of 6 different types can be had in 4 fingers?

Find the number of 4 digit numbers greater than 3000 that can be formed with the
digits 0, 1,2, 3,4 and 5 if repetition is allowed.

In a town, the car plate numbers can be of three or four digits without digit 0. What
is the maximum number of cars that can be numbered?

In how many ways can a ten question multiple choice examination with one correct
answer can be answered if there are four choices to each question? If no two consecutive
questions are answered the same way, how many ways are there?

There are two books each of three volumes and two books each of two volumes. In how
may ways can the ten books be arranged on a table so that the volumes of the same
book are not separated?

A library has 5 copies of 1 book, 4 copies of 2 books, 6 copies of 3 books and single
copy of 8 books. In how many ways all the books can be arranged in so that copies of
the same book stay together?

In a dinner part there are 10 Indians, 5 Americans and 5 Britishers. In how many ways
they can be seated if all persons of the same nationality always sit together?
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In a class there are 4 girls and 6 boys. In how many ways can they be seated in a rows
so that no two girls are together?

Show that the number of ways in which n books can be arranged on a shelf so that two
particular books shall not be together is (n — 2) (n —1)!

You are given six balls of different colors (black, white, red, green, violet, yellow). In
how many ways can you arrange them in a row so that black and white balls may never
come together?

Six papers are set an examination, 2 of them in mathematics. In how many different
orders can the papers be given if two mathematics papers are non successive?

In how many different ways can 15 I.Sc. and 12 B.Sc. students be arranged in a line so
that no two B.Sc. students occupy consecutive positions?

In how many ways can 18 white and 19 black balls be arranged in a line so that no two
white balls may be together. It is given that balls of same color are identical.

Show that the number of ways in which p positive and n negative signs mat be placed
in a row so that no two negative signs may be together is p“C’W

m men and n women are to be seated in a row so that no two women sit together. If
m!(m+1)!

m > n, then show that the number of ways in which they can be seated is T

3 women and 5 men are to sit in a row. Find in how many ways they can be arranged
so that no two women sit next to each other.

Find the number of ways of arranging 5 a’s, 3 b’s, 3 ¢’s, 1 d, 2 ¢’s and 1 f in a row, if
letter c's are separated from one another.

Find the number of different permutations of the letters of the word “Banana”.

How many words can be formed from the letters of the word “circumference” taken all
together?

There are three copies of each of four different books. In how many ways they can be
arranged in a shelf?

Find the number of permutations of the letters of the word “Independence”.

How many different words can be formed can be formed with the letters of the word
“Principal” so that the vowels are together?

How many words can be formed with the letters of the word “Mathematics”? In how
many of them the vowels are togeter and consonants are together?x

In how many ways can the letters of the word “Director” be arranged so that the three
vowels are together?

In how many ways can the letters of the word “Plantain” be arranged so that the three
vowels are together?

Find the number of words that can be made by arranging the letters of the word
“Intermediate” so that the relative order of vowels and consonants do not change.
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113. In how many permutations of the word “Parallel” all the Is do not come together?
114. Find the number of words formed by the letters of the word “Delhi” which

i. begin with D.

ii. end with I.

iii. the letter L being always in the middle.

iv. begin with D and end with I

134

115. In how many ways can the letters of the word “Violent” be arraged so that vowels

occupy only the odd places?

116. In how many ways can the letters of the word “Saloon” be arraged if consonants and

vowels must occupy alternate places?

117. How many words can be formed out of the word “Article” so that vowels occupy the

even places?

118. How many numbers greater than four million can be formed with the digits 2,2, 3,0, 3,4

and 57

119. How many seven digits can be formed with the digits 1, 2, 2,2, 3, 3 and 5?7 How many

of them are odd?

120. How many seven digits can be formed with the digits 1, 2, 3,4, 3,2 and 1, so that odd

digits always occupy the odd places?

121. How many numbers greater than 10, 000 can be formed with the digits 1,1,2, 3,4 and 07

122. Find the number of numbers of four digits that can be made from the digits 0, 1,2, 3,4
and 5 if the digits can be repeated in the same number. How many of these numbers

have at least one digit repeated?

123. How many signals can be made by hoisting 2 blue, 2 red and 5 yellow flags on a flag at

the same time?

124. How many signals can be made by hoisting 6 differently colored flags one above the

other when any number of them can be hoisted at once?

125. Find the number of arrangements of the letter of the word “Delhi” if e always comes

before 1.

126. In how many ways can 5 men sit around a table?

127. In how many ways 5 boys and 5 girls can site around a table, if there is no restriction;

if no two girls sit side-by-side?

128. In a class of students there are 6 boys and 4 girls. In how many ways can they be seated

around a table so that all 4 girls sit together?

129. 5 boys and 5 girls from a line with the boys and girls alternating. Find the number of
ways in which line can be made. In how many different ways could they form a circle

so that boys and girls alternate?
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In how many ways 6 boys and 5 girls can sit at a round table when no two girls sit next
to each other?

In how many ways 50 pearls be arranged to form a necklace?

A round table conference is to be held between 20 delegates of 20 countries. In how
many ways they and the host can be seated if two particular delegates are always to sit
on the either side of the host?

Four gentlemen and four ladies are invited to a certain party. Find the number of ways
of seating them around a table so that only ladies are seated on the two sides of each
gentleman.

In how many ways can 7 Englishmen and 6 Indians sit around a table so that no two
Indians are together?

If 1°Cy, = 15C, 5, find 7.

If "Cy : "3C; = 33 : 4, find n.

5
Find the value of the expression 47C, + Z 527]03.
j=1

Prove that the product of r consecutive integers is divisible by r!

Find the number of triangles, which can formed by joining the angular points of a
polygon of m sides as vertices.

A man has 8 children to take them to a zoon. He takes three of them at a time to the
200 as often as he can without the same 3 children together more than once. How many
times will he have to go to zoo? How many times a particular child will go?

On a new year day every student of a class sends a card to every other student. The
postman delivers 600 cards. How many students are there in the class?

Show that a polygon of m sides has M diagonals.

Out of 6 gentelmen and 4 ladies a committee of 5 is to be formed. In how many ways
can this be done so as to include at least one lady in each committee?

There are ten point on a plane. Of these ten points four points are in a straight line.
With the exception of these four points, no other three points are in the same straight
line. Find (a) the number of triangles formed, (b) the number of straight lines formed,
and (c¢) the number of quadrilaterals formed, by joining these ten points.

There are 4 oranges, 5 apples and 6 mangoes in a fruit basket. In how many ways a
person make a selection of fruits from the fruits basket.

Given 5 different green dyes, 4 different blue dyes and 3 different red dyes, how many
combinations of dies can be chosen taking at least one green and one blue dye?

Find the number of divisors of 216, 000.

In an examination a minimum is to be secured in each of 5 subjects to pass. In how
many ways can a student fail?
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In how many ways 12 different things can be divided equally among 3 persons? Also
find in how many ways can these 12 things be divided in three sets having 4 things.

How many different words of 4 letters can be formed with the letters of the word
“Examination”?

How many quadrilaterals can be formed by joining vertices of a polygon of n sides?

. A man has 7 friends and he wants to invite 3 of them at a party. Find out how many

parties to each of his 3 friends he can give and how many times any particular friend
will attend the parties.

Prove that the number of combinations of n things taken r at a time in which p particular
things always occur is "7PC,._ .

A delegation of 6 members is to be sent abroad out of 12 members. In how many ways
can the selection be made so that (a) a particular member is always included, and (b)
a particular member is always exlcluded.

There are six students A, B,C, D, E and F. (a) In how many ways can they be seated
in a line so that C' and D do not sit together? (b) In how many ways can a committe
of 4 be formed so as to always include C? (¢) In how many ways can a committee of 4
be formed so as to always include C but exclude E?

There are n stations in a railway route. The number fo kinds of ticket printed (no return
ticket) is 105. Find the number of stations.

There are 15 points in a plane of which 6 are collinear. How many different straight
lines and triangles can be drawn by joining them?

There are 10 points in a plane out of which 5 are collinear. Find the number of quadri-
laterals formed having vertices at points.

The three sides of a triangle have 3,4 and 5 interior points on them. Find the number
of triangles that can be constructed using given interior points as vertices.

In how many ways can a team of 11 be chosen from 14 football players if two of them
can be only goalkeepers?

A committee of 2 men and 2 women is to be chosen from 5 men and 6 women. In how
many ways can this be done?

Find the number of ways in which 8 different articles can be distributed among 7 boys,
if each boy is to receive at least one article.

Out of 7 men and 4 ladies a committee of 5 is to be formed. In how many ways can this
be done so as to include at least 3 ladies?

A candidate is required to ansswer six out of ten questions which are divided into two
groups, each containing five questions and he is not permitted to attempt more than 4
from any group. In how many ways can he make up his choices?

There are 10 professors and 20 students out of whom a committee of 2 professors and 3
students to be formed. Find in how many ways these committees can be formed if (a)
a particular professor is included? (b) a particular professor is excluded.
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From 6 boys and 7 girls, a committee of 5 is to be formed so as to include at least one
girl. Find the number of ways in which this can be done.

From 6 gentlemen and 4 ladies, a committee of 5 is to be formed. In how many ways
can this be done if (a) there is no restriction? (b) the committee is to include at least
one lady?

From 8 gentlemen and 4 ladies, a committee of 5 is to be formed. In how many ways
can this be done so as to include at least one lady.

In a group of 15 boys, there are 6 hockey players. In how many ways can 12 boys be
selected so as to include at least 4 hockey players?

From 7 gentlemen and 4 ladies a boat party of 5 is to be formed. In how mny ways can
this be done so as to include at least one lady?

A committee of 6 is to formed out of 4 boys and 6 girls. In how many ways can this be
done if girls may not be outnumbered?

A person has 12 friends out of which 8 are relatives. In how many ways can he invite 7
friends such that at least 5 of them are relatives?

A student is required to answer 7 questions out of 12 questions which are divided into
two groups of 6 questions each. He is not permitted to attempt more than 5 from either
group. In how many ways can he choose the 7 questions?

Each of two parallel lines has a number of distinct points marked on them. On one line
there are 2 points P and ) and on the other there are 8 points. Find the number of
possible triangles out of these points. How many of these include P but exclude Q7

There are 7 men and 3 ladies contesting for 2 vacancies. An elector can vote for any no.
of candidates not exceeding no. of vacancies. In how many ways ca the elector vote?

A party of 6 is to be formed from 10 boys and 7 girls so as to include 3 boys and 3 girls.
In how many ways can this party be formed if two particular girls cannot be together?

In an examinatio, the question paper consists of three different sections of 4,5 and 6
questions. In how many ways, can a student make a selection of 7 questions, selecting
at least 2 questions from each section.

From 5 apples, 4 oranges and 3 mangoes, how many selections of fruits can be made?

Find the total no. of selections of at least one red ball from 4 red and 3 green balls if
the balls of same color are different.

Find the number of different sums that can be formed with one dollar, one half dollar
and one quarter dollar coin.

There are 5 questions in a question paper. In how many ways can a boy solve one or
more questions?

In an election for 3 seats there are 6 candidates. A voter cannot vote for more than 3
candidates. In how many ways can he vote?
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In an election the number of candidates is one more than the number of members to
be elected. If a voter can vote in 30 different ways, find the number of candidates. (A
voter has to vote for at least one candidate.)

In how many ways 12 different books can be distributed equally among 4 persons?

In how many ways 10 mangoes can be distributed among 4 person if any person can
get any number of mangoes?

How many words can be formed out of 10 consonants and 4 vowels, such that each
contains 3 consnants and 2 vowels?

A table has 7 seats, 4 being on one side facing the window and hree being on the
opposite side. In how many ways can 7 people beseated at the table if 3 people must
sit on the side facing the window?

A tea party is arranged for 16 people along two sides of a long table with 8 chairs on
each side. Four men wish to sit on one particular side and two on the other side. In how
many ways can they be seated.

Eight chairs are numbered 1 to 8. Two women and three men wish to occupy one chair
each. First two women choose chairs amongst the chair marked 1 to 4; and then men
select the chairs from remaining. Find the number of possible arrangements.

Show that 2"C,.(0 < r < 2n) is greatest when 7 = n.

Ten different letters of an alphabet are given. Words with five letter are formed from
these given letters. Find the number of words which have at least one letter repeated.

How many ternary sequences of length 9 are there which either begin with 210 or end
with 2107

Find the number of 7 digit numbers when the sum of those digits is even.

In how many ways 10 Indians, 5 Americans and 4 Britishers can be seated in a row so
that all Indians are together?

. In how many ways can the letters of the word * " Arrange' be arranged so that (a) the

two r's are never together? (b) the two a's are together but not the two r's? (c) neither
the two a's nor the two r's are together?

A man invites a party of m + n friends to dinner and places m at around table and n
at another. Find the number of arranging the guests.

Find the total no. of signals that can be made by five flags of different colors when any
number of them may be used.

The letters of the word *“Ought'' are written in all possible orders and these words are
written out in a dictionary. Find the rank of * " Tough' in the dictionary.

The streets of a city are arranged like the lines of a chessboard. There are m streets
running north and south and n east and west. Find the number of ways in which a man
can travel from the N.W. to S.E. corner, going the shortest distance possible.
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There are n letters and n corresponding envelops. In how many ways, can the letters
be places in envelops (one letter in each envelop) so that no letter is put in the right
envelop?

Find the number of non-congruent rectangles that can be formed on a chessboard.

Show that the no. of ways in which three numbers in A.P. can be selected from

1,2,3,...,nin i(n —1)%or %n(n — 2); according as n is odd or even.

Two packs of52 playing cards are shuffled together. Find the number of ways in which
a man can be dealt 26 cards so that he does not get two cards from the same suit and
same denomination.

There is a polygon of n sides (n > 5). Triangles are formed by joining the vertices of
the polygon. How many triangles are there? Also, prove that number of these triangles
which have no side in common with any of the sides of the polygon is %n(n —4)(n—5).

n different objects are arranged in a row. In how many ways can 3 objects be selected
so that (a) all three objects are consecutive, (b) all three objects are not consecutive,
and () no two objects are consecutive.

There are 12 intermeditate stations between two places, A and B. In how many ways
can a trainbe made to stop at 4 of those 12 intermeditate stations so that no two of
which are consecutive?

There are m points in a plane which are joined by straight lines in all possible ways
and of these no two are coincident and no three of them are concurrent except at the
points. Show that the number of points of intersection, other than the given points of
the lines so formed is 8.(%14)1‘

Find the number of ways of choosing m coupon out of an unlimited number of coupons
bearing the letters A, B and C so that they cannot be used to spell the word BAC.

A straight is a five-card hand containing consecutive values. How many different
straights are tere? If the cards are not all from the same suit, then how many straights
are there?

A is an n-element set. A subset P; of A is chosen. The set A is reconstructed by replacing
the elements of P;. Then a subset P, of A is chosen and again set A is reconstructed
by replacing the elements of P». In this way m subsets are chosen, where m > 1. Find
the number of ways of choosing Py, P, ..., P, such that

i. PiUPyU...U P, contains exactly r elements of A.

ii. PN PyN...N P, contains exactly r elements of A.

iii. R,NP;j=¢ fori+j.

Find the number of ways in which m identical balls be distributed among 2m boxes so

4 4m
Vot and 5.

m

that no box contains more than one ball and show that it lies between

From 6 gentlemen and 4 ladies, a committee of 5 is to be formed. In how many ways
can this be done if the committee is to include at least onelady and if two particular
ladies refuse to server on the same committee?
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A man has 7 relatives, 4 of them are ladies and 3 are gentlemen. His wife also has 7
relatives, 3 of them are ladies and 4 are gentlemen. In how many ways can they invite
to a dinner party of 3 ladies and 3 men so that there are 3 of the man's relatives and 3
of the wife's relatives?

Prove that if each of m points on one straight line be joined to each of the n points on
the other straight line terminated by the points, then excluding the points given on the
two lines, number of points of intersection of these lines is %mn(m —1)(n—1).

John has x children with his first wife. Mary has « + 1 children with her first husband.
They marry and have children of their own. The whole family has 24 children. Assuming
that two children of same parents do not fight, prove tha maximum possible no. of ways
fight can take place is 191.

Find the number of divisors and sum of divisors of 2520.

Five balls of different colors are to be placed in three boxes of different sizes. Each box
can hold all five balls. In how many different ways can we place the balls so that no box
remains empty.

Prove that (n!)! is divisible by (n!)™~ ',

If @ and b are positive integers, show that % is an integer.

A conference attended by 200 delegates is held in a hall. The hall has seven doors,
marked A, B, ..., G. At each door, an entry book is kept and the delegates entering that
door sign it in the order in which they enter. If each delegate is free to enter any time
and through any door they like, how many different sets of seven lists would arise in
all?

In how many ways 16 identical objects can be distributed among 4 persons if each
person gets at least 3 objects?

Show that a selection of 10 balls can be made from an unlimited number of red, while,
blue and green balls in 286 ways and that 84 of these contain balls of all four colors.

In how many ways 30 marks can be allotted to 8 questions if each question carries at
least 2 marks?

In an examination the maximum marks for each of the three papers is 50 each. Maximum
marks for the fourth paper is 100. Find the number of ways in which a student can score
60 marks in aggregate.

Let n and k be positive integers, such that n > @ Find the number of solutions
T1, T2y ooy Thy T1 > 1, To > 2, ..., x> k all satisfyinng x1 + 2 + ... + 2 = n.

Find the number of integral solution of equation x +y+z+w =29, 2 >0,y > 1,2 > 2
and w > 0.

Find the number of non-negative integral solutions of the equation x + y + z + 4w = 20.

Find the number of non-negative integral solutions to the system of equations = + y +
z+w+v=20and z+y+z=>5.

Find the number of positive integral solutions of the inequality 3z + y + z < 30.
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Find the number of positive unique integral solution of the equation a + b+ ¢ + d = 20.
How many integers between 1 and 1, 000, 000 have the sum of digits 187

Prove that the number of combinations of n letters together out of 3n letters of which n
are a and n are b and the rest unlike is (n +2)2" L.

An eight-oared boat is to be manned by a crew chose from 11 men of whom 3 can steer
but cannot row and the rest cannot steer. In how many ways can the crew be arranged
if two of them can only row the bow side?

Find the total number of ways of selecting five letters from the letters of the word
* “Independence'.

Find the number of combinations and the number of permutations of the letters of the
word " Parallel'', taken four at a time.

Find the value of n for which % — % < 0.

Find the value of n for which % — % > 0.

If "2p, :"*2 Oy = 16 : 57, find the value of n.
If"P.=" P.yy and "C,. =" C,_1, find n and 7.
If"P,_ 1" P.." P,y1=a:b:c, prove that b = a(b +¢).

If"*C. " C." 1 Ch_y=11:6:3, find n and r.

Show that > *C, ="' C,,1 =" Cy 1.

k=m
Show that 4."Cyp_ +" Cp_yya +" Cpyz =""3 C,.
Find r for which '8C,_5 +2.%C,_1 +'* C, >*° Cy3.
Prove that *"Cy,, :*" C, = 1.3.5... (4n — 1) : 1.3.5... (2n — 1)2.
Find the positive integral values of = such that *~1Cy —*~1 C5 — g (r—2)(z—3)<0.

Prove that 2" P, = 2".1.3.5... (2n — 1).

Show that there cannot exist two positive integers n and r for which "C,.," Cy41," Cyr12
are in G.P.

Show that there cannot exist two positive integers n and r for which
"Cr," Cry1,” Crya,” Crig are in AP,

For all positive intgers show that 2.6.10... (4n —6) (dn —2) = (n+ 1) (n+2)...(2n —
2) 2n.

3 ] 5 ]
Show that 17Cy + > 2071 05 + Y 977 O =57 €.
—~ ~

1=
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m
Show that "C}, + Z"H Chq =1 O
=0

9=
Show that ™Cy +™" Co+ ... +™T L C, =" CL+" T Oy + .. AT O

How many numbers of 5 digits divisible by 25 can be made with the digits 0,1,2,3,4,5,6
and 77

How many numbers of 5 digits divisible by 4 can be made with the digits 1,2, 3,4 and 5?7

How many numbers of 4 digits divisible by 3 can be made with the digits 0, 1, 2, 3, 4
and 5, digits being unrepeated in the same number? How many of these will be divisible
by 67

Find the sum of all the 4 digit numbers formed with the digits 1, 3,3 and 07

Show that the number of permutation of n different objects taken not more than r at
n(n"—1)

a time, when each object may be repeated any number of times is ——

How many different 7 digit numbers are there sum of whose digits is even?

k numbers are chosne with replacement from the numbers 1,2, 3, ... ,n. Find the number
of ways of choosing the numbers so that the maximum number chosen is exactly r(r <

Find the number of n digit numbers formed with the digits 1,2, 3, ...,9 in which no two
consecutive digits repeat.

A valid FORTRAN identifier consists of a string of one to six alphanumeric characters
which are A, B, ..., Z,1,2, ..., 9 beginnning with a letter. How many valid FORTRAN
identifiers are there.

Find the number of five digit number which can be made with at least one repeated
digit.
Find the number of numbers between 20, 000 and 60, 000 having sum of digits even.

Find th enumber of ways in which the candidates Aj, Ao, ..., A1 can be ranked, (a)
if A; and A, are next to each other. (b) if A; is always above As.

m + n chairs are placed in a line. You have to seat n men and m women on these chairs
such that no man gets a seat between two women. In how many ways can these people
be seated?

How many words can be made with the letters of the word * " Intermediate'" if no vowel
is between two consonants?

In how many ways can 5 identical black balls, 7 identical red balls and 6 identical green
balls be arranged so that at least one ball is sperated from balls of the same color?

Ten guests are to be seated in a row of which three are ladies. The ladies insist on
sitting together while two of gentlemen refuse to take consecutive seats. In how many
ways can they be seated?

Show that the number of permutations of n different objects taken all at a time in
which p particular objects are never together is n! — (n —p + 1)! pl.
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Find the number of ways in which six *+' signs and four *-' signs can be arranged so
that no two *-' signs occur together.

In how many ways can 3 ladies and 5 gentlemen arrange themselves about a round table
so that every gentleman may have one lady by his side?

How many words of 7 letters can be formed by using the letters of the word ™ “success''
so that (a) no two C's are together but not the two S, (b) neither the two C nor the
two S are together?

A dictionary is made of the words that can be formed from the letters of the word
*"Mother'". What is the position of the word **Mother'" in that dictionary if the words
are printed in the same order as that of a dictionary.

A train going from Kolkata to Delhi stops at 7 intermediate stations. Five persons
enter the train during the jouney with five different tickets of the same class. How
many different set of tickets they could have had.

A train going from Cambridge to London stops at 9 intermediate stations. Six persons
enter the train during the jouney with six different tickets of the same class. How many
different set of tickets they could have had.

In how many ways can clear and cloudy days occur in a week? It is given that any day
is entirely either clear or cloudy.

A student is allowed to select at most n books from a collection of 2n 4+ 1 books. If the
total no. of ways in which he can select at least one book is 63, find the value of n.

There are m bags which are numbered by m consecutive integers starting with the
number k. Each bad contains as many different flowers as the number marked on the
bag. A boy has to pick up k flowers from any of the bags. In how many different ways
can he do it?

How many committes of 11 persons can be made out of 50 persons if three particular
person are not to be included together?

There are m intermediate stations on way railway line between two place P and Q. In
how many ways can the train stop at three of these intermediate stations, no two of
which are consecutive?

A is an n-element set. A subset of P of A is chosen. The set A is reconstructed by
replacing the elements of P. Then a subset @ of A is chosen. Find the number of
ways of choosing P and @ such that (a) P N @ contains exactly 2 elements, and (b)

PNQ=6¢.

A is an n-element set. A subset P; is chosen. The set A is reconstructed by replacing
the elements of P;. Then a subset P, is chosen ad again the set is reconstructed by
replacing elements of P». In this way m subsets Py, Ps, ..., P, are chosen, where m > 1.
Find the number of ways of choosing these subesets such that

i. PiUP,U...U P, contains all the elements of A except one.
ii. LUPU..UP, =A.

iii. PN PN ... Py, = 6.



284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

295.

296.

297.

298.

299.

300.

Permutations and Combinations 144

There are three sections in a question paper, each containing 5 questions. A candidate
has to solve any 5 questions, choosing at least one from each section. Find the number
of ways in which the candidate can choose the questions.

Two numbers are selected at random from 1,2, 3, ..., 100 and are multiplied. Find the
number of ways in which the two numbers can be selected so that the product thus
obtained is divisible by 3.

In how many ways can a mixed doubles game in tennis be arranged from 5 married
couples, if no husband and wife play in the same game?

There are n concurrent lines and another line parallel to one of them. How many different
triangles will be formed by the (n + 1) lines?

In a plane there are n lines no two of which are parallel and no three are concurrent.
How many different triangles can be formed with their points of intersection as vertices?

The England cricket team is to be selected out of fifteen players, five of them are bowlers.
In how many ways can the team be selected so the team contains at least three bowler?

There are two bags each containing m balls. Find the number of ways in which equal
no. of balls can be selected from both bags if at least one ball from each bag has to be
selected.

A committee of 12 is to be formed from 9 women and 8 men. In how many ways can
this be done if at least 5 wmen have to be included in a committee. In how many of
these committees, the women are in majority and the men are in majority?

m equi-spaced horizontal lines are intersected by n equi-spaced vertical lines. If m < n
and the distance between two successive vertical lines, show that the number of squares
formed by these lines %m(m —1)(3n—m—1).

There are two sets of parallel lines, their equations being xcosa + ysina = p; p =
1,2,3,...,mand ycosaw —xsinae =q; ¢ =1,2,3, ..., n(n > m), where « is a constant.
Show that the lines form %m(m —1)(3n —m — 1) squares.

In how many different ways can a set A of 3n elements be partitioned in 3 equal number
of elements?

In how many ways 50 different objects can be divided in 5 persons so that three of them
get 12 objects each and two of them get 7 objects each?

If a, b, c, ..., k are positive integers such that a + b+ ¢+ ... + kK < n, show that ,b, -7 is
a positive mteger.

If n € N, show that ( )ml is an integer.
If ab = n(a > 1,b > 1), then show that (n —1)! is divisible by both a and b.
Show that (kn)! is divisible by (n!)¥.

In how may ways 20 apples be distributed among 5 persons if each person can get any
number of apples?
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In how many ways r flags be displayed on n poles in a row, disregarding the limitation
on the number of flags on a pole?

If x +y+ 2z =n, where z,y, z,n € P, find the number of integral solution of this equation.
Find the number of integeral soolutions of z +y + 2 =0, z,y, 2 > —5.

in an examination, the maximum marks for each of the three papers is n; for the fourth
paper it is 2n. Prove that the number of ways in which a student can get 3n marks is

F(n+1)(5n+ 100 + 6).
Find the numebr of positive integral solutions of the equation x1 + o + x5 = 10.
Find the numebr of non-negative integral solutions of equation 3z + y + z = 24.

Find the number of non-negative integral solutions of equation =z + y + 2z + w = 29,
where x > 1,y > 2,2 >3, w > 0.

Find the number of non-negative integral solutions of the equation a + b + ¢ + d = 20.
Find the number of non-negative integral solutions of the equation x1 +x2+ ... +xx < n.
Find the number of non-negative integral solutions of the equation 2x + 2y + z = 10.

How many sets of 2 and 3 (different) numbers can be formed by using numbers between
0 and 180 (both inclusive) so that their average is 60.

If combinations of letters be formed by taking only 5 at a time out of the letters of the
word " Metaphysics'', in how many of them will the letter T occur?

How many selections and arrangements of 4 letters can be made from the letters of the
word * " Proportion''?

A five letter word is formed such that the letter in the odd numbered positions are taken
from the letters which appear without repetitioni n the word * *Mathematics''. Further,
the letters appearing in the even numbered positions are taken from the letter which
appear with repetitions in the same word * *Mathematics''. In how many different ways
can the fice letter word be formed?

Box 1 contains six block lettered A, B,C, D, E and F'. Box 2 contains four block lettered
W, X, Y and Z. How many five letter codewords can be formed by using three blocks
from box 1 and two blocks from box 27

A tea party is arranged for 2m people along two sides of a long tale with m chairs on
each side. » men wish to siit on one particular side and s on the other. In how many
ways can then be seated? (r, s < m)

A gentleman invites a party of 10 friends to a dinner and there are 6 places at round
tale and the remaining 4 at another. Prove that the no. of ways in which he can arrange
them among themselves is 151, 200.

A family consists of a grandfather, m sons and daughters and 2n grandchildren. There
are to be seated in a row for dinner. The grandchildren wisg to occupy the n seats at
each end and grandfather refuses to have a grandchild on either side of him. In how
many ways can the family be seated?
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319. There are 2n guests at a dinner party. If the master and mistress of the house have
fixed seats opposite one another and that there are two specified guests who must not
be placed next to one another, find the number of ways the guests can be placed.

320. There are 4n objects of which n are alike and all the rest are different. Find the number
of permutations of 4n objects taken 2n at a time, each permutation containing the n
like objects.



Chapter 6

Mathematical Induction

Any reasoning involving passage from particular assertions to general assertions, which de-
rive their validity from the validity of particular assertions is called induction. Mathematical
induction is a mathematical proof technique which enables us to draw conclusions about a
general law on the basis of particular cases. It is used to prove a statement P(n) holds for
every natural number n = 0, 1, 2, 3, ...; that is, the overall statement is a seuqnece of infi-
nitely many cases P(0), P(1), P(2), P(3), ... The earliest rigorous use of induction was by
Gersonides (1288-1344). The first explicit formulation of the principle was given by Pascal
in his Traité du triangle arithmétique (1665).

In boolean algebra, a statement which is either true and false is called a proposition. P(n) will
denote a proposition whose truth value depends on natural numbers. For example, we recall
the sum of first n natural numbers from arithmetic progression as 1 + 2+ ... + n = n(n+1)

2
is denoted by P(n), then we can write P(n) =142+ ...+ n = nn+1)

Here P(2) is true
means the sum of first two natural numbers is equal to 1 + 2 = ? =3.

Mathematical induction is used to prove propositions in many branches of algebra, geometry
and analysis.

6.1 Principle of Finite Mathematical Induction

The proposition P(n) is assumed to be true for all natural numbers if the following two
conditions are satisfied:

1. The proposition P(n) is true for n = 1 i.e. P(1) is true.

2. P(m) is true = P(m + 1) is true where m is an arbitrary natural number.

6.2 Extended Form of Mathematical Induction
1. If P(n) is a proposition such that

1. P(1),P(2),..., P(k) are true.

2. P(m),P(m+1),..,P(m+k—1) are true implies P(m + k) is true.
2. If P(n) is a proposition such that

1. P(r) is true.

2. P(r),P(r+1),..., P(m) are true implies P(m + 1) istrue.

6.3 Problems

147
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Show that 12422+ ...+ n% = ﬁﬁl—ﬂ)&w,

1 1 1
Show that §+T§+...+m:

n
n+1°

P . (1 2
Show that 13+ 23 + ... + n3 = [%] .

Show that 1.3+ 2.3% + ... + n.3" = 218" 7438

. 41
Show that cos o + cos 2a + ... + cos na = sin % ¢sc 5 cos (n . Ja

Show that tanlé + tanflé + ...+ tan”?! ﬁ =tan” 5

Show that "Cy + 2."Cs + ... + n."Cn = n.2" L.

=\" - n
Ifug =1,us=1and upi2=upt1+u)n, n> l.un:%Klgﬁ) —(1 2‘/5) ] Vn>1.

Show that 11"%2 4+ 122""1 where n € N, is divisible by 133.

If p € N, show that p"*1 + p?*~! is divisible by p? 4 p + 1 for every positive integer n.
Show that 2" > 2n 4+ 1V n > 2.

Show that n* < 10" V n > 2.

Show that 1% + 3% + ... + (2n — 1)% = n?(2n* — 1).

Show that 3.22 +3%.2% 4 .. 437271 =12 (6" — 1),

5

1 1 1
Show that 173 + g7 + - + r=gy@EaTD = FurT

Show that (cos@ + isinf) = cosnf + isinnf.

sin2m6
2" sin 0°

Show that cos 6. cos 26 ...cos 2" 10 =

na
in= . on+tl

Show that sin a + sin 2« + ... + sinna = sin——av.

ing
sm2

n > 1, show that a, 1 = S

If a1 =1and ay.1 = ESNE

s
Ifay =1,a2 =5 and an42 = 5an+1 — 6a,, n > 1, show that a, = 3" —2".
If ug = 2,u; = 3 and upy1 = 3uy, — 2up_1, show that u, =2"—1, n € N.
Ifap=0,a; =1 and a,4+1 = 3a, — 2a,_1, show that a,, = 2" — 1.

If Ay = cosf, Ay = cos26 and for every natural number m > 2, A, = 2A4,,,_1 cosf —
A,,_o, prove that A, = cosn#.

For any positive number n, show that (2cos@ — 1) (2cos20 —1) ... (2cos2" 710 —1) =

2cos2m0+1
2cosf+1 °

1

Show that tan™! ot tan™! 53t t tan™! tan™' o —tan™! z €

1.2
R.

T _r
n(n+1)+z2 n+1’
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33..3 _ 10"*'—9n—10

Prove that 3+ 33 + ... + o = 57

Show that / wdw =.

sinx
0

2

Show that / sin_ i
Jo

——dz = nm.
sin< x

1
2n—1"

3
Show that / Sln22m de =1+ % + ..+
0

Show that if n € N, n(n + 1) (n + 5) is divisible by 6.

Show that if n € N, n® 4 (n+1)3 + (n + 2)* is divisble by 9.

Show that if n € P, and n is even then n(n? + 20) is divisible by 48.
Show that if n € N, 4™ — 3n — 1 is divisible by 9.

Show that if n € N, 32" — 1 is divisible by 8.

Show that if n € N, 5.23772 4 337~1 i5 divisible by 19.

Show that if n € N, 727 + 23773 37~1 ig divisible by 25.

Show that if n € N, 10™ + 3.4" 2 4 5 is divisible by 9.

Show that if n € N, 342 4 527*1 js divisible by 14.

Show that if n € N, 32"*2 —8n — 9 is divisible by 64.

Show that if n € N, n” — n is divisible by 7.

Show that if n € N, %3 +n?+ gn + 1 is a natural number.

Show that 2" + y" is divisible by « + y, where n is any odd integer.
Show that 2™ — y™ is divisible by x — y, where n € N.

Prove that z(z" ! —na™!) + a™(n — 1) is divisible by (z — a)? for all positive integers
n> 1.

Show that % + %3 + % is a natural number.
Show that "77 + %5 + 2%3 — 155 is an integer.
Show that 2" > n?, n > 5.

Show that 1 +2+ ...+ n < é(2n+ 1)%

Show that n™ < (n!)?, n > 2.

Show that n! > 2" n > 3.
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1 1 1 13
Show that m+m+...+2‘ﬁ>§4, n > 1.

C2n-1 1
T 2n — Bn+1?

1 1
Prove that o i e

Prove that %% - where n € N.

+...+%<%7 where n > 2, n € N.

Prove that \/a + \/a +Va + - n~terms~ < 1Yiat! V;‘““

Prove that \/2v/3v4...v/n < 3, where n > 2, n € N.

Prove that 22 + 322 + 523 + - + (2n — 1) 22 < (21 + 22 + - + 2,)?, where z1 > 29 >
> 2, > 0.

, where a > 0.

Prove that |sin(z; + z2 + -+ + x,)| < |sinzi| + [sinzs| + -+ + |sinz,|, where
Z1, T, ..., Ty € [0, 7].

Prove that sin(zy + x2 + - + x,,) < sinzy + sinxg + -+ + sinz,, where 1, 2, ..., T, €
[0, 7).
Prove that | cosz1| + | cosza| 4 | coszg| + | cosza| + |cosas| > 1, where 1 + z9 + 25+

$4+l‘5=0.

Bellman's inequality: If a function f(z) is defined in [0, a) or [0, 00) and for arbitrary
numbers z > y > z from that interval we have f(z) — f(y) + f(2) > f(z —y + z) and
£(0) <0, then for all numbers a > 1 > x9 > -+ > x,, > 0, prove that following inequality
holds f(z1) = f(w2) + fws) =+ (=1)" f(wn) = fler —zo+ -+ (=1)" f(2n)).

Prove that tanxz; — tanzy + -+ + (—1)" tanax,, > tan(zy — x2 + - + (—1)"z,,), where

7> T2 T2 2Ty 2 0.

Prove that a] —ab + -+ (=1)"a), > (a1 —as + -+ (—=1)"a,)", where a; > ag > -+ >
a, > 0,r>1.

Prove that (z1 + 2o 4+ - + x5)% > 4(z122 + Toxs + 324 + T4x5 + T521), Where
T, Xo, ..., x5 > 0.

Prove that 1y/22 + 23+ 23y/27 + 23+ +2p_1\/22_, + 22 +a0/22_ + 27 <5 (z1+

Ty + -+ ,)% where n > 3, and x1, o, ... , T, > 0.
Prove that %(761 +xg+ 4 2,)2 < (21 + 229 + - + nwy) maz(zy, To, ..., Tn), Where
T1, T, ..., Ty > 0.

Prove that a; + a% + - +a; <najasz...a,, where a3 > ag > - > a, > 1.

Prove that a1 + a% + -+ ap >naias ... a,, where 0 < a3 < ag < <ap, <1.

2 2 2
Prove that Z—f +Z—g + ajﬁl > 4(a, — a1), where a1, as, ..., ay > 0.
3 3 3 3
a? a3 a’d (a1+as+-+an) L .
Prove that brer T haes T T B 2 iEhat b, (e Tes tEen)’ where a;, b, ¢; > 0,1 =

1,2,...,n.
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If f(z) is defined in I and is a convex function, then (zo+ x1) [f(z2) — f(z1)] + (z3+
w2) [f(23) = f(w2)] 4+ (@n+wn1) [f(2n) = f(@n-1)] 2 (2 +20) [f(2n) = f(2n1)];
where n > 2, 1 < 22 < cdots < xp, X1, To, ..., Ty € 1.

Prove that av/b + bvc + ¢cva > ave + bva + evb, where a > b > ¢ > 0.

Prove that z{2.x5°%. -+ .aft > a5t.a3?. - .arrta]", where £, > &p_1 > 21 > 0,n > 3.

a(c—b) b(a—c) c(b—a)
T o) (Zatcrd) T late)@rate) T 0Fa) (@etbra)

Prove that <0, wherea >b>c > 0.

Prove that a1+0‘2+_'”1+an—1 + a1+a2+_;'1+an+l > 2a1+a2:-~+an ak+2ak+2 >

, where n > 2,
ak+1, k=1,2,...,n—1.

Prove that 91%attd2n1 > a”“'ﬂ_ﬁaz” where #1791 k=12 . 2n—1,n€eN.

2n 1
Prove that % > "1 where a > 0,1 € N.

Prove that 1 +%+ +% > In(n + 1), where n € N.

Prove that 1+ f—i- -+ f<3 where n € N.

\/77

n—1)

Prove that (1 + «)" >1—|—na+"( o?, where a > 0,n € N.

k
Prove that k! > (k:1> , where k € N.

n
Prove that Z|Sin(21x)‘ <1 —Q—?n7 where n=0,1,2, ....

i=0

Prove that cos o + 2522 2(’

+~~-+%2——,wheren€ﬂ\l 0<a g

Prove that ¢t + 22 4 - + %= 4 22 < 2n — 1, where ay, ag, ..., a, > 1, n > 2 and
|ak+1fak:|<1 Vke[ n—l]

Prove that Y- 4 Y22 z2+ RS IR V4n

pr— , where n € N and ;41 > 2, >

e Xg > T =1

Prove that if aq, as,...,a, > 0,81, 82, ..., 6, >0and a1 +as+ 4+ a, < f1+ fo+ ... +
571 < T, then cos B1 +C05ﬁ2+ +Cosﬁn < c@sa1+cosa2+ +cosan

sin oy sin g sin; — sinag sin g SNy

Prove that 2(a?°24+1) (b?°'2+1) (¢®°2+-1) > (1 +abe) (a®1 +1) (021 +1) (201 + 1),
where a, b, ¢ > 0.

Newton's inequality: bﬁ > bgp_1bgs1, for k = 2,3, ..., n — 1, where n > 2, n €
1
N, a1, ag, ..., an > 0, and by = Fr(arag--apr0k + @102 ap 10k + -+

4102+ Qg—10p + -+ Gp—f+10n—k "'an—lan)~

Prove that (“2 Z:)—b—(z—z a2>+ +<an1 %)S%—%7Wherea22,0§a1§
as < - < ap.

Prove that (1+a1)(14a2)...(1+a,) > 1+a1+az+ -+ ay, where a1, ag, ... ,a, > —1
and the numbers have the same sign.
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Prove that C' < D < 20, where C' = (ay — b1)? + (a2 — b2)* + - + (an — b))%, D =
(al - bn)2 + (a‘Q - bn)2 + et (an - bn)27 bk = W7 k = 17 27 ceey T

Prove that ¥/n > ""/n + 1, where n > 3,n € N.

k X
Prove that (1+%> < 1+%+g, where k <n,n,k € N.

Prove that (1 —Q—%)ﬁ < 3, where m,n € N.

Prove that 1—1’+§—§+-~-+(§—2};!>0, where k € N.

ajan

n n
Prove that Zaig [ n(ay + an) Zai:|,WhereO<a1<a2<~~<an.
i=1

i=1

Prove that aitas+-+ag < aitas+-+an < Agy1+api1t-tan
k

- o , where a1 < ag < - < Gp, N >
k,n,keN.

Prove that a} — a3 + a3 — - — a3, + a3, > (a1 — az + - — @z, + a2n41)% where
a1 > ag > 2> azpy1 2> 0.

(n—1)z242z,+n—1

Prove that z1 + z1(z2 —x1) +  + Tp_1(Tp — Tp_1) < o

, where n > 2.

Prove that 11.22.....n" > (2n)!, where n > 5,n € N.

Prove that (2,:711)' . (Z’S,)' L <27T;i>! > 25 where my, ma, -, my, € Zo and my +mo + - +

my, = S.

Prove that a+b+a+2b+ +a+nb<\/ﬁ where a,b >0 and n € N.

Prove that Z

—- 2,t1<4 where n > 2, n € N.

Prove that (1 +%> <1+4% -+ 2n2, where k,n € N and (k—1)? < n.

Prove that (1 —0—%)”(1 +ﬁ> (1 + nH)nH (1 + 4(n+1)> where n € N.

n
. Prove that Z|cos 2'z| > g, where n € N.

i=0
Prove that sin a + 252 SmQa + +Sin$ >0, wherene Nand 0 < o < 7.
Prove that cos a + <522 COSQO‘ + +%ﬂ > —1, where n € N.

Prove that (1 4+ a1) (2 + az) - (n + a,) < 2.n!, where n > 2, aq, as, ..., a, > 0 and
ay+ag+ -+ a, = 1.

Prove that (1 —a)(a® + a* + - + aF)? < (1 + a) (a® + a®*2 + - + a®**), where
n>2 néeN.
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110. For arbitrary positive integer n > 1 find the smallest value C' if the inequality @by

ai+by
ZZ;ZE + -+ WZ;;I;Z < C for all positive numbers a1, as, ..., an, b1, bo, ..., b, satisfying the
equality ai + ag + - + an = by + by + -+ + by,.
1 1ti i l—z125..., 1—xzq 1—xo
111. Prove that for an arbitrary positive integer n > 1, one has T <1, + = +

17“7 where 0 <y, <z; <1,i=1,2,...,n.

Ty,




Chapter 7

Binomials, Multinomials and Expan-
sions

An algebraic expression containing one term is called monomial, two terms is callled binomial
and more than two is called is called multinomial. Examples of a monomial expressions are
2z, 4y, examples of binomial expressions are a + b, 2 + %, 2 + 1%, = +% and exaamples of

multinomial expressions are 1 + z + 22, a® + 2a + b2, a® + 3a?b + 3ab® + b3

7.1 Binomial Theorem

Newton gave binomial theorem, by which we can expand any opwer of a binomial expression
as a series. First we consider only positive integral values of exponent. For positive integral
exponent the formula has the following form:

(a+z)" =" Coa™2® +" Cra"'a! +" Coa™ 22 + ... +™ Ca2™

7.1.1 Proof by Mathematical Induction
Let

P(n) = (a+2)" =" Coa"z" +" Cra" tzt +" Coa™ 2% + ... +" Cpa®z"™
When n =1, P(1) = a4z = Coa +* Ciz. When n = 2, P(2) = a® + 2az + 2% =% Cpa® +2
Chax +% Cya®. Thus we see that P(n) holds good for n = 1 and n = 2. Let P(n) is true for
n==kie.

P(k) = (a+ 2)* =* Coa*a® +* Cra* 12! +* Caa 22 + ... +* Cralat
Multiplying both sides with (a + x)

P(k+1) = (a+ )" =F Coaf a0 +F Crab e +F Cpa* 12 + .. +F Craz® +
FCoabz +F Crab 2% 1% Chakb 223 + ... 4% Cra

Combining terms with equal powers of a and z, using the formula "C, +" C,41 ="*! C,41
and rewriting *Cy and *Cj, as ¥+1Cy and *F1Cy 41, we get

P(k+ 1) _k+1 Coak+1z0 +k+1 Clak$1 +k+1 Czak71x2+ .“+k;+1 C}g+1a0$k+1

Thus, we see that P(n) holds good for n = k + 1 and we have proven binomial theorem by
mathemtical induction.

7.1.2 Proof by Combination

We know that (a+ )" = (a+z) (a+x) - [n factors]. If see only a, then we see that a™ exists
and hence, a” is a term in the final product. This is the term a", which can be written as
" Cha™zV. If we take the letter a,n — 1 times and x once then we observe ttat  can be taken
in "C ways. Thus, we can say that the term in final product is "Cya™ ‘2. Similarly, if we

154
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choose a,n — 2 times and z twice then the term will be "Coa™ 222, Finally, like o™, 2" will

exist and can be written as "C,z" for consistency. Thus, we have proven binomial theorem
by combination.

7.2 Special Forms of Binomial Expansion
We have
(a+z)" =" Coa™2® +" Cra" Lot +" Coa™ 222 + ... +™ Craz™ (7.1)
1. Putting —=z instead of x
(a—z)" =" Coa™z’ =" Cra™ 1ol +" Coa™ 222 — ... + (=1)"" Cpra’z"
2. Putting a=11in Eq. 7.1
(1+z)" =" Co+" Crz +" Coz? + ... +™ Ciz™
3. Putting x = —z in above equation

(1—2)" =" Cy—" Crz +" Cox?® — ... + (=1)"" Cpz™

7.3 General Term of a Binomial Expansion

We see that first term is t; =" Coa"a, second term is ¢t =" Cra™ ‘' so general term will
be

—r+1, r—1
tr _n C’rilan T+ "

7.4 Middle Term of a Binomial Expansion

When n is an even number, i.e. n = 2m, m € P. Middle term will be m + 1th term i.e.
tme1 =" Cppa™mz™.

When n an odd number, i.e. n = 2m + 1 m € N. There will be two middle terms i.e. m + 1th
and m + 2th terms will be middle terms. So

_n m+1,_m _n m, . m+1
tm+l— Cma z 7t’m+2— Cm+la z

The middle terms have the largest coefficient. In case of two middle terms the coefficients
of both the middle terms are equal.

7.5 Equidistant Coefficients

Binomial coefficients equidistant from start and end are equal. Coefficients of first term
from start and end are "Cy and "C,, which are equal. Coefficients of second term from start
and end are "Cy and "C,,_; which are equal. Similarly, coefficient of rth term from start is
"C\_1 and from end is "C),_,; 1. From combinations we know that "C,._; =" Cj,_,;1. Thus,
it is prove that coefficients of terms equidistant from start and end are equal.
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7.6 Properties of Binomial Coefficients

We have proven earlier that

(14 2)" =" Co+" Cra +" Coz® + - +™ Cpz™.

Putting z = 1, we get
2" ="Co+" C1+" Ca+ -+ +" Cp.
Putting z = —1, we get
0="Co—"C1+"Cy— -+ (=1)"C,.

Adding the last two, we have

2" =2["Co+" Co +" Cy + -]

2" "y 4" Cy 4™ Oy + -+

Subtracting, we get

2" =" O+ O+ O

7.7 Multinomial Theorem

156

Consider the multinomila (z1 + z2 + -+ + x,,)?, where n and p are positive integers. The

general term of such a multinomial is givenby

D LB R S,
pilpal o, t T2

such that py, po, ..., pn are non-negative integers and p1 + p2 + -« + pp = p.

We can find the general term using the binomial theorem itself. General term in the expansion

[#1+ (z2+ 23+ +2,)]" s
n!

P1 n—p
Pl i (2 s )
General term in expansion of (zg+ z3+ -+ 2, )" P is

(’fl _pl)!
p2!(n —p1 — p2)!

Proceding in this manner we obtain the general term given above.

7.7.1 Som Results on Multinomial Expansions

xéu(l'?) + T4 4 xn)nfplfl& X

1. No. of terms in the multinomial (z1 + 23 + -+ + 2, )P is number of non-negative integral

solution of the equation p; + pz + - + p, = p i.e. "TP7LC, or "TPTIC, ).

2. Largest coeff. in (1 + x2 + - + @,)? is W7

the remainder of p/n.

3. Coefficient of 2" in (ag + a1z + agz? + - + apz™)P is >

PP palpnl 40

where ¢ is the quotient and r is

TtaPr where

Do, P1, **, Pn are non-negative integers satisfying the equation pg+ p1 + ... + p, = n and

p1+2pa+ -+ np, =1
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7.8 Binomial Theorem for Any Index

7.8.1 Fractional Index

Let f(m) = (1+2)™ = 1+ ma + ™01 y2 y mine m=2) ;3 4 . where m € R then,

f(n) = (14 2)" =1+ na+ M0t y?  nnzn=2) 3

fm) f(n) = (1 +2)"™" = f(m+n)
f(m) f(n)... to k factos = f(m+n+...) to k terms

J
Let m, n, ... each equal to 5

= [#(D)] =10

but j is a positive integer, f(j) = (1 + x)j
i_ i)
(1) = £(3
(%_1) 2

j .
. o144
“(1+x) 1+kx+ T3 %t

Bl

And thus, we have proven binomial theorem for fractional index.

7.8.2 Negative Index

We can write

f(n) f(=n) = f(0) =1

= f(—n) :ﬁ: (I4+2)™""= 1—nx+%x2—ldots

7.9 General Term in Binomial Theorem for Any Index

General term is given by

n.(n—l)...(n—r—&—l)mr

7!

The above expansion does not hold true when |z| > 1 which can be quickly proved by
making r arbitrarily large. For example, (1 —2)™! =14 z + 2% 4 23 + .... However, if we
put z = 2, then we have (—1)7* = 1 + 2 + 22 + ... which shows that when 2 > 1 the above
formula does not hold true.

From G.P. we know that 1+ z + 22 + ... for r terms is

1 z"

1—-z 1-z

Thus, if r is very large and |z| < 1, we can ignore the second fraction but not when |z| > 1.
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7.10 General Term for Negative Index

The r + 1th term is given by

—n(—n—1)..(—n—r+1)
7l

(=)

_nn+1)..(n+r—1)
B r!

xT

7.11 Exponential and Logrithmic Series Expansions

Following expansions are useful for solving problem related to exponential and logarithmic
series:

1. =1+ % + 2—,2 —0—?—?—0— ... to 00, where x is any number. e lies between 2 and 3.

2. Ifa>0,a" = ¢l = 1 4 Zloger  (wlogea®

3. loge(1+x):w—%2+z;—%4+... to oo where —1 < x < 1.

7.12 Problems

1. Expand (x +%)5.

2. Use the bonimial theorem to find the exact value of (10.1)°.

3. Simplify (z 4+ vz —1)%+ (z — Vo —1)°.

4. If A be the sum of odd terms and B be the sum of even terms in the expansion of
(x + a)", prove that A% — B = (2® — a®)™.

5. If n is a positive integer, prove that the integral part of (7 + 4\/3)" is an odd number.

6. If (7+ 4\/5)" = a + beta, where « is a positive integer and [ is a proper fraction, then
prove that (1 —3) (a+ ) = 1.

10
7. Find the coefficient of 5}5 in (y + g) .
8.  Find the coefficient in (1 + 3z + 322 + 2°)1°.

9
9. Find the term independent of z in (%x2 — %) .

n

10. Find the term independent of z in (14 z)™ (m + %)

n

11. Find the coefficient of ™% in (1 4 322 + x*) (m + %)

12. If a, denotes the coefficient of z” in the expansion (1 — z)?"~! then prove that a,_; +
agn—r = 0.
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10
Find the vallue of k so that the term independent of x in (\/5 + %) is 405.

n—3

Show that there will be no term containing 2" in the expansion (x4 22)" 73, if n — 2r

is positive but not a multiple of 3.

Show that there will be a term independent of 2 in the expansion (z 4+ z~°)", only if
an is a multiple of a + b.

7
Expand (3: —+ %) using binomial theorem.

2x 3

6
Use binomial theorem to expand (? - E) .

If (14+az)"” =148z + 242 + ..., find a and n.

5\9
Find the 7th term in the expansion of <4?z — %) .

Find the value of (v2+1)%+4 (v2 —1)C.

Evaluate (0.99)' correct to four decimal places using binomial theorem.
Evaluate 999% using binomial theorem.

Evalaute (0.99)*° correct to four decimal places usinng binomial theorem.
Find the value of (1.01)*° + (0.99)'° correct to 7 decimal places.

If A be the sum of the odd terms and B be the sum of the even terms in the expansion
(x +a)", show that 4AB = (z 4+ a)*" — (z — a)*".

If n be a positive integer, prove that the integral part of (5 + 2v/6)™ is an odd integer.

If (34 /8)" = a + 3, where , n are positive integers and 3 is a proper fraction, then
prove that (1 —3) (a+ 3) = 1.

319
Find the coefficient of x in the expansion of (2x — %) .

Find the coefficient of " in the expansion of (3z2 4 5z~ 1)

Find the coefficient of 2% in the expansion of (2% — 271)2°,

Find the coefficient of 24 in the expansion of (z2 4 3az1)1%.

Find the coefficient of 2% in the expansion of (x? — 327)°.

11
Find the coefficient of 277 in the expansion of (293 — 33153) .

11
Find the coefficient of 27 in the expansion of (ax2 + %) and the coefficient of 277

1

11
in the expansion of (az — H) . Also, find the relation between a and b so that the

coefficients are equal.

!

2
If zP occurs in the expansion of (mz + %) " show that its coefficient is WT(M
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Find the term independent of x in the following binomial expansions:

7.

8. (3ot 413"

If there is a term independent of x in (:c + %)ﬁ show that it is equal to ("’)‘72!2")‘

3)HF)!
Prove that in the expansion of (14 x)™"", coefficients of 2™ and z™ are equal, ¥ m,n >
0,m,n € N.

Give that the 4th term in the expansion of ( px + %)n is g Find n and p.

1

12
Find the middle term in the expansion of (x — ﬂ> .

7
Find the middle terms in the expansion of (21'2 — %) .

1\27 . 1.3.5..(2n—1
;) jg 1:3:5..(2n—1) on

Prove that the middle term in the expansion of (x + o
Show that the coefficient of the middle term in (1 + x)?" is equal to the sum of coeffi-

cients of the two middle terms in (1 + z)*"~ 1.

Find the middle term in the expansions of;

2z 3y 20
L(F-%),

N

w

e e T
<8 5
8l
Na2
o

4. (14 )", and
5. (1—2x+2)"

. . . x 2n+1 . oy
Find the general and middle term of the expansion (5 + %) ; n being a positive

integer show that there is no term free of  and y.
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2 _
Show that the middle term in the expansion of <x — %) "is %(,2"1) (=2)™

If in the expansion of (1 + z)*3, the coefficient of (27 4+ 1)th term is equal to the
coefficient of (r 4 2)th term, find 7.

If the rth term in the expansion of (1 + )" has coefficient equal to that of the (r+4)th
term, find r.

If the coefficient of (2r + 4)th term and (r — 2)th term in the expansion of (1 + z)'®
are equal, find r.

If the coefficient of (2r + 5)th term and (r — 6)th term in the expansion of (1 + z)3°
are equal, fin "Cs.

Given positive integers 7 > 1,n > 2, n being even and the coefficient of 3rth term and
(r + 2)th term in the expansion o f (1 4+ )" are equal, find 7.

If the coefficient of (p 4 1)th term in the expansion of (14 )" be equal to that of the
(p + 3)th term, show that p =n — 1.

Find the two consecutive coefficients in the expansion of (3z — 2)7, whose values are
equal.

Show that the coefficient of (7 + 1)th term in the expansion of (14 x)"** is equal to
the sum of the coefficients of the rth and (r 4 1)th term in the expansion of (1 + x)".

11
Find the greatest term in the expansion of (7 — 139) .

Show that if the greatest term in the expansion of (1 4 2)?" has also the greatest
n+1

. . n
coefficient z lies between =5 and —

Find the greatest terms in the expansions of:
9110

Lo(248),

2. (4—2)7, and

3. (5+2)1

Find the limits between which « must lie in order that the greatest term in the expansion
of (14 2)3 may have the greatest coefficient.

If n € P, then prove that 62" — 35n — 1 is divisible by 1225.

Show that 24" — 2"(7n + 1) is some multuple of the square of 14, where n € P.
Show that 3*"*1 — 16n — 3 is divisible by 256, if n € P.

If n € P, show that

1. 4™ —3n —1 is divisible by 9,

2. 2°" —31n — 1 is divisible by 961,



63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

4.

75.

76.
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3. 3?"%2 _8n —9 is divisible by 64,
4. 2°"%5 _31p — 32 is divisible by 961 if n > 1, and
5. 32" —32n2 + 24n — 1 is divisible by 512 if n > 2.

If three consecutive coefficients in the expansion of (1 + )™ be 165,330 and 462, find n
and r.

If ay, as, a3 and a4 be any four consecutive coefficients in the expansion of (1 4 )",

ay + az __ 2ay

aitas az+ayg  az+as’

prove that

If 2nd, 3rd and 4th terms in the expansion of (x +y)" be 240, 720 and 1080 respectively,
find z, y and n.

If a, b, ¢ be thre three consecutive terms in the expansion of some power of (1 + z),
2ac+ab+be

prove that the exponent is =53——

If 14the, 15th and 16th term in the expansion of (1 + z)™ are in A.P., find n.

If three consecutive terms in the expansion of (1+ z)" be 56, 70 and 56, find n and the
position of the coefficients.

If 3rd, 4th and 5th terms in the expansion of (a + x)™ be 84, 280 and 560, find a,
and n.

If 6th, 7th and 8th terms in the expansion of (z + y)" be 112, 7 and %, find z, y and n.

If a,b, c and d be the 6th, 7th, 8th and 9th terms respectively in any binomial expansion,

b2—ac _ 4a
prove that >—- = 5.

If the four consecutive coefficients in any binomial expansion be a, b, ¢, and d, then
prove that (a) GTH’, bibc “td are in H.P., and (b) (be + ad) (b — ¢) = 2(ac® — b2d).

’ ¢

The coeflicients of the 5th, 6th and 7th terms in the expansion of (1 + )" are in A.P.
Find the value of n

If the coefficients of the 2nd, 3rd and 4th terms in the expansion of (1 4 )" are in
A.P., show that 2n2 —9n + 7 = 0.

If the coefficients of rth, (r + 1)th and (r 4 2)th terms in the expansion of (1 + z)" are
in A.P. show that n® —n(4r +1) + 472 —2 = 0.

If the coefficients of three consecutive terms in the expansion of (1+ )" are in the ratio
182 : 84 : 30, prove that n = 18.

If(l+z)"=Co+ Ciz+ Coraz? + -+ Cpa™, prove that

7.

78.

79.

C1+2Cy+3.C3++nC,= n.2" L
Co+2.C1+3.Cy+ -+ (n+1).C, = (n+2)2"" 1.

Co+3.C1+5C—-24+-+(2n+1).C,=(n+1)2"



80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.
99.

100.

101.

102.

103.

104.

105.
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C, on+l_q
n+l "~ n+l °

Cot+ S+ + -+

(e} Cs Cn 1
Com Gt Gmt ()" S =

2n—1
n+1°

Ci,Cs , Cs _

2.C0+22. 2+ 28 Q4 o Lo T L

‘n+l T n+l
Co-Cr+ Cr.Crs1+++ Cp O = i,
C2+C3+C3++C2=210
c C. C: Cn _ n(ntl)

(14" CL+" O+ +" Cp)2 =142 CL +7" Co + - +2™ Oy,
(14" CL 4" Co4 4" )’ =147 CL 4+ Co 4 -+ 4" Cs.
Co+5C14+9C+ -+ (4n+1).C, = (2n+1)2™
1-(1+2)C1+(14+22)Co— (14 32)C5+ - =0.

3.0, +7.C—2+11.C5+ -+ (4n—1)C,, = (2n — 1) 271,

on
n+1°

Cot+@+%+ =

"CETICH A" O Cy e 4 O Oy =

Co—2C—-143Cy— -+ (-1)"(n+1)C, =0.
a—(a—1)C1+(a—2)Ca—(a—3)Cs+ -+ (-1)"(a—n)C, =0.

1200+ 22.0, + 32C3 + - +n2.Cp, =n(n+1)2"2

163

If n > 3 and n € N, prove that Cy.abc —Ci(a—1)(b—1)(c—1) +Ca(a—2) (b—2)(c—

2)— -+ (-1)".Chla—n)(b—n)(c—n) =0
Co—22.01+3%Co— -+ (—1)"(n+1)>C,, =0, n > 2

n

Prove that r2.Cop " " =npg+n2p? if p4+q=1.

r=0

2 3 11 11__
2.00+%.01+%.Co+ -+ 23 .01 =311

Cr—2C+3Cs— -+ ()" IC, =14+ 3+:+ -+ 1

Co Ci1 | Co n Cn n.4n
T3t -t (=1) In+1~ 1.5.9..(4n+1)
Co _ G Cy ., ( 1ynCn _ nl(n—1)!
n n+1 +n+2 + ( ]‘) 2n — (2n)!
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c c c. c, 1 1

106. 7ot — s T — T U s = mon e
C C | C Cn !

107. AEQ - ﬁl‘f + 5125 -t (71)7153:77 - x(erl)”i(ern)'

108. Show that C2 — C? + C2 — -4 (—=1)".C%2 =0 or (—1)"/2. (:‘)2 according as n is odd or

even.

109. Show that ™C,..""Co+™ Cp_1."C1 +" Cr_g."Co+ - +™ Cy."C,. ="1" C,., where m,n,r
are positive integers and r < m, r < n.

110.2"C2 2" C2 42" C2 — .. 4 (—1)* 202 = (—1)".2"C,,.

(2n—1)!
T

111. Show that C; +2.C3 4+ 3.C3 + - + n.C2 =

Cc2 _ (2n+1)!
n+1 7 [(n+1)1]?

112. Show that C2+ S+ Z 4. +

113.Cy — 2°C1 + 32Cy — -+ (—1)"(n + 1)2C,, = 0, n > 2.

114.9+2+ %+ =2

115. %G1 G2 (—1)”(—@7?(%;5:%5
116. 2 — L+ Z— - + (-1)":55% = termmry
7.2 - L+ 22—+ ()" 255 = e

118.3.C0 + 3° P 4+ 38 L oo 4 3041 G 4L

119. If n is a positive integer in (14 )", show that 2.
1Rl = (=1)"?(2+n).

2
n

120. Show that > > €;0; =21 - 2 (i< j<n).

2(n!)?’?
0<i<n 0<j<n

121. Show that ™_,C? is equal to the coefficient of 2™y" in the expansion of [(1 4 ) (1 +
y) (z+y)]"

122. Prove that the sum of coefficients in the expansion (1 4 2 — 327)263 is —1.

123. If (1 4+ — 2x2)6 =14+a1z+ asx®+ - + aroz'?, show that as + a4 + ag+ - + a12 = 31.

124. Find the sum of the rational terms in the expansion of (2 4 /3)1°.

125. Find the fractional pert of %

126. Show that the integer just above (v/3 + 1)2" is divisible by 2"*%, ¥ n € N.

127.Let R = (5v5 + 11)>"™! and f = R — [R], where | | denotes the greatest integer
function. Prove that Rf = 42" +1,

128. Show that (101)°° > (100)°° + (99)°.



Binomials, Multinomials and Expansions 165

n
129. Find the sum of the series Z(—l)r O, [ o > L 23T _ 4 tom terms|.

130. Find the last digit of the number (32)32

131. Prove that 2(73)”1 BnCy, 1 =0, where k = %71 and n is a positive even number.

132.If tg, t1, to, t3, ... be ther terms of expansion (a 4 )™, prove that (to — to 4 t4 — ) +
(t1 —t3+t5— )2 = (a® + 2®)™

If (1424 2%)" = ag+ a12 + asz? + - + a2,2>", show that

133. a9 + a1 + ag + - + agsp = 3™

134. a9 —ay +ag — -+ asy, = 1.

135. ag + as + ag + -~ = 321

136.1f S, =1+q+¢*+-+¢"and S}, =1+ <%) + (%)2 + o F (%)n, q # 1, prove
that "T1C 477 Cy.8, 47 C3.85 + -+ Cpiy .S, = 27S).

137. Find the number of rational terms in the expansion of (v/9 + v/8)0%.

138. Find the sum of rational terms in the expansion of (/2 4 ¥/3)!®

139. Determine the values of 2 in the expansion of(2 + xlogyo2)® if the third term in tat
expansion is 1, 000, 000.

140. Expand (:L +1— %)3

141. Find the value of  for which the sixth term of (/2108(10-3%) 1 §/9(z—2)log3 " is equal
to 21 and coefficients of second, third and fourth terms are the first, third and fifth
terms of an A.P., given base of log is 10.

142. Find the values of z for which the sixth term of the expansion | 2!°82 VOrTHT 4

7

1 .

| is equal to 84.
glogQ(am*Hn

2

2n 102 2p 2n 1027
Cr+ 30 2" Co — 30 Oy o+ + e = 1.

1
143.If n € N, prove that w0 — (

2

144. Find the value of hm S,=0C, C’n 1+ ( )2 Cpog— 4 (=1)" <§>n Co.

145.If E = (66 4 14)2""! and F be fractional part of E, prove that EF = 202",
146. Find the digits at units, tens and hundreds place in the number (17)2%.
147. Show that for n > 3, n" ™' > (n +1)", forall n € P.

148. Show that 2 < (1+1)" <nV¥neN.



149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.
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Show that 19921998 — 19551998 _ 19381998 1 19011998 ig divisible by 1998.
Show that 53°% — 3333 is divisible by 10.

Let k and n be positive integers and S, = 1% + 28 + - + n*, show that ™*1C; Sy +™+1
CaSo+™ 1 CrSp = (n+ 1) —n — 1.

k n
Find Y ) " C{Ci, i < k.

i=1 k=1

3

r n 1+rloge 10
Prove that E (—1 C, (THiog, 107 = 0.
=0

Find the remainder when 3232° is divided by 7.
2n 2n
If Zar(x —2)" = Zbr(w —3)"and a, = 1V r > n, then show that b, =2""! C,, ;.
=0

Find the coefficient of 2% in (1 +2)'%%° 4 22(1 + 2)9% + 322(1 + )99 4 ... + 1001210,
Show that "C, +"*1 C,, +"2 C), 4+ - +"F C,, ="HEFL O 4
Find the coefficient of 2™ in (1 + x + 222 + 323 4 - 4+ na™)

Find the coefficient of 2*, 0 < k < n in the expansion of 1 + (1 + ) 4+ (1 + x) + - +
1+z)™

Find the coefficient of 23 in (z + )" + (z + )" YNz +2) + (2 + 1)" 2 (z +2)> + - +
(z+2)"

a+1 __a—1
a?2/3—al/341 a—all?

10
Simplify ( ) into a binomial and determine the term independent

of a.
10
Find the coefficient of 2% in (x + %) (1 — 2z +22?).
Find the coefficient of z* in the expansion of (1 + z — 2x%)°.

9
Find the term independent of z in (1 + x + 223) (31’2 — %) .

7
Find the term independent of z in (332 + 3;) (2—2)1

x

Find the term independent of z in (1 + z + 22 + z~3)%0.

n+4
Let (14 2%)% (1 + )" Zakm If a1, a2 and ag are in A.P., find n.

k=0
Show that "Cy +"" Cy 4+ Cy+ -+ 71O, =" O+ Co 4712 O 4o 471
Ch.

IfneNand (14+2+2%)" = ZEZO arx”, prove that (a) a, = agn_r, (b) ag+ a1+ az +

vt Apo = %(3" —ay), and () (r+1)ay41 = (n—1)a, + (2n —r + 1)a,_1, where
0<r<2n.



170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.
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If (1—2%)" = Zar.xr.(l — )32 where n € N, then find a,.
r=0

Show that the coefficient of middle term in the expansion of (1 + z)>" is double the
coefficient of ™ in the expansion of (1 4 z)?" L.

Find the value of r for which 2°°C, is greatest.

Committees of how many persons should be made out of 20 persons so that the number
of committees is maximum.

Show that the number of permutations which can be formed from 2n letters which are
either “a' or “b' is greatest when the number of a's is equal to the number of b's.

Find the consecutive terms in the expansion of (3 + 2:::y)7 whose coefficients are equal.

Find the sum of coefficients in the expansion of (1 4 5% — 72°)20°,

T S5x\™
If the sum of coefficients in the expansion of | 3 4 + 34 is 64 and the term with

greatest coefficient exceeds the third term by n — 1 and [«] = x, where [a] denotes the
integral part of a, find the value of a.

Find the sum of the coefficients in the expansion of (5p — 4¢)", where n € P.

Find the sum of the coefficients in the expansion of the polynomial (1 — 3z +2)2°! (1 +
5z — 5:2)%03,

If the sum of the coefficients in the expansion of (tz* — 2z + 1)™ is equal to the sum of
coefficients in the expansion of (z — ty)", where n € N, then find the value of ¢.
If ag, a1, as, ... ,a, be the successive coefficient of (1+z)", show that (ap—az+as— )2 +

(a1 —ag+as—..)> =ao+ar+ - +a,=2"
i : . 1\20
Find the greatest term in the expansion of V3 (1 + ﬁ)

In the expansion of (z +a)'?, if the eleventh term is the G.M. of the eighth and twelfth
terms, which term in the expression is thre greatest?

if the greatest term in the expansion of (1 + 2)?" has the greatest coefficient if and only

ifx € (%, %) and the fourth term in the expansion of (kx + %)m, is 7, then find the

value of mk.

3 110
Given that the 4th term in the expansion of (2 + %m) has the maximum numerical
value, find the range of values of x for which this would be true.

If n € P, show that p™ + 7 is divisible by 8.
If n € P, show that 32! + 27%2 is divisible by 7.

Show that the roots of the equation az?+ 2bx + ¢ = 0 are real and unequal, where a, b, ¢
are three consecutive binomial expansion with positive integral index.

Show that no three consecutive binomial coefficients can be in G.P. or H.P.
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191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.
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205.
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207.

208.

209.
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Let n be a positive integer and (14 z + 22)" = ag + a1 + azz? + az2® + - + ag,2®"
show that a2 — a + a2 — - + a2, = an.

Let n be a positive integer and (1 + = + x2)" = ag+ a1z + asx® + azx® + - + agpa®®

show that af —af + a3 — -+ (—1)"ar_, =3 Lan[l— (=1)"ay,).

Show that Y Y (C;+Cj)’=(n—1)"C,+2>", (0<i<j<n).

0<i<n 0<j<n

2n
Show that » )~ (z+j)cicj:n<22"*1—% cn).

0<i<n 0<j<n

Show that (Co+ C1) (C1 + Co) (Cy + C3) -+ (Cpy + Cy) = ZE 0105 ... .C

gn—1

If n be a positive integer, prove that 1'(n T 3,( T+ 5,(n st o ),1, =

n
ng, 3!
Prove that Z(—l)’.(,%—c) = 2(nt3)
r=0

If (1+2)" = Cy+ Crz+ Coz® + - + Cpz™ show that for m > 2, Co— Cy + Co —
(71)7171 Cm—l _ (71)m—1(n—1)(n 2)..(n— m+1)

(m—1)1

n! *

Find the G.C.D. of 277,01,271 03’271 05, ’271, anfl.

Show that Z" C,.sinrzcos(n —r)z = 2" ' sinnr.

r=0
a.Co+ (a—b).C1+ (a—2b).Co+ -+ (a—nb).C,, = 2" 1(2a — nb).
a>.Co—(a—1)2.C1+ (a—2)2.Co— -+ (—1)"(a—n)?.C,, =0, n > 3.

If ag, a1, az, ..., a, be in an A.P., prove that ag — a;.Cy + a2Cy — -+ (—1)"a,C,, = 0.

Show that n > 3, Z "(a—r)(b—r)Cr.=0.
r=0
Show that n > 3, Z "(a—r)(b—r)(c—7r)C,=0.
Find the value of n for which C" >+ 22(51 + M = 16 is true.

n

If ag, a1, as, ..., a, 1 be an A.P., prove that Z%HOI« = 2"71(a1 +ani1).
Ifs= "H [2a +nd] and S =a+ (a+d)C1+ (a+2d)Ca+ -+ + (a + nd) C,, prove that
(n+ 1)5 =2".s.

If (1 +r+ai++ 2P\ =ap+ ax + agz?® + - + anpz"?, show that a1 + 2as + 3as +
--+np.anp:%np(p+1)”.

150, 21718
Show that Z (k+1)(k+2) — 16.17 °
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214.
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227.

228.

Binomials, Multinomials and Expansions 169

Cn 37 nl
Show that S — "+ 7t (71)n3n+1 = 1.4.5..,(§n+1)
1
Show that Zﬁ =
gr+3 4n+3-1-3(n+3)(3n+8)

Prove that Z CESO T+2)(r+3) T T D nt ) (ne3)
Prove that z;) 20 = %

™

3T+4CT 7 1

Show that Z (r+1)(r+2)(r+3)(r+4) ~ (n+1)(n+2)(n+3)(n+4) "
[4n+4 o Zzzon+4 Ckgk}

n—3 (2n)!

mn)t

ShOW that ZO C,,-C,,-Jrg = m
Show that the sum of the product taken two at a time from Cy, C1,Co, ... ig 92n—1 75,2(7:1 11))
If S, = CoCy + C1Cy + -+ + Cpp 1 Cp and 2221 = 2 find n.
Show that CF + G+ G + - + 2o = @+2n 1L
Show that Cy.2"C,, — C1.2""2Cn + Cy. 2" 1C,, — - = 2™
Show that > 3 (i+ ) (Ci+ Cj+ C,C;p) = n>.2" + n(22"*1 - %) 0<i<

0<i<n 0<j5<n
j<n].
If(1+x+ 932) =ap+ a1z + asx® + - + a2, 22", show that agas, — a1a2r+1 + a2G2r42 —
-+ Aop—2rA2n = Ap4r-
Ifa,= —1'32"54"6(%;1), then show that az, 41+ aia2, + aza2n,—1+ -+ anGpy1 = %
If P, denoted the product of all coefficients in the expansion of (1 + z)", show that
Ppi1 _ (n+1)"
P, — n! -

& 3( C, 2 1
Show that Zr (CT;) = n(n+1)%(n+2).

r=1
Show that C3+ C7 + Ci1+ ... = % [27171 —2n/? sin%].
If(l+z+ %)% = ag + a12 4 agx® + - = agz??, then find the value of ag + as + ay +

-+ ass.

If (1+2+2%)% =ag+ a1z + asz® + - = ago2’®, then find the value of a3 + az + a5 +
-+ asr.

Show that Cy — % + %_ ot ( 1)n & + n(n—1) + (n71)2(n72) +oe 712_? = RTH
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Prove that C1 — (1+45)Ca+ (145+3)Ca— -+ (=1)" (1 45+~ +5)Cn
Find the coefficient of % in the expansion of (1 + 2z + 322)%.

Find the coefficient of z3y*2? in the expansion of (22 — 3y + 4z)°.

Find the number of terms in (22 — 3y 4 42)'%.

Find the coefficient of z* in the expansion of (14 z 4 z2)3.

Find the coefficient of 1% in (1 + = + 22 + 2% + 2% + 25)3.
Find the coefficient of =7 in (1 + 3z — 22°)1°.

Find the coefficient of z3y*2% in (zy + yz + 22)°.

Find the greatest coefficient in (w4 2 4 y + 2)'°.

Find the number of terms in (a + b+ ¢ + d + €)%,

If |z| < 1, show that (1 +)"2 =1+ 22+ 322+ 42 + - to co.

Find a, b so that the coefficient of z" in the expansion of

. 1 12
hence find the sum of the series 1 + 3(5) + 5(5) + .-

Sum the series 1 +%+%+ -+ to oo.

If |z| < 1, show that (1 —z) ' =1+z+ 224+ 2%+ ... to co.

If |z| <1, show that (1+z) ' =1—z+22—2°+ ... to co.

If |z| < 1, show that (1 + )72 =1— 2z + 32% — 423 4 ... to co.
If |z| < 1, show that (1 — )3 =1+ 3z 4 622+ 102° + ... to co.

If |z| < 1, show that (1 + )% =1—3z + 62% — 102® + ... to oc.

If |z| < 1, show that (14 z)/° = 17%+%§;f%§;+ ... to oo.
—3/2
Find the first four terms of (%ﬂf — %) / .

Find the first three terms of <1 — %)72

Find the coefficient of z° in (1 — 2z)%/2

Find the (r + 1)th term and the its coefficients in (1 — 22)7%/2,

3]

170

) may be 2n + 1 and
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Find the cube root of 1001 correct to four places of decimal.

Show that (14 22 + 32% 4 42° + ... to 00)*2 = 1 4 32 + 622 4+ 102° + ... to oo, |z| < 1.

Sum the series 1 + 1+ +48+48 + ... to co.

Sum the series 1 +5 24 m + 621; ?8 + ... to oco.

Ify=a—a2+2%—2*+ ... to 0o, show that = y + 12+ 3° + ... to oo.

Show that the coefficent of z™ in (1 +z + = ) ~1is1,0,—1 as n is of the form 3m, 3m —
1,3m+ 1.

1,2 ,3
Show that%:2[g+§+ﬁ+... to oo].
Sumtheser1es1+2,+3.+4.+ . to oo.
Showthatlog2:f§+§4+5~%+...tooo.
Ify:z—%z-i-,——z . to oo, show that x =y + % +3,+ . to o0.

If o, 8 be the roots of the equation az? + bx 4+ ¢ = 0, show that log(a — bz + cx2) =
loga+ (a+ )z — +5 2 22 4 . to oo.

Sum the series %—l—%—l— % + - to o0.
Sum the series %+%+%+ -+ t0 00.

L1, 142 123
Sum the series 5; + ;’, ol + +

+ -+ to oo.

Sum the series 11‘?+~22¥?+§;+ -+ to 00.

Prove that 1 —log2 = §%+£~5+£~7+-~- to oo.

Prove that log(1 4 z) —log(z — 1) = 2[%—5—#—1—%4— -+ to oo].

1
35T to oo.

Prove that logz —log(z + 1) —log(x — 1) = ;15 + 591;3 +
1+z 1—z z? xt zf
Prove that log(1 4+ z) " log(l —z) % = 2[13 +3g+sgt o to oo]

If «, B be the roots of the equation 22 — px + ¢ = 0, show that log(1 + pz + gz?) =
(oz—l—ﬁ):r—#ﬁ—l—a 503 4 ... to 00,



Chapter 8

Determinants

Let a, b, ¢, d be any four numbers, real or complex, then the symbol

cd

ab‘

denotes ad — be and is called a determinant of second order. a, b, ¢, d are called elements of
the determinant and ad — be is called value of the determinant.

As you can see, the elements of a determinant are positioned in the form of a square in
its designation. The diagonal on which elements aa and dd lie is called the principal or
primary diagonal of the determinant and the diagonal which is formed on the line of bb
and cc is called the secondary diagonal. A row is constituted by elements lying in the
same horizontal line and a column is constituted by elements lying in the same vertical line.
Clearly, determinant of second order has two rows and two columns and its value is equal to
the products of elements along primary diagonal minus the product of elements along the
secondary diagonal. Thus, by definition

’2 4

3 9‘:18—12:6

Let aq, ag, as, by, by, b3, 1, c2, c3 be any nine numbers, then the symbol

ai az as
by by b3
C1 C2 C3
is another way of saying
by b by b b1b
a1 2 03| ay 1 03 102
C2 C3 C1 C3 C1C2

ie. LL1(b263 — bgCg) - ag(b103 - bgcl) + ag(blcz - b261)

Rule to put + or - before any element: Find the sum of number of rows and columns
in which the considered element occus. If the sum is even put a + sign before the element
and if the sum is odd, put a — sign before the element. Since a; occurs in first row and
first column whose sum is 1 + 1 = 2 which is an even number, therefore + sign occurs for
it. Since as occurs in first row and second column whose sum is 1 + 2 = 3 which is an odd
number, therefore — sign occurs before it.

We have expanded the determinant along first row in previous case. The value of determi-
nant does not change no matter which row or column we expand it along. Expanding the
determinant along second row, we get

01 G2 O3 as a a; a a; a
2 a3 1 a3 1 a2
b1 be b3 | =—b1 + by —
Cy C3 Cc1 C3 C1 C2
C1 C2 C3

= —bl(a263 — a3(32) + bg(alcg - agcl) — bg(a162 — agcl)

172
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= al(bZCS - 5302) - a2(5103 - 5301) + a3(5102 - 5201)

Thus, we see that value of determinant remains unchanged irrespective of the change of row
and column against which it is expanded.

Usually, an element of a determinant is denoted by a letter with two suffices, first one
indicating the row and second one indicating the column in which the element occcur. Thus,
a;; element indicates that it has occurred in ith row and jth column. We also denote the
rows by Ry, Ry, R3 and so on. R; denotes the ith row of determinant while R; denotes jth
row. Columns are denoted by C1, Cy, C'3 and so on. C; and C; denote ith and jth column
of determinant. A is the usual symbol for a determinant. Another way of denoting the
determinant

ay by ¢
az by co
az b3 c3

is (a1bac3). The expanded form of determinant has n! terms where n is the number of rows
or columns.

Ex 1. Find the value of the determinant

1214
A=3109
216
4 39|, ]34
SRR IR PRI

Expanding the determinant along first row = 1(24 —9) —2(18 —18) +4(3 —8) = —5

Ex 2. Find the value of the determinant

317
A=1]502
253
Expanding the determinant along second row,
17 37 31
s=ofs il ol -2

= —5(3—35)—2(15—2) = 134

8.1 Minors

Consider the determinant

A= |ag a2 a

as1 as1 ass

ai; a2 013'

If we leave the elements belonging to row and column of a particular element a;; then we
will obtain a second order determinant. The determinant thus obtained is called minor of a;;



Determinants 174

and it is denoted by M;;, since there are 9 elements in the above determinant we will have 9
minors.

For example, the minor of element

a12 ai3
a1 = = Mo
asz @33
The minor of element
a1l ai3
aszy = = M3
a21 a23

If we want to write the determinant in terms of minors then following is the expression
obtained if we expand it along first row

A= (—1)""ay M+ (1) 2 aia Mg+ (—1)' 3 a3 M5

= a11 M1 — a1oMi2 + a3 M3

8.2 Cofactors

The minor M;; multiplied with (—1)**7 is known as cofactor of the element a;; and is denoted
like A” Thus, we can say that, A = a;1A11 + a12A12 + a13A13

8.3 Theorems on Determinants

Theorem 6

The value of a determinant is not changed when rows are changed into corresponsing columns.

Proof
Let
ai bl C1
A= ag b2 Co
as bg C3

Expanding the determinant along first row,
A = al(b203 — b362) — bl(a203 — a302) + C1(a2b3 — a3b2)

If A’ be the value of the determinant when rows of determinant A are changed into corre-
sponding columns then

aj a2 as
by by b3
C1 C2 C3

A=

= a1(bacs — byca) — az(bics — bser) + az(bica — bacy)

= al(bgc;:, — b302) — a2b163 + a2b301 + a3b162 — a3b2(:1
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= al(b203 - b302) - 51(0203 - a302) + Cl(azbs - a3b2)
Thus, we see that A = A’. 0
Theorem 7

If any two rows or columns of a determinant are interchanged, the sign of determinant is
changed, but its value remains the same.

Proof
Let
aq b1 C1
A= ag bg C2 |,
az b3 c3

Expanding the determinant along first row, A = ay(bacs —bsca) —bi(azes —ascs) +c¢1(azbs —
azby)

az b3 c3
az by co
ay by ¢

Now A’ = [R1 ¢ R3]

= ag(bgcy — bica) — bg(azcy — area) + c3(asby — arbs)

= agbycy — agbyco — byasco + bzaico + czashy — czaibox

= —ay(bacz — bgca) + bi(azes — agea) — c1(azbs — asgbs)

=-A O
Theorem 8

The value of a determinant is zero if any two rows or columns are identical.

Proof
Let
ay by ¢
A= ag b2 Co
ai b1 C1
a1 by ¢ a1 by a1
A= as by co —las by co :—A[Rl <—>R3]
ai by ¢ a1 b1 a1
Thus, A=-A=2A=0=A=0. O

Theorem 9

A common factor of all elements of any row(or of any column) may be taken outside the sign
of the determinant. In other owrds, if all the elements of the same row(or the same column)
are multiplies by a constant, then the determinant becomes multiplied by that number.
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Proof

ay by ¢
A= a9 b2 (&)
az b3 c3

Expanding the determinant along first row, A = a1 (becg —bsca) —bi(azcs —asca) + c1(azbs —
azby)

and

ma; mby mey

= mal(b263 — b3C2) — mbl(CLQCg — agCQ) + mcl(agbg — agbg)
=mA O
Theorem 10

If every element of some row or column is the the sum of two terms, then the determinant
is equal to the sum of two determinants; one containing only the first term in place of each
term, the other only the second term. The remaining elements of both the determinants are
the same as in the given determinant.

Proof

We have to prove that

ap + oy bl (6] ay bl (4] (e5) bl (4]
as + Qi b2 Co| = |as b2 co| + | e b2 Co
a3+0é3 b3 C3 as bg C3 Qs b3 C3
Let
aj + o1 b1 C1
A= as + Qg b2 Co
a3z + as b3 C3
Then,
by ¢ b1 a1 b1 c1
A= — .
(a1 + aq) by cs (az + as) by cs + (ag + a3) by o
o b2 C2 bl C1 b1 C1 bg (&) bl C1 b1 C1
@ bg C3 2 b3 C: a3 bQ C ! b3 C: bg o3 b2 Co
ay b1 (&1 [e5] b1 (6]
= | as b2 co|l+ | b2 Cca|.
as b3 C3 Qs b3 C3
Theorem 11

The value of a determinant does not change when any row or column is multiplied by a
number or an expression and is then added to or subtracted from any other row or column.
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Proof

We have to prove that

ay bl (6] a1+mbl b1 C1
ao bg Cy| = a2+ml)2 b2 [6))
as bg C3 a3+mbg b3 C3
Let
ar+mby by 1
A= a2+mb2 bQ Co
a3+mb3 b3 C3
then
aq bl C1 mb1 bl C1
A= as bg co| + mbg bg Co
as bg C3 mb3 b3 C3
a; by ¢ by by 1
= las b2 co|+m b2 b2 Co
as bg C3 bg b3 C3
ap b1 C1
=l az b2 Co +mO:A
as b3 C3
8.4 Reciprocal Determinants
If
a; az as
A=|b by b3
C1 C2 C3
then
A Ay As
B1 B2 B3 = AZ
Cy Cy C3

where capital letters denote the cofactors of corresponding small letters in A ie. A4; =
cofactor of a;, B; = cofactor of b; and C; = cofactor of ¢; in the determinant A. Here, the
cofactors are sometimes called inverse elements and determinant made from them is called
reciprocal determinant.

We know that,

a1 Ay +azAs+az3Az = A,b1B1 + b2 By + b3C3 = A, c1C1 + c2Co + ¢c3C3 = A, a1 By + a2 Bz +
a3B3 = 0,01 A1 + by A+ b3A3=0,a1C1 4+ a2Cs 4+ a3C5 = 0,c1 Ay + oAz + c3A3 = 0,0:C1 +
bQCg + bgcg = 07 ClBl + CQBQ + 0333 =0. Let
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A As Az
By By Bs
Cy Cy Cs

Alz

Now,

A Ay Ag
B B, B
Cy Cy Cs

ap az ag
by by b3
C1 C2 C3

AN =

= | b1 A1 +bpAs+b3As b1 B+ baBy+b3C3 b1Cy + baCo + b3Cs

a1A1 + asAs + azAs a1B1 + asBs + a3Bs a1Cy + asCs + a3C3 '
ClAl + CQAQ + (13A3 ClBl + CQBQ + 6333 0101 + (5202 + (,’303

A0 O
0AD0
00A

AA; = A®
Ay =A2
Similarly, if A is a determinant of the n-th order and A’ is the reciprocal determinant, then
A/ — Anfl
which can be proven by induction.

Any minor of A’ of order r is equla to the complement of the corresponding minor of A
multiplied with A%, provided that A = 0. The proof of this is straightforward and has
been left as an exercise to the reader.

8.5 Two Methods of Expansions
Let

ai bl C1 l

@ by as by com
A=lay by c3|, and D=|"2 "2 ™2
as b3 C3 N
az bz c3

U m' n r
Let Ay, By, ... be the cofactors of ay, by, ... in A.

In the expansion of D, the sum of the terms containing r is rA: every other term contains
one of the three [, m, m and one of the three I’, m’, n’.

. l b .
Again, a,l and |2 2| are complementary minors of A;
U r bg C3
hence, cofficients of /I’ in D = — cofficient of a1r in D = — coefficient of a; in A = —A4;
and similarly, coefficient of mn’ in D = — coefficient of cor in D = — coefficient of ¢ in
A=—-Cs

Thus, we can show that
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D =rA —[All' + Bomm' + Caonn’ 4+ Comn’ + Bam'n + Aaonl’ + Cin/l + Bilm' + Asl'm].

8.6 Symmetric Determinants

A determinant of nth order is often wirtten in the form

a1l a12 @13 - QAin

a21 G22 G23 -+ G2n
a31 a3z2 G33 - A3p [ = (alla22~~-7ann)
Gpl An2 An3 Ann

Denoting any element by a;;, the determinant is said to be symmetric if a;; = aj;. If a;; =
—aji, the determinant is skew-symmetric: it is implied that all the elements in the leading
diagonal are zero. For example, if

a h gl
0 2 vy
A= hob fm>A2: -z 0 vy
Il mmn 0 y
the determinant A; is symmetric and As is skew-symmetric. We also say that A; is bordered

by I, m, n.

If Ajj, Aj; are the cofactors of the elements a;j;, aj; of a symmetric determinant A, then
A;; = Aji.

For A;; is trandformed into Aj;, by changing rows into columns. Thus, if A = (a11 a2 ass)

a1l ai3
a21 23

a11 a3
a12 G432

a1l ai2
asip as2

A23 = - = A32-

Similarly, for the skew-symmetric determinants A;; = (—) 1" 'Aj;, where n is the order
of the determinant. Also, every skew-symmetric determinant of odd order is equal to zero
(follows from the definition of skew-symmetric determinants).

8.7 System of Linear Equations

8.7.1 Consistent Linear Equations
A system of linear equations is said to be consistent if it has at least one solution.

Example: (i) System of equations = + y = 2 and 2x + 2y = 7 is inconsistent because it has
no solution i.e. no values of z and y exit which can satisfy the pair of equations. (ii) On the
other hand equations x +y = 2 and x —y = 0 has a solution = 1, y = 1 which satisfies the
pair of equation making it a consistent system of linear equations.

8.8 Cramer's Rule

Cramer's rule is used to solve system of linear equations using determinants. Consider two
equations ag + b1y + ¢1 = 0 and asx + boy + co = 0 where % + ZA;
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Solving this by cross multiplication, we have,

T . —y . 1
bica —bacr  aica—azer  arbs —ashy
T —y 1
by c1 ap c a; by
by c2 a2 C2 az by

8.8.1 System of Linear Equations in Three Variables

Let the given system of linear equations given in x,y and z be a;z 4+ by + c12 = d1, asx +
boy + coz = do and asx + bsy + c3z = ds

Let
a; by ¢ di by 1 a; di ¢ a; by dy
A=laz by caf, A1 =|[d2 ba c2|, A2 =|az da 2|, A2 =|az by daf.
as bg C3 d5 b3 C3 as d3 C3 as b5 d5
Let
A#0
dy b1 ¢ a1 +by+ciz by a1 a1x by ¢
Arp=|ds ba co| =|agx + by + coz by co| =|asx by ¢ [Cl *)Cl*be*ZCg]
d3 b3 C3 a3x+b3y+03z bg Cc3 asx b3 C3
ay b1 C1
=x|ay by co :xA:Mv:ﬁ
A
az bz c3
Similalry,
Ay As
Y=RA'* A

This rule which gives the values of x, y and z is known as Cramer's rule.

8.8.2 Nature of Solution of System of Linear Equations
From previous section we have arrived at the fact that A = Ay, yA = Ag, 2A = Ag
Case I. When A # 0

In this case unique values of z, y, z will be obtained and the system of equations will have
a unique solution.

Case II. When A =0
Sub Case I. When at least one of Ay, A, Ajs is non-zero.

Let Ay # 0 then A; = zA will not be satisfied for any value of z because A = 0 and hence
no value is possible in this case. Same is the case for y and z.

Thus, no solution is feasible and system of equations become inconsistent.
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Sub Case II. When A1 = Ay =A3=0

In this case infinite number of solutions are possible.

8.8.3 Condition for Consistency of Three Linear Equations in Two
Unknonws

Consider a system of linear equations in x and ym a1z + b1y +c¢1 = 0,a2x + boy +c2 =0
and azz + b3y + c3 = 0 will be consistent if the values of z and y obtained from any two
equations satisfy the third equations.

Solving first two equations by Cramer's rule, we have

— 1
eyt ~ k(say)
bl C1 ayp Cq ay bl
by c2 az C3 az bo

Substituting these in third equation we get,
k’[ag(blcz — bzcl) — b3(a102 — a201) + 03(a1b2 — azbl)] = 0
ag(blcg — bzcl) — bg((lng — a2(31) + 03(a1b2 — azbl) =0

ap by c;
az by c3
az bz c3

=0

This is the required condition for consistency of three linear equations in two variables. If
such a system of equations is consistent then number of solution is one i.e. a unique solution
exists.

8.8.4 System of Homogeneous Linear Equations

A system of linear equations is said to be homogeneous if the sum of powers of the variables
in each term is one. Let the three homogeneous equations in three unknowns z, y, z be
a1 4+ b1y + c1z2 = 0, asx + bay + coz = 0 and asx + bsy + c3z2 =0

Clearly, x = 0,y = 0, z = 0 is a solution of above system of equations. This solution is called
trivial solution and any other solution is called non-triivial solution. Let the above system
of equations has a non-trivial solution.

Let
a1 by
A= ag b2 Co
as b3 C3
From first two we have
T —y z
= = = k(sa;
bl (6] ay Cp ay bl ( y>
b2 Co as C2 as b2

Substituting these in third equation we get
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k[ag(b102 — b201) — bg(alcg — LLQCl) + 03(a1b2 — azbl)] =0
a?,(blc2 - bzcl) - b3(a102 - azcl) + C3(alb2 - a2bl) =0

ay by ¢
az by ¢y
asz by c3

=0

This is the condition for system of equation to have non-trivial solutions.

8.9 Use of Determinants in Coordinate Geometry

8.9.1 Are of a Triangle

The area of a triangle whose vertices are (1, y1), (z2, y2) and (z3,y3) is

1$1y11

A=z yp 1
2

3 Y3 1

8.9.2 Condition of Concurrency of Three Lines

Three lines are said to be concurrent if they pass through a common point i.e. they meet at
a point.

Let a1z + biy + ¢1 = 0 agx + bay + co = 0 and azx + b3y + ¢3 = 0 be three lines.
These lines will be concurrent if

ay by 1
az by co
as b3 C3

=0

8.9.3 Condition for General Equation in Second Degree to Repre-
sent a Pair of Straight Lines

The general second degree equation az? + 2hay + by® 4+ 29z + 2fy + ¢ = 0 represent a pair
of straight lines if

@ 9
~ o
o %<

8.10 Product of Two Determinants

Let
ai a2 asg Ty T2 T3
Ap=|by by b3|, D= |y1 Y2 ¥3
€1 C2 C3 Z1 22 23
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then A1Asq is defined as

a121 + a2 + a3zT3 a1y1 + a2y2 + azys ai1z1 + a2z + azzs
biz1 + bawa + b3rz biyr + baya + b3ys biz1 + bazo + b3z3
171 + C2T2 + c3T3 C1Y1 + CaYa + C3Y3 c121 + Caza + €323

ASPADES

8.11 Differential Coefficient of Determinant
Let

fi(z) faolz) fa(z)]
g1(z) g2(x) gs(w)

Y= g
hl(l’) hQ(CE) hg(ﬂ?)

I

where f;(x), gi(z), hi(z), i = 1,2, 3 are differentiable functions of .

Now, y = fi(z)[ga(z)hs(x) — ga(x)ha(x)] — faolx)[g1(z)ha(z) — ga(x)hai(z)]+
f3(z) [g1(x) ho(x) — go(z) ha(2)]

) | + fi(@) [g5(z) ha(z) — g5(x) ha(z) + g2(z) hi(x) —
g3(x) hy(z)] + —f3(z) [g1(z) hs(z) — gs(z) ha(z)] + —falz) [91(2) ha(z) — g1(z)h5(z) +
gi(@) hy(z) — g3(x)hi(z)] + fi(2)[g1(x) ha(z) — go(x)ha(z)] + f3(2)[gi(x)ha(z) —
95(x) hi(z)x + g1(x) hy(x) — ga(z) by ()]
filz) fi(z) fi(x) fi(x) fa(z) fa(x) fiz) folz) f3()
=|g1(z) g2(x) gs(x) |+ |gi(2) go(x) ga(z) |+ |gi(x) ga2() g3(w)
hi(z) hao(x) hs(z) hi(z) hao(x) hs(z) hi(x) hh(z) hi(z)

497
1. Evaluate |3 5 7
545
1a a®
2. Show that |1 b b?| = (a—b)(b—c)(c—a).
1e¢c?
12 4
3. Evaluate |1 3 9 [ making use of relations between 2nd and 3rd column.
1416

49 2
4. Evaluate |3 5 7.
816

5. Evaluate |22
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10.

11.

12.

13.

14.

15.

16.

17.

18.

497
Evaluate |3 5 7
545
12 22 32
Evaluate |22 32 42|.
32 42 52
ab c
Let a, b, ¢ be positive and unequal. Show that the value of the determinant | b ¢ a]| is
cab
negative.
b+ca+ba
Evaluate [c+a b+c b|.
a+bc+ac
Evaluate ITraiay a3 a1 l+azas .
ay ag 1+a3
a+b+2c a b
Show that c b+c+2a b =2(a+b+c)
c a c+a+2b
a—b+ca+b—ca—-b—c
Show that [b—c+a b+c—a b—c—a|=4(a®+b>+ ¢ — 3abe).
c—a+bc+a—-bc—a—-0>
a—b—c 2a 2a
Prove that 2b b—c—a =(a+b+ec)
2c 2c c—a—>b
T Yy z 1 11
Prove that |22 ¢ 22| = |22 y? 22| =(z—y) (y—2) (z — ) (zy + yz + 2x).
Yz zr xY 22y 28

at+1 ab ac
Prove that ab b2+1 be =1+a’+b>+c2
ac be A+1

1+a1 1 1
Prove that 1 l14a 1 :a1a2a3<1+ail+ai2+ai3)_
1 1 1+as

z x? 1+a°
If , 3, z are all different and if |y y? 14 ¢%| = 0, prove that zyz = —1.

2 22 1+2°
b+c a a
Evaluate b c+a b
c c a+b




19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Determinants 185

(b+¢)? @ a?
Show that ¥ (c+a)? b2 = 2abc(a+b+c)>.
c? (a+0b)?
15—2 110
Solve the equation |11 —3z 1 16| =0.
7T—x 113
a—x ¢ b
If a + b+ c =0, solve the equation c b—xz a |[=0.
b a c—x
abc agx
IfDi=|de f|l,Da=|b h y| and d = tx,e = hy, f = tz, prove without expanding
g hk ck z
that D1 = 7tD2
a bc abc a a? a®
Show without expanding thet [b ca abe|=|b b* b3|.
c ab abe cc? el

If a, b, ¢ are positive and are the pth, gth, rth terms of a G.P., respectively, then show
loga p 1
logh ¢ 1
loge r 1

without expanding thet =0.

