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Preface

This is a book on algebra which, covers basics of algebra till high school level. It covers the
most essential topics to take up a bachelor's course where knowledge of algebra is required.
There is no specific purpose for writing this book. This is a book for self study and is not
recommended for courses in schools and universities. I will try to cover as much as I can and
will keep adding new material over a long period. I have no interest in writing a book in
a fixed way which serves a university or college course as I have always loved freedom. Life,
freedom and honor in that order are important.

Algebra is probably one of the most fundamental subjects in Mathematics as further study
of subjects like trigonometry, coordinate geometry and rest all depend on it. That is the
primary reason I have chosen it to be the first subject in mathematics to be dealt with. It is
very important to understand algebra for the readers if they want to advance further in
mathematics.

How to Read This Book?
Every chapter has theory. Read that first. Make sure you understand that. Of course, you
have to meet the prerequisites for the book. Then, go on and try to solve the problems. In
this book, there are no pure problems. Almost all have answers except those which are
of similar kind and repetitive in nature for the sake of practice. If you can solve the problem
then all good else look at the answer and try to understand that. Then, few days later take
on the problem again. If you fail to understand the answer you can always email me with
your work and I will try to answer to the best of my ability. However, if you have a local
expert seek his/her advice first. Just that email is bad for mathematics.

Note that mathematics is not only about solving problems. If you understand the theory
well, then you will be able to solve problems easily. However, problems do help with the
enforcement of theory in your mind.

I am a big fan of old MIR publisher's problem books, so I emphasize less on theory and
more on problems. I hope that you find this style much more fun as a lot of theory is boring.
Mathematics is about problem solving as that is the only way to enforce theory and find
innovtive techniques for problem solving.

Some of the problems in certain chapters rely on other chapters which you should look ahead
or you can skip those problems and come back to it later. Since this books is meant for self
study answers of most of the problems have been given which you can make use of. However,
do not use for just copying but rather to develop understanding.

Who Should Read This Book?
Since this book is written for self study anyone with interest in algebra can read it. That
does not mean that school or college students cannot read it. You need to be selective as to
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what you need for your particular requirements. This is mostly high school course with
a little bit of lower classes' course thrown in with a bit of detail here and there.

Prerequisite
You should have knowledge till grade 10th course. Attempt has been made to keep it simple
and give as much as background to the topic which is reasonable and required. However, not
everything will be covered below grade 10.

Goals for Readers
The goal of for reading this book is becoming proficient in solving simple and basic problems
of algebra. Another goal would be to be able to study other subjects which require this
knowledge like trigonometry or calculus or physics or chemistry or other subjects. If you can
solve 95% problems after 2 years of reading this book then you have achieved this goal.

All of us possess a certain level of intelligence. At average any person can read this book.
But what is most important is you have to have interest in the subject. Your interest gets
multiplied with your intelligence and thus you will be more capable than you think you
can be. One more point is focus and effort. It is not something new which I am telling but I
am saying it again just to emphasize the point. Trust me if you are reading this book for just
scoring a nice grade in your course then I have failed in my purpose of explaining my ideas.

A lot of problems are given in the book for practice and you should try to solve all of these.
Solutions are given to assist you for understading. However, use them as a last resort. Slowly
more and more problems will be added. There are very easy problems which should be
practiced to progress towards more difficcult problems.

Also, if you find this book useful feel free to share it with others without hesitation as it is
free as in freedom.

What Makes This Book Different?
The license. Most books are copyrighted by publishers, while some by the authors. This is
released under GNU FDL. This means it is free as in freedom. You can modify, use it anyway
you like, sell, resell, and so on. The only condition is that if you modify then modifications
have to sent back to me as well so that all of us can benefit from that modification. You can
even print, and sell it to make profit out of it. Check license in the appendix for full details.

Make It Better
You can help by checking for spellings, grammar, adding problems, and solutions. Perhaps
writing new chapters or extending existing ones. The book's sources are hosted at https://git
lab.com/shivshankar.dayal/algebra-context. Send me a pull request, and I will approve
it after review. You have my thanks in advance for improving it.

https://gitlab.com/shivshankar.dayal/algebra-context
https://gitlab.com/shivshankar.dayal/algebra-context
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Confession
I feel like an absolute thief while writing this book for nothing given in this book is mine. All
of it belongs to others who did the original work and I have just copied shamelessly. I have
nothing new to put in the book. This book is just the result of the pain I feel when I see
young children wasting their life for they are poor. And therefore, this book is licensed under
GNU FDL. Even if I manage to create few new problems it is still based on knowledge of
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Chapter 1
Logarithm

Definition: A number 𝑥 is called the logarithm of a number 𝑦 to the base 𝑏 if 𝑏𝑥 = 𝑦, where
𝑏 > 0, 𝑏 ≠ 1, 𝑦 > 0.

Mathematically, it is represented by the equation log𝑏 𝑦 = 𝑥 or 𝑏𝑥 = 𝑦.

Notes:

1. The conditions 𝑏 > 0, 𝑏 ≠ 1 and 𝑦 > 0 are necessary in the definition of logarithm.

2. When 𝑏 = 1 suppose logarithm is defined, and we have to find the value of log1 𝑦. Let
log1 𝑦 = 𝑥 ⇒ 1𝑥 = 𝑦 ⇒ 1 = 𝑦.

If log1 2 is defined then 1 = 2. So we see that 𝑏 = 1 leads to meaningless results.
Similarly, it is true for 𝑏 ≠ 1.

3. Similarly if 𝑦 < 0, then 𝑏𝑥 = 𝑦, which is meaningless as L.H.S. is positive while R.H.S. is
negative.

4. Let the condition to be true when 𝑏 = 0. Thus, 0𝑥 = 𝑦 ⇒ 0 = 𝑦. Thus, if log0 2 is defined
then 0 = 2. Hence, our assumption leads to failure.

5. No number can have two different logarithms to a given base. Assume that a number 𝑁
has two different logarithms 𝑥 and 𝑦 with base 𝑏. Then, log𝑏 𝑁 = 𝑥 and log𝑏 𝑁 = 𝑦

⇒ 𝑁 = 𝑏𝑥 and 𝑁 = 𝑏𝑦

⇒ 𝑏𝑥 = 𝑏𝑦 ⇒ 𝑥 = 𝑦

6. When the number or base is negative the value of logarithm comes out to be a complex
number with non-zero imaginary part.

Let log𝑒(−5) = 𝑥 ⇒ log𝑒(5.𝑒𝑖𝜋) = 𝑥 (In complex numbers 𝑒𝑖𝜋 = −1)

𝑥 = log𝑒 5 + 𝑖𝜋

1.1 Important Results
1. log𝑏 1 = 0

Proof: Let log𝑏 1 = 𝑥 ⇒ 𝑏𝑥 = 1 ⇒ 𝑥 = 0

2. log𝑏 𝑏 = 1

Proof: Let log𝑏 𝑏 = 𝑥 ⇒ 𝑏𝑥 = 𝑏 ⇒ 𝑥 = 1

3. 𝑏log𝑏 𝑁 = 𝑁
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Proof: Let log𝑏 𝑁 = 𝑥 ⇒ 𝑏𝑥 = 𝑁 ⇒ 𝑏