Evaluate [1 1+2 1

Evaluate [a b c|.
33 3

1b+ec b2+c?
c+a c2—|—a,2 .
a+b a’®+b?

—_

Evaluate

—_

a a®—be
b b2 — ac

¢ ct—ab

—_

Evaluate

—_

1 be be(b+c)
Evaluate |1 ca ca(c + a)
1 ab ab(a +b)

lab+c
Prove that {1 b ¢+ a|=0.
lcc+a
be p 1
If a, b, ¢ are the pth, ¢qth, rth terms respectively of an H.P., show that [ca ¢ 1| =0.
ab r 1




32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

If

r—2

2243z z—1 z+3
zr+1 1—2z x—4

r+4 3z

Determinants

and t are constants, find the value of .

Prove that

a b ¢
a? bv? 2
a® v A

If a, b, c are in A.P., show that

If w is a complex cube root of unity, prove that

Evaluate

Evaluate

Evaluate

Evaluate

Show that

Show that

Show that

Show that

Show that

a+b b+e
b+cc+a
c+a a+b

r4+a x+b
y+a y+b
z4+a z+b

0 p—gq
g—p O
r—pr—gq

a+2b a

a b—c
a+c b
a—b b+a

c+a
a+b
b+c

xr+c
y+c
zZ+c

p—r
qg—r
0

a a+b a+2b
a+b
a+b a+2b a

c+b
c—a
c

=abc(a—0b)(b—c)(c—a).

z+lzxz+22x+a
z+2z+3 x+b
r+3 x+4 x+c

=0.

1 w w?

ww?l|=0
2

w1l w

= —2(a®+ b3+ ¢* — 3abc).

=0.

=0.

= 9b%(a +b)

and (a + b + ¢) have the same sign.

186

= pzt+ qz® + r2? + sz 4+t be an indentity in x, where p, q,7, s
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b +c? ab ac
45. Evaluate ab  A4+ad® be |
ca b a®+b?
(b+c)? 2 b
46. Show that 2 (c+a)?  a? = 2(ab+ be + ca)®.
b a®>  (a+0b)?
(a+b)? ca be
47. Show that ca (b+c¢)? ab = 2abc(a+b+c)>.
be ab  (c+a)?
@ ¢ c
48. Show that | a # a | =4abc.
boob e

Solve the following equations:

aax

49. |a a a|=0.
bz b
r 2 3

50. |6 z+4 4 =0.
7 8 x+8
r 2 3

51. |4 =z 1|=0.
r 25
r+a b c

52. a x+b ¢ =0.
a b x+4c
34+x 5 2

53. 1 7+z 6 =0.
2 5 3+=x

Show without expanding at any stage that:

a+bb+cc+t+a ab
54. |b+c c+a a+b|=2|b ¢
b+cc+aa+d ca
b+cc+a a+b ab
5. |g+r r+pp+q|=2pgq
y+zz+x x+y Ty
1 cosa—sina cosa + sina
56. [1 cosfB —sinf cosf +sinf
1 cosy—sinvy cosvy+siny

C
a

b

C
Tl
z

=2

1 cosa sina
1 cosf sinf
1 cosvy sinvy

187



57.

58.

59.

60.

61.

62.

63.
64.

65.
66.

67.
68.

69.

70.

Determinants

(a—1)2 a*+1 a

(b—1)2 B*+1 b|=0
(c=1)?% +1 ¢

0 ¢ b

—c 0 a|=0.

—b —a 0

1a b laad
1bca|l=|10b0b2

1 ¢ ab ]_cc2

a b ¢ ax by cz

x oy z|=|a? y? 22
Yz zx Y 1 11
abc y bgq Ty z
zyzl=|zap|l=|pqgr
pqr zecr abc

find the value of the following determinant

m! (m+1)! (m+2)!
(m4+1)! (m+2)! (m+3)!].
(m+2)! (m+3)! (m+4)!

188

Solve the following system of equations using Cramer'r rule: x +y =4, 2z — 3y = 9.

Solve the following system of equations using Cramer'r rule: 2z —y+32 =0, x+y+2 =

6, z—y+z=2.

Determine the nature of solution for the equations: 2x + 3y = 6, 4z + 6y = 10.

Show that the following system of equations is consistent t +y—z =1, 20+ 3z + 2z =

4, 4z 4+ 3y + 2z = 16.

Determine the nature of solution for the equations: x +y = 2, 2z 4 2y = 4.

Determine whether the following system of equations is consistent: 2x + y = 13, 6x +

3y=18, v —y=—3.

Show that the system of following euqations has non-trivial solutions: z + y — 6z =

0,3z—y—2x=0, z—y+2z=0.

For what value of k the following system of equations possess non-trivial solution. Also,
find all the solutions of the system for that value of k, x4+ y—kz=0, 3x —y — 2z =

0, z—y+2zx=0.

Solve the following equations by Cramer's rule:

71.
72.
73.

4.

r—2y=0; Tz + 6y = 40.

z+y+2=9 3x+2y—32=0; z—x =2.

r—y+2=0; 20 +3y—52=—1; 3v —4y+ 2z =—1.

204+ 3y—32=0; bx —2y+22=19; v+ Ty — 5z =5.



75.

76.
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zH+y+z=1; ax+by+cz=k; a’zx+b’y+ c*z = k* where a # b # c.

3r+2y—2z=1; —x4+y—4z=1; 2z —3y+4z=28.

Determine whether the following system of equations have no solution, unique solution or
infinite number of solution:

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

3z + 9y =5; 9z + 27y = 10.

S5r—3y=3;, x+y=".

T+ 2y =2>5; 3z + 6y =15.

20+3y+z2=5 3x+y+52=T7; v+4y — 22 =3.
T+y—z=-—2; 6z+4y+ 62 =26; 2z + Ty + 4z = 31.
r+4y=9; 2 +8y =18, y—2x =0.

Find the value of k such that following system of equations possess a non-trivial solution
over the set of rationals (). For that value of k find all the solutions of the system:
r+kysz=0; x+ky—22=0; 20 +3y—4z=0.

If a, b, ¢ are different, show that the following system of equations has non-trivial solu-
tions only when a +b+c¢ =0, ax +by+cz2=0; bx +cy+az=0; cz+ay+bz=0.

what value of A the following system of equations has non-trivial solutions: 3z —y+ 4z =
0; oy —32=0; 6z + 5y —Az=0.

n! (n+1)! (n+2)!
(n+1D! (n+2)1 (n+3)!
(n+2)! (n+3)! (n+4)!

, then show that D 4

For a positive integer n, if D = W

is divisible by n.

Let the three digit numbers A28,3B9, 62C, where A, B, C' are integers between 0 and 9,

A26
be divisible by a fixed integer k, show that the determinant | 8 9 C'| is divisible by k.
2 B 2
accl $02 ICS
Evaluate [YCy YCy YC3
ch ZC2 ZCS
pbe
Ifa#p,b#qc#rand|a q c|=0, then find the values ofp%a-i-ﬁ-i-?,ic.
abr
(x—a)®> b c?
Show that a? (x—b)2 = 2%(z — 2a) (x — 2b) (z — 2¢)
a® ¥ (z—c¢)?

a? b2 c?
(l‘ + r—2 + z—2b + 1:721,')'

a

If a > 0,d > 0, find the value of the determinant



92.

93.

94.

95.

96.

97.

98.
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1 1 1
a a(a+d) (a+d)(a+2d)
1 1 1
a+d (a+d)(at+2d) (a+2d)(a+3d)|"
1 1 1
a+2d (a+2d)(a+3d) (a+3d)(a+4d)
1 1 1
atz aty atz
1 1 1
Show that aty bty btz =
1 1 1
c+zx cty ctz
(a=b)(b—c)(c—a)(x—y)(y—2)(z—=)
@i 2 o) et 2 (Bt 6+ 9) b+ ) (e b a) (et g) (et 2]
If 2s = a + b + ¢, show that

~
no

> (s—a)? (s—a

Show that
ar —by—cz ay—+bx cx +az
ay+br by—cz—ax bz+cy =
cx +az bz4+cy cz—azr—by
(22 4+ 2+ 2%) (a® + b2+ ¢2) (ax + by + c2).
Find the value of # between 0 and 7/2 and satisfying the equation:

1+cos®0 sin%0 4sinf
cos20 1+4sin?6 4sing |=0.
cos? 6 sin?0 1+4sind
If a® + b2 + ¢® = 1, then prove that
a>+ (24 *)cosgp  ab(l—cos) ac(1 — cos @)
ab(1—cosp) b2+ (> +a®)cosgp  be(l —coso) = cos? ¢.
ca(l — cos ¢) be(1—cosd)  c24 (a®+b*)cos ¢
—be b +ac 2 +be
If none of the a, b, ¢ is zero, show that |a?+ac —ac ¢+ ac| = (ab+ bc + ca)®.
a’4ab B> +ab —ab

u v 0
. a2 .
If u, v are functions of z, and y = 7, show that v? @2 =|u" b v | where primes denote
VA a /
u” v 2v

derivatives.

z+1 =z T

99. Ifa#0and a+# 1,showthat | = =x+a =z |= a3[1 —0—(’1&'(';:3]
T r z+ad?
pa gb re abc
100. If p + ¢+ r = 0, prove that | gc ra pb| = pgr{c a b].
rb pc qa bca




101.

102.

103.

104.

105.

106.

107.

108.

109.

110.
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2

laa 1bc b+c
Show without expanding that [1 b b? 1cac+al.
1e¢ 02 1 aba+b

24z r+1 -2
222 +3x—1 3z 3z-3
2®+20+3 20—1 221
are determinants of 3rd order not involving x.

Show without expanding that = aA+ B, where A and B

(n+1)
roox B N
IfD.=|2r—14y w show that ZDT' =0.
3r—2 p ndn-l) r=t

2

—5 345 5—4i
Without expanding the determinant, show that the value of |3 —5i 8 4+ 5i|is
S14i4—5 9
real.
—2a a+bb+c

b+a —2b b+c
c+a c+b —2c

Prove that =4(a+b)(b+c)(c+a).

fr(x),g-(x), he(z), where r = 1,2, 3 are polynomials in = such that f,.(a) = g.(a) = h-(a)
and

fi(x) fa(z) fa(z)
F(z)=|g1(z) g2(x) gs(z)
hi(x) ha(x) hs(x)

Let « be a repeated root of a quadratic equation f(z) = 0 and A(z), B(z), C(x) be
A(z) B(z) C(z)

polynomials of degree 3, 4, 5 respectively. Show that A(z) = | A(a) B(a) C(a)|is
A'(a) B'(a) C'(a)

divisible by f(x), where prime denotes a derivative.

)
cos(0 + a)) cos(0+ B) cos(0+7)
smé@-ﬁ—a) in(6+ ) sin(6+~)

Prove that is independent of 6.

sin ) sin(y — «) sm(a —p)
f g h
If f, g, h are differential functions of z and A = i q h prove that
(Z,2f)// (I2g)// (th)//
f g h
A/ — }('/ g/ h/

( Sf//)/ ( 3 //)/ (CESh”)/

" sinx cosw

If f(z) = | n! sinZF cosif |, then show that - f =0, where x = 0.

a a2 a3



111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.
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cos(A—P) cos(A—Q) cos(A—R
Prove that |cos(B — P) cos(B— Q) cos(Q —R)| =0.

cos(C — P) cos(C — Q) cos(C — R)

2bc —a® b?
Prove that 2 2c—b*  a? = (a®+ b® + ¢® — 3abc)?.

b? a®  2bc—c?
1 cos(f—a) cos(y—a)

Prove that |cos(a — ) 1 cos(y — beta) | = 0.

cos(aw— ) cos(B—7) 1
For what value of m does the system of equation 3z +my = m and 2o — 5y = 20 has a

solution satisfying the conditions = > 0, y > 0.

Prove that the system of equation 3x —y+4z =0, v +2y—3z = —2, 62+ 5y+ Az = —3
has at least one solution for any real A. Find the set of solutions when A = —5.

For what value of p and ¢, the system of equations 2x + py + 62 =8, ©+2y+qz =5,
z +y + 3z =4 has (a) no solution (b) a unique solution, and (c) infinite solutions.

Let A and a be real. Find the set of all values of A for which the system of equations:
Ar +ysina—zcosa=0, x+ycosa+ zsina=0, —x+ysina— zcosa = 0.
ab+c a®
Evaluate | b ¢ +a b%|.
ca+b c?

VI3+V3 2v5 V5
Evaluate [v15++v26 5 /10|
3+v65 V15 5

r x(z?+1) z+1
Evaluate |y y(y?+1) y+1].
z 2(Z2+1) 241

If z, y, z are respectively Ith, 2mth, 3nth terms of an H.P., then find the value of

Yz zx 1Y
I 2m 3n|.
1 1 1
1a%a® 1ad?
Show that |1 b2 | = (ab+bc+ca)|1 b b?|.
1268 1 ¢ 2

(b+¢)? a® be
Evaluate | (¢ +a)? b? ca|.
(a+b)% ¢ ab

2?2t (y—2)? e
vy~ (z—2) zz‘=<xy)(yz)(zx><x+y+z><x2+y2+22>.
22 22— (z—y)? ay

S

Prove that




125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.
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If a1b1c1, asbaca, asbscs are three 3 digit numbers such that each of them is divisible
ay b1 (&1
a9 b2 C
as b3 C3

by k, then prove that the determinant is divisible by k.

a1+b13: a1$+b1 C1
a2+b2m a2x+b2 Co| = (1—
as + bgl‘ asx + bg C3

If a;, b, ¢; € Rz =1, 2, 3) and x € R, show that

aq bl C1
az by co
az b3 c3

z?)

If a, b, ¢ are the roots of the equation pz® + qz® + rz + s = 0, then find the value of

1+a 1 1

1 140 1

1 1 1+¢
1ad

If a < b <c, prove that [1 b b*| > 0.
1¢ct

4
aa’ a —1
If a, b, c are distinct and [b > b*— 1| = 0, show that abc(ab + bc+ca) = a+b+c.
3 4
cc’c—1

1+ albl a1b2 (Ilbg
Show that 1, T2, T3 # 07 CLle X9 + a2b2 (12b3 = X123
agbl agbg xr3 + a3b3
(1o ety o)
11
otz ary L
11 _ (a—b)(b—c)(c—a)(z—y)
Show that | 5= 555 1| = Graytra) (o) (s BTyITera)"
11
ct+x c+y 1
a? be  ac+c?
Show that |a?+ab b ac | =4a®b*c%
ab b +be P
1+a?—b*  2ab —2b
Show that 2ab 1—a?+b? 2a =(1+a®+b%)>3
2b —2a  1—a®—b?
a®>  (s—a)? (s—b)?
If a, b, c are sides of a triangle, show that | (s —b)? b2 (s—b)?| = %P2A2,
(s—c)? (s—c)? ¢

where P denotes the perimeter of the triangle, A its area and s = g.

(x—a)®> ab ac
Show that ba (z—b)* b = 2%(x —2a) (z — 2b) (x — 2¢)
ca cb  (z—c)?



136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

Determinants

a

<I+r;l+ —

2
—2c )"

r+a)® (v —a)

3 (

If 7, y, z are unequal and |y (y+a)® (s
3
2

z+a)?
(1—-z) a a?
Show that a -z
a? a® dt-z

If y = sin px and y,, = %, find the value of

cos?0 cosfsinh —sind
Evaluate |cosfsinf sin?6  cos6
sin 0 —cosf 0
cosa sinacos sinasinf
Evaluate | —sina cosacos 3 cosasin g |.
0 —sin 8 cos f3
2
a“+x ab ac
Solve the equation ab b4z be
ac be A4z
x n—1
C, C,

Solve the equation for z, | **1C, "C, " C,_;
z+20 n+IC
T T

u+a’cr w + abx v + acx
Solve the equation |w’ + abx v+ b%z ' + bex
v +ace v +bex w+cx

of determinants.

If f(a, b) = (b) f ) and fla,b,c) = f—(—b—C—Z—:————‘

fla,b,c) =

If A, B, C are the angles of a AABC, then prove that | e ¢ e

:1‘2(1+a2+a3) _

1
c
c

e

2
—iC
2iB

67“4

=0Vn,r>1.

e—iB
e—iA
e?iC

194

= 0, prove that a®(z 4y + 2) = 3zyz.

= 0 expressing the result by means

is purely real.

If A, B, C are the angles of a AABC such that A > B > C, find the minimum value

sin? 4 sin Acos A cos® A
of A, where A = |sin? B sin Bcos B cos? B
sin? C sin C cos C cos® C

sin(2B — 2C) +sin(2C — 24)].

. Also, show that A = i [sin(24 — 2B) +



147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

Determinants

a? a 1
Evaluate |cosnz cos(n+ 1)z cos(n+2)z|.
sinnz sin(n+ 1)z sin(n+2)z

1+4sin?z  cos’z 4sin 2z
If 0 < « < 7, the find the values of x for which sinz  14cos’z 4sin2z
sin? z cos’z  1+4sin2x

maximum value.

—1 cosC cosB
cosC —1 cosA
cosB cosA 1

If A, B, C are the angles of a triangle, show that

If A, B, C are the angles of an isoscceles triangle, evaluate

1 1 1
1+sinA 1+sinB 1+sinC
sin A + sin® A sin B + sin® B sinC + sin® C

For positive numbers z, y, z # 1, show that the numeric value of the determinant

1 log,y log, z
logyz 1 logy~z
log,z log,y 1

=0.

If a,b,c >0 and =z, y, z € R, then show without expanding that

(a/{I:_’_afﬁlJ)Q (am_af:z)Z 1
(BY+b79)2 (W—b¥)2 1|=0.
(CZ+07Z)2 (czicfz)2 1

103 115 114

111 108 106
104 113 116

Without expanding the determinants, prove that +

n 1 5
n?2 2N +1 2N +1
n® 3N? 3N

N
Evaluate Z U, ifU, =
n=1

If A, B, C are the angles of a triangle, then show without expanding that

sin(A+ B+ C) sinB cosC
—sin B 0 tan A
cos(A+B) —tanA 0

=0.

b2—ab b—c¢ bec—ac

ab—a® a—0b b2 —ab
2

Evaluate without expanding

bc—ac ¢c—a ab—a
i—1 n 6

(i—1)% 2n% 4n—2
(i—1)® 3n® 3n2 —2n

n
. Show that A; = k, a constant.
1

n=

Let Al =

= 0.

113 116 104
108 106 111
115 114 103

195

has

=0.



158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.
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or—1 ™C, 1
mi—1 2™ m+1

sin?m? sin®m sin*(m + 1)

Let m € Pand A, = , then find the value of Z A,
r=0

zcr I+ICT+1 I+207>+1
+1 +2

ycr Y CT+1 Y Cr+1

ZCT' Z+1CT-+1 z+2CT+1

FCr *Cry1 “Cria
yC’V‘ yC’I‘+ 1 yCr+2
ZC’I‘ ZCT+1 zCr+2

Show that

r n+1 1 n

IfA, = r2 2n—1 2"3+1 , show that Z A, =0.
3 (n+1) =1

T 3n+2 % r

or—t 93r1 45! n
IfA, = x Yy z |, show that Z A, =0.
m_13"—15"—1 =1

22 (x—1)% (z—2)?
Show without expanding that | (z —1)? (2 —2)% (z —3)2
(-2 (2—3)° (x—4)?

is independent of z.

2 1+4¢ 3
Show without expanding that |1 —4 0 2+ | is purely real.
3 2—3 1

r—3 2x+1 2
Show without expanding that |3z +2 z+2 1
5cr4+1 bx+4 5

is independent of x.

If @ and x are real numbers and n is a positive integer, then show without expanding

a® — an+17m an+27x
that [a""2—2 "™ —2 " —z|=0.
an+6 —x an+7 —_ an+8 —r

-2 -2 -2
" Cr72 " Crfl " Or

Find Z(—Q)T -3 1 1 |,n>2.
r=2 2 1 0
b%c® be b+c¢
If a, b, ¢ are non-zero real numbers, show without expanding that | c?a® ca ¢+a|=0.
a’b? ab a+b

b+a—a—d bc—ad be(a+d) —ad(b+d)
ct+a—b—d ca—bd ca(b+d)—bd(c+a)
a+b—c—d ab—cd ab(c+d)—cd(a+b)
b)(a—d)(b—d)(c—d).

Prove that = =20b-c)(c—a)(a—

be — a? ca —b? ab — 2
ca+ab—bc bec+ab—ca bc+ca—ab
(a+b)(atc) (b+c)(b+a) (c+a)(c+D)
b+ c)(ab+ be+ ca).

Prove that =3(b—c)(c—a)(a—b)(a+




170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.
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1 (m4+n—1-—p)? (m+n—1—p)*

1 (n+l—m—p)* (n+l—m—p)*
1 (l+m—n—p)? (I4+m—n—p)?
n)(m—p)(n—p).

Prove that =64l —m)(l —n)(l —p)(m —

If u, v, w are differentiable functions of f and suffixes denote the derivatives w.r..t ¢,

up v wi Uy v wi
d
prove that T u2 v wa| = |u2 v wal.
uz vz w3 Ug V4 Wy

If Y =sX and Z = tX, all the variables being differentiable functions of x, prove that

XY Z ¢
X\ Z|=x3 51 tl , where suffixes denote the derivatives w.r.t. x.
Xy Yo Zs 52 12
f(z) g(z) h(z)
If f(z), g(x), h(z) are polynomials in z, find the condition that | f(a) g(a) h(a) |,
f(B) g(B) h(B)

which is a polynomial of degree 3, is expressible as a(z — a)?(z — 3

=

sin(z + «) cos(z + a) a+ zsina
sin(z + 8) cos(z+ ) b+ xsinp
sin(z + ) cos(x +7) ¢+ axsiny

Show that is independent of x.

If 1,7, m,J, nTE, r = 1,2, 3 be three mutually perpendicular unit vectors, show that
i la I3
my mz m3
ny n2 N3z

=41.

ay by ¢
az by ¢y
az b3 c3
a;, Bi, 7v; be the cofactors of A;, B;, C; respectively, where i = 1, 2, 3, show that
Ay By Ci||ar Bim
Ay By Cof|az B2 72
As B3 Csllas B3 v3

Let A = and A;, B;, C; be the cofactors of aj;, b;, ¢; respectively and

=AS

Using determinants, solve the equations: z +2y+3z =6,2x+4y+2=17,3x+2y+ 9z =
2.

Solve the system of equations az + by +ca = d,a?z +b*y+c?a = d?, a®z + b3y + cPa = d°.
Will the solution always exist and be unique?

Determine the coefficients a, b, ¢ of the quadratic function where f(z) = az? + bz + ¢,

if f(1)=0, f(2) = —2 and f(3) = —6.

Determine the coefficients a, b, ¢ of the quadratic function where f(z) = az®+ bz + ¢,
if £(0) =6, f(2) = 11, f(—3) = 6. Also, find f(1).

Solvve (b+c¢)(y+2)—ax =b—c,(c+a)(z+x)—by=c—a,(a+b) (x+y)—cz=a—b,
where a + b+ ¢ # 0.

Examine the consistency of the system of equations 7x — Ty + 52 =3,3z+y+52=7
and 2x + 3y + 5z = 5.



183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.
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Find the value of k for which the following system of equations is consistent = + y =
3, 1+k)z+2+ky=8z—(1+k)y+(2+k)=0.

Find the value of k for which the following system of equations is consistent (k+1)3z +
(k+283y=(k+1% (k+Da+(k+2)y=k+3,2+y=1

Find the values of ¢ for which the system of equations 2z +3y = 4; (c+2)z+ (c+4)y =
c+6,(c+2)?2+ (c+4)% = (c+6)? are consistent and find the solutions for all such
values of c.

Find the values of A for which the system of equations z +y — 2z = 0,2z — 3y + z =
0,z — by + 4z = X are consistent and find the solutions for all such values of A.

Find the values of A and p for which the following system of equations =z + y + z =
0,2 +2y+32=14,22+ 5y + Xz = u, A\ p € R has (a) unique solution (b) infinite
solutions.

qp a p
bg b q
cr cr

If bc + gr = ca + rp = ab + pg = —1, show that =0.

Find all values of k for which the following system possesses a non-trivial solution:
c+ky+32=0kx+2y+22=0,2x+3y+42=0

If x =cy+bz,y =az+ cx,z = br + ay, where a, b, ¢ are not all zero. Prove that
a® + b2 + ¢® + 2abe = 1. Further if at least one of a, b, ¢ is a proper fraction, prove that
(a) a®> +b? +c? < 3 (b) abe > —1

Ifa= yfz, b=-Ac= rfy, where z, 3, z are not all zero, prove that 1+ ab+ bc+ca = 0.
Consider the system of linear equations, in z, y, z : (sin36)z —y + z = 0, (cos20) +
4y 432 = 0,2z + 7y + 7z = 0. Find the value of # for which this system has non-trivial
solution.

If a, b, ¢ are in G.P. with common ratio ry; «, 8, v are in G.P. with common ratio rg,
then find the conditions that r; must satisfy in order that the equations ax + ay + z =
0,bx + By + z =0, cx + vy + z = 0 have only trivial solutions.

z 1l ml
Prove that 3; - 1 = (z—a)(x—p)(x—7), where [, m,n have any values whatever.
af v 1
a b ¢ d
Prove that —boa —d e = (> + b+ 2+ d*)2
—c d a —b
—d —c b a
If u = az® + 4b2> + 6¢a® + 4dz + e and vy, = az® + 20z + c,U1g = bx? + 2cx + d, Uzo =

a b ¢ upn

b ¢ d u abe
cz?® + 2dx + e, prove that 20— —u|b ¢ d.
c d e ug e de

U1 uie uzz 0
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v —zy 22
197.1f v = ax? + 2bay + ¢y, v = a’a® + 2b'ay + ¢'y?, prove that {a b ¢ | =
a v

U u’

ar +by dx+ byl

axr +by bx+cy
ax+by br+cy

—_1
Ty

a b ax + by
198. Prove that b ¢ br+4cy|=—(ac—b*) (az®+ 2xy + cy?).
ax + by bxr +cy 0

a—x b c d
199. Prove that the determinant b ; . a ﬁ - ch =(r—a—-b—c—d)(z—a+

d a b c—x
b—c+d)[z>—(a—c)*— (b—d)?].



Chapter 9

Matrices

Matrices are an important concept which has numerous real life usage in various mathemat-
ical branches. Also, it has huge importance in modern computer science. It has its applica-
tions in computer graphics, artificial intelligence, data structures leading to various clever
algorithms. Thus, it is of paramount importance that the reader understand this particular
concept in a sound manner.

Definition: A matriz is a rectangular array of real or complex numbers. This rectangular
array is made up of rows and columns much like determinants. Let us consider a matrix of
m X n symbols, where m is number of rows and :n is the number of columns.

a1; a1 ... Qin

a a ..o a
A=z o

Am1 Am2 ... Amn

Such a matrix is called m by n matrix or a matrix of order m x n. Sometimes a matrix is
shown with parenthese instead of square brackets as shown in last example.

ail a2 - Ain
A o
Aml Am2 - Amn

A compact way to write a matrix is A = [a;;],1 <i <m;1 < j < n or simply [@;j]mxn @ij
is an element located at " row and 7** column and is called (7, j)'* element of the matrix.
A matrix is just a rectangular array of numbers and unlike determinants it does not have a
value.

9.1 Classification of Matrices

9.1.1 Equal Matrices

Two matrices are said to be equal if they have same order and each corresponding element
is equal.

0.1.2 Row Matrix

A matrix having a single row is called a row matrix. For example, [1, 2, 3, 4].

9.1.3 Column Matrix

A matrix having a single column is called a column matrix. For example,

=W N

200
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9.1.4 Square Matrix

If m = n i.e number of rows and columns are equal then the matrix is called a square matrix.
For example,

123

456

789
is a 3 x 3 matrix.

9.1.5 Diagonal Matrix

The diagonal from left-hand side upper corner to right-hand side lower corner is known as
leading diagonal or principal diagonal. In the example of square matrix the elements of
diagonal are 1, 5,9. When a matrix has all elements as zero except those belonging to
its diagonal, then it is called a diagonal matrix. Equivalently, We can say that a matrix
[@ij]mxn is a diagonal matrix if a;; = 0 V i # j. For example, the square matrix example
can be converted to a diagonal matrix like below:

100
050
009

For an n x n matrix the diagonal elements are represented as [dy, dz ..., d,] This diagonal
is also written with a diag prefix like diag[dy, ds ..., dy].

9.1.6 Scalar Matrix

A diagonal matrix whose elements of the diagonal are equal is called scalar matrix. For
example:

500

050

005

For a square matrix [a;;]mxn to be a scalar matrix:

0, 1#j
aij—{ 7éJV’In#O

m, =]
9.1.7 Unit Matrix or Identity Matrix

A diagonal matrix of order n, which has all elements of its diagonal as one, is called a unit
or identity matrix. It is also denoted by I,,. We can rewrite it in concise way like we did for

scalar matrix as
{0, i#j
Aij = . .
1, i=3
9.1.8 Horizontal Matrix

An m x n matrix is called a horizontal matrix if m < n. For example:



Matrices 202

D W
[E—

(G130 ]

9.1.9 Vertical Matrix

An m X n matrix is called a vertical matrix if m > n. For example:

12

i

56
9.1.10 Triangular Matrix

A sgaure matrix in which all the elements below the diagonal are zero is called upper tri-
angular matrix. Conversely, a sqaure matrix in which all the elements above the diagonal
matrix is called lower triangular matrix. Thus, for a lower triangular matrix a;; = 0 when
1 < j and for an upper triangular matrix a;; = 0 when ¢ > j

Clearly, a diagonal matrix is both lower and upper triangular matrix. A triangular matrix
is called strictly triangular if a;; =0V 1 < ¢ < n. Example of upper triangular matrix:

[e=RNGL R V]
O O W

M1
0
L 0

Example of lower triangular matrix:

~ &~ =
co ov O
o O O

0.1.11 Null or Zero Matrix

If all elements of a matrix is zero then it is a null or zero matrix.
9.1.12 Singular and Non-Singular Matrix

A matrix is said to be non-singular if |A| # 0 and singular if |A| = 0.

0.1.13 Trace of Matrix

If sum of the elements of a sqaure matrix A lying along the principal diagonal is called the
trace of A, i.e. tr(A). Thus, if A = [a;j]nxn, then tr(A) =>"" | a;;

9.1.14 Properties of Trace of a Matrix

To prove the second and third properties of a trace of matrix we will have to use properties
given further below on algebraic operations on a matrix. If A = [a;i]nxn and B = [bi;]nxn
and A is a scalar then

1. tr(AA) = Xr(A)
2. tr(A+ B) =tr(A) +tr(B)
3. tr(AB) =tr(BA)
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0.1.15 Determinant of a Matrix

Every square matrix A has a determinant associated with it. This is written as det(A) or
|A| or A. We observe following for determinants of matrices:

1. If Ay, Ay ..., A, are square matrices of the same order then |A;As..A,| =
|A1]|As] ... | Al

2. If k is a scalar, then |kA| = k™|A|, where n is the order of matrix.

3. If A and B are two matrices of equal order then |[AB| = |BA| even though AB # BA.

9.2 Algebra of Matrices

0.2.1 Addition of Matrices

If any two matrices are of same order then addition of those can be performed. The result is
a matrix of same order with corresponding elements added. For example, consider two 3 x 3
matrices as given below:

ai as as b1 by b3
A= a4 a5 Qg ,B: b4bsbe
ay ag Qg b7 b8 b9
then,
a1+ b1 az+ by az+ b3
A+ B=1| a4+ by a5+ bs ag+ bg

a7+b7 a8+b8 ag+bg

0.2.2 Subtraction of Matrices

The conditions are same for subtraction to happen i.e. order of the matrices must be same.
The result is like that of addition with resulting elements being the difference of original
matrices. For example,

A—B= a47b4 a5fb5 aefbﬁ

ar — by ag —bg ag — by

al—bl a2—62 a3—b3]

where A and B are matrices from previous example. Following is observed for addition and
subtraction:

1. Addition of matrices is commutative i.e. A + B = B + A as well as associative i.e.
(A+B)+C=A+ (B+0C).

2. Cancellation laws are true in case of addition.

3. The equation A+ B = O has a unique solution in the set of all m x n matrices (where O
is null matrix).

9.2.3 Scalar Multiplication

The scalar multiplication of a matrix A with a scalar X is defined as AA = [Aa;;].
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9.2.4 Multiplication of two Matrices

The prerequisite for matrix multiplication is that number of columns of first matrix must
be equal to number of rows of second matrix. The product is defined as

1n>< n IL><p E a’"LT Tp

It can be easily verified that the resulting matrix will have m rows and p columns.
A Properties of Matrix Multiplication

1. Commutative laws does not hold always for matrices.

2. If AB = BA, then they are called commutative matrices.

3. If AB = —BA, then they are called anti-commutative matrices.

4. Matrix multiplication is associative i.e. (AB)C = A(BC). Proof of this has been left as
an exercise.

5. Matrix mulplication is distributive wrt addition and subtraction i.e. A(B+C) = AB +
AC.

9.2.5 Transpose of a Matrix

Let A be any matrix then its transpose can be obtained by ecxchanging rows and columns.
It is denoted by A’ or AT and clearly, if order of A is m x n then A’ will have order of n x m.

A Properties of Transpose Matrices

1. (A+B)=A"+DB".

2. (A) =A.

3. (kA) = kA’ where k is a constant.
4. (AB) =B'A".

Proofs of these properties are simple and have been left as an exercise.

9.2.6 Symmetric Matrix

A sqaure matrix A = [a;;] is called a symmetric matrix if a;; = aj; V i, j. We can also say
thet a matrix is symmetric if and only if A = A’

9.2.7 Skew Symmetric Matrix

A square matrix A is said to be a skew symmetric matrix if a;; = —aj; Vi, j. Clearly, if a
matrix is skew symmetric then elements of its diagonal are all zeros.

9.2.8 Orthogonal Matrix

A matrix is said to be orthogonal if AA” = 1.
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Theorem 12

If A is a square matriz then A+ A’ is a symmetric matriz and A — A’ is a skew symmetric
matriz.

Proof

(A+A")Y =A"+(A") = A"+ A. Hence, A+ A’ is a symmetric matrix. (A—A") = A"— A=
—(A—A"). Hence, A — A’ is a skew symmetric matrix. O
Theorem 13

Every square matriz can be shown as sum of a symetric matriz and a skew symmetric matriz.

Proof

Let A be any square matrix. %(A + A +%(A — A’) = A hus, the matrix A is a sum of

symmetrix matrix A + A’ and a skew symmetric matrix A — A’ O

9.2.9 Adjoint of a Matrix

Let A = [a;;] be a square matrix. Let B = [A;;] where A;; is the cofactor of the element a;;
in the det. A. The transpose B’ of the matrix B is called the adjoint of the matrix A and is
written by adj.A. For example,

125 15 -2 -6
Let A=|23 4|, then B=| —-10 —1 4
205 -1 2 -1

15 —10 —1
wdjA=B =|-2 -1 2
—6 —4 —1
A.adj(A) = adj(A).A = |A|I,
0.2.10 Inverse of a Matrix

Following from above, inverse of a matrix is ad‘ﬁ‘A). Inverse of a matrix A is denoted by A~1.

0.2.11 Hermitian and Skew Hermitian Matrix

A sqaure matrix A = [a;;] is said to be a Hermitian matrix if a;; = a;; ¥V 4, j i.e. A = A°.
For example,
a b+ic
b—ic d

is a Hermitian matrix.

Similarly, a sqaure matrix A = [a;;] is said to be a skew Hermitian matrix if a;; = @j;; V 4, j

ie. A= —A° For example,
0 —b+ic
b+ic 0
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is a skew Hermitian matrix. Following are observed for these types of matrices:

1. If A is a hermitian matrix, then a;; = a3 = a4; is real, V i. Thus, members of diagonal
of a Hermitian matrix are all real.

2. A Hermitian matrix over the set of real numbers is actually a real symmetric matrix.

3. If Ais a skew Hermitian matrix, then a; = —(as;) = a;; = 0 i.e. a;; must be purely
imaginary or zero.

4. A skew Hermitian matrix over the set of real numbers is acually a real skew-symmetric
matrix.

9.2.12 Idempotent Matrix

A square matrix A is said to be idempotent if A2 = A i.e. multiplication of the matrix with
itself yields itself.

9.2.13 Involuntary Matrix

A sqaure matrix A is said to be involuntary if A% = I i.e. multiplication of the matrix with
itself yields an indetity matrix.

9.2.14 Nilpotent Matrix

For a positive integer 7 if a square matrix satisfied the relationship A* = O then it is called
a nilpotent matrix. Such smallest integer is called index of the nilpotent matrix.

9.3 Properties of adjoint and inverse matrices

1. If A is a sqaure matrix of order n, then A(adj(A)) = |A|L, = (adj(A)) A.

Let A = [a;;], and let C;; be a cofactor of a;; in A. Then, (adj(A)) =Cj; V1 <4,j<n.
Now,

(A adj(A)) = (A (adj(A).

r=1
n Al, ifi=j
:Zairorj: |A] J
r=1 0> lfl?é]
Al 0 0 .. 0
0 |A]0.. 0
== .

Similarly,
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n A, ifi=
:ZC”-LLT]-:{O | J

ifi

. Every invertible matrix possesses a unique matrix. Let A be a sqaure matrix of order
n X n. Let B and C be two inverses of A. Then, AB= BA =1, and AC=CA=1,

AB=1,= C(AB)=Cl,= (CA)B=CI, = I,B=CI,
=B=C

. Reversal law: If A and B are invertible matrices of same oreder, then AB is invertible and
(AB)™! = B7'A7. In general, if A, B, C, ... are invertible matrices then (ABC'...)" =
..C7iBTig!

If the given matrices are invertible |A| # 0 and |B| # 0 = |A||B| # 0 Hence, AB is an
invertible matrix. Now,

(AB) (B*A™Y) = A(BB™1)A!
=AL)A ' =AAT =T,
Similarly,
(B A7) (AB) = I,
. If A is an invertible matrix, then A’ is also invertible and (A’)™! = (A™')".

A is an invertible matrix - |A| # 0 = |A’| # 0[+~|A’| = |A|]. Hence, A’ is also invertible.
Now,

AAT =1,=A4714
(AAY) = (A1 Ay
(A—l)/A/ — In — A/(A—l)/

. If A is a non-singular square matrix of order n, then |adjA| = |A|" 2.

We have A(adj(A)) = |A|l,

Al 0 0 0

. 0 |Al 0 - 0
Ay =| O 1A

0 0 0. |A

|A(adj(A))| = A"
ladj(A)| = |A]""!

. Reversal law for adjoint: If A and B are non-singular sqaure matrices of the same order,
then

adj(AB) = adj(B) adj(A) using (AB)™' = B71A™!

. If A is an invertible square matrix, then adj(A’) = (adj(a))’
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8. If A is a sqaure non-singular matrix, then adj(adj(A)) = A""2A
We know that B(adj(B)) = |B|I,, for every sqaure matrix of order n. Replacing B by
adj(A), we get (adj(A))adj(adj(A))] = |adj(A)|I, = |A|" "' I,. Multiplying both sides
by A
(A adj(A)) [adj(adj(A))] = A{|A|" 1.}
|AlT(adj(adj(A))) = [A"H(AL)
adj(adj(A)) = |A"?|A

9. If A is a non-singular matrix then |A7!| == |A| 7 ie. |47} = é. Since |A| £ 0, AA™ =
11447 = [A] > 4|47 = 1

10. Inverse of k" power of A is k™ power of the inverse of A.

9.4 Solution of Simultaneous Linear Equations
Consider the system of equations given below:

1121 + @122 + - + a1, = b1

a21%1 + a2 + - + a2, = ba

An1T1 + ApaZo + -+ + App = by,

Let
ai a2 v Aip T by
Go1 Q22 -+ @ T b
e i S el P
apl Gp2 -+ Qnn Tn bn

The system of equations can be written as AX = B = X = A™'B. If |A| # 0, the system
of equations has only trivial solution and the number of solutions is finite. If |A| = 0, the
system of equations has non-trivial solution and the number of solutions is infintite. If the
number of equations is less than the number of unknonwns then it has non-trivial solutions.

9.5 Elementary Operations/Transformations of a Matrix

Following are elementary operations of a matrix:
1. The interchange of any two rows or columns.
2. The multiplication of any row or column with a non-zero number.

3. The addition to the elements of any row or columns the corresponding elements of any
other row or column multiplied with any non-zero number.

Elementary operations are also called row or column operation.
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9.5.1 Equivalent Matrices

If a matrix B can be obtained from a matrix A by elementary transformations, then they
are called equivalent matrices and are written as A B.

Every elementary row or column transformation of m x n matrix (not identiry matrix) can
be obtained by pre-multiplcation or post-multiplication with the corresponding elementary
matrix obtained from the identity matrix I,,,(I,,) by subjecting it to the same elementary
row or column transformation.

Let C'= AB be a product of two matrices. Any elementray row or column transformation of
AB can be obained by subjecting the pre-factor A or post-factor B to the same elementary
row or column transformation.

9.5.2 Method of Finding Inverse of a Matrix by Elementary Trans-
formation

Let A be a non-singular matrix of order n. Then A can be reduced to the identity matrix I,
by a sequence of elementary transformations only. As we have discussed every elementary
row transformation of a matrix is equivalent top pre-multiplication by the corresponding
elementary matrix. Therefore, there exists elementary matrices Ey, Fo, ..., E} such that
(E1, Bs, ..., El)A=1, (E\,Es, ..., By) AAT = I,LA7Y (B, Es, ..., E}) I, = A7}

9.6 Echelon Form of a Matrix

A matrix is said to be in echelon form if

1. Every row of A which has all its elements 0, occurs below row which has a non-zero
element.

2. The first non-zero element in each non-zero row is 1.

3. The number of zeros before the first non-zero element in a row is less than the number
of such zeros in the next row.

0.7 Rank of a Matrix

Let A be a matrix of order m x n. If at least one of its minors of order r is different from zero
and all minors of order r + 1 are zero, then the number r is called the rank of the matrix A
and is denoted by p(A4).

1. The rank of a zero matrix is zero and rank of an identity matrix of order n is n.
2. The rank of a non-singular matrix of order n is n.
3. The rank of a matrix in echelon form is equal to the number of non-zero rows of the
matrix.
9.8 Application of Matrices to Geometry or Computer
Graphics

As said earlier matrices are very useful to represent many operaion in computer graphics or
geometry. It will require some knowledge of coordinate geometry.
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0.8.1 Reflection Matrix

Consider a point P(x,y) and its reflection Q(x1,y1) along x-axis.

X

P(z,y)

Q(ﬂUl, yl)

Figure 9.1 Reflection

of a point along x-axis.

This may be written as 1 = z + 0; y; = 0 — y. This system of equation can be written in

matrix fOrm as
Y1 O 1 Yy

Thus the matrix {(1) _01 } is reflection matrix of a point along x-axis. Similarly, {_01 ?} is

reflection matrix along y-axis.

Similarly, the reflection matrix through origin is { _Ol _01 }

Similarly, reflection along the line y = z is [(1) (1)]

. . . . . [cos20 sin26
Similarly, reflection along the line y = ztan is { §in20 — cos20 }

9.8.2 Rotation Through an Angle

cos —sinf

The rotation matrix in such a form would be [ .
sinf cosf

} for anti-clockwise rotation.

9.9 Problems

1. Find the number of matrices having 12 elements.

2. Write down the matrix A = [a;;]2x3 Where a;; = 2i — 3j.
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11.
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13.

14.

15.

16.
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IfA:[ @ b],B:[’“ b ],thenﬁndA+B.

—b a —b —a
32 10
IfY—{1 4}and2X+Y—{73 2},ﬁndX.

2 2
r“—4dx x -3 1
If{ 2 x3:|7[$v—+2 1],thenﬁndx.

Find z,y, z and a for which [x+3 2y+x]: [0 77}.

z—1 4a—6 3 2a
1 2 3 4 56
IfA=|-1 0 2|,B=|—-101|,find 44— 3B.
1 =31 2 12
1 —-23 23
IfA:[74 9 5}B= 4 5 |, find AB and BA. Also, show that AB # BA.
21
ah g T
If A, B, C are three matrices such that A= [z y z|,B=|h b f|,C =y |, then
g fc z
find ABC.
123
Find the transpose and adjoint of the matrix A, where A={0 5 0 |.
243

Find the inverse of the matrix A =

012
123
311

1
2
—1

Find the inverse of the matrix A =

25
31 ] and verify that AA™! = 1.
11

1
Let A=|2
2

N =N

2
2 }, prove that A2—4A4 — 5] = 0, hence obtain A",
1

Solve the following equations by matrix method: 5z + 3y + z = 16, 2z + y + 32 =
19 and x + 2y + 4z = 25.

1 -1 1
and use it for solving the equations t +y+2z=1,3x+2y+2z=7 and 2z +y +

H{quty xiy}:[? 3},thenﬁndzandy.

-5 1 3 112
Find the product of two matrices A and B where A=| 7 1 —5|,B=[321
213

3

z=2.

If{x*y 2$+w1]_[—1 5
20—y 3x4+y | [0 13
(z1,1), then find PQ.

} and co-ordinates of points P and @ be (z, y) and
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. . 70 30
FlnannlefXJrY—[2 5]andX—Y—{0 3},

1 2 -3 3 —-12
Given A=[5 0 2 |and B=|4 2 5 |, find the matrix C such that A+ C = B.
1 -1 1 2 0 3

302 1 2 1 70 3
2A+3B=X+C.

IfA:{ 2 3 4}3:[3 —4 _5] andC:{5 -1 2}ﬁndthe matrix X such that

1 2 3 456 -1 21
fA=|-10 2|,B=|-101[,C=|—-1 2 3|, find A=2B+3C.
1 31 2 12 -1 -22

cosz sinz
If P(z) = {—sinx Cosx]’ then show that P(z).P(y) = P(x +y) = P(y).P(x)
(10 0
IfA=|01 0 |[,find A%
ab—1

-1 1 -1 0 4 3
IfA=| 3 —3 3 ]73_[ 1 -3 —3},thenﬁndA2BZ.
| 5 =5 5 -1 4 4

2
fA=|1
-1

30
121 }, find AB and BA and show that AB # BA.
02

0 ¢ —b a® ab ac
Find the product of the following two matrices: [—c 0 a ] and | ab b* be |.

b —a 0 ac be c?
3 =5

IfA:[_4 )

], find A2 —5A — 141, where I is a unit matrix.

Verify that A = { ? 2] satisfies the equation A% — 442+ A = O.

108 06 )
IfA= 06 0.8}’ find A°.
(3 1 2
IfA= 19 , find f(A), where f(z) =2 — 5z + 71.
I A4 =|os? Sine} = {C"w Sinﬂ show that AB = BA
| sinf cosf |’ sing cos¢ |’ '

2 0 1
Letf(x)_x2—5z+6,ﬁndf(A),ifA_[2 13
1-19
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If the matrix A = { 152 ? , then verify that A2 — 124 — I = 0, where I is a unit matrix.
1 w W? w w1 1 0
Show that wwl |+l ow w |=1]0].
W21l ow ] w w1 w? 0
0 —tang
Let A = n® 0 and I, the identity matrix of order 2. Show that I + A =
anyg

cosa —sina
(I—A)| .
sina  cosa

Without using the concept of inverse of matrix, find the matrix {z Z} such that

R e

132 1
zsothat [1 2 1]| 05 1|1
032 T

Prove that the product of two matrices [

=0.

cos’0 cosfsind } { cos’¢  cosdsing

cosfsinf sin® @ cospsing  sin? ¢

is a zero matrix when 6 and ¢ differ by an odd multiple of g

If A= {Cose —sinf ], then show that A™ = [ cosf —sinnf }, where n is a positive

sinf cosf sinnf cosnf
integer.
IfA= [3 —4 ]7 show that A" = { 1+2n —dn }, where n is a positive integer.
1 -1 1—-2n
Let A = [8 (1)] Show that (aI +bA)"™ = a™I + na™ 'bA, where T is a unit matrix of

order 2 and n is a positive integer.
Under what condition is the marix equation A2 — B? = (A 4 B) (A — B) true?

A man buys 8 dozens of mangoes, 10 dozens of apples and 4 dozens of bananas.Mangoes
cost USD 18 per dozen, apples 9 per dozen and bananas 6 per dozen. Represent the
quntities by a row and a column matrix. Also, find the total cost.

A trust fund has USD 30, 000 that is to be invested in two different types of bonds.
The first bond pays 5% interest per year and second bond pays 7% interest per year.
Using matrix multiplication determine how to divide USD 30, 000 among the two types
of bonds if the turst find must obtain an annual interest of USD 2000.

A store has in stock 20 dozen shirts, 15 dozen trousers and 25 dozen pair of socks. If
the selling prices are USD 50 per shirt, 90 per trouser and 12 per pair of socks, then
find the toal amount store owner will get after selling all the items in the stock.

Co-operative store of a particular school has 10 dozen physics books, 8 dozen chemisty
books and 5 dozen mathematics books. Their selling prices are USD 8.3, 3.45, 4.5 each
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respectively. Find the total amnount the store owner will receive after selling all the
books.

If A= [ cosasma ] verify that AA’ = I, = A’A.
—sina cosa
Express the following matrix as a sum of a symmetric matrix and skew symmetric

124
matrix [ 6 8 1 |[.

357

cosa sina
—sina cosa |

Show that the following matrix is orthogonal {

-1 2 2
Show that the matrix %{ 2 -1 2 ]is orthogonal.
2 2 -1

123
If A=|2 3 2|, find adj(A).
334

cosa —sina 0
For the matrix | sina cosa 0 | verify that A(adjA) = |A|I.
0 0 1

1-11

For the matrix A = [2 3 0 ], show that Aadj(A) = O.
8 2 10

3
3.
4

[2 -3 3
Find the inverse of | 2 2 3 |.
13 —2 2

W = W

M1
Find the inverse of | 1
| 1

1 -2 3
Find the inverse of | 0 —1 4 |.

-2 21
1 23
Find the inverse of | —3 5 0 |.
L0 11
IfA= ZZ}such that ad — bc # 0, then find the inverse of A.
_[31 _[40 . “1_ p-1y4-1
IfA—_40],B—{2 5},ver1fythet(AB) =B A

fA—| 1 tanw } show that AA™" =
| —tanx 1

cos2x —sin2x
sin2x  cos 2z
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_[32 |67 1
IfA—[75}andB—[8EJ,ﬁnd(AB) .
Solve the following system of equations by matrix method: 3z — 2y = 7 and 5z + 3y = 1.

Solve the following system of equations by matrix method: bz — 7y = 2 and 7z — 5y = 3.

Solve the following system of equations by matrix method: 2x —3y+3z =1, 2z + 2y +
3z =2and 3z — 2y + 2z = 3.

Solve the following system of equations by matrix method: x +y+2=3, 20 —y+2 =2
and ¢ — 2y + 3z = 2.

Solve the following system of equations by matrix method: 2z —y+32=9, z+y+2=06
andx —y+2z=2.

Examine following system of equations for consistency: 2z + 3y = 5 and 6z + 9y = 10.

Examine following system of equations for consistency: 4z — 2y = 3 and 6x — 3y = 5.



Chapter 10

Inequalities

Ineuqalities come up in different branches of mathematics; for example in algebra, geom-
etry and trigonometry. They are very useful in establishing many relations among various
quantities. Certain inequalities are very useful in studying properties of many common ex-
pressions which lead to interesting observations. In this chapter we will only study algebraic
inequalitites. The problems given are quite basic and simple. We start with some useful the-
orems for these inequalities.

There are some facts which are the very important for proving inequalities. Some of them
are as follows:

1. If 2 >y and y > z then z > z, for any z,y, z € R.

2. fx>aand y>bthen z+a>y+b, for any z,y,a,b € R.

3. fxz>ythenz+2>y+ 2, for any z,y,z € R.

4. If x >y and a > b then xa > yb, for any z,y € R" or a,b € RT.

5. If z € R then 2 > 0, with equality holding if and only if # = 0. More generally for a; € R*
and z; € R,i=1,2,...,7n holds aix? + agz% + 4 anxi > 0, with equality holding if and
only if ;1 =29 ==z, =0.

10.1 Strum's Method

Strum's method is given by the German mathematician Friedrich Otto Rudolf Sturm.
Sturm's method helps prove a large number of different inequalities under certain conditions
along with various other applications.

Theorem 14

Prove that if the product of positive numbers x1, T2, -+, Tn(n > 2) is eugal to 1, then x1 +
Lo+ -+ Xy >N

Proof

If 21 = -+ = x,, then 1 + - + 2, = n. So we see that the statement is true if all the
numbers are equal and are unity. Now we consider the case when at least two numbers
are different such that one is greater than 1 and the other one is smaller. Let us assume
that these are x; and x5 which does not cause loss of generality, and that =1 < 1 < zs.
Note that z1 + 22 > 1 + z123[+ (1 — x1) (2 — 1) > 0]. If given numbers are substitued by
1,21%2, 3, ... , Ty, then the product isequal to 1 and 1 +x1xo+ 23+ 4+ T, < T1+To+ -+ Tp-
Repeating this we will find n — 1 numbers equal to 1 and the nth number equal to x1x5 ... T,.

Thus, 1+ z2+ -+ x, < 1. We see that equality holds ifand only if x1 =29 =--=z,=1 O
Theorem 15
Prove that if the sum of the numbers x1, xa, ..., Tp(n > 2) is equal to 1, then prove that

1
x%+x§+~-+xizﬁ.

216
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Proof

1 17 . .
Ifzy=29=..=x,==then 22+ 22+ -+ 22 = 2. Like previous theorem we consider two
1 2 n n 1 2 n n

numbers x; and x5 such that one of them is greater than % while the other is smaller than %
Assume that these two numbers are z; and x5, which does not cause loss of generality, and
that x1 < % and zg > % So we obtain a sequence of numbers %, T+ x0 — %, T3, ..., Ty suhc

2
that their sum remains equal to 1. We can easily prove that xf + x% > % + (xl + 29 — %) ,
and hence

1 1\?
x%+x%+---+xi>ﬁ+ <x1+x2—g> +x§+~-~+xi.
Repeating this we obtain a sequence in which all terms will be equal to %, and sum of their

square is less than the sum of squares of numbers xy, zo, ..., x, i.e. x% + x% + 4 xi >
% + to n times. From this it follows that equality holds if and only if 1 = 2o = =x,. O

10.2 A.M., G.M., H.M. and Q.M.

Theorem 16 ((A.M.— G.M. - HM. — Q.M. Inequality))

Let x1, xo, ..., T, be positive real numbers, then

2 .2 2
ﬁgn\/ﬂflﬂa...xng 1+ 2: + nS\) 1+ 2;: + n.
?1+x‘2+“'+§;

(10.1)
Proof

Consider the numbers 41 L2 In

we see that product is equal to 1.
T\L/.'El.'L'g'“IL'n’ kY :1;11224-».’17,17 ’ le:zg-»«zn7 p q

From theorem 14, we have that

T To T 1+ T2+ + @ n
~ + - +o n >n=>"—2 > Vi xy,.
Voimg - xn  Vaizs o, VT1T2 Ty n

The above inequality is also known as Cauchy's inequality.

In the above inequality, if we substitute z; = %, then

n n
 E— R V3 F SRR A

1
it e
N . T T2 Tn P .
Consider the numbers e e B B errrer s and note that their sum is

equal to 1. According to theorem 15, we have

T 2 To 2 Ty 2.1
+ +ot | ) >
T+ T2+ -+ ap T+ T2+ -+ Ty T+ T2+ -+ Ty n

:xf+x§+-~+xiz <~151+~152+"'+37n)2.
n n
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Hence, all the inequalities have been proven. O

10.3 Cauchy-Bunyakovsky-Schwarz Inequality

Theorem 17 ((Cauchy-Bunyakovsky-Schwarz Inequality))
Let ay, as, ..., ap, b1, ba, ..., b, € R. Then
(@24 a2+ +a2) (b3 +b34 -4 by)2 > (arby + asbs + - anby ). (10.2)

Proof

Let z) = \/(a% +a3+-+al) (b3 +b3+ - +b7), where k=1,2, ..., n. In this case,

wrir=/(al + a3+ +af+af,,) BF 03+ + b +bE.,)
2 2
\/[(\/a%—b—a%—i- e+ af) +a§+1] [(\/b%+b§ + "'+bk) +b,2€+1}

2
> \/(\/a%-i-a%-‘-‘" +ai.\/b% + b2+ "'+b;%+ak+1~bk+1> = Tp + app1bpg1

Alternative Proof.

(a% + a% + ai) (b% + b% + -+ bn)z — (albl + a2b2 + ~~-a”bn)2 =

n

Z (a,-bj — bjai)Q > 0.

i,j=Ti>j
10.3.1 Titu's Lemma
Lemma 1
Let ay, ag, ..., an, by, ba, ..., by, be positive real numbers then

Z—§+Z—§+...+%2 (agliabziir;;)z (10.3)
Proof

This is a direct consequence of Cauchy-Bunyakovsky-Schwarz Inequality. It is obtained by

substituting a; = e and b; = \/; into Cauchy-Bunyakovsky-Schwarz Inequality. Equality

holds if and only if a; = kb; for a non-zero real constant k. O

10.4 Chebyshev's Inequality

Theorem 18

Let ay, ag, ..., ay, by, ba, ..., b, be real numbers such that ay <o< ag < -+ < ap and by < by <
< < by, or a1 >9> ag > - > ay and by > by > -+ > by, then the inequality

(al Fag o+ an) <b1 byt o+ bn) L @bt asbat -+ anby (10.4)

n n n
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holds. The inequality is strict unless at least one of the sequences is a constant sequence.

Proof
We have
(aib; — a;b;) = (naibZ aszj) = nZazbl—Zale]
i=1 j=1 i=1 Jj=1 i=1 i=1 Jj=1
Simiarly
n n n n n
Z (ajbj —ajb;) = nZaij— a; Y b
=1 j=1 Jj=1 Jj=1 i1=1
From these two equations, we get
n n n 1 n n
nZa,b,—Za,Zbizé Z (aibi—aibj—kajbj—ajbi)
Jj=1 J=1 i=1 =1 5=1

Since both the sequences are either decreasing or increasing, we will have (a; —a;) (b; —b;) >
0. Thus, we have

n n
n E ajbj - E aj
=1

b; > 0.
j=1 1

Here equality holds if and only if for each of the indexes 4, j either a; = a; or b; = b;. O
Remark

If the the order of sequences (a;) and (b;) in the orevious theorem are reverses then the
inequlaity reverses as well.

The proof is similar to the proof of the theorem.
Remark

Chebyshev's inequality can be generalized to three or more sets of real numbers, with the
constraint that sets are in increasing or decreasing order.

Remark

If the two sequeqnces are non-increasing or non-decreasing, and let p1, po, ... , pp be a sequence
of non=negative real numbers such that Y_I" | p; is positive. Then the following inequality
holds

n n n

> piaib; > piai > pibi

i=1 > =1 1=1
n - n n
> pi > pi > pi
i1 i=1 i=1

The proof is similar to the theorem. This is called Chebyshev's inequality with weights.
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10.5 Suranyi's Inequality

Theorem 19
Let ay, ag, ..., a, be non-negative real numbers, and let n € P. Then

(n—1) (a} + a4+ +a”) + najaz -an, > (a1 +ag+ - +a,) (@F  +al a7t
(10.5)

Proof

We will prove this by mathematical induction. Due to symmetry and homegeneity of the
inequality we may assume a; > as > -+ > a, and aj + as + - + a, = 1. For n = 1 equality
occurs. Let us assume that for n = 1 the inequality holds i.e.

(k—=1)(a¥+ab+ - +af) +karas-ap>al a7+ 4 af?
We need to prove that:

k+1 k+1 k+1

kZaf“—i— (k+1) Hai— (1 —i—akH)Zaic > 0.
im1 i=1 i=1

Hence

k k k

k—1 k

ka1 | | a; > Qpi1 E a; " — (k—1)aps1 E a; .
i=1 i=1 i=1

Using this last inequality, it remains to prove that:

k+1 k k
(kZak“ Za )ak+1<k2a52af_l)+
i=1

i=1
k k—1
ak“(Ha, akH aHl) > 0.
We have

(@i — a1+ ag1) + (k= 1) ajy — aiy

":lk

Il
—

k
Hai + (k- 1)a§+1 a'ziﬁ =
i=1

7

ko

k K k-1
> af +afi ) (ai—ag) + (k—1)ag., —afy =0.
i=1

Also

k+1 k k
(/cZakH Za )—akH(/ﬁZaf—Zafl) >0

i
-
(-
ST
I
-
IS]
S
i
N~

k k
k+1 k
=k g ai+ — E a; > akH(kj
i=1 i=1 -

By Chebyshev's inequality, we have
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and since a1 + as + -+ + ax+1 = 1, by the assumption a3 > ag > -+ > agy1, we deduce that

So it is enough to prove that

which is equivalent to

Since AM > GM we have that
k1, L g1 ks
ka; ™" + 7 >2a Vi

Adding this inequality for ¢ = 1, 2, ..., k we obtain the required inequality. O

10.6 Rearrangement Inequality

Theorem 20

Letay <ag < <a, and by < by < <by, (ora; >as > >a, and by > by > - >by,) be
real numbers. If ai, ab, ..., ay, is any permutation of a1, as, ..., ay, then the equality

iaibn+l—i < iai; b; < iaibh (10.6)
=1 =1 =1

n

holds. Thus the sum Z a;b; is maximum when the two sequences (a;) and (b;) are oredered
i=1
similarly. And the sum is minimum when these are ordered in opposite manner.

Proof

We start by assuming that both a;'s and b;'s are non-decreasing. Suppose (a;) # (a;). Let r
be the largest index such that a; # a, i.e. a; # a, and a} = a; for r < ¢ < n. This implies that
ay is from the set {aq, as, ..., a,—1} and a;, < a,. Further this also shows that af, a, ..., a; is
a permutation of ai, as, ..., a,. Thus we can find indices k < r and [ < r such that a} = a,
and a,. = a;. It follows that

ap—ar=a,—a; >0, by—b, >0

We now interchange a;. and a} to get a permutation of af, a3, ..., a, of ai, a3, ..., ay; thus
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” i ” ’
Ap = G = Ay, Ak = Ar = Q]

{ al = aj, ifi #rk
Consider the sums

5" = aiby + a3by + -+ anbn, S" = aiby + asby + - + anby,

and the difference S” — 5 :

n

S =8 = (af —a})b;
i=1
= (af —ak) + (a7 — a;) b,
& = (a; — a) by + (a, — ar.) by
= (a},—al) (by—bg).

waj—a; >0 and b, — b > 0, we can say that S” > S’. We observe that the permutations
af,as, ... ay of ai,aj, ... ,ay has th eproperty that a; = a; = a; for r <i < n and a; = a, = a,-
Hence the permutation (a;) in place of (a;) may be considered and the steps can be continued
like above. After at most n — 1 such steps, we will arrive at the original permutation (a;) from
(a7). At each step the corresponding sum has the same order as a;'s i.e. non-decreasing. Thus,

aiby + abby + -+ anby, < arby + asby + - + a,by, (107)
For the other part, let us put ¢; = aj,+1_4, d; = —b,+1_;. Then ¢y, ¢a, ..., ¢, is a permutation
of ay,az,...,a, and dy < dy < -+ < d,,. Using the inequality (Equation 10.7) for the sequences
(¢;) and (d;), we get

Cldl + Cng —+ Cndn S a1d2 + a2d2 + -+ andn.
Thus,

n n
’
— E pg1—ibny1—i < — E aibpy1—-
=1 n=1

Thus,
aiby + abby + -+ + anby, > a1by + asb,_q1 + - + a,by, (108)
which is the other part of the inequality.

For the equality, we consider pairs k, ! with 1 < k <[ < n, either a + k' = a] or a} > a] and
b, = by, then the equality holds for (Equation ??rearrangement:2). For (Equation 10.8), for
each k, [ with 1 <k <1<, either an 11k > ani1and by g = bui14 0

Corollary 4

Let oy, g, ..., iy be real numbers and By, P2, ..., Bn be a permutation of ay, a, ..., . Then

n n
§ a;f < E 0112.
i=1 im1

The equality holds if and only if (o) = (B;).
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Proof
Let af, ab, ..., aj, be a permutation of a1, as, ..., a, such that of < a5 < ... < aj,. Then we
can find a bijections o of {1, 2, ..., n} onto itself such that aj = ay(;), 1 < j < n;ie ois

a permutation on the set {1,2,...,n}. Let 8 = B,(;). Then B, 52, ..., B is a permutation
of af < aj < ... < ap. Applying the rearrangement inequality to a] < ab < ... < aj, and
ﬂi’ﬂé? "'75';747 We get

n n n
Dl <> ()= "ol
i=1 i=1 i=1
We also have
S A=Y ) Boti) = Y ifi
i=1 i=1 i=1
because o is a bijection on {1, 2, ..., n}. Thus,
n
1 im1

Say that equality holds and (a;) # (B;). Then (a;) # (Bi). Let k be the largest index such
that o} # B for k < i # n. Let m be the least integer such that o} = B;,. If m > k,

n

then (;, = a} and hence af = «;,. This implies that o} = ak,1 = - = aj, and hence
Br+1 =+ = Brn. We now have an my > m such that o = S;,,. Using m; as pivot, we get
Q= Qfp1 = = Qpy =+ = apy and Piy1 = - = By, = -+ = Py, It can be concluded that

o) = B for some [ < k, thus forcing m < k.

Clearly Sy, # Bk by our choice of k. We know that equality holds if and only if for any two
indexes r # s, either a;. = o or 3. = B%. Since S, # Bk, we must have a;, = af. But then
we have ay, = ajm1 = - = ak. From the minimality of m, we see that k —m + 1 equal
elements oy, a1, .-, Q% must be among Br,, Bmat, -, Bn and since S # af, we must have
o) = B for some | > k. But then using 8/ = aj, we have

’ ’ ’ /
Ay, = Q] = " = Q= =+ = Q.

Thus the number of equal elements gets enlarged to | —m + 1 > k — m + 1. Since this
process cannot be continues indefinitely, we conclude that («f) = (3;) which will be followed

by (ai) # (Bi)- O
Corollary 5

Let a1, ag, ..., an be positive real numbers and let (1, Bo, ..., Bn be a permutation of
a1, g, ..., Q. Then

n

S i,

o1
Equality holds if and only if {a;) # (5;)-
Proof
Let af, ab, ..., a;, be a permutation of ay, ag, ..., a, suhc that o] < a4 < ...ap,. Like in

previous corollary, we can find a permutation o of {1, 2, ..., n} such that «f = Qg(y) for
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1 < < n. We defien 3; = f,(;). Then (5;) is a permutation of (o). Using the rearrangement
theorem, we get

Thus, we have the desired inequality. Like previous case we camn derive the equality. O

10.7 Young's Inequality

Theorem 21
1
Ifpe[l,o0) and q=p/(p—1). q € [1, x] and}—)ﬁ—%:l. If a,b >0, then

P q
%Jr%Zab (10.9)

Proof

Taking log of L.H.S. log(%p + y)

q

Notice that, since %—l—% =1, so the L.H.S. is just a convext combination of a” and b9. Since

log = is a concave function, we have
JIX loga? b
log(% + b—) > e, % =loga + logb = log(ab).

Hence, the inequality is proved(since log x is strictly increasing).
Alternative Proof.

Using generalized AM-GM inequality,

T4l > [(xp)l/p (yq)l/q] = zy.

10.8 Holder's Inequality

Theorem 22

Let aq, as, ..., Gn, b1, ba, ..., by be real numbers and p, q be two positive real numbers such that
%—l— % = 1. (Such a pair of indices is called a pair of conjugate indices.) Then the inequality

holds
n ip s 1/q
< ( |aip) (Z'bi|q> (10.10)
i=1 i=1

holds. Equality holds if and only if |a;|? = ¢|b;|?, 1 < i < n, for some real constant c.

i aibi

i=1

Proof

Following Young's inequality, consider
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. |ax] b
n 1/p’ Y 1/q
(Star) " (S )
so we get
|ax|” x| || [bx|

Now summing over k, we obtain

1 Z |axbg|

( w) (= |b|q)/q

+

SR

Thus, we have

n n p sy 1/q

zmkbkm(zaiw) (zw) |

i-1 i—1 i=1
It is now trivial to prove the condition for equality. O
Remark
If we take p = ¢ = 3, Holder's inequality reduces to the Cauchy-Schwarz inequality.
Remark
If either of p and ¢ is negativem Hoélder's inequality is reversed.
Remark

Holder's inequality can have a version with weights. In addition to what we have, we also
consider consider weights wy, we, ..., w, then following equality holds

n n p s o, 1/q
Zwimibi‘ < (Zwi|ai|p> (Zw1|bb|q)
i=1 i=1 i—1
Given below is generalized Holder's inequaltiy and the proof is similar like above.

Theorem 23

Let a;j,i=1,2,...,m; j=1,2,...,n, be positive humbers and oy, o, ..., ay, be positive real
numbers such that oy + as + -+ o, = 1. Then

Z(Haija?j’><n(2aw> . (10]1)
i=1 \j=1 j=1\i=1

10.9 Minkowski's Inequality

Theorem 24

Let p > 1 be a real number and ay, as, ..., ap, by, ba, ..., by, be real numbers. Then
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n i/p n 1/p n 1/p
(Z |ai + b,—,|p> < (Z |a,—|f’> + (Z |b,-|1’> (10.12)
=1 =1 =1

Here equality holds if and only if a; = \b; for some constant A, 1 <1i < mn.
Proof

We assume that p > 1, because the result is clear for p = 1. Observe the following:

n n n n
Z \ai +b,‘|p = Z ‘ai+bi‘p71‘ai+bi‘ < Z |ai+bi|p71|ai| + Z |ai+bi|p71|bi|.

i=1 i=1 =1 i=1

Let g be the conjugate index of p. Using Holder's inequaity to each sum on the right hand
side, we have

n n 1/p n 1/q
Z|ai+bi|pil|ai| < (Z |aip) <Z|ai+bi|(p1>q> .
=1 =1 =1

Since p, ¢ are conjugate indexes, we get (p — 1) ¢ = p. It follows that

n n 1/p n 1/q
Z|ai+b¢|p1|aiﬁ<zaip> (Z|ai+bi|p> .

i=1 i=1 i=1

Similarly,

n n 1/p n 1/q
zaﬁbiwbis(zbiw) (zmﬁw) |
i=1 =1 =1

It now follows that

n n 1/p n t/p n 1/q
> lai+bil? < [(Z ai|p> + (Z |bZ~|P> 1 (Z |ai+bi|1’> :
i=1 i=1 i=1 i=1

If we use 1 — (1/1) = 1/p, we finally get the required inequaity.
Like Hélder's inequality the equality can be proven for this using the same conditions. [
Remark

For 0 < p < 1, the inequality (Equation 10.12) gets reversed.

10.10 Convex and Concave Functions

Most of the inequalities discussed so far are consequencce of inequalities for a special class of
functions, known as convez and concave functions. Consider the function f(z) =2" Vn>1
defined on R. Consider the case of n = 2, then on the graphs of this function, the chord
joining any two points always lies above the graph. In fact taking a < b, and the point
ka+ (1 — k)b between a and b, we see that

e ka®— (1—-k)b? = —k(1—k)(a—b)?<0.
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Thus,
flka+ (1 —k)b) <kf(a)+(1—k)f(b).

This property is the defining property of a convex function. The family of convex functions
obey a class of inequalities known as Jensen's inequality.

Let I be an interval in R. A function f: I — R is said to be convext if for all z,y in I and k
in the interval [0, 1], the following inequality holds:

[k + (1 =k)y) <kf(x)+(1—Fk)f(y). (10.13)

If the inequality is strict for all z # y, f is said to be strictly convex on I. If the inequality is
reverse for same conditions then f is said to be concave and similarly for strictly concave f.

There are other equivalent properties of a convex function. Let x1, xo, z3 are in I such that
71 < 9 < 3 and we take k = 5_3___12 which gives us

To— T

1—k= l,andmgzkler(l—k)xg
1

Ir3— X
We have
f(@2) = f(kx1+ (1 —k)as)
<kf(z) + (1 —k) f(z3)

T3 — X2
_—x3—m1f(x1)+x3—1’1

T2 — T

flx3).

We can write this as

ff(ah) — flx2) < f(z2) —f(z3)7

X1 — T2 To — T3

for all x1 < 29 < x3 in I. We can also write this as:

f(z1) f(z2) f(z3) >0

(r1—w2) (w1 —x3)  (w2—a1) (w2 —23) (w3 — 1) (W3 —@2) —

Consider z1 = (a, f(a)) and z2 = (b, f(b)) as two points on f. The equation of line joining
these two points is given by

Any point between a and b is of the form x = ka + (1 — k) b. Thus,

9(x) = g(ka + (1 —k)b)
= (@) + U= o k- a)
= fla) + (1= k) [f(b) — f(a)]

=kf(a)+(1—k

) f(b)
> f(ka+ (1—k)b)

flz)
Thus, (z, g(x)) lies above (z, f(z)), a point on f.
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We can look at this in another way. A subset E of the plane R? is said to be convex if for
every pair of points 21 and 2o in F, the line joining z; and zs lies entirely in £. With every
function f: I — R, we associate a subset of R? by

E(f) = {(,y) 10 <o <b, f(2) < y}.

Theorem 25

The function f: I — R is convez if and only if E(f) is a convex subset of R%,
Proof

Let f be convex. Let z; = (21, y1) and 2o = (22, y2) be two points of E(f). Consider any
point on the line zoining z; and z5. Then,

z2=kz+ (1 —k)z
= (kx1 4 (1 = k) 2o, ky1 + (1 — k) y2)
for some k € [0, 1]. We see that a < kx4 (1 — k) z2 < b. Moreover,
fkoy+ (1= k)az) < kf(zr) + (1 —k) f(22)
<kyi+ (1—k)ye.
Thus it follows that z € E(f), proving that E(f) is convex.

Conversely let E(f) be convex. Let x1, 2 be two points in I and let z; = (z1, f(x1)) and
29 = (2, f(x2)). Then z; and z3 are in E(f). By conexity of E(f), the point kz1 + (1 — k) 22
also lies in E(f) for each k € [0, 1]. Thus,

(ka1 + (1 K)as, kf (21) + (1 k) f(21)) € B(f)
The definition of E(f) shows that
flkr1 4+ (1 —Fk)z2) < kf(z1) + (1 —k) f(z2).
This shows that f is convex on the interval I. O
Following theorem gives description about slope of a function's graph.
Theorem 26

Let f : I — R be a convex function and a € I be a fized point. Define a function P : I\{a} — R
by

pla) L2~ f0)

r—a
Then P is a non-decreasing function on I\ {a}.
Proof

Let f is convex on I and let x, y be two points in I, x # a, x # b such that x < y. Then
exactly one of the three possibilities will be possible:

a<r<y, r<a<yr<y<a.
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Consider the case a < x < y; other cases can be handled similarly. We can write

r—a y—x
r=—y+——a.
y—a y—a

The convexity of f shows that

(=2 +8220) <222 1) + IS 0).

This is equivalent to

J@) = f@) _ f5) = fla)

r—a T y—a

Thus P(z) < P(y). This shows that P(z) is a non-decreasing function for z # a. O

Interestingly, the converse is also true; if P(z) is a non-decreasing function on I \ {a} for
every a € I, then f(z) is convex. We fix x < y in I and let a = kx + (1 — k) y where k € (0,1).
(The cases k =0 or 1 are obvious.) In this case

P(z) = f(x) = fla) _ _f(z) = fla)

v (-R-y)
_ W)~ fa) _ ()~ f(a)
P = e T e

The condition P(z) < P(y) implies that f(a) < kf(z)+ (1 —k) f(y). Hence convexity of f
is proven.

There is another easy way of deciding wherther a function is convex or concave for twice
differentiable functions. If f is convex on an interval I and if its second derivative exists
on I, then f is convex(strictly convex) on I if f”(x) > 0(> 0) for all « € I. Similarly f is
concave(striclty concave) on I if f”(z) < 0(<0) for all z € 1.

When we defined conex function the inequality involved two points z, y; refer to (Equa-
tion 10.13). Jensen's inequaity extends this to any finite number of points.

10.11 Jensen's Inequality

Theorem 27

Let f: I — Rbe a convex function. Let x1, xo, ..., T, are points in I and ki, ko, ..., ky, are
real numbers in the interval [0, 1] such that ki + ko + -+ + kn, = 1. Then

i=1 i=1

Proof

We will use induction to prove this. For n = 2, this is the definition of a convex function.
Suppose the inequality (Equarion 10.14) is true for all p < n; ie. for p<nifx,2—2,..., 2,
are p points in I and ky, ke, ..., k, are real numbers in [0, 1] such that Y. k—i =1, then
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f(Z%%) < Zk+1f($z)

=1

Now considering the conditions of the theorem,

n—1
> kix n-1
i=1 ) _ _
Y=g, Y2 =1Tp, a1 = E ki, ao = k.
Sk,

-1

i

We observe that ay =1 — aq, and y1, y2 are in 1. Using the conexity of f, we get
floayr + azyz) = flawyr + (1 — 1) y2)

<of(yr)+ 1 —a)l) f(y2)
= arf(y1) + a2 f(y2).

A

However, we have
n
a1y1 + agys = E kiz;.
i—1

Now we consider f(y1). If
i 1< l<n—1

> ki

i=1

then it can be easily verifief that Z;:ll ;= 1. Using the induction hypothesis, we get

n—1 n—1
f(Z um) <> ()
1= =1

Since
n—1
S i =,
=1
we get
m—1 n—1
> kuf(a) X flai)
R
k;
i=1
Thus we obtain
n—1

230
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Thus, the theorem is proved by induction. O
Remark

If f: I — R is concave, then the inequality (Equarion 10.14) gets reversed. If z1, 3, ... , z,, are
points in I and ky, ko, ..., ky, are real numbers in the interval [0, 1], such that ky +ko+ -+ k, =
1, then following inequality holds:

f(zn: km) = z": kif(z:) (10.15)

Remark

Using the concavity of f(z) = Inz on (0, o), the AM-GM inequality can be proved. If
Z1, Ta, ..., Tp are points in (0, 00) and ki, ko, ..., ky, are real numbers in the interval [0, 1]
such that ki1 + ks + ... + k,, = 1, then we have

i=1 i=1
Proof

Taking k; = % for all i,

ln(i%) Z%ilnxi = iln(m}/n)

i=1

Using the fact that g(z) = e” = exp(x) is strictly increasing on the interval (—oo, o), this
leads to

%ixz > exp(iln(m;/n>>
= ﬁexp(ln(m%"))
i=1

1/n
= (z122 ... tn) "

We can also prove generalized AM-GM inequality with this method.

ln(i kix; > z”: ki ln(zi)> = zn:lnxfi,
i=1 im1 im1

Taking antilog

i=1 i=1
Nowfor any n positive real numbers a4, as, ..., au,, consider
a/.
k; :

=
> a;
j=1
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Observe that k; are in [0, 1] and > ; k; = 1. These choices of k; give

1 et
Q1T + Qo2 + + ann > (mtlhxgz mz)Z) /(a1+ag+-Fa )7
ayt+ag+ -+ oy
which is our generalized AM-GM inequality. 0
Remark

Function f(z) = a can be used to prove Holder's inequality. We know that f(x) = 2P is
convex for p > 1 and concave for 0, p < 1 for p € (0, 00). Let x1, z2, ..., Z,, be real numbers
and ki, ko, ..., ky, in [0, 1], then we have

n p n
i=1

i=1
and
n p n
(Z kz$z> > kil for 0 <p < 1.
i=1 i=1
Proof

Let ay, a9, ..., ap, b1, b, ..., b, be real numbers and p > 1 and ¢ be conjugate numbers. Thus,
%Jr % = 1. We need to assume that b; # 0 for all i; else we may delete all those b; which are
zero without having an effect on the equality. Let

- b\ |aj|
Z i= Tj= 11
i1 T [by[et

We have k; € [0, 1] and k1 + ko + ... + k, = 1. Using the conexity of z?, we have

n p n
i=1

which implies that

p
0517 ay bt ey »
(Z i) <X

Futher simplification yields

n n 1/p n ip /s, 1/q
3 lashy| < (z ) ) _ (z W) (z w)
j=1 j=1 j=1 j=1

For concave case the inequality is simply reversed. O
Theorem 28

Let f: 1 — R be a convex function; a1 < ag < - < ap, by, b, ..., b, are real numbers in I
such that a1 + b1 € I and a, + by, € I. Let ay, aj, ..., ay, be a permutation of ay, as, ..., Gy.

Then the follwoing inequality is true:
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Flaitbnia) €Y flai+b) <D flai+bi).
= i1 i1

Proof

We will use the proof of rearrangement inequality. Assume (a}) # (a;) and r be the largest
index such that a;. # a,. Since a; = aj for r < i < n, we see that ai, a3, ..., a; is a permutation
of (ay, as, ..., a,). Thus we can find k < r, ! < r such that af, = a, and a; = ;. We deduce
that a}, — a,. = a, — a; > 0 and b, — b, > 0. Interchanging a, and a} to get a permutation
(af, as, ..., an) of (ay, aj, ..., ay). Thus

al =ajfor j £k, ay =al=ar, a, =a,. = q.

Let

Then,
§”— 8" = fla? +b;) + flaf 4 bx) — flab+b,) — flak+ by)
= flar+br) + far+bx) — flar+br) — flar+bi).
We notice that
a; + by < a, + b and a; + b, < a, + b,..
These give
aj+by<ar+bp<a.+0br, aj+bp<a;+0b.<a,+b,.
If 21, x9, 3 are in I, then the convexity of f implies that
(w3 — 1) fw2) < (w3 —m2) f(21) + (w2 — 21) f(23) -
Putting z1 = a; + bg, x2 = a, + by, and x3 = a, + b, we get
(ar + by —a; —bi) flar+bg) < (by—bi) flar+ k) + (ar —ar) f(ar+0,).
Similarly putting 1 = a; + bx, x2 = a; + b, and x3 = a, + b,,, we get
(ar+br—a;—bg) flar+ ) < (ar — ar) flag+by) + (by — by) far +b;).
Adding, we get

(ar+br—ar—bg) {f(ar+bx) + flar +b,)} <
(ar + by — ar = by) { f (@ + bi) + f(ar+br)}-
Since a; + by, < a, + b, we arrive at
flar+br) + flar+br) < flar+bi) + f(ar+by).
This proves that S” — S’ > 0.

Now we observe that the permutation (af, a3, ..., a;,) has the property a, = a, and af = a;,
for r < j < n. We may consider the (af, a3, ..., an,) in place (ai, a3, ..., ap,) and proceed as



Inequalities 234

above. After at most n — 1 steps we arrive at the original numbers (a;) from (a;) and at
each stage the corresponding sum in non-decreasing. Thus, finally we arrive at

Zf(al/'+ni) < Zf(ai+bi)
i=1 i=1

For the other inequality we define ¢; = a,+1_; so that ¢; > ¢o > -+ > ¢,. We have to show
that

n

if(arwrl—i“'b Z flai+b;)
i=1

Setting ¢/ = a}, we have

flei+b;) Z (ci+bi),
) i=1

(3

where (ci, ¢b, ..., ¢,) is a permutation of (¢1, ¢, ..., ¢n). We take (c]) # (¢;) and let r be the
smallest index such that ¢; # ¢,. This forces that ¢, € {¢,41, ¢r12, ..., ¢n} and ¢, < ¢,. We
see that (ci, ¢r41, ..., ) is a permutation of (¢, ¢ri1, ..., ¢ ). We can find k > 7,1 > r such
that ¢t = ¢, and ¢;. = ¢;. This implies that c;, — c;. = ¢, — ¢; > 0 and by, — b, > 0. Now we can
interchange c;. and ¢, to get a permutation (¢f, ¢3, ..., cn) of (¢1, ¢3, ..., ¢n); thus

! =ciforitnrk, cf=ch=c, cl=cr.=q.

We compute the difference between

S” = Zf(c;'+ b), S = ;f(c{—i- bi),

=1
and obtain
S"— 8" = f(cf+by) + flek+br) — fler+br) — f(ck + i)
= fley,+ b))+ fle+br) — fla+b)— fler+br).
We see that

ca+b-<c+by<cr+bg, e+ b <cr+b. <cp+ bg.

From the convexity of f

(cr+bp—c—by) fla+br) < (¢r—a) fla+bp) + (b —by) fer + br),
and

(cr+ bk —c1—=by) fer 4 br) < (b —by) fer+br) + (cr— 1) fer 4 br) -
Adding, we get

(cr+br—c—b){flar+bp)+ fler+b)} < (er+b—cr—by) {f(cr+br) + fler + 1)}
We know that ¢, + by — ¢; — n,- # 0, so we have
fla+be) + fler+br) < fla+be) + fler+bi).

Thus, we see that S” < S’. We also see that the new sequence (c7) has the property: ¢ = ¢,
and Cf = ¢; for 1 < i < r. Now we repeat the above argument by replacing (c;) with (¢/). At
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each step the sum will never increase. After at most n — 1 steps we arrive at the sequence
(¢;). Thus, we find that the corresponding sum does not exceed to that of S”. Thus we get

if(ci+b i (ci+b),
i=1

i=1

which was to be proved. O

10.12 Bernoulli's Inequality

Theorem 29

For every real number r > 1 and real number x > —1, we have
(1+z)">1+7rx

while for 0 <r <1 and real number x > —1 we have
(1+2)" <1+ra.

Proof

Using the convexity of f(z) =In(z) on (0,00). Since z > —1, we have 1+ > 0. If0 <r <1,
we have

In(l4+rz)=ln(r(l+z)+1—r)>rln(l+z)+ (1 —r)In(l) =rIn(l +z).

Taking antilog gives (1+2)" <1+ rz. When 1 <r < oo,

In(1+ ) <
>1

This gives (1 +z)"

—1

1+7"a:)) 27’ ln(l)—}—%ln(l—l—rw) :%ln(l—o—mc).

+r O

10.13 Popoviciu's Inequality

Theorem 30

Let f: I — R. If f is convex, then for any three p;oints x,y,z in I:

f(z) +f(3y) + f(z )+f<“’+y+z) 2%{1”(90;?!) +f(y+z> +f<z+x)}(10.16)

Proof
Without loss of generality, we can assume that t <y <z Ifz <y < %, then

r+y+z _x+=2 r+y+z
3 < < zand 3 5

Therefore, there exists s, ¢ € [0, 1] such that
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T+z rT+y+z
3 ( 3 >5+z(1 s)

y+z [(rx+y+z _
: 7( : )t—i—z(l )
Adding, we get

T+y—2z w+y—2z
2 B 3

(5+t):>s+t:%.

As f is a convex function

and

() <506 +550).

. . . g . . . T+y+z
Adding together last three inequalities we get the required inequality. The case when === <

y is considered similarly, bearing in mind that < LT“ < % and z < ”T“ < %

When f is a concave function, the inequality gets reversed. O

10.14 Majorization

Definition: Given two seuquences (a) = (a1, ag, ..., a,) and (b) = (by, b, ..., b,) where
ai, b; € R Vi € {1,2,...,n}. We say that the sequence (a) majorizes the seuqnece (b), and
write (a) > (b), if the following conditions are fulfilled:

ay =G 2 - 2 Gp;
b1 > by > > by;
ar+ag+ -+ an =br+ba+ -+ by;

ar+as+-+ap>by+bo+-+b, Ve {1,2,...,n—1}.

10.15 Karamata's Inequality

Theorem 31

Let f : [a,b] = R be a convex function. Suppose that (x1, ..., Tp) > (Y1, .., Yyn) where
Z1y ey Ty Y1y -+, Yn € [a, b]. Then we have:

S fe) = > ). (10.17)
i=1 i=1
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Proof

If f(z) is a convex function over the interval (a, b), then Va < z; < x5 < b and g(z,y) =
M, f(zy,z) < g(xg,x). If x < xq, then

) = (@) _ f(an) = f()

Tr1— - r1—x

g(z1,x) = =g(x2—1x).

We can argue similarly for other values of x.
We define a sequence (C) such that ¢; = g(a;, b;)

We also define sequences (A) and (B) such that

Ai:ia]‘,AO:OandBi:ibj,B():O
j=1

If we assume that a; > a;11 and similarly b; > b; 11, then we get that ¢; > ¢; 1. Now, we
know that

I
s
=
=
=
<

I
held
+
il
=

I
N

Il

Ings
P
S
isd
T
=
N
—
=

I
=
N2
Y
o

Therefore,

10.16 Muirhead's Inequality

Theorem 32
If a sequence (a) majorises a sequence (by, and 1,2, ..., T, be a set of postiive real numbers
then
Z:pl x9? ... ““>Zwl zh? .. (10.18)
sym sym
Proof

We define a sequence (c) such that > ;- ; ¢; = 0, the we observe

E xCI 62 C,L n[

sym

for real z1, o, ... z,,. By AM-GM we know that
> oaftag? .

sym
Y z ey
: sym
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n
[] ' I ! .
= n! 2G2S L s = n) \/ win Merteaten) _ |
sym i=1

C1,,.C2 C
= E x{'wy? gt > nl

sym

We defined out sequence (c) such that ¢; = a; — b; which gives us Y ¢; => a; —> . b; =0

Thus, 3 ,,, z7'25” ... 7" — n! > 0. Multiplying with - I, azfﬂ we get
n
ZHLE? folx?...xfl"—l
sym i=1 sym
n n
DIIEEE ICE
sym i=1 =1
n n
S| )
symi=1 i=1
Hence, it is proved. O

10.17 Schur's Inequality

Theorem 33

Let x,y, z be non-negative real numbers. For any r > 0, we have

daT(w—y)(z—2)>0 (10.19)

cye
with equality if and only if x =y = z, or if two of z,y, z are equal and the third is 0.
Proof
When r = 1, the following case arises:

224yt 2B 4 3y >yl +y) Fyz(y +2) +za(z+ ).

Because L.H.S. is cyclic in z, y, z without loss of generality we can assume =z > y > z.
Rewriting L.H.S., we have

(z—y)[a"(z—2) =y (y—2)]+2"(z—2) (2 —y).

We see that 2" > y" and © — z > y — z. Thus the expression inside brackets is non-negative.
(z—y) is also non-negative. z" and (z—z) (z—y) are also non-negtive. Thus entire expression
is non-negative and hence the inequality is proven. O

Velentin Vornicu has given a general form of Schur's inequality. Consider a, b, ¢, z,y, z € R,
WhereaZbZC,andeitherzZyzzorZZyzm.LetkeZ*,andletf:[Rﬁ[Rgbeeither
convex or monotonic, then

f@)(a=b)"(a—e) + fy) (b—a)* (b— )+ f(2) (c—a)* (c=b)" > 0.
(10.20)
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10.18 Symmetric Functions

Let aq, as, ..., ay, be arbitrary real numbers. Considering the polynomial P(z) = (z+a1) (z+

az) - (2 4 an) = cox™ + 12"+ - 4 ¢u_12 + ¢,. The the coefficients cq, ¢y, ..., ¢, can be
expressed as functions of ay, asg, ap like ¢co = 1, ¢; = a1 + as + -+ + ay, co = ajas + asasz +
=ty p—10p, C3 = @102a3 + 20304 + =+ + Ap—20n—10np, ... , Cp = Q102 ... Q.

These are also called elementary symmetric sum and the first elementary symmetric sum of
f(x) is often written as 3°, . f(z) while the nth can be written as E:ym ().

The symmetric sum Zsym f(x1, 22, ..., ) of a function f(z1, xa, ..., x,) of n variables
is defined to be Y f(%5(1), To(2), s To(n)), Where o ranges over over all permutations
of (1,2, ...,n). More generally symmetric sum of n variables is a sum that is unchanged

by any permutatoin of its variables. Any symmetric sum can be written as a polynomial of
elementary symmetric sums.

A symmetric function of n variables is a function that does not change by any permutation
of its variables. Therefore,

Z f@, @2, oy zn) = nl f(@1, 22, ..., Tn)

sym

We define symmetric average py, as (C;?)
k

10.19 Newton's Inequality

Theorem 34
For non-negative 1, To, ..., T, and 0 < k < nm
d? > dj,_1dy i1, (10.21)
equality holds when all x;'s are equal.
Proof

We will prove this by mathematical induction. A proof by calculus is also possible but we
will not prove by that method.

For n = 2, the inequality becomes AM-GM inequaltiy. Let the inequality hold for n = m —1
for some positive integer m > 3.

Let dj, be the symmetric averages of x1, xa, ..., T,,_1. Note that dy = n—;kdfc + %d;,lmm.

k41, k-1, k-1,  k+1,
dkfldkﬂrl = (ankfl + n dk72xm> (n n dk+1 + n dkxm)

(k—1)(n—k—1)

(n—k+1)(n—k—1)

= 2 d];,1d1/4+1 + 5 dl/672dl’c+lxm
n n
—k+1)(k+1 E—1)(k+1
B A T )
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(n—k+1)(n—k—1) (k—=1)(n—k—-1)

< n2 d]%/ + n2 d;672dl/c+1-rm
—k+1)(k+1 E—1)(k+1
U R TS VP L [LES VB Ry
n n
—k+1 —k—1) o, (k—1 —k-1),
B VTR P L VI S
n n
—k+1)(k+1 k—1)(E+1
U R TS VB L [ LES VY
n n
(n_k)z 27 Q(n_k)k ’ g1 kz 2 7.2 dk dk—lxm 2
= n2 dk + n2 dkdk71Im+Pdk_1 Ty — E—T
_ 2
< (” kd,;+5d’k,1xm) = d?
n n
Hence, it is proven by induction. O
10.20 Maclaurin's Inequality
Theorem 35
For non-negative x1, xa, ..., &, and 0 < k < nm
dy > dy? > > dim, (10.22)

equality holds when all x;'s are equal.
Proof
Following Newton's inequality it is enough to show that drll/frffl) > dim.

Since this is a homogeneous inequaqlity, it can be normalized. Thus, d,, = [ 2; = 1 We then
transform the inequality to(by exponentiating both sides by n — 1)

Z 1/$l > 1(n71)/n -1
—n =

We know that the G.M. of -, = ... zin is 1 and hence the inequality is true by AM-GM. O

x1’ T2’

10.21 Aczel's Inequality
Theorem 36
Ifa? > a2+ -+ a2 or b? > b2+ -+ b2, then
(a1b1 — agby — - — anby)® > (af — a3 — - — a3}) (b7 — b5 — - = b7) (10.25)
Proof

Consider the function
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n

f(@) = (a1 —b1)? Z (a;x —b;)?

=2

= (a2 —a2— - —a?)az? —2(a1by — aghy — - —anby) x + (b2 — b2 — - —b2).

We have f(%) =->" Z(a,a] bi)2 <0, and from a? > a3 4 - + a? we get zhﬁrglo f(x) —
oo. Therefore, f(z) must have at least one root, < D = (a;b; — agby — -~ — anby)? —
(af —af— - —a}) (b —b3 — - —b7) > 0. O

n

10.22 Carleman's Inequality

Theorem 37

Let ay, ag, ..., ay be n non-negative real numbers, where n > 1 then

[ee]

(arasg - 1/l<eZa“ (10.24)
=1

i
unless all of a;'s are equal to zero.

Proof

Let us define ¢, = n(l + %)n = (Zﬁi Then for all positive integers i,

(Cl Cl)l/l =i+1

[e'e] 1/

= L1 e (ea Lciaq)t clal . i)
S SN pICT N IR

i=1 = (a.. i=1

Using AM-GM inequality, we get

i

i (c1a1 ... i)'Vt _ i cjaj ii ¢ja;
—~ 1+ 1 _izlj:1i(i+l) j:“:ji(i—i-l)'
Using the partial fraction for ; T
S S
i:jz(z—l—l) — i i+l j
NNy > 1
3% _ 2
?Zzi(i+1)72(l+ )az
j=11i=j Jj=1
Since (1 + %)l < e, V j € I the inequality holds. O

10.23 Sum of Squares(SOS Method)

Sum of sqaures or S.0.S. method revolves around the basic fact that sum of squares is a
non-negative quantity. As you can see it requires knowledge only of very basic inequalitites
which makes it highly desirable. By using SOS method we rewrite inequalitites as sum of
squares to prove them as non-negative using only basic inequalities.
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Proposition 1

Let a,b,c € R. Then (a—c)? < 2(a—b)>+2(b—c)>.

Proof
We have
(a—c)2<2(a—0b)242(b—c)?
< a? —2ac + c® < 2(a* — 2ab 4 b?) + 2(b% — 2be + ?)
< a? + 40 + c*04ab — 4bc + 2ac¢ > 0
< (a4c—2b)2>0,
which clearly holds. O

Proposition 2

Leta>b>c. Then (a—c)?> (a—b)%+ (b—c)%

Proof
We have
(a—c)?>(a—b)2+ (b—c)?
< a? —2ac + c2 > (a® — 2ab + b?) + (b — 2bc + ?)
b tac—ab—b<0
< (b—a)(b—rc) <0,
which is true for a > b > c. O

Proposition 3

Leta >b>c. Then Z:Z 2%.

Proof

. a—c
Given = >

SRS

&bla—c)>alb—c) & ac>becsa>b.

Theorem 38

Consider the expression S = Sq(b — ¢)? 4 Sp(c — a)? + Se(a — )%, where S, Sp, S are
functions of a, b, c.

1. If Sg, Sp, Sc > 0 then S > 0.
2. Ifa>b>cora<b<cand Sy, Sp+ Sq, Sp+ Sc >0 then S > 0.

8. Ifa>b>cora<b<candSy, Sc, Sq+ 2Sy, Sc + 25, >0 then S > 0.



4.
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Ifa>b>c and Sy, Se, a>Sy, + b2S, > 0 then S > 0.

5 IfS;+Sy,>00rSy,+S.>00rS.+S,>00rS,+Sy,+S.>0and S,Sp+S,S.+5.5, >0

then S > 0.

Proof

1.

2.

If Su, Sy, Sc > 0 then clearly S > 0.
Let us assume that a > b > cor a < b < cand Sy, Sy + Sg, Sp + Se. > 0.
By Proposition (Preposition 2), it follows that (a —¢)? > (a — b)? + (b—¢)?, so we have

S =S,(b—c)?+ Sy(c —a)> + Se(a—b)?
> S.(b—c)2 4 Sy[(a—b)2+ (b—c)?] + Se(a — b)?
= (b—¢)*(Sa+Sp) + (a—b)*(Sp+ Se).

—c
Thus, S > 0 because S, + Sy, Sp + S > 0.

Let us assume that a > b >cor a <b < cand Sy, S¢, Sq + 28y, Sc + 25, > 0.
Then if S, > 0 clearly S > 0.

For case when S, < 0, by Proposition (Preposition 1), we have (a — ¢)? < 2(a — b)% +
2(b — ¢)?. Therefore

S = Sy(b—c)? 4 Sp(a—c)* + Se(a —b)?
> S (b—c)?+ Sp[2(a—b)2 +2(b—c)?] + Se(a — b)?
= (b—¢)*(Sa+2S,) + (a —b)* (Sc +25)
which is true for the given conditions.

Given a > b > ¢ and Sy, S, a®Sy + 25, > 0

By Proposition (Preposition 3), we have = > 7. Therefore

S =Sa(b—c)*+ Sp(a—c)?> + Se(a—b)? > Sa(b—c)? + Sp(a — c)?
—(b—e)? [sa+sb<‘b’:§)2} > (b—c)? {sﬁ sb(%ﬂ

b2S, + a?S,
= (b—C)2 <—b2 b>7

which is true for given conditions.
We assume that S, + S, > 0. Then

S =84(b—c)?+ Sp(a — )2+ Se(a — b)?
= S,(b—¢)?+ Sp[(c —b) + (b—a)]? + Sc(a —b)?
= (Sp+Se) (a—0)*+2Sy(c —b) (b—a) + (Sa+ Sp) (b —¢)?

SaSp+ SpSe + SeS,
Sy + Se

= (Sy+S.) <b—a+ St (c—b))2+

N2
S, 1 5. (c—=0)& >0.
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. ay,an a B1,.B2 Bn =
Every difference . . a{"25® ..ap — >0 @7 a® ., where an + ag + -+ ap = f1 +

B + -+ + B, can be written in SOS form.

Some special cases are given below:

1. a?+b2+c?—ab—bc—ca = (afb)zﬂb;c)zﬂc*a)z

2. a3+b3+c3—3abc:#[(a—b)2+(b—c)2+(c—a)2]

3. a®+b%c+cPa—ab?—b® —ca® = (afb)gﬂb;c)aﬂc*a)g

4. a3 + b3 + C3 o a2b o bZC o 620, _ (2a+b)(afb)zﬁ»(2b+c)3(bfc)2+(2c+a)(cfa)2

5. at + b4 + AP — b3 —c3h = (3aQ+2ab+b2)(afb)%r(31)2+2bczc2)(bfc)QJr(“Sc2+2az+a?)(cfa)2

6. a3b+b3c+c?’afab3fbc3fca3=%b+c[(bfa3) +(c=b)*+ (a—c)?]

7o at bt 4 et — 202 — b2 — 202 = (a27b2)2+(b272c2)2+(c27a2)2

Theorem 39

Consider two polynomials having the same degree and same number of variables A and B.
The difference of these two polynomilas can be written in SOS form:

doaitas®apr =) aay” i = Pya) (ai—ay)’,

cyc cyc
where oy + ag + - + ap = f1+ P2+ - + beta, = m and a = (ay, az, ..., ay).
Proof

We need to prove the following lemma first.

Lemma 2
If a = (a1, az, ..., apn) and ay + @z + an, = m, then:
n ap Qo ap » 42
E al — E aftad?...apnr = E Pij(a) (a; — aj)
cye cyc

We prove this lemma by induction over k, which will be the number of elements except 0
belonging to the set ag, ag, ..., ay.

If k = 1, the theorem is obviously true.

If k = 2, the expression becomes ), .a7" — 21 ay "t =3"Pyjla) (a; — a;)?

We observe that ta™ + (m — t)b™ — ma’d™ " = P(a, b) (a — b)%. We also observe that
f(z) =ta" + (m —t) —ma' = 0 has one repeated root which is 1 because f(1) = f'(1) = 0.
Therefore f(z) can be written like Q(x) (z — 1)? where degree of @ will be m — 2.

Let o = 7, then we have: bmf(%) =ta™ + (m—1t)b" —ma'b™ ! = bm_QQ(%) (a—b)2
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However, ™2 is a polynomial having 2 variables a, b because Q is a m —2 degree polynomial.
If our proposition is already true with k, the number of elements except for 0 in the set of «,
with k£ 4+ 1 we can transform this into the case of k as given below:

a2 aak+1 _ ala?1+a2+aza;1m2*(&1+az)aillagg ads . ak+1 [e51 aa1+a2

1 %2 k+1 ar+asz 3 gt artag 1
O e
With k = 2: @101’ "t a(:+12<a1+a2)a?1a;2 = Hiz(a) (a1 — az)?, we have:
a’(lllag . aiﬂ QlQ(a) (a’l - a2)2 + a1+a2 a?1+a2a§‘3 : (Ijjjll + a1+a2 a’gl+a3ag ° az‘i&l
chc a‘;n - chc a‘cllla‘g : “Z«Tf == chc QlQ(a) (al - a2)2 + chc G'Tln - aloﬁoQ
X A Y o e Y o ey

= =2 Qua(a) (a1 — ag)® + T (Ecyc at" = ey ad t2at Laghtt) +
oqojrzag (chc a;n - chc agl+a2a§¢ : a’(l:;k:ll)

So we see that these can be written in SOS form recursively. Hence proved. O

10.24 Problems

Prove the following inequalities:

1. a®+b%> 2ab.

2. \/_> 17whcroa>0b>0

3 a?+b? > a+b
: 2

4. P> where a > 0,b> 0.
a’b

5 a+b>1+ab, where b <1 < a.
6. a®+b2>c?+ (a+b—c)? whereb<c<a.
7. 2§%+§, where ab > 0.

—0—2 < —2, where ab < 0.

SRS

9. 1 < % < x,, where 21 < - < x,.

10. T1 TitATn

<
v = gty = T where

z—<-- Z—ndyz>02—1

1
11. 21 < (21 .. 2p)” < Xy, wheren > 2,0 <27 < ... <z,

lar| + -+ |an| > lag + ag + - + ap.



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Inequalities

ait+-+an > n
n ttan

1,thrcn>2 a; >0,i=1,.

a+by/*H > av/b + bv/a, where a > 0,b > 0.

%(a+b)+ > /% where a > 0, b > 0.
a(r+y—a)>xy, where z < a < y.

1 1 2
E+z—ﬂ>;7 where x > 1.

1 1
sir1 t3rre T 3R > 21 Tz Where k€N
ab < (1—a)(1=b)
a+b)? = [(1—a)+(1-b)]»

Whereo<<A 0<b< %

1 2k+1

T e < m, where k € N.

on—1 > n, where n € N.

=

0C

1

1 21 2 4 1 2 4 6
stsstzstst o +357 100103 < b
11—:9+}—:5§%+§,Whereo<a,b§%.

S

il—a, <Z z:az,vvhereo<a1,...7 <

1+%+~-~+%<g, where n € N.

1
T+a+b =

1—“—“’+3,Where0<a<1 0<bh<.
|z —y| < |1 —ay|, where |z| < 1, |y| < 1.

c 2,2 2
+o52>5+3—2 wherea >0,0>0,¢c>0.

-+57-<abc, threa2+b2+c2:§anda>0,b>0,c>0.
314+ a?+at) > (1+a+a?)?2
(ac +bd)* + (ad — be)? > 144, where a +b =4, ¢ +d = 6.

224224422 +na? > av2(z 4 2o+ o+ Tay).

$+ﬁ+a}r(7‘f5’fb—t‘[ where a > 0,b > 0, ¢ > 0.

a®(b? — ) + b* (2 —a?) +c*(a®? —b?) < 0, where 0 < a < b < c.

(z+2)

< - z+ 2
%—I—%-ﬁ-%é , where 0 <oz <y <z

246

\/1+\/a+\/1+\/a+\/a_2+-~-+\/1+\/a+~-~+\/a_"<nawherenZZ,aEZ,nG
N



37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

57.

58.

59.
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[bzx] > [z] + %ﬂ + [%3] + L‘?J + E’gw], where [z] si the integer part of the real number z.

(n!)? > n", where n € N.

S +4rt — 1222+ 42’ + 2+ 1> 0.

log? o > log Blog~y, where @ > 1,8 > 1,7 > 1,0 > 8.
logy 5 + logs 6 + logg 7 + log7 8 > 4.4.

n

1, 2 1
3t3s T+ 35 < Wheren € N.

gijﬁj <2 where n >2,n € N.
1114221+ - +n.n! < (n+1)!, where n € N.

<1+§7>(1+§§>---<1+£§) < 2, where n >2,n € B.

(1—i)(1—pi)(1—pi) > 2 where 1 < p1 < po < - < pp,pi € N,i = 1,2, ...

1 1 1 1 1 1 2
273357 999 T 1000 < 5

a+b a b
Trars < 19 T 135 Where a > 0,5 > 0.

a+b 1 a b
2¥a+b 23 <1+_a+1_+b>’ where a > 0,5 > 0.

n n
ai+2as+--+ia; .
E DT L2 E a;, where a; > 0,i=1,2,...,n.
i—1

1
i=1 i=

1,1 ,1_41 1,11
~+3+:<g where +3+-<1,a,b,ceN.

4z Yy z
y+z + T+z Tty

> 2, where x, y, z > 0.

a b c d
1< grpratavere T orera T avera < 2, where a, b, ¢,d > 0.
a+b>c+d,Whorca,b,c,dZ%anda2+b>c2+d,a+b2>c+d2.

(b—a)(9—a®)+ (c—a)(9—0%) + (c—b) (9 —c?) <242, where 0 <a < b < c < 3.

. If 0 < a,b,c <1, then one of the numbers (1 —a)b, (1 —b)c, (1 —c)a is not greater

1
than 7.

Let a > 0,b>0,¢ >0, and a+b+ ¢ = 1. Prove that \/a+%(b—c)2+\/b+%(c—a)2+
c+%(b—a)2§2.

Let a>0,b>0,¢c>0,and a+ b+ c = 1. Prove that ,/a+%(b—c)2+\/lv)+\/5§\/§.

Find the smallest possible value of the expression: ‘;—j + Z—j— ‘Z—j— Z—z +%+ %, where a,b > 0.



60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

4.

75.

76.

7.

78.

79.
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(17”31);11;;2”2;(171:"L) > (n—1)" wheren >2 x;>0,i=1,2,...,nand x1+xo+ -+ 2, =
T ts T +1+z ,wheren >2, 21> 1,20 >1,...,2, > 1.

abc + bed + cda + dab <i7-i-12776abcd7 where a,b,¢,d >0,anda+b+c+d=1.

Ogmy+yz+zx—2xyz§2—77, where z,y,2 > 0,and x +y + 2z = 1.

Suppose that for numbers 1, o, ..., T1997, the following conditions holds: (a) —% <

z;<V3,i=1,2,. 1997 (b) xl +xo+ - +:L’1997 = —318+/3. Find the greatest possible
value of the expression @12 + x3% + - 4 21297.

_1)(n-1)/2
Prove that cosay cosas - cosay,(tanay + tanas + -+ + tanay,) < %7 where

n>2and 0< o; <3%,i=1,2,...,n

n

Prove that fo(l — ;) < ay, where k > 2,k € N, and aj, = max[zF(1 —z) + (1 —
i=1

o)*e],2;>0,i=1,2, ... ,n, 21 +x0+ - +x)n=1,n>2

2(n—1) (zozs+ 2103+ + T Ty 4+ ToZg+ -+ ToTp + -+ T 1Zp) — 0" @120 Ty <
n — 2, where, n > 2, x1, o, ...x, > 0 and 21 + 22+ -+ x, = 1.

(Vs (Vs T (Y )

, where n > 2, x1, 29, ..., 2, > 0.
Turkevici's Inequality: (n—1) (25 + a3+ -+ +22) + /2223 ... 22 > (21 + T2+ + 20) %,
where n > 2, 29, o, ..., T, > 0.

(a+b)(b+c)(c+a) > 8abc, where a > 0,b > 0,¢ > 0.

(a+b+c—d)(b+c+d—a)(c+d+a—b)(d+a+b—c) < (a+Db)(b+c)(c+d)(d+a),
where a > 0,b>0,c>0,d > 0.

(Schur's Inequality) a® 4+ b + ¢ + 3abc > a®b + ab® + b%c + bc? + ca® + c*a, where
a>0,b>0,¢c>0.

(1+55) (1+25) (

log(a—1) < _loga
loga log(a+1)

4+cb)>25,wherea>0,b>0,c>0.

,Wherea>1
(Schur's Inequality) abc > (a+b—c)(c+a—"0b)(b+c—a), where a > 0,b > 0,¢ > 0.
28448 >128,1fx+y=1.
1\2 12 .
(‘H'E) +<b+5> >125,ifa>0,b>0and a+b=1.
2 2 :
<z1+l_i1> +'~'+(xn+$> 2W7 iftn>221>0,...,x,>0and x1 + -+ x, = 1.

a* + b+ ¢ > abela+ b+ c).



80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100. 2

101.
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2242 > 202z —y), if ey = 1.

V6a1 +1+V6as+ 1+ +/6as+ 1+ v6as+ 1+ 6as+1<+55,if a1 >0, ...,a5 >0
and a1 + -+ a5 = 1.

6a+4b+5c25\/&5+3\/bc+7\/55, where a > 0,0 >0,¢c > 0.

2(a* +b*) + 17 > 16ab.

1+nb)n+1

e ", where n € N, b > 0.

) ( )"H, where n € N.

30'—‘

})nﬂ < 1)n+27 where n € N.

m 1) n—1)/m <1+%>n/m<(

n! < ("H) where n = 2,3,4, ...

, wherem >1,n>1and m,n € N.

(
(1+
(1+
( m;1 )n/(mflﬁ

n(n+1)Y" <n+ S,, where S, = 1+ L +~n—234
n—25,> (n—1Y1"" where S, :%4—%—0— —0—%, n=34,...
(" —1)(¢""  +1) > 2ng"(¢ — 1), where ¢ > 1,n € N.

a?+ b2+ c2+d?+ ab+ ac+ ad + be + bd + ¢d > 10, where a, b, ¢,d > 0, and abed = 1.

a— %)(b—l-l— )( %)_(;x%) where a, b, ¢ > 0.

(
(043 0) (05— ) (e 1) < (ot 0+ (343 +1)(1 =0+ 43t wher
a,b,c,t >0 and abc =

n¥aias ...a, — (n—1)"Vajas...an_1 < ap, where a; >0,i=1,2,....,n,n=3,4, ...

Valag e Gy {Vblbg ...bn + o+ v klk?Q k‘n

<(ar+bi+ - +ki)(az+ba+ -+ ko) (an+ by + - + k) where
A1y A2y oy Gy b1, boy oo by oo Ky, Koy ooy ki > 0.
a1+ Vajas + -+ Vajas ...a, < e(ay + a2 + -+ + a,), where n > 2, aq, ag, ..., a, > 0.

na® —ka™ <n—1, where n > k,n, k € N, a > 0.

11—5— —|— —|—",L > x1+ 2o+ + @y, where n > 2,n € N, 21 = min(xq, 22, ..., Z,,) > 0.

D) afn—T1

Syl

2
> —7—, wherea>0,2;,>0,i=1,2,...,n
>
im1

T1t+T2 ac2+ac3 Tn+T1

ver+1+Vas+1++Vr,+1<n+1, wheren > 2,21, 22,2, > 0,21+ 22+ -+, =
p,pEN,p>2.
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102. (1 —2™) < @%7, where 0 <z < 1,k,m e N.

103.1~%+1{~’?+122 3‘[ , where 2,7,z >0 and 22 + >+ 22 = 1.

104.é+1%y+1;7 9+3V3 , where z,y, z > 0 and 22 + ¢? + 22 = 1.

. P . 1

105. Find the minimum value of the funciton f(z) = =" \/7 in [0,1), wheren € N,n > 1.

106. Find the minimum value of the funciton f(z) = az™ + ;bg in (0, o0), where a, b >
0,m,n € N.

107. Find in [a, b] (0 < a < b) a point xy such that the function f(z) = (z — a)?(b* — 2?)
attains its maximum value in |a, b] at xo.

108. Find the greatest possible value of the product zyz given z,y, z > 0, and 2z +v/3y+7z =
1.

109. Find the maximum and minimum values of the function y = #M’ where a, b > 0.

110. Find the maximum value of the function y = 2~ tff; +12

111. Find the maximum value of the function y = %ﬁf%

112. Solve the system of equations: = +y = 2, zy — 2% = 1.

113. Solve the system of equations: & +y 4 z = 3, z2 + 32 + 22 = 3.

114. Given a+ b+ c+d+e = 8,a® + b2+ ¢ + d> + % = 16, find the greatest possible value

115.

116.

117.

118.

119.

120.

121.

122.

123.

of e.

Find the minimum value of the expression 7 + 2% + 22 Sif <o <ap<az<mg<as <
zg < 1000.

Solve the equation z* + y* + 2 = 4zy.
Find all integer solutions of the equation =¥ 4 % + % =3.

Prove that z¢ + 25 + - + x5, > xf—‘r:cg—i— w428 where n > 2,21 > 0,29 > 0, -, z, >
0,a>p3>0,and z122...2, = 1.

Prove that z¢ + 25 + - + x5, > xf—‘r:cg—i— o al where n > 2,21 > 0,29 >0, -, 2, >
0, > (n—1)|p], and z122 ...z, = 1.

14 14b 1+ 1+d
Prove that 1= + 155 + 152q + 1745 = 4, where a, b, ¢,d > 0 and abed = 1.
Prove that 11++<;b + 111(7; + lliccd + llid; > 4, where a, b, ¢,d > 0 and abed = 1.

Prove that 25T > \/3(S +T)[S(bd + df + fb) + T(ac + ce + ea)], where 0 < a < b <
c<d<e< fanda+c+e=8Sb+d+f=T.

3, 4
Prove that &+Yab+VabetVabed “wa vabed {l/a.’%b.%bﬂ.w7 where a > 0,b > 0,¢ > 0,d > 0.



124.

125.

126.

127.

128.

129.

130. =

131.n

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.
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Prove that a'? + (ab)6 + (abe)* + (abed)® < 1.43(a*? + b'2 4 c'2 + d'?).
ab <% + - 1f -=1,a,b,p,q >0, where p and ¢ are rational numbers.
(1 +%>n > 2, where n € N.

Wheren>2 S=ai+ax+-+apa; >

nh

T+a)(l1+az)(1+a,) <1+5++2

—
=
+

Q|-

~_ =

—
+
=

~—

—~
—
+

~—
\
D

=~
=
=
@
=]
@
S
>
[}
Vv
o
&
=
[oW
=]
+
f=ad
+
o
\
—

)
>n+1—a 2 ,wherea>0,a#1.

a"™'+1> (n+1)a", where a > 0.

(VE+VE+1)(VE+T+VE+1) - (Vn+Vn+1) > (Vn—VE) (Vn+VE—1)+2

where n > k,n, k € N.
—+ 24 4 et 1+Z—';Zn, where a; >0,i=1,2,...,n

1
ai(az—aq)(az—az)(ani1—an)

api1+ >n+1, where 0 < ap < ag+1,k=1,2,....n

where 0 < x < 1.
+%2%+ + +2 + , where abcde # 0.

(B ()7 64 (2 b >0

c a

Prove that %3“24— a2a—+4a3+~--+\/%+ a"a—J;(llZn\/i,wheren>2and
a; > 0,a3>0,...,a, > 0.

Prove that 1+z2 oty > < ‘Tf, where 22 4+ % 4 22 = 1.

1+y 1+z

Prove that (——1) (——1) (L} 1) > (n?—1)n, where n > 2,a; > 0,a9 > 0,...,a, >0

a'n.
and a1 +as+ -+ a, =1.

Find the maximum and minimum value of the expression (1 + u) (1 + v)(1 + w) if
0<u<16,0<v<16,0<w<167 and u +v+w=1.
Find the maximum value of the expression zPy?if x +y =a,z >0,y > 0 and p,q € N.

Find the maximum value of the expression a + 2¢ if for all z, one has az?® + bz + ¢ <
1

Vi

where |z| < 1.

Prove that (1 +%) (1 +§) (1 +§> > 2(1 + a;bic> where a > 0,b > 0, ¢ > 0.
Prove that g&%}%%{:{%, where —1 < a1, ag,...,ap41 < 1land a;+ags+-+apy1 >

n—1.
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Prove that (a + c)®(c+d)*(d+ a)® > 16a%b*c*d*(a + b + ¢ + d)*, where a >
d

b)* (b +
0,b6>0,¢>0,d>0.
prov ({15 (145 + (14 5] [(14 2+ (1454 (127 >

2
4<a—+b+¥+c %), where a > 0,b > 0,¢ > 0.

c

Prove that (a% + bc)® (b2 + ac)3 (¢® + ab)® > 64(a® + b%) (% + ) (c3 + a®), where a >
0,b>0,¢c>0.

Prove that a + vab + Vabe < a+b+ ¢), where a > 0,b>0,c¢ > 0.

Prove that a + vab + vabe < 3.y/a. ‘”b ‘Hb“ , where a > 0,6 > 0,¢c > 0.

5
Prove that (ab)+ (bc)

5 5
14+ (e )4§§ where a > 0,0 >0,c>0and a+b+c=1.

Prove that a® + b2+ ¢ > 14 if a + 2b + 3¢ > 14.

Prove that ab + /(1 —a?) (1 —b2) < 1if|a|] < 1,]b] < 1.

Prove that v/c(a — ¢) +/c(b—c) < Vabifa>c,b>c,c> 0.

Prove that ava? + c2 + bvVb2 + c2 < a® + b2 + 2.

Provethat\/_ \/‘JFW ~+ + , where a > 0,0 > 0,c¢ > 0.

Prove that vVa(a+c—b) +vb(a+b—c) +Ve(b+c—a) < /(A + 02+ %) (a+b+c),
where a, b, ¢ are lengths of sides of a triangle.

Prove that (a1 + as + -+ ay) (ail—l—ai?—l— —l—a—ln) > n2 where a; > 0,a2 >0, ..., an > 0.

Prove that & +a2+ ol > (‘11+a2+”’+‘1“)2.

n
Prove that ajas + agaz + -+ + agaio + ajoar > —1 if a? + a3 + -+ a}y = 1.
Prove that z* 4+ y* > 23y + z3°.

Prove that (|ai|* + |az|® + - + \an|3)2 <(af+a3+-+ ai)g.

Prove that 3(a® + b® + ¢® + 2% + y? + 2%) + 6/(a® + b + ¢2) (2% + y?> + 22) >
(a+b+ct+az+y—+2)>~
Prove that a® + b% + ¢2 > ab + be + ca.

Prove that (a1 +az+-+ay,) (a] +aj+--+al) > (e} + a5+ +ad) (a] +a3++ad),
where a; > 0,a2 >0, ..., a, > 0.

Prove that va + 1 + v2a — 3 + v/50 — 3a < 12, where2<a<—

Prove that a + b+ ¢ < abe 4+ 2, where a® + b? + ¢? = 2.
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Prove that 2(a + b+ ¢) — abc < 10, where a? + b? + ¢* = 9.
Prove that 1 + abe > 3.min(a, b, ¢), where a® 4+ b* + ¢2 = 9.

n n n
Prove that (Zaf“) (Za;l) > n(Zaf), where k,n € N and a; > 0, ap >
i=1 i=1

i=1
s ey Oy >

Prove that gj—_g_tg > V/abc, where a > 0,b >0, ¢ > 0.

Prove that £ +a2+ tan (‘“J””: +a"> , where k,n € N and a1 > 0,a2 >0, ..., a, > 0.

Prove that (1+sma) (l—l— ) > 5, where 0 < aw < 3

COS &

Find the smallest possible value of the expression (u —v)? + (\/2 —u?— ;) ifo<u<
\/5 ;o> 0.
2

2
Prove that 27 + (%) + -+ <T1+T2+ Hc”) 4(2y + 22+ -+ + 2, )% This inequality
n P n
is a particular case of Hardy's inequality Z(aﬁaﬁ +ak> (%) .z:az7 where
k=1 k=1
p>1,a;,>0,i=1,2,....n

1 2 n 1,1 1
Prove that atant toagaa < 2(; +o+ av"), where a; > 0, ag >
0,...,a, > 0.
Prove that (sinay + sinag + -+ + sin an)2 + (cosay + cosag + -+ + cos an)2 < n?

Prove that W > {aias ... ay,, where n > 2, a1 > 0,a2 > 0, ..., a, > 0.

Prove that va1by + Vagbs + - +vVan,b, < Vay + as+ -+ a,.v/by + by + - + b, where
aiZO,biZO,i:1,27...7n

Prove that (z1y2 — x2y1)* + (w2ys — T3y2)” + (v1ys —w3y1)? < (aF + 25+ 23) (7 + 45+
2
313)-

2
Prove that (E \/aibi) < (me) (Z%), where z; > 0,a; > 0,b; > 0,7 =
i=1 i

i=1

1,2,...n.

Prove that (Zxﬂh) (Z ) <Z x,) where z; > 0,y;, >0,i=1,2,....n

i=1 i=1

Prove that az + by + cz + /(a2 + 02+ ) (22 + 42+ 22) > 2(a+b+c) (x +y + 2).

Prove that (p1gi — pagz — = — pnn)® = (PT — P53 — = — po) (6§ — @ — - — q3), if
Pi> Pyt ai > g5+ + g

Prove that /22 + 2y + 2y +yz + 22+ V2 +yz + 22 V22 + 2o + 22+

V2t 2+ a2Vl tay+ o> (x+y+2)>
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Prove that a; (b1 +az) + az(ba+as) + -+ an(bp,+a1) <1, where n > 3, a1, a2, ...,a, >0
and a; +ag+ 4 a, = 1,02+ b3 4+ b2 =1.

Prove that \/1 — (%ﬂf + \/1 — (y;rZ)Q + \/1 — (z;zf > V6, where z,y, z > 0, 2% +
422 =1.

Provethatuﬂic—kuwia-i-\/aisz 1+W,Wherea,b,c>0‘

Prove that \/a + (b—¢)2+ /b + (¢ — a)2+ \/c + (a — )2 > /3, where a, b, c > 0 and
a+b+c=1.

Prove that \/EgﬁfabJr \/b%f—chr\/c;a—caz V2, where a,b,¢ > 0and a+b+c = 2.

Prove that /1 —2y+/1—yz + V1—yzvV1—zx + V1—z22+/1—xy > 2, where
z,y,z>0and 2% + 32 + 2% = 1.

Prove that x\/l—yz+y\/1—zx+z\/1—xy2%/g, where z,y,z>0and z+y+2=1.

Prove the following identity (ajc; + agco+ -+ ancy) — (ardy + asda + -+ and,) (bic1 +
baca + -+ 4 bpey) = Z (a;by — arb;) (cidy — cd;).

1<i<k<n

Prove that (ajc1 4+ asca + -+ + ancy) — (a1dy + agda + - + andy) > (a1dy + agda + -+ +
andy) (brer +baca+ -+ + bpey ), where bidy > 0(i =1,2,...,n) or bid; <0(i =1,2,...,n)
and 2P < <. <o L2 Lo

< .

by = =b,7d] =dy = — dn

2yt (@ 224 (y—1)°
Va2t (y=1)%+/(z-2)2+y*

Find the maximum and minimum value of the expression

Find the minimum value of the expression (;15 + ?1% — 1) (@% + 517; — 1), where x,y,a,b >

0, z+y=1a+b=1.
Prove that 4 < a?+ b2+ ab+ V4 —a?2V9—02< 19, where 0 < ¢ <2 and 0 < b < 3.

Prove that nv/m — 1+ myvn —1 < mn, where m > 1,n > 1.

Prove that vm2 — n2 + v2mn — n2 > m, where m > n > 0.
Prove that z > vo — 1 + \/x(\/E— 1), where z > 1.

Prove that 1+%+~~-+%2n — where n € N.

Prove that among seven arbitrary numbers one can find two numbers = and y such that
T—Yy V3
0 S 1+ay < 3
Prove that la—b| < la—c| < [b—c|
Vita?V1+02 = V1+a?V1+c2 = V1462V 1+

Huygen's inequality: 3/(a1 + b1) (az + b2) -+ (an + bn) > Vaias ... an V/b1by ... by, where
a¢>0,bi>07i:1,27...7n.
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. ;. . b b nbn
Milne's inequality: 25+ 27+ - + 725 <
(ar+az+-+an)(b1+bat-+bn) ) ) s
(a11+a2:~+an)+(g1+§2+~~«+bn,)’ where a; > 0,0, >0,i=1,2,...,n

8 1 1

Prove that T e e < P + Pt where 1 > 0,22 > 0 and z1y; —
z% > 0, xoys — z% > 0.
Prove that vVa—1+vVb—1++vVe—1 g%x/abq wherea > 1,0 >1,¢c > 1.

Prove that \/a—l—i-\/b—l—l—\/c—l—i-\/d—a§¥\/abcd, where a > 1,6 >1,¢ >
1,d>1.

2 p2\2 22
Prove that (%) >4/ ;b a§b7 where a, b > %

Prove that @1 + 22 + - + z, < 5, where 2} + 23 + - + 2 = 0 and z; € [-1, 1],
12, ...n

Prove that |23 + 23 4 - + 23| < 2n, where 21 + 23+ - + x,, = 0 and z; € [-2,2],i =
1,2,...,n

a b c 3\/_
Prove that 1 < e A e R , where a, b, ¢ > 0.

Prove that v1—a++v1 —b4+V1—c+ V1 —d > Va+Vb+Vec+Vd, where a,b,c,d >
0,a®+b*+c2+d?=1.

Prove that '”HC — Vabe < max[(f f) (\/5 — \/5)2, (\/E — \/&)2]7 where a >

0.b>0.c>0.
Given that a® + b% = 1. Prove that (i) |a + b| < V2, (ii) |a — b| < V2, (iii) |ab| < %, and
(iv) |ab? + a?b| < %

Prove that |zy — /(1 —22) (1 —y?)| < 1, where |z| < 1, |y| < 1.

Prove that v1 — 22+ /1 —y? <24/1— (””*”) where |z] <1, |y| < 1.
n(aitast-+an)

Prove that 2 = a2+ e ™ _m,whereo <a1<1,0<a,<1,...,0<
a, < 1.
Prove that \/l—i—ai-i—\/i?—k\/%?gg, where a, b, ¢ > 0 and a + b + ¢ = abc.

|lz—y] ly—=| |z—2|
Prove that Tl 7] + Traly—7 > Tra =2 where a > 0.

2?) | 2y(l-y?) | 22(1-2%)

Prove that 2 (1+x ) + 11577 + G122 = sz + 1+y2 + 1+z2, where z >0,y > 0,2 >0

and xy + yz + zax = 1.

Prove that vai + az + - + a, < V1(vVar — Vaz) + V2(Vaz — Vaz) + -+ + vVn(Va, —
Vanyt1), where a1 > as > ... > ap+1 = 0.

1
1 1 1

Prove that — ‘

T+ay "1+ag

‘1_“+i_n7wherea1>0a2>0 s an > 0.

|
"T+an ay ag an
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Prove that a+ b+ c—2vabc > ab+ bc + ca—2abc, where 0 <a <1,0<b<1,0<e < 1.

Prove that y/a(l1—5)(1—c) + v/b(1 —c)(1 —a) + /e(l —a)(1—=0b) < 1 + Vabe,
where 0 <a<1,0<06<1,0<c< 1.

Prove that [(z +y) (y + 2) (z 4+ 2)])? > ayz(2z +y + 2) 2y + 2+ ) (22 +  + y), where
z,y,z > 0.

Provethat%<%7 where 0 <a<1,0<b< 1.
Prove that max(aq, ag, ..., a,) > 2, where n > 3, a1 +as+ -+ a, > n,a%—l—a%—b—"--i-ai >

n?.

Prove that 4/aj + ‘42 77"21 + o4/ 2+(a" f”zl + Van_1 + Van < Vn, where
n237a17a27...,anzoandal—i—ag—l— +an—1

Prove that 2/(22—1)(y?—1) <2(z—1)(y—1) + 1, where 0 < z, y < 1.

Prove that a® + b3 + ¢® — 3abe < (a? 4 b2+ c?)3.

Pprove that ;;:%:E + n“:%;}; + -+ 51'114?5; < 1, where z1, x3, ..., , > 0 and
T1.29. ... . Ty =1
+y
Provethat\/f \/-— \/ B s where 0 < z,y < 1.
3 3 Ty Ve tVaat vz,
Provethatﬁ+ﬁ+m+m2 N1 , where n > 2, n €
1

N, z1, 29, ...,z >0and x1 + 22+ -+ 2, =

<1
Prove that \/W m where 0<zy<s.
Prove that 0 < ab + be + ca — abe < 2, where a, b, ¢ > 0 and a® + b2 + ¢% + abe = 4.

Prove that a 4+ b+ ¢ < 3, whhere a, b, ¢ > 0 and a® + b* + ¢* + abc = 4.

Prove that (z — 1) (y — 2) (2 — 1) < 6v/3 — 10, where z,y, 2 > 0 and = + y + 2 = zyz.

Prove that /52 + /424 ¢ ZH” < J—t%tzﬁrfg, where x,y, z > 0 and zyz = 1.

Prove that among four arbitrary numbers there are two numbers a and b such that
1+ab

ﬁm%

Given that z +y + z = 0 and 22+ y? 4 22 = 6, find all possible values of the expression
22y +yPz + 22

Let (h,,) be a sequence such that hy = % and Ay, = ovizh, V217hi, n=1,2,.... Prove that

hi+hy + -+ h, < 1.03.
Prove that abc > (a+b—c¢)(b+c—a)(c+a—b), where a, b, c > 0.
Prove that (a1by 4 agby + - + anby)? < (a2 + a2 4 - +a2) (b2 + b3 + - + b2).

Prove that (a +b)%(a® +b%)% - (a" +b™)? > (" + "1™, where a, b > 0.
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Prove that (a$ 4 a§ + - +a2)? < (af—i— ag + -4 al)?, where 0 < B < a, a1 > 0, ag >
0,...,a, > 0.

Nesbitt's inequality: bin + % + aLer > %,

where a, b, ¢ > 0.

b d
Prove that \/b+z+d+ \/a+c+d+ \/a+z+d+ \/(HbJrc>27 where a, b, ¢, d > 0.

Prove that f/abc-%—abdl—acd-%—bcd < \/ab+ac+adg—bc+bd+cd’ where a, b, ¢ d> 0.

Prove that 2v/ab + bc + ac < 33/(b+¢) (¢ + a) (a + b), where a, b, ¢ > 0.
Prove that 8(x% 4y + 2%)2 > 9(2% + yz) (¥ + 22) (2% + zy), where z, y, z > 0.
Prove that 4a® + 4b° + 4¢® + 15abe > 1, where a,b,¢ > 0 and a + b+ ¢ = 1.

Prove that a® + b® + ¢® + abed > mm(i,%+%), where a,b,c>0and a+b+c=1.

t+agt-+ 1 /Ja3+a3+-+a? 1 .
Prove that 82 ttin >~ JAIT20 =700 4 <1 _H> Yaiasy ... an, where n > 2,a; > 0,1 =
1,2,..,n.

Turkevici's Inequality: a* +b* + ¢* + d* + 2abed > a®b® + a®>c? + a?d? + 2?4+ b2d? + 2 d?,
where a, b, c,d > 0.

a3 a3 ad . 2 2 2\3
Prove that g1 +32+ - +32 > 1, where a;,b; > 0,4 =1,2,...,n, and (aj + a3+ +a;)” =

2, 22 2
bl + b2 + -+ bn'

b b b
Prove that 7+ 7+ 2 > ZIE + Ciz + £, where a, b, ¢ > 0.
at ay ay n

Prove that \/a?+/\a1a2.4.an + \/a§‘+/\a1a2.4.an + + al+Aajas...an 2 NSESY where n 2

2,a1,29, ..., an,>0and A > n?—1.

Prove that (V2 —1) (a1 +az + - +a,) < {C/Qa’f +22ak + - 4+ 27aF, where k € N, k >
2, 1,09, ..., Qp > 0.

Prove that 3(z2%y + y%z + 2%2) (zy? + y22 + 22?) > zyz(xz + y + 2)3, where z,y, 2 > 0.

Prove that (z1 4o+ + Ty + Y1 + Y2+ +yn)? > dn(@19y1 + T2y2 + - + TnYn ), where
21 <22 L2, S y1 <Y < S Y

Inz—Iny Inz—Inx Iny—Inz
Prove that T < <y o where 0 < z < y < z.

Prove that a’b¢ctd® > bacbdcad, where 0 <a<b<ec<d.
Prove that g™- + ™2~ + - + 572~ > g, where n > 2,5 = z1 + x5 + - +
Ty T1y Ty eeey Ty > 0

Prove that a® + b® + ¢® + 6abc > %(a + b+ ¢)®, where a, b, ¢ > 0.

Prove that a?(2b 4 2¢ — a) 4 b*(2¢ + 2a — b) 4 c*(2a + 2b — ¢) > 9abe, where a, b, ¢ are
side lengths of a triangle.
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Prove that Vajas...a, + {/biby...b, < /(a1 +b1) (a2 +b2) ... (an + by), where n >
%, a;>0,b0;>0,i=1,2, ..,

Prove that {/(n+1)! — Yn!>1, wheren > 2, n € N.

Prove that {/F, 1> 1 —Q—,\l/%, wheren >2, F1 =1, Fy, =2, Fy 0= Fp 1+ Fr,k=1,2,....

n 1 _
Prove that {/C | > 2(1 +'\‘/Tﬁ)’ where n = 2,3, ....

Prove that (1+a1) (24 az) - (n+ay,) > ng, where n > 2,n € N, ay, as, ..., ap, > 0 and
aias ... a, = 1.

n (a1+b] (az+b2)...(an+bn) Yaias...an,+Vb1bs...by, . )
Prove that ai—ar (ag—c2)m(a"—cﬂ) > Varor o Ve o0 wheren >2,n €N, b; > 0,a;
c>0,1=1,2, ...,

Prove that \/“+\/‘<\/ +c+d)(a+b+c), where a,b,,c,d > 0.
Prove that (22 —1)2 +2(y? —1)? > (2> — 1) (4> — 1) (2® + y*> — 1).

Prove that (21— z2) (z1 — x3) (21 — 24) (x1 — 5) + (2 — 21) (x2 — 23) (X2 — x4) (T2 —
x5) + -+ (5 — 1) (25 — 2) (¥5 — 73) (25 — 74) > 0.

Prove that 0 < ab + be + ca — abe < 2, Wherea,b,c20anda2+b2+c2+abc:4.

Prove that 2*(z —y) (z — 2) + y Ny — 2) (y — ) + 2Nz —y) (2 —x) > 0, where z,y, 2 > 0.

3
Prove that \/ b+c + \/ aH

Prove that (a® —a? 4+ 3) (b° — b* + 3) (¢® — 2 +3) > (a + b+ ¢)?, where a,b, ¢ > 0.

Whereabc>0

Prove that abc + abd + bed + acd — abed < 3, where a, b, ¢,d > 0 and a® + b® + ¢ +
d® + abed = 5.

Prove that 0 < ab + be + ca — abe < 2, Wherea,b,c20&nda2+b2+02+abc:4.

Prove that a + b% + ¢2 4 2abc + 1 > (ab + be + ca), where a, b, ¢ > 0.

Prove that m;:;% <1+ gll@—y)?+ (y—2)2+ (2 — )?], where 2, y, 2 > 0 and

Ty +yz + zx + xyz = 4.

Let aq, a9, ..., any1 be n+ 1 positive real numbers such that a3 + ag + - + @y, = aps1-

n n
Prove that Z Vailani1) —a; < \/Z ap+1(Ane1 — a;).
im1 im1

Prove that b+20+m+a+2b>l where a, b, ¢ > 0 and a, b, c € R.

Prove that a®>+ b2+ ¢? > \/§abc7 where a,b,c > 0 and a,b,c € R such that abc < a+b+c.

For any positive real numbers a, b, ¢ prove that ; a+b) + c(bic) + a(cia) > (a+2bzrc)2’

Let a, b, ¢ be three sides of a triangle such that a + b+ ¢ = 2. Prove that 1 < ab+ bc +
ca—abc <1+ 517
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If a, b, ¢ be positive real numbers such that a4+ b+ c = 1. Prove that vab + c+vbc + a+
Vea+b>1++ab+ vVbe + Vea.

X L. 20 p21 o214 42
If a, b, ¢, d are positive real numbers, prove that Q/W
4 [abc+bed+cda+abd
N

Let a,b, ¢ be the sides of a triangle such that a+b+c¢ = 2. Prove that a®+b®+ ¢* + 2abe <
2.

\%

If a, b, ¢ are positive real numbers such that a2 + b2 + ¢ = 1, prove that (% + % + %) +
a+b+c> 4:/3.

Find all triples (a, b, ¢) of real numbers which satisfy the system of equations:
a+b+c=6,
L1, 4
a b ¢ abe”

Let a,b, c be real numbers such that a®>+b>+c? = 1. Prove that 1+2b( + 1+2m + 1+2a > g
Let a, b, ¢ and «, B, v be positive real numbers such that o + § + v = 1. Prove that

ba +bB +cy+2v/(aB + By +va)(ab+bc+ca) <a+b+ec.

Prove that for all real numbers a and b, a?+b24+1>av2+14+bvVa2+1.

For a fixed positive integer n, compute the minimum value of the sum z; + + ?2 +
ot 7, where x1, X2, ..., T, are positive real numbers such that + S+t I— =n.
Let a, b, c,d be positive real numbers such that a+b+c+d < 1. Prove that %+%+§+g <

_1
64abed’

Let a, b, ¢ be positive real numbers, all less than 1, such that a + b + ¢ = 2. Prove that
abc >8(1—a)(1=0)(1—c).

Prove that ng(”bf) >+ 2(b22b T;C;)) >+ 2(0220:(‘2 ibb); < 8, where a, b, c are positive real numbers.
Prove that abc < 1, where a, b, ¢ are real numbers such that (1+a)(1+0)(1+c¢) =8.
Prove that ZQ lgeq— T 1, where ay, asg, ..., a, € R,n > 2 such that ZaZ =1.

i—1 i1 )
Prove that Z o +ab+1 > % where aq, as, ... , a, are positive numbers such that Z a;=1

i=1 i=1
and a1 = Gpy1-

100

Prove that ~+3 + +1 _m7

where a, b, c,d € R.

n
Prove that Z 1—§ai > — 2, where n > 2,0 < ay, az, ..., an <3 L such that Zal =1.

i=1 i=1




306.

307.

308.

309.

310.

311.

312.

313.

314.

315.

316.

317.

318.

319.

320.

Inequalities 260

Tn

Prove that 21 + o + - + z, < ;IJFEZJF 4% where n > 2, 21 + @p + o+ 2 2
T1Y1 + TayY2 + -+ + Tpyn and 1, To, ..., Ty, Y1, yg, ...y Yn, are positive real numbers.
If 21, xo, ..., z, are n positive real numbers, prove that z + 1+z2+12 + -t

Fr < V2.

1+a?+ad++a?

If a, b, ¢ are poositive real numbers, prove that 3(a’b + b%c + c%a) (ab® + bc? + ca®) >
abc(a+b+c).

Let P(z) = az? 4 bz + ¢ be a quadratic polynomial with non-negative coefficients and

let a be a positive real number. Prove that P(a) P(1/a) > P(1)%

If a, b, ¢, d, e are positive, real numbers, prove that Z— > = Where sum is taken
cyclically over a, b, ¢, d, e.

Let a, b, ¢ be non-negative real numbers such that —— = 2. Prove that

ab+bc+ca§§.

a +1 + b2+1 + c2+1

Suppose a, b, ¢ are positive real numbers. Prove that 3(a + b+ c) > 8Vabc + 1/ W
When does equality hold?

Let ¢y, ¢o, ..., ¢, be n real numbers such that either 0 < ¢; <1 for all ¢ or ¢; > 1 for all 4.
n

Prove that the inequality H (1—p+pc)<l—p+p H ¢; holds, for any real p with

=1 =1
0<p<l1.

Let x1, T2, 3, x4 be real numbers in the interval (0, 1/2]. Prove that

T1T2T3Ty < zitaitaital
(1-z1)(1-22)(1-23)(1-24) = (I—z1)*+(1—z2)*+(1—z3)*+(1—za)*

13y =i

If 21, x9, ..., z, be n real numbers such that z; € (0, 1/2]. Prove that o <
i=1%7

I, (1—xs)
(Z?:l(lf"“))".

Consider a sequence (a;) of real numbers satisfying a;4; < a; + a;. Prove that a; + % +

42> a,, Vn.

For positive real numbers z, y, z, prove that ZQHW < 1, where the sum is

taken cyclically over z, y, z
Let 2,y be non-negative real numbers such that = +y = 2. Prove that 23¢%(23 + %) < 2.
Let (a;) and (b;) be two sequences such that 0 < h < a; < H and 0 <m < b; < M for

real h, H, m, M. Prove that 1 < (Zz‘l:a EbQ _4<,/IZ7]:LI ,/Z’ICI)

Let f:[0,a] — R be a convex function. Consider n points x1, xa, ..., , in [0, a] such

that >, z; is also in [0, a]. Prove that En:f(fz) < f(}n: xl> + (n—1) f(0).

i=1

i=1
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For any real number n, prove that <2:> V3n < 4™

Let a, b, ¢ be positive real numbers and let  be a non-negative real number. Prove that
a2 4+ b2 4 2 > 0%he + ab®c + abc®.

Let (a1, az, ..., an), (bl7 ba, ..., by) and (cq, ca, ..., ¢,) be three seugnences of positive real
numbers. Prove that Zazb ¢ < \/Z 32 Zb5 N Zc

Prove for any three real numbers a, b, ¢, the inequality 3(a® —a — 1) (b —b — 1) (c? —
c—1) > (abc)® — abc + 1.

Consider a polynomial of the form P(z) = 2" + ap_12" 1+ -+ a1z + 1, where a; >
0V1<i<n-—1. Suppose P(x) =0 has n real roots. Prove that P(2) > 3™.

Let a; < ag < -+ < ay, be n positive integers. Prove that (ay + ag + - + an)2 < a? +
3 3
aj+ -+ a’.

Consider a sequence a1, as, ..., a, of positive real numbers which add up to 1, where
n

n > 2 is an integer. Prove that for any positive real numbers 1, zo, ... , x,, with Z r;=1,
i=1

the inequality 2 Z x5 < +1 24 Z

i<j

Let 21, x4, :vg, x4 be four consecutive positive real nurnbers such that xizox3zy = 1.
Prove that =5 + a3 + 23 + 25§ > mln(xl + a2+ a3+ x4, 5 + + ST )

Let {z} denote the fractional part of x i.e. {} = x — [z]. Prove for any positive integer
n

n, Z{ﬂ} <l

a2 b2 c2
it T oronre T erai e

If a, b, ¢ are positive real numbers, prove that > %.
Let a, b, ¢ be positive real numbers such that abc > ab + bc + ca. Prove that abc >
3(a+b+c).

Let aq, as, ..., a, be n non-negative real numbers and let a denote the sum of these
n—1
2
numbers. Prove that E a;a;1 < az.
i=1
max(|acl, |ad+bc], |bd|)

Let a, b, ¢, d be complex numbers such that ac # 0. Prove that “max((ah, B (el 1d)

—14+v5
5

v

Let x1, 9, 3, 4 be non-negative real numbers such that Z T < 1. Prove that

=1
T1Tg Ty > (n—1)™

1

1
Prove that min—1 (7n+l)(n+1)

for any two natural numbers m and n.

If a, b are two positive real numbers, prove that a® + b% > 1.
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Let a, b be positive real numbers such that a +b =1 and let p be a positive real. Prove
that (a+ 1)+ (b+37) > 52
1

Let a, b, ¢ be positive real numbers such that abc = 1. Prove that (a —14 %) (b —1 +—>

c

(c—143)<1.
Let x, y7 z be real numbers in the interval [ 1, 2] such that  + y + z = 0. Prove that

(2—x)
(2+x) 2+y 2+y 2+z) 2+z)(2+z =

n
Let (a,) be a sequence of distinct positive integers. Prove that Z(;—z > Z%, for every
i=1 i=1

positive integer n.
Let x, y, z be non-negative real numbers such that = + y + z = 1. Prove that 0 <
xy+yz+zx—2xyz§2—77

n

Let x1, xo, ..., x, be n positive real numbers. Prove that g s E ;,
: T} +z T4 1+z
1=

where x1 = x4 1.

Suppose , y, z are non-negative real numbers. Prove that z(z — 2)% + y(y — 2)? >
(z—2)(y—2)(x+y—2).

c+a
a = l+b

b+c
b+a’

a+b

Prove that 2 5T o —I— e

+

+

where a, b, ¢ are positive real numbers.

If a, b are real numbers, prove that a® + ab+ 6% > 3(a+b—1).

Define a sequence (z,,) by ©1 =2, p41 = < Ty S Vn>1.

Let a, b, ¢ be positive real numbers such that a® —ab+b* = ¢2. Prove that (a—c) (b—c¢) <
0.

Let a, b, ¢ be positive real numbers. Prove that va2— ab+ b2 + Vb2 — be + ¢2

Va2 + ac + c2.

For all real numbers a, show that (a® —a + 2)? > 4a®(a® + 1) (a — 2).

\%

Let a, b, ¢ be distinct real numbers. Prove that (2“ b>2 + <2b7"'> + (2(_,“)2 >5.

b b—c c—a
Let a, 8, x1, 1’2, ..., Ty, be positive reals such that « + 8 =1, and 1 + zo + - + x, = 1.
Prove that Z

2m+1

> e —
W@z e 2 e for every positive integer m, where z, .1 = x1

Given positive reals a, b, ¢, d, prove that v/(a +¢)2+ (b +d)2 < Va®> + >+ V2 + d? <
D) 5 2|lad—bc|

\/(a +e)?+ (b+d)*+ (a+c)?+(b+d)?

With every natural number n, associate a real number a, by a, = + T e

Pk’
where {p1, po2, ..., px} is the set of all prime divisors of n. Show that for any natural
N

number N > 2, Zalag e < 1.
i—2



354.

355.

356.

357.

358.

359.

360.

361.

362.

363.

364.

365.

366.

367.

Inequalities 263

Let n be a fixed integer, with n > 2. Determine the least constant C such that the

4
inequality Z xlxj(:rf+x?) <C< Z :L’l> holds for all real numbers z1,xs, ... , Ty.
1<i<j<n 1<i<n

Determine when the equality holds.

Let a, b, ¢, d be real numbers such that (a* + % — 1) (¢ + d?> — 1) > (ac + bd — 1)
Prove that a* +b°—1> 0 and ¢ —d*—1 > 0.

L

1 1
Vmt st t /e = 20 Prove

Let x1, xo, ..., 100 be 100 positive integers such that

that at least two of the x;'s are equal.

Let f(z) be a polynomial with integer coefficients and of degree n > 1. Suppose f(z) =0
has n real roots in the interval (0, 1), not all equal. If a is the leading coefficient of f(z),
prove that |a] > 2" + 1.

Show that the equation { + %+ 5+ = m, has no solutions in positive reals for m = 2,3,

2 41‘2

= 114z

4z

T Y for real numbers z, y, z.

Solve the system of equations: x = =z
Suppose a, b are non-zero real numbers and that all the roots of the real polynomial
az” — az" '+ ap_12" 2 4 - + agx® — n?bx + b = 0 are real and positive. Prove that

all the roots are in fact equal.

Find all triples (a, b, ¢) of positive integers such that product of any two leaves a
remainder 1 when divided by the third number.
Find all positive solutions of the system: x; + %; =4, x5+ Elg =1, -, 1999 + ;2%@ =

1
4, Ta000 + 77 = 1.

Find all positive solutions of the system: z +y+ 2z = 1, 2% + ° + 2% + 2yz = 2* + y* +
241
Let a, b be positive integers such that each equation (a +b—x)? =a—b, (ab+1—2)*> =

ab — 1 has two distinct real roots. Suppose the bigger of these roots are the same. Show
that the smaller roots are also the same.

n—2

Suppose the polynomial P(z) = z" + na""' 4 ayz + -+ 4 a, has real roots

aq, g, ..., . If a}ﬁ + a%G + a}f =n. Find ay, ag, ..., a,.
Find all the solutions of the following system of inequalities:

(xf — x3%5) (x% —x3x5) <0,

(x% — x471) (Ig —z421) <0,
(3 — w522) (2] — 2522) <0,
(22 — 2q23) (22 — 21203) <O,
(23 — om4) (2] — z2w4) < 0.

Solve the following system of equations, when «a is a real number such that |a| > 1:
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1% =ary+1,
2
5 & =axrz+1,
1:
2
Tgg9 = aT1000 + 1,

2 —
Tipo0 = ax1 + 1.

n n
Let ay, asg, ..., a, be n positive integers such that Zai = Hai. Let K, denote this
i=1 i=1
common value. Show that K,, > n + s, where s is the least positive integer such that
2° —s>n.

Let z1, 29, 23, ..., 2, be n complex numbers such that | ;|z;| = 1. Prove that there exists

a subset S of the set {21, 29, ..., 2z, } such that Zz > ;ll.
zeS

Let (a,) and (b,) be two sequences of real numbers which are not proportional. Let

n n n
(xy,) such that Z a;x; =0, Z b;x; = 1. Prove that Z mf >
i—1 i—1 i—1

1= 1 1=

n 2
= a?)(Z?Z:F»l?()li(Z?:l el When does equality hold?

n

Let 21,29, ..., 2, be n positive real numbers. Prove that E T T—— < n, where
im
Tn+i = T
Let z1, xo, ..., z,, be n > 2 positive real numbers and k be a fixed integer such that
+2xo+ 42Tk 1+ Tk 2n(k—1)
<k<n. oo > .
1 < k < n. Show that P

cyclic

If z; and z3 be two complex numbers such that |z1| < 7, |22| < 7 and 21 # z2. Prove that
2y —zy

1 —
21—22 < 577/(71— 1),’,n 2‘21 _22|‘

for any natural number n

A sequence (a,) is said to be convex if a, — 2ap+1 + apy2 > 0 for all n > 1. Let

aitaz+-+azni1 > astag+-+azn
n+1 = n

a1, 42, ..., G2p+1 be a convex sequence. Show that , and

equality holds if and only if a1, as, ..., as, 1 is an arithmetic progression.

Suppose ay, as, ..., a, are n positive real numbers. For each k, define x; = a;.1+ a;12+
<o+ @jyn—1— (n—2)a;, where a; = a;_,, for i > n. Suppose z > 0 for 1 <1i < n. Prove
n n

that Hai > sz Show that for n = 3 the inequality is still true without the non-
i=1 i=1
negativity of x;'s, but for n > 3 these conditions are essential.

Let a, ¢ be positive reals and b be a complex number such that f(z) = a|z|> 4+ 2Re(bz) +
¢ > 0, for all complex numbers z, where Re(z) denoted the real part of z. Prove that
[b]? < ac, and f(z) < (a+ ¢) (14 |z[*). Show that |b]> = ac only if f(z) = 0 for some
z € C.
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n n 2
Suppose 1 < 15 < -+ < z, be n real numbers. Show that ( |z — acj)
1

i=1 j=
n

2(n271 Z — x)% Prove also that equality holds if and only if the sequence (x;)
i=1 j=1

is in A.P.

Suppose (a,,) is an infinite sequence of real numbers with the properties

1. there is some real constant ¢ such that 0 < a,, < ¢, for all n > 1, and
1 . .

2. |aj—aj| = 75 Vi# .

Prove that ¢ > 1.

Let a, b, ¢ be positive reals such that a + b + ¢ = 1. Prove that a(1 + b — c)1/3 +
bl+c—a)P+c(14+a—b)2<1.

let x1, xo, ..., , be n positive reals which add up to 1. Find the minimum value of
n -
143025

i=1

If a,b, ¢, d are positive reals then find all possible values of -5+ a+g+c+ b+z+d+a+‘j+d.

Let (F,) be the Fibonacci sequence defined by Fy = Fy» = 1, F, 10 = F41 + F, for
n
F;
n > 1. Prove that E 7 < 2 for all n > 1.

i=1
Let P(z) = 2" + p12" 1 4 -+ ag be a polynomial with real coefficients such that
|P(0)]| = P(1). Suppose all the roots of P(x) = 0 are real and lie in the interval (0, 1).
Prove that the product of the roots does not exceed 2%

If z, y are real numbers such that 2z + y + /822 + 4zy + 32y% = 3 + 3v/2, prove that
2
oy < 1.

Determine the maximum value of Z x;xj(z; + x;), over all n-tuples (x1, x2, ..., T,) of

i<j
reals such that z; > 0 for 1 <1i < n.

Let x1, x2, ..., o, be positive real numbers. Prove that > .- | (22 - 1/1 < 3(2 m)

Let a; < ag < - < a, be n real numbers with the property ;' ;a; = 0. Prove that
n

naidy, Z af <0
i=1

Let a, b, ¢ be positive real numbers. Prove that a(1+b) +3 11+C) + c(1l+a) > 1+?:lbc‘

Let z, y, z be positive real numbers such that 2% + y? + 22 = 2. Prove that & +y + 2z <
2 + zyz. Find the conditions under which equality holds.
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n
Let 0 <1 < 29 < --- <z, be such that Ztl =1, where n > 2 is an integer. If z,, < %,
i=1

J
prove that there exists a j such that 1 < 7 <n and % < Z z; < ;

i=1
Let x, y, z be non-negative real numbers such that zy 4+ yz + zz + xyz = 4. Prove that
T+y+z2>ay+yz+ze.

Let x,y, 2 be non-negative real numbers such that x +y-+ z = 1. Prove that ¥+ y*+ 2% <
4

ﬁ.

Let x, y, z be real numbers and let p, ¢, r be real numbers in the interval (O ) such that

p+q+r = 1. Prove that pgr(z +y+ 2)? > zyr(1 — 2r) + yzp(1 — 2p) + zzq(1 — 2q).
When does equality hold?

n
Let z1, @, ..., T, be n real numbers in the interval [0, 1]. Prove that (Z xz> —

i=1
n
n
E ziTip1 | < |5 |, where zn41 = 21.
im1

Suppose x, y, z are positive real numbers such that zyz > 1. Prove that

vy 25—22
yo+22 e R +y? 2 0.

21
5+y +z2 +

Consider two sequences of positive real numbers, a; < as < - < a, and by < by < -+ < by,
n n

such that Zai > Zb,-. Suppose there exists a j, 1 < j < n, such that b; < a; for
i—1 i—1

1<i<jandb; > a; fori>j. ProvethatHazzn
i=1 i=1

Let a,b,cbe posmve real numbers such that abc = 1. Prove that l+a+b+ 1+b+c+ 1+C+a <

2+a + 2+b + 2+c'

Let n > 4 and let aq, as, ..., a, be real numbers such that a; + as + - + a, > n, a% +

a2+ -+ a2 > n? Prove that max{ay, as, ..., an} > 2.

n+1 n

Let z1 < 29 < - < 241 be n + 1 positive integers. Prove that Z VI T o Z
i=1 i=1

Let a, b, ¢ be three positive real numebrs which satisfy abc = 1 and a® > 36. Prove that
2a? < a? +b? 4 2 —ab — be — ca.

Let z1, 29, ..., 2z, be n complex numbers and consider n positive real numbers Ay, Ag, ..., Ay
2 n
2
< E Atlzil*.
i=1

Let a, b, ¢ be three distinct real numbers. Prove that 2min{a, b, ¢} < > a—

n

D a

=1

which have the property that > 1/\; = 1. Prove that

>Xa*-3 ab)1/2 <Ya+(Xd*-3 ab)1/2 < 3max{a, b, ¢}, where the sum is cyclic
over a, b, c.
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Show that for all complex numbers z with 9(z) > 1, prove that |z" ™ — 1| > |2"||z —
1], Vn>1.

Suppose a, b, c are positive real numbers such that t =a+b—c,y=b+c—a,z =
¢+ a—b. Prove that abe(zy + yz + zz) > zyz(ab + be + ca).

Let a, b, ¢ be positive real numbers. Prove that Z e bcﬂ > 3xab , where all sums are

2= Ya
cyclic.

. P a3+ad+-+a2
Let ay, ag, ..., a, < 1 be non-negative real numbers satisfying a = |/——=2—= > 1
a L na
2 +o

*1a

G-

Suppose x, y, z are non-negative real numbers such that 22 + % + 22 = 1. Prove that

1. 1< Zlfyz < 3‘{ and

2. 1< Yz <V2

The sums are cyclic over x, y and z.

Let &, y, z be non-negative real numbers satisfying « +y + z = 1. Prove that zy? +yz2 +
za? > zy+yz+zx—%.

Let a, b, ¢, d be positive real numbers such that a +b+c+d =

cyclzc
16
25°
b c
Prove that d > 1 for all positive real numbers a, b and c.
a2+8bc+ b2+8ca + c2+8ab p

If z, y are real numbers such that =3+ y* < 22 4 3, prove that z® +¢* < 2.

Let a, b, ¢ be three positive real numbers. Prove that ) ————
is cyclic over a, b and c.

Ha) > > =, where the sum

Let x, y be two real numbers, where y is non-negative and y(y + 1) < (x + 1)2 Prove
that y(y — 1) < 22

1/2
Let x, y, z be positive real numbers. Prove that (W) 2 <

<<z+y><y+z><z+w )1/3
: )

a%+b9
+b >2

Let a, b, ¢ be positive real numbers such that abc = 1. Show that Zm >

where the sum is cyclical.

Let aq, ag, ..., an(n > 2) be positive real numbers and let s be their sum. Let 0 < 8 <1

be a real number. Prove that Z(G;a> 2[3 Z( ) When does equality
i—1 v

hold? '

For n >4, let ay, ag, ..., Gp be n positive real numbers such that ?=1a? = 1. Show that

T+t 2 7> % (a1v a1 + asvaz + cdots + an\/an)2.

a2+1 2
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Does there exist an infinite sequence (z,) of positive real numbers such that x,42 =
VTn+1— VTn, VN >2.
Let aq, as, ..., a, be n positive real numbers and consider a permutation of by, bo, ..., b,
n n
. a2
of it. Prove that ij > Z a;.
i=1 i=1
Let ay, asg, ..., an and by, b, ..., b, be two sequences of positive real numbers such that
n n n
a? 1
Za,- = Zbi = 1. Prove that Z o >3
i—1 i—1 i=1
Let be positi ] numbers. Prove that L2 4 Z2v L 2222 5
et x,y, z be positive real numbers. Prove that * 74—~ T

Find the greatest value of k such that for every triple (a, b, ¢) of positive real numbers,
the inequality (a? — bc)? > k(b — ca) (¢* — ab) holds.

Let a, b, ¢, d be positive real numbers. Prove that Z ﬁ > 1.

cyclic

Let a, b, ¢ be positive real numbers such that (a 4+ b) (b + ¢) (¢ + a) = 1. Prove that
ab + be + ca < %.

Let z, y, z be non-negative real numbers such that 4+ y + z = 1. Prove that z2 + ¢* +
22+ 18xyz < 1.

Let a, b, ¢ be three positive real numbers such that ab + bc + ca = 1. Prove that

1 1/3 1 1/3 1 /3 _ 1
(246) 7+ (5+6¢) "+ (2+6a) " <

Let ay, ao, ..., a, be n > 1 positive real numbers. For each k, 1 < k < n, let Ay =
(a1 + as+ -+ ag)/k. Let g, = (ara2 -~-an)l/” and G,, = (A1 A2 ~~-An)1/". Prove that

1
n(%) n + %"; < n+ 1. Find the cases of equality.

Let x,y, z be real numbers in the interval [0, 1]. Prove that 3(z?y® + ¢?22 + 2%2?) —
2ryz(z+y+2) < 3.

Let z, y, z be non-negative real numbers such that x + y + z = 1. Prove that 7(zy +
yz+ zx) < 2+ 9zyz.

Let z,y, z be real numbers in the interval [0, 1]. Prove that %~ + %5 + ;57 < 2.

Let a, b, ¢, d be positive real such that a®+ b® + 3ab = ¢ + d = 1. Prove that (a + %)3 +
3 3 3
() + (42 + (a+4) >0

. — —1
Let z, y, z be positive real numbers such that x + y + z = zyz. Prove that Nows +
3

1 1 3
N RVt

Let z, y, z be non-negative real numbers. Prove that 2% + % + 2% > 22\/yz + y*Vzax +

22\/xy.
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For all positive real numbers show that 4(ab -+ bc+ca) — 1> a® +b* +c? > 3(a® + b* +
3
c?).

Let a, b, ¢ be positive real numbers such that abc = 1. Prove that 0

c 3
(c+1)(a+1) 2 Iy

a b
Do D T oD e T

Suppose a, b, ¢ are positive real numbers such that a?+ b2+ ¢2 = 1. Prove that ;}5 + 513 +
3 3 3
%23_’_2(0, +b3+c )

abe

Let x,y, z be positive real numbers such that xyz = 1. Prove that i
28 3
(T+a)(T+y) =

3 33
Ty Taag b

Let a, b, ¢, d be non-negative real numbers such that ab + bc + c¢d + da = 1. Show that
a b3 8 d- 1
trcrd T ordra T drats T atore Z3

Find all real k for which the inequality 2 + 2 + 13 > k(z122 + x223) holds for all real
numbers 1, T, T3.

Let a, b, ¢ be positive real numbers such that abc = 1. Prove that %+ % + § > %—i— % + %

Let a, b, ¢ be non-negative reals such that a +b < 1+¢,b+c<1+4+a,c+a<1+5b.
Prove that a2 + b% + ¢® < 2abe + 1.

If a, b, ¢ are non-negative real numbers such that a + b+ ¢ = 1, then show that ﬁ +
b c 9

Trea T T#ab = T0°

Let a, b, ¢ be three positive real numbers such that a + b 4 ¢ = 1. Prove that among the

three numbers a — ab, b — be, ¢ — ca there is one which is at most 1/4 and there is one

which is at least 2/9.

Let = and y be positive real numbers such that y®> 4y < z — z3. Prove that dly<z<l,
and (b) 22+ 4% < 1.

Let a, b, ¢ be three positive real numbers such that a + b+ ¢ = 1. Let k = min{a3 +
a®be, b3 + ab?e, ¢ + abc2}. Prove that the roots of the equation a2+ z + 4k = 0 are real.

2 2 2
a“+1 b2+1 c+123.

If a, b, ¢ are three positive real numbers, prove that 5=+ =+ + 203

If d is tghe largest among the positive numbers a, b, ¢, d, prove that a(d —b) +b(d —c) +
c(d—a) < d?

If 2, y, z are positive real numbers, prove that (z +y + 2)%(yz + 2z + 2y)? < 3(y* +
yz 4+ 22) (22 + 2o + 2%) (2 + zy + 4?).
Suppose a, b, ¢ are positive real bumbers. Prove that a®b’c® > (abe)@+b+)/3,

Find all real p and ¢ for which the equation z* — STP2$3 + 4gz® — 3pz + p? = 0 has four
positive roots.

Let aq, as, ag be real numbers, each greater than 1. Let S = a; + a3 + a3 and suppose

S <-4 for i = 1,2, 3. Prove that —— + — !

a;—1 aitaz astag + aztay >1
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Lct a, b, ¢ be positive real numbers such that ab + bc + ca = % Prove that ;gj‘g?ﬁ +
b2 —ca+1 += ab+1 = a+i+c‘

Suppose a, b, ¢ are positive real numbers. Prove that “t&;c) + bQib(i;“) + CQ‘Z(f;b) > 0.
Let ay, ag, ..., a, be n > 2 positive real numbers such that a; + a2 + -+ + a, = 1. Prove
R

Determine the largest value of k£ such that the inequality (k + %) (k + ‘9) (k + b%) >

(% +5+ (3) holds for positive real numbers a, b, c.

T+1T3 ToT4 +
T1T3+Toxyg ToTg+T3Ts5

Let x1, 2, ..., &, be n > 3 positive real numbers. Prove that

Tp_1T1 TnT2 <n-—1
Tpo1T1+ T2 | TpTotTi123 — :

2017

- a 2017
Let ay, as, ..., asg17 be positive real numbers. Prove that E .

— @j+1t+a@ito++air1008 — 1008’
im
where indices are taken modulo 2017.

. Let a, b, ¢ be three positive real numbers such that ab + bc + ca = 1. Prove that

Vatiyfori+yferlz2Va+vh+ o),

Let a,b, ¢ be positive real numbers such that a+b+ ¢ = 3. Prove that ‘2:22 + bj:; + 63” >

3.

Let a,b, ¢, d be real numbers such that a2+ b* 4 ¢ + d? = 4. Prove that (2+a)(2+b) >
cd.

Find all real k such that “5= ‘”b > kvVab+ (1—k) /% +b holds for all positive real numbers
a, b.

Let a, b, ¢, d be real numbers having absolute value greater thdn 1 such that abc 4 abd +
acd + bed + a4+ b+ ¢+ d = 0. Probvve that 1+b Tt2 1+d 7> 0.

1 1
;<11

For all positive, real x, y show that —— lﬂ, T T I ED

Let a, b, ¢ be three positive real numbers such that abc = 1. Prove that ; a+b> + ﬁ +

_1 3
a(cta) = 2°

Let a, b, ¢ be positive real numbers such that a + b + ¢ = 1. Prove that
62
(c+a)3+

(b+c) +
— 5

(atb)3

Suppose a, b, ¢ are positive real numbers such that ab+ bc + ca > a + b+ c. Prove that
(a+b+c)(ab+bc+ ca) + 3abe > 4(ab + be + ca).

Let a, b, ¢, d be four real nubers such that a + b+ ¢+ d = 0. Prove that (ab+ ac + ad +
be + bd + ¢d)? + 12 > 6(abc + abd + acd + bed).
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3,4.3 3,43 234

. . _ ToY 2 y°zmx y‘3
Consider the expression P = ) (g7 + T ()’ + T et Find the

maximum value of P when x, y, z vary over the set of all positive real numbers.

Let xh T, ..., Ty be positive real numbers such that zixo...2, = 1. Let S = xi’ + x% +
Provethats z3+x2+S m+mz+ +S7+2<1
2

Let a1, as, ..., a, be n > 1 positive real numbers whose sum is 1. Define b; = Znal - 1<

n n j=173
. a;
1 < 2. Prove that Z <

i=1 i=1

. at a+b+c+d

Suppose a, b, ¢, d are posotive real numbers. Prove that Z T R yR—

cyclic

Let a, b, ¢ be non-negative real numberssatisfying a® + b2+ ¢ = 1. Prove that vVa + b +

vVb+c++ve+a> babe + 2.

Let x,y, z be positive real numbers such that z? + y? + 22 < © + y + 2. Prove that
z2+3 y+3 243 2243
Fatygat a2t

For any three positive real numbers a, b, ¢ prove that b + b i > 3at2boe

Suppose a, b, ¢ are non-negative real numbers such that a3 + b® + ¢ 4 abec = 4. Prove
that a®b 4+ b3c + ¢®a < 3.

Let a, b, ¢ be positive real numbers such that abc = 1. Prove that (a + %)2 + (b +%)2 +
2
(c+21) >3(a+b+c+1).

Let a, b, ¢ be positive reall numbers with abc = 1. Prove that C(a‘ll) + (bl:_w + b<c+1) > %

Let a, b, ¢ be positive real numbers such that abc = 1. Prove that m%@—ﬁ + ﬁ“bl’m““ +

1
Tyeeom > L.

For positive real numbers a, b, ¢, prove the inequality

GHi+d) (me+ ot o) 2 e

Let z,y, z be positive real numbers such that z + 1+ z = 3. Prove that vz +/y+ vz >
Ty + Yz + zx.

ips 9abc ab? ca? a?+b%+c?
Let a, b, c be positive real numbers. Prove that arbrd) <axp T b+( * 4+ e ST —

For positive real numbers a, b, ¢, prove that (1+a)(a+b{;l();+6)(c+16) < Si

b2+1+ 2 +d2+1 =2

1+ab

+l+bc 1+ca> \/ﬁ+\/ﬁﬁv+

Let a, b, ¢ be positive real numbers. Prove that

2+ 2.
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b2

Let a, b, ¢ be positive real numbers such that a+ b+ c = 1. Prove that m tarant

T

Janous Inequality: Let a, b, c and x, y, z be two sets of positive real numbers. Prove that
(yb:? + y(Ha) + Z<a+b) > \/3(ab+ bc + ca).

Let x, y, z be positive real numbers such that zy + yz + zx = 1. Prove that zil + 2 7+

Fr <

Let z,y, z be positive real numbers such that x + y + 2z = 1. Prove that — TR 1—1yz +
1 27

T2z =8"

Let z, y, z be positive real numbers such that x + y + z = 1. Show that #ﬁyz—i-

Pt a2

—ab+bc+ca w = abe,

Let a, b, ¢ be positive real numbers. Define u =a+ b+ ¢,
where v > 0. Then (“H’)Z(;‘ 20) < < U= ”)2(7“+2U).

3

Let a, b, ¢ be positive real numbers. Prove that a* + b* + ¢* > abe(a + b+ ¢).
Let a, b, ¢ be real numbers such that a? + b2 +c? = 9. Prove that 2(a + b+ c) — abc < 10.

Let a, b, ¢ be positive real numbers such that a + b+ ¢ = 1. Prove that a? + b+ ¢* +
3abc > %.

Determine the maximum value of k£ such that a + b+ ¢ > k for all positive reals a, b, ¢

with av/be + bv/ca + cvab > 1.
If a, b, ¢ are real numbers such that a + b + ¢ = 1, prove that 10(a® + b + ¢®) —
9(a® +b°+c%) > 1.

Let a, b, ¢ be positive real numbers. Prove that 24abc < \a?’ + b3+ c3— (a+b+ )3 | <

(a + b+ ¢)3. Also show that equality holds in both the inequalities if and only if
a=b=c.

Find all & > 0 such that the inequality va? + kb% + Vb2 + ka2 > a + b+ (k — 1) Vab
holds positive real numbers a and b.

Let a, b, ¢ be positive real numbers such that abc = 1. Prove that a + b + ¢ >

\/g(a+2)(b+2)(c+2).

Let x1, xo, ..., x,, be n > 3 positive real numbers such that zixzs -z, = 1. Prove that
ZW Z 5 where 'y = Tp41.

i=1

Let a, b, ¢ be positive real numbers such that % + % + % = 1. Prove that

a?+b2+c?+ab+bctca—3 a b, ¢
5 Zgteta
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z(2x—y) + y(2y—=z) + z(2z—x) >1

For positive, real z, y, z show that v@ete) T 2ery) T 23959

Suppose %%’) < k, for alll real numbers z,y, z € (—2,2) with 2® + 3 + 2*> + zyz = 4.

Find the smallest value of k.

Suppose a, b, ¢ are positive real numbers such that a® 4+ b + ¢ = a* + b* + ¢*. Prove

that 5+ b2+<‘ +a3 + 2+c +a? 5 = L.

a
a?+b3+c

Let a, b, ¢ be positive real numbers such that a + b+ ¢ = 1. Prove that #g’b)—i- ::bi?c) +

ct45
C(;Q‘;) > 1— (ab+ bc + ca).

Let z,y, z be positive real numbers. Prove that (zy +yz+ zz) ((w+y)2 + (y+z)2 + (z+z) ) >
9

Z.

a?+be

Suppose a, b, ¢ are positive real numbers such that abc = 1. Prove that Z 20ro) 2

cyclic

ab + be + ca.

Let a,b, ¢ be non-negative real numbers. Prove that 4(a®+b34c®) +15abec > (a+b+c)>.

1

b*+cta +

Let a, b, ¢ be positive real numbers such that a + b+ ¢ = 1. Prove that ﬁ—i—
1 3
cAratb = atbtc’

Let a, b, ¢ be positive reals. Prove that a(b+c¢) +b*(c+a) +c*(a+b) < i2 (a+b+c)®.

1

Let a, b, c be positive reals such that ab+bc+ ca = 1. Prove that E—lrl;+b+c+c+a e
2.
Let a,b, ¢ be positive reals such that ab+bc+ca = 1. Prove that Ha ;72 + 1;2?;: + t:fzt)f >

5

3+

Let a, b, ¢ be positive real numbers. Prove that 3+ a + b+ ¢ + é + % + % + % + Z +§ >
3{(a+1)1(ljrt1él(c+l)].
Let a, b, ¢ be distinct positive real numbers such that abc = 1. Prove that
6
;@;ﬁ > 15.
. Let a, b, ¢ be real numbers such that a? + b2+ ¢ = 1. Prove that a + b+ ¢ < 2abc + V2.
. Let a, b, ¢ be positive real numbers. Prove that ;’IE,} +“()>2 + ,fzfr(‘f +l;))2 + (ﬁr(l;jr‘;))zz > g

. Let a, b, ¢ be positive real numbers such that a +b+ ¢ = 1. Prove that 4 /% — 14 /% -1+

\/%,1 %71+\/§f1 11>
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Answers of Chapter 1
Logarithm

10.

11.

12.

13.

10 10 _, 2 10
log gz =5 =log 3z =75 =3logaz =75

92
=logez =5=x=2°=32.

L.H.S. = log a.log, blog, ¢ =128 losb lose 4 _ p g

logb "logc " loga

L.H.S. = logz log, log\/g(\/fv))s = logz logs 8 =logz 3 =1 = R.H.S.
Given a® + b = 23ab = (a +b)? = 25ab = aTH] = Vab
Taking log of both sides, we get

log%b :%(bga—o—logb).

LHS. = 7logi—g + 510g§ + SIOg% = log2

= 7[log 2* — log 3.5] + 5[log 5% — log 23.3] + 3[log 3* — log 2*.5]

= T7[41og 2 —log3 —log 5] 4+ 5[2log5 — 3log 2 — log 3] + 3[41og 3 — 41log 2 — log 5]
=log2 = R.H.S.

L.H.S. =logtan1® + logtan 2° + ... 4+ log tan 89°

= (logtan 1° + log tan 89°) + (log tan 2° + log tan 88°) + --- 4 log tan 45°

= (logtan 1° cot 1°) + (log tan 2° cot 2°) + --- + log tan 45°[ ~ tan(90° — ) = cot 6]
=logl+logl+--+logl=0[+tanfcotd =1]

Given loggy tang = logQ% = —logg V3= —logy 9l/4 = —i.

log 2b tloga b 1

log 502~ 22log, b~ &

Given

Given log .008 = 210g6% = 2[logs 8 — logs 1000] = 2[logs 8 — log 8.125]

= 2[logs 8 — logs 8 — logs 125] = —2.logs 5% = —6.

Given log, /3 144 = log, 5(2V3)* = 4.

L.H.S. = logs logs log 5 81 = logs logz log 5(v/3)® = logslogs 8 = logz 3 = 1 = R.H.S.

logz logy _ logx logy
loga “logh ~ logb "loga

L.H.S. =log, xlogyy =

= logy x log, y = R.H.S.

L.H.S. = logs logs logs 16 = logs logs logs 2 = logs logs 4 = logs 2 = 1 = R.H.S.

275



14.

15.

16.

17.

18.

19.

20.

21.

22.
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logx logbu'logm logn
loghb "loge  logn °loga

R.H.S. =logp xlog.b...log, mlog, n =

=182 _ 150 2= LH.S.

= Toga

Let 10" logip a = =.

Taking log of both sides, we get

xlogipa = log z = logiga” = log 2z = 2 = a”.

Given a® + b% = 7ab = a® + b> 4 2ab = (a + b)? = 9ab
= (%52) = ab = 2 = Vab = (ab)"/*
Taking log of both sides,

a+b 1

log“3= = 5 (loga + logb).

_ logalogya
LHS. = logp loga b

1 1 logz 1
Let logy @ = z, then LH.S. = Bef — 082 _ _ 0BZ 08~
logy L ogp 2 oga ' log
z

=180 _ g, b=RH.S.

" Toga
L.H.S. =log(1+2+3) =1log6 =log(1.2.3) =log 1+ log2 + log3 = R.H.S.
LILS. = 2log(1+ 2+ 4+ 7+ 14) = 2log 28 = log 784
=log(1.2.4.7.14) = log1 +log2 + log4 + log 7 + log 14 = R.H.S.
L.H.S. =log2 + 16log e + 12log 2> + 7log 5
=log2 + 16[log 2* — log 3 — log 5] + 12[log 5% — log 22 —log 3] + 7[log 3* — log 2* — log 5]
=log2+16[41log2—log3—log5]+12[2log5—3log2—log 3]+ 7[41log3—4log2—log5|
=log2[1+ 64 — 36 — 28] + log 3[28 — 16 — 112] 4 log 5[24 — 7 — 15]

=log2+ logh =log10 =1 [+ default base of log is 10.]

log 111
. logg1l . logs1l __ log,2 11 52
Given Togs 13 ~ log 513  Togs 13 * logs 11
1logg 11

2

~ logs13 * logs 1l

Given, 3Viogs2 _ gvloga3
b

2logs 13 _ 1

Taking log with base 10,

V1ogs 2log 3 — /logs 3log 2 = \/{223 (log 3)2 — \/}Zég (log 2)?

= /log2log 3 — 1/log 31og 2 = 0.




23.

24.

25.

26.

27.

28.
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Given logio 343 = 2.5353 = logo 7° = 2.5353 = logio 7 = 0.8451

_5

For 7" > 10° = nlogio 7 > 5 = n > 5=y

Thus, least such integer is 6.
Since a, b, ¢ are in G.P., we can write b? = ac
Taking log of both sides, we get

2logb =loga + log c = loga, logb, log c are in A.P.

1 1 1

1.e. m, m, @ are in H.P.

Multiplying each term with log x,

}gﬁ, %, 112% are in H.P.

log, x, logy x, log. x are in H.P.

R.H.S. = 3log2 + logsin x 4 log cos x + log cos 2z + log cos 4x

= 2log2 + (log 2. sin x cos ) + log cos 2z + log cos 4z

= 2log 2 + log sin 2z + log cos 2 + log cos 4z = log 2 + (log 2. sin 2z cos 2z) + log cos 4z
= log 2 + log sin4x + cos 4x = log 2. sin 4x cos 4x

= logsin 8z = L.H.S.

We have to prove that zyz +1 =2yz = = + % =2

LHS =2++

7% substituting the values of z, y and z,

1 loga  log3a.logda
10g2a a+ logsq 2alogsq 3a — log22a + log2a.log 3a

_ loga+logda _ log(2a)? _ o _
- log2a — log2a 2=R.H.S.

We have to prove that log.,pa + log.—pa = 2log.., alog._pa

Dividing both sides by log.p alog._p a,

1 1
loge pa + loge+p loga

=2
= log,(c —b) +loga(c+b) =2
= loga(2—b?) =2=c?=a?+b?

which is true because c is hypotenuse and a and b are sides of a right-angle triangle.

Let logz _ logy _ logz k

y—z z—x  x—y

logz = k(y —2),logy = k(z —x),logz = k(x — y)
= zlogz +ylogy+ zlogz =k(zy — 2z +yz—azy+ 20 —yz) =0

= logz® +logy¥ + log z* = log x"yY2* = 0
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30.

31.

32.

33.

34.
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fyY* = 1.

. yzlog(yz) _ zxzlog(zx) _ zylog(zy)
Given y+z — ztx T xty

log(yz) _ log(zx)

_ log(zy) _
2ot = = =k (let)

Dividing by zyz VoTD) — 2wty

logy + log z = k(zy + yz), log z + logz = k(yz + zy), logx + logy = k(yz + zx)
= zlogx = kyz = xlogx = kxyz = ylogy = zlog 2z

=¥ =y¥ =2~

We have to prove that (yz)08Y 108 (zz)logz-loge (g logr—logy —

Taking log of both sides,

= (logy —log 2) (logy + log z) + (log z — log z) (log z + log z) + (logz — logy) (log z +
logy) =0

= (logy)? — (log 2)? + (log 2)* — (log #)* + (log x)* — (log y)* = 0
= 0=0.
L.H.S = logn 2 + log,, 3 + -+ + log,, 1988

= logn(2.3.4....1988) = logy 1988! = —~—— = R.H.S.

ogiosst N
L.H.S. =log(1 + ) +log(1 + 2?) +log(1 + 2*) ... to 0o
= log(l +ax+x24 ... tooo)
log —[+0 <z < 1] (from the formula for the sum of an infinite G.P.)
= —log(l—z)=R.H.S.

Let S, + -+ up to n terms

logg a t oz a log4 a
Sn = log, 2+ log, 4 + log, 8 4+ -+ up to n terms

n+1)

Sp=(1+2+3++n)log,2=""1og, 2.
1 1 1
LAS =g+t

- 1 I 1 4 1
~ logs410+logs4 ' loga 20+logs 20 logs 8+logs 5

1 1 1
~ log4 40 + logs 40 + logs 40

= logyo 4 + logyo 2 + logs 5 = 10g4()(4.2.5) =logs40 =1 = R.H.S.

1 1 1
LHS. = log, be+1 + logy ca+1 + log. ab+1

- 1 I 1 I 1
T logg be+log, a ' logy ca+logyb | loge ab+log. ¢

1
loga abe + logb abe

+ logL

abc

= logabe @ + logape b + l0gape ¢ = logape abc = 1 = R.H.S.
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37.
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. 1 1 1
GlVOl’l, 1+logy a+logy ¢ + 1+log. a+log. b + 1+log, b+loggc 1

L.H.S ! + ! + !

- = logy a+logy a+logp ¢ ' logec+loge a+loge.b ' log, a+log, b+log, ¢

_ 1 1 1
~ logp abe + log. abc + log, abe

Like previous problem the above expression will evaluate to 1.

We have to prove that ¢'°8¥1087ylogz—loge Jlogz—logy _

Taking log of both sides,

(logy —log z) log z + (log z — log z) logy + (log z —logy)logz =0

= logylogz —log zlogx + log zlogy — log z log y 4+ log x log z — log ylog z = 0
=0=0.

loga _ logb _ logec __
Let iy k

= zloga = k(zy — 2x),ylogh = k(yz — zy), zlogc = k(zx — yz)
Adding all,

zloga+ylogh+ zloge = k(xy — zx +yz —ay+ 2z —yz) =0
loga®b’x* =0 = a®bYc* =1

zlxty—z) _ 1

z(yt+z—z) _ ylztz—y)
Let logz -

Togy logz &k
=logr =ka(y+z—x),logy=ky(z+x—y),logz=kz(z+y—2)
Let y®2Y = 272 = a¥y”

Taking log, we have

zlogy +ylogz = xlogz + zlogx = ylogx + xlogy

= zky(z+z—y)+ykz(z+y—2z) =zkz(z+y—2z) + zka(y+ z—z) = yka(y+z—x) +
zky(z +z—y)

2

:>yz2+xyz—y2z+xyz+y2—z2y:x2z+xyz—xz2+xyz+xz2—x z:xy2+a:yz—

xzy + m2y + xyz — a:y2

= 2zyz = 2zyz = 2xYy2.

Let log(lz _ l?gb _ log e —k
b—c c—a a—b

=loga =Fk(b—c),logb=k(c—a),logc=k(a—0)
= (b+c)loga = k(b?—c?), (c+a)logh = k(c? — a?), (a + b)logc = k(a® — b?)
Adding all, log a’¢ + log b°T% 4+ log ¢*** = 0

= ab+cbc+aca+b - 1.
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Let logx _ logy _ log z -k
q-r rT—p prP—q

= logz = k(q—r),logy = k(r — p),logz = k(p — q)
= (q+r)logz = k(¢> =), (r+ p)logy = k(r* — p*), (p + q) log z = k(p* — ¢*)
Adding all logz?"" + logy" P +log 2P 77 =0

= gltTy TPt =1,

Similarly, plogx = kp(q — ), qlogy = kq(r — p), rlogz = kr(p —q)
Adding all, log z” +logy? + log 2" = 0 = aPy?2" = 1.

1 1
Given y = a'~198a7 and 2z = a' 108 ¥

1 1

1 ) il
= 1——7——
ny= al—logaa(l logaz) _ 1T Togew

Taking log of both sides with base a,

loga Z= : 1 = :lf_lt;)ggaa:cz =1- lcvgl,1 T
171—10gaz
1
= r = ql-108az,
Given f(y) = e/® and z = /@) where f(z) = @
-1 1
1 1 1
f(y) = el—logez — pl—loge el—logex el_lflogem
Following like above exercie z = ef ),
1 1 1 1
LHS. = logan + logsn + logan +oet logasn
= log,, 2 + log,, 3 + log,, 4 + - + log,, 43 = log,,(2.3.4.... 43)
1
LHS. =(1+2+3+-+mn).2loga= %.QIOga =n(n+1)loga = RH.S.

We will use of the fact that positive characteristics of n of a logarithmm means that
there n + 1 digits in the number.

Let logy = 12log 12 = 121log(2.2.3) = 12[2 x 0.301 + 0.477] = 12.96.
Thus, number of digits is 13.

We can use the fact that the number of positive integers having base b and characteristics
nis "L — b,

Thus, number of integer with base 3 and characteristics 2 is 3% — 3% = 18.
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Let y = (0.0504)% = log1p y = 1010g19(0.504) = 101og19(504 x 1074)
= —10logo[—4 + log(23.3%.7)] = —12.98.

Thus, characteristics is —13. Therefore, number of zeros after decimal and first signifi-
cant digit is 12.

Let = 72" ~logio 2 = 151log1g 72 = 151log1(23 x 3?) = 15[3log1 2 4 2logo 3]
i =15[3 x 0.301 + 2 x 0.477] = 15[0.903 + 0.954] = 15 x 1.857 = 27.855
So the characteristics is 27 and hence the number of digits will be 28.
Given b = 5, n = 2, therefore the number of integers will be 5% — 52 — 100.
Let o = 315 x 210 ~1ogig = 15log1o 3 + 101ogig 2

=15 x0.477 4+ 10 x 0.301 = 10.165.

So no. of digits will be 11.

Let 2 = 6% ~logio z = 20log1o(2 x 3) = 20[logy0 2 + logip 3]

= 20[0.301 4+ 0.477] = 15.56.

So no. of digits will be 16.

Let = 5% ~logjgz = 2510g10¥ = 25[1 —log0 2]

=25 x 0.699 = 17.475

So no. of digits will be 18.

Given logg[1 + logp{1 + log.(1 + log, z)}] =0

= 1+logp{l +log.(1+1logp,z)} =1

= logp{1 + log.(1 +log, z)} =0

= 1+4log.(1+logpz) =1

= log.(1+1log,z) =0

=1+log,z=1

=logpz=0=2z=1

Given logy logs(vVz + 5 +Vz) =0 = logs(vVr + 54+ V) =1

= Vrt5+Vr=5=Vr+5=5—Vz

Squaring both sides,

z+5=254+2—10Vz=>Vz=2=z=4.

. logox +logy(z+2)=2= log2x+%log2(1’+ 2) =2

= 2logy z 4 loga(z +2) =4 = logy 2%(z + 3) = 4
=22z +2)=16=2=2
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57. log(gi2) = +logz(z +2) = g = m +log,(z+2) = g
Let z = log,(x + 2) :>%+z:g
2 1
22°42=5z2=0=2=2,5
= log,(z+2) = 2,%
Sr+2=22z+2=v1
av:2,z2—4:c—§—4:0:>z:3i;/j7
However, x cannot be a complex number. -~z = 2.
5. 18l — 9 s logy(z+1) =2 =z + 1 =2
== #
x>0, = 1+.2\/g
59. 2log; a +logu, a + 3log,2,a=0= logiz + logi —+ logalazz =0
2 1 1
= log, z + log, a+logg, x + log, a’+log, = =0
2 1 1
= log, = + 1+logg @ + 2+log, x =0
Substituting log, x = z, % + 141-z + 2}_Z =0
:>6z2+11z+4:0:>z:—%,—%
214
r=a % a 3.
60.  +logio(1 + 2%) = 2logip 5 + logio 6
= log19 10" +log1o(1 +2%) = log1o 5% + log10 6
= log10 10%(1 + 2%) = log10(5%.6)
=27(1427)=23=2"=2,1+2"=3=z=1.
61. Ig(logg z)%+loga zfg _ \/5

Taking logs of both sides,
[g (logs x)? + logo  — %] loga o = %logg 2

[% (logs )2 + logo  — %] loge x = %

Let logox = 2z, = (2224—7:—%)2:%

11

Solving this qubic equation yields z = 2, 7, 75

Q’
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Given (22 4 6)083% = (5z)lo8ss®
logs x has a possible value of 0, in that case z =1
Iflogsz # 0,= 2+ 6 =5z = = = 2, 3.

Given, (3 + 2\/§)$2,6m+9 +(3- Qﬂ)w"’—ﬁmg 6

We observe that 3 + 2/2 = ?;/5, thus, given equation becomes

(3 + 2\/5)9527695“) + (3 + 2\/5)7(35276“9) —6

Let z = (3+2\/§)1276z+9:>z+%:6ézz3i?x/§

Thus, 22 — 62+ 9 = +1 = = = 2, 4 because other roots are irrational.
Given, logg;(%) + (logg ) =3

= logs 8 — logg #2 = 3(logs z)? = 1 — 2logs = = 3(logs x)?

Let z:loggx:>1—2z=3z2:>z:—1,%:>x=2,%.

Given, \/Bg;(;)“l + 4logy \/g =2

= VVIoga(@) + 2loga /2 = 2

= /Alogy z +logs 2 =2

= /4logaz+1—logox =2 = /dlogaz =1+ logy
Squaring, 4logy x = 1 4 2logs = + (loga )2 = (logaz —1)2 =10
=logoxr=1=2=2.

Given, 2log;o x — log, 0.01 = 5 = 2logjg = — log,(10) 2 =5

= 2logig T — logm(lo)’2 =5=2logigxr +2log, 10 =5

= 2logigz + mlogfoz =5

Letzzloglox:>2z+§:5:>z:2,%

= 2 = 100, v10.
Given, logsin z 2108cos z 2 + 108sin 2 2 + 10gcos2 2 = 0
= 1Ogsingx 2(logcosm 2+ 1) + 10gcosx 2=0

In2 ( In2 +1)+ In2 =0

Insinz \ Incosx Incosz

Insinz \Incosx + Incosx

1 ( In2 +1>: 1

Insinz \Incosz " Incosz

. 1 <1n2 +1) ;:0
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= H;"slTn"EE (In2+Incosz) = —1

= In(sin2z) =0= 2 =2kr+ 5,k el

Given, 253 4 90+2 L gu+l _ qo 4 qo—1
=272 Lo 1) =7""HT41) > 20 2 =72
Taking log of both sides
(x—1)log2=(z—2)(log7),~2#7=x=2.
Given, log /3, ,(1 +cosz) =2

= 1+cosz = (V2sinz)? = 2sin*x = 2 — 2cos’ =

:>2c032x+cosa:—120¢cosx:—1,%

=z =2nm, 2nwr+3,nel

Given, log19[98 + V2 — 12z + 36] = 2

= 98 + V27 — 122 + 36 = 10* = 100

=2’ —120+36=4=2"-122+32=0

=x=4,8.

Given, 2%3% — 100 = 0 = zlog1o 2 + 22 log 3 = logy 100 = 2
Substituting values for logig 2 and logig 3, we get

0.30103z + 0.954242 = 2 = x = 1.593.

Given, log, 3log, 3 +1log, 3=0
: z

81
1 1 1 =0
logz log. z log: Z
3 381
1 1 1 0

= Togs logs7—Togs3 | Togso—Togs 81 —

Let 2 :lOg3$,:>%.%+ﬁ: 0
=2-4+422—2=0=22—4=0=2=42

=z =09, é.

Given, log(a,13)(62% + 23z + 21) = 4 — log (3, 7)(42° + 122 + 9)
= 10g(2,43) (22 +3) (32 +7) = 4 —log(z, 1 7)(22 + 3)?

= 1+10g(2,+3) (32 +7) =4 —2log(3,547)(22 + 3)

Let z = log(2,43)(3z +7),
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>1l4z2=4-2=3:=12=0=—-4,-3,—1

For logarithm to be defined, 22 +3 >0, 2 +3# land 3z +7 >0, 3z +7 # 1.

Thus, x = —}1 is the only valid solution.

. Given, loga(2? — 1) = logy(z — 1)

2
:>10g2(x2—1) =logy-1(z — 1) = —loga(z — 1) zloggﬁ
:>x2—1:;~i~1:>x=0,x2—a:—1:0

1+£V5
2

=z =0,

For logarithm to be defined 2 —1>0and z —1 >0

Thus, x = 1+2\/5 is the only acceptable solution.

1
. Given, log5(5z+lz5> =logs 6+ 1+ %

1
= log5<5’”+125> —logs6 =1+ %

1 1

Lot g
1

Let z = 52=

=22-30:+125=0=>2=525=1=2, 1

. For logigo |z + y| = % = (z+y)? =100

And for logypy — logio |z| = logipo 4 = loglo‘% = log10 2
=y =2|z| = y? = 42 = 522 + 4z|z| = 100

When z > 0, x=1ggandwhenx<0, z=-10
=y=2,20.

. Given, 2log; logs  + logy loga(2v/2z) = 1
2

= loga(loga 2)? — logz loga(2v22) = 1

(logs)? _
= 10g2(logz(22ﬁz>) =1
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(logz 95)2 _
log2(2v2z) —

= (logy z)? = loga(2v/22)?
= (loggm)2—3—210g2x =0
Let z = logs , then z2—22—3:0:>z=—1,3

1
:>x:§,8

For logarithm to be defined = > 0, 2v/2z > 0, loga x > 0, 10g2(2\/§1’) > 0.

Thus, = 8 is only acceptable solution.

Given logs logg(z? + 7) + logy logy (2% + 7)1 = =2
1 2 1
= logg loggs(2® + 7) 4 logy logy 2(2® +7)71 = —2
1 2

= 1og§[élog2(a§2 + 7)] + logl[%logg(ac2 + 7)] =2
1 2

Let y = loga(22 4 7),
= log§(%) + logﬁ+ log, y = —2
1 2 2

= —logz 3 + logo y.logs 2 —logay = —3
1 1
= logs y<10g3 2— 1) =—3+logs3
1 1

: -3
= logs y(log§ 2— logﬁ) = logé(%) +logy 3
i i i i
= logs y. log3§ = logg% = 2log 8
1 1

33
1

= logay =2 =y =3 = x = 43, both of which are valid for the given equation.

1 1

Given, logio x + logig 22 +logigzd + - to co =y

= [1+%+%+-~~ tooo]logloa::y

1
1
1—3

Yy

= logior =y = logiox =35

143454+ (2y—1) 20

447+10+--4(3y+1) = Tlogiox

Also given that

2+(y-1)2] 20
[8+(y—1)3] ~ Tlogiox

=

ke [l

2 20
= Yy

_ 20x2 9 B
315 = Thoaos — 75 = (Y — 60y —100 =10
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y = 10, —179. Since number of terms cannot be fraction, therefore y = 10 and 2 = 10°.
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Given, 18473 = (54y/2)%7 4

Taking log on both sides,

= (47 —3)log18 = (3z — 4) log(18 x 3v/2) =3 (3z — 4) log 18
é4x—3:%(3x—4) =z=06

Given, 410893 4 glog24 _ qlog. 83

- glogy23 + glog2 2% _ 10108 83

llogg 3

= 42 4 g2log22 _ q(jlog. 83

1
=42+ 9% =83 =10"%% = 1 =10
Given, 3410g9(a¢+1) _ 2210g2(x+3)
- 3210g3(x+1) = 22 + 3[ gloga N — N]

= 3lomt)® — 42 L9 4 1= 43 0=1

x
6 aloga zlogipaloge b 3105101_0 _ 910g100 z+logy 2
z =

llog w+llog 2
- galogm zloga b glogmzfl =02 10 2082

= % (5loga 5)10g10 T _ 3log10 z—1 _ 310g10 z+1

= g5logmw — 6.5logr0z—1 _ glogio $*1(1 + 33)

<§>10g10 z—1 10

3 -6

=logipz—1=1= 2 =100
1 L

Given, 27712 4 972 — glog26
= 2%V/2+2°V/2=6
= (295)3 19232 = 2T =32, 7\/§j:2\/710

. 1
Ignoring complex roots we have x = 3.
(54+2v6)" 3+ (5—2v6)"3 =10
= (5+2V6)" 3+ (5+2V6) ¥ =10
Let z = (5 + 2\/6)“32_3, then
:>z+%:10:>z:512\/(_3

=42, 4£V2
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2logio: © — log, .01 > 4

= 2logigx — log, 1072>4

= 2logigx + 2log, 10 = 210g101’+10g% >4
= 2(log10 T+ —logioz) >4

Let z = logio x, then 2(2 + %) >4

= 2{(«27%)2%} >4

which is true.

Let E = logpa + log, b = logy a + bg%

Let z = logy a, then E = z—o—é

Clearly, z #+ 0, or the problem will be undefined.
Whenz>0,E:z+%= (x/g—%)2+2 > 2
When z < 0, z = —y (let), then
E=|-y—3i|=y+;>2

Given, logo s(x2 + 8) > logg.3 9z

=2’ +8<9r=>1<z<8.

log,—2(2x — 3) > log,_2(24 — 6z)

Case I: When 0<z—2<1=2<2<3

Given inequality becomes 2x — 3 < 24 — 6x = = < %

But « < 3 so 3 si still limiting value of z.

Case II: Whenz —2>1=2z >3

Given inequality becomes 2z —3 > 24 — 6z = = > %

288

However, for logarithm to be defined 2z — 3 > 0 and 24 — 62 > 0 and also z —2 > 0.

Combining all these we get 2 < x < 3.
Given, logp.s(x — 1) < logg.o9(x — 1)

> (@—-12%>@—-1)=22-32+2>0

=z < 1,z > 2. For logarithm function to be defined = > 1, thus the interval for z will

be (2, co].
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Given, log; x > log; x
2 3

= log; z > log; zlog %

1
2 2 3

= log; .’L'|:1 — loglé} >0
2 3

= logy z[1 —logz2] >0
2

logiz>0=2<1
2

For logarithm function to be defined > 0, thus range of = will be (0, 1].

Given, log; logs(z2 —5) > 0
3

=logy(2®> —5) <1l=2—5<4=>-3<z<3

For logarithm to be defined 2 —5 > 0 and logy(2® — 5) > 0
:>x<f\/5,w>\/5andx2f5>1:>x<f\/6,x>\/6

Combining all these conditions we get two ranges for z, (=3, —v/6) and (v/6, 3).
Given, log(z?— 2 —2)<0=22—2: —2<1

=—-1<r<3

For logarithm to be defined z? — 22 —2 > 0

=r<1—V3,z2>1+V3

Combining all these ranges gives us the range as [—1,1—+/3) U (1 + /3, 3].
Given, log3(z —1)? —logps(z — 1) > 5

= (2logs [z —1])? —logo.s(x — 1) > 5

= 4[loga(x — 1)]% 4+ loga(z — 1) > 5

Let z =loga(x — 1), = 42?2+ 2—5>0

1

22
For log to be defined x —1 >0=2 > 1

s2<-2r>l=a<l+

When z > 1,2 >3
Thus, the range of x is (1, 1+ ;r\l/ﬁ) U (3, 00).

We have to prove that logs 17log; 2 loggé > 2
5

= loge 171ogs 2 > 2 = logs 17 > 2

+17 > 32 2 logs 17 > 2
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1 1
We have to prove that 5 <logso3 < 5

% < 10g20 3=>1< loggo 33 =1< lOgQO 27

which is true as the base is greater than 1 and the number is greater than the base.

10g203 < % = 10g20 32 <l= 10g209 <1

which is true as the base is greater than 1 and the number is less than the base.

We have to prove that % <logip2 < %

% < 10g10 2=>1< lOglo 24 = logw 16

290

which is true because base is greater than 1 and the number is greater than the base.

logip2 < % = logio 22 <l=logppd<1

which is true as the base is greater than 1 and the number is less than the base.

Given 10g0.1(4x2 —1) > logo.1 3z

=42 -3 —-1<0= (4o +1)(z—1)<0

Thus, [—o0, —%) U (1, co] is the initial solution.
Now, x > 0 is another restriction from R.H.S.

From LHS> 422 ~1>0= 0 < —3,2 >3

Combining all these we get, % <z <l

Given, logs(2? — 24) > logs 5

=a?—24>5c=>1r<-3,z>8

But 22— 24 > 0 and also 2 > 0 for loarithm function to be defined.
~x > 8.

We have to prove that > 2

1 1
logs ™ + loga 7
= log,3 +log,4 > 2

= log, 12 > 2 = 12 > 7% which is true.

1 1
Given (0.01)3 and (0.001)3
Taking log of both with base 10,

310go1 0.01 and £ logo 0.001

1
5

—% and —g out of which —g is greater, therefore (0.001)% is greater.
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logz 11 > logz 9 = logs(3?) = 2 and logy 3 < loga 4 = 2.
Thus, logs 11 is geater.
Given, logz(2” + 10) > logs Tz

=>22410>Te=2<2,2>5

However, 22 4 10 > 0 and z > 0 for logarithm to be defined.

Thus, intervals are 0 < z < 2 and = > 5.

We have, z1°810% > 10

= logipzlogipx > 1 =logipx > +1

Thus range of values of 2 would be (0,0.1) U (10, co].

We have, logs xlogo, 2logs 4z > 1

1 1 9
m[mbgzz x]>1

= ez | 7o) 2 F 2] > 1

Let z = log, 2, then

:éljz[%r%] >1

291

Solving this inequality and applying rules for definition of logarithm we have following

range for x

(223U (1.2%)

Given, logs x logs 2x + logs xlogs 4z > 0

Exchanging base, we have logs z logs 2z + logs xloge 4z > 0
= logs z(logs 2 + loga x + loga 4 + loga ) > 0

= logz z(3 +2logzz) >0

For logsx > 0,x > 1 and for, 3 + 2logs 22>0= logs 2> —3.

Also for logg 2 < 0,0 < 2 < 1 and for 3 + logs 22 < 0 = logz 2% < —3

_ log260 _ loga(22x3x5)
10g12 60 = log212 7 loga(22x3)
_ 2+logy 3+loga 5
- 2+logs 3
. _ _ 24z+y
Let loga 3 = z and logs 5 = y, then logi2 60 = =5

log2 30 _ loga(2x3x5)
logo6 —  log22x3

Given a = logs 30 =

_ 1+logp3+loga 5 _ 1+z+y

1+loga 3 1+x



Answers of Logarithm 292

Also given, b = logys 24, proceeding similarly b = g{%

From these two, we can write  and y in terms of z and v,

__ b+3—ab __ 2a—b—2+ab
T="w—3 Y= ab—1

Substituting these values for logis 60, we get

2ab+2a—1

10g12 60 = ab+b+1

108. log, x, logy x and log. x are in A.P.

1 1

-2 logf b= logs a + logs ¢
2 _ loggac

loge b~ logg alogy ¢

= 2log, ¢ = log, ac :gng = log, ¢? = log, aclog, b

= % = qcloga?,

109. a = log; v0.125 > 0 because both base and number are less than 1.
2

b= logg(v—ﬁ%ﬁ) = 10g3<~‘/2j4~t3'\~@> >0

because both base and number are greater than 1.
_T
110.Givene 2 <0< 3

Taking log natural of both sides

log, e_g < log. 6 < log. 5

= —F<log.f<1< g[ log. 5 < loge e]
= —5<loged <3

= cos(loge 0) >0
Again, e 2 <0< 3

=0<40 <§[~:e7%>0]
= 0<cosf < 1=log.cosh <0
= cos(log, 0) > log.(cos9)
111. Given, logs x + logoy > 6 = logo xy > 6 = xy > 64

This means = and y are positive as negative values will not be valid for logarithm
function.

A.MZG.M:>£;~'32:[;3;:>:E+Q/216.



Answers of Logarithm 293

112. Given, logy a log. a — log, a + log, blog. b — logy, b + log,, clogy ¢ — log. ¢ = 0

(loga)? (logb)2 (loge)?2 4 _
:>logblogc 1+loga10gc 1+logalogb 1=0

Let x =loga,y =logb, z =logc, then
2y 22 _
wTatm—3=0

23+y3+25—-3zyz

:>(a:+y+z)(x2+y2+z2—zy—yz—z:c):0

2+ (y—2)+(z—2)* =0

1
=s5@+y+2)(z—y)
wx,y, z are different the term inside brackets will be always positive. Thus.
z +y + z = 0, now substituting the original values,

logabc = 0 = abc = 1.

113. Since n is a natural number and pl,2, ..., py are distinct primes, therefore aq, as, ..., a
are also natural numbers.

Now n = pi'p5? ... pp*
= logn = ay log p1 + az log ps + -+ + ay, log px

logn > log2 + log2 + - + log 2 [since bases are primes so minimum value is is 2 and
pwoers are natural numbers so they are greater than 1]

logn > klog?2
114. Let d be the common difference of the A.P., then
3logyz=3+d= logyaj?’ =3+d=2° :y(3+d)
3log.y =3+ 2d = y° = 2324

Tlog, z=3+4+3d= 2" = £(3+3d)

3+2d
y3 _ Z(3+2d) Sy=z 3
3+d 34+d)(3+2d
3 (3+d) % (3+e)(3+2d)

S>r=y3 =z 9

27— p3+3d) . — ,3+3d

(3+d)(3+2d) _ 7

1
9 =5~ d=3

Thus, 18 = 3?1 = 228,
115. We have, logy 18 = log,2(2 x 32) = %+ loga 3
Thus, it will be enough to prove tha logs 3 is an irrational number.
P

Let loge 3 = 7 where p, q €[
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P
= 21=3= 2P =231

However, 2P is an even number and 37 is an odd number, and hence the equality will
never be achieved. Therefore, logs 3 is an irrational number.

z

116. Given, z,y, z are in G.P. ~.¥ = :
=hi= ln§:> Iny—Inz=Inz—Iny
= Inz,Iny, Inz are in A.P.
= 1+Inz,14+1Iny,1+1Inz are in A.P.

1 1 1 .
= 1+lnz’ 1+Iny’ 1+Inz are in H.P.

117. logso 8 = logso 23 = 3logsp 2 = 310g30%g
=3 — 3(logso 3 +logzp 5) = 3(1 —a —b).
118. Given log7 12 = g and log1224 = b
Multiplying ab = log7 24
Adding 1 on both sides
ab+ 1 = log; 24 + log7 7 = log7 168

Similarly, 8a = log7 128 and 5ab = log; 168°

ab+1 log7 168
8a—>5ab logy 128 —logy 168°

Upon simplification we find that logss 168 = sgiib

119.Case I: When z > 1,z > a? + 1. Also, a> + 1 < 1wz > 1
Case II: When z < 1,z < a® + 1. Also, a®> > 0=z < 1.
In both the cases x > 0.

120. Given, logi2 18 = a and logo4 54 = b

. _ log18log54 log18 log54
~ab+5(a—b) = Tog12log 24 5<log12 - 10g24)

__ log18log54+5(log 18log 24—log 54 log 12)
- log12log24

log 18 =log2 + 2log 3, log 12 = 2log 2 + log 3

log 24 = 3log 2 + log 3, log 54 = log 2 + 3log 3

Now it is only a matter of substitution and simplification.
121. Given, a, b, ¢ are in G.P. so we can write b2 = ac

Taking log with base z,
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1
logy, ©

210gzb:10gza+10gzc’:>1;—§;;:gg%g+
Thus, log, x, logy z, log. x are in H.P.
122. Let r be the common ratio of the G.P. and d be the common difference of the A.P.

loga, — b, =loga+nlogr — (b+nd) =loga—1>

=

=nlogr—nd=0=logr=d=>0=r%
123. Given logs 2, logs(2” — 5) and log3(2z — %) are in A.P.

= 2logs(2®—5) = 10g3(2x f%) + logs 2

= (2"—5)2=2(2"—1])

Let z = 2%, then

22—1004+26=22—7=22—1224+32==2=4,8

= z = 2, 3, however, if z = 2 then 2” — 5 < 0 so only acceptable value of zx is 3.

124. Let logs 7 is a rational number i.e. logs 7 = %, where p, q €[

D
=7=21=T71=24

However, integral power of 7 is an odd number while that of 2 is an even number. Thus,
by contradiction logs 7 is irrational number.

125. Given, logg.5(z — 2) < logp.a5(x — 2)
=>(@—22%>2-2=(z—2)(z—3) >0

Thus, > 3 for logarithm function to be defined.
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10.

11.

12.

Given t, =2n*+1=t, 1 =2(n—1)2+1

~d =1, —t,_1 = 4n — 2, which is not constant. Hence, the sequence is not in A.P.
Given, t1 =1,to =2 and t,,4 0 = t,, + tph11

atg=t 4+ to=3ta=to+1t3=>5 15 =13+ ts=8S.

Givent,=3n+5=t=3x1+5=8t2=3x2+5=11,{3=3 x 3+ 5 = 14. So the
seuquence is 8, 11, 14, ..., 3n + 5.

Givent, =2n2+3=1t,=2x124+3=5,lo=2x224+3=11,t3=2x324+5=23. So
the sequence is 5, 11,23, ..., 2n2 + 3.

. _ 3n _ 3x1 3 _ 1, _ 3x2 _6_3 , _ 3x3 _ 9
Given, th =557 = hh = 55957 =6 = 2 12 = 3254 — 5 = 1> 13 = 35354 = 10 S0 the
o1 3 9 3n
sequence 1S 3, 7, 755 " » Intd
2t,+1 2641 2x1+1 _ 3 2tp+1 2X%+1 10 _ 2
. _ _ 2ty 1 3 _ 22 10 __ 2
Given, t; = 2, tn1 = 355 = b2 = 353 T3 — 3T 4 3., 53 So
1
s o 3 2
the sequence is 2, 7,3, -

Given, t, = 4n’+1 = tn—14(n — 1)2 +1

~d =1t, —t,_1 = 8n — 4, which is not constant. Hence the sequence is not in A.P.
Given t, =2an+b=t,—1 =2a(n—1) +b

o~d =ty —t,_1 = 2a. which is a constant. Hence the sequence will be an A.P.
Given, t; = 3,to =3,t3 =06 and t,,1 2 = t,, + tp11

styg=to+t3=3+6=9and t5=1t3+t4 =6+9=15.
ti=1=a+b+c,to=5=4a+2b+candt3=11=9a+3b+c
sto—ti1=4=3a+band t3—to=6=5a+b
=2a=2=a=1=b=1=c=-1

=t10=1x10>+1x10—1 = 109.

Difference between successive terms i.e. commond difference, d =12 -9 = 15— 12 =
18 — 15 = 3 which is a constant, hence, the given sequence is an A.P.

Here first term ¢ =9 and d =364 =9+ (16 —1)3 =54 and ¢, =9+ (n —1)3 =
3(n+2).

t; = loga, ty = log(ab) = loga + logb, t3 = log(ab®) = loga + 2logb

296
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to —t; =tz — to = logb. Clearly, t; = loga, d = log b which is constant so the sequence
is an A.P.

wt, =loga+ (n—1)logh = log(ab™ ).

Given, t,=5—6n=1t;=5—6=—1

Sp =% [t1+tn] = n(2—3n).
d=7-3=11-T=4,t, =407 =3+ (n—1)d = n =" +1=102.

Since a, b, ¢, d, e are in A.P. ~a+e=0b+d = 2c = k(say)
ca—4b+6c—4d+e=(a+e)—4(b+d)+32c=k—4k+ 3k =0.

Let a be the first term and d be the common difference of the given A.P.

Given, 5t5 = 8tg = 5a + 20d = 8a + 56d = 3a = —36d = a = —12d

= ti3=a+12d = 0.

Let nth term be the smallest positive number. From the sequence we obtain that ¢; = 25
and d = —22: —%

Thent, >0=25—(n—1)5>0=n<4+1=n=12

The given pay scale represents an A.P. with ¢; = 700, d = 40 and ¢,, = 1500.
sta=ti+(n—1)d=>n="17t 41 =100-700 1 1 — 9],
Thus, the person will reach maximum payment in 21 years.

Let a be the first term and d be the common difference of the A.P. According to the
question,

t7:a+6d:34 andt13:a+12d:64
Subtracting 6d = 30 = d =5 = a = 4. So the A.P. is 4,9, 14, ....

If 55 is the nth term then n will have to be an integer. From the given sequence
a=1,d=3—-1=5—-3=2.

55 =1+ (n—1)2 = n = 28, which is an integer and hence, 55 will be 28th term of the
AP

From the given sequence a = 2000, d = 1995 — 2000 = 1990 — 1995 = —5.
Let nth term be first negative term, then, a4+ (n —1)d < 0= 2000 — (n —1)5 <0
=n > 401 = n = 402 = t402 = 2000 — (402 — 1)5 = —5.

Common different of the sequence 2, 4, 6, 8, ... is 2 and common difference of the se-
qquence 3, 6,9, ... is 3.

Thus, common terms will have a common different which is L.C.M. of these two com-
mond differences i.e. 6.
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Last term of first sequence is 200 and last term of second sequence is 240. Clearly, last
identical(common) number will be less than 200. We also observe that 6 is the first
identical term. Let there be n such terms. Then

64+ (n—1)6 <200=n< 1%4 + 1 = n = 33. Thus there will be 33 identical terms in

the two given A.P.

Clearly the first number of three digits divisible by 5 is 100; while the last such number
is 995. Since these numbers are all divisible by 5 they will form an A.P. with common
difference 5.

Clearly, t; = 100, t,, = 995, d = 5 and we have to find n.
t, =995 =100+ (n —1)5 = n = 180.

Given sequence is 4,9,14,.... Soa=4,d =9—4 =14 —9 = 5. Let 105 be nth term of
this A.P. then n has to be an integer for this assumption to be true.

105=4+(n—1)5=n= 196 which is not an integer and therefore 105 is not a term

5

in the given A.P.

This problem is same as problem 21 and has been left as an exercise.

This problem is same as problem 22 and has been left as an exercise.

Let a be the first term and d be the common difference of the A.P. Given,

Mty = nty, = ma+ (m—1)md =na+ (n—1)nd = (m—n)a= (n>—n—m?+m)d
=2a=—-(m+n—-1)d ~tymin=a+(m+n—1)d=0.

Let = be the first term and y be the common difference of the A.P. Then,
a=z+(p—1Dyb=z+(qg—1y,c=z+(r—1)y

We have to prove that a(¢ —7) +b(r —p) +c(p—q) = 0.

Substituting the values of a, b and ¢ in the above equation

LHS =[z+(-1yllg—r)+[z+(q-Dyl(r—p)+[z+ (r—1)yl(p—q)
=az(g—r+r—ptp—q) +yllp—D(g—r)+ (-1 (r—p)+ (-1 (p—q)]
=0=R.H.S.

First number after 100 which is divisible by 7 is 105. The last number divisible by 7
before 1000 is 994.

Let n be the numbers divisible by 7 between 100 and 1000. Then 994 = 105+ (n—1)7
= n = 128. Then no. of numbers not divisible by 7 is 1000 — 100 — 128 = 772.

Let « be the first term and y be the common difference of the A.P. Then,
a=z+(p-Dyb=r+(g-Dy,c=z+(r—1)y

We have to prove that (a —b)r+ (b—c)p+ (c—a)g=0
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Substituting the values of a, b and ¢ in the above equation
LHS. =(p—qyr+(¢g—r)yp+ (r—p)yg=0=RH.S.

Let the numbers in A.P. be a —d, a and a + d. Given their sum is 27 and sum of squares
is 293.

ca—d+at+a+d=27T=a=09

wla—d)?+a?+ (a+d)? =293 = 3a 4+ 2d% = 293 = 3 x 81 4 2d% = 293
=2d>=50=d =45

So the numbers are 4,9, 14 or 14,9, 4.

Let the numbers in A.P. be a — 3d, a — d, a + d, a + 3d. Given their sum is 24 and
product is 945.

ca—3d+a—d+a+d+a+3d=24=4a=24=a=6

Also, (a —3d) (¢ —d) (a+d) (a + 3d) = 945 = (a® — 9d?) (a® — d*) = 945
= a* — 10a*d* + 9d" = 945 = 9d* — 360d” + 1296 — 945 = 0

= 9d" — 360d” + 351 = 0 = d" — 40d*> + 39 =0

= (d*—1)(d* — 39) = 0. Since the numbers are integers = d? # 39.
= d = £1. So the numbers are 3,5,7,9 or 9,7, 5, 3.

Let a be the first term and d be the common ratio of the A.P. Given,
tpb=a+(p—1)d=qand ty=a+(¢g—1)d=p
=p—q@d=q—p=>d=—-1=a=p+q—1
=tprq=a+(p+gq—1)d=p+qg—1—(p+g—1)=0.

Let a be the first term and d be the common ratio of the A.P.
Stm=a+(m—1)d, toapsm=a+ 2n+m—1)d

=ty +toantm =2a+ 2m+2n—2)d =2[a+ (m+n—1)d] = 2t4n

Let the three numbers be a — d, a, a + d. Given that their sum is 15 and sum of their
square is 83.

=2a—d+a+a+d=15=3a=15=a=5

= (a—d)?+a*+ (a+d)?> =83 = 3a® + 2d*> = 83 = 3 x 52 4 2d° = 83>

= d = +2. So the numbers are 3,5,7 or 7, 5, 3.

This problem is similar to previous problem and has been left as an exercise.

Let the three numbers be a — d, a, a + d. Given their sum as 12 and sum of cubes as
408.

ca—d+a+a+d=12=3a=12=a=4
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w(a—d)P+a®+ (a+d)® = 3a® + 6ad® = 408 = 24d* = 216 = d = +3
Hence, the numbers are 1,4, 7 or 7,4, 1.

Let the numbers in A.P. be a — 3d, a — d, a + d, a + 3d. Given their sum is 24 and
product of first and fourth to product of second and third is 2 : 3.

ca—3d+a—d+a+d+a+3d=20=4a=20=a=5

. (a—3d)(a+3d) __ 2

“(a=d)(atd) T3
= 3a® — 27d* = 2a* — 2d° = o® = 25d° = d = +1.

Therefore numbers are 2,4, 6,8 or 8,6, 4, 2.

Let the three numbers be a — d, a, a + d. Given their sum is —3 and product is 8.
ca—d+a+ta+d=-3=>3a=-3=a=-1
s(a—d)a(a+d)=8=a>—d*=-8=d=43

Hence the numbers are —4, —1,2 or 2, —1, —4.

This problem is similar to problem 38 and has been left as an exercise.

. bte— —b atb— .
Given 2-=2 SH4=0 459=C are in A.P.

Adding 2 to each term will give us another A.P. [refer properties of A.P.]

1+-b+c b+c atbtc . s
:-a+a+( , a+b+c7 a+c+< will be in A.P.

Dividing each term with a + b + ¢ will yield another A.P.

2,3, % will be in A.P.

Given a, b, ¢ are in A.P.
Dividing each term by abc will yield another A.P.

L L L will be in A.P.

“bcoca’ ab
Multiplying each term with abc + 1 will yield another A.P.

1

ca’

“a+ g, b+ e+ = will be in A.P.

Given a,b,c are in A.P. :b—a=c—b

1 1 ab+bctca _ ab+bectca
= b—a = c—b = b—a - c—b

= ab(b—a) + c(b* — a?) = be(c — a) + a(c® — b?)

= bla+b%c—a?b—d’c = ta+ b —bic—b2a=b*(a+c)—a®(b+c) =c2(a+b)—
b(c+a)

~a*(b+c),b*(c+a),c*(a+b) are in A.P.
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. L 1 1 1 :
We will prove this in reverse. We assume that are in A.P.

Vb+ve’ Vetrva Va+vb

1 11 1
= Vorva  Vhive = Vaivb T Verva

2 1 1
= Verva = VEive T Varve

-~ _ 2 _ Va+vb+vbtVe
Vetva T (Vb+ve) (Va+vb)

=2(Vb+Ve) (Va+ vb) = (Ve +Va) (Va+2vb + Ve)
= 2(Vab+ b+ vVac + Vbe) = Vac + 2Vbe + ¢ + a + 2Vab + Vac

= 2b = a + ¢, which implies that a, b, ¢ are in A.P. So the reverse is also true.

Given a, b, ¢ are in A.P.
Dividing each term by abc will yield another A.P.

= 1, —, & will be in A.P.

Multiplying each term with ab + be + ca will yield another A.P.

ab+bc
ca

abtea g abibe g betca 4 il be in A.P.

= ab

Subtracting 1 from each term yields desired terms in A.P.

We have to prove that le¢7 ﬁ, ﬁ are in A.P.

fe L _ 1 _ 1 1
' c—a b—c a—b c—a

b—2c+ —2a+b
= B9 = @ b(e—a)

=(a+b—2c)(a—b)=(b+c—2a)(b—c)

Now, given that (b—¢)? (¢ —a)?, (a — b)? are in A.P.
=(c—a) —(b—c)?=(a—0b)?—(c—a)?
=((b—a)(2c—a—b)=(c—b)(2a—b—c)

Thus, we have proven the desierd result.

Given a, b, ¢ are in A.P.

Subtracting a, b, ¢ from each term will yield another A.P.
= —(b+¢),—(c+a),—(a+b) will be in A.P.
Multiplying each term with —1 will yield the desired A.P.

111 .
We have to prove that 37—, 7, =75 are in A.P.

301
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=b02—a?=c2—b*=a? b% c? are in A.P.

Thus, we have proven the desired result in reverse.

Given that a, b, c are in AP. =b—a=c—b=k (say)
=c—a=2k=2(a—b)=a—c=2(b—c) =2k

Given that a,b,carein AP.Letb=a+d=c=a+2d

Now, (a —¢)? = 4d?, 4(b* — ac) = 4[(a + d)? — a(a + 2d)] = 4d?
= (a—c)? = 4(b? — ac)

Let n = 2m + 1 where m € N. = Sy = 3 [t1 + ¢,,] where d is the commond difference.

For S the no. of terms will be m. = Sy = 3 [ta + tn_1]

We know that t; +t, =ta+t,_1

.S n n 2n

"8 T m T n—-1 n—1°

The degree is the highest power of x which will be 1 +6 + 11 + --- 4+ 101.

Clearly, the above sequence is an A.P. having first term 1, common difference 5 and last
term as 101.

n=loh g =101 41 =91,

= 8=t +t,] =3 [1+101] =21 x 51 = 1071
Therefore, the degree of the polynomial will be 1071.

Consider an A.P. with first term as a, commond difference as d and no. of terms as n.
Then sum is given by

§=5[2+ (n—1)]d =" 4 G0

which is of the form An? + Bn where A = %2 and B = Za;d.

. Let the common difference of the A.P. be d.

LHS =a?—a3+a2—a)4*+ -+ a3, ; —ai,
= (a1 —a2) (a1 + a2) + (a3 —a4) (a3 + as) + - + (@2n—1 — G2n ) (G2n—1 + G2n)
=—d(a1+az+az+as+ -+ agp—1+ azp)

_2nd

= —5[a1 + azp)

__n 2 2 ] Q2n—ai
— 2n—1 (al - a2n) [ wd = on—1 ]

We know that sum of equidistant terms from start and end of an A.P. is equal.

a1+ a4 = a5+ a0 = a9 + a5 = k (say)
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-'.a1+a5+a10+a15+a24:3k:225:>k:75

Sum of first 24 terms S = a1 + az + - + asa = 5 [a1 + asa] = 12 x 75 = 600.

Let a be the first term and d be the common difference. Also let S; denote the sum of
first 3n terms and S; denote the sum of next n terms.

S :37"[2(14— (3n—1)d], S2 =% [2a+ 6nd + (n — 1) d] [~ tgn+1 = a + 3nd]
Given, S = Sy = 2[2a+ (3n — 1)d] = 2[2a + 6nd + (n — 1)d]
=6a+(In—3)d=2a+ (Tn—1)d=2a+(n—2)d=0

Let S3 be sum of first 2n terms and S4 be sum of next 2n terms, then

2n

Sy _ 5 [2a+(2n—1)d]
Sa 7[2a+4nd+(2n—1)]d
== 5nd [ 2a+ (n—1)d = 0zs]

Given S, =5n’+3n=1,=5,—S,_1 = 5n2+3n—5(n— 1)2—3(n—1)
=10n—5+4+3=10n—2=d=t,—t,—1=10n—2—10(n — 1) + 2 = 10,
Since common difference is a constant the series is in A.P.

Common difference of the series d = (a? 4 b%) — (a +b)? = (a — b)? — (a® + b?) = —2ab
S=3%[2(a+b)*— (n—1)2ab] = §[2a*+ 2b* — 2(n + 1) ab]

= n[a® + 62 — (n + 1) ab].

There will be two cases. First n being odd and second n being even.

Case I: When n is odd i.e. n =2m + 1, where m =0, 1, 2, ...
S=1+5+9+ - uptom+1terms —3 —7— 11 up to m terms
=252+ 4m] — B[6 +4m — 4] = (m + 1) (1 + 2m) — m(2m + 1)
=2m’+3m+1-2m*>—m=2m+1=n.

Case II: When n is even i.e. n = 2m, where m = 1,2, 3, ...
S=14+5+9+-- up to m terms —3 —7 — 11 up to m terms
=Z[24+4m —4] - F[6+4m —4] = —2m = —n.

Let there be n sides of the polygon. From geometry, we know that sum of angles of the
polygon = (n — 2)180°
From the formula for sum of an A.P. S =%[2 x 120"+ (n —1)5°] = (n —2) 180°

?240° +(n—1)5]=(n—2)360° = n[48° + (n—1)] = (n — 2) 72%rc

=n?—25n+144=0=>n=29,16
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To water first tree the gardener will have to travel 10 m. To water second tree he will
have tp travel back 10 m to well and then 15 m to the tree i.e. 25 m. Similarly, for third
tree he will have to travel 15 m to well and 20 m i.e a total of 35 m.

Thus, total distance travelled will be 10 + 25 + 35 + ---

Clearly, 25 will be the first term of the A.P. and there will be 24 such terms because
distance travelled for first tree is noty part of the A.P. Note that common difference
would be 10.

Total distance travelled = 10 + 112 % 25 + (24 —1)10] = 10 + 3360 = 3370 m.
Let d be the common difference. Given S, =0=2[2a+ (p—1)d] =0
2a

p + 1th term ¢,1 = a + pd, so the sum of next ¢ terms S = £[2a + 2pd + (¢ — 1) d]

:%[2a+(2p+q71)d]:%[2a+(2p+q71).%}

2a.(p+ +
:%[ aﬁpq)] _ pp 1q)q

Sum of first p terms, S, =£[2a + (p — 1) d]; sum of first ¢ terms Sq =2 [2a + (¢ —1)d]
2ap + (p* —p)d =2aq+ (¢* —q)d = 2a(p —q) = (¢" = p* + p—q)d
2a=(1-p—q)d

Sum of (p+q) terms, Sp.q=252[2a+ (p+q—1)d] =232 [(1—p—q)d+ (p+q—1)d] =
0.

Sum of latter half of 2n terms means n + 1th term to 2nth term. t,,.1 = a + nd and
ton = a+ (2n—1)d where a and d are the first term and common difference respectively.

Sum of latter half of terms, S = % [tn+1 + t2n] = 5[2a + (3n — 1)d]

Sum of first 3n terms, Sz, = 37” [2a + (3n —1)d]

Clearly, S/Ss, =1:3.

Let S, be the rth A.P. whose first term is 7 and common difference is also r.

8 =52+ (n—1)r] = 5[(n+1)r] = 252

p
S1+ S+ S3+-+ 8 :ZST
r=1

P
= Zr:—n—i—l )(p+1)

r=1

n
j : n( n+1
i=1

Let = be the first term and y be the common difference of the A.P.



Answers of Progressions 305

Then, according to the question a = §[2z + (p — 1)y], b = 2[22 + (¢ — 1)y], ¢ =
g[2x+ (r—1)y]

We have to prove that%(qfr)+g(rfp)+%(p*q) =0

LHS. =2(q—r+r—p+p—q)+3[(p—1(g=r)+(g=1)(r—p)+(r—1)(p—q)]

=0.

. Let a be the first term and d be the common difference of the A.P.

1 m+4n

Given, Sy, = 2 Simin = 2[2a+ (m —1)d] = 5. 24" [2a + (m +n —1)d]

Let 2a + (m — 1)d = x, then the above equation can be written as

m+n

mx = 3

[z +nd] = 2mz = (m +n) [z + nd] = mz = n(z+ nd) + mnd
= (m—n)x=(m+n)nd

Similarly, (m — p)z = (m + p) pd

Dividing, we get

(m—n)(m+p)p=(m+n)(m—p)n

Dividing both sides with mnp we arrive at the desired result.

. Let a be the first term and d be the common difference of the A.P. For odd terms, the
no. of terms will be n + 1, first term will be a and common difference will be 2d.

# Soga = "5 [2a + 2nd]

For even terms, the no. of terms will be n, first term will be a + d and common difference
will be 2d.

2 Seven = 520+ 2d + 2(n — 1) d] = 5 [2a + 2nd)

. Sodda _ n+l
Seven n o

. Let a1 and as be the first terms and d; and ds be the common differences of the two

series in A.P.

%[2(1,1+(n71)d1] _ 3p—12

~ 5n+21

Given, -
5[2(124»(77,71) da)

= 2a1+(n—1)d; _ 3n—13
2a2+(n—1)dy ~ 5n+21

a1+23d; _ 2a;1+46d;
as+23dy ~ 2a2+46ds

We need to find ratio of the 24th terms i.e.

Putting n = 47 in the ratio of sums, we have

2a;+46d; _ 3x47—13 _ 1

2a5+46d; — Bx4T+21 2




70.

71.

72.

73.

4.

Answers of Progressions

Let a be the first term and d be the common difference of the A.P.

Given, t,=a+ (m—1)d =2, t,=a+ (n—1)d ==

n’ m

1 1
=>d—%:>a—'

mn

m—n
mn

Subtracting, we get (m —n)d =

.S _mn[ 2 mn—11 _ mn+1
Emn 2 |mn mn - 2

Let a be the first term and d be the common difference of the A.P.

Given, Sy, =n =2[2a+ (m —1)d] = 2a+ (m —1)d =22

m

and S, =m=%[2a+ (n—1)d] = 2a+ (n—1)d =22

n

—~d= _2(777:1;271) = q= m2+n2tnrr:Ln7mfn
= Span="3"12a+ (m+n—1)d] = —(m+n).

Let a be the first term and d be the common difference of the A.P.

~ 8 =220 + 2nd)]

306

For S; first term would be a, common difference would be 2d and no. of terms would

be n + 1.

.S 2n+l
ST n+1lc

Let d be the common difference, then b =a +2d = d = FTC”

c=a+(n—1)d=n—-1=5"=

>n=2c

28 =520+ (n—1)d] =5[22 +1][2a + 2= 22

cta | c?—a?

= 2+b7a'

Let a1, as be the first terms and dy, ds be the common differences of the two series in

A.P.

2a1+(n—1)a; _ 3n+8
2a2+(n—1)ds = Tn+15"

According to the question

. . ai1+11dy _ 2a1+22d;
We have to find ratio of 12th terms i.e. o 11ds = 3a, T2,

Putting n = 23 in previous equation, we get

2a1+22d; 77

2a2+22dy — 176 T

ER
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Let a be the first term and d be the common difference of the A.P.

[2a+(m—1)d] 2

m
. S 2
Given, 5, = 72[2(”(”_1)(1] o
2

2a+(m—-1)d _ m
= 2a+(n—1)d — n

:>2a(n—m)+[(m—1)n—(n—1)m]d:0:>a:g

tm _ at(m—1)d
We have to find = arnoTd = 201

20 80

Let n be the no. of terms. Clearly, common ratio r = % = 55 = 4

Then t, = 5120 = 5.7 1 = 471 = 1024 = 4° = n = 6.

0.06

Let n be the no. of terms. Clearly, common ratio r = 555 =

(=]

12

06 = 2

(=}

Then ¢, = 3.84 = 0.03r" ' = 2" 1 =128 = n = 8.

From the question we deduce that it is a G.P. with a = 1,7 = 2, n = 20. We have to
find tzo.

oo = 1.22971 = 524288.

This is a G.P. with a = 20000, r = 1.02, n = 11. We have to find #1;.
t11 = 20000 x (1.02)* 71 = 24380.

Given, S, =2"—1=t,=8,— S, 1=2"—1— (2" ' —1) =2""1

t gn-1 ) . ..
T=t == 2, which is a constant and hence the sequence is in G.P.
-

Let the first term of the G.P. be ¢ and common ratio is r.

Then t, = ar = 24 and t5 = ar* = 81, Dividing, we have 1> = %11 = %Z

=7r= g = a = 16.

Hence the G.P. is 16, 24, 36, 54, 81, ....

Let the first term of the G.P. be a and common ratio is r.

Given t; = 8ty = ar® = 8ar® = r = 2. Also given, t5; = 48 = ar’ = 48
= a = 3. Hence, the G.P. is 3,6, 12,24, ....

Let the first term of the G.P. be a and common ratio is 7.

Given, ts=ar* =48 and ts=ar’' =384 =1 =8=r =2

= a = 3. Hence, the G.P. is 3,6, 12,24, ....



84.

85.

86.

87.

88.

89.

90.

Answers of Progressions 308

Let the first term of the G.P. be a and common ratio is r.

1
16

andtm:arg)zLér:i%

. _ 5 _
Given tg = ar® = 556

1

= a = +2. Hence the G.P. is 2,1, 3, ...

or —2,1, —%,

Let the first term of the G.P. be  and common ratio is y. Then
a=xy? Lb=ay’ L c=ay !

Taking log of both sides for these three terms

loga =logz+ (p—1)logy,logh =1logz + (¢ — 1) logy,logc =logx + (r —1)logy
Clearly, (¢ —7)loga+ (r —p)logb+ (p — q) logr = 0.

Let the first term of the G.P. be x and common ratio is r.

Given, tp g =a=arP " and t, ,=b=arP !

Multiplying the two terms, we have

2?r? % = (arP 1) =2 = ab = t, = Vab.

Let a be the first term and b be the common ratio. Then,

z=ablty=ab? ! z=qab"!

We have to prove that 9 ".y" P 2P 7 1=1

L.H.S. = (ab?™1)97" (ab?™1)"7P (ab"1)P1

— gla—r+r=—p+p=q)pl(p—1)(g=r)+(g=1)(r—p)+(r-1)(p—q)]

=a’" =1=R.H.S.

Let 7 be the common ratio and first term is given as 1.
t3+t5:90ér4+r2:90ér2:9ér:pm?).

72 cannot be —10 as that would mean that it is an imaginary number.

Let a be the first term and r be the common ratio of the G.P.

Gibem t5 = ar* = 2 and we have to find the product of the first nine terms. Let the
required product be S.

8.9

S =a.ar.ar?. ....ar® = o228 = 902 = 09936 = (@r*)? = 29 = 512,

Let a be the first term, r be the common ratio and n be the number of terms.

Given, t4 = ar® = 10, t7 = ar® = 80, t,, = ar™ ™' = 2560

.":—7:7'3:8¢r:2éa:1§0
4

10

= 52" =2560 = 2" =2048 = n =12.
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Let the three numbers in G.P. be a, ar, ar?. According to question, on doubling ar the
numbers form an A.P.

=2r—a=ar’—2ar=r—4r+1=0=r= 4ir =243
Given, p,q,r are in A.P.i.e. g—p=1r—q.

Let x be the first term and y be the common ratio of the G.P. We have to prove that
tp, tg, ty are in G.P.

eyt=l _ ayl
zyP 1 T gy !

SE=F=

= y? P = 9"~ 9 which is true from the condition for A.P.

Let r be the common ratio of the G.P. Then, b = ar, ¢ = ar?, d = ar®

L.H.S. = (a.ar + ar.ar® + ar?.ar®)? = a*r?(1 + 1% + )2

R.H.S. = (a? 4 a®r? + %) (a®>r® + a®r + a®r%) = 2 (1 + P + ) 2?1 4+ 2 + 1)
21412 M2 = LHS.

Given a,b,c arein A.P. =2b=a+c¢

If we increase a by 1 then they are in G.P. = b% = (a4 1)c = b?> = (a+ 1) (2b—a)

b =2ab—a’>+2b—a= (a—b)??=2b—a

If we increase ¢ by 2 then again they are in G. P = b% = a(c 4+ 2) = a(2b —a + 2)

=>b=2ab—a’+2a= (a—b)?=2a=2b—a=2a=2b=23a

= (a-%) =20=a=8=b=12=c=16.

Let the three numbers in G.P. be 2, a, ar. Then,

2+ a+ar=70and 10a——+4 :>10a:%+ar

> a=70=0a=20

=24 20r=50=>r=21

So the numbers are 10, 20, 40 or 40, 20, 10.

Let the three numbers in G.P. be %, a, ar. Given that product of these numbers is 216.
=%aar=216=0a’=216=0a=6
Also, given that their sum is 19 = g—Q— 6+ 6r =19

2
3

62— 13r+6=0=r=213

So the numbers are 9, 6,4 or 4,6, 9.
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Let the number be 100a + 10ar 4 ar?.

According to question a + ar®> = 2ar + 1 and a + ar = %(ar + ar?)
=a(r—1)?=1and 3+3r:2r+2r2:>r:—1,g
Ifr=—1,a= %, but a cannot be a fraction.

Ifr= % = a = 4 and the number is 469.

310

Given that three of four numbers are in A.P. and so we choose them as a — d, a, a + d.
Also, since first number is same as first so the numbers are a + d, a — d, a, a + d. The

first three are in G.P. Given d = 6

s(a—d)?=ala+d) = (a—6)2 =a(a+6)=18a=36=a="2.

So the numbers are 8, —4, 2, 8.

Let the three numbers are a, ar, ar?. The sum is given as 21 = a + ar + ar® = 21.

Also, sum of squares is given as 189 = a? + a?r% 4 a?r* = 189

441(1+72474) 189

= T

ST70+27 4+ =) =30r+r+r) 2= 71 —r+r?) = 3(1L+r+1%)
=27 —5r+2=0=r=2,

When r = 2, a = 3 and so the numbers are 3, 6, 12.

When r = %, a = 12 and so the numbers are 12, 6, 3.

Let the terms in G.P. be %, a, ar. Given that the product of these is —64.

“2a.ar=—64= a®>=—64 = a=—4.

1

Also given that the first term is four times the third. = % = 4.ar = r? = 1=>r==s5

If 7 = 7, the terms will be —8, —4, —2. If 7 = —, the terms will be 8, —4, 2.

1

Let the numbers be a —d, a,a+d. Given that sum is 15. = a—d+a+a+d=15=a =5.

Also given that if 1,4, 19 are added to them then they are in G.P.

= B+4)2=06-d+1)(5+d+19)=81=(6—d)(24+d)
=d*+18d—63=0=d=—21,3.

If d = —15, the numbers will be 26,5, —16 and if d = 3 the numbers will be 2, 5, 8.
Let the two sets of three numbers in G.P. are ay, a7y, alrf and asq, asre, agrg.
Given that the difference is also in G.P.

= (a1 — a2r2)2 = (alr% — agrg) (a1 —ag)
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= air] + a3r; — 2a1a9r17m0 = air} — a1axr3 — araxri + azrs
= 201a971Ty = 1273 4+ G1a273 = 21T = 12 412 = (11 —13)2 =0
= r; = ro which implies that they have same common ratio.

103. Let 7 be the common ratio. Then b = ar, ¢ = ar?, d = ar3

LHS. =(b—c)?+(c—a)®+ (d—b)? = (ar — ar®)? + (ar® — a)* + (ar® — ar)?
=d?(r—r?)2+a?(r =1+ (P =) = (Pt =203 1t 1 =202 O 2 — 2
=ad* (=28 +1) = (ar® —a)? = (d —a)? = R.HS.

104. This problem can be solved like previous problem.

105. Given that z,y, z are in G.P. Let p be the first term and r be the common ratio of this
G.P.

Also given, a® = bY = ¢®* = xloga = ylogh = zlogc

}zéi’ = % Clearly, £ = Z = r = logy a = log. b.

= Yy

1
%8¢ — Y and
logb T

106. Let %, a, ar be the terms in G.P. Given that continued product is 216 i.e.
2aar=216=ad>=216=>a=6
Sum of products when taken in pair is given as 156.
=>2a+aar+%ar= 156é%+7’+1 :%
=62 —20r+6=0=1r=g,3
So the numbers are 18,6, 2 or 2, 6, 18.

(b+c)? _ (ar+ar?)? 2

= L =

107. Let r be the common ratio. Then, @ib)? = (atar?

2 _ (b+c)?
~ (a+b)*

Similarly, % =r

Thus, (a +b)2, (b +¢)?% (c + d)? are also in G.P.
108. This problem can be solved like previous problem.
109. This problem can be solved like previous problem.
110. This problem can be solved like previous problem.

111. Let 7 be the common ratio. Then, a(b—c)® = a(ar —ar?)® = a*r*(1—r)® and d(a —b)3 =

ar®(a—ar)® = a*r3(1 —r)3.

Thus, a(b—c¢)® = d(a —b)>.

112. We have to prove that (a +b+4c+d)? = (a+b) + (¢ +d)* + 2(b + ¢)? where a, b, ¢, d
are in G.P.
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Now, (a+b+c+d)?= (a+b)?+ (c+d)*+2(a+b) (c +d) so it is enough to prove
that (a +0) (c+d) = (b+¢)>

(a4 Db)(c+d) = (a+ar)(ar® + ar®) = ®>r*(1 + )% and (b + ¢)? = (ar + ar?)? =
a®r(1 + r)? which proves the required equality.

Let r be the common ratio. L.H.S. = a2b202<$ + %—0— C%) =
=3+ +ad=a®+ 03+ =R.HS.

Let 7 be the common ratio. L.H.S. = (a? — b%) (b? + ¢?) = (a% — ar?) (a*r? + a*r?) =
r2(a® — a*r?) (a® 4 a®r?) = (a®r? — a®r?) (a® + a®r?) = (b — ¢?) (a* + b?) = R.H.S.

Let r be the common ratio. Given a, b, ¢ are in G.P. i.e. a, ar, ar? are in G.P.
Taking log of a, b, ¢, we have

log a,loga + logr, loga + 2logr are in A.P. with loga being the first term and logr be
the common difference.

Given series is 1 —0—%—1—%—0— % + --- to n terms. Let S be the sum, a =1,r = %, then

g —all=rm) _ 2(2:1)

Given series is 1 +2 44+ 8 + -+ to 12 terms. First term a = 1, common ratio » = 2 and
no. of terms n = 12. Let S be the sum of the series. Then,

no1) _ 1(2!2-1
§ =l 1270 — 4095,

Given series is 1 —3 4+ 9 — 27 + --- to 9 terms. First terms a = 1, common ratio r = —3
and no. of terms n = 9. Let S be the sum of the series. Then,

§=2l=rt) — G — 4991

This problem is similar to 115, and has been left as an exercise.

Given series is (a +b) + (a® +2b) + (a® + 3b) 4 - to n terms. We can rewrite the series
as a+a’*+a®+ - ton terms + b+ 2b + 3b + - to n terms.

We know that a + a? 4 a® + -+ to n terms = G’(Z:l)

the A.P. formula, b+ 2b+3b+ - to n terms = % [2b+ (n — 1)b] = 2[(n +1)b] = “2FUb,

and for the second series applying

Clearly the given situation forms a G.P. with a = 1, common ratio r = 2 and n = 120.
Let S be the sum which he gets at the end of 120 days. Then,

§ = — 9120 = 1329227995784915872903807060280344575.
Given series is S = 8 + 88 + 888 + -+ = 5[9 + 99 + 999 + -]
=3[(10 —1) + (100 — 1) + (1000 — 1) + -]

8 [10(10™—1 8 n
= S[X — ] = & [10™! — 10 — 9n].
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This problem can be solved like previous problem.
This problem can be solved like previous problem.

This problem can be solved like previous problem.
Let S=1 —%—i—i—é—l—m to n terms. Clearly, a =1 and r = —%.

2n—(—1)"

=2
=3 o

= 5=

a(l—rm) 1—(—1)"zm
=r =)}

When we make 1000 per day for 31 days total amount received will be 31, 000.

When we receive 1 for the first day and doubling every day then that would be a G.P.
witha=1,7=2,n =31 = § =41 — 931 _ 1 — 2 147 483, 647 which is clearly
way more than we make in the first case so we will happily take the second option.

We assume that n terms of the series 1 4+ 3 + 32 + --- make for 3280. Then

§=18""1 - 37 = 6561 = n = 8.

Let S =1+3+3%+-+3" 1= §=2-1>1000= 3" > 2001 = n="7.
Let the sum be S. Clearly it is a G.P. witha =1,r = l We know that when |r| < 1 the
sum of an infinite G.P. is given by S = ;—. Thus, S = = =2
2
Clearly, it is a G.P. with @ = 1, = 3 and n = 20. Thus sum is given by S = 320_11

1,743, 392, 200.

We can represent the given series as three series like (22 + 2% + 2% 4 ) to n terms
—0—(% + %—0— % + ) to n terms +2 + 5+ 8 + - to n terms. Let the sum be S.

1

2n_1 1 wQT
S:$2(Z‘12>7 +3 <5711+§[3n+1}.

Let n be the no. of terms required to make the sum of given G.P. with a = 1,r = 2
equal to 511.

511=2"= 2" =512=n=09.
Let the sum be §.8 =142+ 2%+ ..+ 271 =221 > 300 = 2" > 301 = n = 9.

ai(r"=1) _ apr—a; _ 96r—3 _
r—1 - r-1 _7'1_189:>

Let r be the common ratio. a,, = ar™™ " = 96.5 =
32r—1=63r—63=r=2=n=0=0.

0.423 = 0.4232323 ... to 00 = 15 + To0s + Toee55 + - 10 00

4 3 4 3 1 419
=10 T[1+100+10000+ tom]*m+ml,ﬁ*m~

Given series can be written as S = = + + - to 0o + % +%+ -+ to o0
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Let the sum be S, then S = (10 + 1) + (100 + 3) 4 (1000 + 5) + --- to n terms

= WO 9 4 (n—1)2] = 22(10" — 1) + n?.

2
The general term of the series is t,, = (x” + %) =z 4 ;i-; + 2 so we can write it as
three series and solve like problem 132.

Let a be the first term and 7 be the common ratio of the G.P. Then,
S_a(r"—l) pP— 2 n-1_ n n‘“;—l) R— 11— 7n_1r"—1 1
=71 > = a.ar.ar” ...ar =a'r s =3 17 = o =1 1
P2 aQn,rn(nfl)7 % — a2.,r,n—1 (%)n _ P2
Clearly, the given series is a G.P. with a =1,r = TJ—E =85= 1£ =1+uz.
~1rz
We consider the n-th term. t, = ar™ !, where a is the first term. Sum of all succeeding
ar™ tn
terms S =1— &=
Slz 72 SQ 73 53 ..,Sp P 7p+1

E 17p+1

Clearly, S1, S, ..., Sp forms an A.P. with 2 as first term and 1 as c.d.

Si+ Sy 44 S, =L[224 (p—1)] =22

_ 1 _ 1 _ y—1
I—Eéa—l—;-—andﬁmllarlyb—T.
1 1
1+ ab+ a®b? + -+ 10 00 = =55 = 7 = 5
T Ty
Let S be the sum, thenS:$+1fr+1‘fT+.-. to oo

a 1 a

=8 =15 1= = a-00=ar

When the ball is dropped it will first travel 120 mts. Then it will bounce back 120. % =96

m and fall 96 m as well. It will then bounce back 96.% m and fall the same distance as
well.

Thus, total distance travelled 120 + 120 x 2 x §+ 120 x 2 x %; + - to 00

=120+ 192[1+ 3+ 5+ ] to co = 120 + 192.1—ié =120 + 960 = 1080 meters.

Let r be the common ratio. Then b = ar" ! = (ab)" = a®"r"("~1)
n(n—1)
p = a.arar’.ar®. .. ar" = e8Il = e
2 n
= p° = (ab)™
Let the first terms are a and b; and the common ratio is . Ratio of sums would be a : b

which is equal to ar™ 1 : br" ! i.e. ratio of nth terms.
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Let a be the first term. Then, S = 20"—1 g, = @ —1) and S = a(r’—1)

—1 r—1 r—1
S, 5 = S < e

51(53 o 52) _ a(::l) (aﬁi(j:fl» _ a2r?:£r:);1)2

= 51(S5—S3) = (52— 51)%

S1=a,S= a(:g:ll) ;52 = a(:: ySap—1= ‘(‘T‘zrg‘i:ﬁ

S14 82+ S3+-++ Son_1 =5 [r+r2+r3+~-~+r2"71— (1414 +to 2n— lterms)]

r—1 r—1

C o [rEe (g )

Given, S, = a.2" —b;t, =S, —Sp_1=0a2"—b—a2" 1 4+b=0a2"1r = n 9
which is a constant independent of n hence the given series is in G.P.

Given z > 0. 1+ —=5 < 1 therefore we can apply the sum formula of a G.P. for infinite
terms.
1 1

Let S be the required sum, then S = ﬁj =

1+a2

Let a be the first term and r be the common ratio. Then given, a + ar = 24 and
Soo = 1= =32

a= 1+Tanda732(1—r)él—rZ:%:%ér:i%

Ifr= % then series is 16, 8,4, .... If r = —% then series is 48, —24, 12, —6, ....

Let a be the first term and r be the common ratio. Sum of this G.P. 1= = 4 and sum

of squares of terms —%y = 18
q 2= 3

16(1—7)%2 _ 16 1-r 1 _ _
=2 =317 —3=>" —2=>a—2 So the G.P. is 2, 1,2,4,....
221
221 ™41 . . .
p(x) = 2n— = —77 so clearly n is an odd number for p(z) to be a polynomial in .
z—1
—a+%ya iy —_e _a _ b oond p = @t Lmy _ab
T=aT5T532 00 =177=79 rrr Az =00y, =

Let a be the first term, r» be the common ratio and 2n be the no. of terms. Then sum

on 1 2n_
of all terms S = 27"~ and sum of odd terms Soqq = a(:Ll ),
Given, S = 5S,qq = r = 4.

3%{1 3n 371\1 16A3ni3n{1 37.13
Sn =3- 12 = tn = On Sn—l = 2m-1 . 2w 12n = -

= r = tt” =
n-1

gl
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Let a be the first term and r be the common ratio; then t,, = ar” !. Let the sum of all

terms succeeding t,, be S. Then S = 1

r

tr _ 1=7r 1—r
e lor qplor

3 >1thenr<%,if1:T=1thenr:%an

666.... n digits = o (10" — 1) = 2 (10" — 1).

888...n digits = § (10" — 1). = L.H.S. = 5(10?" —2.10" + 1 — 2.10" — 2) = 5 (10" — 1)
R.H.S. = 444 ... 2n digits = 5 (10?" — 1) = L.H.S.

Let S = (z+y) + (2 + 2y +v*) + (2® + 2%y + 2y* + ) + - to n terms

S——[(x -y )+(1’3_y3)+($4+y4)+~-~]tonterms

1 [w"’(zwflfl) _ :uz(;;ilfl)].

oo
_ 1 _5-1 ’ 2n ;1 52
S—ﬁﬁr—*S.LetS—Zr then 8" = — = )
n=0

25—1
. _ 1
Let a be the first term and 7 be the common ratio. Then ¢, = ar™ * = ~and t, =
- 1 tm - 2 —n [m?
ar™ 1:_2:>t_:Tm n:m_2:>7,:mnm_2.
m n n n
,\m 1
m—1__ 1 _ 1 (n\m=n
ar —n2éa—n2<m2
m+n—2 1 2 m—1 5 m+n—2 1
— 2 — 1 (" \m—n (MZ\2(m-—n) — 1
= tm;_n ar e (mQ) < n2> preyel
This can be alternatively computed with G.M. formula i.e. t,,, 1, = Vimtn = .

2

Given condition is ¢ >4b—3a = c—4b+3a>0= 1 —4r+3<0[va<0]=7r>3
orr <1

Given, (1—k) (14 2z +42° + 82 + 162% +322%) = 1 -k = (1—k) M2l 1 36 =
k=2x :> = =2.

Given, (a® + % + ) (b + 2 + d?) < (ab + be + cd)? = (b — ac)® + (c? — ad)?
(ad — be)?

Since a, b, ¢, d are non-zero real numbers therefore the above conditiion leads to equality
if and only if b2 = ac, ¢ = ad, ad = be i.e. a, b, ¢, d are in G.P.

This problem is generalization of previous problem and can be solved similarly.

Let r be the common ratio, then 8 = ar, v = ar?, § = ar®.

From roots of quadratic equaiton a + 8 =3, a8 =a,vy+0 =12,7d =b

s

o E = r? =4 = r = 2 because G.P. is increasing so we discard the negative root.

sa=1=a=2,=b=32.
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Let a be the first term of the A.P. Then t5,.1 = a + 4n. So the first term of the G.P.
is a + 4n.

Middle term of A.P. t,,41 = a + 2n and middle term of G.P. = “5!"

a+4n

5+ thus, a can found and hence a + 4n which is the mid term can be

Given, a + 2n =
deduced.

f(x) =22+ 1, f(2z) = 4z + 1, f(4x) = 8z + 1. Given that f(z), f(2z), f(4z) are in
G.P.

2, 4
=L L8 o (o +1)?=(204+1)(8z+1) > 82 +1=10z+1 =2 =0

147472 1
T*;+1+7‘.

Weknowthatifr>0,r+%>2:x>3andifr<0,r+%<—2:>a:<—1.

Let r be the common ratio then a+b+c=azb=1+r+r’=zr=z =

lel—ai=1-bl=1-¢

Thus, ~a, b, ¢ are in A.P. where |al, [b], |¢| <1 ~z,y, z are also in A.P.

_ 1 _ 2 .. 1 2
p= 1+tan?z — Cos™ &5 q = 1+cot?y — sy
= 1

2k 2k
tan®" x cot =

Z Y 1—tan?zcot?y
k=0

1 _ cos?zsin?y
1.1 17 cos?z+sin?y—1
pa pq

Dividing numerator and denominator with cos? z sin?y, we get

oo

= 1 — 1 _ Z 2% 2%k

T csc?ytsec?x—csc?ysec?x  tan? w+cot? y+2—1—tan? x—cot?y—tan? xcot?y tan™ @ cot™ y.
k=0

V3

We know that area of an equilateral triangle is Taz, where a is one of the sides. In this

3
case A = 7.

Now the area of sides joining mid-point will have side % and terefore area will be %th of

the original triangle. This ratio of i will continue and areas of all triangles will form a
3

G.P. with common ratio of i. Thus sum of areas of all these triangles = il =1.
1—=
1

1+ |cosz| + |cos? x| + | cos® x| 4 - to co = m: p(let).

= eP1o8e% — 4P Now given equation is 2 — 20t +64 =0=>t=4,16=>p=1,2 =
|cosz| =0,1/2 =2 =n/2,7/3,27/3.

:2:>|cosx\:%é

1 1
14 |cosa| + | cos? 2| + | cos® | 4 -+ to oo = TTeos] = TTeosa]

1 2
cost=45=85= {%,% .
sin? x

2
1—sin? =tan®z

sin?z +sin z + - to co = p
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Roots of 22 — 92 +8 = 0 are 1, 8 i.e. 2°,2% = tanz = 0, V3 (rejecting —v/3 as for
0 < z < 3, tanx cannot be negative.)

cosx _ 1 -1 1
cosz+sinz — l+tanz — 77 14./3°

Sy = % [Hint: It is a G.P.] Z(/\ —1)8, = Z A= n(n2+1).
=1 =

2bz+1 2Cas+1

Let 200+1 obe 1 ocatl a6 in G.P. S == (b—a)r=(c—b)lz=b—a=c—b

which implies that a, b, c are in A.P. which is a given and hence we have proven required
condition in reverse.
a+be® _ btce®
a—beT ~ b—ce®
b2e® = 2ac = b2, which implies a, b, ¢ are in G.P. Similarly it can be proven that b, ¢, d
are in G.P. making a, b, ¢, d are in G.P.

= ab — ace® + b%e® — bee®® = ab + ace®™ — b%e” — bee®® = 2ace® =

Given

2y _ x4z

: J | -1
Given, 2tan” "y =tan - x +tan  z = T

But we are also given that y*> = 2z = 2y = ¢ + 2z = x, y, z are in A.P. Now 4y° =
(x+2)?=2(x+2) = = z = y but the common values are not necessarily 0.

Given, b—c=a—b[~a,b,c are in A.P.]. From second condition (¢ —b)?> = (b—a)a =
(a—b)2=(a—ba=2a=b=>3a=c=a:b:c=1:2:3.

Since a, b, ¢ are in G.P. = b? = ac. From second condition, 2(log 2b — log 3¢) = log 3¢ —
log2b = 3log2b = 3log3c = 2b=3c = b= %a, c= %9. Clearly, a is the greatest side.
Using cos rule,

b2+4c2—a?

e = —% and thus A > 90° making the triangle obtuse-angled triangle.

cos A =

Let a, 3,y are the roots. Then o+ f+ v = —g, af+ By +ya = %,aﬂ*y = —g. Let r be
the common ratio of the G.P. then 8 = ar, v = ar?. Also let o = .

c? 3 ad (aB+By+va)® a2r+a?ria?r?\3 _ 3.3 _ _d 3 _ 13
E "3 (a+B+7)2 7( z+ar+xr? ) =z’ = —afy = s~ ce= b d.

1 1
Clearly tn, = =1 t100 = 199

The corresponding pth and gth term in the A.P.would be L and % Let a be the

qr
first term and d be the commond difference of this A.P. Then, a+ (p —1)d = q—l, and
a+(¢g—1)d :% Subtracting (p—q)dz%é dzﬁ.
1 p—1_ 1 1 r—1

sag=—-—2t_L oy L 1_1 Therefore rth term in H.P. would be Pq.
qr par ~ par par ' pgr T pq

Corrsponding pth, gth and rth term of the A.P. would be L1and % Let = be the first

a’b
term and y be the c.d. of this A.P. Then,
e+(p-Dy=g2+@-Dy=g,2+(r—-1y=3
(p—quy= b(:—ba = (p—q)ab :bTTa. Similarly, (¢ — r)bc = %b and (r — p)ca =
Clearly, (¢ —r)bc+ (r —p)ca+ (p—¢q)ab=0.

c—a
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= % = ac — bc = ab — ac = 2ac = ab + bc which prove that
a, b, c are in H.P. Thus required equality is proven in reverse.

leena,wwdare in A.P. Let p be the c.d. of this A.P. :>——z—p:>ab—— Slmllarly,

be =2¢ cd = <=2 Adding these we have ab+bc+cd = %2 d . Now & __Z =3p=3ad =
Thus, ab + bc + cd = 3ad.

Let d be the common difference of the corresponding A.P. Then, xi —L-(n—1)d=

Bt = (n—1) 212, = RHS.

11 R - z
Now, = d= % = x125. Similarly, 2

Adding these and comparing with R.H.S. we get the required equality.

T2 = xoxgand soon till ===t = )y,

111 .
=, 3,5 arein AP
a C

4

+btc atbtc atbt .
are e 2% are in ALP.

b+c 1+b+c b
- a+a+¢ _ 17 (1+b+( _ 17 a.+ +c — 1 are in A.P.

a b c
= b+c’ct+a’ a+b

are in H.P.

a?, b%, c? are in A.P. = a%+ ab+ bc + ca, b* 4 ab + be + ca, ¢ + ab+ be + ca are in A.P.
= (a+b)(ct+a),(b+c)(a+b),(c+a)(b+c)arein A.P.

Dividing each term by (a + ) (b+ ¢) (¢ + a), we have

1 1

btc’ cta’ a+b are in A.P.

=b+c,c+a,a+0barein H.P.

1

If t,, N

3n 5 then the sequence is 1

Let us assume that it is in H.P. then corresponding nth term in A.P. is 3n — 2. Thus,
cd. =3n—2— (3n—1) — 2 = 3 which is a constant so the sequence is in A.P. Thus
our assumption is correct and given sequence is in H.P.

Let a be the first term and d be the c.d. of the corresponding A.P. Then,

a+(m—1)d=rand a+ (n—1)d = . Subtracting, (m —n)d ="" = d = =
1 m—1_ 1

C=0" T T e

Then tp, 1, = ,L + (m+n-—1) 77% =% thus corrsponding term in H.P. would be

m+n Also, tyn = o + s mn=l _ 1 and hence corresponding term in H.P. is 1.

%7% ill be in A.P. Given, a+b+c¢ =

Let the three numbers in H.P. are a, b, ¢ then %
37,2+ 7 +2 =1 Let d be the c.d. of the A.P. then } = = b =12

= % +12 +% =31T=d= %. So the numbers are 15, 12, 10.
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) 2
wa,b,carein HP. ~b =22,
a+tc

LHS. =+ =25+ 2o =2e 1 L RHS.

ac—a? ' ac—c? ac

) 2
“a,b,carein HP. ~b =22,
a+tc

__b+a | b+c _ a?+3ac | c®+3ac _ 3ac’+ac—3a%c—ac? _ 2ac?—2a’c _ o _
LHS. = b—a + b—c ™~ ac—a? ac—c? ac(c—a) ~ ac(c—a) 2=R.HS.

. 11 — o
Let d be the c.d. of corresponding A.P., then &~ —+~=d = 2122 = =22 and similarly,
Toxy = P wywy = BT myws = T

. — a1 1
Adding toegther, “=%2 = w129 + Tox3 + T304 + T4x5 = 272 [I—l — 1—5] = 4zy25. Hence
proved.

Like previous problem z1 — 23 = 2z123d and 2o — 24 = 2z934d so L.H.S. = 42 zoz324d>

And 21 — 22 = 2120d and 3 — 24 = x324d so R.H.S. = 4z 292324d? and thus L.H.S.
= R.H.S.

11 .
5 are in A.P.

. 1
Given b+c’cta’ at+

Multiplying with a 4+ b 4+ ¢ and then subtracting 1 from each term we get required
condition.

1
ct+a’

Given ﬁlc, a%rb are in A.P.

Multiplying each term with a + b+ ¢ and then subtracting ab + bc 4 ca from each term
we get the required condition.

11
be ca?
A.P. Multiplying each term with ab + bc 4+ ca and then subtracting 1 from each term
we get the desired condition.

Given that a, b, ¢ are in A.P. Dividing each term by abc, we get that Elg are in

. 111
Given that e

from each term we get the desired condition.

are in A.P. Multiplying each term with a 4+ b+ ¢ and then subtracting 2

. 111
Given that e

from each term we get the desired condition.

are in A.P. Multiplying each term with a 4+ b+ ¢ and then subtracting 1

Let d be the c.d. of the A.P. and r be the common ratio of the G.P.

sb—c=—-d,c—a=2d,a—b=—d and y = ar, z = zr’.
LHS. = 2Py 22070 = p=d(ar)?d ()4 = 290 = 1.

Let a be the first term and d be the c.d. of the A.P. Then,

—1)d r—1)d _ a+(s—1)d
a+(p—1)d — a+(q—1)d = a+(r-1)d

lat+(g=1)d]=[a+(r—1)d] _ [at+(r=1)d]—[a+(s—1)d]
a+(p=1)d]-[a+(g-1)d] 7 [a+(g—1)d]-[a+(r—1)d]

= 27T — g}i which proves the required condition.
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Let z be the first term and d be the c.d. of the AP. Then a = x + (p —1)d, b =
z+(g—1)d,c=z+ (r—1)d

=b—c=(¢—r)dc—a=(r—p)danda—b=(p—q)d

Also let m be the first term and n be the common ratio of the G.P. Then a = mn?~1,b =
mn? ! ¢ =mn"!

LHS. = abfcbcfacafb _ (mnpfl)(qfr)d(manl)(rfp)d(mnrfl)(pfq)d — mOnO -1
R.H.S.

Given, a, b, c are in A.P. = 2b=a+cand b, c,d are in H.P. = ¢ = %

a+c 2bd __ (a+c)bd
2 b+d T b+d

= b%c + bed = abbd + bed = be = ad.

1 1 1
Given a” = bY = ¢* = p(let) = a = p®, b= pY,c = p=.

11 11
: : b c Y ;
Also given, a,b,carein GP. = -=7;=p¥ *=p* V= - —

111 .
~=, = =are in H.P.
R TR
2(x+y)(y+z
LERY o Ytz i =2 J\2 )
2 57, Y, 5 are in H.P. «~y = PR
2 T2

S ay+ 22 +yr=ay+y?+ 2z +yz =y =2 = a,b,c are in G.P.
wx,y, z arein G.P. «y? = zz. Also, 4+ a,y+a, z+a are in H.P. :>y+a=2%%2<z~fféﬁ

xy +yz + 2ay + ax 4 az 4+ 20 = 2(zx + az + ax + a®) = (y—a) (x + 2 — 2y)

Butz+2z—2y#0elsex+z=2yie x,y,zarein AP.=>z=y=z-y=a.

wa,b,care in AP, GP. and HP. =2b = a + ¢, b*> = ac, b = 2ac (a;rc)2 = ac =

a+c
(a+c)?=4ac=a=c=b.

wa,b,carein AP. = 2b=a+c. =b,c,d are in G.P. ~¢® = bd. ~c,d, e are in H.P.

2ce

T c+te’

c2:bd:a30.%éc(c+e):(a+c)eéc2:aeéa,c,eareinG.P.

wa,b,carein AP. =20 =a+c. a2 b% c? are in H.P. = b% = 32”—122

(aTH)Q = j;f‘"; = (@®+ ) (a+c)? =82 = (a—c)?*[(a+c)?+2ac] =0
If(a—c)’=0=a=c=>a=b=celse (a+c)*+2ac=0=ac=—-2= b=
—5.c= —3,b,carein G.P.
a’b°c® = a®b%c® = a® e %c*® = 1 which has been proved previously.

Let a be the first terms of both the A.P. and G.P. d be c.d. of the A.P. and r be the
common ratio of the G.P. Given,
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ata=l=a=3,a+d+ar=53=d=—ar=2d=-—rand a+2d+ar’=2=

—r+ %2 = % = 72— 2r 43 =0. Now r and sum of fourth term can be easily found.

“p,q,rare in AP, «2¢=p+r. Also, let TE ="t ="%=f
p:%_%’q:%—%w:%—% Substituting these in 2¢ = p+1r
2a 2 a

2 1,1 ;
§:§+z:>z7y7zarelnH.P.

Let d be c.d. of the A.P. and d’ be the c.d. of the A.P. corrsponding to H.P. then,

b=a+(n—1)d and%:%+(n—1)d’:>d=bia,d'=ab?;fl)

Product of the rth term of the A.P. and (n — r + 1) th term of the HP. = [a + (r—

b—a 1
1) n,l] -1 a b
at(n=r) .y

= ab.

2ac

Let a, b, ¢ be three consecutive terms of an H.P. then b = .

g, g, c— g The condition for these to be in G.P. is

b? = (2a — b) (2¢ — b) = 4ac — 2b(a + ¢) + b = b = 2% which is a given.

Terms after subtraction will be a —

a+c
. . 1 11 1 2a-y—z_ y+z—2
‘Y-, 2(y - CL), Yy—zarein H.P. - 2(y—z) y—=z y—z 2(y—a) ?y—yz)z =4 yz_z *
_ (z—a)+(y=a) _ (y—a)+(2—a) _z—a _ y— ;
= &ZH?Z) = (572)7(;2) = 273 =Y_" Hence, 2 —a,y —a, z— a are in G.P.

2pr
p+r
values of b and ¢ in third equations, we arrive at

and b2¢% = acpr. Substituting the

From given conditions we have 2b = a + ¢, q =

a+c\2( 2pr\2] _ _ (a+c)? 2 2 pr __  ac
|:< 2 ) (p+r> :| =acpr = (r+p)2‘p = (r+p)2 ~ (a+c)?

(r+p)® _(atc)?®  p v _a, ¢
= - :>r+p_c+a'

pr ac

. s 2 2 1,1 b2
From given conditions we have, 20 = a +x,0" =ayand ;= +;=>x =20 —a,y =+
ab
2a—b

and z =

Now we can substitute in the required result and prove the equality.
2zx

T+z"
the values from given conditions to required equality we find that equality holds.

Y i+5i1
- =

i=1

From given equations 2 = x 4 z and 4 = zx, we have to prove that 4 = Substituting

n
Given that ¢, = 12n2 — 6n + 5 then S,, = 12 Z i2—6
=1

= 1=

=12, 200D gnintl) | 5p = nf4n? + 6n + 2 — 3n — 3+ 5] = n(4n? + 3n + 4).

Clearly tn = (2n — 1) =dn’ —dn+1= S, =4) *—4) i+ > 1
=1 =1 =1

_ 4n(n+1)(2n+1) 74n(n+1) +

4n2+6n+2—6n—6+3] _ n(4n3-1)
6 2 - .

nzn[ 3 3
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Clearly, t, =n(n+1)(n+2) =n*+3n>+2n = S :Zi3+32732+2i
i=1 i=1 i=1

_ [n(n2+l)] 43.n n+16(2n+1) +n(n2+1) _ n(n2+1) [n(n+1) Fon+1+ 1] _ (n2+1) .n2+gn+4 _

n(n+1)?(n+4)
Y e

n n
rth term of the series, t, =r(n—r+1) = S, = an — Zr2 + Zr

r=1 r=1 r=1

n(n+1) +1)(2n+1) +1 +1 2n+1
nn(;z ) _ n(n )6( n + n(n2 ) _ n(n2 )[ _ n3+ + 1]
n(n+1)(n+2)
—

If you see carefully this series is same as previous problem hence sum will be same.
n n

142434 4n="Hmoy 1 [Zi2+zz‘
i=1 i=1

1[n(n+l)2n+1 n(n+1 n(n+1) [2n+1 n(n+1)(n+2
— [ninthEnt) | nntl)] _ n(nsn) [y q] _ntetl)ng?)

First term contains 1 integer, second term contains 2 and so on. So before ¢,, we will
have 142+ -+ (n—1) integers i.e. E&%ill integers. So t,, will start with @m—_;jz and

n?—n+2
2

will have n integcrs So tn = and now it is trivial to find the sum, which will be

Sn=35 Z i“—3 Z 14 Zl = "H 2n+1) "(";1) + n simplification is left to you.

Let nt,, represent numerator and dt, be the denominator of the nth term t,. Then
3
nt, = "] and dt, = 32+ (n—1)2] =

2 R n n
n+1 n?4+2n+1 1 .2 L1 n(n+1)(2n+1)  n(n+l) n
=ty __<T> =— :>Sn——5§ i +E z+52 1= o +——"+3

Simplify and put n = 16 to arrive at the answer.

th = [2n+1)° — (20)°] = 1202 + 6n + 1 = S, —1222 +6Zz+21

1271(7L+1)6(27LJr1 +62 n“ +n=2n(n+1)2n+1)+3n(n+ 1) +n. Slmphfy and put

n = 10 to get the answer.

1 1 1 1 1
tlzifﬁ’h:ﬁ*ﬁ“‘tn:ﬁ*nﬂ Adding S, =157 = 551

1 1 1 1 171 2 1
tn = n(n+1)(n+2) =2 [n(nJrl) - (7L+1)(n+2)] ) [ﬁ T ntl + n_+2]
1 1 1 1 1 1 1 1 1 1
Then, ¢, = 1_§+E7t2:ﬁ_§+ﬂ7t3:ﬁ_z+ﬁv"'7t"*2:—2(n71)_ﬁ+
1y 1 1 Lo, L 1 1
T -1 =5 ) "R T ImFD) ' = Tl T 32

1 1 1 1
=S =g it T T Ty = 1 2 T oty S =1

Sn=14+5+11+19+ -+ tp_1+1y
Sp = 14+5+11+4 - +ty1+1t,
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Subtracting, we get t, =1 =[4+6+8+-to (n—1) terms | = lJrE%l [244 (n—2)2]

n n n
23,
n2 tn—1= Sn _ 2742 + ZZ* Zl _ n(n+1)6(2n+1) +n(n+1) = n(n?+3n—1)
i=1 i=1 i=1

2 3 :

First person gets 1 repee, second person gets 1 4+ 1 = 2 rupee, third person gets 242 =4
rupee, fourth person gets 4 + 3 = 7 rupee and so on.
Sp=14+2+4+T++t,
Sp= 142+4d+- A+t 1+t,
Subtracting, we get t, =1+ [1+2+3+- to (n—1) terms] = 1+n771[2.1 +(n—2)] =
Pt 67 = n?—n—132=0=n=12.
First term contains 1 integer, second term contains 2 and so on. So before ¢, we will
have 1 +2+ -+ (n—1) integers i.e. @ integers. So t,, will start with w and
will have n integers. So t,, = ﬁz:{fiz This will be the first number in nth group. So sum
of nth group =3 [n° —n+2+n—1] :w.
Sp=1+3+7+15++1,
Sy = 143+ T+ +ty1+tn
Subtracting, we have t,, =1+ 24448+ to (n—1) terms] = 1—0—2(2;%1171) =2"-1=
Sp=02-1)+ 221+ (22 1)+ +(2"—1)=2E2"U _p=9nl _2_y
Sp=142z+322+ - +1t,
S, =  laz+22 4+t 1+t
Subtracting we get (1—2)S, =1+ + 22 + - to n terms — at,, = 11_f; —znaz" =
S _ 1—a™ _ na®
n (1—z)2 1—x°
. Sio0=1+22+3.2%+4.3%+ ... 4+ 100.2%
Given 2 3 99 100
2.5100 = 1.2 +227+3.2° + --- +99.277 4 100.2
Subtracting, we get —S,, = 1 4 [2 + 2% + 2% + .- to 99 terms] — 100.2'°
S, = 1002100 — 221 — 99 2100 4 .
S=1+2%+3%224+4%3 + - to oo
Clearly 9 9 o3
xS = r+2%2° 4+ 3%°2° 4 -+ to oo
) (1—2)S=1+3z+52%+ 7234 tooo
Subtracting, we get 9 3
z(l—z)S = z+ 32"+ 5z° + -+ to oo
Again subtracting, (1 —2)%S =142z + 222+ 223+ toco =1 +% = % =5=
1+
(1—x)*
Sp=2+4,t, =8, —Sp 1=20"+4-2n— 1) —d=dn—-2=>d=t,—t, 1 =

4dn — 2 —4(n — 1) + 2 = 4 which is constant therefore the given sequence is in A.P.
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Hint: Any sequence which is of the for which sum is of the form an? + bn + ¢ will lead
to an A.P.

1)]2 _ n(ntl) _

n
3 =
1

n
Given t, =n(n—1)(n+1) =n®>—n = S, = Zf’—Zi = ["<"+
i=1

n(n+1)(n2+n—2)
1 .

n n n
Clearly, t, = (2n—1)® = 8n® — 120 + 6n — 1 = S, =8 i* — 12> i*+6) i—
n i=1 i=1 i=1
21 =2n%(n+1)2—2n(n+1) (2n + 1) + 3n(n + 1) — n; simplification is left to you.

n
Clearly, t, = (3n —2)> = 9n” — 12n + 4 = S, = 9) i* — 1QZz + 421
=1 =1

n{ntl)@ntl) 6n(n + 1) + 4n; simplification is left to you.

2

Given series is 12+ 324+ 52+ -+ ton terms + 2+ 4 + 6 + -+ to n terms.

=St,=02n—12+3[22+ (n—1)2] =4dn® —dn+1+n*+n=>5n—3n+1

=S, =5> 1 i*=33 0" i+>r, 1= 5"<”+1g(2"+1> — 3"<g+1) + n; simplification is
left to you.

Case I: When n is even. Let n = 2m then S = 124 32 + 52 + .- to m terms — [2% +
4% 4+ 62 4 - to m terms]

=3 (2i—1)2=3""  (26)? :—422"12 +3 M 1==2m(m+1)+4m = —2m*+2m

and then we substitute m = 5.

Case IT: When n is odd. Let n = 2m -+ 1, then S = 124+ 3% 452+ - to (m +1) terms —
[22 4+ 42 4+ 62 + -+ to m terms]

m+1 m
=Y (212 - Y (20)2 = DO 93 4 1) (m 4 2) + (m+ 1) —
1 =1

i-
w, put m = T and simplify.

n n
Clearly, tn:(2n—1)(2n+1):4n2—1:>5n:422 Z w—n;
— =
simplification is left to you. '
= < 1)(2n+1 1
Clearly, t, =n(n+1) = S, = P2+ j = nnt )6( ntl) 4 n("; ); simplification is
=1 i—1
left to you. ' '
Cleatly, t, = n(n+1)2=n>+2n>+n =5, = Zi3+22i2+ Zz = [n(TH ] +
i=1 i=1 i=1

n(n+1)3(2n+1) + n(n;l); simplification is left to you.

2
n(n+1)
)

"<n+1)6(2n+1); simplification is left

Clearly, t, = (n+1)n? =n*+n’*= S, = [
to you.
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n
251.t, =1+3+5+ upton terms =5 [2.1+ (n—1)2] =n? = §, = Y _ 2 = "L,

i=1

n
3 2
2521, = 1249224324 ... upto n terms = Ziz _ n(n+1>6(2n+1) _ n‘3+36n tn
=1

S, = % >, B3y 3, 24 S ] = % [n2(n4+1)2 n n(n+1)2(2n+1) I n(n;rl)}; simplifica-
tion is left to you.

n n n
2 2
253ty = n(n+1)(2n+1) =20° + 3> +n = 5, =23 #4+3) 24> i="10H0
i=1 =1 i=1

n(n+1)(2n+1)
2

n(n+1)

T

; simplification is left to you.

n n n .
254ty =n(n+1)(n+2) =n® +30%+ 20 = S, = S B +3> 2 42) i =
i=1 =1 i=1

w + n(n + 1); simplification is left to you.
n ) n n
2551, = n(2n +1)? = dn® +4n? +n = S, =4 F+4Y 2+ i=nP(n+1)%+
i=1 =1 i=1

2n(n+1)(2n+1)
3

n(n+1)
2

+ ; put n = 20 and simplify.

256. t, =r(n®*—r*) =n’r—r*=S=n?3" i—-Y 1 i*= nlnl) _ n*nt D simplification

2 7
is left to you.

n n n
257t = (2n+1)° = (2n)* =120 + 60+ 1= S, =12 *+6» i+ » 1 =2n(n+
i=1 i=1 i=1
1) (2n+1) 4+ 3n(n+1) +n; put n = 10 to get the answer.

1 2 1 1
258. ty, = 14243+ ton terms = n(n+1) 2[5 - n+1]

t = 2[1 —g],m = 2[%—%],153 = 2[%—%], ety = 2[%—%1].

Adding, § =2[1— 1] =22
1 1 1 1 1 1 1 1 1
259. S =h+istestemt - =2[3—i+ti—s+s—g+~ tooo] =1

S=246+12+420++1,

260.
S = 246+12+ -+ 1,1+ 1,
Subtracting, t, =2+ 446+ 8+ ton terms =5[22+ (n —1)2] = n(n+ 1) =
n n
n+n=5= Z 2+ Zz = "("H)G(Z"H) + n(";l); simplification is left to you.
i=1 i=1
S=3+6+11+18++t,
261 + 114+ 18+

S=  3464+11+184+ty 1+t

Subtracting, t, =3+ [3+5+ 7+ to (n— 1) terms] = 3+"Tfl[2.3+ (n—2)2] =
34n°—1=n"+2

S = m}%@ﬁfﬂ + 2n; simplification is left to you.
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S=1+9+244+464+75+--+1t,

S = 1494244464+t 1+1,
Subtracting ¢, = 1+ 8 + 15+ 22+ 29 + - to nterms =5 [2+ (n —1)7] :@2—{—@.
_ Tn(n+1)(2nl)  5n(n+1)
:}S— 71”12 n _ nz .
S=24+44+74+11+16+--+1,

S= 24447+ 11+ +ty 1+t

Subtracting, ¢, =2+ [24+3+4+5+ - to (n — 1) terms] :2—5—”7_1[2.2—1—71—1] =

242n-3 2—2n+1
2+n 271, :'I’L 27L .
S=1+3+6+10+-+ty
S=  1+3+6+ -+t 1+,
Subtracting, t, = 1+ 2 4 3 + 4 + - to nterms = 2Lt — n2in

= 5= "("Hl)é%ﬂ) + n(n4+1>. Put n = 10 to get the answer.
First group contains 2 odd numbers, second group contains 4 odd numbers, third group
contains 6 odd numbers so (n — 1)th group will contain 2n — 2 odd numbers.

Total no. of odd numbers till (n — 1)th group will be n(n —1). So last no. in (n — 1)th
group will be 1+ (n? —n—1)2 = 2n? — 2n— 1 and hence first number in nth group will
be 2n? — 2n + 1 and there will be 2n odd numbers. So sum of 2n odd numbers starting
from 2n? — 2n 4+ 1 is given by 251 [4n? —4n 42+ (2n —1)2] = 4n>.

Groups contain 1, 3, 5, ... number of terms so nth group will contain 2n — 1 numbers

starting from n. So sum will be 27;1 [2n + 2n — 2] = (2n — 1)? which is square of odd

positive integer.

S=2+454+14+41 4 +t,

S= 2454144+t 1+t
Subtracting #, = 2+ [3 4+ 3% + - to (n — 1) terms] = 2—0—%: 3"2“.
:S:%[ﬁ%:}lnLn]
S=11+4+234+45+87++1,

25 = 21+ 43 485+ +t, 1+2"(2n—1)
Subtracting, —S =1.14[2.24+ 4.2+ 82+ to (n— 1) terms] —2"(2n — 1)
S=2"2n—1)—1—4(2""1—-1).

a2n—0a1
2n—1

Clearly, ag, —a; = (2n—1)d =d =
Now, af — a3+ a3 —aj + -+ a3, 1 — a3, = (a1 —az) (a; + az) + (a3 — a4) (a3 + as) +
et (a2n71 - a2n) (U/anl + a2n)

= *d(al +as+az+ag+ -+ a1+ a2n) = - 0«22;:(111 %’G [al + a2n] = ‘27:%‘1‘ (a? - a%n)'
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270.d =g — 1 = Q3 — Qg = =+ = Qi — Q1

sin d sec oy sec aig = %‘%‘—%

tan ag and so on. sind sec «,_1 sec o, = tan o, — tan a,_1

= tan as — tan 3. Similarly, sin d sec g sec ag = tan ag —

Adding we get L.H.S. = R.H.S.

MLLES. =z [ it e s e s e ]
—mm st a T m et T e :alz%(gﬁa_y...%).
272. ai]_ aiz = a;:a? = a1da2 = ﬁ = é (al] __) Slmllarly Toan = % (- —ais) and so on.
S = é (“ili fln1+1) = alznl

273. a1 =0 then as = d, a3 = 2d, ..., a, = (n — 1)d where d is the c.d. of the A.P.

2 3 4 —1 1 1 1
LHS =3+3+5++25— (1+5+3+~+:)

=1+D)+ (143 +-+(1+:2) - (1+3+5++:25)

=n—2+[(1+3+5++:5) - (T+3++:55)]

1 A az __
:”_2+m:a—21+an: = RHS

n

k
ARk +10k+2 _ 1 Z
274. L.H.S. E T d) Harrd) = E apag+2 = 5 . akH

k=1
Z a2+ 2aydk + (K> — 1)d2]
k=

[(a1 + kd)* —

ml»—x
=
Il
—

1
2

= {Zn: @+ 2a1dz k+ d? Z e Z dQ} - [nal + 20,4 22ED  2ondlOnt])
1
=5[al+

(n+1)ad + 2120 2] — RS,

275. Given, z'® = y?! = 18logz = 21 logy = logy x = g

Similarly y'? = 22 = log, y = % and 2% = y? = log, z = %

Now it is trivial to prove that 3, 3log, x, log. z, 7log, z are in A.P.

us
2 bll’l nr

276. Given, I,, = /
0

simply prove that I,,, I, 1, I, o are in A.P. which will be enough to prove the entire
sequence. So it is enough to prove that I, + I, 40 — 21,11 =0

. dx. Since we have to prove that Iy, I, I3, ... are in A.P. we can

. 25m n+2)z+sin? nz—sin?(n+1)z
LHS. = sin2 220*2) (D2 gy
sin? z
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s
2 1-—cos(2n+4)z+1—cos2nz—2+2cos(2n+2)z
= — dx
i 2sin

i—0

)

2 2cos(2n+2)z—2cos(2n+2)x cos 2x
= — dx
i 2sin®x

i—0

™ ™
2 5(2n x.2sin®x 2 sin(2n x
:/ Mdm:/ QCOS(Qn.;_Q)da;:[M]:o.
i—0 2sin® x i—0 n+1

Let ay, as, ag, ... be an A.P. which are distinct primes. Clearly ay > 1. d = as —ay > 1.
Now (aj + 1)th term = a1 + a1d = a1(1 + d) which is a composite number. Thus, there
cannot be such an A.P.

Let the four distinct integers in A.P. be a,a + d, a + 2d, a + 3d where d > 0. Obviously,
the term which is sum of squares of remaining terms will be a + 3d.

Let a+3d = a®+ (a+d)?+ (a+2d)* = 3a*+ 6ad + 5d*> = 5d*+ a(6d — 1) +5d* —3d = 0

= 9(2a—1)2—20(3a®> —a) > 0 [~ d is real | = —24a® — 16a +9 > 0

. 4++/70 4—/70 4++/70
Corresponding roots are — i12 = ——F5-<a<— +12

]

= a = 1 other roots are not acceptable. Numbers are —1,0, 1, 2.

a =—1,0[+a is an integer

Given, t, =p+q and t,.1 = p — q = d = —2q. We also know that
t1+ton =t +top1="=1p+lny1=2p

134 t3, = (ty + tan)® — Btaton(ty + tan) = 8p° — 6ptyte, = 8p° + % [(t1 + ton)? — (t1 —

ton)] = 8p* —2[4p* — (2n— 1)*d°] = 2p” + 6pg*(2n — 1)°

S = 2np> + 6pg®[12 + 3% + - + (2n — 1)?] (we have found 2(22 —1)? so we will use
i=1

that result)

=2np® + 2p®.n(2n + 1) (2n — 1) = 2np[p* + (4n? — 1) ¢%].

Let a be the first term and d be the c.d. of the A.P. Then,

S=%[2a+ (n—1)d]

S,=a*+ (a+d)?*+ (a+2d)°*+ - +[a+ (n—1)d]?

=na® +3a°d[1+ 243+ + (n—1)] +3ad’[1? + 22 + 3° + - + (n — 1)*] + &°[1° +
22433+ 4 (n—1)%]

_ na3 + 3a2d n(n2—1) + 3ad2 n(n—1)6(2n—1) + d3 n2(n471)2

=2[2a+ (n—1)d][a®*+ (n — 1) ad + "1 ¢2] = S[a® + (n — 1) ad + 21 ¢2).

Hence, S is a factor of S,,.
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Let r be a positive integer greater than 1. If possible, let m" = (2k + 1)
+(2k4+2m—1) =22k +142k+2m—1] =2k +m= k="

r—1

330

+(2k+3) +

Clealry for > 1,m" ! and m are both odd or both even. - m"~* —m is an even number.

Thus such an integer k exists.

Also, the first odd inetger = 2k +1 =m""' —m + 1.

Let = be the first term and d be the c.d. of the A.P. Then,
z+(@x+d)+(z+2d)++[z+(n—1)d] =

a=nx +W}

Also, 2° + (z + d)? + (x +2d)° + -+ [z + (n—1)d]* = b

=nz®+22d[1 +2+ 3+ + (n— 1))+ d*[1> + 22 + - + (n — 1)?]
b? = na’ + xdn(n —1) + dg%

Sqauring Eq. 2.1, we have

a® =n*2? + n®xzd(n —1) + W =a?

20 1)2
nxQ—l—nxd(n—l)—&-W:aQ

Eq. 2.2 - Eq. 2.3

2n(n—1)(n+1) _ nb%2—a? _ | 2y/3(nb2—a?)
ST =T A= e

Now you can find z trivially.

d=as—ay=a3—as=++=a, — a,_1. We have to find
sind[cscay cscag + cscas €sc ag + -+ + CSC Ay —1 CSCay, |

:Sindli‘,-‘“‘“‘l‘v-‘“““i‘ L as sinaz + - +

1
sinai sin as sin sinap,_1sinan,

_ sin(az—a1) +sm(a3 as) +oee sin(ap—an_1)
sinai sinas sinasz sinas Sin ap—1 sinay,

__sinagcosa;—sina; cosas + sinas cosas—sinas cosag + sina,, cosa,_1—sina,_1 cosa,,
- sinaj sinas sinas sin as sina,_1sina,

= cot a; — cot ag + cot ag — cot az + --- 4+ cot a,,_1 — cot a,, = cot a; — cot a,.

Let d be common difference of the A.P.

1 1 1 __n-1
LHS. ==t vmvam t T Vo = Varr v

WWJ—\/_JFJFWJ(T”

ay—az az—ag —-1—Qan

=—ilVai—Va,] [vd=a—a=a3—az = = ap — ay_1]

a1—an n—1
= Tae e~ Ve e =@+ (n—=1)d].

(2.1)
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Let d be the common difference of the A.P., then

n

n
_ L L N _ -1 . 1.
L.H.S. = E tan~ 1+an = E Trensa.— E tan™ " a,—tan " a,_1|~vtan " x
2 2

-1, _ —1z-y
tan™ "y = tan sz]

= tan~! as — tan™! ay + tan™! as — tan™! as + -+ tan~! Ay — tan™! Ap—1 = tan™! Ay —
tan"ta; = tan ! -%2=% — R.H.S.

1+aian
Given, S,, = m + a21a3 .. aniﬂﬂ
:é[a;;zazl+ajgaz2+ +a¢:,, ?an] [d=ay—a1=a3—az =" =ap — ap_1]
p e

= agnSn = n — 1, which does not depend on a or d.
We know that S =3 [t1 + tn] so

Si=%lar+an] =%[2a+ (n—1)d]

So =5 [ant1 +azm) =5[2a+ (3n—1)d]

Sz =5 [azn+1+ azn] = 5[2a + (5n — 1)d]

=3[2a+{(2r—1)n—1}d]
Clearly, Sg — 51 = Sg — SQ == Op41 — ST = n2d which is an A.P.

Let d be the c.d. of the A.P. then Z:Z = :—Z = 1 which is a rational number.

tan 70° = tan(50° + 20°) = %

= tan 70° — tan 70° tan 50° tan 20° = tan 50° + tan 20°

= tan 70° — cot(90° — 70°) tan 50° tan 20° = tan 50° 4 tan 20°

= tan 70° — tan 50° = tan 50° 4 tan 20° = tan 80° = 2 tan 50° + tan 20°
Adding tan 20° to both sides, we have

tan 70° 4+ tan 20° = 2(tan 50° + tan 20°) and thus required condition is proved.

Given log; x, log,, x, log, x are in A.P. Therefore 2log,, x = log; z + log, x
2logxz _ logx logx 2 _ login
logm ~— logl + logn logm ~— logllogn

= 2logn = % (multiplying with logmlogn on both sides)

log; m

= logn? = log; mlogin = logln = n? = (In)'°®™; hence proved.



291.

292.

293.

294.

295.

296.

297.

298.

Answers of Progressions 332

Let b, p, h be base, perpendicular, hypotenuse of the triangle. Let b be smallest then
2p=h+b=h=2p—>
We know that for a right angle triangle h? = b2 + p2. Substituting for h,

5b
3

2 2 2 2 2 2 _ 16b2 2
dp* —dbp+ 0" =b"+p = 3p " =dbp=3p=4b=>h =+ b"=h=
=b:p:h=3:4:5.
Let 5% = ¢ then for condition for A.P. gives us a = 5t + % +t2 4 tlz
We know that = +% >20a>12.
Given log?2, log(2® — 1), log(2® + 3) are in G.P. Therefore, 2log(2” — 1) = log2 +
log(27 + 3)
= (2°-1)2=122%4+6 =2 —42" - 5=0 = 2" = 5, —1 however, 2° # —1 so
2% =5 = r = logs 5.

Let d be the c.d. of the AP. ~log,z =1+d =z =y % log,y =1+2d =y =
1+3d

A4 _15log,z=143d=>z=2 15

_(14d) (1+2d) (1+3d)

I+d _ (142d)(1+d) _ 15 = (14+d)(1+2d)(1+3d) =—-15=

Y=y
(d+2)(6d*>—d+8)=0

Discriminant of 6d? — d + 8 is less than 0 and thus d = —2.

:>x:z3,y:z73.

Let v2, /3,5 be pth, gth and rth term of an A.P. whose c.d. is d.

V3—+v2=(q—p)d and /5 — /3 = (r — ¢) d. Dividing, we get

{g:\‘g = Z:z = z, which will be a rational number as p, ¢, r are integers.

Sqauring 5 — 2v/6 = 22(8 —2v/15) = V152% — /6 = (822 —5)/2 = y (which will again
be a rational number)

Squaring again 15k* + 6 — 2¢v/90k? = y? = 15k* + 6 — 3% = 2/90 k>
L.H.S. is a rational number while R.H.S. is irrational thus our assumption is wrong.

Area of rth circle A, = 7 and area of (r + 1)th circle is A,4; = 7(r 4+ 1) so the
difference is D, = w(2r 4+ 1) therefore c¢.d. = D,;1 — D, = 27 which is a constant and
hence the successive areas of each color is in A.P.

wx,y, 7 are in A.P. » 2y = z + 2. Similarly, 2tan 'y = tan 'z + tan"! 2

Ttz Ttz o _ 1 _ (z+2)? _
1—xz 17(m+z)2 ==1 zr =1 4 = (Z I)
1

2y 2
= T2

=0=zrz=z=y.

. . s16 | sinif .
From given conditiion z;’:—za + ::—Qa =1=cos?# +sin? 0

. sin?0 , . .
a—sin?6) = 22 (5in?0 — sin
sSin“ o«

(cos® 0 — cos? o) = S0 (i

sin® «

cost @ 2 2

= ¥ Oé)
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52 9 sin2 0 . . 2n+2 9
cos ¢ — 3% and thus we prove the required condition because <Y = cos? 6.
COos” « sSin® o« COS
T s (2n+2) in2 o (2n+1)xsi
sin n Tr—sinznx CcOs n rsimxT
299. apy1 —ap = et dr = ZCoSlent TS 0.
0 sinx 0 s

_ [2sin(2n+1)x ™ _
- [ : 2n+1 ]0 =0
Hence, c.d. is 0 making all terms equal and in A.P.

s

300. 1, + 110 = /4 (tan™ z + tan™t?2 xdr) = [
0

T

tan"*lzl2 1
n+1 0 Tl
1 1

S e 4, TE=9 which is an A.P. with a c.d. of 1.

1
Thus, Totla =3

301. In+1 I, = /7r cos2nz—cos(2n+2)zdx _ 2/7\' sinzsin(2n+l)zdx
0 0

sin? z sin?z

sinx

D, = 2/77 sin(2n+1)xdx
0

Dn+1 —D,=2 /-7r sin(2n+3)z—sin(2n+1)xdx —4 /Tr sinwcos(2n+2)zdx _ 2|:sin2(n+1)z:|ﬂ- _
0

0 sinx sinx n+1 0
0

= Dy =m = I,,1— I, = 7 which is a constant and hence Iy, Is, I3, ... are in A.P.
302. v, B,yarein AP. :28=~v+«
2sin(a+ ) =sin(f +v) +sin(a + 3) = 2sin2p = 25111(%) e
-

= cos'5—=1=cos0 =7y =a=f and hence tan o = tan 8 = tan-.

303. Let d be the c.d then we have 2b = a + ¢ and abc = 4 = ac(a + ¢) = 4. We know that
AM. >GM = QTH > vac = %(a +¢) > 4= b%> 4 and hence proved.

304. Let S = loga+log%3+log‘;—§+log';—;+
= (loga + 3loga + 5loga + ) — (logb + 2logh + ) = 5 [2loga + (n — 1)2loga] —
2 212logb + (n—2)logb] = % [2nloga] — 5% [2nlogb]

n? n(n—1 n?
=loga”™ — logb™ ):logm.

c—a b+c—2a
305.b=a+d=>d=b—aand n =7——+1=""7%

n b+c—2a)(a+c
Sn=75[a+c] = (b+e—2a)(atc) +2<b7)a() ),
306. Let a be the first term and d be the c.d. of the A.P.

Snis = #[2@ + (n+2)d] and 3(Sp42 — Sp+1) + Sn = 3tni2+ 520+ (n—1)d] =
3la+ (n+1)d] +5[2a+ (n—1)d]

=2[2an +n(n—1)d+6a+6(n+1)d] = 2 [2a(n +3) + (n* + 5n +6)d] = Sp3.
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Observe that 2ab = (a + )2 — (a® +b%),2(ab+bc+ca) = (a +b+c)* — (a> +b* + c2).
2
Similarly it can be observed that 2 Z a,Qs = (Z ai> — Z a?
r<s i=1 =1

2
Now, (-7 1(11 [% 2a1 + n—l)d)]

n 2
ai) :g[4a§+4a1(n—1)d+(n—1)2d2] (2.4)
i=1

and Y1 a? = af + (a1 +d)* + (a1 + 2d)? + - + [a1 + (n — 1)d]?

d* (n—1)n(2n —1)

n
Zaf =na?+aydn(n —1) + 5 (2.5)
i=1
Adding Eq. 2.4 and Eq. 2.5, we get the desired answer.
Let there be n rows in the equilateral triangle. Then S = w Now according to given
facts, ") 4 669 = (n —8)% = n = 55 = § = 1540.
Required sum = (1+2+3+---+n)2—(212+22+32+---+n2)
n?(n+1)® n(nt+l)(2n+1) n(n+1)(n(n+1) 2n+1>
-4 5 6 -2 22 3 :in(nQ—l)(?)n-i-Z).

Let a be the first term and d be the c.d. for the given A.P. Let S, S’ represent the sum
for first 24 days and last 18 days. Then,

S =2 2a+23d), S = 3 [2(a+ 24d) + 17d] and

2 12a + 23d] + 2 [2a + 65d) = 2 [2a + 41d] and S = " = %! [2a + 23d] = 2 [2a + 654]
Solving these two equations yield the answer as 12096.

Let a be the first term and d be the c.d. for the given A.P. Then,

S, =1%2[2a+ (n—1)d] =n’p and S, =3 [2a+ (m —1)d] = m’p

=2+ (n—1)d=2npand 2a+ (m—1)d =2mp = (n—m)d =2p(n—m) = d =2p
Substituting this in equation for S,,2a+2(n—1)p=2np=a=1p

=S, =§[2p+2(p—1)p] = p".

Let S1,5s, ..., S, denote the sum of A.P. with c.d. 1,2, ..., n. Then,

tr=14+(n—1)r

n
S1+ 82+ 4 Su=d tr=n+(n—1)"0D =22 1 1),

r=1

Sr=352r+(n—1)2r—1)]=F2r+2m—2r—n+1]=%[2rn—n+1]
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m
Si+ Syt ot S, = ZST _ n27n(27n+1) o n(n;l)m _ %[m2n12 + mn? — mn2 + mn] _

r=1

- (mn +1).
Given below is the diagram for the problem:

Let the inclines straight line pass-

D(-1,1) / C(1,1) ing through origin cuts AB at N
such that AN : NB = 1 : 2. Let
the coordinates of A, B, C, D are
(_17 _1)7 (17 _1)7 (17 1)7 (_L 1)' Then
N = (—1/3, —1). Thus equation of line
would be y = 3x. Let (z1, y1) be the
point from where we have drawn perpen-
diculars to the sides. Then length of L to

3z1+1
A-1-1) 1IN 3 B(1,—1) AB = =5, length of L to AD =z +1,

length of 1 to BC = 37”1271 and length of

1 to CD = xy — 1. It is now trivial to ob-

serve that these lengths are in A.P.

Let p, b, h be the perpedicular, base, hypotenuse of the right angle triangle such that
b < p < h and 7 be the common ratio of the G.P. such that r > 1. Clearly h? = p*+b> =
2.4 _ 322 12 2 _1+V/5
bt =0"r"+ b= r° = ——.

Clearly, the greater acute angle will be opposite to p which we let as 6, then

cosf=2=L—-_1_
ThT 2T 145
Let 27, 8,12 be the pth, gth, kth terms respectively of a G.P. whose first term is a and

common ratio is r then 27 = arP™!, 8 = ar? %, 12 = ar* L.

a3 .
=>28Z=7“p_q=(%) ,%:r&k—q:%:rl’_qzr?’(’“_q):>p+2q—3k:0.

The system of solutions of this equation is p = 4t, ¢ = t, k = 2t where t € P.

Let 10, 11,12 be the pth, gth, kth terms respectively of a G.P. whose first term is a and
common ratio is r then 10 = ar?™1, 11 = ar?™*, 12 = ar* 1.
g gng 12 pka (E)kﬂl — pla=p) (k=) 414 (E)qu —— p(b=a)(a—p)

0~ = 0 = 1 ==

k— _
= (1) "= ()" "= (ukrerar = 10hm01207p = phoaykra-2rgay

This is possible only if k—p=0,k—q¢=0,k+q—2p=0andg—p=0ie.p=q=k=0

which is not possible as they are distinct.

3 3
We have I,, = / cos™ z cos(nz)dw, I = / cos™ !z cos[(n + 1) x]dx
0 0

2
Inia :/ cos” z[cosx cos[(n + 1) x]dx
0
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cosnz = cos[(n+ 1)z —z] =cos(n+1)zcosz+sin(n+1)zsinz = cos(n+ 1)z cosz =
cosnx —sin(n + 1) zsinz

2 2
L1 = / cos”™ z[cosnz — sin(n + 1) zsinz|dx = I, — / cos" zsinzsin(n + 1) zdz
0 0

™

n+ ; z p)
=1I,+ [WF —/ cos™ 1t zcos(n 4 1) zdx [we take u = sin(n + 1)z and
0 0

v = cos" z sin z]

=L, +0—-0—1,41 = 1’}7}1 = 2 and thus, Iy, I, I3, ... are in G.P.

I, I», I, ... will be both in A.P. and G.P.ifand only if I = b =3 = - = I,
" sin(2n+1 " sin(2n—1 " sin(2n+1) s—sin(2n—1
A R Y
0 sinxT 0 sinx 0 sinT
7r2 9 . 4 2
_ / ZOSIREINT dx = 2/ cos 2nxdx = — [sin 2mc]§ =0
0 sinxT 0 2n
™ .
So I,11 =1, also, I; = ::idﬂc =m. Hence, Iy = Iy = I3 = - = I, = m which proves

that the terms are both in A.P. and G.P.

Let a, ar, ar® be the sides of the triangle. If > 1 then from the properrties of the

1+2‘/‘;’. If » < 1 the the triangle

will be formed if ar + ar’ < a = r’4+r—1>0=7r> 71%”5 Hence we have required
inequality.

triangle we have ar’> < a+ar =>r*—r—1<0=r<

111 ... 1(91 digits) = 10°0 + 10% 4+ 4+ 10+ 1 = 2201

Since 91 = 13 x 7 we use 7 to multiply and divide with 10" — 1 which gives us
109'—1 107—1 _
107-1 * 10—-1 —
number.

fla+ k) =fla)+ f(k) = flx+y) = f2)fly) Va,yeN

(108 +10%3 + - 4+104-1) (10°4-10° 4 --- 410 + 1), which is a composite

n

=Y flat+k) = zn:f(a)f(’f) = fla) [f(1) + f(2) + -+ f(n)]
k

k=1 =1

Given, f(1) =2, f(2) = f(1) + f(1) = f(1) (1) =22, £(3) = f(1) + f(2) = f(1) f(2) =
23 ., f(n) =2" and f(a) = 2°

=Y flat+k)=16[2"—1] = 22422+ +2"] =2°2(2" — 1) = 16(2" — 1) = a = 3.
k=1
Number of students giving wrong answers to at least ¢ questions = 277,

Number of students giving wrong answers to at least i + 1 questions = 27 7#~1,

.. Number of students giving wrong answers to exactly ¢ questions = 2"~ % — 2n—i-1

Also, total no. of students giving wrng answers to exactly n questions = 2" =1
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= Total no. of wrong answers = 1(2"" 1 —2"72) +2,(2"72 —2"73) 4 ... 4 (n — 1) (2! —
20) +n(20) =2t 4 om 2 120 =97 1 = 2047 = n = 11.

1 2 3
S1=——5=2,8=-—5=3,5=—3=4,- and so on.
1— 1-3 1-3

We have S7+ S5 4 +83, | =22 +32 4+ (2n—1)2 =12 42243+ + (2n)?—1 =
2n(2n+1)(4n+1) 1= n(n+1)(6n+1) 1
6 - 3 .

Let ABCD be the first square and length of sides are a. Clearly, sides
of second square = 4 /%2 + %2 = \% . Area of second square = a; Area

@ of third square = %2 and so on.

A D Total area of innser squares = —; = a? = Sum of first square.

Let y =7+ 2xlog25 — 57 ' =527 = % = 4log 5 — 5" ' log 5+ 5> * log 5 = 1253 (5" —
25) (5% + 5)

Now y' > 0 if z > 2 and ¥’ < 0 if x < 2. Since y has only one local maxima at z = 2
and has no local minima, therefore y has greatest value at x = 2 = a = 2 which is first
term of G.P.

T

. Ct2dt
r = lim 27dt = lim [g
z—0 Jo tan(mw+z) r—0x°tanx
=i =1 § =2-3
= MMy 037 00, mnz - nLH;o ar” - e

-
3

n=1

Let z be the first term and y be the common ratio of the G.P. Then a = zy?~ %, b =

zyd Y e=ay" !

(loga) .7+ (logh)j+ (loge)k = (logz —1).(74+j+ k) + plogy.7 + qlogy.j + rlogy.k

Dot products of given vectors = (logz —1)(¢q—r+r—p+p—gq) +logy[p(¢—r) +
q(r=p)+r(p—q)]=0

And therefore the vectors are perpendicular to each other.

Pollution after first day = 20(1 — .8) = 4% and after second day =4(1—.8) = .8. Let

us say that it takes n days then 20(1 — .8)" < .01 = E:i" < 568 2000 =5">2000=n=>5

Let the sides of the triangle are a, ar, ar? where a > 0,7 > 1 then from properties of
the triangle

1+V5 —1+V5
2

ar’<ar+a=r’—r—1<0=r= 5

2

Given that largest angle is twice the smallest one. = =25 = {7

= 2cosf = 1> = r < /2 so the range is (1,\/5).
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az®+arz®+ar’z+ar’?
azx?+ar?

Let r be the common ratio then b = ar, ¢ = ar?, d = ar® then =xz+r

leaving no remainder thus given condition is satisfied.

Given, (a®+b%+c?)p? —2(ab+bc+cd)p+ (b2 +c*+d?) <0 = (ap—b)>+ (bp—c)*+
(ecp—d)?<0
However, sum of squares cannot be less than zero. = p = Z = % == % thus a, b, ¢, d are

in G.P. with common ratio p.

logy 2 _ logz logz _ logz
logz) ~ logy logz = logy

= logy, x,log, y, log, z are in G.P. - ( =logy=logz=y=1=2

ut=%t=sr=yandryz=8=2’=8=szr=2=z=y=2=2.

If a, b, ¢, d are both in A.P. and G.P. then a = b =¢ =d ~b =2 . number of such
sequences is 1.
We have log, a, a*/?, logy z are in G.P. ~a® = log, alogy z = iziilﬁii = logy a

Taking log of both sides with base a, we get x = log,(logp a).

Let a be the first term and r be the common ratio of the G.P. then

n—1

mAn—l — poand typ = ar™ =g

tmtn = ar
1

Dividing r?" = t=r= <§>2”
1-m—n

Sa=primm= p.(s) 2n

1-m—n m—1
2) 2n (2) 2n
q ‘\¢q

= () = Vou

tm = ar™ 1 = p.(

1-m—n

et (82

Let a be the first term and d be the c.d. of the A.P. then terms are a4+ (p —1)d, a +
(¢g—1)d,a+ (r—1)d, which are in GP.Let a+ (p—1)d==x,a+ (¢—1)d = zy,a +
(r —1)d = zy? where z is the first term and y is the c.r. of the G.P.

(p—q)d=x(1—r)and (¢—r) =2r(l —r). Dividing r = 1.
Let a be the first term and r be the c.r. of the G.P. Then,
Sy =a+ar+ar* + - + ar22 :%’52 =ar +ar® 4+ + ar2" ! :M"(f:;ii”fl)
Dividing S2/S2 = r, which is c.r. of the G.P.
Sn _ a(:':;l) = TS»,L _ ar(:j’;l)

< a(r—=1)  a(r?-1) a(rm=1-1)
ZSn=51+SQ+---+Sn= 1 + p—] +"'+‘““T“:“1“““
n=1

n
ar(l—rm)

(1—r)ZSn:a(1—r)+a(1—r2)+-~~—|—a(1—r”_1):na-l—

n=1

1—r
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=>rS,+(1—r)Y " _| S, =na.

339. The series is 1 4z + xy + 22y + 22> + - = [L+ ay + 2%y> + -] + 2[1 + zy + 22> + -]

_ (="y"—1) i z(z"y"—1) _ (z"y"—1)(1+x)
- zy—1 zy—1 - zy—1 .

340.49 = (4 x 10) 49, 4489 = (4 x 10° + 4 x 10%) + (8 x 10) 4+ 9 and so on.

t = 410’;—1 10F + 8. 10’;—1 +1= 410’;—1 10k7410’;—1 + 1210’;—1 +1

=36102k 210’f+1+12 10k — 1+1:(6 10k — 1+1)

81
341. Sy =a+ar + ar? 4+ - +ar™ ! 9-@-:-17 Let S be required sum then
g— (Fa)?~Ya? (a(?;"”’;ll)27[a2+a27,2+m+a27,24m—1)]
= 2 = 2

25 — a?(r —1)[7‘"‘—177‘"‘4—1] _r a(rm=1) a(rm-l-1) r S,Som

r—1 r—1 r+1 | 7 r+1° r—1 ° r—1 = rF1

=

1
342. y = log1p = + log1o(z)2 + logio(x)* + -+ = logio = + % logigz + % logigz + -

1081oa¢

=2 10g10 X

72

L3454 (2y-1) _ 20 y? _ 40
4+7+10+-+3y+1 ~ Tlogiow Y8+(y—1).3] T Ty

=y =10,z = 10°.

343. Let a = a1 be the first term and r to be the common ratio of the G.P., then

__a(rm—1) _ n 1424+ (n—1) _ n 2 _1 rt_ 1 rm-1 1
S==——P=a"r a"r T == =-.

Clearly, P? = (%)n.

344. Let z be the first term and y be the c.r. of the G.P. Then a = zy™ *. The next n terms

2n, n—1

"1 and similarlry ¢ = zy®"y

will start from zy"™ = b = zy".y

It is clear that b? = ac i.e. a, b, ¢ are in G.P.

345. Sl —a= a(l—r) 52 _ a(1::2)7 . Sn _ a(l—rm™)

1—r > 1-r

Si+ 8o+ + Sy =151+ 14+ tonterms] — = [1+ 7+ 72+ + "]

na  ar(l—rm)
1—-r (1—-7)2

-1

346. 51 =a = all=r) Sz = a(}::S)v oy Sopo1 = ﬂ‘l‘i_lji“

1—r —r

S1+ 83+ + Sop_1 =1 [1+ 1+ + tonterms] — 125 [1 4+ 77+ ' + e

na ar(1—r2m)

1—r (177')2(14»7')'
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347. Let a be the first term and r be the common ratio. Then,

a a? a(l—rm)
S” 1—r

348.% 7, aia; :%[(al tagt . dan)?— (a2 +a2+ ...+ d2)]

:%[(a +ar4 .. +ar" 2= (a®+a®r? + .+ a2r2("71))]

1 a?(1—rn)2 1 [a2(172r"+7‘2”) a2(17r2")] _a?r(1—r" Y (1—rn)
=z m | =3 =

77«)27112(17#" (1—r)2 = (1—r)2(1+r)
1

o

349. Let a be the first term and r be the common ratio. Then,

1 1 1 1
L.H.S. = Py + W22 a2, A + oo + ...+ 22r2n2)_g2,2n-1)
l——ro— 2n-2 2
_ 1 1 1 1 _ 1 r2(n-1) 1 1—ren— T
T a?(1-1r?) [1 + r2 + rd +ot r2<"*2>] T~ a?(1-r?)" -5 T a?(1-r2)" 1-r2 22
P

350. Let a be the first term and r be the common ratio. Then,

LHS. =t 1 !

e + g o+

11
1 1 1 sm(n—1) pmn-m_1

1 1
= i [1 +m Tt am et Tmuhz)] = Ty = F(ir) (g

1
351. Let a be the first term and r be the common ratio. Then,

LH.S. = Va?r + Va?r5 + Va?r% + .. + Va2r™ 3 = av/r(1+ 12 + vt + 40207 ) =
avr. )

Vaytaz+ .. tag, 1 =+a(l+r2+ .. +r272) =, /a. ]

Vag+ag+ .+ agy = Jar(1+r2+ . +1r272) = a\/FT:;:

~vairas+/azags+/ a5a6+...+\/a2n_1a2n = \/al +asz+ ...+ agn—1 \/ag + a4+ ... + agp.
352.Given 1+ 2z + 22+ ... +2¥ =0, 1+z4+22+ ... +2°=0

0,2 =0 120,20 - 1=0:202' —1=0=2"—1=0

Thus, roots are —1, +1.
353. $a will become a + r.(a) = a(1 + r) at the end of second year, a + ar + r(a + ar) =

a+ 2ar + ar? = a(1 4 r)? at the end of third year, a + 2ar + ar? + r(a + 2ar + ar?) =
a+3ar+3ar’+ar® = a(1+r)% and so on. So amount received for $a will be a(1+r)"**
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Similarly, amount receoved for $2a will be 2a(1 + 7)™ and so on.

Thus, total amount received will be S = a(1+7)"" 4+ 2a(14+7)" +3a(1 +7)" 1+ ... +
na(l+r)

T‘;?:a(1+r)"+2a(1+r)"71+...+(nfl)(1+r)+na

Writing first term of second sum against second term of first sum, second term of
second sum against third term of first sum and so on and subtracting, we get =

1+T
a(l—‘—r)"“—i—a(l—‘—r) +a(l+r)"" 1+...+a(1+r)—na
1T+S =a(l+r)[(1+r)"+ 1 +r)""+..+1]) —na
_ a(l+r)?[(14r)"—1 1+47)
=2 r) [Tz r) ]_na(r ]
1,011 . loga.s( 3+ +2y+.00) . logs 3 L\ o853
3 082.5 .00 = 2
<§+§§+§3‘+...OO>:%_%: = (0.16) s (3Haa () 2 =() ® =

(1) =s

1
A=1+ra+r2“+...tooo:ﬁ:r:(%y

1
B=1+Tb+7“2b+...t000—17b2>7“=(%)b
-1 _ 2 _ n
81717%72752717%73, , Sn. l—ﬁlin_’—l
s1+s2+ .. +s5, =243+ ...+ (n+1)= (n+3)

Si=r5=28="7=3 .S =—"r=n+1

13 3 Tt
General term of numerator t; = S;S, ;1= (i+1)(n—i+2) = (n+1)i—i>+ (n+1)

n(n+1)?2  n(n+1)(2n+1)
2 6

n n
= Sum for numerator :Z Z [(n+1)i—i?+ (n+1)] = +
i=1 i=1

n(n+1)

Sum for denominator = 12422+ .. 4+ (n+1)2—1= Lnil—)—(ll—%z—)—(M— 1

S18n+528n 1+...+SnS1 1

S2+83+..+52 2°

Upon simplification lim
n—oo

f(z) = 322 + 3 which yields imaginary roots implying that there is no local maxima.
However, 322 + 3 is positive for all values of z which means that f(x) is monotonically
increasing in [—5, 3] implying that maximum value will be at z =3

f(3) = 27, also let a to be the first term and r to be the common ratio then given,
a—ar = f’(0) = 3. The sum is given as = = 27 solving these yields r = but the
series is decreasing so r = %

Let § = {5+ 13z + 398 + - 00
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__5[10-1 100—1 1000—1 __ 5710 102 103 1 1 1

=5+ e 0] = 5[ T T g b 00 — 5 — g — - )
10 1

S

-9 17% 17% — 913" 3 13°12] — 36

2 . 4 .
360. S = cosx+§cosz51n2z +§cos:csm4a:+

361.

362.

363.

_ cosx __  3cosxz __  3cosx
- 26in2 2 3—2sin?z ~ 2 2
1-3sin?x 3—2sin®x +cos2x

The term Qii‘i; is finite for all z € (—g, g)

Let a be the first term, b be the last term and n be the number of terms of A.P. and
G.P.

Then c.d. of A.P. = b;‘i and c.r. of the G.P. = (g)nil. Let S be the sum of n terms of

n—

A.P. and S’ the sum of n terms of G.P. then S =% (a+b)
S =a(l4+r4+r?+. .+, =alr™ 4+ 24+ . +1)
S/ :%[(1 +,,,n—l) + (’I‘ +,,1n72) + (’I‘k +,,,n7k71) N (,,,nfl =+ 1)]

Now, (rF+ " * ) —(r 14 1) = (PP — 1)+ 1P —1)

Tn—l

=" -D(1-Z) =0 -1 -mr) <o

,,,lc
S S P U ) 2(148) - () - S
285> 5.

Given a, ay, as, as, ... are in G.P. so loga, logay, logas, ... are in A.P. Let the common
difference of this A.P. be d;. Now loga, = loga + ndy. Further if d be the common
difference of the A.P. b, by, b, ... then b, = b+ nd

. logay,—loga _ ndi _ dy

o b,—b “nd T d

Let logx = %l for a fixed positive real number z.

- bg’;:% =logx = b,—b= 1ogz<%) = log, a, — log, a = b, — b = log, a, — b, =
log,a—b

Given a + md, a + nd, a + rd are in G.P., where a is the first term and d is the c.d. of
AP.

= (a+nd)?= (a+md) (a+rd) = d(n*d+2an) = d(am+ ar + mrd) = (n* —mr)d =
a(m+r—rn)

d__ m+r—2n
a” n?-mr

2mr _ 2mr
m+r:>m+r—

Given, m, n, r are in H.P. =n =

2mr
d__ —w—2n _ 2 _
=—c s g=

N3

a
“a T nZ-mr d
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364. Let 7 be the common ratio of the G.P., then b = ar, ¢ = ar?. Given, a —b,c —a, b —c

365.

366.

367.

are in H.P.

2(a—b)(b—c)
a—b+b—c

cc—a=
(c—a)*=2(a—b)(b—c) = (ar®—a)* = 2(a — ar) (ar — ar?)
a(r?=1)? = 201 —1r)r(1—1) = (r+ 1> = —2r > 14+ 4r + 12 =0
Satdar+ar’=0=>a+4b+c=0.

Let dy, do, d3 be the common differences of the A.P.'s.

=S =32+ (n—-1)d]=>d=23=p

Similalrly do = 2<S2*")7 ds = 2(S3—n)

n(n—1) n(n—1)
wdy, ds, d3 are in H.P. . iz — dil = dig — diz
n(n—1) n(n—=1) _ n(n—1) n(n—1)

= 2(S2—n) ~ 2(S1—n) — 2(S3—n)  2(Sz—n)

i1 1 1 S1—Ss S>—S3
= Sion = (S5—n)(S2—n)

So—n Si—n Ss—n Sa—n = (S1—n)(S2—n)

28351 —5152—5253

= N =""5"55,+5,

Let the digits at hundreds, tens and units places be a, ar and ar? and the required
number be z, then z = 100a + 10a + ar?

Let y = x — 400 = y = 100(a — 4) 4+ 1 — ar + ar® In the number y, the digit at hundreds
place is a — 4. Clearly

1<a—4<5[+1<a<9anda—4>1]=5<a<9

According to question a — 4, ar, ar® are in A.P. » 2ar =a—4+ar’ > a(r—1)>=4=
r—1= j;%

a and ar are integers. - r is a rational number. Thus, a must be a perfect square. ~a =9

Thus, r = 37 but r #£ % othereise ar = 15«1 = % ar=3,ar’=1

1
3
Hence required number is 931.

Given a, b, ¢ are in G.P. Let 7 be the common ratio of this G.P. then b = ar and ¢ = ar?.
Given, log. a, logy ¢, log, b are in A.P.

loga logec logb .
= Togc Togh Toga A1€ IN AP

loga loga+2logr loga+logr .
= loga+2logr’ loga+logr ? loga are in A.P.
1 142z : logr _
T795 115+ 1 + @ are in A.P. where Tosa — %

2(111?:: 132$+1+x) = z(22>—32—-3)=0



368.

369.

370.

371.

372.

373.

374.
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22% —32—3=0[+xz #0, else logr =0 = r = 1 which is not possible as a,b,c are distinct]

_ 1 22243z _ 3z+3+3z _ _ 3
=142 =155 = 53 = 132 —3=>d=3

Let the two numbers be a and b. Since n A.M.'s have been inserted between a and b -
b—a
n+1

common difference of A.P., d =

+b
Now p = first A.M. = 2nd term of A.P. = a+d =45

ab(n+1)
bn+a

Similarly for harmonic series ¢ =

We know that z will not lie between « and 8 if (z —a) (z — 8) >0

_ n(a—b)?
49— P~ =~ Onta)(nil)

n+1\2 __ (n+1)(a+b)?n
q— (_n71> P === bnta)

n+1)\2 _ n?(a—b)%(a+b)?
= (q_p) [q - (nfl) p:| T (n—1)2(bn+a)? > 0.

Common difference of A.P. = ¢ — p and common ratio of G.P. = % <1

s=-E- = Ji}. Let S,, be the sum of n terms of A.P., then
1-2 pa

2

n nin— nin— q—p 2 nin—
Sp="212p+ (n—1)d] = np + 29 — ) 1 ™ 12)1(75 " — pp — L) 2

+logs v, log. x, logy, z are in G.P.

logx 2 _ logy logz
logz/) ~ logz - logy

= (log, z)? = log, y.log, z = (
= (logz)®=(logz)’ = ar=2=>a=y=2=4 ~xyz =64 and 2° = 23 + 25,

20 +2y) = +2r+y=3y==1,(zy+5°> = (y+1)?*@@+1)2= 3> +5) = +£(y +
1)(By+1)

Sy=1,"E220 0 3 14220,
Let @ = 3 be the first term and d be the common difference of the G.P. then, given
(a+9d)* = (a+d)(a+33d) = a® + 18ad + 81d* = a® + 3dad + +33d* = d =5 =1

So the A.P. is 3,4, 5, ....

Given, \/(Tz\/EE,“Q?Q:%féabzcd,aQerQ:cQerQ
= (-0’ =(c—d)%(a+b)?=(c+d)?’=>a=cb=d

Thus, arithmetic mean of a™ and b" is equal to the arithmetic mean of ¢ and d" for
every integral value of n.

Let a be the first term and d be the common difference of A.P. and thus d will be the
first term and a be the common ratio of the G.P. Given,
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155 = 2[2a + (10 — 1) d] = 2a + 9d = 31

d+ad=9=a=2,2=>d=23

: 25 79 83 : 2 25 625
Thus, A.P. is 2,5,8, ... or 5, %, %, ... and the G.P. is 3,6,12, ... or 5, %, =",
. . 111 .
375. Since a, b, c are in H.P. therefore -, ;, - are in A.P.
2_1,1 —20c 3 2_1,1 1 3_2_1,1 1
:>5 E+E:>b7a+c:>b c a+b candb aib+c a
1 1 1 1 1 1\ _ (3 2 3 2
it Gre—a)=G-2)(G-2)
__ 9ac—6ab—6bc+4b% _ 4 + 9 _ 6blatce)
- ach? T ac ' b2 ach?
_ 4,9 6 2_4_ 3
Tac " b2 ach?'b T ac b
376. Because a, b, ¢ are in H.P. therefore % = % +%
a+b b+c %'*'l %'*'l c,c,a  a_ c*+td®  a+tc
p— a c __ = = = i—
2a7b+20fb_2_l+2_1_a+b+b+c ~  ac + b
tTa b e
_ c%4a? | (a+c)? _ c*+a? (atc)? _ (c=a)? | (a—c)?
~ ac + 2ac ~  ac —2+ 2ac —2+4= ac + 2ac +42>4
at+b __ btc b—ab%?—a—b _ bt+c—b+b3c
377.b— 1—ab — 1-bc b 1—ab - 1—bc
—a(14b%) _ c(1+b?) _ _ _ a+tc
= =0~ =S~ = —a(l —bc) = c¢(1 —ab) = a+c = 2abc = 2b =

ac
~a,b”! ¢ are in H.P.

1 1 1
378. ¢ = — Y=13%*=1=

a,b,carein A P.=1—a,1—0b,1—carein A.P.

111 . .
T 175 17— are in H.P. = =, y, z are in H.P.

=
379. Let ar =bv = ¢ = k= a = k%, b = kY, ¢ = k*

va,bycarein GP. =V =ac= k¥ =k""=2y=2+2

~x,y, z are in A.P.

2
380.2b=a+c,m= %, b’m? = acln = (Q;C%> = acln

2 2
= In__ _ ac)2 = (ate)? _ (i4n)

ac in

a c 1 n L, 1.1
=Scte=atT=a:c=513

Now it can be proven that a :b:c = : %

1.1
n-m’
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382.

383.

384.

385.

386.
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The common difference of A.P. = b — a, common ratio of G.P. is b/a and common
difference for corresponding A.P. of H.P. is (a — b)/ab

n+2th term of AP.=a+ (n+1)(b—a)=(n+1)b—na

n + 2th term of G.P. = ar™*! = b;zl
1 b
n + 2th term of H.P. = T e = (n+1(;a,7nb

These will be in G.P. if

[(T;lri)ll;;ili]bab _ b2"+2 (n + 1) 2n+1b2 o na2n+2b — (n + 1) ab2n+2 o nb.b2"+2

= (n+ 1) ab?[a®" — b>"] = nbla? 2 — p21 2] = Uit nid

ab(b?"—a n -

ar”—a—nd:a(l-i-g)n—a—nd[':rzﬂ]

- a[l +m Cl(%) +" 02(2)2 ot C"(g>n] —a—nd
Pl ] o+20)

A:“T“',H:j—f;,c::\/a_b:sA:kH:»(a+b)2:4kab:»A:kG2

Let b = ma = a*(1+m?) = 4kma® = 14+m? = dkm = m = HEVIK -1 16k2 =2k+V4k? —
Also, (a4 b)? = 4kab = (a — b)? = 4kab — 4ab~ (a —b)> > 0~k > 1.

Since n means are inserted therefore total no. of terms will be n + 2. Let d be the c.d.
of A.P. and d’ be the c.d of H.P.

_ ’ _ (n+latrb—a) 1 _ 1 a—b _
=d= n+1’d ab:>p*a+rd nt1 7= a T T na — 4=
(n+1)ab

r(a=b)+(n+1)b

n+1)

pyb_ ("“a)(‘;i"l()b*a) + "'<“’(fl)++1(;j1)b = **% which is independent of n and r.

Let s be the distance between P and Q.

s(z+y)

. . _ s s _ s
Time taken by train A = 5 T % = 35y = MM ofzandy

S
Time taken by train B = +y = XMofzandy

So, second train wil reach earlier as A.M. > H.M.

Let d be the common difference of corresponding A.P. Also, let H; and H,, be first and
last H.M.

1 1

_c a_ _ ac
=d= n+1 " ac(n+1)
11 a—c __ac(n+1)
H ~—a + ac(n+1) =M, = nec+a

_ 1, nlen) _ ac(nt1)
= ot ety = Ha =200




387.

388.

389.

390.
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H,— H, = ac(n+1) ac(n+l) _  ac(n?-1)(a—c)

" ncta na+c ~ (n'+1)act+n(a?+c?)
Also, given that n is a root of equation 2%(1 — ac) — z(a* 4 ¢*) — (1 +ac) =0

wn?(l—ac) —n(a®+c)—1—ac=0=>n?>—1= n*+1Dac+n(a®*+c*) ~H —H, =
ac(a —c).

Let d be the common difference for A.P. and d’ be the common difference for H.P., then

b ba b

—a /7 b a a—
d= n+1’d ~ntl (ntl)ab
A.=a+rd=a+ T(:;f) = (nfryﬁ)la“b

1 _ 1, (n=r+l)(a=b) _ (n—r+l)a+rd
H, .1 a + (n+1l)ab —  (n+l)ab
(n+1)ab

= Hori1 = i yased

= ATHn—T+1 = ab.
Consider the equation (z —1) (z —2) (x —3) ... (x — 100) = 0. Its roots are 1,2, 3, ..., 100
So the equation is a polynomial of z of degree 100. Coefficient of 2'% =1

Now sum of roots of equation taken one at a time

1+24+34...4+100 = (—I)IM = —coeff. of 2%

coeff. of 2100
~coeff. of 2% = —(1+ 243 + ... + 100) = —5050

Sum of products of roots taken two at a time = coeff. of 2% = %[(1 +24+34+ ...+
100)% — (12 + 22 + ... + 100%)]

= 5 [50507 — 10IBXI02] — 19582075

ti = 12, 40, 90, 168, 280, 432, ... At; = 28, 50, 78, 112, 152, ..., A%t; =
22, 98,34, 40, ..., A%, = 6,6,6, ...

th =12+ 28710, + 227710, + 6.7 1Cy

Sp= (12+428"1Cy +22." ' Cy + 6.7 Cy)

n=1

S, = 12n + 28.%Cy + 22."C3 + 6."Cy

— 191 + 28. n(grl) +9292. 7L(n713)!(n72) +6. n(nfl)(z!fZ)(nfii)

=15 (n+1)(3n® + 23n + 46).

The series and the successive order differences are:
10, 23, 60, 169, 494, ...

13, 37,109, 325, ...

24,72, 216, ...
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Here second order differences are in G.P. whose common ratio is 3. Let ¢, = a + bn +
c.3" !

ca+b+ec=t1=10,a+2b+3c=t2=23,a+ 30+ 9c =t3 =60

=a=3b=1c=6=>t,=34+n+63""1

Su=3 tn=35(n*+Tn—6)+3"".
n=1

391. Here one factor of the terms is in G.P. i.e. x.

Now the series of the coeff. of terms together with successive order differences are
3,5,9, 15,23, 33, ...

2,4,6,8,10, ...

2,2,2,,2, ...

0,0,0, ...

Hence third order differences are constant. Now,
S =3+ 5z + 92° + 152% + 232* + 332° + ... 00
—328 = —9z — 152% — 272" — 452" — 692° — ...
32°S = 9z% + 152° + 272" + 452° + ..

—238 = —32% — 52" — 92° — ...

Adding, we get (1 —2)38 =3 — 4o + 322

.o _ 3—4x+32?
S = N

n—

392. Let t, denote the rth term of the series T !

t : 1 ., 2 2 _ 2 1 1 , 3 3 _ 3 2
1= ntn—1) " n-1 n*"2" n—2 n-1 n-2 n-1 n-1'3"n-3 n-2 n-3 n-2
1 t _n-2 n-2__n-2 n=3 1

n—27 o n=27= 73 37 2 3 3

_ n=2 1 1 1 1

tittototn =" (57—~ —3)

cHp ="t (ti b tot it tn) =1+ 4.+ L= H,

-1 z _ —1( 2z—x \ _ -1 -1
393. tan (1“2%2) = tan (1+z.2z) =tan " 2x —tan "z

—1 x _ —1( 3z—2x i —1 _ —1
tan (1+2.3:1:2> = tan (m) =tan " 3z tan™ " 2z

-1 x _ —1( (n+l)z—nz \ __ -1 -1
tan (wun(nH)IQ) = tan (~—————————‘1+n%(n+1)x) =tan (n+ 1)z —tan " nx

Adding, we get
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395.

396.

397.

398.
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L.HS. =tan'(n+1)z —tan'z = tan_l(m’@“”p> =R.H.S.

n+1)
The nth term of the given series is t, = —5— = - = 1( S — )
n 1+n2+nt (1+n2)2—n? 2\1+n%2—n  1+n3+n
1 1 1/1 1 1/1 1 1 1 1

"tl -3 (1 - g)’ t2 ) (5_ 7)7 t3 -2 <7_§)7 et tn -2 <1+n27'n - 1+7L2+n)
Adding, we get
S_l(lf 1 ) _ n(n+1)

2 1+n?2+n/) = 2(14+n+n?)’

= -1_2n _ -1__ 2n_ _ -1 2n _ -1 2n
tn = tan 2+n2+nt tan 1+1+n2+nt tan 14+1+(n?+1)2—n2 tan 1+(n?4+n+1)(n?—n+1)

—1 (n?+n+1)—(n?—n+1)
1+(n2+n+1)(n2—n+1)

= tan =tan'(n®4+n+1) —tan'(n —n+1)

sty=tan'3—tan ! 1ty =tan ' T—tan "' 3,... . t, 1 =tan " (n*—n+1) —tan"![(n—

tp =tan " '(n® +n+1) —tan"'(n® —n+1)

—1_n?+n
n2+n+2°

Adding, we get S, = tan"*(n? +n+1) —tan™' 1 = tan

i %[ﬁgﬂ] = %[lﬁzﬁi#] = 35 [4n* + 1 + m=nEo |

:%[4" +1+5 (2n 1 2n1+1)]

_ _ 1 2, 1 _ 1[n(n+1)(2n+1) n 1
Sn=D ta=g) nty) 1+ 322( zm)—z[fhff@(l—

1
2n+1>
n(4n2+6n+5)
=i % (4n® 4 6n+5) + = 16 2n+1 e+ 16(27:1+1)'

tk = QkGk+1 - Qgr—1, L1 = Qk41Qk+2 - Qkr = Ay rll = Qrlr4

a1+ (k47 —1)d]ty = [a1+ (k= D) d)tpsr = [a1+ (k—2) d]tp— [ar+ (k—1)d]tpsr =
*(1 +T‘)dtk

Thus,
(a — d)tl — (a1 + Od) t2 = 7(1 + T’) dtl

(a+0d)t2— (a1 +d)t3 = —(1 +7‘)dt2

[ar+ (n—2)d]tn — [a1 + (n = 1)d]tni1 = —(1 + 1) dty

(a— d)tl — [al + (TL— 1)(}” tn+1 = —(1 +’f’)d[t1 + t2 + ...+ tn}

aAnQn Antr—a0a v
t1+t2++tn_ +1- (r++1)d 0a1...a

Let a be the first term and d be the common difference of A.P. Let ¢; be the kth term
of the given sequence. Then,

1 1
7tk+1 =

by = = akly = apgrtpt1

AkOk+1--Qkt+r—1 Ak+10k+2--- Ak 41
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la+ (k—1)d]ty— (a+ kd)tpp1 = d(r —1)tge1 = (a+0d)t1 — (a+d)te = d(r—1)ts
(a+d)t27 (a+2d)t3:d(r71)t3

l[a+ (n—2)d]t,—1—[a+ (n—1)d]t, =d(r—1)t,
Adding, we get
aty— a4+ (n—1)d)t, =d(r—1)[ta+t3+ ... + t,]

l[a+ (r—d)d]t1—[a+ (n—1)d]t, =d(r—1)S[t1 +ta+ ... + 5]

tttot .+t = (T_ll)d( ar an )

a1a2...ar  ApGpil.-OGnipr—1

_ 1 1 _ 1
Sn = (r—1)(az—a1) <a1¢12~-a7- 1 GnilGni2..Anir 1)'
399. Let t; be the ith term of the series, then

1 = rrprsiirn ol = e p i
= D) (i42)(i+3) Vit T G (i+2) (118) (i +4)

= it; = (Z + 4)ti+1 = it; — (Z + 1)ti+1 = 3ti+1
1ty — 2ty = 3o, 2.6 — 3.3 = 33, ..., (n — 1) t; — nt, = 3t,
Adding, we get

t1 —nt, = 3(t1 +io+ ... +tn) = 4ty —nt, = 3[t1 +to+ ...+ tn}

1 1
t1+t2+.,.+t”:ﬁ—m-

_ n+2 o (n+2)2
400. tp, = n(n+1)(n+3) = n(n+1)(n+2)(n+3)
_ n?+4n+4 _ n(n+4) + 4
n(n+1)(n+2)(n+3) = n(n+1)(n+2)(n+3) ' n(n+1)(n+2)(n+3)

n(n+1)+3n + 4 . 1 3 4
n(n+1)(n+2)(n+3) ' n(n+1)(n+2)(n+3) = (n+2)(n+3) + (n+1)(n+2)(n+3) + n(n+1)(n+2)(n+3)

Now that we have found ¢,, we can find S, like previous problem.

g —29_ 1 _ 3 _ 4
n736 n+3 2(n+2)(n+3)  3(n+l)(n+2)(n+3)"

n 1 1 1

401. 1, = 1.3<5.7..‘(2n;1)(2n+1) —2 [143.5.7...(27#1) - 1.3.5.74..(2n+1)]

1 1 1 1

“t1 =3 (1 - 1_13)7 ta = % <1_13 - m)v oyt = % (143.5.74.,(27171) - 1.3.5.7“.(2n+1))

n+1 1 1 1 11

1 1
402. t, = (2n—1)(2n+1) 3™ — Z[znq 2n+1]'3" —1 [27171'3” T 2n+1 Tn]
1/1 11 1/1 11 1
stv=3(ti—53)t=i(s5—55)ts =il
11
2n+1°3"

1 1 1
Sn =71~ gn1 39 )-

1011 PR WA 1
F o)t T gl

[N
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P 2n—1 _1 1 - 1
n T 3711..(4n—1)  2|37.11..(4n—5) 3.7.11..(4n+1)

fo=Lt(l_ 1Ny, —1(L 1 =1 1

2=2\37 378 —2\837 37110 n T 2 3711 (4n—5) g1

1,11 1
hitta+ . th=3+3 [3 - 3.7.11,4.(4n71)]

1

1 1
Sy = 27 2°3711.(4n—1)

t,=n(l—a)(1—2a)..[a— (n—1)a], t, = ,%(1 —na—1)(1—a)(l—2a)..[a—
(n—1)a] = fé[(lfa)(l—Qa)...(l—na) —(1—a)(1—2a)...{a+ (n—1)a}]

oty = —é[(l—a) —1],t2:—qia[(1—a)(1—2a) —(1=a)],..

Adding, we get

S,=1[1—(1—a)(1—2a)..(1—na)l.

T a

_ _x _ (z+b1)—b1 __ z+by - _x(z+b1) _ [(z+b2)—=b2](z+b1) _ (z+b1)(x+bs2) _ x+by
t1=1,tx = ho . b h L3 biba b1ba - b1b2 by

" _ (z+b1).(z+bn)  (@+b1).(wt+bp1)
n+l — b1ba...b, b1bg...bn 1

. _ (z+by)...(x+by)
“Sp = b1ba...by .

nSp(n) = n[1F + 28+ . 4 0¥ = 1F 4 (1F 4 2.2F) + (1P + 28+ 33F) + L+ (1R 4 2R+
.. +n.nk)

= 1k+1 + [Sk(l) + 2k+1] + [Sk(2) + 3k+1] + ...+ [Sk(n — 1) + nkﬂ] = Sk(l) + Sk(Q) +
.+ Sk(n — 1) -+ Sk+1(n).

n® > 100 = n > 4, n® < 100000 = n < 22
SoS=5+634+..4+21%3 8 =13+ 23433+ 4°

S 48 -8 =134+22+ . 4213 (13423 + ... +4%) = 53261.
'n(n 1)

S=a+(a+1)+..+(a+n—1),=na+

5?2 =n2a®+n? (n—l)a+—" 2(n=1)2

t:a2+(a+1)2+...+(a+n—1)2:>nt=n2a2+n2(n—1)a+n2i2

Clearly, nt — S? is independent of a.

n+5 n+5 4 ad

Z4x—3 Z (—3) = 4(x—3) =0 19004 5) ~ 120 4 124 =
r=1 r=1

271+10n+8

“P+Q=12.



410.

411.

412.

413.

414.

Answers of Progressions 352

Let S be the sum of series, then
S=5"+7+94 .. tonterms 4 2°(3% + 43+ 5%+ .. ton terms)

=1343345%4 .. to (n+2) terms —1%—334+25(13 4+ 32+ 53+ ... ton+ 1 terms) — 2°

n+2 n+1

= (2i—1)° =28+ 2°) (2i — 1) — 32 = n(10n® + 96n” + 243n + 540).
i=1 i=1
Let S be the sum of the series and x = g;i, then
S=zx+32%+52°+ ...
xS =a2+32>+ ...+ (2n — 1)z !
1—2)S =a+222+22° + ... =2+ 221+ 2+ 22+ ... ton — 1 terms) —
(2n — 12" = g+ 2020 (9 — 1) S = {4 21”5;;;;*” — oyt
zzfz+21"“72?;t(l?;1).(2n71)x“’1 _ n(2n + 1)
Let S be the sum to n terms and = = i:i;? then

S=1+5x+92°+132% + ..
S =2 +522 4+ 923+ ..+ (dn+ 1) 2"

(1—2)S=1+4r+42® + 423+ ..+ 42" — (4n+ 1) 2"

_ 1 4z (zn1-1) (4n+1)z™ _ 2
S = 1 + (z—1)2 - -1 4n* — 3n.

tp = 110" +2.10>" 1 +3.10" 2+ .. +n.10" " + (n+ 1) 10" +n.10" + (n — 1) 10" 2 +
43107 +2.10+1

=107"[1+42. 35+ 3. g2 + - e ggamr | + (142104 3.10% 4 ... +1.10" " 4 (n+1)10") =
10281+ S5 S1 =14 2. 15+ 3.7z + ... + N1

S- 1 1 1 1

100 1 90
S1= 87(1 *W) 78117(;"
Sy =1+4210+3.10%+ ... + (n+ 1) 10"

108y = 10 4+ 2.10% + ... + n.10" + (n + 1) 10!

1-10n+1 n+41)107+1
Sy =5 +1 >9

Substituting S7 and S5 we obtain ¢, as

10n+1—1
%:( 5

2
) . Thus, the numbers in the sequence will be square of odd positive integer.

_ 2n+1 2n+1 6
tp =

12522+..+n2 n('nyflg(Qnﬁ»l) ~ nlntl)




415.

416.

Answers of Progressions

Adding, we get
6n

_ 1 101 1
n = (I+nz)[l+(n+tl)z] = <1+nz 1+(n+1)z>

po=i( 1 ) =it 1
1= \1¥z T+2x )22~ z\1+2z 1+3z )2 """

Adding, we get

t

1/ 1 L
Sn =3 (15~ o) = TG

. an-1 1 ( 1 )
" (1+a" 'z)(1+a™x) (a—1)z \14a™ lz 1+a™z

tp=—t (L Ny = ( r 1
1= ez \Tfz = Ttaz )2~ a—Dz \Ttaz 1+a%z

Adding, we get

1
S= (a—1)z (1+,c 1+a™ 17)
417. ¢ 1 _ V2n+1-—V2n-1
s 2n—1+v2n+1 2

418.

419.

g =Y3 1y Y5 V3
shh=% —5la="7F ~53

Adding, we get
g— \/2n42rlfl‘

Uy = QRAk4+1, L1 = Qh1Qk+2

g2ty = aplpt1

a1+ (k+1)d]ty — [a1 + (k—1)d]tre1 =0
a1+ (k—2)d]ty — [a1 + (k — 1) d]tg+1 = —3dity
w (a1 —d)t1 — (a1 + 0d) ta = —3dty

(a1 + Od) tg — (a1 + d) tg = —3dt2

[a1+ (n—2)d]t, — [a1 + (n — 1))ty 41 = —3dt,

Adding, we get

=3d(t1+ta+ ... +tn) = (a1 —d)t1x — [ar + (n— 1)) tn41

S = [a+(n—1)d](a+nd)[a§iln+l)d]—(afd) (a+d [3@ + 3nad + (n _ 1)d2]

ty = QkGK410k+2, Th+1 = Ak+10k+20k+3
Qp43tp = aglps1

[ay + (k +2)d]ty = [ay + (k — 1) d]te 1

),

353
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421.

422.

423.

424.

Answers of Progressions

[a1 + (k—2)d]ty — [a1 + (k — 1) d]ts1 = —Adty,
(a1 — d)tl — (a1 + Od) t2 = —4dt1

(a1 + Od) t2 — (a1 + d) tg = —4dt2

[a1 4+ (n—2)d]t, — [a1+ (n — 1)]tn+1 = —4dt,
Adding, we get

—4d(t1 + tg + ...+ tn) = (111 — d)tl — [al + (?’L — 1)]tn+l

S = la+(n—1)d](a+nd)[a+(n+1)d][a+(n+2)d]—(a—d)a(a+d)(a+2d)
4d

:%[4a3 +6(n+1)a®d+2(2n* +3n —1)ad* + (n® — 2n? —n — 2)d%).

4 o _ 2l 11
" n2(n+1)2 7 n? (n+1)?

Adding, we get
§—1__1 n(n+2)

(n+1)2 7 (n+1)%
tn = n(n + 1)7 S, = Z(n2 + n) _ n(n+l)6(2n+1) + n(n2+1)
= S" _ n(n+1§(n+2)

1 1

We have pI"OVed in earlier that On =13 3nT1)(nt2)(nT3)

1 1

N Op—1 = 18 m
Now it is trivial to prove that 18S,0,_1 — S, = —2.

t o= 2n+3 1 _ (3 1 1
" nn+l) 3" T \n n+l)”

31y 1, (3_ 1) 1
373)mB=371) 3~

at = (3—%).%71'2

Adding, we get

1 1
Sn=1-5n51-37

1

S=ftmtmtat..00,S =gm+tmtamt..00=>48 =5+mtmtt ..o

2

48'=8= 8 =% ig+mtmt..oo=> 8- =35="

354

In previous problem we have proved that %+%+%+ .00 = g—z and %—I—%—i—%—&- .. 00 =



Answers of Progressions

425 Hy=1+g+2+.+i,=n—n+l+i+s+..+x

S0 ()= (1] e (1-4)

=n—(3+3+3+..+22).

. . . 1 1 2 4 2n gn+l
426. We can rewrite the question like 55 — -5 — e e SR L H T N

1 1 2 4 on

L.H.S (171 z+1) T 2241 1 22741

( 2 2 ) 4 o

—\z2-1 2241 %41 22" +1

= (=2 : P ing similarl btain R.H.S

= (g1~ 771) — - — g5 Progreessing similarly we obtain R.H.S.

427. Multiplying and dividing by 1 —3, we get L.H.S. =
&)
(=) (1) (14 ) (1455)
— (1) (1) (1 5

Proceeding similarly we obtain the R.H.S.

428. Since A.M > G.M.

+ + +
D> Vay, SE > Vyz, S > Ve

213 (1+1) (1+2) (14+%)

N2

EEEE) 5 gy o (1 - ) (1—y) (1— 2) > Saye.

429. Since A.M > H.M.

b 3 1,1,1
.-,G+3+C > l+,l+l = (a+b+c) (Z"'B"‘Z) > 9.
430. Taking A.M. and G.M of 7 numbers §,§,§,g,g,§,§, we get
c 1 1
2+3 LR 2 3 277 2p3 02 7 2 31094
225 [V G 6] =2 (Fom) = T2 g = 20 < B2
n n n n n
431.Zaibi=2ai(1—ai):Zai—Za Z i—a+a)?
i=1 i=1 i=1 i=1 i=1
B n 5 5 ) n 5
=na—>» [(a;—a)"+a*+2a(ai—a)l=na— ) (ai—a)*—na +2az
i=1 =1 i=1

n

355

(1+

a; —na)

a(l—a) i i—a)?=nab— Z na+nb:Z(ai+b,-):n:.aer:l.

i=1

432. Let ap4+1 be a number such that |a,+1]| = |an + 1]

i=1



433.

434.

435.

436.

437.

438.

439.

440.

Answers of Progressions

Squaring all the numbers, we get

a%:O,ag:a?+2a1+1,a§:a§+2a2+1,...,a721

Adding, we get

356

a271+2an,1+1,ai+1 =a242a,+1

ai+ai+..+tai+ai  =ai+a3+..+ai+2(a+az+..+a,)+n

=2(a1+az+ ...+ ayn)

We know that A.M. > G.M.
a+b > \/7 b+c > \/“ > f

Multiplying, we get (a +b) (b+¢) (¢ + a) > 8abc.

a+c

We know that A.M > H.M.
Tt+yt+z 3 1 1 1 9
>3 2oty tz2e
ERETRR-

We know that A.M > G.M. = 138044021 > (135

=2> (135...(2n—1))" = n" > 1.35..

(2n—1).

—n+al ,>-n= (a1 +az+..+a,)/n>—1/2.

(2n — 1))

We consider seven numbers five of which are 2 + x and remaining four are 7 — z. Now,

we know that A.M > G.M.

47T+52+T 77w42+x55 9
¢$2[(T) (T)] =52

(=)' e

il

ca

= (7T—2)*(24 z)® < 4%.5°. So the greatest value would be 4%.5°.
We know that A.M > H.M.
2ab bc o 2bc cta - 2

=2 I 2 ire S 2

+b+ b
=5 2 pre b+c cc+aa aaier'
(a—0)2>0,(b—c)?>0,(c—a)?>0

(a—b)? (b—c)? (c—a)? 2452 b2+ 24
= lah s g (ool s g (ca) 5 g o 202 9 PR 9 el s
SE4+2404 42> daatbyg
We know that A.M. > H.M. &E22rettn > ul

(~L1+£2+ +‘£’VL>

:>(1‘1+x2+...—‘,—xn)(zil—i—ziz—o—...—l-m—i) >n?

We know that A.M > G.M.Considering 1 and z°" =

14+y2m
2

and 3*™ 1™ =qy™

Myltiplying. we get

122 > V/1.227 = ¢™ Considering 1



Answers of Progressions 357

(1+x2n) (1+y2m) Z4xnym:>wﬂl_w§

1
(I+227)(1+y>™) = 4

441.Let b—c=2,¢c —a =y and a —b = z,= x + y + z = 0. This also implies that
a+b—2c=x—y,b+c—2a=y—z,c+a—2b=z—=x
Clearly, r+y+2=0

(zfy)ﬂ(ygzyﬂzfzy = z2“§2+22 =224+ 92+ 22— 2xy — 2z — 222 =0

Given,

= (z+y+2)?=4(zy+yz+2e) = sytyz+2e=0= (c—a)(a—b)+(a—b)(b—c)+
(c—a)(b—c)=0

= ca—bc—a’+ab+ab—ca—b>+bc+bec—c®—ab+ca=0= ab+bc+ca—a®—
V—c?=0=(a—b)2+(b—c)i +(c—a)’=0=a=b=c



Answers of Chapter 3

Complex Numbers

10.

11.

12.

13.

14.

15.

16.

17.

18.

Let z = 7+8i, and vz = /7 + 8 = z +14y. Squaring 7+ 8i = (22 —4?) + 2izy Comparing
real and imaginary parts 22 — y? = 7, 2y = 4 = 2% + 3? = V/113. We discaard —/113
as that will make z, y complex.

= \/7+2\/1137 y = \/\/121377.

Let va? — b + 2abi = x + iy, then on squaring and comparison of real and imaginary
parts, we have 22 — > =a? — b ay =ab= 22+ =d?+ > =z =a,y = b.

V8142 = v/+9i and now we can solve it like previous problems.
Let _z? 2 1(x vy 31 [z, y)2 2zz y 2 fx oy i)\2
ete=Gthn(fH)+n= G+ -2+ +5=(G+13)

i

~ square root = i(%"‘;y.—z).

We know that i4 —1.Let 2z = in+80 +,L-1L+50 n+4 20+ -n+12.44+2 __ ’L"+in+2 — in _,L-n _
0.

Let z = ("4 %) = (4 4 i) = (40)° = 8i% = —s.

(1492 2 2-3i _ —6+4i
Let 2 =5 =o9m =3 = 13
Let » — ( L ) 7T+8 2 (T+8i)(7+8i) _ 2-15+112i _ —15+112

“\TF T 1) 78 T 1-i2(7-8i)(7+8) 2 49+64 113 -

()T ()1 g (1-4)2 120442 .
Let s =i ="gmr == 1w% - 2 = @
Let » — 1 _ 1—cosf—2isinf® _  1—cosf—2isinf _ 1—cosf—2isinf

T 1-cosf+2isinf ~ (1—cos)?+4sin?60 = 1—2cosO+1+3sin?0 = 2—2cosf+3sin? "

_ (cosz+isinz)(cosy+isiny) . | _eme
Let z = (cotut?) (ittanv) . Using Euler's formula, we have z = = =
sinu ' cosv

sinu cos v.e @YY = sinw cos v cos(z 4 y — u — v) + isinucos vsin(x +y —u —v).
P TS G
7:67 _ Z'64+3 — iB — —i[’-' i2 _ _1]
—59 1 .
(2 = AT =1.
42014 _ ;450342 _ 2

la| = —a = vab = /]a|bi.

Let z ="+ "t 4724 n43 = g m — " — 44" = 0.

13
Z i +Z’n+l ZZ +ZZR+1 Z+Z2+713++213)+(Z2+Z3+Z4++214) —i—1.
n=1

358



19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Answers of Complex Numbers 359

on (144)2n on + (1+i;i2i)” _ iin+iyz _ iig';_i_in _ Zn<ﬁ+ 1) _ i”[(—l)n-i-

(1+4)2" on (1+i2+2i)"

1].

,L‘2’L

mﬂ Substituting n = 1, 2, 3,4, z = 0, 42 i.e. there exists three

Let z =" + % =
different solutions.

4x + (3z —y)i = 3 — 6i. Comparing real and imaginary parts, 4z = 3,3z —y = —6 =

3 9 33
171 y=-6=y=7.

(5+i3)+ (4+i3) — (—3+i) = (3+4+3) +i(5+3-1) =F +i3.

(the2i | @30Uti _ o [(1 4 d)a — 2i](3 — ) + [(2 — 3i)y + ] (B +1) = i(3 +
1) (3—1) = (4o + 9y — 3) + i(2x — Ty — 3) = 10i. Equating real and imaginary parts,
dr+9y =32z —Ty=13=z=3,y =—1.

e sl 11 4430 _ 443
The multiplicative inverse is ; = ;=5; = 7=5; - 755, = 25

[(z1zatyiys)ti(zoyr—21ya)] _ 8—i
z3+y3 5°

Let 11 = 2,91 = 3,z2 =1 and yo = 12. %:

21 = 2 = 9% — 4 — 10z = 8y? — 20i. Equating real and imaginary parts, 9y> — 4 =
82=>y=+2and —10c=—20=>0=—2=2=zx+iy=—2 =+ 2i.

Let z=xz+iythen [z +iy+ 1] =z +iy+2(1+i) = /(z+ 1)+ y?> = (z+2) +i(y +2).
Equating real and imaginary parts, y+2=0=y=—2and (z+1)?>4+¢*= (z+2)°> =

P25 =4=2+dr 4= =1 =104

1420 (1420)(143i) _ 14364204612 _ —5+45i _ 1 1.

Let z =15, = @7 = 119 =~ — 3713’
12 | 1 1
=l =y/(=2) +z==5

1
tanf =2 = f=tan 1 —1="3",

Given, 22+ 42 = §(3—4) (3+1) = (x—3)(3—i) + (y—3) (3+1) = 10i = 3z — 9 +

i(3—x)+ (3y—9) +i(y—3) = 10i

Comparing real and imaginary parts, we get 3z +3y — 18 =0 and y —x =10 = = =
—2,y=28.

(1432 =142—i=2 = (1+)% = (2)?° = 22546+1 = 925 Thus, real part will
be 0.

Let z = x + iy then x + iy + /22 + y? = 2 + 8i, Comparing real and imaginary parts,
wegety=8and x + Va2 +y?=2= Va?+y?=2—2

=2’ +6i=4—4dr+2°=r=-15=2=—15+8i.

S =i+ 2%+ 3%+ ... +100i*%° = S = 52 + 2% + ... + 990 + 10040

= S(1—i) =i+ + ..+ — 10010 = {2220 100;10!

_i(1—4101) 100101
S="mr — 1



33.

34.

35.

36.

37.

38.

39.

40.

41.

Consider t; = + Tl_wl +

+

= 2<1+1

Similarly all other terms and sum will be zero.

1)% -

Given, 22 —2—5+5i=0= D = (—

VD

Answers of Complex Numbers

—1— z)_o

_ l4itl—g

—14+i—1—1

1

2_

K3

2

+

177

VD = V2 —dac = /21 = 20i = i[\/ﬂ””yz*”” —

21

1+5-—2: 1-5
:+2 101"2' +

Thus, product of real parts = —2 x 3 =

Given, 25 = -z = |z\3 —

If |2 =0, then 2z =0.If 2] =1 = |z]? =1 = 2z =

2

=2z2=3—10,1—2

—6

=] = +(5—

360

2 —2
=5t5=0

4.1.(=5 + 5i) = 21 — 20¢ and we will need

. [22q2
Z\/ 2

2)

|2l = [2[(l2 = 1) (]z] + 1) =0 = [2[ = 0, |2] = 1[+ || + 1 > 0]

has four distinct roots. Thus, given equation has five roots.

1= 22 +1=0=2*+1=0, which

Since we have to find real roots, let z = z, a real value. The given equation becomes

23 +ix—1=0= 2® =1,z = 0 which is not possible. So there are no real solutions.

Let z = x + iy, then /22 4+ y2 > 1, because point A is outside circle.

T—1Y

W=

v SO
$2+y2 T +y27,2+y

Yo<1

This leads to the fact that point E is reciprocal of point A.

, which is purely

z=(3p—"7q) +i(3q+ 7p), which is purely imaginary, = 3p —7¢ =0
SE=llyi=j+im Y
= ptig=T+3i=z=21+9i+49 — 21 = 58 = |2|? = 3364.

. _ (a—ib)? a+ib\2 _ (a—ib)4+(a+ib)?
Given, a = (i=3) + (557) = (-t
_a*—4a3.ib+6a2i2b2—4ai3b3+ b+ at +4a3ib+6a2i2b2 4 4ai3b3+b* _ 2a*—12a2b242b*
= (@+57)? = T (@R
real.
Let z = 2 4 4y then given |2| = 1 = 22+ 32 =1

(z—1)+iy (z+1)—

Let f =27 = tw

(z+1)+iy

214y +iy(z+1l—z+1)

iy

(z+1)+iy " (z+1)—iy

2iy

(z+1)2+y2

(z+1)2

gy which is purely imaginary.

Let z=a4iy =2+ (y—3)2=9=2=23cosf,y =3sinf+3

z=3[cosf+i(sinf+1)] = S[Sin(g— 9) + i(l +cos(g— 9))]

= 3[2 sin(g g) cos(

>+ZZCOS (

0
2

2]



42.

43.

44.

45.

46.

47.

48.

49.

50.

Answers of Complex Numbers 361

_ 6005(17 g) [sm(z —') + 2005(4 g)] = 6cos<%f g) oi(ita)
cotlarg(2) = con(5+3) = tan(-2)

§—bec(z—g>6_i(%+g):secG—g)[sin(%—g zcos(z g))]

= tan(% —g) — 1 = cot(arg(z)) —g = .
Let z =r(cosf + isinf) = 111\(} = 1;133 . izg = _16(11;;‘/5)

g

=—4+i4V3 thenrcosf =4,rsinf =43 = 1> =64 = r =4, C059—2751H9—7

27
0=7%

=z= 8(cos%ﬂ+ isin%”)
Let z = r(cosf + isinf) then because arg(z) + arg(w) =7 = arg(w) =7 —0
= w=r(—cosf+isinf) = —r(cosd —isind) ~ r = —w.

a—ib _ (a—ib)(c+id)

T—iy = Zld?f*y —2ixy = = {ac+bd)—i(bc—ad)

= 22— y?—2ixy =

c?+d? c2+d?
: o bd be—ad
Comparing real and imaginary parts, we get 2% — 3 = ZCIUF , 20y = T
2 2\2 _ /.2 242 2 2 _ (act+bd)?*+(bc—ad)? _ a?c?+b2d>+b%c?+a?d? _ a?+b?
= (7 +y°) = (" —y") + 427y = (21 d?) = (2 d?)? T

We know that for two complex numbers z1 and zg, |21| + |22| > |21 — 22|

lz| + |z — 2| > |z — (2 — 2) | = |2] = 2. Therefore, minimum value is 2.

21+ 20+ 23] =[(z1— 1)+ (20— 2) + (23—3) + 6 < |21 — 1| + |20 — 2| + |23 — 3| + 6
<1+2+ 346 =12. Thus, maximum value of |z, + z2 + 23] is 12.

ot BI* = (a+B) (a + B) = (a+B) (@+P) = aa+af+ap+ B8 = o +|B* + B +ap
Similarly, o — 8|* = |af? + |8]* — af —aB

Thus, [a|* + |8° = 3 (Ja + B + [a — B%)

If |2 =0 then /22 + 2 =0= 22+ 4% =0

Above is possible if and only if t =0 and y =0 = 2z = 0.

Ziza _ (120)(2470) _ 24720470 _ 9451 _ 9450 1=i _ 94545i-9i _ 7 o Im<zlzg) — 9
#2172 oT T = .

1+4 T o140 T 144 12 2

zZ1 1+ -

|2+ 12— 6i] < |z —i| + 12 —5i| < 1+ 13 = 14.

Given, |z4+6| = [2z+3|,let z=x+iy = (x+6)2+1° = (22 +3)2 +4° = 22 + 120 +
36 + 9% = 42 + 122 + 9 + 49>

=322+ 22 =2T=2"+9y°=9=|2|] =3.
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Given va — ib = x — iy, squaring we get a — ib = 2® — 3? — 2izy. Comparing real and
imaginary parts, we get a = 2% — y% b = 22y = a + ib = % — y* + 2izy = 22 + i %y* +
2izy = Va +1ib =z +iy.

L1223 ...00 = <cos§ + isin%) (cos% + isin2—"2) .00 = cos(% + 34 oo) + isin(g +

U
1

=cos2 1+zsm2 . ;=cosm+isinm = —1.
2

(cosO+isin®)* _ (cosf+isinf)?
(sin 0+ cos 0)° i5<%sin0+cos 9)“‘

Given,

_ (cos@+isinf)* _ (cosf+isinf)* _ 1 B P
H(cos0—ism ) = Hcos01isme) T = 7 (cos@ + isin0)? = sin 99 — i cos 96.

5 T .. 15
z = [cos +zsm6] +[cos——zsmg]

6
5
= cos X +zsm—+cos%—zsm772c% ~Im(z) =0.
™ LT g . 1 . 2nm+m 2nm+m
z= (0055 + 2s8in §> = (cos7 + isinm)i, thus general root is cos=— —tisin=——

Thus, substituting n = 0, 1, 2, 3 we find four roots and the product is
(cos% + isin%) (cos%7r + isin%ﬁ) (cos%7T +i sin%) (COS%T + isin%)
G
~(4-HE-H=1-1mL

Let z; = ri(cosz + isinz) and zy = ry(cosy + isiny) Then (r;cosz 4 rocosy)? +
(r1sinz + rosin y): = r% + 7‘% + 2rory

= 2ryro(cosweosy + sinzsiny) = 2rarg = cos(z —y) =1 => 2 —y =0 = arg(z) —
arg(z) = 0.

Let 2 = 1 —sina + icosa = r(cosf + isinf), then r = /(1 —sina)?+ cos®>a =

V2 —2sina

cos 1—tan?3 _ 1l+tang

tanf = ~=%_ — :tan<375):>0zﬁ—g.
1—sina 1+tan?5—2tansg lftan% 42 4 2

1+sing+icosg 1+sing+icosg 1+sing+icosg

Let = [ Tronét i}:[ e ey
1+sing—icosg l+sing—icosg l+4singt+icosg
2

(1+sin§) —cos?F+2i(1+sing)cosy  2sing+2sin?F+2i(1+sing)cosg
- (1+sm >+cos 5 - 2+2sing
:sing+icos§:i<cos8—181n >:>z i3(cosm —isinm) = —1.
107r S 107r
2129232425 = COS -+ 12 sIn

30m | . . 30 ..
= cos == + isin =" = cos 67 4 i sin 67 = 1.
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1

_ 1 o I+' . 1 o 1 ™
Zn = COS\ 931 ~2p73) -2 TS 551 T 2a13) 2

1

. 1 1
212923 ... 00 = COS 5—5+;7

1 1 1 ™ R 1 1 1 1 1 1 T

= COS & +zsm6

Let 21 = oy +dy1 and 20 = o + iys = |az; — bz|® + |bzy + az)® = (ax; — bxp)? +
(ayy — bya)? + (bxy + ax2)? + (byy + ays)?

= a%2? + b2l — 2abzi 20 + a7 + b2yE — 2abyrys + b22? + a®xd + 2abx1x2 + b%y?
a?ys + 2abyrys = (* +6%) (21 + yi + 23+ 43) = (a® +5°) (|21 + | [*).

B?
Yy+iz—

Let © = y + iz, then given expression becomes + 5+t =y+iz+1

A
y+iz—a L/+zz h

AQ(yfafiz)+ B(y—b— zz)+ it H?(y—iz—h)

y + iz + [. Comparing imaginary parts, we

(y—a)?+22 (y—b)+ (y—h)2+22 _2 )

have 722[(31_‘4)2 z+( B)z 2+ +( }I)+Z] lZilZ[l*F( A>2 2+( B)2+Zz+
H?2

S (y*a)2+z2] =0

Clearly the term inside brackets is non-zero. So z = 0.
Let 2 ®=p, then |1 +4i—p| <5= (1—p)?+16 <25

1-p<43=p>4,2=2>-2p£0=pe[-2, ]

. - +i i cti 2—-142i
A unimodular number has a modulus of 1.cos + isin § = £= = S8 2L — o

. . . c2-1 0
Comparing real and imaginary parts, cos) = 55 = ¢ = £ coty
a2 _ 0 0 e 6
and sinf) = =5 = ¢ = cot 3, tang. So the common value is ¢ = cot 5.

(22 43)2=—16=16i>= 2> = -3+ 4i = |2°| =5 = || = 5!/,

sin%+cos%—itanx sin%#—cos%—itanw 1—2isin§

1+2ising 1+2ising "1-2isin§

cos —2sinZcoss

Since it is real so imaginary part of this will be 0. = —tanz —2sin3 5CO85 =

0

2

2sin §COS 5

231n%<sin§+cos%)+ =0=sin3=0=z=2n7 where n=0,1,2,3..

cos T
or (Sing+cosg> cosx + cosy =0 = tan?’%ftang—Z =0

If « is a solution of above then the set of possible values are x = 2nm + 2a. Solving the
cubic equation is left to you.

Let z; = x1 +iy; and 2z = xo+ iys then |21 + 22|? + |21 — 22| = (21 4+ 22) 2 + (Y1 +12)2 +
(21— £E2)2 + (y1 — y2)2

=202+ + 23+ 43) =2(z )"+ |2f).

Given, 22 —z4+1=0= 2 = —w, —w?
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M

1

3
Il

2 5
(2 = e o)
n=1
1

(s 2) (o 2 2) (o5 2) (20 2) 4 (205 42

=@+t +2% 428420+ (Z+ S+ +a:+m)+10

=W+t + P+ + (GGt st st on) + 10

=—1-1+10=38.

49 . . 1-iv3) 1% _ 100450 100 49 . 50

3 (x+zy)=[zx/§< 5 )] =03 (—w) P = 3¥(z+iy) =3 w
:E—‘riy:—%-i-#i#aﬁ:—%,y:#.

|21+ 20f” = @7 + 23 + 47 + ¥3 + 20182 + 2019 = |21 + |22 + 2(z1 22+ y190)

Now, 2Re(z1%z2) = 2Re[(x1 + iy1) (w2 — iy2)] = 2R[z122 + y1y2 — i(T1y2 + 2201)] =
2(z122 + v1y2)

Similalry, 2R (Z122) = 2(z122 + Y1Y2).

1 1 zotz
RHS: Z_1+Z_2 = ;1221
Since |z1| = |z2] =1+ |z122] = 1 and thus |21 + 22| = Zil—l—zi? .
_ ; 2 2_ 4.2 2 2 2 _
Let z=x+ iy, then x* —4dx +4+y“ =42 —8r+4+4y° = 3z 4+ 3y“ =4z

= 3[2[> = 4Re(z) = |2|* = § Re(z).
Given Va +ib = +iy = a+ib = (z +iy)® = 2° — 3zy® + i(32%y — »°)

Comparing real and imaginary parts, we have a = 2® — 3232, b = 322y — 3° = % =

x2—3y2,§: 3% — ¢

.a b _ 2 2
SOt g@ ).

. ib . ib . ib ib 2 p2
etiy=\[ea = @+i)’ =55 = @+ iy)?| = 55| =[5 = @+ =T

. i.2rT
Let z=1=1cos0° +isin0° =™ Vic N = {/z=¢ » . Clearly, |z| = |zx41| = 1.

_ 41
2”7(z+1)":>2j_171/"

z
z+1

. z . .
This means _77 is nth root of unity. = =1

Sl =le+1=za?+y? =2 +20+1+y >0 =—1= Re(z) <0.

Roots of 1 + 2 4+ 22 = 0 are w and w?. Let f(z) = 23 4 %771 4 2372

3n

_ 3m @ 1, 1 l4wtw?
flo) =2 + = ctm=—m =0

+o s flw) =1+
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Similarly f(w?) = 0. Thus, we see that f(z) has same roots as 1+ z + 2 = 0. Hence,

f(z) will be divisible by 1 + x + 22,

.

V3+i= 2(§+1%) = 2(cos%+ isin%) = 2¢'0

™

Similarly, v3 —i = 2¢'6

Since imaginary part is what prevents equality we need to get rid of it and the least
value for which it will happen is when argument is 7. Thus, we need to raise to the

power by 6 making n = 6.
V3—i= 2.(COS%—iSiH%>
Thus, (V3 —i)" = 2" = 2”(005% — isin%) =2"

=cosy—isinF =1=%=2%knrVkel=n=12k

Thus, n is a multiple of 12.

Given, 24+ 22 + 222 + 2 +1=0= (224 2+ 1)+ 22 +2+1=0

S (PHDEA 2+ 1) =022 +1=0=2=i=|2|=1

If24+z24+1=0=z2=ww?=|2z|=1.

crm Tl T = 1= 80 175 289 (T 24 (T)25 4 Ty 2 02 1 2
—1

Given, 28 +22°+3242=0= 22+ 22+ 22+ 224 24+2=0= (2 + 1) (2> +2+2) =0
If z4+1=0= z= —1, which is real and is of no interest for us.

If22+z+2:0:>z::1—2i—‘ﬁ

z=V1=2=1

2 —2 -1 2 3 4 5
2\1+z+z +2 =27 2\1+z+z +2°—2 \[ 24 —1= 271 :% =z

5
2, .3, ,4_o.4 ’1*2 _224‘ 4
:2\1+z+z +2%42 22\:2 Tz :2\22\:22:4[7‘3‘:1],

Let S=1+4+32+522+ ...+ (2n—1)z""}

=28 =2+32452+ .+ (2n—3)" 1+ (2n—1)2"

=>(1—2)S=1+224+224234+ . 422" 1+ (2n—1)2"

= (1—2)S=1+2n—1+2[z+ 22+ ... 2" [~ 2" =1]

=2n+2. —1[v14+z+22+. . +2"1=0]=5=""".

Let z=V—1—vV—1-Vl-oo=z=v-1—2

:>z2=—1—z=>z2+z+1=0:>z=:1—i§i—@:>

which are complex roots of the given equation.

‘]

z=w,w"
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i27m

Given, z = e » , which is nth root of unity.
cah—1=(z—1)(z—2)(xz—22x—2%)..(x — 2"

Putting z = 11, (11 — 2) (11 = 2%) ... (11 = 2" 1) = 11:(;1.

. 3 _ . -1 3(2+cos f—isinb)
GIVQH, 3Fcosfrising ¢ +ib=a+ib 5+4cos @

. . . _ 6+3cosb _ —3sin# 2 2
Comparing real and imaginary parts, we get a = =75, b = 555 o5 = a” + 0" =
3636 cos 0+9 cos? §+9sin? 6

(5+4cos0)?
_ 45+436cos@ _ 9(5+4cosh) 9 g _ 24+12cosf—15-12cosf __ 9 2 2
T (5+cos0)?2 T (5+4cosf)2 ~ 5+4cos6’ da—3 = 5+4cosf ~ B+4cosf =a”+b"=
4a — 3.
Let z = 2 +iy, = |(2z — 1) + 2iy| = |(x — 2) +iy| = 42® —dz + 1 + 4y* = 2% — 4z +

442322 +32=3=22 4+ =1= 2| = 1.

. 1—ix . . 1—ixz 1—ix
Given, ;T =m+in=m+in= 15 .7
. 1—22-2ix C . 1 and i . . 3 _ 1-z? _ 2z
m +1n = — =, Comparing real and imaginary parts, m = T2 = 12
2 2 _ (1—22)%2+422 _
=m“+n = qreor 1.
z z 1
We know that the equation of a straight line is given by | 23 zZ71 1 | =0
z9 Z5 1

= 2(z1 —Z2) —Z(21— 22) + 2172 — Z122 = 0
=z(1+i—1—i)—2z(1+i—1+i)+(1+i)* - (1-i)?=0=2+2—-2=0.

Given, 521 — 1329 + 823 =0 = 25 = ir’f%}_gz“

This means z; divides the line segment joining z; and 25 in the ratio of 5 : 8 which also
z1 71 1

implies that these three points are collinear. Thus, | 20 23 1 | =0
zZ3 73 1

We know that length of perpendicular from z; to az + az + b = 0 is given by @%ﬁ"z\w

2-30)(3+4i)+(2+31)(3-40)+9| _ 45 _ 9

2[3—41] 0~ 2

Thus desired length = I
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Since mid-point lies on the given line, therefore b(@) +
T( 21t
b(—z12z2> =c

z2

Z1+22
2 Since line segment joining z; and z, is perpedicular to the given

b%Z + bz = ¢ line therefore, Slope of 2122 + Slope of line = 0

21
Solving these two equations, we get bz + bZ] = c.
Let 2 = 2 — i then after rotation new point would be z.e"™? = (2 —1) (cosg +isin 3) =

2
(2—i)i=1+2i.

Coordinate of 2y after moving 5 points horizontally and 3 points vertically away from
starting pont would be 6 + 5i.

It then moves in the direction of vecor i + j for /2 units. This vector makes angle /4
with z-axis. So new coordinate would be 6 + v/2 cos /44 5+ V2sin /4 =7+ 6i.

It then rotates by angle 7/2 so new coordinate would be (7 + 6i) ™2 = (7 + 6i)i =
—6 + Ti.

North-East direction makes angle of w/4 with z-axis. So coordinates of point 3 units

from origin in North-East direction = 3.e™/* = 3(COS§ +1 sin%) = % + Z%

North-West direction makes angle of 37/4 with z-axis. A disaplacement of 4 units
in this direction will mean a shift in coordinates by 4.5 = 4(COS%T7T + 4 sin 3”) =

=z
— % + ¢sin %.
Thus, final coordiate would be sum of the above two i.e. —wlﬁ + zjﬁ

. z1—z3 _ 1—iV/3 _ 1—iV3 1+iV3
Given, e =T =T
143 2
T 2(1+iV3) T 1+4V3

zo—z3 _ 144V/3 _ s Fain T

e, — 3 — 0083 +ising

z—zs| _ 22—z @
= |2 = 1 and arg(zl*zS) =3

Hence, the triangle is equilateral.

Since sides of an equilateral triangle make an angle of 60° with each other, therefore
— 05 60° + sin 60° = =13

23”21
Z2—21

= 223— 2214+ 21 — 20 = +i(20—21) V3= (223— 21— 22) 2 = 3(20—21) % = zf+z§+z§ =
2129+ 2223 + 2321

2 2 2
= 2129+ 2923+ 2321 — 2; — 25 — 23+ 2120 — 2122 + 2223 — 2923 + 2123 — 2123 = 0

= (z1—22) (22— 23) + (22— 23) (23— 21) + (23— 21) (21— 22) =0 = LSRRI SRR

Z1—R22 22—23  Z3—Z1
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100. Since it is an equilateral triangle, therefore centroid and circumcenters would be iden-

tical. « zg = ZEE2E2

Since it is an equilateral triangle, we have just proven that z% + zg + zg = 2z129+ 2923+
Z321

From first equation, we have = 9z§ =242+ z?) + 2(z122 + 2223 + 2321)

=020 =2+ 25+ 25202 + 25+ 23) = 320 = 27 + 25 + 2.

101. Since right angle is at z3, therefore % =™ =i (zp—2)2 = (21— 23)2 =
24 23— 22z =—2t— 22+ 22123
= z% —+ z% — 22129 = —22§ + 22023 + 22123 — 22120 = (21 — z2)2 =2(z1 — 23) (23 — 22).

102. Clearly, |z — z)? =1 = (2 —20) (Z=20) =1 = (2 —20) (Z— %) =12

= 2Z — 229 — 220 + 2020 = r2.
103. Given, z = 1 —t+ivt? + t + 2; comparing real and imaginary parts, we get x = 1 —t,y =

Prt+l=92=t24+t+2
2 _ 2 _ 3\2 | 7 S .

sy =1—-2)+1—-z)+2= (a: — 5) + 7, which is equation of a hyperparabola.
104. Given, Z =a + % = (Z—a) (2 —a) = r?, which is equation of a circle with center at a

and radius 7.

105. Since z; and 2 are ends of diameter = |z — 212+ |z — 2| = |21 — 2> = k= |21 — 2> =
[24+3i —4—3i]> = 4.

106. z = = + iy, then |(z + 1) +iy| = V2|(z — 1) + iy|
Squaring both sides, we get (x 4+ 1)+ ¢*> =2[(x — 1)+ ¢*] = 2> + > — 62 +1 =0,
which is equation of a circle.

Z71.|:1:> |z —1] = |z — i

zZ—1

107. Given,

Let z =z + iy, then we have |(x — 1) +iy| = |z +i(y — 1) |

Squaring both sides, we get = (x —1)?4+y? = 2® 4+ (y — 1)*> = 22 = 2y = = = y, which
is equation of a straight line.

108.
D() Clagy 271 = W50, 420 = arg(555), L2 = arg(355), and
Lzy = arg(ﬁ)
L2+ Lzz =7 = arg Z:Z + argcz:z‘z‘) =7
A1) B(z) = arg(%—:—;i;gj————f—}%) =T = %% is real number.

. 2 _ 1,1 z2—z1 __ 22
109. Given, LT = arg(

Z2—Z21
23—21

z3
) =m—arg:
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Zo—21 z3—0

= arg(m> + arg(zz_()) = 7 Thus, the given points and the origin are concyclic.

From the equation of circle, 72 = |w—w2\2ér2: |i\/§|2:3é7": V3.
Let z=x+iy= (z—4)2+1° < (2 — 22+ = 2> -8x+16 <2’ — 4z + 4= 4z >
12=2>3.

. 2 2
Given, 221—3z2+23=0:>22=%=%

Thus, z; divides the line segement z;z3 in the ratio of 2 : 1 i.e. all three points are
collinear.

Given, [z +1|=|z—1|= (z+ 1)+’ = (-1’ +3’=2=0

T

=I=2-1=(z+1)e= —1+iy= (1+iy)(cos§+isin4)

Also, given that arg Zi

é—l—kiyz(l—i—iy}(%—i—i%):>y:\/§+1.

Given, |28 = |z =18 = |2| = |z — 1|, = 22+ 4 = (x—1)2+y2:>1::%,y6 (00, ),
which is equation of straight line parallel to y-axis at x = 1/2.

Given, zz+az+az+b=0=z2Z24+az+az+aa=aa—>

(z+a)(Z+a@) = |a|? — b, which is equation of a circle if |a|> —b > 0 = |a|? > b.

Let z = = + iy, comparing real and imaginary part gives us z = A + 3,y = V3 — \2 =
P =3\

= (2 —3)%+y? = 3, which is equation of a circle with center (3,0) and radius /3.
Let z = x + iy, then |Re(z) |+ |Im(z)| = k will give us four equations. z +y =k, z —y =

k,—rz+y=kand —x—y=%k

These lines will intersect at (k, 0), (0, k), (—k,0), (0 — k) giving us a square as locus of
z.

m=ti=im=rati=i—lzy=25+i=(i—1)2+i=—i,z5=25+i=1i—1,25=
Zti=—i

Thus, we see that it is a cycle between —i and i — 1 starting at z3. = 2111 =23 =1—1 =

|z111] = V2
Given, 22° + 2% = 350 = 22(2% + 27) = 350

Let z = 2 + 1y, then given equation becomes 2(x?+y?) (2% —y?) = 350 = (2% +y?) (2* —
y?) =175
Prime factors of 175 are 5, 5, 7 so the only solution which yields integers for x and y

are 22+ 12 =25, 22 —¢> =7

= x = +4, y = +3 which gives a rectangle with four points and digonal with a length
of 10 units.
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We know that z1 + 2o and z; — 29 are the diagonals of a quadrilateral. Now diagonals of
a parallelogram does not intersect at angle 7/2 and diagonals of a square and rectangle
are equal. Only rhombus satisfies the given criteria of diagonals meeting at right angle
and having different lengths. Thus, the given conditions represent a rhombus but not a
square.

azy _ _alzlet? efia
b22 blZZ‘e‘i[9+rx) -

Let arg(z1) = 0, arg(z2) =0+ a =

bzo i« = 4241 bzy _ i« —ia __
S =e bzz+az1_e +e =2cos«

Thus, it will lie on the line segment [—2, 2] of the real axis.

Since 21, 29, z3 are roots of the equation z° + 3az? + 38z + Yy=0= 21+ 20+ 23 =
=3, 2122 + 2223 + 2321 = 3B, 212023 = ¥

We know that for a triangle to be equilateral z% + z% + z% = 2129 + 2923 + 2321
= (z1+ 204 23)2 = 3(2122 4 2223+ 2321) = 902 = 3.3 = o® = 3.

Given, 27 4 23 + 221 25 cos = 0 Dividing both sides with 22, we get ( ) +1+2 ﬂcos 0=
0

—2cos0+\/Acos? 0—1
The above equation is a quadratic equation in 2}, 2> = B

21 __
=>o=

= |z2[ = 21 = 0] = [z2 = 0]

Thus, 21, 21 and the origin form an isosceles triangle.

Since origin is circumcenter = |z1| = |z2| = |z3| = |2| = 2171 = 2272 = 2323 = 2Z

. 2=z 22723 Z—Z 22723 __

- AP 1 BC - Ef+7273—0=>2571+23373—0
2(z=21) | za(z2—23) _ —z(z1—2) _ za(23—22) _ Z__Z2_ = _Z1z2
Z1Z1—2Z1 | 23Z3—22%3 0= Z1(z1—2) zZ3(z3—22) 0= 21 z3 0=2= z3 °

Given OA = OB, = |z1| = |22] =1 (let). Also given, arg(z1) = « + arg(z2) = 21 =

lez (atarg(z2)) lezarg(zz).ewc _ 226111

2 i

Now, 212 = ¢ = z3¢"* = qand 21 + 2o = —p = 23(1 + €'%) = —p = 22 cos%.em/2 =

—p=p? —42200€ -e = p? —4qcoq

Let =+ iy, then 9 524) = () = o(Lesiheylatannn _y

= 215;” +)<;5(21@’) L 2 = 162 + 2y — 1 = 0, which is equation of a straight line.
Since the circle is inscribed in |z| = 2 so center is origin. Also, since z1, 22 and z3 are in

clockwise direction zo = z1e 120 23 = 2901120

= 25 = (14+v34)[(cos. —120° +i.sin — 120°)] = 1 — v/3i = 23 = —2.

. ; 2b—i . )
Given z1 = 15 = 2z :“;’“722:%: b5’b Also given, z; — 20 = 1 = 5a + i5a — 4b +

12b =10
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Comparing real and imaginary parts, we get 5a —4b =10,5a4+2b=0=a = %, b= —g
Cnetroid is 2228 = 2 (1 4 74).
From the quadratic equation we have z; + zo = —1 and 2120 = % Since 0, z1, 2o form an

equilateral triangle, = 2120 + 22.0 + 2.0 = z% + z% +0?
= (Zl + 22)2 = 32129 = (71)2 = 3% =\ = %
Let A, B, C represent a,b,c and U, V, W represent u,v,w. = AB=b—c,BC =c—b=
(a=b)(1—r),CA=a—c=r(a—Db)
AB _ BC _ CA

>UV=v—u,VW=w—v=(u—v)(1=7),WU =u—w=r(u—v) = 57 = 777 = wo
Thus, the triangles are similar.

Let z; and z5 be points on real axis which circle cuts with. Since these are on real axis
and if z represents this points then z = Z[~ 2z = z + i.0]

Substituting z = Z in the equation of the circle, we get 2> + (@ + a)z + r = 0 Since
21, 2z are the roots «~ z1 + 20 = —a, z120 = 1

Length of intercept = |21 — 22| = /(21 — 22)2 = /(21 + 22)? — dz120 = /(@ + a)? — 4r.
Clearly, a = ¢,b = ¢ ¢ = . Also given, 4+ 24 £ =1 = /(@A) 4 A=) p ¢il=a) — 1,
Comparing real parts, we get cos(a — ) + cos(8 — ) + cos(y —a) = 1.

Let A(z1), B(z2) be the centers of given circles and P be the center of the variable
circle which touches given circles externally, then

|AP| = a4+ r and |BP| = b + r where r is the radius of the variable circle. Clearly,
|AP| —|BP| =a—b=||AP| —|BP|| = |a — b| =a constant.

Hence, locus of P is a right bisector if a = b, a hyperbola if |a — b| < |AB| an empty set
of |a —b| > |AB), set of all points on line AB except those which lie between A and B
if |a — b| = |AB| # 0.

Let a+ib=re?,7? = a? + b = a—ib= ¢ tanf = 2 Z;Zg == “0%(2122) =
iloge 2% =20

. a—1ib 2tan6 2b/a 2ab
= tan[ZIOg(a+ill)] = tan26 = T—tan?6 l—bé/a2 =

Given, |z1] = |z =1= >+ =P +d* =1 R(n ;) = 0= R[(a +ib) (c —id)] =
0=ac+bd=0

A+ =c+d?>= (a+ic)> = (d—ib)*[vac == bd] = a + ic = d — ibor — d + ib
=a=dandc=—-bora=—d,c=b

Sd+ =0 +d=1= |w| = |w| =1 = Rww2) = R[(a +ic) (b — id)] =
ab+cd = 0.

Let 21 = r(cosf +isinf). Given, || = 1 = |z1] = [22| = r. Also given, arg(z122) =
0= arg(z;) +arg(z2) =0
= arg(za) = —0 = 29 = r[cos(—0) + isin(—0)] = r[cosd —isinf] =21 = Zz = 21 =

|ZQ|2 = Z1%29.
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= ) (1 2) (1 ) = (e ) (12 )

n
=P+ nfl+w+?) +n(l+wtw®)+1=n+1-85, = th‘: Z(i3+1) =
n?(n+1)>2 N =t
1

+ 1.

Given |21 + iza] = |21 — iz2] = (21 +i22) (21 —iZ2) = (21 — i22) (21 + 1%2)

= Z120 = 2122 = z—; = Z: Thus = 1s purely real.

= 24230 =4dw = 22" 422 4 24 = 422 4 " 4 1]

The above expression has value of 0 if n is not a multiple of 3 and 3.42" if n is multiple

of 3.

2COS€:E\/4COS 0— +i6

x+%=2c080,:>x2—20059x+1:0:> = cosf +isinf = et

Similarly, y = e*'® = + Y =2cos(6 — ¢) and zy +1= = 2cos(f + ¢).

Ty

Given, |z1| = |z2|, R(z1) > 0 and J(z1) <0 9%(21“2) :%(21“2 +§+§>

Z1—Z22 Z1—%22 Z1—%22

1/2 2 + . .
=3 <~(|—%‘7—Z|;‘—§‘—‘)> = 0 Thus, 2=2* is purely imaginary.

Given, 4 BC Y b P - G ek B

Z3—z2  |z3—22]
:%g.ei”/4=\/§<\lf+\[> 1+i=21—2=(1+1) (23— 22) = 20 = 23+ i(21 — 23).

Given, 21 (22 —322) =2 and 25(322 — 22) = 11 = 22 — 32122 +i25(322 — 22) =2+ 1li =
(21 +1i29)% = 2+ 114, and

= 20— 32128 — (327 —25) =2 —1li = (21 —iz)® =2 —11i
Multiplying above equations, we get (22 + 23)% = 4 + 121 = 125 = 27 + 23 = 5.

GivenvVl—cZ=nc—1=1-—c?>=n’c —2nc+1:>ﬂ:1+1n2

f;(lJrnz)(lJrg) o 2[1+n +n<z+ )]

cost) =1+ ccosb.

=1 2[1+n +200§0+TL]—1+ + 2

If P(z) is any point of the ellipse, then equation of ellipse is given by |z — z1| + |z — 22| =
|22 =22

le 2
If we put z; or z2 in the above equation then L.H.S. becomes |21 — z2|. Thus, for any
interior point of the ellipse, we have |z — z1| + |z — 22| < Lezz‘

If P(z) lies on the ellipse, we have |z — 21| + |z — 22| = M It is given that origin is

an internal point, so |0 — 21| + |0 — 22| < @ =e€ (0 R )

7 z1]+]22]
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Let z =z +1iy, then we have |(z —2) +i(y—1)| = \z\ 5086 — bm@ where, 6 = arg(z)
=V(@—-22+(y—1)2= f |z — y|, which is equation of a parabola.
Since |z — z1| = |z — 22|, therefore z will be one of the vertices of the isosceles triangle
where base will be formed by z; and zs.
Also, since ‘z — 222 < 7 s0 z will lie on the circle whose center is %2 and radius
is r. Thus, the dlstance between segment z;zo will be r. Thus, the maximum area of
the triangle will be %|z1 — 22|.r.
Given |z1] = 1 = a2 4+ b2 = 1, |z| = 2 = a2 + b2 = 4. Also given R(z122) = 0 =
aay — blbg =0=ajas = b1b2
= a4 b3 = 402 + 40? = a% — 4a® = 42 — b3 = a3 — 4a? + diajay = 4b% — b3 + 4ibiby
= (a2 + 2ia1)2 = (2b1 + ibz)z = g = :I:le
w1 :al-i-mTQ:alibl = |UJ1| = \/a%—l—b% =1 wg = 2by + 1by = +as + iby = |¢U2‘ =
\ LL% + b2 =2 fR(wlwg) = 2a1b1 - 2a2b2 =0.
Given 22 + az + a®> = 0 = 2 = aw, aw? where w is cube-root of unity.
Thus, it represents a pair of straight lines and |z| = |a|. arg(z) = arg(a) + arg(w) or
arg(a) + arg(w?) = i%ﬂ.
Given x—O—%: 1=22—24+1=0:2=—w, —w> Now, for z = —w, p = w0 wﬁ,oo =
w +% =-1
Similarly, for z = —w? p = —1 = 22" = 2% = 16* = a number with last digit as
6=>g=6+1=7T=p+q=—-1+7=6.

2i 2 (V3 2 V3 i i
A(z1) = 75, B(2) :ﬁ<7—l ) 1—22,0(z3) :ﬁ<—7_%> =—1-7
Clearly, the points lie on the circle z = 2/+/3 and AABC is equilateral and its centroid
coincides with circumcentre. Hence,
z1 + 29+ 23 = 0 and Z71 + Z3 + Zz3 = 0. Clearly, radius of incircle = wlﬁ hence any point
on circle is % (cosa+isine). AP? = |z — 21> = |2|*> + |z1)? — (221 + Z21)
= AP2 + BP2 +CP2 = 3‘2‘2 + ‘21|2+ |Zg|2 + |23|2 — 2(71+72+73) —2(21 + 29 + 23)
=3x3+3+3+3-0-0=5.
Let O be the center of the polygon and zg, 21, ..., 2,1 represent the vertices
Al, AQ, LA =121 =, 29 = 062, T a1 where a = ei27r/n

. 2

A1 A2 =]a" =12 =1 —a"]? = |1—coszr—77—i-zsm2r—7T (I—COSQTJ> +sin? 27 =

2rm
2—2cos=~

r=

n

Z A1 As2=2(n—1) — 2[(:0s277T + COS%T—I— ... + cos 2<";1>ﬂ] =2(n—1) — 2. real part
1

of (a+a®+..+a" 1) =2

n[~1+a+a?+..+a" !t =0]
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|A1 As||A1As| .. |[A1 AL = 1 —af]l —a?| .. [1—a™ ! = [(1—a) (1—a?) ...(1—a™ )|

Since 1, a, 0%, ...,a" L areroots of 2" —1=0. (z—1)(z—a)(z—a?) ... (z —«

7 2 -1 n-1 2 ~1
F-l=z—a)(z—a®). . (z—a" ) =EF=1+z+2"+ .. +2"

z—

nfl) —

Putting z =1, we get [(1—a)(1—a?)...(1 —a" )| =n = $=2

Let L.H.S. = z; and RH.S. = 25 then 2] = 23 = 2121 = 225 = 25 = 23

s (1+%)(1+5)(1+%) .. = A2+ B

Given, z + iy + a\/m + 2i¢ = 0. Equating real and imaginary parts, we get

y+2=0=y=—2and x + ay/(z — 1)2 + y? = 0. Substituting the value of y, we get
aVr? =2z +5=—2= (a®—1)2? - 22z +5a% = 0
Because z is real, the discriminant has to be greater than zero. = 4a*—20a%(a®—1) >0

:>a2—5a2+520:>—~‘/2§§a§§.

Let z = z + iy = 2v/2? + 32 — 4a(z + iy) + 1 + ia = 0. Equating real and imaginary
parts, we get

2V/22 F g —dar +1=0and ~day +a=0=y=1=2\/a2+ 5 —daz +1=0=
4(.762—0—1%) =16a%2> — 8az + 1

—a 1+v4a%+3

22(4 — 16a%) + Sax f% =0=>2r=1mti 9

(z+iy)® = (2° = 1023y + bay?) +i(5zty — 1022y® + y°). Taking modulus and squaring,
we get (2% +y?)° = (2° — 1023y + bay*) + (5aty — 102%y> + )2

(x +ia) (x +1ib) (x +ic) = [(22 — ab) +i(a+b) x] (z + ic) = (2° — abx — acx — bex) +
i(cx? — abe 4 ax® + bx?)

Taking modulus and squaring, we get (22 + a?) (2% + b?) (2% + ¢*) = [2® — (ab + bc +
ca)z] + [(a+ b+ ¢)z® — abc]?

Given, (14 )" = ag + a1z + a22? + ... + a,z". Substituting 2 = i,we get
(1+i)"=ap+iag —ag—iaz+as+..=(ap—az+ags—...) +i(ar —ag+as—...)
Taking modulus and squaring, we get 2" = (ag — ag + ag — ...)> + (a1 — a3 + a5 — ...)2

Let f(z) =m(z—i)+iand f(z) =n(z+14) + 1+ ¢ where m and n are quotients upon
division. Substituting z = i in the first equation and z = —i in the second we obtain
fli)=1diand f(—i)=1+1.

Let g(z) be the quotient and az + b be the remainder upong division of f(z) by 22+ 1.
Hence we have f(z) = g(z) (2> + 1) + az + b. Substituting 2 = i and 2z = —i, we get

N . . ) . , 142i
f(i) =i=ai+band f(—i) =1+i=—ai+b. Adding, weget 20 =1+2i = b ===

C . 1426
ai =1 — 5.
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Let z = 7“161'917 w = ree??, |2l <land jw|<1=r;<landr, <1

|z —w|? = (11 cos B — 1 cos 02)% + (11 sin Oy — 1o 8in 0)2 = 13 4 12 — 2r1y cos(0; — Ba)
(r1 —12)% + 2791y — 21y cos(0y — 05)

= (r1 —7r2)% + dry7y sin(91§92)2 < (r—r)? + (6, — 92)2[': r1, 72 < 1 and sinf < 6]
= (|2 — |w])* + [arg(z) — arg(w)].

Let z = re', then \% = ¢ = cosf + isinh =

Vecos02 —2cosfh + 1+ sin? 6

=2 —2cosf = ,/4sin22:2sing§ 0=

== 1| = |(cos — 1) + isinf| =

[z

& 1] < larg(2) .

Clearly, |z — 1] = [z — [2[ + |2] = 1| < |z — [z[[ + [|2] = 1] =[]

H-1]+ 12l -1

Using the result of previous problem, we get |z — 1| < ||z| — 1| + |z||argz].

Let z=r(cosf+isind), then%— L (cosf@—isin), ’er%l = ‘(rJr%) cos6‘+i(r—%> sin0’

r

= (r+%)2cos2€+i<r—%>2sin26’:a2 = (r—%>2:a2—400526’

atvai+d

r will be greatest when r —% will be greatets i.e. cos =0 = r—% =a4= Tmar = ——75

Similarly, for lowest value of 7, cos@ =1 = r —% =a?—4=r—(*—4)r—1=0

a?—4—+/a*—8a?+20
—_—

Tmin =
We have to prove that |z; + z0]2 < (1 +¢) |21 > + (1 —0—%) |22 = (21 4+ 22) (BT + Z2) <
1

(1+0) |zl + (1+3) 2l

2 — — 2 2 1 2 — — 2
= |2’1| +2’122+2’221+|21‘ < (1+C)|21‘ =+ (1+Z)‘22| = 2120+ 2021 < (1+C)|21‘ +
(1+%>|22\2
= (w1 +iy1) (12— iy2) + (2 +iy2) (w1 —ign) < 2[*(2] +07) + (25 +v3)] = 2ea120 +
2cy1y2 < chf+czyf+a:§+y§

= (cx1 — 22) + (cy1 — y2)? > 0 which is true.

. Z1—22| __ 2 _ 2 = _ 5=\ — = 1 5=
Given |22 = 1= |21 — 2" = [s1 + 22" = (21— 22) (71 — 22) = (21 + 22) (71 + 22)
= 221725 = —2207] = (j—;) =—2 = 21 = pwely imaginary = iZ = real = =

1 —iwtl _ —1+2%+2i . : :
Now Zfze — zi/zatl  —iwdl  —14+2%42iz 1 g io the angle between given lines then
21—29 z1/z2—1 —iz—1 1+x
_ z1+22 2z
tanf = arg =2 = .

Let 23 = ri(cos 6y 4+ isinfy), zo = ra(cosfy + isin by ). Also let @ = rcosa, b = rsina.
|azy + bza|? = |rri(cos By + isin 6y ) cos a + rra(cos B + isin By ) sin af?

= 7“2(7‘100861(3080( + 1“2(:056’gsina)2 + rQ(rlsin91cosoz + rgsin6‘gsinoz)2 =

72[12 cos® a + 12 sin® a + 2r7 cos asin o cos(0; — 65))
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= %2 [r2(1 4 cos 2a) 4 73(1 — cos 2a)) + 27179 sin 2 cos(0; — 65)] 2“‘24152‘2 =ri+r3+
(r2 —12) cos 20 + 2797 cos(0y — B) sin 2o

= A+ Bcos2a+ Csin2a where A = r2 472, B=12—12,C = 2r 75 cos(6; — 03) Clearly,

—VB2+(C? < Bcos2a+ Csin2a < vVBZ 4 (C?

\/BQ—i—C2 < A+ Bceos2a + Csin2a < A+ vVB2+C? ~ A —VB2+(C? <
2‘“““’22' <A+ VBZ+(C?

Now B2 + C? = v + r5 — 2r2r2 4 4r2r2 cos?(0; — 02). Again |27 + 23| = |ri(cos 26, +

isin 207 ) +73(cos 205+ sin 205) | = /(13 cos 201 + 3 cos 202)% + (r? sin 201 + 73 sin 20 )?

= /ri+ri+2r3r2 cos2(01 — 02) = /1] + 75+ 2r?r2[2cos?(0; — 02) — 1] = VB? + C?

A=r2+73= |22 + |22f? Hence, |21]? + |22]? — |23 + 22| < 21950028 < 1512 4 |52 +

|23 + 23]

. _ bdic, . __ —c+ib 1 _ l+4a : s

Given z = 37 ~iz = 4, 7 = —cr Using componendo and dividendo, we get
1+iz _ 14+a—c+ib . 2 2 2 2 2 2

= 1% = Trere Also, given a” +0" +c¢"=1=a"+b"=1—c¢

. , b _ 1 1 14i Fibtl—
= (a+ib)(a—ib) = (1+c)(1—c) = 52 =25 = L(say) "1 = orep =
a+ib+u(a+ib) _ atib

1+ctu(l+c) 1+c-

We can write that (z —a) (z —b) ... (x —k) = 2"+ p1a™ 4+ paa™ 2+ ..+ pp17 + Pn
Substituting & = i, we get (i —a) (i —b) ... (i—k) ="+ p1i" 4+ pei™ 24 . pp_yi+
pn- Dividing both sides by i", we get (1+ia) (1+1ib) ... (14 ik) =142+ 54
Taking modulus and squaring, we get (14a?) (1+0%) ... (14+k*) = (1 —pa+ps+...)% +
(pl — p3+ )2

3 + 2i is one value of  for which f(3+2i) =a+ib=>2=3+2i =>2>—62+13=0

flz) = 2* — 82 + 42? + 4z + 39 = (2? — 62 + 13) (2% — 22 — 21) — 96z + 312 =
f(342i)=—96(3+2i)+312=24—192i =a+ib=>a:b=1:—8.

Given 4+ 2 =15 A2 AB+B>=0. A=2238_ B —w’B=|A| =B

|A—B| =|—wB—B|or|—wB- B| =|uB| or |wB| = |A— B| = |B|. Thus,
|A| = |B| = |A — B| making the triangle equilateral.

Given 2" = (z+1)" = |2[" = |z +1]" = |z = |2 + 1| = 2? = (2 4+ 22+ 1) =22+ 1 =0,
which is the equation of a straight line on which roots of the given equation will lie.

Let z1, 29, 23, 24 be represented by the points A, B, C, D respectively. ~ AD = |z — z4]
and BC = |z3 — z3]

Let a = (21— 24) (22— 23), b= (22— 24) (23 —2z1) and ¢ = (23— 24) (21 — 22) b+ ¢ =
(22— 2za) (23— 21) + (23— 24) (21— 22) = —(21 — 24) (22 — 23) = —a

lal =[b+c| < [bl+]c| = [— (21— 21) (22— 23) | = (22— 24) (23— 21) | + | (23— 24) (21— 22) |
= AD.BC < BD.CA+ CD.AB.
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z 1
Euqation of a line joining points a and b is [ a al } =0or (@+ib)z— (a—1ib)Z —
ib ib 1
i(ab+ab) =0
= (a+ib)z— (a—ib)Z—2abi =0[va,b € R~a=a,b="b] = (a+ib)z— (a—ib)Z = 2abi

= (m—m)2+(m+m%)2=1

Let 21 = r1e® and 2y = rye'?2.

Then 7| —ry = \/(rl cosl; — ra cos 02)? + (ry sin 01 — o sin 63 )2

= 27179 = 21179 c08(61 — 62) = cos(0; — O2) = cos 2nm = arg(z1) — arg(z2) = 2nm.

AABC and ADOE will be similar if 45 = 2 and ZBAC = ZODE
= [2=2] = [5=5] and ang(3=32) = arg(332)

2t = 5=~ Solving this yields (23 — 22) 24 = (21 — 22) 25 and hence triangles are
similar.
GivenOA=1and |z2|=1=0P = OA = OP. OP, = |z]| and OQ = |2Z5| = |z||Z0| = |20|
= OFy = 0Q. Also given that ZP)OP = arg2. LAOQ = arg(%) = arg(%) [+2z=1]
=— arg(?) = —arg (Z—Z“> = arg(%”) = ZPyOP and thus the triangles are congruent.

oth 2—b bz |2 2+b Z2+bZ1
P toagn, g —smntn o - [eiiaf — (g (s5243)
= az;w [a®|z2]? + b%| 212 + ab(21%5 + Z12o)]. Similalry OQ? can be computed and the
sum be found.
Let ¢ # 0, then ¢ = —(a + b) so we can write azl+bZQ—(a+b)z3:O:>23:M;—f;zz.
Thus, we see that z3 divides line segment z;29 in the ratio of a : b making all three of
them collinear.
Equation of a line passing through origin is az + @z = 0. Let us assume that all the
points lie on the same side of the above line, so we have
n n
az;+az; >0o0r <0fori=1,23,...,n. Thus, a 74‘5221‘ >0or <0
i—1 i—1
n n n n
But it is given that Z zi=0= ZZ =0 -'-aZZ- + EZzi = 0, which is in contra-
i=1 i—1 i—1 i—1

diction with equation above. So all points cannot lie on the same side of line.
Let OA and OB be the unit vectors representing z; and zs, then we have OA = %,UE =
22
Jz2]
Therefore equation of bisector will be z = t(g—ﬁ + %) = gt, where is an arbitrary
positive integer.
The diagram is given below:
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Let AL be perpendicular on BC' and H be orthocenter of
4 the AABC.

BL _ ccosB _ csecC P . .
TC = teesC = toocp thus L divides BC' internally in the

) Czbsec B
ratio of csecC' : bsec B, [, = 23850t tzavsec

csecC+bsec B

1 .
& b AH _ AABH _ 3AB.BHsin/ABM ccos A [4ABM _
HL — AHBL — %BL.BH.sinZI\r{BC ~ ccosBcosC L” -
90° — A, ZMBC = 90° — C]
_ acos A _ (bcosC+ccosB)cos A __ bsec B+csecC
H M
" acosBcosC T acos BcosC - asec A
[ H— z1asec A+zobsec B+zzcsec C
B a L C - asec A+bsec B+csecC

Since the above expression is similar w.r.t. A, B and C, therefore it will also lie on

the perpendiculars from B and C' to opposing sides as well. Thus, orthocenter H =
ziasec A+zobsec B+z3csec C
asec A+bsec B+csecC

H= z1ksin Asec A+ 2ok sin Bsec B+ z3ksin C sec C H= z1 tan A+ 25 tan B+2z3 tan C
- ksin Asec A+ksin Bsec B+ksinCsecC 7 - tan A+tan B+tan C

The diagram is given below:

Let O be the circumcenter of AABC where A =

A iBD.OL
BD _ 3BD-. ABOD
21, B=2zand C = 2z3. 55 =3—— =
1 2 3-DC Ipc.oL ~ ACOD

1 .
50B.0OD.sin(m—2C) : .
=3 - = Sf“g. Thus, D divides BC
50C.0ODsin(r—2C) sin 2
internally in the ratio sin2C : sin2B = D =
z3sin2C+2z2sin 2B
sin 2C'+sin 2B

The complex number dividing AD inter-

nally in the ratio sin2B + sin2C : sin2A is
21 8in2A+ 25 sin 2B+ 23 sin 2C
sin 2A+sin 2B+sin 2C

B D La C Since the above expression is similar w.r.t. A, B
and C, therefore it will also lie on the perpendicular
bisectors on AC' and AB as well.

Let BO produced meet AC at E and CO produced meet AB at F. We can show that,
the complex numner representing the point dividing the line segment BFE internally
in the ratio (sin2C' + sin2A4) : sin 2B and the complex number representing the point

dividing the line segment C'F internally in the ratio (sin2A4 + sin2B) : sin 2C' will be
21 8in 2A+ 25 sin 2B+ z3 sin 2C
sin 2A+sin 2B+sin 2C

each =

z1 sin 2A+ 25 sin 2B+ z3 sin 2C
sin 2A+sin 2B+sin 2C

Thus, circumcenter is

Let z be the circumcenter of the triangle represented by A(z1), B(z2) and C(z3)
respectively, then |z — 21| = |z — 22| = |z — 23| so we have |z — 21| = |z — 29|
Slz—unlP=lz—nP=-—2)Z-2)=(2—2)Z—%)

= 224 22— Ze1— 271 = 2Z+ 2071 — Z2a — 27%a = 2(Z1 — Z2) + Z(21 — 22) = 2171 — 22722
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Similarly considering |z — z1| = |z — 23|, we will have = 2(Z1 — 2z3) + Z(21 — 23) =
2121 — 2323

We have to eliminate Z from equation (1) and (2) i.e. multiplying equation (1) with
(21— 23) and (2) with (21 — 22), we get following

2[Z1(22 — 23) + Za(23 — 21) + Z3(21 — 22) | = 2121(22 — 23) + 2272(23 — 21) + 23Z3(21 — 22)
o, — Aazi(za—z)

> Zi(z2—z3) *
Let z be the orthocenter of AA(z1)B(z2)C(z3) i.e. the intersection point of perpen-
diculars on sides from opposite vertices.

Since AH 1 BC - arg(ﬂ) = +75 = 2= is purely imaginary.

Z3—Z22 Z3—22
zZ1—% Z1—% Z1—Z2 z—2z1 —_— - z—2z1)(Z3—22
Z3—22 Z3—22 3722 Z3—22 Z3—22

Similarly for BH L AC, % — 7 = Z=22)Gi—%)

Z1—Z23

Eliminating Z like last problem we arrive at the desired result.

We have Z/CBA = 3371, therefore Z2=22 — [2a=2a [Cos%’erisin?i] = 7%+¥ [+ BC = AB]

Z1—22 |z1—22| 3
1 V3 3 /3
z3+ (577>21 = (577>Z2

Solving this yields 2329 = (\/§ —i)z1+ (\/3 + i) z3. Also, since diagonals bisect each

z1t23 zat24

other = =572 = 2254 24 = 21 + 23 — 22 Substituting the value of 25, we get 2324 =

(V3+i)z1+ (V3 —i) 2.

Since ZPQR = ZPRQ = 3(7 — ). PQ = PR Also, ZQPR =7 -2(5—5) = a
. 23—21 __ z3—z1 _ PR -
rarg— =a = 22— =p5(cosa+isina)
23—21 _ o . 3 Z3—22 _ _ 9 .2C 9wl & a
=22 —1=(cosa—1)+isina=—2=—2sin"5 +i2singcos
= (_23722>2 = —4sin?*§ [Cosg +i sing]2 = —4sin*§ [cosa +isina] = —4sin?§ . 222
2o—21 - 2 2 2 - 2 - 2" zo—21

= (23— 22)? = 4(23 — 21) (71 — 22) sin®§.
Let C be the center of a regular polygon of n sides. Let A1(z1), A2(22) and As(z3) be
its three consecutive vertices.

LCA A =5 (n—2) 2 A Ap Ay = — 2
Cast_e I: When =z, 23, z3 are in anticlockwise order. = 2z — 22 = (23 —
zg) 6Z(W72ﬂ-/n)['¢ A1A2 = AgAg]

—i27/n ei27‘r/n

21— 22= (22— 23)e€ [“e™=—1] = 23 = 20— (21 — 22)
Case II: When 21, 2y, 23 are in clockwise order. = z3 — 2y = () — 2y €' (" 127/")

23 =22+ (22— 21) e~i2m/n,
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188. Let O be the origin and the complex number representing A; be z, then Ay, A3, A4 will
be represented by ze?2™™, ze™/" 2e¥7/™ Let, |zl =a

; p)
_ 2n/n| 2 coe 2| 2w .o22m
A4y = |z — ze | = |z\’1 — cosTr — zsm?| = a\/<1—c05—n) + sin2 <"
2 .
a,/2(1—cos~7r> = 2asinZ
n n

Similarly, A1 As = 2a sin%7r and A1A4 = 2a sin‘%r

. 1 1 1 1 1 1 . 7r( .37 . 27T>
iven —— = —— e = Sin — ( s1in — S — =
G A1Az A1A3 + A1 Ay 2asinZ 2asin3§ 2asin§nI = n n + n
Sin oy Sin "
2 3T 3 3

. 3w . . 2m 3w . 4w . 2m R T 3r
:>s1n7+bln772cosnsmn7smn+smn:>Slnn—smn:>n—m7r+

(=)™ 2 m =0, +1, 42, ...

n

Ifm=0:>3%:4§:>3:4(notpossible). Ifmzl:%zw—%:nz?. If
m=2,3...,—1,—2, ... gives values of n which are not possible. Thus n = 7.

189. Given, |z| = 2. Let 21 = =145z = 21 + 1 = 5z.
|z1 4+ 1| = |5z| = 5|z| = 10 = 2; lies on a circle with center (—1,0) having radius 10.

190. Given, |z —4+3i| <2 = |[2] = [4=3i|| < 2= ||2] = 5| < 2= —2<[z] -5 <2=3 <
2] < 7.

191. |z—6—8i| < 4| = —4 < ||2| =16 +8i|| <4=—-4< 2] -10<10= 6 < |2| < 14.
192. The diagram is given below:

Given z — 25¢ < 15, which represents a cir-

‘7,{ cle having center (0, 25) and a radius 15.
Let OP be tangent to the circle at point P,
then ZXOP will represent least value of
arg(z).

Let ZXOP = 60 then ZOCP = 6. Now
OC = 25,CP = 15:0P = 20~tanf =
C(0,25) %g = %. ~ Least value of arg(z) = 0 =
0 —14
tan 15
P
4 > T
) >

193. Given, |z — 212+ |z — m)? =k = |22+ |21)> — 2220 + |22 + ||* — 222 =

=22 —2:(F+3@) =k— (|a+|2l) = 22— 2:(252) + 1l + 2l =5+1[a +
2|* = 2|21 * = 2|2/?]
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2
= |z— = % [k — % |21 — zz|2]. The above equation represents a circle with center

z1+22
2

21+22

at and radius % 5V2k—|z1— 29|? provided k > |Z1;zz‘2'

Since |z — 1| = 1, z represents a circle with center (1,0) and a radius of of 1. It is shown
below:

Now |z —1| = 1. Let z = = + iy then z2 4 3 = 2z. Also,

Y
z2—2 _ x—2+iy __ 2ac+y +21y Y
z  xztiy 2 +y? ’Lz
Case I. When z lies in the first quadrant. This implies
» ¢ arg(z) =0, where tanf = L. itan[arg(z)] = itanf = i L
O\ C(1,0)

Case II. When z lies in the fourth quadrant. Thus,
arg(z) = 2m — 6, where tanf = —L.itan[arg(z)] =

itan(2r —0) =L

-1 _ (a? 1)+y
Z+1 (z+1)?

Let z = 2 + iy. Now we have 2= 2+z

z+1) +y

. z—1
arg( 351

) =I= tan(arg<z+1)> = Eizlyi.?ﬁ

= 224+y?—1—-2y=0= 2%+ (y —1)? = 2, which is equation of a circle having center
at (0, 1) and radius v/2.

Let z = z 4+ iy. Now, u 4+ iv = (2 — 1) (cosa — isina) + zil(cosa+isinoz) = (z—
l)cosa+ysina+i[ycosa—(x—l)sina}+@%%§%5(cosa+isina)=0

+(z 1)sina—ycos a

@1z 0=

Equating imaginary parts, we get v = ycosa — (x — 1) sina
[ycosa — (z —1)sina][(x —1)2+4%] =0

~ Either ycosa— (z —1)sina = 0 = y = tan a(z — 1), which is a straight line passing
through (1,0) or (z —1)? + 3> — 1 = 0 which is a circle with center (1, 0) and unit
radius.

Given, 1 + a1z + agz® + - 4 ap2" = 0 = |ay2| + |a22®| + - + |an2z’| > 1 and

L.H.S. < 2|z] +2[2|* + - to oo~ |an| < 2].

2|2|
-4

Let |z| < 1 then <1¢|z|>%

When |z]| > 1, clearly |z| > %; hence, z does not lie in the interior of the circle with
radius %

Given, 2" cos g+ 2" "' cos @) 4 +cos 0, =2 = 2 = |2" cos O+ 2" cos 01 + -+ cos O,
< |2"cosbg| + |2" L cos O1] 4 - + | cos Oy, = |2"|| cos Oo| 4 |27 ]| cos 01| + - + | cos O,
<l 2 L <14 |2 |22+ - to oo :>2=1w_~1‘—;‘:> || >%[ when |z| < 1]

Hence z lies outside the circle |z| = % Thus all roots of the given equation lie outside

the circle |z| = 5
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. e (zo—za) [ Z1—23) - .
Recall that points 21, 29, 23 are concyclic if (m> (Z:%) is real. We assume that z4 is
origin.

. 2
Given, = =

11—z, 22023
Y21 2z z3

zazs 1T Zitzs

Putting the value of z; and z, in the concyclic condition expression we obtain
Zo—24 z1—z3) __ 1 . . S ..
<H) (m> = 5. Thus, 21, 29, 23 lie on a circle passing through origin.

The diagram given below:

We have OP = OA = OB = OC « |z| = |z1| = |z2| = |z3]| =

A(z1) 22 = |22 = |22 = |22 = 2% = 2171 = 27755 = 27
Since AP is perpendicular to BC, - arg(;;:;) =For 5 =
ZZ;:; is purely imaginary.
B(z2) C(Zg) z21—2 z1—2 . . :
z) = <Z2723> =— Solving the above equation gives z =
222

z1
The diagram is given below:

N

Let P(z) be the point of intersec-
tion and A, B, C, D represent points
a, b, ¢, d respectively. Clearly, P, A, B
are collinear. Thus,

z 1
[a
b

1] =0=z(@—b)—z(a—b)+
(ab—ab) =0

1
Similarly, P, C, D are collinear and thus = 2(¢ —d) —Z(c — d) + (cd —¢d) = 0

[SUIESTIRNY]

Eliminating Z because we have to find z, we have z(a —b) (¢ —d) — z(¢ —d) (a — b) =
(ed —¢d)(a—b) — (ab—1ab)(c—d).

va, b, ¢, d lie on the circle. [a| = [b] = [¢| = |d| =r = a* =V’ = =d* =1° = aa =
bb = ¢t = dd =1°
T2 T2

_ o,
J— T —_ ™
sa=_,b=3,c=-,d=7

o

Putting these values in the equation we had obtained, z(%2 — r—) (c—d)— Z<T—;—T_) (a—
6= (F-F) a0 - (F-F)c-a

Solving this for z, we arrive at desired answer.

abc

Given | b ¢ a} =0=a*+03+c*—3abc=0= (a+b+c)(a®+b?+c*—ab—bc—ca) =
cab

0

“t 21, 72, 73 are three non-zero complex numbers, hence a? + b2 + ¢> —ab—bc —ca = 0
= (a—b)2?+ (b—c)?+ (c—a)*=0= a =b=c. This can be represented by following
diagram:
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Now OA = OB = OC, where O is the origin and A, B

A and C are the points representing 21, zo and z3 respec-
tively. - O is the circumcenter of AABC.
Now ar <9> = /BOC = 2/BAC = ar (Mf
g z2) T - - g 2o—21)
>
B
203. The diagram is given below:
R( () z9 = g%zlew = cosfz1e” and z3 = %216120 =
2 z )
3 > cos 20z €27
= 22 = cos? 027e?% = 22 cos 20 = 223 cos? 6.
o P(z)

204. Given circles are |z = 1 = 2?4+ ¢y*> —1 =0 and
lz—1=4=2"-22+¢y°—15=0.

Let the circles cut by these two orthogonally is 2 + 4% + 2gz + 2fy + ¢ = 0. Since first
circle cuts this family of circles orthoginally, therefore

2g.0+2f0=c—1=c=1and 2g(—1)+2f.0 =c—15= g = 7. Thus, required circles
are 2+ 92 + Mda +2fy +1=0= |2+ 7+ if| = /48 + f2.

Given, |z+ 3| = t* — 2t + 6 which is equation of a circle having center (—3,0) and radius
12— 2t 4+ 6. Let A= (—3,0) and 7, = t> — 2t + 6. In this case z lies on the circle.

Also, |z — 3v/3i| < t? implies z lies on the interior of the circle having center (0, 3v/3)
and radius t2. Let B = (0,3v3) and ro = t2. AB=V324+27=6. 1 —71 = 2(t — 3)

Clearly, when the two circles are disjoint or touching each other no solution is possible.

This leads to following cases:

Case I: When ¢ > 3 i.e. 72 > r1. In this case at least one z is possible if AB < r1+13 =
6<2t’—t+3)=>t<0ort>1=>3<t<o0

Case IT: When ¢ < 3 i.e. r; > ro. In this case at least one z will be possible if |r; —rg| <
AB <ri+rs

203—1t) <6<2(t*—t+3)ie t<0andt <O0ort>1 Combining all solutions we
gace 1 <t < o0.

az+b _ az+btiay _ (aw+btiay)(cz+d—icy)
cz+d T cx+d+icy (cz+d)?+c?y?
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j<az+b) _ ay(cz+d)—cy(laz+b) _  ady—bey
cz+d) (cx+d)?+c?y? (cz+d)?+c3y?
~ad > be, therefore the signs of imaginary parts of z and ZIZ are the same.
: _ i(z2+1) o —yati(@atl) _ [—yoti(zetl)][(za—1)+iys]
Given, z; = T e nitin = (a1 tigs = w217 13
Comparing real and imaginary parts, we have
o —y2(za—l)—(zo+l)ys _  —2z0y> _ a3-1-y3
T I e Ak il Pre T
Substituting for z; and y; in 1? + y% — 21 we will arrive at the desired result.
(cos30 —isin30)° = (e %)% = ¢718% and (cos 26 + isin 20)° = (e20)° = 107

(sin® — icosﬁ)3 = [(*i)g(cosﬁ + isine)g] — j.ei%9 apnd (cos30-isind0)3(sinf_icosf)? _

(cos 20+isin 26)°
i.e7%%5% = gin 950 + i cos 256.

Let z = z + 4y, then we have 2 — y + 2izy + V22 + 42 =0
Equating imaginary parts, we have 2zy = 0 i.e. either x =0 or y = 0.
Ifz=0,then —°+ V2 =0=¢y*— 1 = 0=y =0,y = +1.

If y = 0, then 22+ V22 = 0 Since z is real only one solution is possible i.e. z = 0. Hence,
z =0, +1i.

Clearly z = 0 is one of the solutions. For other solutions divide both sides by |z|? which
z

gives us t> +t + 1 = 0 where t = %

|2[*

The equation t2 + ¢+ 1 = 0 has two roots i.e. t = w, w? = ‘—; =w,w? = 2z = kw, kw?
where k = |z| is a non-negative real number.

Let z = x4y, then (z+1y) /2 + y?>+a(z +1iy) + 1 = 0. Comparing real and imaginary
parts, we get

W+t yP+ay=0=y=0 2>+ 1> +a#0[va>0]and ~2vVa®>+0+az+ 1=
0=>2+tar+1=0=p="0%ve" V2a274

Clearly, both the values of x are negative, so z is a negative real number.

Let z = x + 14y, then 2 4+ y% — 2i(z + iy) + 2a(1 + i) = 0. Comparing real and imaginary
parts, we get

x2+y2+2y+2a:0¢x2+(y—1)2:1—2aand —2r+2a=0=>2x=a

= (y—1)?=1-2a—a*=y=1+V1—2a—a? However 1 — 2a — a® > 0. Roots of

equivalent quadratic equation is a = % = —14 V2 but a > 0 so the range for a is
0<a<V2-1.
i. We have (3+4¢)" = 52, Squaring both sides (—7 + 24i)” = 5% = (:Zi;éi)”" =1 which

is possible only if z = 0.

ii. Given (1 —14)" =2 = (l;)m = 1 which is possible only if z = 0.
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iii. Given (1—i)" = (1+i)" = (152) =1= (-i)*=1=2=0,4,8,.. 4nVdn € I.

1+
P 42242241=0= (2+1)(2+2+1)=0=z2=—1,0,u%

When z = —1,295 4 210 4 1 = _14+141=1%#0, when z = w, w5 + L1041 =
W+ w+1=0and when z = w? w2 4 1,20 4 1 = + w? + 1 = 0. Thus common
roots are w, w?.
Adding all equations a + 8+ v =321 = 2z = 9‘-%&1 Similarly, multiplying second

a+Bw+yw?

equatin with w and third equation with w?, and then adding we have z3 = 3

. . 2
Similarly, zo = gﬂ—%—tﬂ
laf? = aa@ = (214 20+ 23) (1 + 22+ 23), B]* = B8 = (21 + 200 + 23w?) (71 + 2w’ + Z3w)
and |72 = 77 = (21 + 20w? + 230) (F1 + Tow + T3w?) [+ @ = w? & w? = W]

= a2+ 162+ 7 = 3(|z1 2 + |22 + |23)%) + 21[Z(1 + w + W) + (1 +w+ )] +
Al +w+w?) + 21 +w+ )]+l Fwt0?) + 21 +w+ D)) =3(a 2+
|Zg|2 + |Zg‘2) = RHS

Let f(z) = (z+1)"—2"— 123+ 2’ +r=0=2(2+2+1) =0= = 0,w,w?. So
for 2% + 2% + = to be a factor of f(x), £(0) =0, f(w) =0, f(w?) =

F(0) = 1" 1= 0, /(&) = (w+ 1" — " — 1 =~~~ 1 [on s 0dd. | = —(1+

W'+ w?™) = 0. Similarly, f(w?) = 0. Hence proved.

Let f(z,y) = (z +y) "—ytay(ety) (@ ey +y?) =02 =0,y =0,z

Yy = 2w, y = au’. Whenz—o fz,y) =0,y =0, f(z,y) =0; y——wéf(ﬂﬁ y)

—2"— (—z)" =0[~ n—2m+1Vm€D]7y—:cwéf(m,y) [z"(1+w)"— "W =

—2"W?" — 2" — 2"W" = 0, and similarly when y = 2w?, f(z,y) = 0. Hence proved.
+ + + |Zl‘2+‘z2‘2+ +‘an2

=|Z+Z++Z =z Ftat -+ =|x1+2++2z|=LHS

For any two complex numbers z; and zo, we know that |2 4 22|? 4 |21 — 2|2 = 2|21 |2 +

2|z2\2. Let 21 = a+ Vo2 — 2 and 2o = o — a2 — B2

Now (|21] + |22])* = |21 + |22|* + 2|z1]|22| = 2[af® + 2[a® — 8% + 2|8° = |a + B> +
o= B + 2|+ Blla— 5

= (la+ B+ |a—B])? = |z1| + |22] = |a + 8] + |a — B| = R.H.S.

|21 = |z = 1= d®+02 =P +d> =1, 15 = ac+ bd +i(bc — ad) ~ R(n7) =0 =
ac—l—bd:Oé%:—g:k(say). ~a=kd, b= —kec.

CBRE 4R =1=2k=1=k=41. Now |wi| = Va2 + 2 = Va2 + 02 =1, |wo| =
\/b2+d2 Va2 + b2 = 1,ww3 = (a+ic) (b —id) ~ R(wws) = ab+ cd = 0.

Z1—22
1-Z122

z1—zs |2
1—-Z722

<ls <1<:>\21—22|2<|1—71zz\2

Given,

< (z1—22) (21— 22) < (1-7122) (1 = Z122) & (21— 22) (71— 72) < (1 —7Z122) (1 —21%2))
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&2+l > 1+ 2l @ 1-|af —|af +]af|? > 0& (1—|21) (1—]2*) >
0= (14 |z1]) (1 —|z1]) (1 + |22]) (1 — |22]) > 0

< (1 —z1]) (1 —|z2]) > 0 which is true as |z1] < 1 and |z2| < 1.

z—z1 __ (x—10)+i(y—6)
z—zy  (x—4)+i(y—6)

—142+40+(y—6)2
(J:*4>2+(y*6)2

16(y—6)
T =P+ (y—o7

Let z = x+ iy then
a+ b (say)

. Rationalizing *

varg(a+ib) =5 =2 — 14z +40+ (y—6)>=6(y — 6) = 2> + y*> — 14 — 18y + 112 =
0 = |z — 7 —9i|> = 18. Hence proved.

3z2—6—3i _ x—6+i(3y—3)
2z—8—61 ~ 2x—8+i(2y—6)"

62%+6y°—362—24y+66+i(120—12y—12)

Let z = x 414y then (22—8)%+(2y—6)2

a+ b (let)

Rationalizing

varg(a+1ib) = = 622 + 6y% — 362 — 24y + 66 = 120 — 12y — 12 = 22 + y> — 8z —
2y + 13 = 0. Also given, |z — 3 +i| = 3 = = —2y + 6. Substituting this in previously
obtained equation, we have

5y2—10y+1:0:>y:1:|:%:>x:4¥%. Hence we have our z.

Let |z] = 71, |w| = 7y, arg(z) = 6; and arg(w) = 6. Then, |z — w|* = (71 cosh; —
71 sin 61)2 + (rg cos g — 7o sin 6’2)2 =(r— r2)2 + 27119 — 2179 cos(601 — 03)

_ PRV
=(r1—r2)’ in? 2% < (1 —72)? + 2.1.1.2(25% )" = (2] — |w])? + (61— 62)*.
Hence proved.
Let z = r(cosf + isinf) = ‘ 7 = cosf + isinf M 1| = |(cosf — 1) + isinf| =

V/(cosf —1)2 +sin20 = y/4sin?] —2|sm2| <10).

Now, |z —[2]| = [z =1 = (]2 = D) | 2 [z = 1 = [[z] = 1| ~[z= 1| =[[2] = 1| < [z — ||

= |z—|z|]| = |r(cos O + isin @) —r| = /4r? Sin2g < 2r|g’ =r|0] = |z||arg(2) |
= |z =1 = llz] =1 < |zllarg(2) | = |z = 1] < [|2] = 1] + |=][ arg(2) |-

Let z = r(cosf + isinf) then%z%(cos@—isin@). Given |z+%| =a= |(r+%) cos 0 +
i(r—%) sinl9| =a

2 2
= (r + %) cos? 0 + (r —}) sin?f = a® = (r — 1) = a? — 4cos? 6. Clearly, r will be
greatest if cosd =0=>r’ —ar—1=0=1r = ai'a+
purely imaginary number.

. This also implies that z is a

c2lz1|? +|za?
c

|Zl+22|2 < |Z1|2+C|21‘2+‘22|2+%|22|2 = (Z1+Z2)(71+72) < |21|2+‘22‘2+

2971 + 217 < = (A ]? + |22]?)

=

= (v2+iy2) (w1 —iy1) + (21 +iy1) (w2 —iy2) < $[A(@+97) + 23+ 93] = (car—22)*+
(cyr — y2)? > 0 which is true.

Z1—Z2
Z1+2z2

=1l= |Zl_22|2: |Zl"‘22|2§ (21— 22) (Z1—22) = (21 + 22) (71 + 22)

Given,
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21

S -—ni-aB=nfitah=sah= 2= (2)=-2

21 s, . . zz_l . . s
= 2, is purely imaginary = — is real, which we take as z.

21422 _ z1/ze+l _ —iz+1 _ —14+z%+2ix

z1—22 z1/z2—1 ~ —iz—1 1422

If 0 is the angle between the lines joining the origin to the points z1 + 22 and z; — 29,
21tz 2x
then tanf = |arg<ﬁ> = |m|

Let z; = ri(cosfy + isinfy), z2 = ro(cosy + isinfs). Let Va2 +b% = r. Let a =
rcosa, b = rcosa. Now |az; + sz|2 = |rri(cos@y + isinf;)cosa + rra(cosfy +
isin ) sin

=72[r? cos® a +r2sin® a + 2r 7y cos asin acos(f; — )] = ; [r2 472+ (r2 —72) cos 20 +
2rg1r9 cos(f; — 62) sin 2a]

Thus, |az; + bz|? = %2 [A+ Bcos2a+ Csin2a] = %eriw [A+ Bcos2a+ Csin2al,
where A =72 +72, B=172—7r2 and C = 2r17 cos(8; — 65).

Since A — VB2 4+ (C2< A+ Bcos2a+ Csin2a < A+ VB?%+ C?

B?+ C% = r{ 45— 2r2r2 + 47212 cos® (0, — 62).

|22 4 22| = |r?(cos 20y + isin 201 ) + r2(cos 205 + isin 26,) | = VB2 + C2. Hence proved.

b+ic
1+a

—c+ib 1+iz _ 14+a—c+ib

=12 =71; T—iz — 1tatc—ib

Given z =

Given, > + 0> +c2=1= (a+ib)(a—ib) = (14+¢)(1 —¢c) = iiz = alff.

Let z; = o1 +4y; and 20 = 29+ iyo. LS. = |az; — bze|* 4 |bz1 — aza|> = (az1 — bxo)? +
(ayr — by2) + (bxy — ax2)? + (byr — bya)”

= (a®+b) (2 + 7) + (a® +b°) (a5 + 43) = (a® +b%) (|21]* + |22*) = R.H.S.

Let o = 1 +iy; and B = x5+ iys. Then |a + /3’|2 =(z1+ x2)2 + (y1 + yg)2 = x% + x% +
Ui + Y3 + 22132 + 2y1Y0.

la|? = 27 + 7, |B]> = 25 + 3, R(af) = @122 + y1y2 and R(aB) = 2122 + y1y2. Now it
is trivial to prove the equality.

1—Zrzf—|a—2P=0—22)1—2%) — (21— 2) (1 —22) = (1 — Z120 — 2172 +
|21 22*) — (|z1)® = Z1za — 2% + | 22[*) = 1— |21 — |22 + |21 )] 22 = (1 — |21 [?) (1 —
I%[?) = RHS.

Consider two complex numbers z; = aj + iby and z5 = as + iby. Now we have to prove
|21+ 22| < |z1] + |22| which can be further extended to prove the result.

= /(a1 +a2)? + (b + b2)% < /a? + b7 + /a3 + b3.
Squaring both sides and simplifying

= ajas + biby < (a% + b%) (a% + bg) = (alag + b1b2)2 — (a% + b%) (a% + b%) <0=
7(&1{)27&2!}1)2 g 0.
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273

Given, |32 = 1= |71 — 2722 = |2 — 21%2)?

= (71 — 272) (Zl — 222) = (2 — 2172) (2 — 7122) = |Z1|2 — 22129 — 2Z129 + 4|2’2|2 =
4 — 22172 — 27122 -+ ‘Zl|2‘22|2

= |21zl =4l — (212 =4 =0= [2| =2 = |z] # 1.
2z o+ 2R - Ve
:%wzwzm +%wzi—¢zz>2\ =|z1] + ||

We have proven that |a + va? — b?| + |a — Va? — b?| = |a + b| + |a — b|. Substituting
a = and b = \/ary we have

1B+ Var | +18— Var| = lal(12+ /21 + 12— /21)
=la|(| =21 — 22+ Varz| + | — 21— 22 — Vza122]) = |al(|21] + [22]).

We have |a|] =1 = |a|2:1:>aE:1:>a:f Thus,%—i—%—l—%zﬁ—kg—i-é:
Olva+b+c=0]

244/ <3=-3<244<4=0<z+1<6.

We have to prove that (|z1] + |22]) |=
and zg = ro(cos Oz + isinfs). Then

IZ1\ + ml < 2|21 + 22|. Let 21 = ri(cosfy + isinfy)

(Jz1] + |22]) \'2’\ + ‘v% = (r1 + r2)|(cos@; + cosfy) + i(sinfy + sinfy)| = (ry +

r2) /2 + 2cos(61 — 62)

Also, 4]z + 2)? = 4[(ry cos by + r2 cos02)% + (rysinf; + ro sin492)2] = 4[7”% + r% +
7179 cos(6; — 6)] and squaring L.H.S. we have 2(r; 4 2)2[1 + cos(8; — 62)]?. Clearly,
L.H.S. <R.H.S.

Given equation is 22+ az + b = 0. Let p, g are two of its roots. Then we have p+q = —a
and pg = b. Taking modulus of both we have |p+ ¢| = |a| and |pg| = b. Now it is required
that |p| = |¢| = 1. Therefore we have |p + ¢| < |p| + |¢| = 2~ |a| < 2. Similarly, |b| =
Ipq| = |pllg| = 1. Since p, ¢ have unit modulii, we can have them as p = cosf; + isind,
and ¢ = cosbts + isinbs.

arg(b) = arg(pq) = arg(cos(01 + 02) +isin(0; + 02)) = 61 + 6o

arg(a) = arg(p+¢q) = arg[(cos 01 +cos f2) +i(sinh; +sinfby)] = arg[(cosz%—i—i2 sin%—i—
21511192 cos?) + (005292—0—1 sin 2—0—22511102 cosG;)]

_ arg[cos91+92+zsm91+92] 91+e2

and hence arg(b) = 2arg(a).
Let z = x + 4y. First we consider first two inequalities |z| < |R(z)| + |J(2)| =
V12 + y?2 < x4+ y. Squaring, we have 22 + % < 2% + 3? + 22y = 22y > 0,

which is true. Now we consider last two inequalities, [9(2)|+(3(2)| < V2|z| = x+y <

V/2(22 + 9?). Squaring, we have 2 + y? + 22y < 2(2? + ?) = (2 — y)? > 0, which is
also true.
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-
. z
\/5 + 1. Hence proven.

=2= |z —% > 2= |2|? — 2|z| —4 > 0. The greatest root of this equation is

Since a, 3, v, § are roots of the equation. ~a(z — a) (z — ) (x — ) (z — 6) = az* +
ba® 4 ca® + dx + e. Substituting = i, we get following

a(i—a)(i—PB)(i—v)(i—08) =ait +bi® +ci®+di+e= a(l+ia)(1+iB) (1 +ivy) (1+
i0) =a—ib—c+id+e.

Taking modulus and squaring we get our desired result.

“Qq, Qa, ..., Q, are the roots of the given equation. « (z — a1) (x —ag) - (z — ay) =
+ax" 2+ . +a, 1x+a,=0.

QL'”+(11$C"71

Substituting 2 = 4, we get following (i —ay) (i —ag) -+ (i — 0y, ) ="+ a1i"* +agi™ >+
ot ap_17 + an.

Taking modulus and squaring we get our desired result.

Let |z1| = |22| = |23] = R. » Origin is the circumcenter of triangle. Since triangle is also
equilateral circumcenter and centroid coincide. Therefore, origin is also centroid. Thus,

z1tzot23
3

=0=2z1+20+23=0.

21+ 22 + z3 = 0 implies centroid of the triangle is the origin. Circumcenter is also origin
as Z; lies on the circle |z| = 1. Hence, circumcenter is same as centroid making the
triangle an equilateral triangle having circumcircle with unit radius.

Since the triangle is equilateral therefore the circumcenter and centroid will be same

ie. zo= % Also for equilateral triangle, zf + z% + 232, = 2120 + 2923 + 2321.

Squaring the first equation 922 = 27 + 22 + 22 + 2(2122 + 2223 + 2322) = 22 + 25 + 22 +
2022+ 23+ 23) = B+ 22+ 25 = 32
Since z1, z2 and origin form an equilateral triangle we have z% + zg +0%— 2129 — 29.0 —

z1.0 = 0. Hence, proven.

From previous probelm zp, zo and origin will form a triangle if zf + zg — 2129 = 0.
Therefore, (21 + 22)% = 32120 = a® = 3b.

Since z1, 29, z3 are roots of the equation 2° + 3022 + 3824+~ =0 = 21 4+ 20+ 23 =
—3a, 2129 + 2223+ 2321 = 30 and 212223 = —7.
Centroid is given by 22722 = —q. Triangle will be equilateral if 27 + 23 + 25 = 2120 +

Zo23+ 2321 = (21 + 20+ 23)2 = 3(2120 + 2023 + 2321) = o2 = B.

Given 229 = z1 + 23. Clearly, from section formula we can deduce that z5 divides line seg-
ment joining z; and z3 in two equal segments hence the complex numbers are collinear.

If 21, 29, 23 are collinear then either zo divides 2 z3 internally/externally or zs divides z1 2o
Z1 29 Z3

internally /externally. Now we can apply the condition for collinearity i.e. |27 23 z3| =0
111

and hence we can show desired conditions.
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z represents the ring between the concentric circles whose center is at (3, 4¢) having
radii 1 and 2.

Let z=a+iy=|zP =2+ 9% |2 — 1P = (2 —1)2+ 42 |z + 1> = (z + 1)® + ¢*. From
given inequailty |z + 12 =16+ |z — 1> =8|z — 1| >4 =16 — 8|z — 1| = 4|z — 1> =
(4 —x)? = 322 + 4y* = 12, which is an equation of an ellipse.

Let 2=z +iy, thenz =t+5=>zc—-5=tandy=Va—12 =32 =4—1> =
(x —5)% 4 y* = 4, which is a circle with center (5,0) and radius 2.
Let z = = + iy, then % =L 7?’2(221‘%@5351)7@]. Since it is real, we can equate the

imaginary part to zero.

Sy —a?) + 2%y — 2oy =0=y=0or a2’ +y* —22=0= (x — 1)  +42 = 1.
However, y # 0 else z won't remain a complex number. = 27y — 2z = (z —1)2+ > =1,
which represents a circle with center at (1,0) and unit radius.

Let z = o +iy, then |22 — 1| = |2 +1 = (22 —9° — 1) T42?y? = (22 +4°+ 1)? = 2 =0.
Hence, locus of z is a straight line specifically imginary axis.

Let z =2+ 4y then £ > tanz = y > V3. Similarly, < tam:%7r = —00.

This represents the set of straight lines whose slope is greater than v/3 and less than or
equal to —oo.

Let z = z + 4y, then arg<z+2> =3= arg(iji%) =3

= arg(%) == 2—24 /3, which is equation of a circle.
—1)+i 2

Let z = z + iy. Given, arg(zﬂ) == arg(.gH;ig) =3= 'zzﬂf’,l 0.

The above equation implies 2+ y* — 1 = 0 and y > 0 which is circle at (0,0) with unit
circle above z-axis. The points (—1,0) and (1, 0) are excluded because that will make
the above equation indeterminate.

z|2—|z|+1 2|2—|z|+1
log 5 Elitt < 2 = LR < (VB)2 = |22 — 4)2] =5 < 0= |2] < 5.
Clearly Ais (1,0) or (—1,0). Let A is (1, 0). Then z = cos0° + ¢sin 0°. Clearly, B and C
would be cos 120° + i sin 120° and cos 240° + ¢ sin 240°. Similarly, B and C can be found
if Ais (—1,0).

. 2mi .

Let z represent A, then 1:572(;1)1) e s =2 +i(-1+2)=>2=1-3i
or 3 — %

2:2 —rF i 23 = —iz1 + 22(1 + ). Similarly, z4 can be found

21 = 2(% + ?Z) = 2(cos 60° + isin 60°). Therefore, z2 = 2(cos 180° + isin 180°) = —2

We know that three vertices represent an equilateral triangle if 22 + 22 4 22 — 2125 —
2923 — 2123 = 0. Substituting the respective values, we get
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a?—1+42ai+1—b*+2bi—a+b—abi—i=0=a’*~b?*—a+b=0= (a—b)(a+b+1) =
0. So either a = b or a + b = —1 but if we choose a + b = —1 then the other part leads
us to ab = 3 which is not possible.

Choosing a = b, the imaginary part becomes 2a +2b—ab—1=0=a =2+ /3. But
a = 2 + /3 does not make triangle equilateral. So a =b =2 — V3.

Let O = z represent center of the sqsuare then z = # =C=440 =4. AC =
AB.2.e"* = B=1+2i and AD = AB.e™* =6 + 3i.

Let O be the origin and A; the vertex z;. Let the vertex adjacent to A; be As. Then z5 =
21€2™/" L A10Ay = 2% Similarly, zs, 24, ..., 2, are other vertices in order, then z3 =
64”/", 24 = 66”/", .... Thus, all vertices are given by z,,1 = 21 e2mri/n z1(cos 2rm/n +
isin2rm/n), ..., where r = 1,2, ...,n— 1.
z1 21 1
21, 29, z3 are collinear if | zo Zz 1| = 0. Substituting a, b, ¢ in this and expnading the
23 23 1

determinant it is trivial to obtain the given condition.

PA?=4PB? = |z —6i> =4|z =32 = 22+ (y — 6)? = 4[(z — 3)* + 92] = 2% +¢* —
8z + 4y = 0, which represents a circle with center at (4 — 2) and radius v/20.

24y —8r+4y = 0= 224+ 9% = 4(22) + 2i(2iy) = 2> = 4(2 +2) +2i(z —2) =
(4+2i) 2+ (4—2i)Z.

The diagram is given below:

Let three non-collinear points be A(z1), B(z2)
and C'(z3). Let P(x) be any point on the circle.

Then either ZACB = ZAPB (when they are
in the same segment) or ZACB + ZAPB =
(when they are in the opposite segment).

arg(2=2) — arg(=2) = 0 or arg(222) +
arg(z:z;) =7

P arg| (557 (553 | = 0 orang[ (523) (52 ] =
™

(23—22) (2—21)
(z3—21) (2—22)

In any case, we get is purely real. Hence, proved.

Following from previous problem we have one equation for the condition for the four
vertices to be cyclic. Also, sum of all four angles of the quadrilateral is equal to be 2.
From these two equations, the results can be deduced.

Consider the following diagram:
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ANABC and APQR will be similar if all their angles are equal
C(z3) and ratios of sides as well.

z3—21\ __ 23—2)
A arg(hle) - arg(zéfz/l

A(Zl) R(Zé) B(Zg) AB _ AC AC _ PR P TA 25—2)

PQ-PROTAB = PQ O o=z — 7,—%
A Simplifying these two equations gives us our determinant.
P(z1) Q(22)
From these two equations we have r = 7—= and r = “—-. Equating these two equations
and taking modulus and argument, it follows from the previous problem that the two
triangles are similar.

We know that points on a perpendicular bisector is equidistant from the two points of
the line to which it is perperndicular bisector.

Slr—zl=l—nl=lz—aP=z—nl=2(—2)GF—7) = (1 —2)(Z— %),
which can be written in the form of @z + az + b = 0, which is equation of a straight line.

Mid-point of such a diameter is % Let P be a point lying on this circle, which, is

represented by complex number z. Thus, the equation of circle is |z ] = |z e
zitzo| z1+22 . . . .

or |z — =52 = |z2 —=572|. Square and simplify to arrive at the equation.

The equation can be written as |z — 21| = ¢|z — 23|, which, when substituted with

z1 = o1 +1y1 and 2o = x5 + Yo gives following

[z —21) +ily—y)| = c|(x —a2) +ily —y2)| = (x—21)* + (y —y1)* = {(z —22)* +
(y — y2)?}, which is equation of a circle.

Given, |z]| =1=22=2= % = 2% which gives us a circle.

Let 21 = ri(cosfy + isinfy) and zo = ra(cosfy + isinfz). Then L.H.S. = |21 + 23]
= |z + zz\2 = r% + r% + 2ryrg cos(0; — 6).

Simﬂaﬂ}’: (‘Z1| + ‘Zl|)2 = (T’% + 7"5 + 27"17’2).
Thus, cos(fy — 0) = 0 = arg(z,) — arg(22) = 2n.

The diagram is given below:



Answers of Complex Numbers 393

The equation |z — 2 + 2| = 1 represents a circle with center

0 » 2 at (2,—2¢) with unity radius. Since, the line between (2, —21)
and origin will make an angle of 45°. Therefore, P is 2 — % +
1
c
v
Y

282. The diagram is given below:

Given equation is a circle with center (0,5) and radius 3~ OC =

Y
A 5 CP =3.
The point having least argument will have a tangent from origin
C(0,5) which makes AOCP right angle triangle.
0 ~/p = (CP=4=tanf = %. Therefore, the point would be 4(cos 0+
6 . isinf) = % + %.
(0]

283. From given equation, (3‘|Z;11‘\t42> < %

= |z —1| > 10. This represents area which lies outside a circle with center at (1,0) and
radius 10.

284. Let z = & + iy then the equation becomes 22 — 2+ + 1 + iy(1 + 2z) = 0. Clearly,

imaginary part has to be zero i.e. either y =0 or z = — % So, it is real and positive for
all points on the x-axis. When, z = —% the real part becomes 32 = %. Thus, for points
T = —é and — @ <y< @ the required condition is satisfied.

285. First equation represents a circle whose center is at (0, 7a) and radius equal to va + 4.
The second equation represents interior of a circle with center at (2,0) and radius unity.
Now, for the possibility of existence of z the two circles must intersect each other.

=Vat+4<a+4+1=a> —% anda+4—1<+Va*+4=a< f% Combining
these two gives us the range for values of a.

286. Let z = x + iy then |z 4+ V2| = \/x2+2\/§x+2+y2:t2—3t+2 and |z +iv2| =
Va2 + 2+ 22y + 2 < 2.

Because |z4+v/2| >0=t?—3t+2>0=1t < 1,t > 2 and t > 0. Both the equations are
circles so they must intersect for ¢ to exist. The distance between centers i.e. (—v/2,0)

and (0, —iv/2) is 2.

St >2220 -3t +2>2= 42t —-3)>0=t<0,t>5andr <ro+2 =
t? — 2t +2 < t> + 2 =t > 0. Combining all the inequalities, ¢ > 2.
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Let z = x4y then /22 + 8z + 16 + 32 = va® — 12a + 28 and \/x2—8\/§x+48+y2<
1.

Becaise |z +4| > 0= a?—12a4+28 >0 = a > 6+ 2v2,a < 6 —2v/2 and a > 0. Both
the equations are circles so they must intersect for a to exist. The distance between
centers i.e. (0, —47) and (4v/3,0) is 8.

=S>r+r>8=Vva?—12a+284+a>8=a>9%andr <rm+8=a< —;. Combining
all these inequalities we have a > 9.

Let z=a+iy = (1+4)2% = (1+1) (22 — y* + 2izy) = R[(1 +1) 2] = 2% —y? — 22y >
0 = z has two limits y(1 +v/2).

Let z = x + iy then 2z = |2| + 2i = 2(z + iy) = /2> + y? + 2iy. Equating real and
imaginary parts, y = 1, 2z = V22 + 1. Squaring 42® = 2>+ 1 = = = j;%.

We have earlier proven that if there are two non-parallel lines cutting a circle at a, b and
¢, d then their point of intersection is given by % Now if ¢ and d coincide
then that line will become a tangent. So putting d = ¢ we have

al14b1—2¢71

R= Ty i_c2 -

Given a12® + a22” + a3z + ag = 3 = |a12° + ap2® + azz + a4| = 3 = |a12®| + |ax2?| +
lagz| + |as] >3

= laa[|2%| + lazl[2*] + las|lz] + |aa] > 3 = |2 + |21 + |2l + 1 > 3 [+ ]as| < 1]

=142l + 2P+ 2P+ tooo >3 = %M >3 =z > %, which shows that roots lie

outside the circle with center origin and radius %

The diagram is given below:
Given, b1z1 + b32’3 = 7(b222 + b42:4) and b1 + b3 = 7(b2 +
B A Cbizitbazs  bazatbaza
bs)
4) " Tbitbs | batbs
@] This means that the point dividing AC' in the ratio b3 : by also divides
BC in the ratio by : by. Let this point be O. Let biby|z; — 20|* =

C D bsbalzs — z4]?
= bybo(b2 + b2 — 2b3by cos o) = bgby(b2 + b2 — 2b1 by cos )

b3 | ba by by _ b3 by by
ETRE el vl v vl
bs _ by bs _ by, AO _ BO
Ifasz,thenblfblécofl)o

= ANAOB ~ ABCO = ZBAO = ZCDO = AB || CD which is not possible.

If 2 = 2 then 43 = 28 = AADO ~ ABCO = /DAO = ZOBC = A, B, C, D are
concyclic.

The diagram is given below:
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Let f(z) = k(z = a) (z — B — i7) (w — B+ i) =
B8, ) k@ —a)[(z = B)* +77]

= f'(x) = k[32% — 2(a + 28)z + 5% + ¥* + 2a3].
Discriminant of f'(z) is given by D = 4[(a+283)%—
8(8% 477 + 2aB)] = 4(a” + B — 37" — 2ap9)

PeEy e 9 o
=2y = PL = \/§|7| If A lies inside the
equilateral triangle having BC' as base, then |3 —
al < V3y = (B—a)? <3y’ =a*+ 2 -3y -
(B, —) 2af < 0 = D < 0. Thus roots will be complex

numbers.
Let a = a+if and z = x + 4y, then az + az = 0 becomes as ax + fy =0 or y = (La>x

[e3

B
Its reflection in the x-axis is y = 7T Or ar — By=0= (a;ﬁ) (Z;E> — (a;f) (Z—;§> =0

=az+az=0

a+ft
y+ot

_a—yz . a—yz _ a—yz
=t=5"5 As t is real, 58 = 5.5

We have z =

== (a—72) (62 = B) = (@—77) (02 — B)

= (70 —~0) 22+ (Y8 —@d) 2 + (ad — B7)Z = (aB — @B)
Since % is real, I = % or 76 — 05 = 0.

Thus, @z + aZ = ¢, where a = i(ad) — 37 and ¢ = i(af — af).

Note that a#Oforifa:0thenag—ﬂﬁzoé%:%:%éaé—ﬁ'yzo, which is
against the hypothesis.

a+pt
y+0t

Also, note that ¢ = i(ap — ozB) is a purely real number. Thus, z =
straight line.

represents a

The solutions are given below:

i. L.H.S. = (3+ 3w+ 5w?)® — (2 + 6w + 2w?)% = [(3 + 3w + 3w? + 20*)0 — (2 4+ 2w +
202 4 4w)?) = [{3(1 + w4 w?) + 20 }5] — [{2(1 4+ w + w?) + 4w)}?]

=64w'? — 64w® =0 = R.H.S. [v1+w+w? =0].

ii. LHS. =2—w)2—w) 2w 2-whH)=2-w)(2—-uw))(2-w) (2—-uw?) =
[(2—w)(2—u?))?

=4 —2w—-27 4+ =[5 -2w+uH))P=(5+2)2=49=R.HS.
iii. LHS. =(1-w) (1 —w?) (1—")(1-®) = (1-w)?(1—u?)2 = (1 -w—w?+u?)?
=[2—(-1)]*=9=RHS.

iv. LHS. = (1 —w4w?)’ + (1+w—w?)’ = (—2w)° + (—2w*)° = 32w+ w?) =32 =
R.H.S.
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v. LHS. =14+w"+w?", wheren =3mVm € I LS. = 1+ W™ + %" =1+ (*)™ +
(W)™ =1+1+1=3=RHS.

vi. We have to prove that 1 + w" +w? = 0. If n =3m + 1V m € [ then L.H.S.
=14 42 =14 w4+w?=0=RHS.

Ifn=3m+2, Vmelthen LHS. =14 240" =1 402+ w=0=R.HS.

We have a® + b? + ¢? — ab — be — ca = a® + W3 + W3 + (W + w?)ab + (w + w?) be +
(w4 w?)ca

= (a® + abw + caw?) 4 (abw? 4 b?w® + bew) + (caw + bew? + c*w?)

=a(a+ bw + cw?) + bw?(a + bw + cw?) + cw(a + bw + cw?)

= (a+ bw+ cw?) (@ + b’ + cw).

24y 428 = (a4 b)3 + (aw + bw?)® + (aw? + bw)? = a3 4+ b + 3a%b + 3ab? + aPw® +
b3wb + 3a2bw? + 3ab?w® 4 a3wl + b3wd + 3a?bw® + 3ab®w?* = 3[a® + b + 3a?b(1 + w +
W) 4+ 3ab?(1 + w + w?)] = 3(a® + %) =R.H.S.

zyz = (a +b) (aw + bw?) (aw? 4+ bw) = (a + b) (a® + abw + abw?® + b?) = (a + b) (a® +
b2 —ab) = a® + b = R.ILS.

Given below are the factorization of the expressions:

i a?—ab4+ 0% =a®+ (w+w?)ab+ b2 = (a + bw) (a + bw?).
ii. a®+ab+b* = a® — (w+w?)ab + b2w® = (a — bw) (a — bw?).
iti. a®+ 0% = (a+b) (a®> —ab+b?) = (a +b) (a + bw) (a + bw?).
iv. a® -3 = (a—b)(a® +ab+b*) = (a+b) (a—bw) (a — bw?).

v. a®+ 034 —3abe = (a+b+c)(a®+V?+c2—ab—bc—ca) = (a+b+c)(a+bw+
cw?) (a4 bw? + cw).

2P 4+ 239 4 2372 will be divisible by 22 + x + 1 only if all the factors of 2% + z + 1
satisfy 3P 4 g30t1 4 3742,

PHr+1=0=>2=ww? If z =wthen 23 + 2371 + 232 = (L3P + (W)W +
(Wrw=14+w+w?=0.

If = w? then 2P 4 2377 4 23772 = (W) p + (WO T W? + (W) W' =14+ w? +w=0.
Hence proved.

Following like previous problem 2% + 22+ 2 +1= (z +1)(2?+1) =0 = z = —1, 4.

If + = —1 then I4p + x4q+1 + 1,47"+2 + x4s+3 — (_1)4;; + (_1)4q+1 + (_1)4r+2 +
(—D¥B=1-141-1=0.

Ifx= i, then $4P+I4Q+1 +$4y»+2+z45+3 — i4p+i4q+1 +7;47'+2+7;4s+3 =14i—1—i=0.

Ifr = —i, then m4p+z4q+1+x4r+2+x4s+3 — (—i)4p+ (_i)4q+1 + (_,L-)47'+2+ (_Z-)4s+3 —

1—14—1+14=0. Hence proved.
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PP+ 4+ =3pgr=(p+aq+r) PP+ +r—pg—qr—rp)=(p+q+7r)(p+quw+
rw?) (p + qw* + rw)

p+qg+r=3a+b(1+w+w?) +c(l+w?+w) = 3a. Similarly, p + qw + rw? = 3¢ and
p + qw? + rw = 3b. Hence, p®+ ¢+ 3 — 3pgr = 27abe, proved.

Let p = (a+bw+ cw?) and ¢ = (a + bw? + cw) then we know that p3 +¢* = (p+q) (p +
q) (p +w?).

p+g=2a—b—c,p+qu=2b—c—a,p+ qu*=2c—a—b, and hence
(a+bw+ )P+ (a+ b+ cw)®=(2a—b—c)(2b—a—c) (2c —a —b).
The solutions are given below:

i (D + P —ab—bc—ca)(ax®+1y? + 22 —xy —yz—22) = (a + bw + cw®) (a +
bw? + cw) (z 4+ yw + 20?) (z + yw? + 2w)

= (a+bw+ cw?) (z +yw + 2*) [(a + bw? + cw) (z + yw? + 2w)]

= (az + cyw® + baw® + cxw? + byw? + zaw® + brw + ayw + czwt) (az + cyw® + baw® +
czw + byw* + azw + bzw? + ayw® + csz)

= [(az + cy + bz) (cz + by + az)w? + (bx + ay + cz)w][(az + cy + bz) (cx + by +
az)w+ (bx + ay + cz) w?]
= (X+YWP+Z0) (X +Yw+Zu?) = (X2 4+Y?*+ 22 —-YZ - ZX — XY).

ii. We just introduce two new factors to previous problem a + b+ ¢ and x + y + z and
then it is only a matter of simplification to obtain the result.

. 4 - 4 i .
L.H.S. = (w) = (M) = E—ife = e = cos 86 +isin 80 = R.H.S.

sin 0+ cos 0 (cos0—isinf e
Roots of the quadratic equation 2> — 2zcos 4+ 1 = 0 are given by z = cos 6 4 isin 0.
= 22+ 272 = c0s 20 4 isin 20 + cos 20 F isin 20 = 2 cos 20 = R.H.S.

1+i= \/i(cosg—i-isin%) and (1—1) = ﬁ(cos%—isin%)

LHS. = (1+i)"+ (1—9)" = (vV2)".2cos Y = 2%“.005% = R.H.S.

6 6
Z in2TF _ icos2TE _,'Z 2k 4 gin 27k
sin=— —icos— | = —i cos =+ isin=
k=1 k=1
6 2wk 2w ox i12n [( 1-e2n ‘ .
=—iy, ,€°7 :—2[67 +e7 +..+e7]=—z — | —-1|=—i[0—-1] =1.
l—e 7

Let cot 'p = 6, then cotd = p. Now, L. H. S. is

eQmiQ icotf+1\M 6277”'9 i(cotf—i) 1™
icotf—1 - i(cotf+1)

___2mif( cosf—isinf\M
=€ cosf+isind

. A ; i
_ 6277”9<i,i9) _ €2m10.€72m29 _ 60 —1=R.HS.
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Let 14+ sin¢ +icosd = r(cosf +isind) -1+ sind = rcosf and cos ¢ = rsin 6

Now (1+sin¢+icos¢)™ = r"(cosnb +isinnf). Taking conjugates, we get (1 +sin ¢ —
icos @)™ = r"(cosnf — isinnd)

1+sin¢+icos¢>n __cosnf+isinng _ en?

From these two, we get <1+sin ¢p—icosp) ~ cosnb—isinnf — e in®

= €29 = ¢os 2n0 + sin 2n6
cos ¢ cosz%—sinz% cos%—sin% 1—tan22 r ¢
tan0=1+sin¢: p Fevie T — 5 = an(zfi)
(cosa+sin5> cos+sing 1+tang

=0 :%—g = 2nf = (%—naﬁ). Hence, proved.

Let a = cosa+isina,b=cosfB +isinf,c=cosy+isiny

Now, a+ b+ ¢ = (cosa + cos 3+ cosvy) +i(sina+sinff+siny) =0+:.0=0

Now, a® +b% 4¢3 —3abc = (a+b+c) (a®> +b* +c* —ab—bc—ca) =0 [va+b+c=0]

~a®+ 0%+ ¢ = 3abc - cos 3o+ cos 33 + cos 3y = 3 cos(a+ B+ ) and sin 3« + sin 35 +
sin3y = 3sin(a+ S+ 7).

Proceeding similarly as last problem and with an extra calculation we have

+%+%: (cosa+ cos 8+ cosy) —i(sina+sin S+ siny) =0

QI

ca? 024+ = (a+b+c)>—2(ab+ be + ca) = (a+b+c)2—2abc(é+%+%>
= 02 —2abc.0 =0~ L.H.S. = (cos 2 + cos 23 + cos 27) +i(sin 2a 4 sin 23 4 sin 2y) = 0
Equating real and imaginary parts we have our desired result.

24VA78 _ 4
Sl

?—2A+2=0t= +i

Let ao=1+diand f=1—i 2a+a=(z+1)+i,2+8=(z+1)—ianda—3=2i

Let x +1 =rcos¢ and 1 = rsin ¢. We have, WM: sinf

—B) sin™ 0
r*(cosng+isinng)—r"(cosng—isinng) __ sinf n .; __ sinf
24 ~ sin™ 0 < 7 sin 77/(]5 ~ sin™ 6
sinng __ sinf 3 i el _ n_ 1
© g = smng & one of the values of ¢ is 6. [ crsing =1=r"= sin"¢]

~x+1=rcosf and 1 = rsinf. Dividing and evaluating we get x = cot § — 1.

Given, (14 )" = pg + p1x + pex? + - + ppa™. Putting = = 4, we get (1 + )" =
o+ pri + pai® 4 -+ ppi”

T

. .. n
=(po—p2tps—-)+ilpr—ps+ps—) = [\/E(COS%-FZSHM)] =(po—p2+pai—
) +i(p1—p3+ps—-)

nm

Equating real and imaginary parts, we have pg — p2 + pg -+ = 927 cos T+ and p; — p3 +

. — 923"
D5 = 2Zsin— .
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Given, (1 —z 4+ 23)" = ao + a1 + agx® + - a9, x>". Putting = 1, w and w?, we get

1=ag+ay+ az+ -+ agn, (—20)" = ag + a1w + aow? + - + ag,w™, (=20*)" =

ag + a1w? + agw* + - + agpwi™

—1+V3i _
2

Adding these we get, 3(ag + az + ag + ) = 1 + (=2)" (W™ + w?™). Now w =

27 .o 2
(cos«B» + zsm«g»)

2nm

2 . .2 2 L2
Ww" = cos T + isin %% Now w’ = cos o — zsm—”) 2w+ WP = 2cos T —

2 cos(mr — M)

2 —1—3i (
2 - 3 3 3

3

=2(—1)"cos . Thus, 3(ao+az+ag+) = 1+ (—=2)"2(—1)" cos ¥ = 142" cos 4.
ag+ as+ ag+ :%(1 +2ntl cos%).

Given, (1 + )" = ¢g 4+ 12 + c22® + - + 2™ Putting £ = 1 and z = —1, we get
=co+ci+ca+-+ey,

and 0 =cop—c;+ca— -+ (—1)" ¢, Adding these two, we get 2™ = 2(co+ ca+ca+ )
or co+ o+ cq+ o =271

Putting = = 4, we get (1 4+ i)™ = co + 16 + cpi> + ¢3i° + - + i = [\/i(cosg +

.. n .
zsm%)] =(co—cat+ca—)+ilcr—cg+ )

= 2g(cos%+z‘sin%r) =(co—cotcg—-)F+i(ci—c3+ )

Equating real parts, we get co—ca+c4— - = 27 cos %%, Adding this result with the one
obtained previously, we have 2[co 4 ¢4 + cg + -] = 2" + 2% cos o

1
B41=0=28=—-1=cosm+isinm:z= (cosT+isinm)s= Cos%”—;”—kisinm%,r =
0,1,2,...,7

_ LT P 37 . 3w 5T . 5w T s T
~z = cosg+tsing, cosg £ sing, cosg £ sing, cosg £sing

Now, quadratic equation whose roots are cos g + sing, is 22—2 cosgz+1=0
Similarly, we can find the quadratic equations for remaining three pairs of roots. Thus,
A41= (zQ—QCosngr 1) (22 —QCos%er 1) (22— 2cos§8ﬁz+ 1) (zQ—QCoszsﬁer 1)
Dividing both sides by z*, we get

z4+§ = <z+%—2005§) (z—b—é— 2005%) (z-i—%— 2005%) (z-i—%—?cos%r)

Putting z = cos @ + i¢sin 6, so that 2™ + ;15 = 2ncosnb, we get

2cos 46 = 2((:050 — cos%) 2(cos9 — cos%ﬂ) 2<c050 — cos%’r) 2(cos@ - COS%T)

s cosdh = 8(0030 — cos%) (cos@ — cos%) <cosl9 — cos%ﬂ) <cosl9 — cos%)
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Let z = cosf + isin 6, then 27 = cos 70 + i sin 70. If

g_zﬁ@ﬁﬁllﬂ 137

= T T, then 27 = cos 70 +isin7T@=1or 2 +1=0

P m 3 5w 7w 97 1llwm 13w .
Thus, z = cos 0 +isin 0, where 0 = =, 5, =, =, =, —, = are the roots of the equation.

Also,when § =7, 2= —1.Now, 2" +1=0= (2 +1) (:* =P+ 21 =23+ 22— 24+1) =0
Root of equation z + 1 =0 is cos @ + isin§, where § = 7
Roots of equation 26 — 254 2* — 23 4+ 22— 24+1=0 (1)

7 3w 57 Tm 97 llx 13w

are cos 0 +isinf, where 0 = =, %, 5, 5, 5, 5, >

1

Let © = cos 6, then z+%zcos€+isin0+m:20050:2x

But cos(lP’Tﬂ) = cos(27r —;) = cosz, COSHT7r = cos?’%7 0013977r = cos‘%T
Dividing (1) by 23, we get z3—z2+z—1+%—§+$:0
(B+%) - (+2)+(s43)—-1=0

(z+%>3—3z.%<z+%)—[(z+%)2—2z.%}+z+%—120

= 82% — 422 — 42 + 1 = 0. Roots of this equation are cos%7 cos377r and cos 57”

1
. . . L 2 .. 2
Given, 2" —1=0=2""=1=cos0+isin0 2z = (cos0+isin0)® = cos I + i sin I
=+41,cosf+ising, cosF +isin, cosF £ isin, cos F +isinF

Quadratic equation whose roots are +1 is 22 — 1 = 0. And quadratic equation whose
roots are cosg + sin g is 2* — 2cos z + 1 = 0. Thus,

20 -1 =(2-1) <z2 —2costz + 1) (22 — 2COS2?WZ + 1) (zz — 20033?”2 + 1) <z2 —
20054%2 + 1)

Dividing both sides by z°, we get

z5—%: (z—l> (z—l—%—Qcosg) (z-i—%—Qcos%") (z—l—%—ZcosB%)(z—ﬁ—%—Qcos%ﬂ)

z

Putting z = cos# + isin @ in the above equation, so that z° — % = 2isin 560, we get

27 8in 50 = 24 sin0.2<cosc9 — cos%) 2(0059 — cos%@) 2(0059 — cos%’r) 2((:050 — cos%")

~8in 50 = 16sin 6(0059 — cos%) <Cos€ — cos%) <Cos€ — cos%) (cos@ — cosigi)

= 16sin 6’(c059 — cos%) <c050 + cos%) ((3059 — cos%) (cosG + cos%)

= 16sin 9(0052 60— cos2g) (cos2 60— Cosz%ﬂ>
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. . . 2 .
= 16sin 6(51112% — sin? 0) (%1112 T _ sin? 9)

Slll 3

2 29 in? 0
= 16sin 0 sin” Z sin” 7T(1—5”’ )(1— si'n22,(>
5

= 16sin fsin? 36° sin? 72°<1 - 511‘;2) (l — Sj“;f,,)
sin® = 5 5

= 16sin 9( 10— 2\/5)2( 104”\/3)2 <1 — —S?nzf> <1 — S.injzi)
S1n 5 sin 5

Thus, sin 50 = 5sm€< Zin 9) <1 — Si;‘zw).

n2Z sin? =~
5

320.Given, 2"+ 1=0o0r 2" = —1=cosm+isinm

1
C L2 Jrmtw | - . 2rmd
wx = (cosm+isinm)? = cos =T 4 isin =" r=0,1,2,...,6

27 3 .
cosAizsm cosAizsm =, cosm +isinm(= —1)

= COS= j:zsm =)

7

x7+1:(w+1)(x2—2cos$x+1>( —2cos 2T —0—1)( —200537"x+1>.Putting
T =1, we get

i+ 1=(1+1i)(—2icosT)(—2icos) (—2icos )

_ 27 3T . 2 3T
1—i=8(1+1)cosscos cos5 = —8(1 — i) cos T cos = cos
~cosZcos ZcosT = —1
7 7 7 8
321. (cosa + isinw)” = cos"a + i."Cy cos" Tasina + i2."Cycos" ?asin’a + - +

" "Cnsin™ a

= cosna + isinna = (cos™ a —" Cy cos™ 2 asin® a) 4 i("C} cos™ ! asin ). Equating

imaginary parts, we get

-1 -3

~sinna =" Cy cos” P asina —" C5 cos” 2 asin® o + -+

2n

~sin(2n 4+ 1) a =" O} cos®™ asina —"*1 O3 cos® 2 asin® o + -

= sin(2n + 1) a = sin®* ™ o[** 1Y cot?™ o —2" T Cy cot® T2 o + -]

L 27
whena = 575y, gt s gy sin(2n + Ha =0
. 2 2 27
~cot” 5o, ot gy, , cot? —1 are the roots of the equation. From the second term

coefficient we get sum of roots in a polynomial.

21
2n+1

9 nm 2410,
+ .-+ + cot Iyl rIg,

~ cot? + cot?

2n7zrl
322. Let C' = cos 0 cos O + cos® 0cos 20 + - + cos™0 cosnf and
S = cosfsin 6 + cos? #sin 20 + -+ + cos™H sin nd

Now, C + iS = cosf(cosf + isin @) + cos® 0(cos 20 + isin 20) + - + cos™ f(cosnfd +
isinnf)
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= cos0.e” + cos?0.e¥ 4 .. 4 cos™0.e™? = x + 2% + - + 2", where z = cosfe?’ =
z(z"—1) _ cosfe’?(cos™ Pe’™?—1)
z—1 = cos fe??—1
__ cosBlcos™ O(cosnf+isinnb)—1] _ cosB[(cos™ @ cosnh—1)+icos™0sinnb]
- cos0—e 0 - cos @—(cos @—isin 0)

= —icot f(cos™ @ cosnb — 1) + icos” §sinnd
Equating imaginary parts, we get

S = —cotf(cos™ fcosnb — 1) = cot B(1 — cos™ § cosnb).

323 LHS. = —3—4i =5(—2—i%) =5(cos(r + tan %) + isin(7 + tan 1))

~14

— 5eilmrtan™5) _ RS

324. Putting z* = Va1 + V3l polar form we get

22 22
4 57 ..o Bmo (24r+5) . s (24r45)T _
" = o815+ i8in15 - & = 08— +isin-—p—"—,r=0,1,2,4.
325.L.H.S. = 212923 ... = (cos% + ising) (COS% + isin%) (COS%—F isin%)

s ™

_ 3 .. 3 _ s ST
= cos(’l_%> + 18111(—1_%) =cosz +ising =i = R.H.S.

326. Given poz™ + pra" ! + poa™ 2+ -+ p, = 0, prove that p; sin 6 + pasin 20 + - + p, =
0 = po(cosnf + isinnb) + pi[cos(n — 1) 0 + sin(n — 1) 8] + pa[cos(n —2) 60 + isin(n —

2)0]+ -+ p, =0[~cosf+isinf] is a solution.
Dividing both sides by cosnf + i sin nf, we have

po + p1(cos — isin @) + pa(cos 20 — isin20) + -+ + p,(cosnd — isinnd) = 0. Equating
real and imaghinary parts we have required equations.

_ (1l4cosp+ising\"™ _ ((1+cos¢p+ising)(1l+cosp+ising)\™
327. LH.S. = (1+cos¢—isin¢) - ( (1+cos ¢)2+sin2 ¢ )

_ <1+2 cos ¢p+cos? ¢p—sin? ¢p+2isin ¢(1+cos ¢) >n _ (2 cos ¢(1+cos ¢)+2isin p(1+cos @) )"
- 1+2 cos ¢p+cos? ¢+sin? ¢ - 2cos ¢(1+cos d)

= (cos¢ +ising™) = cosng + isinng = R.H.S.

328. Given 2cosf = z +% = 22— 2cosfr+1 =0 =z = cosh + isinf. Similarly, y =
Cos ¢ =+ i sin ¢.

i. §=cos(0—¢)+isin(0—¢) and £ = cos(¢—0) +isin(¢ —0)
~ LH.S. =2cos(0 — ¢) = R.H.S. [~ cos(—0) = cos b, sin(—0) = —sinb]

ii. 2y = cos(0+ ¢) +isin(0+ ¢), — = cos(0 + ¢) Fisin(0 + ¢)

"oy
~ LH.S. =2cos( + ¢) = R.H.S.

iii. 2™y"™ = (cosml £ isinmb) (cosng + isinng) = cos(mb + ne) + isin(mé + ne) and
%yn = cos(mf + n¢) F isin(mb + ng) ~ L.H.S. = 2cos(mb + ng) = R.H.S.

x

iv. Z—H = cos(ml — ne) + isin(mb — ne) and f—m = cos(ng — mb) + isin(ng — mh) -

LHS. = 2cos(mb —n¢) = R.H.S.
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Given equation is 2 — 2z + 4 = 0 whose roots are o, 8 = 1+ i/3 = 2<cos%iising) =

o, " = (coswizsm%ﬁ)
wa” + B =2"" cosSE = R.H.S.

Given equation is 22 — 2z cos # + 1 = 0, whose roots are cos # +i sin 6, nth power of which
are cos nf + i sin nf. Therefore, the equation having these roots are 22 —2 cosnf+1 = 0.

L.H.S. = A(cos 26 + isin 20) + B(cos 20 — isin 20) = 5cos 20 + 7i* sin 26.

= A+B=5A-B=Ti=A=2" p=>3"

Given x = cosf + z'sin9 and v1— ¢ = nc — 1. Squaring the second equaiton n?c? +
A4+2me=0=c= W We have to prove that 1+ cosf = 5~ (1 + nz) (1 —l—g)

R.HS. = 1+4n? +2ncost9)—1+ cos =1+ ccosf = L.H.S.

2+1( 2+1

2rm

From the given equality, we have (}fz)n =l=1+z=(1-2) (coa— +isin=>)

Lctggzéthon 14+ z=(1—2)(cosf+isinf) = z((1+cosf) +isinf) = (cosf—1) +

(cosf—1)+isinf

ising = z = (1+cosf)+isinf

z= itang = itangg, r=0,1,2..,(n—1)

Clearly, the above equation is invalid if n is even and r = g as it will cause the value of
tan function to reach infinity.

LHS. = %m Dividing numerator and denominator by zy

1
ery*E*; __ cosa+isina+cosB+isin f—cosatisina—cos f—isinf _ sina+sinf _ R.HS

w,y+_,, cos a+isina—cos B—isin B—cosa—isina+cos B—isin B~ sina—sin
v =

(1 + :C)n =" Co +n leﬂ +n 031172 +n C3.’L'3 + -

1i\/§z

We know that w, w? = —Ccos T+ sm .

Putting = 1, w, w?® and adding we get

2" 4+ 2cos T =3["Co+" C3+" C+ -] =" Co+" C3+" C + -+ = % (2” + 2008%).
Proceeding like previous question,

2" =" Co+" C1+" Co+" C3+" Cy+" Cs +

(=)™ =" Cy +" Crw +" Cow? +" Caw® +™ Cyw +7 Cy® + -

= (=) =" Cow? +7 Crw® 47 Cow +7 Caw® +7 Cyw® 4™ Csw™ + -

and (—w)" =" Cy +" C1w? +" Cow" +™ C30® +" Cyw® +" Csw'0 + -

= (_w)n+l _n Cow +7L Cle +'n 0264)5 +n ng'? +'n 0464}9 +n 050.)11 4.
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Adding 2"72 + 2cos (n732>7r =3["C1 +" Cy +" Cr + ] =" C1 4" Cy+" Cr + - =
%[2”‘2+2cosm("732>"]

This problem can be solved like previous problem. Put & = 1, w, w? and multiply with
1, w, w? and then add to obtain the result.

Co+ Crz + Coz? + Cya® + Cyzt + -+ = 1+ :r)4". Putting z = 1, —1, 4, —i and adding
4[Co+ Cy+ Cg+ ] =21 4 (1 4+i)* 4+ (1 —4)*"

= Co+Cy+ Cg+ - =242 4 (—1)n2n L,

Given (1 —xz +22)%" = ag 4+ a1z + axa® + . Putting 2 = 1, w, w?

1% = ag + a1 + as + as + -

(—2w)5" = 26" = 4 + ayw + asw? + asw® 4 -

(—2w?)%" = 26" = g + ayw? +9 W + azw® + -

Adding 25" +1 = 3[ag + as +ag + ] = ag + az +ag + - = % [267F 1),

Proceeding like previous problem we obtain 3[ag + a3 + ag + -+ ].
R.H.S. becomes 1" 4 (—2w)" 4+ (—2w®)" but —w = cos 3 +isinF and —w” = cos; —ising
and hence we have R.H.S.

AA'+ BB’ / AA'+BB'w? ’ AA'+BB "2
Clearly, 2" = %*CCV’ Y’ = %*CC“’ and z” = +++CC“’7

and AA' + BB +CC' = (z+y+2) (&' +y +2) + (z + yw + 2?) (' + y'w +
ZW?) + (2 + yw? 4+ 2w) (2" + y'w? + 2/w) = 3(zz’ + zy’ + y2’). Analogously y” =

yy +zx+ a2, 2 =z +ay + s

We have the identity (ad — Bv)(a/d" — ) = (ad + B7) (78 + §6') — (af’ +
Bé’) (v +ya +67')

Puttinga =z +4vyi,f=z+ti,y=—(z—ti),0 =z —vyi, o’ =a+bi,f =c+di,y
—(¢—di) and ¢’ = a — bi then

ad— By =22 +y? + 22+t and '8 — By = a? + b2 + ¢ + d?

= aa’ 4+ vy = (ax — by — ca — dt) + i(bx + ay + dz — ct), v + 68’ = By + ad’ =
By + aa’

~aff' 4+ B0 = (cx—dy+az+bt)+i(de+cy—bz+at),ya'+6v = —(cx—dy+az+bt)+
i(dx + cy — bz + at)

Thus, —(af’ + B6) (va' +8v') = (cx — dy + az + bt)? + (dz + cy — bz + at)?
Substituting obtained expression in the original idendity we have the required result.

(cosf + isin®)® = cos™ + i"C,cos" 1@sinf + i2"Cycos™ " Osin20 + - +
i""C, cos(n —r+1)@sin" "1 O + -

Separating real part, cosnf = cos™ — "C, cos™ 2 fsin? 0 + -
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Taking into account the parity of n and dividing both members of these equalities by
cos” 0, we get the required formulas.

Replacing real part with imaginary part in previous problem we arrive at required
formula.

(cos @+isin @)+ (cos §—isin )

cosf = 5 . Let cos@ + isin® = z then cosf —isinf = 2.

2m
cosz’"H _ (z+z ) _ Lmz kaZ2mfk‘ka

k=0
Moreover 22™ co Z mcy o2 (m— k)+2mC + Z mc, 22 (m—k)

= k=m+1
0
Putting m — k = —(m — k), we rewrite the sum Z o o
kK'=m-—1

m—1

Z chsz(mfk)

k=0

And so 22™ cos®™ 0 =3, 12mc (m—k) 4 ,=2(m—k) )+2m0m.

However, 22~k 4 >72m=k) — 9 co52(m — k).

2 2%M cos?™ ) = mX: 2 (2:1) cos2(m—k)z+ (2:>

k=0
Putting 6 = g — 6 in the previous problem, we get the required formula.
This is deduced like previous problem.
This is deduced like previous problem.

We have the expression u,, 4+ iv, = (cos @+ isina) + r[cos(a + 0) +isin(a+0)] + -+
r"[cos(a + nb) + isin(a + nb)]

= (cosa+isina)[l+ (cosf + isinf) + -+ r"(cosnd + isinnd)]. Putting z = cos 0 +
isin @, then

a (rz)nti-1

Up + 10, = (cosa +isina) [1+rz+ - 4 1"2"] = e

Transforming (r?":ﬂ’ separating real part from the imaginary one.
(ra)" -1 _ [(rz)" 1 —1][rE—1]
rz—1 = (rz—1)(rz—-1)

__ r™*2[cos nB+isin nf]—r[cos f—isin b] + —r"*1lcos(n+1)6+isin(n+1)6]+1
- 1—2rcosf+r? 1—2rcos@+r?

Multiplying above with (cos a+isin «) and separating real and imaginary parts we have

cosa—rcos(a—0)—r"*! cos[a+(n+1)0]+r"*2 cos(a+nb)
1—2rcos0+r2

Up + TV, = +

sina—rsin(a—0)—r"* ! sin[a+(n+1)0]+r"*2sin(a+nb)
1—2rcos 0+r? '

1
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sm—e cos"—g

Note: Putting a = 0,7 = 1, we obtain 1 + cosf + cos 26 + -+ + cosnf =

2
sing 3

sin n+10s1n né
and sin @ + sin 20 4 --- + sinnf = —2——=.,

sing 3

S+1iS" = Z”Ck(coskﬁ +isinkf) = Z(cos@ +isinf)F = (14 cosf 4 isin )"
k=0 k=0

_ 20 0. 0 0 no [
= [2cos §+2251n§cos§] = 2" cos 2<COb2+ZSIH2)

n 6

20052

(cos + zsm%e)

Equating real and imaginary parts we have S and S’.

n
Put S = sin?? a + sin®? 2a 4 -+ + sin?? 2o = ZsinQp lo
=1

p—1
But we have proved earlier sin?” la = #) (_1)p22p0k cos2(p — k)l + ng C’p,
k=0
therefore
p—1 n
2
=Y (1RO cos2(p — k) la + 555 7C,
k=0 =1
n sm"Tecos"—“e
Put 2(p—k)a=46,>_;cos2(p—k)a=cos + -+ cosnf = Tl
3
sm%gcos" g ) ) .
Denoting —2—;2— = 0y, we can prove that o, = 0 if k is of the same parity as
slni

p{k = p(mod 2)} and o, = —1 if k and p are of different parity {k = p + 1(mod) 2},
and we get

s_t S o e,

22p
k=0
k=p+1(mod2)
p—1
Hence, S = 22,, . Z 2pC +%2p0
k=0
k=p+1(mod?2)
p—1
But we can prove that Z %P C.= 22P=2 (check binomial theorem chapter) and
k=0

k=p+1(mod 2)
hence our formula is deduced.

Considering the given expression as a polynomial in y we see that at y = 0 the polyno-
mial vanishes. Therefore, our polynomial is divisible by y. Since it is symmetrical both
w.r.t. to z and y this must also be true for x i.e. the polynomial being divisible by x.
Hence, the polynomial is divisible by zy. Putting y = —z(we do this for checking divis-
ibility by x + y), we have (x —x)™ — 2™ — (—z)" = 0. Consequently, the polynomial is
divisible by x + y.
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Now it remains to prove that the polynomial is divisible by z? 4+ zy + 3. Expansind
this into linear factors we have 2 4+ 2y + y* = (y — 2w) (y — 2w?) where w is cube root
of unity, which leads to 1 + w + w? = 0.

Since n. = 3m + 1, 3m + 2V m € [, we substitute y = zw and y = zw? and find that it
vanishes for both. Consequently, we have proven the divisibility condition.

Let the quantities —z, —y and x + y be the roots of the cubic equation 2® —rz? — pz — g =
0. Thenr=—z—y+z+y=0,—p=zy—z(z+y)—y(z+y),q=2zy(x+y) reducing
our equation to #® — pz + ¢ = 0.

Putting (x + y)" — 2™ — y" = S, we find that between successive values of S,, their
exists relationship S, 13 = pSn+1 + ¢S,. We will use mathematical induction to prove
that S,, is divisible by p? with the knowledge that S; = 0.

Let S, be divisble by p? then let S, be also divisible by p%. We have, Sn+6=DSn+a+
qSn+3, Sn+a = PSny2 + @Sny1. Therefore,

Sn+6 = p(pSn+2 + an+1) + Q(psn+1 + an) = p2Sn+2 + 2pq5n+1 + q2Sn~

Since by supposition, S, is divisible by p?, it suffices to prove that S, is divisible
by p. Thus, we only have to prove that given expression is divisible by 22 + zy + y? if
n = 2(mod 6), which can be proved by proceeding like previous problem.

Let f(z) = (cosf + xsinh)™ — cosnd — zsinnh. But 22+ 1 = (z + 1) (z — 4) and
f(i) = cosnf +isinnh — cosnf — i sin nh = 0. Similarly, f(—i) = 0. And hence, required
condition is proved.

. Roots of the equation 2 — 2pz cosf + p*> = 0 are p(cosf + sin ). Let f(x) = z"sinf —

n—1

p"xsinnf + p"sin(n — 1) 6, then

flp(cosf + isin@)] = p™(cosnf + isinnb)sin @ — p™(cosf + isin @) sin nh + p™ sin(n —
1) 6. Separating real and imaginary parts

cosnfsing — cosfsinnb +sin(n —1)§ = —sin(n — 1) +sin(n —1)0 =0

and sin @ sinnf — sin #sinnd = 0. Hence, f(x) is divisible by p(cos @ + isin#) and simi-
larly we can prove it for the other root.

Let 2 +1 = (2" + pr+ @) (2® + pr+¢) = a* + (p+ p)2’ + (pp’ + g+ ¢)2* +
(pq’ + p’q) x + q¢’ which gives us four equations p+p = 0,pp'+q¢+¢ =0,p¢"+p'q=0
and qq = 1.

Assuming p=0,p’ =0,q+¢ =0,q9¢ =1,¢* = —1,q¢ = +i, ¢ = Fi.

Consequently, corresponding factorization has form z? + 1 = (22 + ) (2% — ).

Let q=¢',¢?>=1,q=+1. Firstlet g=¢' =1. Then pp’' = —2,p+p =0,p’ =2,p =
+v2, p’ = FV2. The corresponding factorization is 2t +1= (ac2 — 2z + 1) (x2 +
V2z +1).

Then we assume g =¢' = —1, p+p =0, pp’ =2, p = +v2i, p’ = Fv/2i.

The factorization will be (2% + v/2iz — 1) (2® — v2iz — 1).
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n—1 n—1

357. Let S = ka sz” where z = cos~+zsm2-»

358.

359.

360.

361.

k=1 k=1

Thus, Zxk—1+z”+z2p+ . 1)pbutz”—coszp’r+zsm2p Obviously 2? = 1 if

k=1
anp—1

and only if p is divisible by n, in which case S = n. If 2P #£ 1, then S = =0=2"P=1.
n—1 n—1 o
We have Z \Ak|2 = Z AR A
- k=1
But A Ay = (x + ye* + 2" + .+ we" " VF) (T + e F 4z 4 we (PTVE)
= (2T + y§ + - + wl) + x(Ge * 4+ ze 2F 4+ oo f we MTVE) Loy (T 4z R 4 4
EE*(”*U’“) R wg(”lfl)k(j + yefk R 56*("*2%)
n—1 n—1
Therefore, Z |Ag|? = n(|z|?+ [y + -+ |w|®) + 2 Z( e ze R e T UR) 4
n—1 =1 n—1 =1
Yy Z(jgk Lze kg @6*("*2%) 4o dw Z(j€( Dk 4 UE(" 2k L. 4 7e )
k=1 k=1
ne
But Z ¢'* = 0 if { is not divisible by n from previous problem. Therefore all the sums
k=1
in the right vanish and we get
Z Al = (e + [y1? + .+ Jwf).
Considering 2nth root of unity zs = cosgfll + isin% (s=1,2,3,...,n).
2n n—1 2n—1
Therefore, 2" —1 = H(m—zs) = H (z—xs) H (x—x) (2% —1) vap=—1,20, =
s=1 s=1 s=n+1
1. But x9,_s = Ts, consequently,
— n—1
1= (2?—1) Hm—xs Y(x—T5) = (22 —1) (x2—2zcos%+1).
s=1 s=1
Considering 2n + 1th root of unity =, = cos 2%;?1)” + isin (2257:;” (s=1,2,3,...,n).
2n+1
Therefore 2"t — 1 = H (z — xs). However, xo,+1 = 1, therefore
s=1
2n n
2T 1= (z—1) H(Z‘—Z‘S)7 but £, ¢ =T; = 2> —1=(z—1) H(z—ms) (z—
n s=1 z=1
;) = (z+1) H<m2—2xcos%+ 1).
k=1
Considering 2n + 1th root of —1, x4 = —Cos2(§‘::rll) + isin (2;;1; (s=1,2,3,...,n).
2n+1
Therefore 22" + 1 = H (z — xz5). However, xa,+1 = —1, therefore

s=1
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2n n
2Tl = (z41) H(x— §), but Top_s =T = 2" 4 1= (z+1) H T— T
n s=1 z=1
Ty) = (x+1) H(z +2xcos2—+1+ 1)
k=1
This problem can be solved like previous problem.
n—1 &
We have proven that 22" —1 = (22 — 1) H (x2 — 2 cos;7r + 1)
k=1
n—1 &
=2y %1 = H (xg — 2:15005%r + 1>
k=1
— n—1 %
Putting =z = 1, we have H - QCOS_) = H 45in® 22 =
el k=1
22(n—1) gin?2 o sm2~§~§-~sin2 (n;i)w
(n—1)7 Vn

:>sm sm2 -Sin = = 5o

This problem can be solved like previous problem.

n

Since cos a4 sin « is the root of the given equation, we have Z pr(cos a+isin oz)"_’C =

=0
0 (po=1)

n n
= (cosa + isin a)"’Zpk(cosoz +isina)F=0= Zpk(cos ak —isinak) = 0.
k=0 k=0

n
Hence, Zpk sin ak = p; sina + po sin 2a + -+ + p,, sinna = 0.
k=0

The roots of the equation z” = 1 are cos— + isin 2’;" (k=0,1,2,...,6).

Therefore, the roots of the equation 2%+ 2° + z* + 23 + 22 + 2 + 1 = 0 will be z;, =

Cos&+zsin21;7r (k=1,2,3,...,6).

Putting x + % =y, then 22 + # =4?— 2y and z° + % = 4% — 3y. Rewriting the above
equation (:v3 +%§> + (xz + ;15) + <x +%) +1=0.

_ —_ _ 2k
Clearly, 1 = Tg, T2 = T, 3 = T4, Tk + 0 = Tk + T = 2cos =L

Hence we can say that quantities 2 cosv 2cosiE =2 cosZ
v ryt—2y—1=0.

= T are the rootss of the equation

Let the roots of the cubic equation z® — az? + bz —c=0be a, 3,7. Then a + S+ v =
a,af + By +ya=b,afy=c.

Let the equation, whose roots are Vo, /8, ¥/7, be 3 — Az? + Bx — C = 0. Then,

Va+ B+ 7= A YaB+ VB + 3a = B, Y/t =
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We know that (m +p +q)% = m> + p> + ¢ + 3(m + p + ¢) (mp + mq + pg) — 3mpq.

Substituting Vo, &/B, ¢/ and /a8, ¥/By, ¥/va for m, p, ¢ we obtain

A =a+34AB—3C,B*=b+3BCA—3C% Inourcase,a =—1,b=—-2,¢c=1,C = 1.
Hence, A®> =3AB —4, B> =3AB —5.

Multiplying these equations and putting AB = z, we find
22922 4+272-20=0= (2—3)°+7=0=>2=3-7
But A°=32—4= A= +/5—3¥Y7 and hence

\/c057 \/(3057 \/00872\3/%(5

This problem can be solved like previous problem.

Squaring the first trimonial, A2 = (22 4+ 2z9x3) + (22 + 22122 w + (23 + 221 23) W?

Then A% = (22 + 22 + 22 + 6x13033) + (3x2wy + 3232, + 32323) w + (32323 + 3232 +
3x32s) w?

Putting 3o = 322z + 32221 + 3wix3 and 38 = 32223 + 3wz + 3ia,.

Now 23 4 23 + 23 = —(pz1 + q) — (pr2+ q) — (pr3 + q) = —3¢ since z1 + 3 4 23 = 0.
Moreover, x1x2x3 = —q, therefore

A3 = —9¢ + 3aw + 3Bw?, we also find B* = —9¢ + 3aw? + 3w.
Hence, A% 4+ B? = —18¢ — 3a — 33 = —27¢, and similarly, A>B% = —27p3.

Let f(z) = %m then the equation takes the form f(x).f(a) = ax.

x— f(z) —% and z + f(z) :%. Dividing,

=b.

S — (z+1> Let 7=y and g a+1

=l

sz—f@) ="z +9°f(2),2(1—y°) = f(a) 1 +¢°) = L2 = 8

( 1= 1-y° _ 1+b5 5
Similarly, 1+b> T —F = Y = —bd.
. 2
The last equation has five roots. yj, = —be”, where € = Coqv +isin 5
But 1+y (a4+1)—(a—1)e* cos%"fiasin)%r
W =1y = Tk = (a+1)+(a=1)er ™ acos®T—isin kT

1 V& n 2nm . 2nm
(—54—27) = COs =3~ +zsmT

Further ( 5+ l\2f>n — *2171)"(1 . Z\/g)" _ =
"y ivE) 4]

= (El,gn [1 — 3"02 + ] ,i\/g[ncl o 3n03 + 32nc5 - 33nc7+ ]

"Cy(=iv3) + "Cy(—iV3)?
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Equating coefficient of ¢ in both the equations, S = (—1)
371. We have (1 +4)" = 1+ "Cpi + "CyiZ +"Cyi® + - = 1 + "Chi — "Cy — "Clyii + ---

But1+i= \/i(cos§+isin§)

Therefore, 0 =1 —"Co+"Cy —"Cs+ -+ = 2% cos =

o' ="C; ="C3+"C5="Cr 4= 23 sin =F.

Hence, if n = 0(mod 4) i.e. n =4m V¥ m €[, then ¢ = (—1)™2>™ ¢’ = 0. If n = 4m + 1,

then o =0’ = (—1)"2%" forn =4m+2,0 = 0,0’ = (—1)2*" T and for n = 4n+3,0 =
(_1>m+1 92m+1 o = (_1)m22m+1
, :
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x+x9_‘_$25+x49+x81:x(1+x8+x24+x48+$80) :m[(x80_1)+(x48_1)+(x24_
1) + (28 —1) + 5].

All terms are divisible by x(m2 —1) except last term 5z, and hence, 5z is the remainder.

Let P=a%999 428888 L o777 L4 a2 4 land Q=2+ 2%+ 2"+ -+ 2 +1, then
P— Q — xQ[(mIO)QQQ _ 1} _‘_xS[(mlO)SSS _ 1] R I[(J;IO)IOO _ 1]

But (') — 1 is divisible by 2! —1 ¥ n > 1.~ P — Q is divisible by 20 — 1.

Because ¥ + 28 + 2"+ -+ 2+ 1z -1 = 22+ 28+ 2"+ 2+ 1P -Q =
2+ +a"+ otz + 1P,

We will prove this by contradiction. Suppose that f(n) = 0, then f(x —n) divides f(x)
ie. f(z) = (z —n)g(x), where g(x) is another polynomial with integral coefficients.
Now f(1) = (1—n)g(1) and f(2) = (2—n)g(2). Both of these should be odd numbers
but that is not possible as 1 —n and 2 — n are consecutive integers. Thus, either f(1)
or f(2) should be even, which is a contradiction, and hence, the result.

Suppose that there exists such an integer b, such that f(b) = 1993. Let g(z) = f(x) —
1991. Now, g is a polynomial with integer coefficients and g(a;) =0 for i = 1,2, 3, 4.

Thus, (z —ay), (z —az), (z —a3) and (z — ay) are all factors of g(z). So g(z) = (v —
a1) (x —az) (x —a3) (x — aq) h(z), where h(z) is a polynomial with integer coefficients.
g(b) = f(b) —1991 =2 s0 g(b) = (b—a1) (b—az) (b—a3) (b—aq)h(b) = 2.

Thus, (b—a1)(b—az)(b—a3z)(b— aq) are all divisors of 2 and distinct. Such values
are 1, —1,—2, 2 and h(b) is an integer.

~g(b) = 4.h(b) = 2, which is not possible. Hence, such an integer does not exist.

We know that when coefficients of a polynomial are integers then quadratic surds as
roots appear in pairs. Therefore, the other root would be —v/5 giving us a second degree
polynomial 22 — 5. Therefore, we can write the polynomial is of the form az? — 5a.

Second method: Since the order of the surd v/5 is 2, we can expect a polynomial of
the lowest degree to be a polynomial of degree 2. Let f(z) = aa® +bx + ¢, a,b,¢c € Q.
f(\/g) =5a+ v5a+ ¢ =0 But /5 is irrational so 5a +¢=0and b =0 = ¢ = —5a so
the polynomial is of the form az® — 5a giving us second root at —+/5.

Let f(z) = = — (V5 +v2) = [(x — V/5) — V2]. Using conjugate as the other zero,
we have fi(z) = [(z — vB) — v2][(z — vB) + V3] = (2 + 3 — 2Ba) = fulx) =
[(#2+3) — 25z [(22 4+ 3) + 2v6z] = 2* — 1422 + 9 = f(z) = az® — 142” + 9a, where
a€”Z,a#0.

Putting z = 0,0 = —f(0) = f(0) = 0. Putting = = 1, f(0) = =3f(1) = f(1) = 0.
Similalrly, f(2) = f(3) = 0. Let is assume f(z) = z(z — 1) (z — 2) (x — 3) g(x), where
g(z) is some polynomial. Now using the given relation we have z(z — 1) (z — 2) (x —
3)(x—4)g(x—1) =z(x—1)(z—-2)(x—3)(z—4)g(z)

412
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=g(z—1)=g(z) Ve e R—-{0,1,2,3,4} = g(x — 1) = g(z) V = € R from identity
theorem.

= g(z) is periodic. = g(z) =c = f(z) = cx(z —1)(x —2) (x — 3)

Because f(x) is a monic coefficient of highest degree will be 1. Let g(x) = f(z) — z,
where g(z) is also a cubic polynomial.

9(1) =0,9(2) =0,93) =0=g(x) =(z—-1)(z —-2)(z=3) = f(z) = (z - 1)(z -
2) (x —3) +xz = f(4) = 10.

Let f(z) =z — (V3 + v7) = [(z — V/3) — V/T]. Using conjugate as the other zero,
we have fi(z) = [(z — V3) = V7] [(z — v3) + V7] = (4% — 4 — 2V32) = fo(a) =
[(#2 —4) —2v/32][(2® — 4) + 2v/3z] = 2* — 822 + 16 — 122% = 2* — 2022 + 16 = 0.

Clearly, we will have conjugate roots for the given surds as roots, which would be 2 —+/3
and 3 — v/2. Therefore, the polynomial would be

f(x) = [(z = 2) = VB][(x = 2) + V3] [(z — 3) = V2][(z — 3) + V2] = (¢ — 4o + 4 —
3) (22 —62+9—2)= (22 —4x 4+ 1) (2 — 62 +7) = 2* — 102° + 3222 — 342 + 7 = 0.

Let y = /2, then = y 4 3y = y(3y + 1). Cubing both sides 2* = 33(27y> 4 27y* + 9y +
1) = 2(92 4 55) = 2® — 182 — 110 = 0. This is the minimal polynomial as [Q(V/2) : Q] =
3.

a"—nz+n—1=(x—1)(a" '+2" 2+ t+az+1)—n@—1)=(z—1)[(a"' =
1) 4 (2" 2—=1) 4 -+ (z — 1)], which clearly has a factor (z —1)2

Because a, b, ¢, d, e are all zeroes of the polynomial 6z° + 5z% 4+ 423 + 322 + 22 + 1,
therefore, 6(x —a) (x — b) (z — ¢) (x — d) (v — ¢) = 62° + 52t + 42 + 322 + 22 + 1.

Puttingz =1,—6(14+a)(1+b)(1+c)(1+d)(1+e)=—6+5—-44+3—-2+1=-3=
(I+a)(14+b0)(1+c)(1+d)(14e) =5

Because 1, ay, ag, ..., ap—1 are the roots of the equation 2™ — 1 = 0, therefore, (z —
DE—a)(z—ay)(x—anq)=2"—1= (x—a1)(z —a) (2 —an_1) =2" '+
"2+

Putting = = 1, in the above equation, we deduce the desired result.

Consider a function g(z) = f(z) — 10z, then g(1) = g(2) = ¢g(3) =0 ie. (z —1)(z —
2) (z — 3) would divide g(z). Since f(z) has a degree of 4 so g(z) will also have a degree
ofd.Let g(z) = (x—t)(z—1)(x—2)(x—3) so f(z) =102+ (z—t) (x—1) (z—2) (z—3).

Now for z =12, (z — 1) (x — 2) (z — 3) =990 and for z = -8, (z — 1) (z —2)(z — 3) =
—990.

CF(12)+F(—8) _ 10(12—8)+(12—¢)990+(—8—1).—990 __
- 10 = 10 = 1984.

Roots of 22 + z + 1 are w, w?. Since given polynomial is not divisible by z* + z + 1, so
these roots won't satisfy the given polynomial. Thus,

WEF 1+ (14 w) =0 14 ()2 = 1+ wF +w?* £ 0. We know that 14wk +w?* =3
when k£ = 3n,n € N. Hence, k£ = 3,6,9, ....
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Putting z = 1, —7P(2) = 0 = P(2) = 0. Putting = 8,0 = 56P(8) = P(8) = 0.

= P(z)=(z—2)(z—8)Q(z) = P(2x) = (22 —2) (22 — 8) Q(2z)

= (2 —8)(22 - 2) (20 —8)Q(22) =8(z — 1) (v = 2) (+ — 8) Q(x) = F = T+ =
Qz)=2z—4=P(z)=(z—2)(z—4)(z—8).
If (x —1)3 divides f(z) + 1, then (2 —1)? divides f'(z) and if (z +1)® divides f(z) —1

then (x 4 1) divides f’(x). Since we have to find f(x) of degree 5, f/(x) will be of
degree 4. So f'(z) = k(z —1)*(z +1)? = k(z* — 22° + 1).

Integrating both sides, f(z) = K(%ﬁ — ng + x) + ¢, where ¢ € R. Also, (z —1)? divides
fx)+1=f1)+1=0= f(1) = —1 and (z + 1) divides f(z) —1 = f(—1)—1=
0= f(-1)=1.

Putting = 1 in the equation for f(x), = f(1) = K(%—%—i— 1) + ¢ = —1, and putting
r=—1=f(-1)=K(53+5-1)+c=1

From these two equations we deduce K = — 18§, ¢ = 0. Thus, our required polynomial is

_ 35,53 15
flz)=—52°+372° —F 2.

Since the polynomial equation has rational coefficients the complex roots must appear
in conjugate pairs. So we have at least two more roots i.e. 3 — 2i and 2 — 37 making out
polynomial equation of at least having a degree of 4. Let us find out the polynomial
equation to test if the coefficients with these roots are rational.

f(z)=a[(z—3—2i)(z—3+2i)][x —2—3i][x — 2+ 3i] = a(2* — 102° + 502 — 130z +
169),a € Q\ {0}.

Since all the roots are rational, so they are divisors of —30. The divisors or —30 are
+1, 42, 43, 45, 46, +10, +15, and +30. By applying remainder theorm, we find the
roots as —1, —2, —3 and 5.

Let the roots be of the form %, where (p,q) =1 and ¢ > 0. Since ¢ | 2, ¢ must be 1 or 2
and p|6=p==41,42, +3, +6.

Applying remainder theorem, f(%) = f(%z) = f(%) = 0. So the three roots of the
. 1

equation are 5, —2, and 3.

2% —32° + 52 — 15 = (2> +5) (v — 3) = 0 = = = 3, V54, —/5i.

Let the roots be of the form %, where (p,¢) =1 and ¢ > 0. Since ¢ | 1 = ¢ = +1, also

pll=p==+1=L==xl But f(+1) #0.

Hence, the given equation has no real roots.

Let a and 8 be the two roots of the given equation, where o € Z. Then,

a+pf=—-aand af =b+ 1= f=—a— «ais an integer. Also, since b+ 1 # 0, 3 # 0.
From these equations a® 4 b? = (a4 )%+ (af —1)> = (1 +?) (1 + 8)% Hence, a® + b*
is a composite number.
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Let o and 8 bet the roots of the given equation, then a + 8 =p, a8 =p— 1.

(@®+ 8% = (a+B)*—2a8=p*>—2p+2=(p—1)>+ 1. For the sum to be minimum
— as to be minimum, which is minimum at p = 1.
(p 1)2 h b .. , hich i - » 1

Let 2® 4+ ax? + bz 4+ ¢ = 0 be the polynomial, of which «, 8 and af are the roots and
a, b and c are all rationals.

From Vieta's relations o + 8+ af = —a, af + o?B+ af? = b, a?’F% = —c. b= af(1 +
a+pB)=af(l—a—af)=1—-a)af—a?f*=(1—a)aB+c. Asa # —1,a8 ==

and since a, b, ¢ are rational af is rational.

Notethat a=1=1+a+8+af=0= (14+a)(1+8)=0=a=—1or §=—1,
which is not the case.
Let the roots be a, 2 and 3, then from Vieta's relations we have 3o + 3 = %Z =3=
B=3(1-a),2a®+3a8 = 26 and 2023 —A

13

From first two equations, we get 20° 4+ 3a.3(1 —a) =2 = a = 51 or a=57 then

beta = % but then 2a28 = 2 x %}Z X =# g, which is a contradlctlon.

So taklnga—A:>/3—1 Hence, o+ 20+ 8 = 3,202 + 30 = and 2042/3’—A Hence,

the roots are and 1.

3

Suppose the roots are a, 3,7y, d and af = 1. Now oz+/8+’y+6—_—24——4,(a+

BY(v+6) +aB+10 == (a+8)(y+0) +v6 =T, 1d(a+B) +aB(y+6) =5 =
76(04—1—6)+’y+6:_73,a675:—2:>75:— .

From second and fourth equation, we have (a+ ) (y+ ) = 3‘) from third and fourth

equation, we have —2(a+5)+’y+5:%3:>3(a+6) :7:>a+aziéa:27§.
Hence, 8 = %, 2. Now it is trivial to find + and §, which can be found to be %1 and 4.

Since the coefficients are rational, where 3 + v/2 is a root, so 3 — /2 is also a root. Thus,
if two other roots are o and 3, we have

or=a+B+34+vV2+3-V2=—(-5)=5=>a+=—1
o2=(a+B8)(B+vV2+3—V2)+aB+(3+V2)(3—V2)=a=6(a+p)+a+B+T=

a=af=a—1.
o3=aB(3+vV2+3-v2)+(3+v2)(3—V2)(a+h)=—b=6af—-T=b=af="3"
oy=Tal=c=af ==

We take o+ 8 = —1,a8 = k. a and § are roots of the equation z2+ z + k = 0. Since the
roots of the given equation are real = 1 — 4k >0= k < 1. Now fora,k=a—1=a<3.
So the greatest value of a is 2 3. For b, k=== b= p > ! 50 least value of b will be 121 For

c, k= 7 =c<y " So the maximum value of ¢ will be Z'

The two other roots can be found as —%, which is a repeated root.
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Let the rational roots be of the form %, theng|l=¢=4landp|l=p=+1l= % =41.
But we see that © = —1 does not satisfy the equation so x = 1 is the only root.

Second method: You can observe by looking at the coefficients that it is expansion
of (x —1)* as the coefficients are from binomoal theorem. Hence, the root is 1.

Let «, 8, gammea, delta are the roots of the equation, then from Vieta's relations o +
B+~+0=—10. From question a + f=~v+0 = af =v+J = —5.

Let the roots be of the form % then ¢ | 1 = ¢ = 41 and p | 24 = p =
+1, 42, 43, +4, 46, +8, +£12, 4-24. Clearly, 412 and 424 are not possible values. Test-
ing with other values we find roots as —1, —2, —3, —4.

Let the rational roots be of the form %’7 then ¢ |6 = ¢=+1,42, 43, +6 and p | —4 =
p=+1,+2, +4.

We find that —% and % satisfy the given equation and the given equation becomes

(22 +1) (32 —4) (22 + 2 + 1) = 0, which has two more roots w, w? which are cube roots
of unity, and are not rational roots.

Let the rational roots be of the form s, thengq|6=¢=+1,4+2,43,46and p|2=p=

+1, +2. We see that all coefficients are positive so positive values of % will not satisfy
the given equation.

From negative values we see that only z = —1 satisfies the given equation.

Let a, 3,y are the roots of the given equation, then according to the questions o 4 5 =
0=a=—7.

From Vieta's relations a + f+vy=—-3=v=—%,a+ B+ pfy+a+y=af=—p>=

7i:>ﬂ:i%:a:$%andaﬂyzfg:>a+4b=0,WherebGQ.

Let the roots be a, a.r, a.r? be the roots of the given equation, then from Vieta's
relations, we have

%+a+a.r:—a,$+a2+a2.r:banda3:8éa:2.

From first two equations, a = —% = 2 = b = —2a. Substituting the value of « in the
first equation, we have

22+ (a+2)r+2=0,but risreal so D >0 = a’*+4a—12=0= a € (—00,6) U (2,00).

2% +122° + 302 4 602° 4+ 8022 + 30z + 45 = 2(2° + 32%)% + 12(x2+§x)2+5(z+3)2 =0,
but it could be zero only if

(m3+3m2)=(x2+gx):x+3=0.

The last and first condition simplifies to z = —3, but it contradicts the seccond. Thus,
given polynomial has no real roots.

Second method: Let the roots be of the form s theng+2=q¢=41,+2and p+45=
p=+1,43, £5, 49, £15, +45. Clearly, the roots have to be negative as all coefficients
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are positive. But none of the combinations of % satisfy the given equation, hence, it has
no real roots.

sin 30° = 3sin 10° — 4sin® 10° = sin 10° is a root of 6z — 82> = 1. By the rational root
theorem, this equation has no rational roots. Therefore, sin 10° is not rational. Since 3
is prime, this equation is the one with least degree having sin 10° as a root.

Second Method: sin 10° = cos 80° = cos %". Let w = %™ then w’ 4+ w? + 1 = 0, from
which we can calculate that w + i, w4 é and w? + % are the roots of 23— 3z +1=0.
Since 2 cos 90° is such a root so 82° — 6z + 1 = 0 is the equation.

Following like previous problem sin 60° = 3sin 20° — 4 sin® 20°. Putting & = sin 20° and
squaring, 642° — 96z* + 3622 — 3 = 0 is the required equation.

Following like previous problem cos30° = 4cos® 10° — 3cos 10° = ? = 4cos®10° —

308 10° = 642° — 962 + 362 — 3 = 0 is the required equation.
Following like previous problems cos 60° = 4 cos 20° — 3 cos 20° = 82> — 62 — 1 = 0.

. s . o 3tan 10°—tan® 10° 1 3z—a3 .
Following like previous problems tan 30° = =S —>75— = Nl e Squaring, we

get 328 — 272 + 3322 — 1 =0.

S : o _ 3tan20°—tan®20° 3u—z®
Following like previous problems tan 60° = *55—27-~ = V3= =

get 2% — 332* + 2722 — 3 = 0.

. Squaring, we

We have found the equations for sin 10° and cos 20° are 82° — 6z + 1 = 0 and 82° — 62 —

1 = 0. Therefore, the equation having these two as roots must be (82° — 6z + 1) (82° —
62 —1) =0 = 6425 — 962* — 3622 —1 = 0.

From Vieta's relations p+q+r =6, pg+qr +rp =3, pgr = =1 = p> + @ +r? =
30, p° + ¢® +r° = 159, p>¢® + 33 + r3p3 = 84.

Let A = pq+ ¢°r +r*p and B = p*r + ¢*p + r%q, then A+ B = 6(p* + ¢* + 1) —
P+ @ +r®)=21and AB=—(p* + ¢ +7) (P + Ar3 +r3p3) + 3 =72.

Thus, possible value of A are 24, —3.

Let a, 8,7, d be the roots of the given equation such that a8 = —32, then from Vietas

relations a+ B +~v+ 5 =18, af+ fy+vd +ay+ad+ 36 = k,afy+ aBd+ ayd + fyo =
—200 and afvyd = —1984.

0 =220 = 18— 62,
2=324+p0y+62+ay+ad+ B =k=>pPy+ay+ad+ 0 =k—30. Let p=a+
and ¢ =y + 0.

. _ _ _ _ at+By+d _
£—200=—32q+62pand p+q=18 = p=4,¢ =14 = L1 _ |30 = | =86,

P24y =1-2zy= (22 + )% = (1 —2zy)% = ot + 3y = 22292 — day + 1 = 226y> —

4+v16+8c—8 14+ l+c
—_— =

dezy+1—c=0= 2y = .

Now, 22 4 32 = 1—2(1:|: 1?) =—-14+/2(1+¢),
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and 22 + 1% = (z + y)* — 3wy(z +9y) = Qi%m.

Let 2 +y = o and zy = 3, then 22 4 4% = o® — 2.

Now, 22 + 12 = (z +y) (2 + 2+ 2y) =a(a® = 38) =T=>a®* —3aB8 =71,

and 22+l + o +y+ay=4=a’—20+a+pf=4=F=a’+a—4

From these two equations o —3a(a? + o —4) =7 = f(a) =20+ 30®> — 120+ 7 =0.
Since sum of coefficients is zero, therefore, & = 1 must be a solution. = f(1) =0 =

f(a):(a—1)2(2a+7):0:>a:1,—%.

When o = 1, 8 = —2 and when a = —%, 8= %. Thus, when o = 1, § = —2 we find
that (x,y) is (—2,1) or (1, —2). But when o = —% and = 14—9, then x, y are roots

of 4¢* 4+ 14t + 19 = 0, whose discriminant is less than 0 and hence no real roots are
possible. Thus, value of z,y is —2,1 or 1, —2.

From Vieta's relations a+ 8+v =Y a=0,a8+ y+ya=>  aB=p,afy=[a=q.

Since a, 3,7 are roots of 23+ pr+qg=0= o®*+pa+q=0,82+pB+q=0,7>+py+q=
0

Adding these equations, we have " a® +pYa+3¢=0= Y a3 = —-3¢[~ > a = 0]
Sat=(Ya) -2 af=0%—2p=—2p.

Multiplying the given equation by 22 we get z° 4+ pz® + qz? = 0. Putting = = a, 3, 7
and adding, we have

Yol +pyaftqya’=0=Ya"=5pg=5Y 0’ =pg=33a"+;3 a

Hence, proved.

Following like previous problem and using results from previous problem, multiplying

the given equation by z, we have '+ p2> + gz = 0= Y '+ p>?> + ¢ a=0=

Yat=-pYa’

Multiplying the given equation by z*, we get 27 + pa’® + qz* =0 = > a’+p > a® +
7

gy at=0=Ya"=—pYa®—ga' = —5p’+pg ¥ 0’ = —Tp’q = ZE = pg.(—q) =

rab Yol
5 2

a7+ﬁ7+,y7 o (15+B5+’75 Ot2+ﬁ2+’)/2
= = = z X T
Since a + 8+~ = 0, therefore, o, 3, v are the roots of the equation 2+ pz +¢=0. =
Z aff = p and Z a = —q as shown in previous problems.
o+ +9" = (a+B+7)°—2(aB+By+7ya) =0*—2p = —2pand 3 o® = 3a8y = 3¢.

Multiplying 2 + pz + ¢ = 0 with z, we have 2* + pz? + gz = 0. Putting = = «, 8, v
and adding, we have

Sat+pYal4 ¢ a=0=Yat=—p> a®=2p%
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Similarly, 2° + pa® + q2> = 0= . a® = —p > a® — ¢ > a® = 5pg.

230+ 2 +7%) (a® + 7 +7°) =3 x —2p x 5pg = 5 x (=3¢) x 2p* = 5(a’ + §° +
) (@t + 81+ A1),

Hence, proved.

Suppose that a® +b® = ¢®* + d* and a + b = ¢ + d = m(say), then (a +b)% = (c +d)* =
3ab(a +b) = 3cd(c+d) = ab = cd = n (say).

If a, b are the roots of a quadratic equation, then the equation is 22 — ma +n = 0. But
a+b=m and ab = n. So a and b are roots of this equation, and thus, ¢ and d are
also the roots of the equation. But a quadratic equation can have at most two distinct
roots.

Hence, our supposition is incorrect. Hence, proved.

Let z, y, z be the roots of the cubic equation t> — at? + bt —c =0, then z +y + z =
a,xy+yrt+rzr=b=2ay+2yz+22x=2b=(x+y+2)°>— (2 +*+22)=9-3=>
b=3.

Substituting x, ¥, z in our equation and adding, we get (23 + 3+ 2%) —a(2? +y? + 2%) +
b(r+y+z2)—3c=0=c=1.

Thus, our equation becomes t3 — 3t> + 3t —1 = 0 = (t — 1)®> = 0, thus roots are 1,1, 1.
And hence, x =y =2z=1.

wy+yr+aw=;((e+y+2)°— (@ +y"+27)] =2
3,3, .3 2., .2, 2 2
We know that z°+y°+2° —3zyz = (v +y+2) (e°+y*+ 2" —azy—yz—22) = Yz = — 3.

o+t 2t = (20 4 27)7 = 2[(ay)? + (y2)” + (22)?] = 25 — 2[(zy +yz + 22)” —
2(xy?z + zzy® + xyz?)] = 25 — 2[4 — 2zyz(z +y + 2)] = 9.

For roots to be equal the discriminant has to be zero.

D=4(14+3m)?>—4(1+m)(1+8m)=0=4(1+9m?*+6m—1—9m —8m?) =0 =
m?2—3m=0:m=0,3

Discriminant of the equation is: D = (c4+a—b)2—4(b+c—a)(a+b—c) = 4(b*> — 4ac)

Given a+b+c=0= b= —(a+c). Substituting in above equation, D = 4{(a + ¢)? —
4ac} = 4(a — ¢)? = a perfect square and thus roots are rational.

Discriminant of the equation is: D = 4(ac + bd)? — 4(a® 4+ b?) (¢* + d?) = —4(ad — be)>.
Roots are real if D > 0 i.e. —4(ad —bc)? > 0 = (ad —bc)> <0

But since (ac — bd)? ¢ 0~ (ad — bc)? = 0 i.e. D = 0 (because roots are real). Thus, if
roots are real they are equal.

Let A=a(b—c),B=b(c—a)and ¢ = c(a —b) Clearly, A+ B+ C = 0. Since roots
are equal i.e. D=0:B%2—4AC =0
Substituting for B, [—(A+ C)? —4AC] = (A—-C)*=0=> A=C = 2ac = ab+cb =

2ac
b= a+c’
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Thus, a, b, c are in H. P.
Given equation is (b—z)? —4(a—x)(c—2) =0 = —322+2(2a +2c—b)x +b*—4dac =0

Discriminant of the above equation is: D = 4(2a + 2¢ — b)% 4+ 12(b? — 4ac) = 8[(a —
b2+ (b—¢)?+ (¢ —a)?]~a,b,carereal » D >0 unless a = b = c.

Hence, roots are real unless a = b = c.
Discriminant of the equations are p? — 4¢g and 7 — 4s.
Adding them we have p? + 1% —4(q+s) =p*> + 12 —2pr = (p—1)2 > 0.

Thus, at least one of the discriminant is greater than zero and that equation has real
roots.

Since 22 — 2px 4+ ¢ = 0 has equal roots D = 0= 4p? —4¢ =0 = p* =¢.

Discriminant of the second equation: D = 4(p 4+ 4)? —4(1 4+ ) (¢ + y) = 4[p*> + 2y +
v —a—aqy—y—y’]

Substituting for ¢, D = —4y(p — 1)%. Roots of the equation will be real and distinct
only if D >0 but (p—1) > 0 if p # 1. Thus, y has to be negative as well.

Since roots of equation az? + 2bz + ¢ = 0 are equal - 4b? — 4ac > 0. Discriminant of the
equation az? + 2mbx + ne = 0 is 4m2b% — danc.

Since m? > n > 0 and b? > ac 4m?b?
are real.

— 4anc > 0. Thus, roots of the second equation

—axr . . . . . —axr 2
Givenar +by=1=y= L 5 substituting this in second equation, cx? + d<1T> =

b2caz?+d(l—awx)® _ 1
b2 -

= (bc + da?) 22 — 2adx + d — b* = 0. Since first two equations have one solution this
equation will also have only one solution which means roots will be equal i.e. D =0

= 4a?d* —4(b*c+a?) (d—b*) = 0 = b*(bPc +a’d —cd) =0~ b* # 0 b%c +a’d —cd =
0=b*c+al=cd
Dividing both sides by cd we have

gt %2 =l=z= ﬁ = 2. Substituting for y, we get y = g.

Let the roots of the equation be « and ra.

Sum of roots = a + ra = —% =>a= —a(ﬁl).

Product of roots = ra? = #Ifﬂz == Z_i = (Tt—l)z

Let the roots of the equation be a and 2a.. Sum of roots = 3a = —ﬁ =>a= —ﬁ.
Product of roots = 20° = ﬁ Substituting for a, Wil—;? = ﬁ =22 -9l +9m =

0[+ 1 # m else it would not be a quadratic equation].
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Since [ is real, therefore discriminant of this equation would be > 0, = 81 — 72m >
0.m <2
=3

Let the roots be a and a”, then sum of roots = a + a" = —g and product of roots
_ o+l _ ¢
= o =

1
From products, we have o = (%)”“. From sum we have aa™ + aa + b = 0.

_n_ 1
Substituting value of o from above = a(g)”“ + a(g)
at our desired equation.

"1 4+ b = 0. From this we arrive

Let the roots be pa and qa.

Sum of roots = (p+q)a = —g and product of roots = pga? = Z
; . 2_ ¢ .= ./c<
From equation for product of roots, we have o* = 7=\

Substituting this in sum of roots and solving we arrive at desired equation.

The questions are solved below:

i. a+p=—-pandaB=q. Now,%?Jr%zzo‘SJlfg
— (a+B)3—=3aB(a+p) — p(3¢—p?)
af q

it (wa+w?B) (Wra + wB) = wia? +whaf + wiah + Wip?
=’ +waf+wiaf+ 2 =a’—aBf+ 4= (a+8)*—3aB = p°—3q.
Rewriting the equation we have (A + cm?)z? + Ama + Am? = 0.

Am?
A+cm?

Sum of roots = a+ 3 = —% and product of roots = aff =

The expression to be evaluated is A(a® + 52) + Aaf + ca’F2.

= Al(a+ 8) —208] + Aaf + c(ap)>.

_ A2m? 2Am? A2m? cA?m*
- A[(A+cm2)2 - A+cm2] + A+cm? + (A+cm?)2 — 0.
Sum of roots = a+ [ = —g and product of roots = a8 = <.

Now, a(% +2) +b(§+2) =eletf | datd)

[(a+p)=3af(atB)] | b[(a+@;72aﬁ]. Substituting for sum and product of the roots

- 3 O‘B 2
ot ss ] (2 -a]

c

a

Solving this we get the desired result.
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Since @ and b are the roots of the equation 22+ pz + 1 = 0 we have a + b = —p and
ab=1.

Similarly, since ¢ and d are the roots of the equation 22 + gz + 1 = 0 we have c+d = —p
and c¢d = 1.

Now (a —c¢)(b—c¢)(a+d)(b+d) = (ab— bc — ac + ¢*) (ab + bd + ad + d?) = [ab —
cla+b) +c?].[ab+ d(a +b) + d?]

= [1 4 pc+ ?].[1 — pd + d°] (putting the values of a + b and ab) = 1+ ¢p + ¢ — pd —
cdp? — 2pd + d? + epd? + 2 d?

=14 (24 d?) +2d® —cdp*+ plc—d) + cpd(d —¢) = 1+ [(¢c + d)? — 2¢d] + 2d? —
cdp® 4 p(c —d) + cpd(d — ¢).

Substituting for ¢ +d and ¢d, 1+ ¢*> —24+1—p* 4+ p(c—d) + p(d — ¢) = ¢* — p°.
Let a and 3 be the roots of the equation 2% + pz +¢g = 0 then o+ = —p and aff = q.

Also, let v and & be the roots of the equation z? 4+ gz + p = 0 then v+ § = —¢ and
v = p.

Now, given is that roots differ by the same quantity so we can say that, a —f=v—3§ =

(a=pB)%=(y—9)*

(a+B)—daf=(y+6)> -4y =p’—dg=¢"—4dp=p"— ¢ +4(p—q) = 0=
(p—q)(p+q+4)=0

Clearly, p # q else equations would be same ~p + g+ 4 = 0.

Since a, B are the roots of the equation az? + bz + ¢ = 0-~aa’® + ba + ¢ = 0 and
af?+bB+c=0.

and a+ (3 = —g and a8 = <. Also, given S, = o” 4 f". Now, aSp+1+ bSy + ¢Sy

:a(an+l+/6m+1)+b(an+ﬁn)+c(an71+6n71) :anfl(aaz—i-ba—i-c)+6"71(a52+
b3+c)=a""t04 8710

b c
“Spy1= *gsn*g n—1

Substituting n = 4 we have

Ss=—281—585=—2(—28-29-2) -8 =(%—2)S+%5

a a? a

Proceeding similarly we have the solution as

=— % (b — 2ac)? + (2ac)be

a

Let o and 8 be the roots of the equation az? + bz + ¢ = 0. Given, a + 8 = % + 515 =

a+B)2—2a8
7172—25 2 2. po2
a“ 2 +
Z - a b 2 ac ch b2 2 20 c 2 ab 5 be

a2

Thus, bc?, ca?, ab? are in A. P.
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Rewriting the equation m?z? + (2m —m?) 2 4+ 3 = 0.

Since o and 3 are the roots of the equation a + 8 = —mm;Qm = de and aff = %3-5
2 2
Given, 5+§='$ O‘Jﬂﬁ =3

2
m)_

3(a% + %) = 408 = 3[(a + §)? — 2af] = 408 = 3(a + )2 — 10af =0 = 3[(
10
=0

m

=>m?—4m—6=0

2
. m me
Since m1, ms are two values of m we have m; +msy = 4 and mymeo = —6. Now, T mf =
mi+m3 _ (mi+mo)3—3mima(mi+ma) _ 68
mims 3mimo - 3"

Let o and f be the roots of the equation az? + bz + ¢ = 0; v and 6 are the roots of the
equation a1x% 4+ b1z + ¢ = 0, then

oz—l—ﬁ——— aﬁ——and’y—i—é———,fyé—al

According to question . By componendo and dividendo,

’ /3

a—B _

P 7+6 Squaring both sides

a—ﬁ)Q = (ﬂ)Q ((1+B)2f4aﬁ2 (v+6)2—4~6

= (a—w 73 @iB) (o)

b2—dac __ bi—dajcy 2 2 b\2 _ ac
=0 = BT = —4dach] = —4a1c1b”° = (b_l) =

Since irrational roots appear in pairs and are conjugate. Thus, if first root is a =

1
2+4/5

1 25 _ 25 _
O=gavE = s = 2+ V5

Then second root would be § = —2 + V5= a+ 8=—4and aff =—1
Therefore, the equation is 2° — (e 4+ )z +af =0 = 2% + 42 — 1= 0.
Since v and f are the roots of the equation ~a+ 5 = —g and aff = § Sum of the roots

for which quadratic equation is to be found = EEIfb + ?{[‘}IE

_ a(a+B)+2b _ ( >+2b + b2
T a?aB+ab(a+B)+b2 T +av< )

1 1 1 1 1
Product of the roots = (m> (m) = AT I = PR =

Therefore, the equation is z2 — %x + % =0=acz’—br+1=0.
Given equation is (z —a) (z —b) —k=0= 2> — (a +b)x +ab—k =0.
Since ¢, d are roots of this equation = ¢+ d =a+ b and c¢d = ab — k.

The equation where roots are a,b is 2 — (a +b)z +ab=0= 22— (c+d)z+cd+k = 0.
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Correct equation is 22 4+ 13z + ¢ = 0 and incorrect equation is 2 + 172 4+ ¢ = 0.
Roots of correct incorrect equation are —2 and —15. Thus ¢ = 30.
Therefore, correct equation is 22 + 13z 4+ 30 = 0 and thus roots are —3, —10.

Clearly, a + 8 = —p and aff = ¢q. Substituting z = % in the given equation we have
2

15— (1" —2¢)5+q=0=qa” — (p* —2¢)af +¢5* =0

a(a®+8%) = (p* —20) ¢ = 0= ql(a + B)* — 2a5] — (p° —2¢) =0

q(p®> —2q) — (p>—2¢)g =0 = 0 = 0. Thus, % is a root of the given equation.

Let o and 3 be the roots of 22 — az + b = 0 and « be the common and equal root from
the second equation z2 — px + ¢ = 0.

. — — _ 2 _ _ 2 _ _ _
Thus, a+f=a,af=band 2a =p, 0’ =¢=b+g=af+ o’ =a(f+a)=5a=L

Let a be the common root. Then, we have aa? 4+ 2ba + ¢ = 0 and a2 + 2b1a + ¢1 = 0.

. . RT . o _ e _ 1
Solving equations by cross-multiplication we have Sher—hie) = (car—are) — 2abhi—aib)"
From first two we have a as o = 28419 a1 from last two we have a as a = 524—9¢1_
cai—aic 2(abi—a1b)
Equating we get, 2bei=tic) — caiaci o (g ge0)2 = 4(aby — a1b) (bey — byc)
q g get, cai—aic ~ 2(abi—a1b) 1 1) = 1 1 1 1
Given, ail, b%, cil are in A. P., let d be the common difference.

2 2 9 b b
(F-3) dat=4(—5) aba(i =) bier
(2d)?c2a3 = 4(—d) ar1by(—d) bicy = 4d*cla? = 4d%a1c1b? = crag = b2
Thus, aq, b1, ¢1 are in G. P.

Let « be the common root between first two, 8 be the common root between last two
and v be the common root between first and last equations.

Thus, « and § are the roots of the first equation. = a+v=—p1,ay=q

Similarly, a 4+ f = —ps, af = g2 = B+~ = —p3, By = g3

LH.S. = (p1+p2+p3)° = 4(a+S+7)? and RH.S. = 4(p1pa+ paps+p1ps— 1 — 42— d3)
=4[(a+7)(a+B)+(a+8)(B+7)+ (a+7)(B+7) —ay—aBf — 7]

=4(a® + B2+ 7% + 208 + 207 + 2By) = 4(a+ B+ )%

Hence, proven that L.H.S. = R.H.S.

Let o be the common root then we have, o® 4+ ca 4+ ab = 0 and o2 + ba + ca = 0.

a 1

2
. . . . 83 i —
By cross-multiplication, we get the solution as ——> = =~ ==
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ac?—ab?

From first two we have a = “5——- = —(b + c). From last two we have a = a.

Equating these two we get a = —(b+¢) = a + b+ ¢ = 0. Let the other root of the
equations be # and (31 then we have

aff =ab and affy = ca -~ =b and 1 = c. Equation whose roots are § and 1 is
22— (B+B)r+8Bi=0=2>—(b+c)+bc=0= 2>+ azx+bc=0.

Clearly, root of the equation 22 + 2z + 9 = 0 are imaginary and since they appear in
pairs both the roots will be common and thus the ratio of the coefficients of the terms
will be equal. = a:b:c=1:2:9.

Let o be a common root. Then, we have 30% — 2a + p = 0 and 602 — 17a + 12 = 0.

: s 1 . o? _ @ 1
Solving by cross-multiplication 5417 = 6p-36 — 39"
17p—24 6p—36 2p—12
From first two we have a = 6;736 and from last two we have a = 255> = — 2=,
Equating these two and solving for p we get p = — 22, 8
q g g p get p 1> 3

When = = 0, |22 — |z| —2 = |0]* — |0] — 2 = —2 # 0. Since it is not satisfied by = = 0
it is an equation.

When z = —a the equation is satisfied. Similarly, it is satisfied by values of x being —b
and —c. The highest power of = occurring is 2 and is true for three distinct values of x
therefore it cannot be equation but an identity.

Since both the equations have only one common root so the roots must be rational as
irrational and complex roots appear in pairs. Thus, the roots of these two equations
must be rational and therefore the discriminants must be perfect squares. Therefore,
b2 — ac and b% — ajce must be perfect squares.

Equating the coefficients for similar powers of z, we get, coefficient of z2: a> —1 =0 =
a=+1.

Coefficient of 2 : ¢ —1 =0 = a = 1. Constant term: > —4a+3=0=a=1, 3.
The common value of a is 1 which will make this an identity.
2 2 2
Given, (m-i—%) :4+%<LE—%) = (1’—0—%) —4—%(1:—%) =0= {(.13—%) —0—4:5&} —
3 1

3

Substitutinga:wf%:>a2—2a=0:>2a273a=0-‘-a:0,%

x—1=0:>x=i1:>x71 3

1
Given equation is (z +4) (z +7) (z +8) (z +11) + 20 = 0.
Rewriting the equation, [(z 4+ 4) (z +11)|[(z +7) (z +8)] +20 =0

= (2?2 + 152 + 44) (2% + 152 + 56) + 20 = 0. Substituting a = 2> + 152, we get (a +
44) (a +56) +20 = 0 = a = —46, —54



93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

Answers of Theory of Equations 426

Tfa=—46 =22+ 150 +46 = 0= o = =24 Tf g — 54 = 22 4 152+ 54 =0 =
r = —6,—9.

Given equation is 32+ 4 32 = 3773 4 3% Let 3% = q, then we have 3a® + 9 = 28a =
3a® —28a+ 9 = 0.

éa:%,9. Ifa:%éz:—l.lfa:9:>x:2.

Clearly, (5+2v6)""%(5—2v6)"" % = 1. Let (5+2v6)”" % =1 then (5-2v6)" 3 =1
The given equation becomes y + % =10 where y = (5 + 2\/6)””2_3 =y —10y+1=0.
Solving the equation we have roots as y = 5+ 2v6 22 —3 = £1 = o = 42, +V/2.

Let the speed of the bus = = km/hour - the speed of car = x 4+ 25 km/hour.

500

Time taken by bus = —= hours and by car = % hours. Given, 5% = z5+0(2)5 + 10 =
2% — 25z + 1250 = 0.
x = —50, 25 but x cannot be negative as it is a scalar quantity. Thus, speed of car =

50 km/hour.

Given equation is (a +b)%2% —2(a? —b*)z + (a — b)? = 0. Discriminant = 4(a? — %)% —
4(a +b)%(a — b)? = 0. Since discriminant is zero, roots are equal.

Given equation is 322+ 72 4+ 8 = 0. Discriminant D = 49 — 96 < 0.

Since it is negative roots will be complex and conjugate pair.

Given equation is 32° + (7 +a) +8 — a = 0. Discriminant D = (7 +a)? + 12a
For roots to be equal it has to be zero. = a4+ 26a + 49 = 0 = a = 13 + 61/6.

It is given that roots are equal i.e. discriminant is zero. = 4(ac + bd)? — 4(a® +b?) (c® +
d?*) =0 = a?c® + b2d% — 2abed — a®c® — a?d? — b?c® — b2d2 =0

= (ad—bc)>=0=ad =bc=§="5.
Discriminant is 4(c — a)® — 4(b—¢) (a — b)

:c2+a2—2ac—ab+b2+ac—bc:a2+bz+c2—ab—bc—ac:%[(a—b)2(6—0)2(c—

a)?].

Clearly the above expression is either greater than zero or equal to zero. Hence, roots
are real.

Given equation is 2°> — 2 + 2% — (a+ Dz +a+ 2> —axr =0= 322 —2(a+1) +a = 0.
Discriminant D =4(a+1)?—12a =a’+2a+1-3a=a*—a+1=(a—1)*+a
which is greater than zero for all @ and hence roots are real.

Discriminant of the equation D = b* — 4ac. Given, a +b+c=0=b=—(a+c).
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Substituting value of b, D = (a + ¢)? — 4ac = (a — ¢)?, which is either zero or positive.
Hence, roots are rational.

D= (c+a—2b)>—4(b+c—2a)(a+b—2c) =c®+a’®+ 4b> + 2ac — 4bc — 4dab — 4ba —
4b% + 8bc — 4ca — 4be + 8¢* + 8a® + 8ab — 8ca

= 9424 9¢% — 18ca = 9(a — ¢)? > 0 which is a perfect square. Hence, roots are rational.
Givenr:k+%:>r2=k2+§+25

. . \2
=72 —4s= k2+2—2+23—4sé7ﬁ45: kz—b—z—z—?s: (k—%)

Clearly, r2 —4s > 0 if 7, s, k are rationals which is discriminant of the given equation.
Thus, roots will be rational provided given condition is met.

The given equation is (z —a)(z —b)+ (z—b)(z—c)+ (z—c)(x—a) =0
=322~ (a+b+btctcta)z+ab+bct+ca=0= D=4(a+b+c)>*—12(ab+bc+ca)
= 4a® + 4b® + 4¢* — dab — 4be — dac = 2[(a —b)* + (b—¢)® + (¢ — a)?].

This cannot be zero unless a = b = ¢, which is the required condition for the roots to
be equal.

Given equation is a®(b% — c?) 2% + b*(c? — a?®) x + *(a®> — %) = 0

D =b*(c?—a?)?—4a22(b? — 2) (a2 = b?) = b*c* + bra* — 20%a%c? — 4a* b2 4 4a2br P —
4a'ct + 4a®b*c?

= bt brat 4 20% a2 — 4a*b3c? — datct + 40?2t = (b2c? + b%a® — 2a2¢?)? > 0, which
is a perfect square, and thus, roots will be rational.

D =16a2b%c?d? — 4(a* 4 b*) (c* + d*) = 4[4a?b*?2d% — a*c* — a*d* — b*c* — brd?

= —4[(a®c? + b%d*)* (a®c® + b%d?)?]. Thus, if the roots are real then discriminant has
to be zero because else it can be only negative and then roots wont remain real.

D =4¢> — 4pr = 4(¢*> — pr). Since p, ¢, r are in H. P. = ¢ = ;i:
. . o 4p272 _ _ 4p272 — pBr—pr3—2p2r2
Substituting for g, we get D = 4[““*(;;”)2 r] = 4[ T2 ]

=4 [ 2p2(;;f;*7"3 ] = 4[pT(2€7;;f)227 r2) ]

_ 4[71"“(1071“)2
- (p+7)?
and roots will be complex numbers.

]. Since p and r have the same sign discriminant is bound to be negative

Discriminant of ba? + (b —c)z + (b—c—a) =0,D; = (b —¢)> —4b(b —c — a) =
b? + ¢® — 2bc — 4b* + 4be + 4ab

Discriminant of ax? + 2bc + b = 0, Dy = 4b* — 4ab. Now, if Dy < 0

Dy = (b+c)? — (4b*> — 4ab) > 0 and thus roots will be real. However, if D; < 0 i.e. roots
are imaginary then we have
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Dy = (b+c)? — (46> — 4ab) < 0 = 4b> —4ab > 0= [(b+c)* > 0].
Then roots of equation az? + 2bx + b = 0 will be real.
From first equation x = 1/1:;@3 and from second equation z = L—_aéy

2 -
Equating the values obtained (L}J@) = L_;by—i
1+0%2—2by=a—aby? = (V> +ab)y®> -2y +1—a=0

Values of x will be equal if values of y are equal i.e. discriminant of above equation is
Z€ro.

= 420% — 4(b* 4 ab) (1 — a) = 0 = 4b — 4b* 4 4b%a — 4ab + 4a*b = 0
(a®’b+ab*—ab) =0 = ab(a+b) =ab=a+b=1.

Substituting y = mz + ¢ in 22 + % = a%, we get 22 + m2z? 4+ 2emaz + 2 —a? =0

For roots to be equal, discriminant must be zero. D = 4¢?m? —4(1 +m?) (¢> —a?®) =0

2

=c2m? -2+ ad? - cPmPi+ dPm? = 0= 2 =d*(1+m?).

5a+1 __5a-3
7 =—.

Clearly, roots are o, « + 1. Sum of roots =a+a+1 = =« 3

Product of roots = a(a+1) = %a. Substituting value of o from above

(5a8—3>2 5a—3 _ 5a - 25a2—30a+9+40a—24—80a =0

8 4 64

= 254>~ T70a—15=0= 52>~ 14a—3=0=a=3, 1

N =

IfazSéa:%elseifa:—%éa:—
Now it is trivial to calculate the value of (.

Let one of the roots is o then second root is é

Product of roots = a*é:%é k=05.

(a) The equation is :math:(5 4+ 4m)z? — (44+2m)z +2—m =0
For roots to be equal discriminant has to be zero.
424 m)?2—4(54+4m)(2—m)=0=4+4m+m? —10—3m +4m? =0

5m?—m—6=0=>m=1—2

(b) Product of roots = 52;477” =92=92_m=104+8m = _g
(c) Sumofroots=%:6:>m:f%
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Let one root be « then the second root is na.

Sum of roots (n+ 1)a = —% = 0= "G

Product of roots na? = z

Substituting value of « from the earlier equation

nb?
(n+1)%2a2

=<= (n+1)%ca=nb>

Following from previous problem n = % and substituting in final solution
2

(% + 1) ca = ng = 12b% = 49ac.

From earlier problem, we have a = 4,b =a,c =3 and n = %

Substituting in the final relation we have, %3.4 = %az = a® = 54.

Discriminant of the second equation, D = 9 — 4(a? — 2a) < 0, and thus roots are
imaginary.

Let a, 8 be the roots of the given equation.

Sum of roots, a + 3 = p and product of the roots aff = ¢

Given, o + 8 = m(a — ). Squaring, (a + )% = m*(a — B)?

p? =m*(a+ B)? — 4m?apf = m?p? — dm?q = p?(m® — 1) = 4m?q.

Let a, 8 be the roots of the given equation. Sum of roots, a + 8 = p and product of the
roots aff = q

Given, a — 8 = 1. Squaring we have,

= (a—P)?=1= (a+p)?—4af=1=p’>—4q=1. Also, [(a— )2 +2ap]? = (1+2¢)*
= (@?+ %)% =o'+ B+ 20782 = o' + B — 2026 + 402B% = (o — B*)? + 447

= [(a+8)* (o= B)*] +4¢* = p* + 4¢*.

The given equation is a(z — b) + b(z — a) = m(x — a) (x — b) = ma?®

mab — ax + ab—bx +ab=0

—am(a+b) —
= ma®—z(m+1) (a+b) —ab(m—2) = 0. If roots are equal in magnitude but opposite
in sign then sum would be zero.

=(m+1)(a+b)=0=>m=—-lora+b=0.

Let «, 8 be the roots of the equation.

Sum of roots, a + 3 = —2 and product of roots, o8 = <.

Difference of roots, a — 5 = k as given.

Squaring we get, (a — )2 =k*> = (o + 8)®> —4afB = k*
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b—z-4§:k2ébz—4ac:k2a2.

a

122. Let a be one of the roots of the equation az? + bz + ¢ = 0. Clearly, o will be the other
root.

Sum of roots, a + a% = —g and product of the roots o = g Cubing sum of roots,

Simplifying we get the desired relationship.

123. Let a be one of the roots of the equation az? + bz + ¢ = 0. Clearly, o will be the other
root.

Sum of roots, a + a® = —p and product of roots o = 1.
Thus, « is cube root of unity. If & = —1 then p = —2

else if it is one of the complex numbers then we know that 1+ w + w? = 0 which makes
p=1

124. Let « be one of the roots of the equation az? + bz 4+ ¢ = 0. Clearly, o will be the other
root.

Sum of roots, a + o> = —p and product of roots o® = ¢
pP=—adla+1)P=—q®+3ala+1)+1)=—q(¢g—3p+1)
=p’—qBp—1)+¢=0.

125. The solution is given below:

i a—i—ﬁ:—gandaﬁ:%:l

:>a2+ﬁ2:(a+,8)2—2a6:%—4:—§.

o« B a?+p?
U 3+a= a8

Substituting for numerator from previous part,
« B _ 7

c

126. Sum of roots, a + 8 = —% and product of roots, a8 = ¢

3 3¢
o? B2 _ a?+B% _ (a+B)?—3aB(a+B) _ _%+%g __ 3abc—b3
Fra="a5 = 5 = =

« < a=c
a

127. Sum of roots, a+ = —g and product of roots, aff = U

a

_b
Given expression is, \/%Jr \/EJF \/% = %Jr \/gz ﬁ+ \/§= 0.
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Product of the roots of the first equation is b? and sum of roots of the second equation
is 2b.

Geometric mean of the roots of the first equation = square root of product of roots =

V2 =b.

Arithmetic mean of the roots of the second equation = half of sum of roots = 2717 =b
and thus both are equal.

Let «, 8 be the roots of the equation.

T

Sum of roots, o+ 3 = —% and product of roots, a8 = §

Given, sum of roots is equal to sum of square of roots. = o + 3 = a? + 2

2
—i=(a+p)*—2a8=5—2= 2pr = pg + ¢

Let «, 8 be the roots of the equation. Sum of roots, & + 5 = p and product of roots,
aff =q.

a? | B2 o8t (a?48%)2—2a2B% _ [(a+B)%—2a8]? 9

Frta= @z =« e

_ =20 o _ p*  4p?

G 2= q> q +2.

Let a, 8 be the roots of the equation. Sum of roots, o+ 3 = —g and product of roots,
C
1 1 _ (ac+b)%+(aB+b)?

= Taat0)? T [B+02 = [(aa+tb)(aB+0)]2

- a(a?+p?)+2ab(a+B)+2b%

(a2apB+2ab(a+B)+b?)2

Substituting for sum of roots, product of roots and a? + 3% = (o + 8)? — 208 and
simplifying

_ b%—2ac
— c%a?

Rewriting the equation we have Az? 4+ 2(1 —\) +5 = 0.

Since o and 3 are the roots therefore, we have a + = % and af = %

. a B _ 4
GIVEH,E‘FE—E

a24+p82 _ (at+B)2—2a8 - (A=1)2-10x _ 4
af af ) =5

S A=1)2—10A=4A= X2 —16A+1=0: A1+ X =16 and A\ \g = 1.

Mg e Qubde)2a
LD LD Vi Ao

Substituting the values for sum and product we have, result as 254.

A7 A3 AHAS L (A1 A2)3—3M (A1t Ae)
Xo T T A A1z

= 4048.

ii.
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For the first equation o+ 8 = —p and a8 = ¢ and similarly for the second v+ § = —r
and v = s.

i (a+7)(a+0)(B+7) (B+6) = [0+ a(y+6) +76][8°+ B(v +6) +76]

=(a®—ra+s) (B2 —rB+s) = (a?B% —raf?+ s8> —ra?f —riaf —rsf + sa® —
rsa+ s%)

= ¢ —raf(a+B) +s(a®+ %) +r’p —rs(a+ B) + s> = ¢ + prs + s(p” — 2q) +
7'2p— rsq + s2

i (@a=7)(B=0)+(B—7)(a=d)=af—ad—py+y0+af—B6—ay+7d
=2aB+4+2v5— (a+ ) (y+9) =2q+ 25— pr.
iii. (a—9)24+ (B—0)>24+(B—7)%+ (a—9)2

=20+ 82+ +) =20+ B) (v +0) =2[(a+ B)%—2a8+ (v + 6)* — 2y0] —
2(a+ ) (y+9)

=2[p® +r? —2q — 2s] — 2pr.
a+pf=pand af =q
Now, R.H.S. = (a + 8) (" + ") —af(a" 1+ g7 1) = a1 4 g7t = LHS.

a+pB=7+08=—p, af =—q and v6 = r Also, since a, § are roots of 22 + pz 4+ ¢ =
0,~0®+pa+qg=0and B2+ pB3+q=0.

Now, (a —7)(a—d) =a® —a(y+6) +10 =a’ +pa—r=—q—r=—(¢+r), and
similarly, (8 —~) (8 —0) = —(¢+7).

Clearly, a + 8 =2p,af =qand v+ § = 2r,v0 = s

i. % = . By componendo and dividendo
at+pf _ y+6
= a=B T 3=
. 2 5\2
Squaring, (—zfg) = (%)

daf 46 q _ s
l—Gror =1l mror 7=

ii. Since a, 3,7, d are in G. P. Hence, % =7 and then we can proceed like previous part.
iii. Since «, 3,7, d are in A. P. Hence, « — =7 —§

S (a+p)2—daf=(y+0)2 -4y = 4p* —4q=4r* —4s = s —q=1r* — p°.
Clearly, o + g = —% and aﬁzgfor ar? +2bx +c=0and a + B+ 2k = —% and
(a+k)(B+k) = for AX?+2Bx+C =0.

c B2

c_B_C
a A2 A

. . . b2
Given expression can be rewritten as -5 —

@X—aﬁ:&%ﬁﬁ—(aqtk)(ﬁqtk) = (a—p)? = (a+k—B—k)?, which is true.
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Proceeding like previous problem, we have to prove that 327:,200 = Z—z = Z—i — % =
B (a+B)2—daf = (a+B+2k)>—4(a+k)(B+k)
= (a— )%= (a+k— B —k)? which is true.
Let o, § be the roots of 2% + 2px + ¢ = 0 and ~, § be the roots of 2> 4+ 2qz + p =0
a+p=-—2pand v+ § = —2q. Also, af =qand 70 = p
Given that roots differ by a constant term say k. ~a+k=~vyand 4+ k=9
Thus, a4+ f+2k=—2¢=> —2p+2k=-2¢g=>k=p—q=v5=af+ (a+B8)k+k>=p
Also, q—2pk+ k> =p=—2p+k=1=p+q+1=0.
Clearly, a + f = — 2 and aff = &.
i S £ thes ts is & B _ o?+B% _ b*—2ac
1. dum o eserooslsg—i-a— aB = ac
Product of these roots is 1. Therefore, such an equation is z? — %x +1=0.
ii. Sum of these roots is &2 = (atA°-3abatf) _ Sabe_b?
. af af a?c
Product of these roots is aff = g Therefore, an equation whose roots were these is
22— —3(”;3;1)3:6 +<=0.
iii. Sum of these roots is (o + )%+ (a — B)? = 2(a + B)? — 4aff = i—b; — %.
: 2 2 2 b2 4c
Product of these roots is (a+ )% (a—8)2 = (a+ B)*[(a+ B)> —4aB] = (“*E)
So the equation is 2% — (i—b:— %)1’ + 2—2 (22 - 4—c> =0.
iv. Sum of these roots is 1+n oy 18 1+B = Lo ‘f+&ﬂ:ﬂl}:‘zﬁ’8 af
_ 2-2a8  _ 2(143) _ 2(a+b)
1+(a+B)+aB — 1_§+§ T a—b+c
1Ho+e bc
Product of these roots is 7 1 2 —g E ig;izg e thiz
Therefore, the equation is (a — b+ z) x> —2(a +b)z + (a +b+¢) = 0.
2 2
v. Sum of these roots is (a+ﬁ)2 +(a=pP=%+[a+p8)? -4l =% -+ [% —%].
. 2 b2
Product of these roots is (‘5%73‘)“2 (a—pB)?= (‘075672 Ja+B8)?—dap] =% [Ei - %9] =
b2—4ac
vz
Now it is trivial to deduce the equation.
Let the roots of the equation az®+ bz + ¢ = 0 are p and ¢, then p +q = —g and pg = g
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. 1 1 : b o1
(a) The reciprocal of roots are m and 7 Sum of these is %3 = — and product is i 2

Therefore, the equation is cz? 4+ bz +a = 0.

(b) Let one of the roots is p then the other will be —p. Sum will be 0 and product will
be — <. Therefore, the equation is az® — ¢ = 0.

Clearly, a + f = —p and aff = q.

(@) o'+ B = (0 + ) — 20%3° = [(a+ )° — 208" — 20%6° = [p* — 20)° = 2¢° =
—4p°q+2q°.

(b) a4 p = S = APRE,

Clearly, a + 8 = p and af = q.

i. Sum of these roots is ;o + 45 = % =E=p.

g4 4 _ ¢ _
Product of these roots is .= .25 =T = ¢.

Thus the egation of these new roots remain same i.e. £2 — pz + ¢ = 0.

ii. Sum of these roots isa+ﬁ+é+%=a+ﬁ+i’ggg:p+§=ﬂ%ﬂl.

Product of these roots is (a+%)(ﬁ+é) :aﬁ+%+§+%ﬂ=q+$+azfgﬂ2=

?+1 + p?—2q

q q

Now deducing the equation is trivial.

Because 5 + 3i is a complex root the other root will be complex conjugate i.e. 5 — 3.
Thus, equation having these complex roots will be 2 — 10z 4 34 = 0.

Because 3 + 4i is a complex root the other root will be complex conjugate i.e. 3 — 4.
Thus, equation having these complex roots will be 2 — 62 + 25 = 0.

Roots are given by
c0s216° = cos(3.72°%)

—244F16 _ —1+5 5—1 o 5+1 o
% = %[. Now ‘[T = cos 72° and —\fT* = —cos36° =

Now, cos3z = 4cos® z — 3cosz, therefore if one root is a then the other would be
40® — 3a.

Clearly, by observation «, 8 are roots of the eqation 22 — 5z +3=0. = o+ =75 and
aff = 3.

a , B _ a?+B% _ 5(a+B)—6 _ 19
Now, 5+o==="3 =%
Correct value of p = —11. ¢ is 4 x 6 = 24. Hence, the correct equation is 2 — 11z +24 = 0.

Hence roots are 8, 3.
Correct value of ¢ is 2. p is —(6 — 1) = 5. Hence, the correct equation is 22 —52x4+2=0.

From first student the correct value of ¢ = 6 x 2 = 12. From second student the correct
value of p = —(2 4+ —9) = 7. Hence the correct equation is 22 + 7z 4 12 = 0 giving us
3,4 as correct roots.
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We have a+ = —p,af =q, a1+ 1 =p, a151 = q.

1 1 aal _ (a+B)(a1+B1) rqg __
Now, o5+ + 5P = g = =1

1 1 1 1) _ 1 1 1 1
and (5+ 55 (cen + 555) = aFas T o T e + o

=l taltanlate] =SR]+ 5[]

p+q7
p2q*

P4 Therefore, the equation with these as roots is

3 3_
2t B,
We know that complex roots always appear in pair and as 2 + /34 is a complex root
the other root will be its complex conjugate i.e. 2 — v/3i. Hence, p = —4 and ¢ = 13
makring the equation z? — 4z + 13 = 0.

2:\/5 = 2 — /3 which is an irrational root and the other root will be its conjugate i.e.

2 + /3 hence the equation will be -4z +1=0
Since a, § are roots of the equation z?> —pzr +¢=0, a+ 8 =p and o8 = ¢.

Let us assume that « +% is a root of gz — p(14¢q)x + (14 ¢)? = 0 then it must satisfy
the equation. Substituting the values we have

af aﬁ+1 _ (a+,@)(l+g[3) (aB+1) +(1 +aﬁ)2 _

(af+1)*[af—(a+B)B— ] =0

« L.H.S. = R.H.S. it is proven that « +% is a root of the given equation.

One of the given equations is 222+ 3z —2 =0 = (22 — 1) (z + 2) = 0 so the roots are

T = %, —2. Putting these two in the equation 322 + 4ma + 2 = 0 we obtain two values

7

11
vt By for m.

Let p be the common root then it must satisfy both the equations i.e. p> —11p +a =0

and p? — 14p + 2a = 0. Equating a from both equations 11p — p% = 14—75—93 =p?—8p=
0=p=0,8=a=0,24.

The condition for having common roots is obtained by cross-multiplication:

(ba — c?) (ca — b?) = (a* — bc)? = a*be — ab® — ac® + b*c? = a* — 2a%be + b2c?
3a%bc — ab® — ac® —a* = 0

(3abc—b3—c‘5—a Y=0va#=0=a*+b3+c*—3abc=0= (a+b+c)(a®+b>+
c2—ab—bc—ca)=0

=a+b+c=0o0ra=b=c.
Proceeding as in last example, condition for common root is

(10m —189) (9—10) = (21 —m)? = 189 — 10m = 441 — 42m +m? = m? — 32m + 252 =
0=m=18,14.
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Roots of 22 + 10z + 21 = 0 are —3, —7. When m = 18 roots of 2% 4+ 9z + 18 = 0 are
-3, —6.

In that case equation formed with —7 and —6 is 2 + 13z + 42 = 0 When m = 14 roots
of 224+ 9z + 14 = 0 are —2, —7.

In that case equation formed with —3 and —2 are 2 + 5z + 6 = 0.
Following condition for common roots, we have

(=3 4+120) (10 +3) = (3+36)2 = 117 % 13 = 392 which is true and thus equations have
a common root.

Roots of 22 — 2 — 12 = 0 are 4, —3 and roots of 3224 10z + 3 = 0 are —3, —% and thus
common root is —3.

Condition for common root is given below:

(P—q)(3¢—2p) =(3-2)*=(2p—3¢) (p—q) +1=0=2p*+3¢° — 5pg + 1 = 0.

The condition for common root is (b —¢) (a —b) = (a — ¢)?

sab—ac—b>+bc=a’>+c?—2ac=a’+b>+c?—ab—ac—bc=0
:>%(a—b)2(b—c)2(c—a)2:0=>a=b=c.

Let a be the common root then

2 a 1

2= = 57— Clearly, the root is either

e PO—P19 ) 49701
Pq1—pP14  4—q1  P1

9—q1 p1—p°

Condition for having common root is:
(—4b + 3¢) (—6a — 2b) = (4a — 2¢)?. Solving this gives us required equation.
Condition for having a common root is:

[(r=p)(a=1) = (p=?l[(p—a)(a—7) = (r=p)?| =[(a—7)*~(p—q) (r — )",
which is an equality and hence the equations have a common root.

Let a be a common root then

2 1

1 _ _ 1
—E—mia——a(b—kc) or o= —r,.

o
ab®—ac?

Let a, 8 be roots of first and «, v be roots of the second equation. Then, oo + f = —ab
and af =c also, a+vy= —acand ay=1»

=20+ B+ =—a(b+c)and o?By = be
Equation formed by 8 and v would be 2 — (84 ~)z 4+ 8y = 0.
For either values of a equation is 22 — a(b + ¢)z + a’bc = 0.

Let o is a common root then z2 — px + ¢ = 0 and 22 — az + b = 0. Let 3 be the second

root of the first equationa then % will be the second root of the second equation.
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Clearly, a+ﬂ:p,a[3:q,a+%:a,%:b.
#(g=b)*=(af—3)%
bg(p —a)® = 3(aB) (B~ %)2 = (af — %)2 Hence, proved.

It is a quadratic equation but satisfied by three values of z = 1, 2, 3 therefore it is an
identity.

It is a quadratic equation but satisfied by three values of x = a, b, ¢ therefore it is an
identity.

Let 2° = y then equation becomes 3y? — 2y — 8 = 0.

Since it is satisfied by two distinct values and it is a quadratic equation therefore it is
an equation.

(z+2)2—(z—2)?
z2—4

ol

:>z§f4:g:>5x2f20748x:0:>x:10’7%

2y+1 _ 11-3y
3—y ~ 5y—9

Let 2 = ¢* =
=102 —13y—9=33—20y+3y° = TP+ Ty—42=0=>y=2,-3

=z =4,9 but x =9 does not apply to the equation and is an impossible solution.
(z+1)(z—3)(z+2)(z—4) =336 = (22— 22— 3) (22 — 2z — 8) = 336

Let 22— 22 —3=y=>y(y—5) =336 => ey’ — 5y — 336 =0 = y = 21, —16

=1 =—4,6,1+2/3i.

Squaring z +1+22 —5+2/(x + 1) (22 —5)=9=2/(r + 1) 2z —5) =13 — 3z
Squaring again 4(z + 1) (2z — 5) = 922 — 78z + 169 = 2® — 66z + 189 = 0 = = = 3, 63.
We see that x = 63 does not satisfy the equation hence the only solution is z = 3.

We have 22 +2%%2_32 = (0 = (2°—4) (2% 4 8) = 0. However, 2° #8 = 2" =4 = 1 = 2.

Let the speed be x km/hour. Then, from the statement % = ﬁ?go +§

Solving we get « = 200 km/hour.

Let width be w meter. Thus, (w+ 8) (w—2) =119 = w? + 6w —135 =0 = w= 9, —15
but width cannot be negative. Length is 11 m.

Equivalent equation is —z% + 3z + 4 = 0 and roots are —1, 4.
Since coefficient of 22 is -ve the expression will be +ve if z lies between the root.

Therefore, for —z% + 3z + 4 > 0 the range is | — 1, 4[.
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5r—1<(x+1)2=22—3z+2>0.
Roots of equivalent equation 22 — 3z +2 =0 are © = 2, 1.

Since coefficient of 22 is positive, 2 must lie outside the range of [1,2] for the expression
to be positive.

Now considering, (z +1)2 <7z —3=2>—52+4<0

Roots of the equivalent equation 2 — 5z +4 = 0 are = = 1, 4 and for expression to be
negative z must lie inside the open interval |1, 4].

Therefore, the only integral value satisfying the original expression is 3.

8z24+16x—51
(2x—3)(z+4)

2z2+x—15
2z2+5x—12

>3= >0

222 4+ 2 —15 =0 has rootsx:—3,g:>2x2+5x—12:0hasrootsx:le,%

Thus, the inequality will hold true for z < —4 and —3 < z < g and x > g

223z +4

Lety=Hrg= (y—1)a® +3(y+ Do +4(y—1) =0

Since « is real, the discriminant will be greater that 0 = 9(y +1)2 — 16(y —1)2>0

—T7y% 4 50y — 7 > 0. The roots are 7 and %

Since coefficient of 42 is negative, for the expression to be positive y has to lie between
the open interval formed by its roots i.e. ]%, ul

Let y = 2207 o (y — 1)a? + 2(y — 17)z + (TL—y) = 0

Since x is real, the discriminant will be greater that 0 = 4(y—17)?—4(y—1) (71 —7y) >
0

= 32 — 14y + 45 > 0. Its roots are 5 and 9

Since coefficient of y? is positive, therefore for the expression to be positive y has to
lie outside the open interval formed by its roots. Thus, the expression has no value
between 5 and 9.

4224 362+9
Let y:%éﬂi’)y—1)x2+4(2y—9)1’+y—9:0.

Since z is real, the discriminant will be greater that 0 = 16(2y — 9)% —16(3y — 1) (y —
1)>0=>y>—8y+72>0

Corresponding equation is 4> — 8y +72=0= D = 64 — 288 = —224 < 0

Since coefficient of y? is positive and discriminant is less than 0 therefore y? — 8y 472 >0
holds true for all value of y. Therefore, the expression can take any value.

Let y =220 — 22 (a4 c+y)z+act+yb=0

Since x is real, the discriminant will be greater that 0
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= (at+cty)?—4d(ac+yb) >0=1y> +2(a+c—2b)y+ (a—c)> > 0.

Corresponding equation is y® + 2(a 4+ ¢ — 2b)y + (a — ¢)? = 0. Discriminant of above
equation is D = —16(a —b) (b —¢)

Ifa>b>cthen D <0 andif a <b < ¢ then also D < 0.

Since coefficient of y? is positive and D < 0 the expression y>+2(a+c—2b)y+ (a—c)? >
0 is true for all real values of y.

Therefore, the given expression is capable of holding any value for the given conditions.
Given x +y = k (say, a constant). Let z = zy, then z = z(k —z) = 2°> —kx + 2 = 0.
Since x is real, D > 0 for the above equation.

2
k2—4220:>z§%

. k2
Hence, the maximum value of z = 7.

K2 k)2 k
Thus, xQ—km+Z:0:>(a:—§> =0=z=3

Ly = g and thus zy is maximum when z = y.
Let y = 3— 62 — 822 = 822 + 62 4+ y— 3 = 0. Since « is real, D > 0 for the this equation.
3

33 . 3
=36 —32(y — 3) >0=>y< 5 Hence, maximum value of y = 5

= 6422 +482+9=0= 8z +3)’=0=>2=—

o] W

Let y = o5 = dya” — 122 4 9y = 0. Since z is real, D > 0 for the above equation.
> 1M - MUy’ >0 " <1= -1<y<lely<le|g| <1

Now, |ares| =1 4ja> — 122[ +9 =0 = (22| = 3)* =0 = |2 = 3.
22 +9y? — 4z + 3 = 0. Since x is real, D > 0 for the above equation.
= (4249 +3) 2 0= 92 -1<0 4y’ <t=>—1<y<:

The given equation can also be written as 9y* + 22 — 4z + 3 = 0. Since y is real, D > 0
for the above equation.

= —36(2>—42+3)>0=>22—424+3<0

Since coefficient of z? is positive, it must lie between its root for the above expression
to be negative. Therefore, z must lie between 1 and 3.

Given expression is 22 —az + 1 —2a® > 0

Since x is real the discriminant of the corresponding equation has to be negative for it
to be positive for all values of x.

a*—4(1-2a%) <09’ <4=—-2<a<i
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Let a be a common factor, therefore it will satisfy both the equations.

a®—1la+a=0and o — 14a + 2a = 0. By cross-multiplication

2 2

« 1 «

=

o
—22a+14z = a—2a = —14+11

a 1

RaT @ T3

From first two we have o = 8 and from last two we have o = % a = 24.

y = ma is a factor of az? + bzy + cy? means az? + bzy + cy? will be zero when y = ma.

az? +bz.mz +cem?z2=0=cm® +bm +a = 0. Similarly, a1m? + bym + ¢ = 0 since
my — x is a factor of a1z + bizy + c1y?
m 1

. . . R T . m? _ _
Solving these two equations in m by cross-multiplication j—- = == =50

bci—aby
aai1—cer?

aai—ccy
cb1—bay

From first two we get, m = and from last two we get, m =

Equating the two values of m obtained, we get (bc; — aby) (cby — bay) = (aa; — ccp)?.

We know that az? + 2hay + by? + 29z + 2fy + ¢ can be resolved into two linear factors
if and only if

abc 4+ 2fgh — af? —bg* — ch® = 0 and h? — ab > 0. Given expression is 2z° 4+ maxy +
3y — 5y —2

Here,az?,hz%,b:?),gzo,f:%s,c:—2éh2—ab:%2—6>0¢m2>24
Applying the second condition, —12 — 2—25 + mTQ =0=>m?=49:.m = +7.
Given expression is ax? + by? + c2? + 2ayz + 2bzr + 2cxy

= ()" ot) + o 20t 25420

=2%(aX? +bY? + ¢+ 2aY + 2bX +2cXY) where X =2, Y =¥ Now this will resolve

z b
in linear factors if

abe + 2abe — a.a® — b.b? —c.c? == a® + b> + ¢ = 3abe.

Given expression is 222 —y?> —z + a2y + 2y — 1
Corresponding equation is 222 — 3> — 2 + a2y + 2y — 1 = 0 = z =
1—y+ (lfy)z+8(y272.v+1) =z=1—y, 71_;W.

Therefore, required linear factors are x +y — 1 and 2z —y + 1.

Corresponding quadratic equation is 2 4+ 2(a + b + ¢)x + 3(ab + be + ca) = 0. It will
be a perfect square if its discriminant is zero.

=4(a+b+c)?—43(ab+bc4ca)=0=a?+b>+c*—ab—bc—ca=0

é%(a—b)2(b—c)2(c—a)2:0éa:b:c.
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Discriminant of the given equation is D = 36 — 72 < 0.

Now since coefficient of 22 is less than zero the expression is always positive.
8r—15—22>0=22-8+15<0= (z—3)(z—5) <0.

The above is true if x lies in the open interval |3, 5].

2?45 —4>0=2?—5r+4<0= (z—4)(z—1) <0.

The above is true if x lies in the open interval |1, 4].

22462 —27 > 0= (z+9)(z —3) > 0. This is true if z < —9 or z > 3.

S <l=a’+3<dr =242 +3<0

= (2 —3) (z — 1)le0, This is true for closed interval [1, 3].
22—324+2>0= (z—2)(x —1) > 0. This is true for z > 2 or z < 1.
22 —312—-4<0= (x —4)(x+1) <0. This is true for —1 < z < 4.
Thus values of x which satisfy both are —1 <x <1 and 2 <z < 4.

Since roots of az?+ bx + ¢ are imaginary, therefore discriminant is negative. = b? —4ac <
0.

Discriminant of a?x? 4 abzx + ac is D = a?b* — 4a’c = a*(b* — 4ac) < 0.

But coefficient of the expression is positive hence it will be always positive.

z2—2x+4
z242z+4

Let y = = (y—Da*+2(y+1a+4y—1)=0

Since z is real discriminant will be greater or equal to zero.
S4y+1)2—16(y—1)2>0=> 12+ 2y +1—4y> + 8y —4> 0= —3y*> + 10y —3 > 0.
Roots of corresponding equation are %, 3. Since coefficient of 42 is negative, for above

to be true y must lie between % and 3.

2_
Lety:%é2(y—1)z2+3(y+1)z+2(y—1):0

Since z is real discriminant will be greater or equal to zero.

=9(y+1)2—16(y—1)2> 0= 9>+ 18y +9— 165>+ 32y — 16 > 0 = —7y*>+50y —7 >0
Roots of the corresponding equation are %, 7. Since coefficients of 42 is negative, for the
above to be true y must lie between % and 7.

DB (y— )2+ 2(y+ D+ (y—1)pP =0.

Let y = Srterp?

Since x is real, discriminant of above equation has to be greater or equal to zero.

=4y+1)?2—4p*(y—12>0=1—p))y?+2(1+p>)y+1—p*>0
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Since p > 1 coefficient of 32 is negative and thus y must lie between its roots for the
above to be true.

—2(1+p?)+/4(1+p*)°—4(1-p°)?

The roots are y =

2(1-p?)
—1 p+l
Y= %ﬁ7 %jy
xr— xT fIJ2 €T —
Let y = Ez—éigzii; =y= 9521;7: = (y—1Da?+2(y—1)224+3-8y=0.

Since x is real, discriminant must be greater than or equal to 0.
4y—1)%4+4(y—1)By—3)>0= 9> —2y+ 1482 — 11y +3>0= 9y — 13y +4 > 0.
For above to be true y must not lie between 1 and %.

Let yz%#yﬁ—k(by—l)x—a—k&yzo.

Since z is real, discriminant must be greater than or equal to 0.

= (by —1)2 —4dy(Py —a) >0 = b%y® — 2by + 1 4 day — 4c®y> > 0 = (b2 —4c?)y? +
2(2a—b)y +1> 0.

Discriminant of corresponding equation is D = 4(2a — b)? — 4(b% — 4¢?) = 4[4a® + b* —
4ab — b? + 4c?] = 16(a® 4 * — ab).

Given b > 4¢? and a® + ¢ > ab therefore D < 0 and coefficient of 32 is negative.
Therefore, y is capable of assuming any value.

Let y:g:—g%:x2—2yx+(b+c)y—bc:0

Since x is real, discriminant must be greater than or equal to 0.

=>4 —4(b+c)y+4be > 0= 3> — (b+c)y+be > 0.

For above to be true y must not lie between b and c.

Given 22 —zy +1? — 4o —4y+ 16 =0= 22 — (y+ )z 4+ —4y +16 =0
Since x is real, discriminant has to be greater than or equal to 0.

= (y+4)2 -4 —4y+16) > 0= 92+ 8y + 16 —4y> + 16y — 64 >0

= 32 +24y—48>0=9* -8y +16<0= (y—4)2<0

The above inequality is only satisfied by y = 4. However, if y = 4 the given equation
becomes

22 — 8z + 16 = 0 which is again only satisfied by = = 4.

Given z? + 122y + 4% + 4z + 8y +20 = 0= 2® + 4(1 + 3y)x + 4(s* + 2y +5) = 0
Since x is real, discriminant has to be greater than or equal to zero.

= 16(14+3y)°>—16(y°> +2y+5) >0=>1+6y+ 9> — 1> —2y—5>0

=S>8 +dy—4>0=224+y—1>0=>2y—1)(y+1)>0
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Therefore, y cannot lie between —1 and % Rewriting the equation in terms of y

4y° +4(3z + 2)y + 2% + 4z + 20 = 0.

Since x is real, discriminant has to be greater than or equal to zero.

= Br+2)2—22—42-20>0=822+8 —16>0=2>+2—-2>0
Therefore, x cannot lie between —2 and 1.

Let x be the length and y be the breadth then x 4+ 2y = 600 and we have to maximize
zy.

zy = 325" = 2 (say) 2° — 600z + 2z = 0.

Since x is real, discriminant has to be greater than or equal to zero.

= 360000 — 8z > 0 = 2z < 45000. Thus, maximum area is 45000 mt. sq.
Substituting, 2% — 600z + 90000 = 0 = (z — 300)?> = 0 = z = 300 = y = 150.

If y — ma is a factor then equation reduces to bm? 4+ 2hm + a = 0 and if my + z is a
factor then it reduces to am? — 2hm + b = 0. By cross-multiplication we have

m?2 . m 1
—2h(a+b) — a?-b2 ~ 2h(a+b)’

Thus, condition becomes a + b = 0 or 4h* 4 (a® — b?) = 0.

Roots of equation P(x)Q(z) = 0 will be the roots of equation P(z) = 0 i.e. ax? 4 bx +
c=0and Q(z) = —ax® +bx+c=0

Let D; and D, be the discriminants of two equations, then Dy 4+ Dy = b% — dac + b% +
dac = 2% > 0.

Hence, P(z)Q(z) = 0 has at least two real roots.

Let D; be the discriminant of bz + (b—¢)z +b—c—a = 0 and Dy be discriminant of
ax? + 2bz + b = 0, then

D4 Dy = (b—c)> —4b(b—c —a) + 4b*> — 4ab = (b + ¢)? > 0. Hence, if Dy < 0, then
Dy > 0.

Therefore, roots of bz 4 (b—c)z +b—c—a = 0 will be real if roots of ax? + 2bx +b = 0
are imaginary and vice versa.

Leta=2m+1,b=2n+1,¢=2r+1. Now D= (2n+1)>—4(2m+1) (2r + 1)

= (an odd number) — (an even number) = an odd number.

If possible, let D be a perfect square then it has to be square of an odd number.

= (2k+1)2=(2n+1)2—4@2m+1)(2r+1) = 2m+1) (2r+1) = (n+k+1) (n—k).

If n and k are both odd or even then n — k will be even or zero. However, if one is odd
and one is even then (n + k + 1) will be even. So, R. H. S. is an even while L. H. S. is
an odd number. Thus, D cannot be a perfect square. Hence, roots cannot be a rational
numbers.
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Let D; be discriminant of az? + 2bxz + ¢ = 0 then D; = 4b%> — dac = 4k, where k = b2 —ac.
Let Dy is discriminant of (a 4 ¢) (az? + 2bx + ¢) = 2(ac — b?) (x? + 1)

= Dy =4(a+c)?b? —4(a® + V> + k) (D2 + 2+ k) = —D1[4b? + (a — ¢)?] = Dy <
0+Dy>0.

Therefore, roots of second equation are non-real complex numbers.

D= 4[(nc7‘)27n rflnc

T

‘+1} = 4(0‘ - b)a where a = (nCr)Qv b= ncv'fln r+1

=¢=(1+41)(1+:5)>1=a>b=D>0.

Thus, roots of given equation are real and distinct.

Let y = ¥ then given equation becomes
y—$—4:0:>y:2i\/5:.e5i”=2i\/5
sinz = log,(2 — v/5) is not defined.

sinz = log.(2 + V5 ) > 1 is not possible. Hence, roots of given equation cannot be real.

. . . —b+\/0’—da(cti) _ b i
Given equation is az? + bz +c+i = 0. z = == aletd) ié’;“q)

where /b2 — da(c + 1) = p + iq. Now b% — dac = p® — ¢® and —4a = 2gp

2a

gjp:():}ip:bﬁ—4a:2(i)q:>q:ib

Since z is purely imaginary

2
Then, bz—4ac:b2—%éc:%éa:bzc.

D = a® — 4b. Let a be an odd number then D is an odd number and a perfect square

as roots are rational. Let D = (2n +1)2, and @ = 2m + 1 where m,n € I
—(@m+1)+(2n+1) _ ¢ n no. .

Now roots = —2m+ )2 (2n+1) _ an RIS = an integer.

Similarly, it can be proven when a is an even no. then roots are integers.

Let a, 8 be integral roots of the given equation. « + f = —7 and aff = 14(q2 +1).
9‘7@ =2(¢* 4 1) = an integer.

~af is divisible by 7 and 7 is a prime number.

-~ at least one of & and 8 must be a multiple of 7.

Let « =Tk, where k€ [ = f=—T7(k+1)

Thus, —2*(@2%1*) = —Tk(k + 1) = an integer

Let f(q) = ¢*> + 1 then it can be shown that f(1), f(2), ..., f(7) are not divisible by 7.
flg+7) =¢*+ 1+ 14¢ + 49 which is not divisible by 7 as ¢® + 1 is not divisible by 7.

Hence, «, 8 cannot be integers.
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Given equation is [a®(b — ¢) + b*(c — a) + ¢*(a — b)]x? — [a3(b? — ) + b3 (c® — a?) +
c3(a? = b))z + abcla®(b —¢) + b*(c —a) + *(a—b)] =0

But a®(b—c)+b*(c—a) +c*(a—b) = —(a—b) (b—c)(c—a) (a+b+c) and a3(b? — %) +
b (c?—a?)+cA(a®>—b%) = —(a—b) (b—c) (c—a) (ab+bc+ca) and a®(b—c) +b*(c—a) +
c?(a—b) = —(a—1b)(b—rc)(c—a) the above equation becomes

(a+b+c)ax?— (ab+be+ ca)x + abe = 0.

(ab””cai\/(agzllf;fi;274abc(a+b+c)>, which will be equal if D = 0.

Roots are

1 1 1 Vbe+yecatyvab

= /be + Vca + Vab = 0. Squaring

be + ca+ ab + 2v/abe(Va £ Vb £ Ve) =0 = (be + ca+ ab)* = dabe(a + b+ ¢ + Vb +
Vea + \/(E) = D =0 i.e. roots are equal.

k+2

Product of roots = == 2 = k=20

c—a

k1, k+2 b o
Sum of roots = ==+ ;=5 = — . Substituting for k
cta + 2c b (a+c)®+4ac b
2a cta a 2a(a+c)

= a(a + ¢)? + 4a’c = —2abc — 20%b = (a + ¢)*> + 4ac = —2bc — 2ab = (a + b+ c)*> =
b? — dac.

Given, f(x) = ax®+ bz + ¢ and that «, 3 are the roots of the equation pa? 4 gz +r = 0.
:>a+ﬁ:—%anda/3=£.

Now f(a) f(B) = (a0® + ba + ¢) (af® + b + c)

=a?a?B? + b2af + 2 + abaf(a + B) + ac(a® + B%) + be(a + B)

= a2;—z+62£+c2—ab%%+ac(2—z—%> —bc%

= % [a®r? + b%rp + c2p? — abrq + acq® — 2acrp — begp] = # [(ep —ar)?+ b%rp — begp —

abrq + acq?]
1
=z l(ep —ar)® — (bp — aq) (cq — br)]
Now since a, 8 are the roots of the equation pz? + gz +r =0

Therefore, if az?+ bz + ¢ = 0 and pa® + gz + r = 0 have to have a common root then
it has to be either a or .

fla)y=0o0r f(B) =0 f(a)f(B) =0= (cp—ar)*— (bp— aq) (cq—br) =0

~bp —agq, cp — ar, cq — br are in G. P.
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224. From the given equations it follows that ¢ and r are roots of the equation

a(p+x)2+2bpr +c=0=az’+2(a+b)pr+c=0.

2+ 2
Product of roots gr = % =p +§
225. Since a, /3 are the roots of the equation 22 — px — (p+c)=0

a+fB=panda+pf=—(p+c).Now (a+1)(B+1)=—p—c+p+1l=1—c

a2+2a+1 | B2428+1 _ (a+1)? (B+1)2
= T2ate T 28 tc — ar)P—(1=0) T (FriP—(1=9)
(a+1)? (B+1)? (a+1)? (B+1)2

+ = 1. Hence, proved.

(@t (atD(B1D) | (BT (at)(B11) _ (a+D(a—p) | B+ (F—a)
226. o, 3 are the roots of the equation z2 + pr +¢=0. ~a+ 3= —p and aff = ¢
Since a, 8 are the roots of the equation z22n + p™z" + ¢" = 0.
Substituting it follows that o™, 8" are the roots of the equation y* + p"y + ¢" =0
~a"+ 0" =(—p)"and """ =¢" = (a+ B)" = (—p)" = p"[+~ nis even].
Thus, "+ 8"+ (a+ 6)" =0
Dividing by " we have (%)n +1+ (%—i— l)n =0
Dividing by a™ we have (g)n +1+ (g + 1)" =0

From last two equations it is evident that % and g are roots of the equation 2™ + 1 +

(z+ 1" =0.

227. Let v and B are the roots of the given equation.
Since roots are real and distinct D > 0= a?—4b>0=b < %;
Again it is given that o — ] < ¢ = (a — )% < 2

a?—c? a?

(@+B)?—daf<c®=a®—db<P=db>a’— =275 <b<

298. Given, az? + bz 4+ ¢ — p = 0 for two integral values of 2 say o and f.

Then, o+ 3 = —g and aff = <=2

a
If possible, let az? + bx 4+ ¢ — 2p = 0 for some integer k.
ak*+bk+c—p=p=k—(a+pB)k+af=L= (k—a)(k—B) = an integer =2
But since p is prime this cannot hold true unless a = p or a = 1

a=p[va>1]= (k—«a)(k— ) =1 which implies that k — a = k — § = 1, which is
not possible since a # 8

Thus, we have a contradiction. Hence, az? + bx + ¢ # 2p for any integral value of x.
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229. a4+ B=—-p,af=qa'+ 8 =ra'fl=5s
Let D be the discriminant of z? — 4gz + 2¢%> — r = 0 then
D =16¢>—4(2¢> — 1) = 8¢° + 4r = 8?2 + 4(a* + B*) = 4(a? + 5%)?
D > 0 hence roots of the third equation are always real.

230.a+f=—Landaf=S= a1 —f=—Land —af=2

ay ay

Satar=—(t4D)

a al

Also, dividing o + 8 by af, % + é —

c

Similarly, dividing iy — 8 by —ai1 3, ;1 7% = 7%
1,1 b, b
Thus, 7+ 57 = —=(2+2)
Equation whose roots are a and a; is
2
2 —(a+a)r+aa; =0= 7(;:&1) tr— =0

2 1
*b—ervl—l— T+ = 0.

atay te
231. Let o and 8 be roots of such quadratic equation given by 2%+ pz +¢ =0
= a+ 8= —p and af = q. Now quadratic equation whose roots are o and 82 is
22— (P + )+’ =0=2>— (pP—2¢)z+¢*=0.
But the equation remains unchanged, therefore,

1 D

f:m:%:>QZQ2:>Q(q—1):0:>q:0>1

If¢g=0=p=0,—1andif ¢g=1= p=—2,1. Thus, four such quadratic equations are
possible.

232. Given g, %,Jg are in A. P. and a, b, ¢ are in G. P.

Equations ax? + 2bx + ¢ = 0 and dz? + 2ex 4+ f = 0 will have a common root if

%:%94(61”—60) (ae —bd) = (cd — af)?

(£ )]~ 2)en] = (23 a2

4k.k.b? = 4k%ac where k is the c.d. of the A. P. i.e. b*> = ac which is true because a, b, ¢
are in G. P.

233. Let o be the common root and 3; another root of 2% + ax + 12 = 0, B3 be another root
of 22 + bz + 15 = 0 and B3 be a root of 22+ (a + b)z + 36 = 0.

=a+ 0 =—aand af =12, a+ B2 = —b and afs = 15, and a + f3 = —(a + b) and
0453236.
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Thus, 20+ 1+ Be=a+fs=>a=pF3—F1—Prand a(fs—f1—P2) =36 —12—15=9
=ad?=9=a=43buta>0=>a=3=51=4,5,=5,5;=12.

Given m(az® + 2bx + ¢) + pa® + 1gz +r = n(z + k). Equating coefficients for powers
of z, we get

ma+p=n,mb+q=nk,mc+""=nk2ﬁm(ak*b)ﬂka*q:O#m:*Zz:g
h—
=>mbk—c)+gk—r=0=>m=—5—"

Equating values for m, (ak —b) (¢k —r) = (pk — q) (bk — ¢).
Given equation is 3 — 22+ Bz ++ = 0. Let it roots 1, T2, 3 be a—d, a, a + d respectively.

:>a—d+a+a+d:1:>a:§:> (a—d)a+ala+d)+(a—d)(a+d) =8=
30> —d* = = 1—35 = 3d*
(a—d)ala+d) == a(a® —d*) =y = 1+ 27y = 9d°

Since d isreal 1 —33>0= f<gand 1 +277y > 0= > —5-.

Let a be a common root, then
& +3pa®+3qga+r=0 ... (1)and @®+2pa+q¢=0 ... (2)
(1) — a(2) gives us = pa+2qa+r=0 .. (3)

By cross multiplication between (2) and (3)

2

a o 1

2(pr—q¢®) ~ pq—r — 2(q—p?)

Equating for values of o we get the desired condition.

Let a be a common root, then

o +2a0® +3ba+c=0 .. (1)and a®+aa®+2ba=0 .. (2)

Since ¢ # 0, therefore o = 0 cannot be a common root. Therefore, from (2)

A +aa+20=0 ... (3)

(1) —a(2) = ac’ +ba+c=0 .. x(4)

Solving (3) and (4) by cross-multiplication yields the desired result.

Given equation is #° + az +b = 0 and «, 3, v be its real roots. Then we have
a+pB+v=0 ... Daf+py+ay=a .. (2)afy=-b

Let y = (o — B)?, then y = (a+6)2—4a,3¢y:’y2+47b:>’y3—y’y+4b:0.

Also, v is a root of the original equation.

3b
a+y

Y ray+b=0= (a+y)y—3b=0=~=
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27b3
(a+y)?

+a(2%) +b=0=y*+6ay’ + 9a’y + 4a® + 27b* = 0

We would have got same equation if we would have chosen y = (8 —a)? or y = (7 — )2
Hence, product of roots —(4a® 4 27b%) = (a— )2 (8 —7)* (v —a)? > 0 - 4a® + 276% < 0.
« is a root of the equation az®+ bz +c¢=0-aa?+ba+c=0

Similarly, —a8® + b3 +c = 0. Let f(z) =§2° + bz +c=0= f(a) = —5a?

and f(B) =3 8% f(a) f(B) = —2a?a®B* < 0]+ a, B # 0]

~ f(a) and f() have opposite signs. Therefore, f(z) will have exactly one root between
« and 8.

Let f(x) = ax® + bx + ¢ = 0. Since equation az® + bx + ¢ = 0 i.e. equation f(x) = 0
has no real root, therefore, f(x) will have same sign for real values of z.

~f(1)f(0)>0= (a+b+c)c>0.

Let f(z) = (x —a)(z —¢c) + Mz —b)(z —d). Given a > b > ¢ > d, now f(b) =
(b—a)(b—c)<0,and f(d)=(d—a)(d—c) >0

Since f(b) and f(d) have opposite signs, therefore equation f(z) = 0 will have one real
root between b and d.

Since one root is real and a, b, ¢, d, \ are all real the other root will also be real.

Let f'(z) = ax® + bx + ¢, then f(x) :a%s—l—b%z-i-ca:-i—k:w,

= f(1) :w%w: k. Again, f(0) =k

Thus, f(0) = f(1) hence equation will have at least one root between 0 and 1 which
implies that it will have a real root between 0 and 2.

Let f(z) = /(1 + cos® ) (az? + bz + ¢) dx then f'(z) = (1 + cos® z) (az? + bz + c).

1 2
Given, / (1+cos® 2) (ax? 4 bx + ¢)dx = / (14 cos® x) (az® + bz + ¢) du.
0 0

= f(1) = f(0) = £(2) = f(0) = f(1) = f(2).

Therefore, equation f(z) = 0 has at least one root between 1 and 2 which implies that
az? + bz + ¢ has a root between these two limits as 1 + cos® x # 0.

Given equation f(z) —x = 0 has non-real roots where f(x) = az?+ bz + ¢ is a continuous
function.

~ f(x) — x has same sign for all x € R. Let f(z) —x >0V 2z € R

= f(f@)=f@)>0VeeR= f(f(z)—z=[f(f(z) —f(z)+ flz)—z>0VzeR

Hence it has no real roots.
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Let f(z) = ax® — bz + ¢ = 0 and that o, 8 be its roots. Then, f(z) = a(z — a) (z — B).
Given a # 5,0<a<1,0<f<1landa,b,ce N

Since quadratic equation has both roots between 0 and 1, therefore

£(0) £(1) > 0 but f(0) f(1) =c(a—b+c) = an integer

Thus, f(0) f(1) > 1= aa(l —a)af(l —F) = d?af(l —a)(1-B).
Lety=a(l—a)=a?’—a+y=0.

Since avisreal ~ 1 —4y > 0=y S%é a:% max value.

- . 1
Similarly, maximum value of 8 = 3.

Maximum value of = f(0) f(1) < %Z >1=a>4= a=75 [least integral value]

Since az? — bz 4 ¢ = 0 has real and distinct roots = b* > 4ac [~ a > 4, ¢ > 1]
=b">20=b>5.

Proceeding from previous question, b — dac > 0 = b2 > 4.51[vc > 1] =>b=5 =
logs(abc) > 2.

Given equation is az® + bz +6 = 0. Let f(x) = az® + bz + 6

Since the equation has imaginary roots or real and equal roots, f(0) =6 >0 f(z) >0
for all real x

= f(8)>0=9a+3b+6>0= 3a+b>—2 and hence least value is —2.
Let a, B,y be the roots of the equation. Then,

_ 3 a+p+y 2 af+By+ya aBy
flz) =22° =52 + 5 r—=5t=0

Clearly, all roots have to be negative for signs to be satisfied as a, b > 0.

f(0) =4>0- f(1) > 0 because sign of f(x) will not change for all .
2+a+b+4>0=a+b>—6.

f(x) =234+ 222 + 2 +5=0and f(z) = 32% + 42 + 1 which has roots —1 and —%.
f(0) =5 and f(z) is increasing in (0, co) therefore it will have no root in [0, cof.
F(=2)=3>0and f(-3) = -7 < 0.

Since f(—2) and f(—3) are of opposite sign therefore equation f(z) = 0 will have
one root between —2 and —3 and this will be only one root as f(z) is increasing in
| —o0,—1] = [a] = -3.

Given equation is (22 + 2)% 4+ 822 = 6x(x? + 2). Let y = 22 + 2 then above equation
becomes 32 + 822 = 6y = y = 4x, 2z.

fy=dz=>a2’—40+2=0=2=2+2.

Ify:2:r:>x2—2x+2=0:>x=1j:i.
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Given equation is 32 = (2 4+ 18z + v/32) (22 — V182 — v/32) — 42? = 323 = 2* —
(V18z + V/32)? — 4a?
2 z?

2?3z 4+4)=2*—2Bz+4)?2 = 2%y =0 -2  wherey =3z +4=>y=—z 5

Ify:—x2¢x773iﬁ7and1fy7 =c=3+VI1T.

Clearly, (15 + 4\/_) (15 — 4y/14)" = (225 — 224) = 1. Let (15 + 41/14)! = y, then
(15— 4v/14)" =1

Substituting for the given equation
Y+i=30= ¢ —30y+1=0=y=15+4V14
Ify=15+4V14d =t =1, then 22 —2Jz| =1 = [z[* — 22| -1 =0
Szl =1+V202=+(1+V2)

fy=15—-4/ld=t=—-1= [z —2z|+1=0=|z|=1=z = +1.
Given equation is 2% — 2a|z —a| — 3a® = 0. When a = 0 equation becomes 2° =0 = z =0
Let a < 0.

Case I: When z < a then equation becomes

2?42z —a)—3a®>=0=2?+2ax —5a*=0= = —a+6a
Since z < a,x = —a — \/éa is not acceptable.

Case II: When = > a the equation becomes
x2—2ax—a2=0:>$=a;t\/§a

Since & > a, x = a + V2a is not acceptable.

Clearly, x = a does not satisfy the equation.
P?—z—6=0=>z=-2,3

Case I: When z < —2 or > 3 then 22 — 2 — 6 > 0

2 _g-6=x+2=>2>-22—-8=0

Then equation becomes x
r = —2,4 but x = —2 is not acceptable as r < —2
Case IT: When 2 <z <3 22—z —6<0

Then equation becomes —(22 —2 —6) =2 +2 = 2> —4 = 0 = x = 2 because = —2
is not acceptable.

Case III: Clearly © = —2 satisfies the equation by x = 3 does not.
lt+2/=0=r=-2and 2T —1|=0=2"""=1=2=—1

Case I: When z < —2then x +2 < 0 and 2°*1 —1 <0
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Equation becomes 272 — [—(22+1 —1)] = 22+ 4

=xr=3

Case II: When —2 <z <1thenz+2>0and 2°7' —1<0

Equation becomes 2772 — [— (21 —1)] = 27F1 11

=z=1

Case TTI: When > —1 then  +2 > 0and 27! —1> 0

Equation becomes 2772 — (2771 — 1) = 271 4+

=zr+2=x+2

which is true for all z but only values for x > —1 are acceptable.

Case IV: Clearly, x = —2 does not satisfy the equation but x = —1 satisfies it.
Given equation is 3% + 4% + 5% = 6”. Then,

(B + (4 + (3 =1

Clearly, x = 3 satisfies the equation.

When z >3, (2)"+ (3) + (2) <1

When z < 3, (%)z + (%)z + (%)z >1

Therefore, x = 3 is the only solution.

Proceeding as previous problem z = 2 is the only solution.

x = [x] + {z}, given equation is 4{z} =z + [z] = {z} = %[x]
0<{r}<1:0<ifz]<l=0<[z]<i=[2]=1

~{z} =%=>x:g.

Given, [«]? = a(e = [o]) = [a] = (2] + {eh{a} [+ = [¢] + {a}]
y?> = (y+ 2) z, where y = [z] and z = {x}:>22+yz—y2=0:>z:%‘/gy
Since 0 < z < 1 it implies that

if z=— \/5;1% then

0>y> 7\/52“ = 7\/5271 < y < 0 is not possible as y is an integer.

Ifz:‘/5271ythen0<y<%:>y:léz:ﬁzflandz:y-i-z:‘/g;y

452
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Let y = ma the equations become 23(1 —m?) = 127 and 2*(m — m?) = 42.
Dividing we get ;:—7::; == HmTM"z = 227[--m = 1] does not satisfy the equations.

=m= g, g. Substituting we get t = —6,y = —7and x =7,y = 6.

Solving first two equations by cross-multiplication
f=d=Zorz=y=z=k

Substituting in third equation k = +V7.

Let = u + v and y = u — v then first equation becomes (u 4 v)* + (u — v)* = 82
=ut46ul?+ ot =41

Second equation becomes 2u = 4 = u = 2. Substituting in this equation v = +5i, +1
~x=24+5i,3,1and y =2 F 5,1, 3.

Let y = 2% > 0 then give equation becomes /a(y —2) + 1 =1—y = y*— (a+2)y+2a =
0.

y =2,a but y = 2 does not satisfy the equation. When y = a then y/a(a—2) +1 =
l—-a=a<l1

20<a<lvy>0]=y=a= 2z =Ilogra, where 0 <a <1
When a > 1, given equation has no solution.

Given (z —5) (x +m) = —2.Since « and m are both integers, therefore, z —5 and z +m
are also integers.

So we have following combination of solutions:

r—5=1and z+m =2 then x =6, m = —8
r—5=2andz+m=—1thenx =7, m=—8
r—b=—landx+m=2thenx =4, m= -2
r—b=—2andax+m=1thenx =3, m= -2

Thus, m = —8, —2.

Multiplying the equations we get (zy)*™¥ = (2y)*" ~ x +y = 2n where zy # 1.

—1+v14+8n

>z?=ythenz+2’=2n=>2= 5

—14+V1+48n 2 _ 1+4n—+V1+8n
—s =

Butz>0 2= =y==z 5
Let y = 121l then given equation becomes 4> —2y+a=0=y=1++vV1—a

|z] =logi2(1 4+ +v1—a) as y =1 — /1 —a has to be rejected as y > 1.
But vV1—ahastobereall —a>0=a<1



267.

268.

269.

270.

271.

Answers of Theory of Equations 454

For logi2(1 + v1 —a) to be defined 1 + V1 —a > 0~z = +logi2(1 + V1 —a).
Let m=2p+1and n =2¢+ 1 the D = 4(2p+ 1)> — 8(2¢ + 1) = an even no.

Let D be a perfect square then it has to be perfect square of an even no. Let that no.
be 2r then

4 =4(2p+1)2—8(2¢+1) =22+ 1) = 2p+1—7)(2p+1+7).

Clearly, if r is an even no. then L. H. S. is an even and R. H. S. is even no which is not
possible.

Let r is an odd no. then R. H. S. is product of 2 even numbers. Let 2p + 1 —r = 2k and
2p+14r=21

2(2¢+ 1) = 4kl which is an odd no. 2¢ + 1 having equality to even no. 2kl which is again
not possible. Thus, under the given conditions equation cannot have rational roots.

Equation representing points of local extrema is f'(z) = 3az? 4 2bx 4+ ¢ = 0.
Let one of these points is a and then second would be —a.
Sum of these roots = a —a = —%é b=0.

Product of roots = —a? = i but since roots are opposite in equation it implies that a

and ¢ have opposite signs.
~b? — dac = —4ac > 0 therefore roots of az? + bz + ¢ will have real and distinct roots.

Given equation is % = b.

ar’—(1+a>)z+a=b2>~-b= (a—b)x*— (1+a*)z+a+b=0.
Discriminant D? = (1 +a%)? —a®> + b =1+ a* +a’ + b2 > 0]+ b # 0]
Therefore, roots can never be equal.

Given equation is "C,2? 4+ 2"C,. .1z + "C, 5 = 0. Let D be discriminant, then we have
to prove that
D =dleft("C,,,) —4("C,."C\,4) >0

T

n! 2 n! n! _ n!? 1
|:(r+l)!(n7r7r)!:| T rln—r) (2 (n—r—2)! — P+ D)(n—r—1)(n—r—2)! [(7‘+1)(n77'71) -
,_____1______] >0
(n—r)(r+2)

Snr+2n—1r2—2r—[nrd+n—r

=

Zer—r—1]>0=n—-1>0.

From given conditions minimum value of n is 4, hence above condition is true proving
that roots are real.

D = c(3a® +b?)? + dabc?(6a® + ab — 2b) = c*(9a* + b* + 6a%b? + 4a®b + 4a%b* — 8ab?)

= 02(3a2 — b2+ 4ab)27 which is a perfect square and hence roots are rational.
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m n b
Vit it =0
_ « B b
L.H.S.—\/%-‘:-\/;'F\/E
b

atB b e b
*ﬁﬂm*\@*@*o

Let a be the root, then the second root would be o®.

1
Product of roots = a* = a = a = d7.

3
i

Sum of roots = a + a® = —f(a) = f(a) = —di— i

1 3
Therefore, the general equation in x would be f(z) = —z® — 2.
Since a, 8 are roots of the equation x> — px + ¢ = 0 therefore

a+ B =pand aff =q

(a®=p%) (@ = B%) = (a = B)* (a+ B) [(e® + %) + af] = (p* — 4q) p(p” + ), and

o?B2+ B = o?B(a + B) = pg®
Therefore, the equation would be
2? —pl(p* —49) (P* + @) + e+ P’ (p* — 49) (p* + ¢) = 0.

a+ [ =0band af = c¢. Then proceeding like previous problem,

455

(a?+B%) (a® +beta®) = [(a+ B)2—2a8][(a+ B)® — 3aB(a+ B)] = (b2 —2¢) (b® — 3bc),

and
a®B3B+ a8 — 201 = ®B3(0® + B2 — 2a8) = 3(b* — 4c).

Therefore, the equation would be

22— [(b? — 2¢) (b® — 3bc) + 3 (b — 4c) ]z + (b — 2¢) (b° — 3be) B(b? — 4¢) = 0.

Let a, 8 be the roots then o + 3 = —g and aff = 2

According to the question a + § = ﬁ + 2

7
- ol b d )
= a
s>t B _ga P by
Given, T = 27/ thJ;le. Squaring, h? + k? = 7;92"
= h’— 7:;92}1 +k?=0. Clearly, h; and hs are two possible roots of above equation, where

hi+ hy = T8 and hihg = K2
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Clearly, a1 + as = —p and ajas = ¢, 1 + 82 = —r and [1 52 = s.

Solving the two equations in y and z by elimination we have

ar _ B ]C:>B%— (a1tag)?  af(1+k%)  —F _q
az B2 2T (Bi4B2)? T Bu(14+k%) T Af2 T s
_ a+c
—(I+af)=—(57).
H. M. of « and = ?i%% = —gbf, but since a, b, ¢ are in H. P. it becomes

=z = () =—(1+ap).

a
atec

Given equation is © + 1 = Az — MN22 = X222+ (1 =Nz +1=0.

L

éa—o—ﬁ:%andaﬁz)\z.

Also given that, %+ g =r—2

= a®+ = (r=2)aB = (a+ph)*=rap

A=1?2 _

=5 = M+ A =12 and Mg =

1—r

Now it is trivial to deduce the desired result.
Let «, B be roots of az? + bz + ¢ = 0 then
a+5=—§and af =2

According to question, é—ﬁ— % =—Sand % =7

From product of roots, < = % and from sum of roots % =7

Let the roots are I, Im, Im?, Im® which is an increasing G. P.
Sum of roots for first equation = (1 +m) =3

Sum of roots for second equation = Im?(1 +m) = 12 = m? = 4 = m = 2 because G.
P. is increasing.

=1=1

= A=01’m=2and B =1’>m®=32.

For first equation, p + ¢ = 2 and pg = A. For second equation, r + s = 18 and rs = B.
Let a be the first term and d be the common difference, then
p=a—3d,g=a—d,r=a+d,s=a+3d.

Substituting in sums we have 2a —4d =2 and 2a +4d =18 ~a =5 and d = 2

sp=—1,q=3,r=7,s=112A=—-3 and B=T7.
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a+ f=—aand aﬂ:—i}ﬁ. Now, a* + 8* = ((a + 8)? — 2a3)? — 2a%3?
_ 4 1

—2+a +Tw4'

Let a4+#:y:>2a8—2a4y—1:0.

Since a is real. :-y2—220éy2\/§[':a420} =a'+ 8 >24+ V2

a+pf=pandaf=q.

1 1y 1 1\4
ot + gt = {f(at+ 61)

= \4/a+ﬂ+6\/a‘6‘+4</a6(a2+62) = \4/p+6\/§+4{‘/q(p2—2q).

Let a, beta be roots of first equation and -, § be that of second equation.
a+f=taf=CLandy+6=770=7

According to question, « — 8=~ — 8 = (a+ )  —4aB = (v +6)? — 4yd

2

b2 4dc ¢ 4a 4 2.2 _ 2
S m—a=p— 3 = b —a’c” =4ab(bc —a”).

A cubic equation whose roots are a, 8, is given by f(z) = (z — «a) (x — ) (x — )
sfff@)=(@—a)(z=B)+(@—=B)(z—7)+(@—a)(z—7)

Now it is trivial to prove that a sign change occurs for the given limits for f'(z) and
thus a root lies in these limits.

Let x4, z9, ..., x, are the n roots of the given polynomial equation. If all the roots are
equal then we will have the relationship

(21— 22)° + (21— 23) 4+ (21— 2n)* + (w2 — 23) " + -+ (T2 — ) * + - + (Tp1 —
)2

Zn)° >0

=>(n—1) (22 422+ 4 22) =2z 20+ 2123+ - + T1Ty + Toxz + ToTy + o+ Loy, +

ot Tpo1Ty) >0

=>n—1) (22422 +422) + (2n—2) (z120 + 123+ - + 12, + ToZg + Tozg + -+
Tolp + - 4 Tpo1Tn) — 2n(T122 + X123 + -+ + 1Ty + T2z + ToXg + - + ToTp + - +
Tp—1Tpn) >0

= (n—1) (21 +zo+F+x,)% = 20(2120 4+ T123+ -+ + T 1Ty + ToTz + ToTy + -+ + ToTy +
ot Tp_1Ty) >0

Now from polynomial z1 + 2 + -+ + x, = —a; and x122 + 2123 + - + 12, + Tox3 +
ToZg+ -+ Tolp + -+ Tp_1Tp = a1

«(n—1)a? — 2nay > 0. But it is given that (n — 1)a? — 2nas < 0, hence all the roots
cannot be equal.

Since «, 8,7y, arein A. P. let a =1—3m,=1—m,y=1014+m,d =1+ 3m where [ is
the first term and m is the common difference of A. P.
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a+ﬁ:fg,aﬂzgand’eré:fz,yé:%

b2 4c
Dy _ tdac _ a2 s _ (a-B)Pa? _ dda?
Dy ™ q?—dpr T a2 _arp® T (v=0)? p? T 4d?p*
p2 P

2

RHS. =L =% 42 = (a+ B+ 2h)2 —4(a+h) (B+h)

P

=(a+h—B-h?=(a—p)>=(a+p)?—daf="1-4c=""lc_ T HS.

a a

LHS. =2h=(a+h+p+h)—(a+f)=—1-

oHrﬁ:fs,aﬂ:%and ot pt=— atpt =1

Discriminant of given quadratic equation, D = 16a2¢?1? — 4a21(2021 + an) =8a%c?? -
4a*lm

=4a'P(25 ) = 4a'P(20°F + o + B*) = 2a*1P(a? + 5%)2.

Therefore, roots of the given equation can be computed which are found to be (o +
8)2, —(a + )2 which are equal and opposite in sign.

n

a+ﬁ=fs,aﬁzgand'eré:f%,'yé:T
Equation whose roots are oy + 86 and ad + B is

22— (ay+ BS+ad + By)x + (ay + BS) (ad + By) =0

sz (a+pf)(v+6z+ (2 + )70+ (¥ +6%)aB) =0

= a’1?2? — ablma + (b — 2ac)In + (m? — 2In) ac = 0.

Since p and ¢ are roots of the equation 22 + bz + ¢ = 0 therefore p + ¢ = —b and pg = ¢

Equation whose roots are b and ¢ is 22 — (b + ¢)x + be == 2% + (p + ¢ — pq)z —
pa(p+q) =0.

p and q are roots of the equation 32% — bz — 2 = 0.
ép—i—q:gandpq:—%.

Equation whose roots are 3p — 2q and 3¢ — 2p is

22— (p+ q)x — 6p? — 6¢> + 13pqg = 0 = 322 — 52 — 100 = 0.

Sum of roots = 2a = —p and product of roots = o> — =g = = #.

2—3m+i2—%:0

. 1 1.
Equation whose roots are = + FsT—3 ™

= 24 Sat 5 — g = 0= (9 — ) (p°2” + dpr) = 16¢.

Sum of roots is a%%) + B%#)

a2—B2)(ad—33 a a—B)2(a2+82+a
_ B;E} 8%) _ (atB)( Blg +8%+ 5>=§(p2—4q)(p2—q).
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Product of roots is —aB(a® — %)% = —q(a — ) (a + 8)% = —p2q(p? — 4q).

Hence the equation having these as roots is qz? — p(p® — q) (p* —4q)x — p?¢*(p* — 4q) =
0.

. . 1 2 5
Solving the system of equations, we have u = —%,v =% and w = §

Now, (b—c)*+ (c—a)*+ (d — b)? = a® 4+ 2b* + 2¢? + d* — 2bc — 2ca — 2bd, but because
a, b, ¢, d are in G.P. therefore, ad = be, ca = b? and bd = ¢ = a? + 2b% + 2% + d® —
2bc — 2ca — 2bd = (a — d)2.

Rewriting the first quadratic equaiton, (% + % + %)xQ +[(b=c)?+(c—a)®+ (d—
b)?)2 + u + v+ w = 0 becomes
= —%xQ +(a—d)?z+2=0=92>—10(a—d)*z — 20 = 0. Equation whose roots will

be reciprocal of this equation will be % - M —20=0= 2022+ (a—d)*z—9=0,
which is what we had to prove.

Because ai, aw, ..., ay, are roots of the equation (81 —z) (B2 — ) ... (B —2) + A =0,
therefore

(Br—a1)(B2—az) ... (Brn—an) +A=0.

Therefore, equation having 1, 3o, ..., B, as roots is
(z—a1)(x—ag)..(x —an) + A=0.

Given a1, ag, ..., au, are roots of the equation z" + ax + b = 0.
= (z—a)(z—a)(z—ay) =2"+nax—b

z'+naz—b

= lim (z—a2) (z—az) - (x —ay) =—
T—aq T—a

Applying L'Hospital's rule, (a1 —as) (0 —as) -~ (0 — ) = nz" ' +na =n(z" "' +a).

We have 1+ o? = (a + ) (a — i) and so on for other terms of the first given root
(1+a®) (14 8% (1++°) (1+6°).

Let P(x) = 2% + gz + rx +t then (14 a?) (14 %) (1 ++%) (14 62%) = P(i) P(—i) =
(1—q+t+ri)(1—qg+t—ri)=(1—qg+t)*+r%

Hence sum of (1 +a?)(14+ ) (1++?)(1+6%) and 1is (1 —qg+t)2+72+ 1 and
product is (1 — g +t)? + 2. Thus, we deduce the equation as

P2 [1—q+t)2+r+1z+(1—qg+t)>+r2=0.
Given a, 8, v are roots of z® + px + ¢ = 0, so we have

at+f+y=0,ab+p0y+ya=p abfy=—q

1 1 1. 3 3q—
Now sum of &L B+l 41 .. 3afy+af+fytay _ 3q—p
a By afy q
3aBy+2(aB+Bytay)tat Bty _ 3g—2p
afy q

Product of these roots taken two at a time is
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Product of all taken together is

afyt+af+pfytyoatat+fiy+l _ g—p—1
apy q

Thus the cubic equation having these roots is x
qr®+ (p—3q)x* + (3¢ —2p)xz+1+p—q=0.

3q— 3g—2 —p—1
3 qqpaﬂz+ qq prqz - 0=

Given equations are az® 4+ bz +c=0and a;2®+ bz + ¢1 = 0. Let o be the root which
satisfies first equation and its reciprocal satisfies the second equation. Then,
aa2+ba+c:0and%+%++01:0:>cla2+b1a+a1 =0.

ca—aea; _ bai—bic (aa; — cc1)? = (bey — aby) (bic — apb).

ab;—bcy cci—aay

By cross multiplication @ =

Let (o, B), (B,7), (7, @) be three pairs of roots which satisfy the given equation. Then,
we have

a+p=—p,B+7v=—q,a+v=—r,and hence, sum of all the common roots is obtained
by adding these three equations

a+f+y =2

1 .
Ssmo" Since
it has a common root with first equation and first equation has equal roots then that

implies that first equation also has one root which is ﬁ

Observing that coefficients in first equation are cyclic we deduce that x = 1 will satisfy

0:1=>sint9:l

: 1
the equation. Hence, 555 5

= 0 = nmw+ (—1)"%, is the general solution of .

Let o is a root of 22 — 2 4+ a = 0 then 2a will be a root of 22 — z 4+ 3a = 0. Thus,

a?—a+a =0 and 40% — 2a + 3a = 0. By cross-multiplication, we have

a2 a1 2 o
Saa T 3o-da v O = —20=a=0,-2
However, it is given that a # 0, ~a = —2.

If (z1,y1), (x2,y2) are the two solutions, then 1, ys are the two solutions of the quadratic
in y. Then we will have two cases:

Case I: 21 = y1, 2 = yo. In this case the equation becomes 2 + 2lz +m = 0 therefore
a=2l,m=">.

Case II: 21 = y2, 2 = y1. In this case z1y; + (1 + y1) + m = 0. Replacing y; with za,
we get b—al+m = 0.

Given that roots of the equation 10z% — cz? — 54z — 27 = 0 are in H.P. Therefore if we
replace x with % then roots will be in A.P.

2
=0 % 97=0= 272% + 5427 + cx — 10 = 0.
Let the roots are a — d, a, a + d, then sum of roots 3a = —% =a= —g, which is a root

of the equation. Substituting this in new equation we find ¢ = 9.
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Given that a, b, ¢ are the roots of the equation x>+ px? 4 gz +r = 0 such that ¢ = —ab.
=a+b+c=—p,ab+bc+ca=qand abc = —r = ¢ = —abc = r.

pqg=—(a+b+c)(ab+be+ca) = —[a?b+abe+ca®+ ab® +b%c + abe + abe + be* + ca) =
—(a®b + abc + +ca® + ab® + b*c + abe + abe — ab® — a?b)

= —(3abc 4+ a’c + V%) - pq — 4r = —r — ac — b’c = (pg — 4r)3 = —3(a® + b* + ?).

LHS. = (p®> —2¢)%r = —[(a+ b+ c)> —2(ab + bc + ca)].c® = —c3(a® + b* + c?) =
R.H.S.

If o+ 48 is one root of 23 + gz + r = 0 then a — i3 will be another root. Let v be the
third root.

Sum of roots 2a + v = 0 = v = —2«. Since 7 is a root of given equation, therefore
(*261)3 —2gac+r =0, and hence we have our equation is 23 + gz — r = 0.
Clearly, @+ f+7 = —3, a8 + By + 7o = 0,afy = 2.

We have to find Z(%+§) :%+§+§+%+%+g

| =
|

Df =
I

)
~—

=L+ +irra)+ia+p) =L(-4—a)+i(~3-8)+1

~-H(Eed) o - () -

Given equations are 2% + pz2 + gz +r =0 and 23 + p'z® + ¢z + 1 = 0. Let a, § are
common roots. Then putting o and S in the equations and subtracting

(p—p)e’+(@—q)a+ (r—r)=0and (p—p )+ (¢—q) B+ (r—1") =0.

Thus, the quadratic equation whose roots are a, 8 is (p—p’) 2%+ (¢— ¢ )z + (r—r') = 0.
Let «, 3, v are the roots the given equation and are in G.P. Then, 8% = ay and also
ay=—2=5=—(4)"

Substituting the value of § thus obtained in the given equation

a(—%) + 3b(— ‘i)?/g + 3(:(—%)1/3 +d = 0= ac® = b*d, which the needed condition.

a
Let a, 8, v are the roots of the equation z® — pz? + gz — r = 0, then
at+B+y=paf+pyt+ya=qafy=r.

Mean of H.P. = 3 = % = %. Substituting this in given equation

<%r>3 - p(%)Q + 6137: —r=0= 27— 9pgr? 4+ 2r¢®> = 0 = 27r% + 2¢° = 9Ipqr.
Let v, 8,7 be the roots of the given equation. Also given that f(0) and f(—1) are odd.
f(0)=odd=d=o0dd, f(-1)=—-14b—c+d=o0dd = b—c=odd.

Also, a8y = —d = odd which implies «, 3, v are all odd. However,
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b—c=—[(a+8+7v) — (aB8+ By +ya)] = —[odd — odd] = even
which contradicts the assumption that all roots are integers.

Let o, 8, v are roots of the equation 2z3 + ax? + bx + 4 = 0, then

a+B+y=—%0f+pBy+ya="and afy=—-2.

Since all coefficients are positive hence all roots are negative. Let « = —p, § = —q and
~v = —r, then

p+q+r:%7pq+qr+rp:§andpq7“:2~
Now A.M> G.M. = ZXE0 > (pgr)

also, because A.M.> G.M = w > (pqr)2/3 = b > 6413
Adding we arrive at the required inequality.

Given equations are a12 + b12? + 1z + dy = 0 and asx® + boz® + cox + do = 0. Let o
be a common repeated root then

a10® + b1a? + cra+ dy = 0 and asa® + o + coar + dy = 0

Multiplying first equation by a2 and second equation by a; and subtracting, we get
(agby — a1by) 22 + (azc1 — ayca) z + (azdy — a1dy) =0

Also, the derivatives will be equal to zero because they have a common root i.e.
3a122 + 2b1z 4+ ¢1 = 0 and 3asz? + 2byx + ¢o = 0 and hence the condition is

3(11 2b1 C1
3&1 2b1 C1 =0
a2b1 — a1b2 agC1 — a1cC2 a2d1 — a1d2

Given equations are a122 + b1z +c1 = 0 and as2® + box® + cox + do = 0. Because cubic
equation has a repeated root therefore its derivative will be equal to 0, and hence

3a22% + 2byx + ¢ = 0. Multiplying first equation by asz and second by a; and sub-
tracting, we get

(a1b2 — agbl)ac2 + (a1c2 — azc1) z + a1dy = 0 and thus from these three equations we
have

ai by C1
3&2 2b1 C2 =0
albg — a2b1 a1Cy — a2Cy a1d2

Given that «, 3, v are roots of #® — ax? + bz — ¢ = 0 then we have
a+p+y=a,af+py+ya=>band afy=c.

We know that if a, b, ¢ are sides of a triangle and perimeter is 2s then area is given by
Vs(s—a) (s —0b) (s — c), therefore area of required triangle is
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A=iVla+B+N(+B—7(a—F+7)(B+7—a)

=1Va(aB+ B2 + 7o + 2B + B2y + % — o — B — % — 2af3y)

\/a[4 af? + By? 4+ ya? + a?B + %y + v%a + 3aBy) —(square root continued)

V(@3 + B3+ 43+ 3028 + 3aB% + 3872 + 362y + 3a? + 302y + 6a37) — 8aBy]

=1 /al4(a+ B+7) (@B + By +~a) — (a+ B + )3 — 8ab]

= % a(4ab — a3 — 8c¢), hence proved.

Given a < b<c<dand p(z —a)(zr—c)+ Az —0b)(z—d) =0. Let f(z) = p(z —
a)(x—c)+Az—Db)(x—d)=0

fla)=Xa=b)(a—d),f(c) =Ac—0b)(c—d) = f(a) f(c) <0and similarly f(b) f(d) <
0. Thus the equation has one root between a and ¢ and second root between b and d
which implies that both the roots are real for real p and .

Let f(x) = 32° — 523 + 212 4 3sinz +4cosz +5 = 0 then f(00) = —oc and f(o0) = oo.
f/(x) =152~ 1522421 + 3 cos x —4sinz = 15(2* — 22> +1+2%) + 6+ 3 cosz —4sinx >
0V z € (—o0, 00) which means f(z) is increasing.

Thus, we see that f(z) can have only one real root.

The plot is given below(not in linear scale):

fl(x)=322-20c —11=0=z lOi L0£V133 which shows two
points in the graph where tangent is parallel to x-axis. We see
that after the higher value of this root the graph is increasing

and cuts z-axis. So we substitute the increasing values of x
10+\/13 ~ 7.16. We

A

to obtain the integral part of root. z =
find that f(8) < f(9) < f(10) < f(11) <O but f(12) > 0.
So the root lies between 11 and 12, and hence the integral

/— part is [z] = 11.

v

323. f(z) = (z — m) (bpa™ + - + by) = (z — m)g(z) for some
boy -y by € Z. Then

f(0) = —m.g(0) and f(1)
that f(0) = a,, and f(1) =

(1 —m).g(1) but either —m or 1 —m is even. Observe

a;.

-

Il
o

3

Let g(x) = €® f(x) then ¢”(x) = €®[f(z) + 2f'(x) + f”(z)]. ~ Roots of equation f(z)+
2f(z) + f”(z) = 0 will be same as those of equation g”(z) =0 as e” # 0.

Also, since e” > 0, therefore roots of the equation f(x) =0 and g(x) = 0 will be same.

Clearly, g(z) = 0 will have a, beta, v as roots and hence ¢’(z) = 0 will have roots a
between « and beta and a root b between 3 and . Hence equation ¢”(z) = 0 will have
a root between a and b, which obviously lies between o and 7.

The plot is given below(not in linear scale):
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(4,128)

Let f(z) = 2% — 42® — 822 = /() = 4% — 1222 — 162 = da(x — 4) (z + 1) so at
x = —1,0, 4 there will be tangents and the direction of f(z) will change.

From the graph it is clear that for f(z) + a = 0 to have four real roots 0 < a < 3.

Let «, 8 be two distinct roots of the given equation. Then a + = —g, af = 2 Using
AM>GM. For0<a,1—a,8,1—<1

So =2t > Jal—a) = a(l—a) <1

Similarly 3(1 — ) < % =af(l—a)(1-p) < 1—16

= aB[l—(a+B) +af] < 5= 16c(a—b+c) < a?
However, min[c(a — b+ ¢)] = 1 so a® > 16 Thus, amin = 5.
Now 2 <a+8<4=2a<b<4a= by =11.

Let f(z) = (x —1)° 4 (2 4+ 2)" + (72 — 5)? — 10 then f(—00) = —oo and f(00) = oo.
f(x) =5(x— 1)*+ 7(x +2)6 + 63(7z — 5)® > 0 which makes f(z) and increasing
function, which means it can cut xz-axis only once; yielding only one root.

Given, /2(z + 3) — vVx +2 = 3. Squaring 2z + 6+ + 2 —2,/2(x +3) (z +2) = 9.

Squaring again, = 8(z +2) (z+3) = (1 —32)? = 2% — 462 — 47 = 0 = o = 47, —1.

Substituting these in the original equation, we quickly find that x = 47 is the actual
root and x = —1 is the extraneous root. Hence, tan § = 47, tan ¢ = —1, and hence

tan(0 + ¢) = % and cot(0 — ¢) = —%.

Case I: When z < —1 then the equation becomes —z — 1+ — 3z +3+ 2z —4 =
r+2=>2r=—-4=x=-2.

Case IT: When -1 <2 <0,thenax+1+2—32z+3+2z—4d=zx+2=>2x=2+2,
which is not possible.
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Case III: When 0 <z < 1,thenz+1—2z—3z+3+2z—4=z+2=—<cx=c+2=
x = —1, which is not possible.

Case IV: When 1 <z <2, thenx+1—2+4+3z—3+2x—4=2+2=5x—6=
r 4+ 2 = x = 2, which is not possible.

Case V: When z > 2 thenx+1—2+4+3z—3—2x+4=2+2=2+2=2x+2, which
is true.

Hence, the solution is x = —2, z > 2.

Case I: When x < —1, then#—?": 2"+ 14+1=z=-2.

Case II: When —1 < 2 < 0, then 2°7! =27 = — L 4141 =221 39274 1=0=
2" =0,2" = %, which is not possible.

Case ITI: When z > 0,2*t1 -2 =27 _14+1=0=0.

Hence, the solution is x = —2, 2 > 0.

Case I: When z < 0,y <0, then 2> — 2z +y=1,22—y=1=>z= 172‘/5,11:172‘/5

Case II: When z < 0,y >0, then 22 — 2z 4+y=1,22+y=1=—22=0,y =1

Case III: When 0 < 2 < 2,5 < 0, then —z? 4+ 2z +y=1,22—y=1=2x=2,9y=0
Case IV: When 0 <z < 2,y >0, then —2? + 2z +y =1, 22+ y=1= —222+ 2z =
0,z=0,1,y=1,0

Case V: When z > 2,y <0, then 2> -2z +y=1,2>—y=1=20 - 20 =2 =z =

% < 2, which is not possible.

Case VI: When z > 2,4 > 0, then 2> — 2z +y=1,224+y=1= 2 =0,y = 1, which
is not possible.

Hence, the solutionis z =0,y =1,z =y=-—5—,r=1,y=0.
Given equation is [#2 4+ 42 +3| +20+5=0=[(z +1)(x +3)| + 22 +5=0.

Case I: When z < —3, then 2> + 42 +3+204+5=0= 22462 +8=0=z =

7%\/‘1, = r = —4, —2. But x = —2 is not possible.

Case IT: When —1 < z < —3, then —22 —42 —3+224+5=0= 22422 —-2=0=
z=—14++/3. But z = —14+/3 is not possible.

Case III: When 2 > —1, then z? + 4z + 3+ 2z + 5 = 0 = = = —4, —2, which is not
possible.

Hence, the solution is = —4, —1 — /3.
Given equation upon simplification is z* 4+ 6z° — 922 — 1622 — 243 = 0 and z # —3.

Let us assume that z* + 62% — 922 — 162z — 243 = (2® + ax +b) (2® + cz 4+ d). Comparing
coefficients,
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a+c=6,b+d+ad =-9,ad + bc = —162, bd = —243, which is four equations with
four unknowns. Solving these, we have a = —3,b = —9, ¢ = 9, d = 27, and hence, the

solution is
3+3vV5 —9+3V3i
rT="5 "5

Given equation is ﬁ + ﬁ ={z} + é We observe that [z] cannot be negative because

that will make L.H.S. negative while R.H.S. is positive.
Case I: When {z} > %, then 2[z] = 2[z] + 1. Putting [z] = n, where n € P.

Given equation is {z} = % + ﬁ — % Putting z =1, 2, 3, ... we observe that {z} is not
satisfied and the function is decreasing in nature.

Case II: When {z} < %, then {z} = % + % — %

= {z} = W, now we see that numerator becomes negative once n > 5, thus those
values are ruled out. We see that © = 2, 3, 4 are the only values which satisfy the given

conditions.
Let k = log, zlogio alog, 5 = log, 5'°%1°%, then a* = 51°810% = 5l(let logy = = 1).

Let m = logw(%) =logipxr—1=1—1and n=logigoz +1logy 2 = %loglo l’—‘—%logg 2=

I+1
5 -

Lo =9 T =3l =33l

According to question g.5l — %l =3.3' = 572 = 3!=2, which is possible only if = 2 =
z = 100.

5% + 125 = 5% 6+ 1435 _ glogs6 5 5o

= 5% + 125 = 6.5.5* = k% + 125 = 30k, where k = 5%
=k=52=1=2%1

Taking log of both sides with base x, we have
3[(10g22)” +logz o —F] = 3 log, 2

1

= m] (Putting logs x = y)

i%[(loggm)QJrloggx—g
Sy +y—i=g =>4+ 47 -5y —3=0.

Observing that sum of coefficients is zero, we quickly deduce that y = 1 is one of the
solution. Thus, the above equation is reduced to

4 +8y+3=0=y=—12,—3

1 1

And hence, z = 2, 753
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Given 322 = 8[z] — 1. Let [z] = 1, then 2 = \/z and when [z] = 2 = z = /5. However,

when [z] = 3,z = \/% < 3, which is not possible. Further values are not possible
because if we increase [z] linearly then L.H.S. will increase exponentially.

Thus, two possible values are \/z and /5.
Let y =t +Vt2—1, then%:t—\/ﬁ—l and y+%= 2t

Thus, the given equation becomes yZQ’QI + ﬁ =y+

<=

Let z = y’”Q’QI, then given equation is z —y + % - % =0

1\ _ _ _1 _
é(z—y)(l—a) —0:>z—y0rz—y:>w—171i\/§.
Multiplying first equation by 2 and subtracting, we get

502 +10y—15=0= 12 4+2y—3=0=>y=-3,1. fy=—3, 3 +271—x—12—T7=
0= —-4dz+8=0=z=2.Ify=1,2+3—24+4—7=0=0=0soall valuesof z € R
will satisfy the equation.

T
We have 2271.277+2 = 3. Taking log with base 2, we have

2c—2 20—2 2c—2

r—1+75loged3 =0= 21—+ 75 (loga3 +loga 2) =0
= 22 1056 = 0 = b (2 4+ loga 6) = 0 = z = 1, —2logs 6.

z+l 1 1
2 _ 22w—1 = 22x + 22w—1 — 3x+§+ 3x75

1
We have 47 — 3" 2=3
=921 3 2373 4o 9203 2 373

T = g is a solution which satisfies both sides, and is the only solution.

We have log;[98 + V23 — 22 — 12z + 36] = 2. Taking antilog,

Vad =22 1220 +36=2=2 -2~ 120 +32=0= (x +4) (22— 52+ 8) = 0.
We find that the only real solution is x = —4.

Given, logaz 4 3(62% + 23z + 21) = 4 — logz,  7(42? + 122 + 9) = loga, 1 3(22 + 3) (32 +
7) = 4 —logss47(2z + 3)*

= 141082, 43(30 +T) = 4—210ga, (22 +3) = loga,+5(3 +T) — logas +(22+3) = 3
Let logay+3(3z + 7) = z then logs,+7(2x + 3) = %7 and given equation becomes

z+%:3=>z:1,2:>2x+3:3x+7:>x=—4,Whichisnotpossibleas 20 +3>0

and 3z + 7 = (2$+3)2:>4:E2+9£L'+2=0=>1’=7%,72, but again x = —2 is not
possible as it makes 2x 4+ 3 < 0.

Hence, the only possible solution is x = *i
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Rewriting the given equation y* — 22 = 1402 = (y* + v/222) (y? — v/227) = 701 x 2
Suppose z, y are integers then 22, y? > 0, which implies
v+ /222 = 701 and y? — v/22? = 2. Adding, 2y = 703, which has no integral solution.

Given equation is |z — 1]'°&2 o ~2logs 9 (x—1)". Clearly, z > 1 for log, 9 to be defined.
So the equation becomes

(z —1)logse® 21089 — (;; _ 1)7 taking log of both sides

(2logs z — 4log, 3 — 7) [log(z — 1)] = 0. So either

2loggx —4log,3—7=0orlog(z—1)=0=>z—1=1=z=2.

Let logs x = z then log, 3 = %, so we have

22— Tz—4=0= 2= 4,—% which gives us x :81,% but > 1 so x = 81 is the
second solution.

One of the solutions is cosz = 1 which will make exponent % equalizing both sides.
Thus, x = 2n7 is our first solution.

The second solution can be obtained by setting exponent to zero i.e. sin? & — gsin T +% =

0 giving us sinz =1, % but if sinz = 1 then cosx = 0, which makes th equation invalid.

"z 0.

Therefore, sinz = % is our second solution. Thus, z = nm + (—1)"%,n €

We have the equation (z +a)(z +1991) +1=0= (z+a)(z+1991) = —1

Eitherx +a=1and 2 +191=—-1=a¢=1993orz+a=—1and z+ 1991 =1 =
a = 1989.

10

sin? z

Given equation is 257 4 5(25052’”) =7 = 2Ty

=T.

Let 250°® — y, then the equation becomes y + L; 7=y —Ty+10=0=9y=2,5.
Now 3 = 5 makes sin? z > 1, which is not possible. If y = 2 = 2T 9 s ging =
tl=z=nr+ (—1)"(1%).

Given equation is x + logio(1 + 2%) = xlog19 5 + log10 6 = z(1 — log1o 5) + logio(1 +
27) =log1o 6

= x(log1o —logi0 5) + logio(1 + 27) = log19 6 = xlog1o 2 + log1o(1 + 2%) = log1 6

= log102°(1 + 27) = log106 = 2%(1 + 2%) = 6 = 2% = 2, —3 but for real values of
x, 2% #+ —3, thus, 2" =2 =2 =1.

Given equation is log,(ax) . logg(az) + log,z(a) = 0= (1 4 log, x) (1 + log, a) + % =0

1 1

:>2(logax)2+5logax+2=0:>10gax=—2,f%:>xzp,ﬁ.
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Given equation is v/ 11z — 6 + vz — 1 = v/4x + 5, squaring, we get
11z —6+4c+5+2/(1lz —6)(z—1) =4 +5=+/(1lz —6)(zr —1) = -4z + 6

Squaring again, 1122 — 172 + 6 = 162% — 4827 +36 = 52> — 3l +30 =0 =z = 2,5
but z = 5 does not satisfy the given equation, and is result of squaring.

Given equation is v3z2 — 7z — 30 — /222 — 7Tz — 5 = = — 5. Sqauring,
322 —Tx —30 = (x —5)24+ 22— 72 —54+2(x—5) V22— Tz —5

= (z—5)(5— V222 —7x —5) =0, so z = 5 is one of the solutions. The other solution
will be given by

5 =/2x2 — Tz — 5, squaring again, 222 — 7z —30 =0 = z = 6, —g, but z = —g does
not satisfy the equation.

Hence, x = 5, 6 are the solutions.

Given euations are y = 2[z] + 3 and y = 3[z — 2] = y = 3[z] — 6. Solving yields
y =21, [z] =9 giving [z + y] = 30.

n
Z(x —a;)? =na®—2(a1 +ag + -+ an)x + (al + a3 + -+ a2), which is a quadratic
i=1
equation in z and coefficient of 22 is n > 0, therefore, this quadratic equation will have

ot
least value at = = W

Let the quotient be %, n € N. According to question,
2 1 3 V29 3, V29
n2"_+1+2>§:>n2—3n—5<0:>§—g<n<§+g.

- n—3 1 n—3 1
A15070<M7—H<m:>0<m<m

n—3
n2—4

>0=-2<n<2or3d3<n<o.

Taking the first inequality,

_ 2
Taking the second inequality :2—_:1 < % = %

<0=-n<—-2orn>2.
3, V29 - .
Thus, we have 3 < n < 54 Y5- = n = 4 (since n is a natural number)

4

Thus, we deduce the quotient to be 424—71 =1

Let f(x) = ax®+bx+c, then g(z) = f(z) + f/(x)+ f(z) = ax® + ba+c+2ax+b+2a =
az® 4+ (b+2a)xz+2a+b+c.

Given az’ +bxr +¢ >0V 2 € R~b? —4ac < 0 and a > 0.

Discriminant of g(z), D = (b+ 2a)? —4a(2a + b+ ¢) = (b* —4ac) —4a* < 0 and a > 0.
Thus, g(z) >0V z € R.

From given equation it is clear that f(z) >0V x € R and

f(z) = (a3 +a2+-+a2)2®+2(arbi +asbo+ - +anby)x+ (b3 +b3++b2) >0V xR
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- Discriminant of its corresponsing equation D < 0, because coefficient of 22 is positive.
= 4(a1by + asby + - + anby)? — 4(ai + a3+ +a2) (b + b3+ + %) <0
= (a1by + agby + - + anbn)® < (af + a5+ -+ a) (b7 + b3 + -+ b7)).

Given equation is z(z 4+ 1) (z+m) (z+m+1) =m® = [°+ (m+ 1)z +m][2> + (m +
1) x] = m?
= % +my —m? =0, where y = 2+ (m + 1)z oy = 502

=202+ 2m+ 1Dz — (V5—1)m=0and 22>+ 2(m + 1)z + (v/5+ 1)m = 0. Thus,
given equation will have four real roots if these two equations have two real roots each.

~A4m+1)24+8(vVs—1)m>0and 4(m+1)2—8(vV5+1)m >0

= m?+2V6m+1>0and m? —2v5m +1> 0. Thus, |m| > 2+ /5 or |m| < V5 —2.

Given equation is #* + (a — )z®* + 22 + (a— )z +1=0= <x+%)2—2.z.%+(a7
D(z+3)+1=0

=>y’+(a—1)y—1=0, Wherey:x—i—%

LY = 7(a71)i%/m _ (a—l)?@

=227+ [(a—1)—+/(a—1)2+4)]z+2=0and 22>+ [(a—1)++/(a — 1)+ 4]z +2=0
Let a, 8 be roots of first and -,  be the roots of second, then

a—i—ﬂ:—wandaﬁz1,7+6:—Mand'y5:1

vy/(a—1)24+4 > a—1, therefore, a+ 3 > 0 and a8 > 0, which means «, 3 are positive.
Thus, the equation 222+ [(a — 1) +1/(a — 1)2 + 4]z + 2 = 0 must have two negative
roots.

For both roots to be negative D >0 = [(a —1) ++/(a —1)2+4]*— 16 > 0
sa—1+/(a—1)2+4—4>00va—1+(a—1)2+4]+4>0
=(a—1)2+4>5—a=>a>50r (a—1)>+4> (5—a)? where a > 5.
=J2<a<oo.
Givenequationisx4+2am3+z2+2ax+l:O:>x2+%+2a(m+%>+120
:>(.13—0—%)2—2.33.%—0—261(33—0—%)4—1:0:>y2+2ay—1:0, Wherey:w—l—%

:>y:—a;|:\/a2+1.Whenyz—a+\/a2+1:x+%:>x2+(a—\/a2+1)m+1=0,
and, Wheny=—a—\/a2+1:x+%:>x2+(a+\/a2+1)x+1=0.

Let a, 8 be roots of first equation and 7, § be roots of second equation. Then,
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at+B=vVa*+1l—aaf=1landy+d=—(a+Va®>+1),75=1

Clearly a, 8 are both imaginary or positive so from question -, d both must be negative.
= D >0, which leads to

(a+Va@+1)2-4>0=> Va2 +1>2—a=3<a< .

Given system of equations can be written as ax? + (b — 1)2y + ¢ = xp — 1, ax +
(bf1)x1+c=.763—932,...,ami,lJr(b—l)xn_1+c:xnfxn_1,axi+ (b—1)zp+c=
XT1— Tp

= fle) + ) + 4 flza) =0 (1)
Case I: When (b —1)% — 4ac < 0.

In this case f(x1), f(z2), ..., f(z,) will have same sign as that of a - f(z1) + f(z2) +

Hence, the given system of equations has no solution.
Case IT: When (b — 1)% — 4ac = 0.

In this case f(z1), f(z2), ..., f(zn) > 0 or f(xl) (
+o

2); -
F(en) = 0= (1) = f(w2) === f() =

(
flar) + f(z2)
Butf(xi)=0:>axf+(b71)a:i+c:0=>xi=%;b
e _1-b
L= Xg == Ty = 5

Case ITT: When (b — 1) — 4ac > 0.

Roots of equation az® + (b— 1)z + ¢ =0 are o, § = 1obey(1-b)7dac W

If 21, za, ..., x, lie between « and 3, then f(z1) + f(x2) + -+ f(x,) # 0 (because it
is<Oor>0asa>0ora<0)

If zq1, 2, ..., T, lie in (—o0, @) or (f3, c0) then also f(z1) + f(z2) + -+ f(zn) # 0.
If all roots are either a or 8 then f(z1) + f(z2) + -+ f(zn) = 0.

f V3

or x> 7,

Case I: When ¢ > 1. We will have 22 — 6>O:>ar: < — and x2f%>
et = <a? <l

Thus, we see that no value of x satisfies all these inequalities at the same time.

Case II: When z < 1. We will have 2% — % > 0, which will impose same set of inequal-
ities, and x2—%< ot = 2? <%or 22> %

Thus, ({, ;) U (@, 1) represents the set of solution.

Given log; 22 > logy(z +2) > 2? <z + 2= —2—-2<0=—-1<x <2z #0. For
2 2

lagrithm to be defined x # 0 and = > —2.
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Also, 492° —4m* < 0 = f%mZ < %m?

According to question, [—1,2] C [—%mz, %mQ]

.-.—%ng—1:>m22%and$m222:>m227.
Thus,—oo<m§—\/70r\/7§m<oo.

We have to find a for which 1+ logs(z? + 1) > logs(az® + 4z + a) is valid ¥V z € R.
= logs 5 + logs(22 + 1) > logs(az? 4+ 4z +a) = 5(22 + 1) > az’ + 4z +a

= (—a)z?—4x+5-a>0

D§0é16—4(5—a2)SOéaSSoraZ?andS—a>0:>a<5. Combining
—oco<a<3.

For logs(axz? + 4« + a) to be defined az® 4 42 + a > 0 for all real x. So D < 0 =
16 —4a> < 0=a < —2or a>2and a > 0. Combining 2 < a < co.

Thus, common values are given by 2 < a < 3.

227 + 22 +; > 0V x € R because discriminant of corresponding equation is less than 0

and coefficient of 22 is greater than 0.

Thus, logz(2x2 + 2x —0—%) is defined V z € R.
For log, a(z? + 1) to be defined 0 < a < oo.

Given equation is 1+ log2(2x2 +2z —Q—g) > logo(az’®+a) = logs 2+ 10g2(2x2 + 2z +%) >
logs(az? + a)
= logs 2(2.762 + 2z + g) >loga(az? +a) = 422 + 40+ 7> a2z’ +a

= (4—a)z?+42 47 —a>0. Let D be discriminant of corresponding equation, then
D=16—4(4—a)(T—a) =4(4—a®+11a—28) = —4(a —3) (a — 8).

When D >0,a#4,3<a<8

When D =0 = o = 3,8. When a = 3, the equation becomes 2> + 4z +4>0V z € R.
When a = 8, the equation becomes —(2z —1)? = 0, when z = %
When a = 4, the equation becomes 4x + 3 > 0 for infinitely many real values of x.

The equation will be satisfied for a <4 and D < 0= (a—3)(a—8) >0=a < 3 or
a>8~—o00<a<3.

Combining all these we get possible values of a by —oo < a < 8.

Let a—c=a,b—c=f,¢c+ 2 = u, then for va— ¢ and vb— ¢ to be real «, § > 0.
Also, as > —c = u > 0.
atz)(b+z) (uta)(u+tp) — u?+(a+B)utaf —ut+a+ ﬁ +g¢_@

ctx u u

Letxmy:(
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= u?+ (a+ B —y) +af =0, and because u is real.

sla+B—y)P—4a>0=y"—2(a+B)y+ (a—pB)>>0

Corresponding roots are y = AatPlkyVAatp) —da=p) _ + B +2v/af

2
= (Va+B)? (Va—/B)?

Butify < (Va—+/8)? = y— (a+ ) +2/aB < 0 is not posssible, because y —a — 3 =
afB
U +T > 0.

Thus, least values of y is (vVa ++/8)%> = (Va —c+Vb—c)2

Lety=4(a—z) [z —a+ Va® +b?| =42(—z+k), where z = a—z and k = Va? + b? =
4% —dkz+y=0

Because 7 is real, therefore, D > 0 = 18k*> — 16y > 0 = y < (a? + b?)

=y #a’+ b
2494 cos 20+ 1
Letyz%# (y—1)z? 4+ 2(ycos 26 — cos2a) +y—1=10

Because x is real, therefore, D > 0 = 4(ycos 28 — cos2a)? —4(y —1)2 >0

(1 —cos? 23)y? +2(cos 2cccos 23 — 1)y + 1 —cos? 2a < 0 = sin? 28y> 4 2(cos 20 cos 23 —
1)y+sin22a <0

(1—cos 2 cos 28) +4sin(a—pf) sin(a+3)
2sin? 2f3

. . 2
Roots of corresponding equation are

in2 2
= %, g%%, which are real and unequal and dicriminant is also greater than zero.

Coefficient of 3 is also greater than zero.
Thus, y does not lie between the roots.

Let y = 2a(zx—1)sin? «

2 i02 2
22 sinfa YT — 2asin” ax + (2a — y) sin“ o = 0.

4

Because z is real, therefore, D > 0 = 4a?sin*a — 4y(2a — y) sin?a >0 = a%sin? o —

y(2a —y) > 0= 4> —2ay + a®sin? o > 0.

20

Roots of the corresponding equation are y = 2a sinQ%7 2a cos” 3.

Hence, y does not lie between these roots.
+ 1+
Let y = tan(z + a) /tan(z — a) = (%) (r’;q), where p = tanz and ¢ = tan a.

ap®+(1+¢*)p+q

Y= 1+

Sqly+D)p’+(1+¢) (1 —y)p+q(l+y) =0, but pis real, and hence D > 0.
= (1+¢*)(1—y)*—4¢°(1+y)* 2 0= (1-¢*)*y* —2[(1+¢*)* +4¢° ]y + (1—¢°)* 2 0

2
Disrciminant of corresponding equation is 64(1 4+ q2)2q2 and roots are <L:g) , (w
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. I1—tana)\2 [1+tana 27 2(m 2(m
So roots are <1+tana> , (ktana) = tan (Z—a>,tan (Z—i—a).

Since roots are real and unequal and the coefficient of 32 is greater than zero, and
hence, y cannot lie between the given values.

Letyz%@ 4y +a)z?+3(1—y)z— (ay +4) =0.

Since x is real, therefore, D > 0= 9(1 —y)* +4(4y +a) (ay +4) > 0= (9 + 16a)y> +
2(2a% 4 23)y + 9+ 16a > 0

Discriminant of corresponding equation D’ = 4(2a® + 23)% — 4(9 + 16a)> = 16(a +
4H2(a—1)(a—T7)

Ifl<a<7= D' <0and9+16a >0, then (94 16a)y? + 2(2a¢* + 23)y + 9 + 16a >
OVyeR.

Hence, given expression can assume any value if 1 < a < 7.

_ (az—b)(dz—c) _ adz?®—(bd+ac)z+bec
Let y = (bz—a)(cx—d) ~ bex?—(act+bd)z+ad

= (bey —ad) 2?4+ (1 — y) (bd + ac) + ady — be = 0.
Because x is real, therefore, D > 0

= (bd + ac)*(1 — y)? — 4(bey — ad) (ady — be) > 0 = (bd — ac)?y* — 2[(bd + ac)? —
2(a*d? + v*c*) )y + (bd — ac)? >0

Discriminant of corresponding equation D’ = —16(ad — bc) (a® — b*) (¢* — d?)
Because a% — b? and ¢? — d? are having same sign, therefore, D’ < 0.

Hence, y can have any real value.
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Permutations and Combinations

. Given, P = 11880 =

Given, "P; =360 =>n(n—1)(n—2)(n—3) =3 x4x5x6=n=60.
Given, "P; = 9240 = n(n—1) (n —2) =20 x 21 x 22 = n = 22.

Given, ''P, =720 =8 x 9 x 10 = r = 3.

. 2 1 .2 1 (2n+1 2n—1)! 3 2n+1)2 3
Given, *"H1P, Ly : 21 7P, = 355 = B (g =5 = S =

=3n2—1ln—4=0=n=41, —%, but n is an integer. Hence, n = 4.

Given, "P, = 12x"Py=>n(n—1)(n—2)(n—3)=12xn(n—1) =>n>—5n—6 =
0=n=6,—1.

But n > 0 = n = 6 is the only solution.
Given, "Py=20x"P; = (n—3)(n—4) =20=n*-Tn—-8=0=>n=8, —1.

But n > 0 = n = 8 is the only solution.

. n+1 n—23)! 3
Given, "P,: ""'P, =3 4=>( ) En+1;_1
=08 S un—12=3n+3=n=15

Given 2P, = 6840 = 18 x 19 x 20 = 7 = 3.

Given, 9P, | = BED k43p — (k4 5) (k 4+ 4) (k + 3) 6.5 = 2ED (5 4 3) (k +
2) 5.4

= (k+5)(k+4)=22k—22= k2~ 13k +42=0=k=6,T7.

5 22! 18—nr)! 11
. Given, 2P, : PP, , =11:52 = oy U5l = 12

22.21 _u
. Given, ™™"P, =90 = (m+n)(m+n—1) =109 = m +n = 10, and
mTPy=30= (m—n)(m—n—1)=65=>m—n=6=>m=8n=2.

(12 T),_9x10><11><12:>r*4

. Given, P, s : P, 5 = 30800 : 1 = =00 Brlt = 30800

= 56 x 55 x (b1 —r) = 30800 = 51 —r =10 = r = 41.

. n"P,=nn!l = (n+1—1).n = (n+1)! —nl Similarly, (n —1)."'P, ; = n! —
(n—1)1...,22P, =3 -2, 1.1P, =21 —11.

Adding these, we obtain L.H.S. = (n+ 1)l =1l =""'P , —1 = R.HS.

475
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. n _n n! _ n!
Given, "C3o = "C4 = 35103071 = Titn—a)1

Equating n — 30 = 4 and n — 4 = 30, we obtain n = 34 from both.

Given, "Ci, ="Cyg = (n—g)!u! = (nf;!)!& =n—12=8and n—8 = 12. Thus, n =20
! !
00, = 20 = 255548 = 1140, and 2Cyy = sargy = 2252 = 231.
Given, 18C, = 1C, ,,8 B = 18 —7r=r+2 =8and r =
ven, “C, r+28 = @A = e = r=r+2=r=8andr=

16 —r=1r=28.
"Co = 806_6,2, = 28.

Given, "C,,_y =15 = =16 =n(n—1)(n—2)(n—3) =3 x4x5x6=n=6.

! —1)!(16—7! 53—
Given, 5C, : 1C,_15=11:5 = qpiom S = 2 o B U o p 5,

Given, "P, = 2520 = = 2520 and "C, =21 = =21

( )

Tn—r)Tr! rﬂr‘

2020

=2l=rl=120=2r=5=nn—1)(n—2)(n—3)(n—4) =2520 =7 X 6 x
5><4><3:>n—7

We know that "C, = "C,,_, = 2°C,; = ?°C; and *°C,, = 2°C;.

20013 4 20014 _ 2006 _ 2007 =0.

Given,"T71:36:>(,n—1,—36"0—84:> #M:

n—r+1)(r—1) 84 and
126.

(n— 1)7

Dividing first two =z 3= 3n=10r— 3, and dividing last two

’ n— 'r+1

r+1
n—r

= % = 2n = 5r + 3. Solving these two equations, we have n =9,r = 3.

Thoudand's place can be filled in 5 ways, hundred's place can be filled in 4 ways, ten's
place can be filled in 3 ways and unit's place can be filled in 2 ways.

Thus, total number of 4 digit numbers is 5 x 4 x 3 x 2 = 120.
Alternatively, it is °P, = 120.

Hundred's place can be filled in 3 ways excluding 0, 2, 3, ten's place can be filled in 5
ways and unit's place can be filled in 4 ways.

Thus, no. of numbers between 400 and 1000 is 5 x 4 x 3 = 60.
Case I: When the number is of three digits i.e. between 300 and 1000.

Hundred's place can be filled in 3 ways using 3,4 or 5, ten's place can be filled in 5
ways and unit's place can be filled in 4 ways.

Thus, total no. of three digit numbers is 5 x 4 x 3 = 60.

Case IT: When the number is of four digits i.e. between 1000 and 3000.
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Thousand's place can be filled in 2 ways using 1 or 2. Three remaining places can be
filled in 5P3 ways i.e. 60 ways.

Therefore, total no. of four digit numbers is 2 x 60 = 120.
Thus, total no. of numbers between 300 and 3000 is 60 4+ 120 = 180.
Case I: When 2 is at thousands place.

Hundred's placec can be filled in 4 ways using 3, 4, 5, 6. Two remaining places can be
filled in ®P, i.e. 20 ways. Number of numbers formed in this case is 4 x 20 = 80.

Case II: When thousands place is occupied by 3,4, 5 or 6.

We see that there are four ways to fill thousands place. Three remaining placed can be
filled in ®P; i.e. 120 ways. Number of numbers formed in this case is 4 x 120 = 480.

Hence, total no. of numbers is 80 + 480 = 560.
Case I: When the number is of one digit.
There will be four positive numbers excluding 0.
Case II: When the number is of two digits.

Ten's place can be filled in 4 ways using 1, 2, 3 or 4. Unit's place can be filled in P,
ways. Total no. of one digit numbers is 4 x 1P, = 16.

Case ITI: When the number is of three digits.

Hundred's place can be filled in 4 ways like previous case. Remaining two places can be
filled in *P, ways. Total no. of three digit numbers is 4 x 4P, = 48.

Case I'V: When the number is four digits.

Thousand's place can be filled in 4 ways like previous case. Remaining three places can
be filled in 4P3 ways. Total no. of four digit numbers is 4 x 4P3 = 96.

Case V: When the number is of five digits.

Ten thousand's place can be filled in 4 ways. Remaining four places can be filled in 4P,
ways. Total no. of five digit numbers is 4 X 4P4 = 96.

Thus, total no. of numbers formed is 4 + 16 + 48 + 96 + 96 = 260.

Total no. of numbers will be P, = 24. Now since there are 4 digits and 24 numbers
each no. will occur at each place for 6 times. Thus, sum of digits at each place would
be 6(1+2+3+4) =60.

Therefore, sum of all numbers 60(1 + 10 4+ 100 4+ 1000) = 66660.

When any digit except 0 will occupy unit's place the thousand's place has to be occupied
by the other two digits. Thus, total no. of such numbers is 3 x 2 x 2P, = 12. Thus, 4
numbers for each of positive digits.

When one of 1,2, 3 occupy thousand's place total no. of numbers is 3 x 3P3 = 18. Thus, 6
numbers for each of the positive digits.
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Sum of digits at units, tens and thousands place will be 4(1 + 2 + 3) = 24 and sum of
digits at thousands place will be 6(1 4+ 2+ 3) = 36.

Thus, sum of numbers formed is 24(1 4 10 + 100) + 36 x 1000 = 38, 664.

Each of the four digits 1,2, 2, 3 occurs at each place % i.e. 3 times. Thus, sum of digits
at each place is 3(1+2+2+3) = 24.

Thus, sum of numbers formed 24(1 + 10 + 100 + 1000) = 26, 664.

Each friennd can be sent invitation by one servant. Since there are three servants each
friend can receive an invitaion in three ways. Thus, total no. of ways of sending invita-
tions is 3% = 729.

Each prize can be given to any boy. Thus, each prize can be given in 7 ways, and hence,
three prizes can be given in 7° = 543 ways.

Each arm can occupy four positions, and thus, five arms can have 4° = 1024 ways. But
when all arms are in rest position no signal can be made. Hence, total no. of signal is
1024 — 1 = 1023 ways.

Each ring of lock can have one of the ten letters, then three rings can have 10° combi-
nations of the letters. However, one of the combinations will be a successful combina-
tion.

Thus, total no. of possible unsuccessful attempts that can be made is 1000 — 1 = 999.

We have to find numbers which are greater than 1000 but not greater than 4000 i.e.
1000 < z < 4000 which is same as 1000 < z < 4000.

Now thousands place can be filled with 1,2, 3 i.e. in 3 ways. Hundreds, tens and units
place can be filled in 5 ways each.

Thus, total no. of numbers which can be formed is 3 x 5% = 375.

There are three groups. We can arrange three groups in 3! ways. 8 Indians can be
arranged among themselves in 8! ways, 4 Ameriacans in 4! ways and 4 Englishmen in
4! ways.

Thus, required answer is 3!8!4!4!.

Total no. of volumes is 4 +1+ 1+ 1 = 7. We can arrange these volumes in 7! ways. 8
books volume can be arranged in 8! ways, volume having 5 books can be arranged in
5! ways and volume of 3 books can be arranged in 3! ways.

Thus, required no. of arrangements is 7! 8! 5! 3!.

Taking all copies of the same book as one, we have 5 books, which can be arranged in
5! ways.

All copies being identical can be arranged only in 1 way. Thus, required no. of arrange-
ments is 5! = 120.

The no. of permutations of the 10 papers without restriction is 10!.
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We find our no. of ways in which the best and worst paper come together then subtract
from total no. of permutations to get the no. of permutations in which they never come
together.

Taking the best and the worst paper as one paper we have 9 papers, which can be
arranged in 9! ways, but the two papers can be arranged among themselves in 2! ways.
Thus, total no. of permutatiosn in which both the papers are toegther is 9! 2!.

Thus, no. of permutations in which both are not together is 10! — 9!2! = 8.9!.

Total no. ways in which all of them can be seated is (5 + 3)! = 8!. Taking all the girls
as one total no. of persons is 6.

The no. of ways in which these can be seated is 6!, but the 3 girls can be arranged in
3! ways. Thus, total no. of ways, when all three girls are together can be seate, is 6! 3!.

Thus, total no. of ways in which all girls are not together is 8! — 6! 3! = 36, 000.

Let us first position I.A. students. xIA* [Ax TAx [AxIAxIA=xIAx. The IA indicated
the position where I.A. students sit and * indicated the positions where 1.Sc. students
can sit. We observe that there are 8 open places where 1.Sc. students can sit.

Now, 7 LA. students can be seated in 7! ways and 8 I.Sc. students can be seated in Py
ways.

8!

Thus, no. of required arrangements is 7! ..

Positioning the boys first, we have xB x B x B x B * B x B x Bx, where Bs represents
the 7 boys and #*s represents the open positions for girls.

7 boys can be arranged in 7! ways and 3 girls can be seated in 8P3 ways. Thus, required
no. of seating arrangememnts is 7! 2—: = 42.8!.

Case I: When a boy sits at the first place. The possible arrangement in this case is
BGBGBGBG, where B represents a boy and G represents a girl. Now, 4 boys and 4 girls
can be arranged among themselves in 4! ways. Thus, no. of possible seating arrangement
in this case is 4!4!.

Case II: When a girl sits at the first place. Like previous case the possible no. of seating
arrangements is same i.e. 4!4!.

Thus, total no. of seating arrangements is 2.4!4! = 1152.

Possible arrangements will have the form BGBGBG B, where B represents a boy, and G
represents a girl. 4 boys can be seated in 4! ways and 3 girls can be seated in 3! ways.

Thus, total no. of seating arrangements is 4! 3!.
There are 12 letters in the word civilization; out of which 4 are i's and other are different.

Therefore, total no. of permutations is 14—2!!, which included the word civilization itself.

There are 10 letters in the word university; out of which 4 are vowels, and ¢ occurs
twice. The consonants do not have repetition.



47.

48.

49.

50.

51.

52.

53.

Answers of Permutations and Combinations 480

Treating the 4 vowels as one letter, because they have to appear together, we have 7
letters. These 7 letters can be arranged in 7! ways. But the four vowels can be arranged
among themselves in g—: ways.

Thus, total no.of words possible is 7! ;l—:

There are 8 letters in the word director; out of which 3 are vowels, and r occurs twice.

Thus, total no. of words is % .
When the vowels are together, taking them as one letter, we have 6 letters, which can
be arranged in g—i, but the three vowels can be arranged in 3! ways among themselves,

making the total no. of words in which vowels are together 3! g—:

Thus, no. of words in which all three vowels are not together is g—i— 3! g—:

There are 7 letters in the word welcome; out of which e occurs twice. Thus, total no. of

words that can be formed is ;A:

If ‘0’ comes at end then we will have 6 letters left giving us total no. of words as gA:

There are 10 letters in the word California; out of which 5 are consonants without
repetition and 5 vowels with a and ¢ occurring twice.

. -
Thus, consonants can be arranged in 5! ways and vowels can be arranged in 57 ways.

Thus, total no. of words possible such that consoanats and vowels occupy their respective
places is %

There are 6 letters in the word pencil with two vowels and three even positions. Thus,
vowels can be arranged in >P, = 6 ways.

Rest four positions can be filled in 4! = 24 ways. Thus, total no. of words is 24 x 6 = 144.

From 5 letters 5! = 120 words can be formed. Consider the form of word when no two
vowels are together. VCVCV, where C represents consonants and V represents the
vowels.

Clearly, consonants can be arranged in 2! ways and vowels can be arranged in 3P3 =
3! = 6 ways.

Thus, no. of words where vowels are not together is 2 x 6 = 12.

There are seven digits given and we have to form numbers greater than one million,
which implies all seven digits will have to used. Among the given digits 3 comes thrice

and 2 comes twice. Thus, total no. of numbers which can be formed is 5,7-;7 = 420.
However, these numbers also contain the numbers where zero is the first digits making

6 — 60.

them less than one million. No. of such numbers is 55

Hence, no. of numbers greater than one million is 420 — 60 = 360.
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i. Total no. of persons is 5 + 4 = 9. With no restirctions they can be seated at a round
table in (9 —1)! = 8! ways.

ii. Treating all British as a single person because they have to be together we have 6
persons which can be seated in 5! ways. But 4 Britishers can be arranged among
themselves in 4! ways making the total no. of ways 5!4!.

iii. This is equal to 8! — 5!4! from previous parts.

iv. First we seat the 5 Indians in 4! ways. Then that will leave 5 positions open for
Britishers between Indians to sit, which gives us ®P, ways. Thus, total no. of ways
in which no two Britishers are together is 4!5!.

5 Indians can be seated in a circle in 4! ways. We will have 5 positions between Indians
in which we can seat 5 Britishers in °Py = 5! ways.

Thus, total no. of required ways is 5!4!.

Taking the two delegates who have to always sit together as a single person we have 19
persons which can be seated in 18! ways around a round table.

However, the two delegates themselves can be arranged in 2! ways making the required
no. of ways 18!2!.

No. of four digit numbers which can be formed with 1,2,4, 5,7 i.e. 5 digits is P, = 120.

Units place cannot be filled with 0 so it can be filled in 4 ways using one of 1, 2, 3, 4.
Rest four positions can be filled in 4P4 = 4! = 24 ways.

Thus, no. of 5 digit numbers is 4 x 24 = 96.

No. of given digits is 7 and we have to make numbers between 100 and 1000 i.e. three
digit numbers. Since there is no zero in the given digits the required no. of numbers is
7

Py = 210.

Units place be filled in 5 ways excluding 0 and two remaining places can be filled by
remaining 5 digits in °P, = 20 ways.

Thus, total no. of required numbers is 5 x 10 = 100.

We have 10 digits. Units place can be filled in 9 ways excluding 0. Rest 8 places can be
filled using remaining 9 digits in °Py = 9! ways.

Thus, total no. of 9 digit numbers with no repetition is 9.9!.

Thousannds place can be filled in 5 ways excluding 0. Rest three places can be filled
using remaining 5 digits in 5P3 = 60 ways.

Thus, no. of required numbers is 5 x 60 = 300.

Thousands place can be filled in 2 ways using either 5 or 9. Rest three places can be
filled in 3! ways using remaining three digits.

Thus, no. of required numbers is 2.3! = 12.
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Case I: When the number is of three digits.

Hundreds place can be filled in 3 ways using 3, 4 or 5. Remaining two places can be
filled in 5P2 = 20 ways using remaining 5 digits.

Thus, no. of three digit numbers is 3 x 20 = 60.
Case II: When the number is of four digits.

Thousands place can be filled in 3 ways using 1, 2 or 3. Remaining three place can be
filled in 5P3 = 60 ways using remaining 5 digits.

Thus, no. of four digit numbers is 3 x 60 = 180.
Thus, no. of required numbers is 60 4+ 180 = 240.
Since the number has to be divisible by 5 the units place digit has to be either 0 or 5.

Case I: When 0 is at units place. Rest three places can be filled in 4P3 = 24 ways using
remaining 4 digits.

Thus, no. of four digit numbers in this case is 24.

Case II: When 5 is at units place. Thousands place can be filled in 3 ways using 4, 6
or 7. Remaining three places can be filled in *P, = 6 ways using remaining 3 digits.

Thus, no. of four digit numbers in this case is 3 x 6 = 18.
Hence, total no. of required numbers is 18 + 24 = 42.

Since the number has to be even, therefore, units place can be filled by either 2 or 4 i.e.
in 2 ways. Rest four places can be filled in ‘P, = 4! = 24 ways.

Thus, total no. of 5 digit numbers is 2 x 24 = 48.
Since the no. has to be divisible by 5 units place can be occupied only by 0 and 5.
Case I: When the no. is of one digit. There are two such numbers 0 and 5.

Case II: When the no. is of two digits. If 0 occurs at units place then tens place can be
filled in 9 ways giving us 9 numbers. However, when 5 occurs at units place then tens
place can be filled in 8 ways giving us 8 numbers. Thus, total no. of two digits numbers
is 17.

Caae III: When the no. is of three digits. If 0 occurs at units place then remaining two
places can be filled in 9P2 = 72 ways. If 5 is at units place then hundreds place can be
filled in 8 ways excluding zero and tens place can be filled in 8 ways using remaining 8
digits. Thus, in this case otal no. of numbers is 72 + 8 x 8 = 136.

Thus, total no. of numbers is 2 + 17 4+ 136 = 155.

Hundreds place can be filled in 5 ways excluding 0. Rest of two places can be filled in
P, = 20 ways.

Thus, total no. of numbers is 5 x 20 = 100.
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For odd numbers, units place can be filled in 2 ways using 5 or 7. Hundreds place can be
filled in 4 ways excluding 0 and units place can also be filled in 4 ways using remaining
digits.

Thus, total no. of odd numbers is 2 x 4 x 4 = 32.
Case I: When the no. is of one digit. There are three such numbers 0, 2 and 4.

Case II: When the no. is of two digits. When units place is occupied by 0, tens place
can be filled in 4 ways, making no. of such numbers 4. If units place is occupied by 2
or 4 i.e. in two ways then tens place can be filled in 3 ways excluding 0, making no. of
such numbers 2 x 3 = 6.

Thus, no. of two digit numbers is 4 + 6 = 10.

Case III: When the no. is of three digits. When units place is occupied by 0, remaining
two places can be filled in 4P2 = 12 ways, making no. of such numbers 12. If units place is
occupied by 2 or 4 i.e. in two ways then hundreds place can be filled in 3 ways excluding 0
and tens place can be filled in 3 ways using remaining three digits, making no. of such
numbers 2 X 3 x 3 = 18.

Thus, no. of three digit numbers is 12 + 18 = 30.

Case IV: When the no. if of four digits. When units place is occupied by 0, remaining
three places can be filled in 4P3 = 24 ways, making no. of such numbers 24. Following
similarly, when units place is occupied by 2 or 4, no. of such numbers is 2 x 3 x 3 x 2 = 36.

Thus, no. of four digit numbers is 24 4 36 = 60.

Case V: When the no. is of five digits. In this case, units place must be occupied by 0
and not by 2 or 4. Then remaining 4 places can be filled in 4P4 = 24 ways.

Thus, total no. of even numbers is 3 + 10 + 30 4+ 60 + 24 = 127.

Once we fix 5 at tens place we have 5 open places and 5 different digits, which can be
arranged in °P; ways.

Thus, no. of required numbers is 120.

We have 7 digits, and have to form four digit numbers. No. of such numbers possible is
7
P, = 840.

We have to find numbers greater than 3400. First we compute numbers between 3400
and 4000. The thousands place can be filled only by 3 and hundreds place can be filled
by 4, 5,6 and 7 i.e. 4 ways. Remaining two positions can be filled in 5P, = 20 ways.
Thus, no. of numbers between 3400 and 4000 is 4 x 20 = 80.

Now we compute numbers greater than 4000. Thousands place can be filled by 4, 5, 6
and 7 i.e. in 4 ways. Rest three places can be filled in 6P3 = 120 ways. Thus, no. of such
numbers is 4 x 120 = 480.

Thus, no. of numbers greater than 3400 is 80 + 480 = 560.

Since positions of 3 and 5 are fixed rest two positions can be filled with three remaining
digits in 3P2 = 6 ways. Thus, no. of such numbers is 6.



72.

73.

4.

75.

76.

Answers of Permutations and Combinations 484

Thousands place can be filled in 5 ways excluding 0. Rremaining three places can be
filled in 5P3 = 60 ways using the five remaining digits. Thus, total no. of four digit
numbers is 5 x 60 = 300.

For numbers to be greater than 3000, thousands place has to be filled by 3,4 and 5i.e. 3
ways. Remaining three places can be filled in °P; = 60. Thus, no. of numbers greater
than 3000 is 3 x 60 = 180.

Case I: When the no. is of one digit. Total no. of numbers possible in this case is 7
including 0.

Case II: When the no. is of two digits. Tens place can be filled in 6 ways excluding 0
and units place can be filled in 6 ways with remaining digits.

Thus, no. of two digit numbers is 6 x 6 = 36.

Case III: When no. is of three digits. Following similarly the no. of numbers is 6 x 6 x
5 = 180.

Case IV: When the no. is of four digits. Following similarly the no. of numbers is
6 x6x5x4="720.

Case V: When the no. is of five digits. Following similarly the no. of numbers is
6 x6x5x4x3=2160.

Case VI: When the no. is of six digits. Following similarly the no. of numbers is
6x6x5x4x3x2=4320.

Case VII: When the no. is of seven digits. Following similarly the no. of numbers is
6x6x5x4x3x2x1=4320.

Thus, total no. of numbers is 7 + 36 + 180 + 720 + 2160 + 4320 + 4320 = 11743

We have 5 digits so when all of them are taken at a time then no. of possible numbers
is °Py = 120.

Each digit will occupy each place for 24 numbers. Thus, sum of all numbers at any place
i824(14+3+547+9) = 600. Therefore, sum of all such numbers is 600(1 + 10 + 100 +
1000 + 10000) = 6, 666, 600.

4
We have 4 digits with 3 occurring twice. Thus, total no. of numbers is % = 12. Now

each of the digits will occur at each place % = 3 times.

Thus, sum of digits at each place is 3(3 + 2 + 3 + 4) = 36. Thus, sum of all possible
numbers is 36(1 + 10 + 100 + 1000) = 39, 996.

Let us fix 2 at units place. Then, ten thousands place can be filled in 3 ways using 4, 6, 8
and remaining two places can be filled in 3P3 = 3! ways. Thus, total no. of numbers is
3x6=18.

Number of numbers when 2 is at ten throusands place is 4P4 = 24. Thus, each positive
digit will occur at units, tens, hundreds and thousands place 18 times and at thousands
place 24 times.
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Sum of the digits at units, tens, hundreds and thousands place will be each 18(2 44 +
6 + 8) = 360 and sum of digits at ten thousands place is 24(2 4+ 4 4 6 + 8) = 480.

Thus, sum of all numbers will be 360(1 + 10 4 100 + 1000) + 480 x 10000 = 5, 199, 960.

Total no. of five digit numbers possible is 5P5 = 120 where each digit will appear at
each position % = 24 times.

Thus, sum of digits at each place is 24(3 +4 + 5+ 6 + 7) = 600. Therefore, sum of all
such numbers is 600(1 + 10 + 100 4+ 1000 + 10000) = 6, 666, 600.

Let us fix 2 at units place. Then, thousands place can be filled in 2 ways using 3 or 5

and remaining two places can be filled in 2P2 = 2 ways. Thus, total no. of numbers is
2x2=4.

Number of numbers when 2 is at thousands place is 3P3 = 6. Thus, each positive digit
will occur at units, tens, hundreds and thousands place 4 times and at thousands place 6
times.

Sum of digits at units, tens and hundreds place will eb each 4(2 + 3+ 5) = 40 and sum
of digits at thousands place will be 6(2 + 3+ 5) = 60.

Thus, sum of all numbers will be 40(1 + 10 4+ 100) + 60 x 1000 = 64, 440.

Each letter can be put in any one of the four letter boxes. Thus, 5 letters can be posted
in 4° ways.

Each prize can be given in 5 ways. So three prizes can be given in 5% ways.
Each thing can be given in p ways to p person. Thus, n things can be given in p" ways.

Each monkey can have a master in m ways. Thus, n monkeys can have a master in m"
ways.

First prize in mathematics and physics can be given in 10 ways and second prize in 9
ways. In chemistry, first prize can be given in 10 ways.

Thus, total no. of ways is 10 x 9 x 10 x 9 x 10 = 81, 000.

The first animal can be picked in 3 ways with the possibility of it being a cow, a calf or
a horse. Similarly, second animal can be picked in 3 ways. Proceeding this way all 12
animals for the stall can be picked in 3 ways.

Thus, total no. of making the shipload is 3*2.

. Each delegate can be put in a hotel in 6 ways. Therefore, 5 delegates can be put in 6°

ways.

Ten thousands place can be filled in 4 ways exluding 0. Rest 4 places can be filled in 5
ways each. Thus, total no. of 5 digits numbers is 4 x 5* = 2, 500.

Each ring can be put in a finger in 4 ways i.e. by putting it in any finger. Thus, 6 rings
can be put in 4 fingers in 4° ways.
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Thousands place can be filled in 3 ways using 3,4 or 5. Remaining places can be filled
in 6% ways using any of the digits. But one of these numbers will be 3000 itself.

Thus, no. of four digit numbers which can be made is 3 x 6% — 1.

When the number plate is of three digits, each place can be filled in 9 ways excluding
zero. This gives us 9% number plates. Similalry, when the number plate is of four digits
the no. of possible number plates is 9%.

Thus, total no. of number plates is 9% + 9% = 10 x 93 = 7, 290.

Each question can be answered in 4 ways, therefore, 10 questions can be answered in 41°
ways.

Second part: First question can be answered in 4 ways. Now this choice won't be avail-
able for the second answer so there are 3 ways. Similarly, for third and so on. Thus,
total no. of ways is 4 x 3°.

Treating all volumes of a book as one book we have four books which can be arranged in
4! ways. However, books having 3 volumes can be arranged in 3! ways among themselves
and similarly books having 2 volumes can be arranged in 2! ways among themselves.

Thus, total no. of arranging given books is 4! 3!3!2!2!.

There are 14 books having different no. of copies. Treating all copies as one book we
still have 14 books which can be arranged in 14! ways.

Since copies are identical there is only one way to arrange them among themselves.
Thus, total no. of arranging the given books is 14!.

Treating people of different nationalities as one person we have three persons, which can
be arranged in 3! ways. Now 10 Indians can be arranged in 10! ways among themselves, 5
Americans can be arranged in 5! ways among themselves and 5 Britished can be arranged
in 5! ways as well.

Thus, total no. of ways of seating them is 3! 10! 5! 5!.

The pattern would be GBGBGBGBGBGBG where B shows boys position and G
indicates possible positions of girls. Boys can be arranged in 6! ways. For girls, there
are 7 open positions and 4 girls can be seated in P, = ;-: ways.

. . 7!
Thus, total no. of ways of seating them is 6!. 3.

n books can be arranged in n! ways. Now we will find the no. of arrangements when two
given books which do not have to be together are together. Treating the two books as one
book we have n — 1 books which can be arraned in (n — 1)! ways. But the two books
can be arranged in 2 ways among themselves, making the total no. of arrangements is
2.(n—1)L

Thus, no. of arrangements when the two books are not together is n! — 2.(n — 1)! =
(n—2).(n—1).

From previous problem, we find the answer to be 4.5! = 480.

Following like previous problem, we find theh answer to be 480.
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Following like previous problem on boys and girls we first seat the 15 I.Sc. students in
15! ways which gives us 16 open positions for B.Sc. students, which can be seated in
16

Pio.

Thus, total no. of ways of seating the students is 15! .1°P,,.

First we arrange black balls which will give us 20 positions in between them and on the
edges for white balls. Since the balls are identical we can choose 18 positions out of 20
for white balls in 2°C\5 = 190 ways.

First we place p positive signs which will give us p + 1 positions for negative signs
between them and on the edges. Since signs are identical we can choose n positions out
of p+1in PT'C, ways.

m men can be seated in m! ways which will have m + 1 positions between them and on
the edges for women so that no two women sit together. Now n women can be arranged

in these m + 1 positions in ™"1P, = % ways.
Thus, total no. of ways to seat them is %

Following like previous problem, we have m = 5, n = 3, so the answer woulld be %-?-‘

We have 12 alphabets excluding c’s out of which 5 are a’s, 3 are b’s, 1 d, 2 €’s and 1 f|

12!

so these can be arranged in g5 ways. Now these 12 alphabets will create 13 positions

between them and on the edges which are to be filled by 3 c's in 3P, ways.

.o 120 13!
Thus, total no. of arrangements is gz X 151

The word banana has ‘a’ repeating 3 times and ‘n’ repeating twice while total no. of
alphabets is 6.

. . .6
Hence, to no. of different permutations is ;.

There are 13 alphabets in the word “circumference”. ‘c’ comes thrice, ‘r’ comes twice,

‘e’ comes thrice and rest come once.
. 13!
Thus, total no. of words that can be made is s

Three copies of four books means 12 books with repetition of copies. Thus, total no. of

12
arragements on the shelf is gy

There are 12 alphabets in the word “Independence”. ‘n’ comes thrice, ‘d’ comes twice,

‘e’ comes four times, and rest come once.
. 12!
Thus, total no. of words that can be made is 5.

There are 8 alphabets in the word “Principal”, of which, ‘p’ comes twice, ‘i’ comes twice
and rest occur once. Treating all vowels as one alphabet we have 6 alphabets which can
be arranged in g—; ways.

. 3!
However, the vowels themselves can be arranged among themselves in 5; ways. Thus,

. 613!
total no. of words is 5.
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There are 11 alphabets in the word “Mathematics”, of which, ‘m’ comes twice, ‘a’ comes

. . .1
twice, ‘t” comes twice and rest comes once. Thus, no. of words that can be formed is 5.

Treating all vowels as one alphabet and all consonants as another we have two alphabets
which can be arranged in 2! ways. But 4 vowels can be arranged in % ways and 7

LT
consonants can be arranged in 55 ways.

. 217141
Thus, total no. of such words is S5y

There are 8 alphabets in the word “Director”, of which, r comes twice and rest come
once. Since the vowels have to come together, therefore we treat them as one alphabet
making a total of 6 alphabets which can be arranged in g—: ways.

However, the three vowels can be arranged in 3! ways among themselves making no. of
313!
such words %‘,i

There are 8 alphabets in the word “Plantain”, of which, ‘a’ and ‘n’ come twice and
rest come once. Since the vowels have to come together, therefore we treat them as one
alphabet making a total of 6 alphabets which can be arranged in g—: ways.

.3l .
However, the three vowels can be arraned in 5; ways among themselves making no. of

6!3!

such words zy5;.

There are 12 letters in the word “Intermediate”, of which, ‘e’ comes thrice, ‘i’ and ‘t’
comes twice and rest come once.

. .6l .

We first arrange vowels which can be done in g5, Now because relative order does not

change we have six positions for consonants giving us total no. of ways of arranging
6!

them as ;.

Thus, total no. of such words is %

There are 8 letters in the word “Parallel”; of which, ‘a’

and rest comes once.

comes twice, ‘I’ comes thrice

Total no. of arrangements is 3?—;, Treating all the Is as one letter we have 6 letters which

can be arranged in g—i ways in which all Is will be together.
Therefore, no. of words in which all Is are not together is 3?—;, — g—; = 3000.

The parts are solved below:

i. Fixing ‘D’ at the first position; rest four positions can be filled in P, ways. Thus,
no. of such words is 4! = 24.

ii. Fixing ‘I’ at the end; rest four positions can be filled in 4P4 ways. Thus, no. of such
words is 4! = 24.

iii. Fixing ‘I’ in the middle; rest four positions can be filled in P, ways. Thus, no. of
such words is 4! = 24.

iv. Fixing ‘D’ and ‘I’; rest three positions can be fillled in 3P3 ways. Thus, no. of such
words is 3! = 6.
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There are 7 unique letter in the word “Violent” with 3 vowels. There are 4 odd places

so three vowels can be arranged in 4P3 = 4! ways. Rest 4 consonants can be arrannged
in 4! = 24 ways. Thus, total no. of such words is 24 x 24 = 576.

There are 3 distinct consonants and 3 vowels, where ‘0’ repeats once in the word “Sa-
loon”. Since consonants and vowels have to occupy alternate place we will have two
patterns. VCVCVC and CVCVCV, where C represents consonants and V' represents
vowels.

Three consonants can be arranged in 3! arrangements and 3 vowels can be arranged
. ! .
in % arrangement. Thus, total no. of arrangements is 3! 3! = 36.

There are 4 consonants and 3 vowels in the word “Article”. Clearly, there are three even
places which are to be occupied by vowels in 3! arrangements and consonants can be
arranged in 4! arrangements for remaining 4 positions.

Thus, total no. of words is 4! 3! = 144.

Since the number has to be greater than 4 million and we are given 7 digits the ten
millions place can be occupied by either 4 or 5 in 2 ways.

Remaning digits can be arranged in 2?—'2, = 180 arrangements as 2 and 3 repeat once.
Thus, total no. of required numbers is 2 x 180 = 360.

In the given digits 2 comes thrice and 3 comes twicec so the no. of numbers is % = 420.

For odd numbers units place is to be occupied by 1,3 or 5. When 1 or 5 occupy units

place remaining positions can be filled in 3%, = 60 ways making the number 2 x 60 = 120.

When one of the 3's occupy units place rest of the positions can eb filled in g—i =120
ways. Thus, total no. of odd numbers is 120 + 120 = 240.

There are four odd digits with both 1 and 3 repeating. The even no. 2 repeats once.
In a 7 digits number there are four odd places which can be filled by odd numbers in

4!
5191 = 6 ways.

Even places can be filled by 2 and 4 can be filled in g—: = 3 ways. Thus, no. of required
numbers is 6 x 3 = 18.

Case I: When the no. if is five digits.

When ten thousands place is occupied by 2, 3 or 4 remaining four places can be filled

. 5P . .
in 5 = 60 ways, making such numbers 60 x 3 = 180 in number.

When ten thousands place is occupied by 1 remaining four places can be filled in 5P4 =
120 ways.

Thus, total no. of five digit numbers is 180 + 120 = 300.
Case IT: When the no. is of six digits.

When hundred thousands place is occupied by 2, 3 or 4 remaining five places can be

filled in :gﬁ = 60 ways, making such numbers 60 x 3 = 180 in number.
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When hundred thousands place is occupied by 1 remaining four places can be filled in
°Py = 120 ways.

Thus, total no. of six digit numbers is 180 + 120 = 300.
Thus, total no. of numbers is 300 4+ 300 = 600.

When the digits are repeated thousands place can be filled in 5 ways excluding 0.
Remaining 3 positions can be filled by 6 digits in 6> ways.

Thus, no. of such numbers is 5 x 62 = 1080.

To find the no. of numbers where at least one digit is repeated we find the no. of numbers
where no digit is repeated and subtract it from previously obtained result.

For no repetition, thousands placec can be filled in 5 ways exluding 0. Remaning 3
places can be filled by 5 digits in 5Py = 60 ways.

Thus, no. of numbers without repetition is 60 x 5 = 300.
Thus, no. of numbers where at least one digit is repeated is 1080 — 300 = 780.

There are a total of 9 flags, of which, 2 are red, 2 are blue and 5 are yellow. Thus, total

no. of signals that can be made by using all of them at the same time is %:5,

When all are of same color °P; signals can be made. When all are of two colors °P,
signals can be made and so on.

Thus, total no. of signals is °P; + 6P, + Py + 5P, + °P; + 5P = 1956.
Case I: When ‘e’ is in first place. Remaining four places can be filled in 4! ways.

Case II: When ‘e’ is in second place. First place can be filled in 3 ways and remaining 3
places in 3! ways.

Case III: When ‘e’ is in third place. First two places in 3 X 2 ways and remaining two
places in 2! ways.

Case I'V: When ‘e’ is in fourth place. First three places in 3! ways and last place with

(53]

1
Thus, total no. of words is 4! + 3 x 3! + 6 x 2! 4+ 3! = 60.

Second method: Total no. of words is 5!. In half of these ‘e’ will come before ‘i’ and

5!

in half of them after it. Thus, no. of words is 5 = 60.

No. of ways in which 5 men can sit around a round table is (5 — 1)! = 24 arrangements.

When there is no restriction we have 10 girls and boys. Thus, total no. of arrangements
would be 9!.

When no girls are to sit together we first seat the boys in 4! arrangements giving us five
open positions. These can be filled by 5 girls in 5! ways.

Thus, total no. of seating arrangements is 4! 5!.



128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

Answers of Permutations and Combinations 491

Treating all girls as a single girl we have 7 boys and girls which can be seated in 6!
ways. But the 4 girls can be arranged in 4! ways among themselves.

Thus, total no. of seating arrangements is 6! 4!.

The line can start with boys so we first seat the boys put the boys in 5! ways followed
by girls in between boys in 5! ways. This can be repeated starting with girls in same
manner.

Thus, no. of lines that can be formed is 2.5!5!.
For a round table we have already solved previously giving us 4! 5! no. of arrangements.

6 boys can be seated first in 5! ways giving us 6 open places in which girls can be seated
in ®P; ways. Thus, total no. of seating arrangements is 5! 6!.

Since in a necklace clockwise and anticlockwise does not matter, therefore, total no. of

necklaces that can be made using 50 pearls is 42—9!!.

Treating the two particular delegates as one delegate we have 19 delegates which can
be seated in 18! ways. But the two delegates can be seated in 2! ways among themselves.

Thus, total no. of seating arrangements is 18!2!.

The question effectively asks for alternate seating arrangements among gentlemen and
ladies. Thus, followin from problem solved previously total no. of seating arrangements
would be 4!3!.

7 Englishmen can be seated in 6! ways giving us 7 open places which can be filled by 6
Indians in “ Py ways.

Thus, total no. of seating arrangements is 6! 7!.

We know that if "C, = "C, then either x = y or ¥ + y = n. Given, o, =1C
therefore either 3r = r + 3 or 3r +r + 3 = 15.

However, 3r=r=3=r= g, which is not possible, therefore, 3r+r+3=15=r=3
must be the case.

. n—3 1 3l(n—6)! _ 33
Given, "Cy : "~°C = gromgy - foat = &

= g = e =R s n(n—1) (n—3) = 11109 = n = 11.

5
Given, 7'C, + Y *7C,

j=1
_ 47c4+ (5103 + 5003 + 4903+ 4803+ 4703) _ (47c4+4703) + (5103 + 5003 + 4903 +
4803)
=108+ (P03 + P05 + P03 + ¥C3 + 17Cy) [+ "Co 4 "Cryy = "MC, ]
Repeating this we have the expression equal to 5204.

Let p be the product of r consecutive integers starting from n. Then, p=n(n+1)(n+
2)(n+r—1)
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p _ n(n+l)(n+2)-(n+r—1) _ 1.2.3....(n—=1)n(n+1)(n+2)-(n+r—1)
A= = = T23. . (n-1) .1
= ((7: Ltrlg!lg!! ="+~ which would be an integer, and hence, p is divisible by r!.

A triangle is formed with three vertices so the problem is essentially about choosing 3
m(m—1)(m—2)

out of m i.e. "C3 = ¢ .

Number of children is 8. No. of children to be taken at a time is 3. Out of 8 children 3
can be selected in 8Cy ways. Hence, the man has to go to zoo 8C; = 56 times.

Number of selection of 3 children out of 8 children including a particular child is 1 x
"C, = 21. Hence, a particular child will go 21 times to the zoo.

Let there be n students. No. of ways in which 2 students can be selected out of n is "C,
i.e. we have "C, pairs.

But, for each pair of students no. of cards sent is 2. Thus, total no. of cards sent is
2."Cy =n(n—1) = 600 = n = 25 because n # —24.

Second method: Each student sends cards to n — 1 students. Thus, total no. of cards
sent is n(n — 1) = 600 = n = 25.

A polygon of m sides will have m vertices. When any two vertices of the polygon are
joined, either a diagonal or a side is formed.

Total no. of selections of 2 points taken at a time from m points is ™Cs.

Total no. of persons is 6 + 4 = 10. Total no. of selections of 5 persons out of 10 is 1005.
Number of selections when no lady is taken is 6Cs.

Thus, no. of selections when at least one lady is present is 'C50 — °Cy = 252 — 6 = 246.

(a) Total no. of selections of 3 points out of 10 points is '°Cy = 120. Number of selections
of 3 points out of 4 collinear points is *C; = 4.

Thus, no. of triangles formed is 120 — 4 = 116.

(b) Total no. of selections of 2 points out of 10 points is 1°C, = 45. No. of selection of
points when only one line is formed is *C, = 6

Therefore, no. of straight lines formed is 45 — Cy, + 1 = 40. (We take 1 line formed from
four collinear points)

(¢) Total no. of selections of 4 points out of 10 points is '°C,, = 210. No. of selection of
points when no quadrilateral is formed is 1C5.5C, +*C,.5C,, = 25.

Thus, no. of quadrilaterals formed is 210 — 25 = 185.

Zero or more oranges can be selected from 4 oranges in 5 ways because oranges are
identical. Similalry, the no. of selection for apples would be 6 and for mangoes it would
be 7.

Thus, no. of selections when all three types of fruits are selected from is 5 x 6 x 7 = 210.
But one of these selections will contain 0 fruits.

Thus, required no. of selections is 209.
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No. of selections by which 1 or more green dye can be chosen is °C, + °Cy + 5Cy +
°Cy + 505 = 25 — 1. No. of selections by which 1 or more blue dye can be chosen is
40, +4C, + 40y +*C, = 2* — 1. No. of selections by which 0 or more red dye can be
chosen is *Cy) + °C, + °C, +3Cy = 2° = 8.

Thus, required no. of selections is 21 x 15 x 8 = 3720.

Factos of 216, 000 are 5 2s, 3 3s and 2 5s. Zero or more 2s can be selected in 5+ 1 =6
ways. Zero or more 3s can be selected in 3+ 1 = 4 ways. Zero of more 5s can be selected
in 2+ 1 =3 ways.

Thus, no. of divisors is 6 x 4 x 3 —1 = 71 because one of these would contain no factor.
Adding 1 to the no. of divisors we have total no. of divisors as 72.

A student can fail in one , two, three, four or all of five subjects. Thus, no. of ways of
failing is °C) + °Cy + °Cy + °Cy + °Cy = 2° — 1 = 31.

Each person can be given 4 things. No. of ways of giving 4 things out of 12 to the first
person is '?C,. Then, 8 things remain. No. of ways of giving 4 things out of 8 to the
second person is 804. Now third person can receive 4 things out of 4 in 404 ways.

12!
(an®

Thus, required no. of ways is 12C,, x 3C, x 1C, =

No. of ways in which 12 things can be divided equally among 3 sets is (4,1>—2;3

. There are 11 letters in the word “Examination” in which three occur in pairs i.e. ‘A’,

‘N” and ‘I’. The different letters are £, X, A, M, I, N,T, O i.e. 8.
Case I: When two pairs of identical letters are chosen.

The two pairs can be chosen from three in 3C,, = 3 ways. These letters can be arranged
among themselves in 2?—'2, = 6 ways. Thus, total no. of words formed is 3 x 6 = 18.

Case II: When one pair of identical letters is chosen and remaining two letters are
different.

The pair of identical letters can be chosen in 301 = 3 ways. The two different letters
can be chosen in 702 = 21 ways. These letters can be arranged in g—i ways.

Thus, total no. of words formed is 3 x C, x 3—: = 756.
Case ITI: When all four letters are different.

No. of words that can be formed is 8P, = 1680.

Thus, total no. of words formed is 756 + 18 + 1680 = 2454.

We need to select 4 vertices out of n of a polygon to form a quadrilateral. No. of
selections of 4 points is "C).

No. of ways of selecting 3 friends out of 7 is 7C3 = 35. Thus, no. of parties that can be
given is 35.

Suppose a particular friends is mandatory in a party then 2 other friends can be selected
in C, ways. Thus, no. of parties a particular friend will attend is 5C, = 15.
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If p things always occue then we have to select remaning r — p things out of n — p ways,
which is "TPC,_ .

(a) If a particular member is always added then we have to choose 5 more from remaining
11, which is "Cs.

(b) If a particular member is always excluded then we have to chhose 6 more from
remaining 11, which is 'Cj.

(a) Total no. of ways of seating 6 students is °P; = 720. Now we will put C and D
together and subtract that from total no. of ways to find no. of ways of seating them
when C' and D are not together.

Treating C and D as one student we have 5 students which can be seated in 5Py = 120
ways. But these two can be arranged among themseleves in 2! ways making total no. of
ways 120 x 2 = 240.

Thus, no. of ways of seating these 6 students together when C' and D are not together
is 720 — 240 = 480.

(b) If C is always included then we need to select 3 more from remaining 5, which can
be done in °Cy = 10 ways.

(c) Since E is always excluded we have only 5 students left. Thus, following previous
part it can be done in 403 = 4 ways.

Let there be n stations. To print a ticket we need a source station and a desination
station. So different tickets which can be printed with n stations is "C,, which is 105 in
our case.

1
b = 105 = n(n — 1) = 210 = 14.15 = n = 15,
No. of ways to select 2 points to form a straight line out of 15 points is 1°C, = 105. This
will include 2 points out of 6 collinear points which will actually contain only 1 straight
line out of it. So no. of ways to choose 2 points out of these 6 points is °C, = 15. Thus,
total no. of straight lines formed is 105 — 10+ 1 = 91.

No. of ways of choosing 3 points out of 15 is 1°C; = 455. We have to not consider cases
when all three points aree selected from collinear points as those won't form a triangle.
No. of selections of 3 points out of collinear points is 6C'3 = 20.

Thus, total no. of triangles formed is 455 — 20 = 435.

No. of ways of choosing 4 points out of 10 is '°C; = 210. When 3 or 4 points are chosen
from 5 collinear pooints the quadrilateral won't be formed. When we choose 3 points
from collinear points we have 503 = 10 ways, and 1 remaining point from 5 non-collinear
points in 5 ways. Thus, total no. of such selections is 10 x 5 = 50.

When all four points are chosen from collinear points; this can be done in 5C’4 =5 ways.
Thus, total no. of quadrilaterals formed is 210 — 50 — 5 = 155.

There is a total of 12 points and we can choose 3 points from these in >Cy = 220 ways.
However, these points must not come from points of same side.

Thus, no. of triangles formed is 220 — *Cy — *C;y — °Cy = 205.
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We need one goalkeeper in the team and two are available so goalkeeper can be chosen
in 2 ways. Rest of 10 players can be chosen from remaining 12 players in 2C,, = 66
ways.

Thus, no. of ways in which a team of 11 out of 14 can be formed is 2 x 66 = 122.

2 men can be chosen from 5 men in 5C, = 10 ways. Similarly, 2 women from 6 women
can be chosen in °C, = 15 ways.

Thus, total no. of ways of forming the committee is 10 x 15 = 150.

Since each boy is to receive one article at least one boy will receive 2 articles. These two
articles can be given to one of the boys in 802 ways. The second article can be given in
"C, ways and so on.

Since first article can be given to any of the seven boys the above result if multiplied
by 7 will give us total no. of ways of distributing the articles.

Thus, total no. of ways is 7(®C, + 'C, + °C, +°C, + *C, + 30, + 2C, + 'Cy).
Case I: When there are 3 ladies in the committee.

No. of ways of choosing 3 ways out of 4 ladies is 46’3. Remaining 2 members can be
selected out of 7 men is "Cy, ways. Thus, no. of such committees is *C; x "C,.

Case II: When there are 4 ladies in the committee.

No. of ways of choosing 4 ways out of 4 ladies is *C);. Remaining 1 member can be
selected out of 7 men is "C| ways. Thus, no. of such committees is ‘C, x “C;.

Thus, total no. of committees is 84 + 7 = 91.

There are three cases. Two questions from first group and four questions from second
group, three questions from each group, and four questions from first group and two
questions from second group.

This can be done in °Cy, x 5C, + °Cy x °Cy + °C, x °Cy = 50 + 100 + 50 = 200.
3 students can be chosen from 20 students in 2°Cy ways.

(a) When a particular professor is included the second professor for the committee out
of remaining 9 professors can be included in °C, ways.

Thus, total no. of such committees is 2°Cy x °C.

(b) When a particular profession is always excluded then two professors can be chosen
from remaining 9 in °C, ways.

Thus, total no. of such committees is 2°Cy x °C.
Thus, total no. of committees is 2°Cy x 2C; + 2°Cy x °C,.

The committee can comprise of 1,2, 3,4 or 5 girls, which can be selected out of 7 girls
in ’Cy, 7Cy, TCy, 'C, or "Cy ways respectively.

Remaining 4, 3, 2, 1 boys can be selected out of 6 boys in °C,, *Cy, 1C,, 1C; ways
respectively.
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Thus, no. of ways in which committee can be formed is "C; x 5C, + 7C, x °Cy + 7Cy x
5C, +7C, x 50, + 705 x 8C,,.

(a) When there are no restrictions the committees can be formed by choosing 5 out of
6 + 4 = 10 persons, which is 1°C = 252.

(b) When no lady is selected no. of ways to form committess is °C5 = 6. Thus, no. of
committees when at least one lady is selected is 252 — 6 = 246.

Total no. of committees would be 1205. No. of committees comprising only of men would
be 8C.

Thus, no. of committees including at least one lady would be '2Cy — 8Cy = 736.

Out of 6 hockey players 4, 5,6 hockey players can be selected in 604, 605, 606 ways respec-
tively. Remaining 8, 7, 6 players can be chosen from remaining 9 players in °Cy, °C, °Cj
ways respectively.

Thus, no. of ways in which players can be selected is °C}; x °Cg 4 °Cy x °C,, 4+ 6C x °C =
15 x9+6 x36+1 x 84 =435.

Total no. of selections of 5 out of 7+ 4 = 11 persons is 1105. When no ladies are selected,
no. of ways of forming the boat party is 7C5.

Thus, no. of ways of forming boat party when at least one lady is selected is 1105 — 7C5 =
771,

Since girls are not to be outnumbered we have to have 3,4, 5 or 6 girls out of 6 in the
committee, which can be done in 603, 604, 66’5 or 606 ways respectively.

Remaining 3, 2, 1 positions can be filled from 4 boys in 4C’3, 402, 401 ways respectively.

Thus, total no. of ways in which committee can be formed is °C; x *Cy + °C, x *Cy +
6Cs x 1C +5C5=20x 4+ 15x 6+ 6 x 4+ 1 = 195.

No. of relatives which can be invited is 5, 6, 7 out of 8 relatives in 805, 806, 807 ways.
Remaining 2, 1 friends can be chosen from remaining 4 friends which are no relatives
in 1C,, 1C, ways.

Thus, no. of ways in which invitations can be made is 8C5 x 1C, + 3Cy x 1C, + 8C,, =
56 x 6+ 28 x4+ 8 =336+ 112 + 8 = 456.

The students can choose to answer the question paper in 4 ways. 5 questions from first
paper and 2 from second paper, 2 questions from first paper and 5 questions from second
paper, 4 questions from first paper and 3 from second paper, and 3 questions from first
paper and 3 questions from second paper.

Because both papers contain 6 questions each the no. of ways for first and second
method will be same and ways for third and fourth method will be same as well. So we
can find no. of ways in two cases and multiply the sum by 2 to arrive at the answer.

Case I: When the student chooses first or second method.

5 questions can be chosen out of 6 in 605 ways and 2 questions can be chosen out of 6
in 5C,, ways.
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Thus, no. of selections in this case is °Cy x °C, = 6 x 15 = 90.

Case II: When the student chooses third or fourth method.

Following like previous case, no. of selections in this case is °C, x °Cy = 15 x 20 = 300.
Thus, total no. of selections of questions is 2(90 + 300) = 780.

We can choose 1 point out P and @ in 201 and 2 from remaining other 8 points in 802
ways, making no. of triangles 2C; x 8C, = 56. Clearly, half of these would include P
but exclude Q. Thus, 28 triangles will include P and exclude Q.

In second case, both P and ) would be chosen in 1 way and 1 point from the other line
would be chosen in 8C| = 8 ways. This gives us 8 triangles.

Thus, total no. of triangles is 56 4+ 8 = 64.
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GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
<https://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document's overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
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mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the text
near the most prominent appearance of the work's title, preceding the beginning of the body
of the text.

The “publisher” means any person or entity that distributes copies of the Document to
the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such as
“Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
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that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number
of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document's license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:
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. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the
History section of the Document). You may use the same title as a previous version if
the original publisher of that version gives permission.

. List on the Title Page, as authors, one or more persons or entities responsible for au-
thorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

. State on the Title page the name of the publisher of the Modified Version, as the pub-
lisher.

. Preserve all the copyright notices of the Document.

. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

. Include, immediately after the copyright notices, a license notice giving the public per-
mission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below.

. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document's license notice.

. Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

. Preserve any Warranty Disclaimers.



GNU Free Documentation License 503

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version's license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already includes a cover
text for the same cover, previously added by you or by arrangement made by the same entity
you are acting on behalf of, you may not add another; but you may replace the old one, on
explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical In-
variant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to the section titles
in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
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A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit. When the Document
is included in an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document's Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations re-
quires special permission from their copyright holders, but you may include translations of
some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in the Document,
and any Warranty Disclaimers, provided that you also include the original English version
of this License and the original versions of those notices and disclaimers. In case of a dis-
agreement between the translation and the original version of this License or a notice or dis-
claimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to no-
tify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
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the present version, but may differ in detail to address new problems or concerns. See
https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document spec-
ifies that a particular numbered version of this License “or any later version” applies to it,
you have the option of following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the Free Software Founda-
tion. If the Document does not specify a version number of this License, you may choose
any version ever published (not as a draft) by the Free Software Foundation. If the Docu-
ment specifies that a proxy can decide which future versions of this License can be used, that
proxy's public statement of acceptance of a version permanently authorizes you to choose
that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

ADDENDUM: How to use this
License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

“ Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and /or modify
this document under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section

entitled “GNU Free Documentation License”.”

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with
... Texts.” line with this:
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“ with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being
LIST, and with the Back-Cover Texts being LIST.”

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.
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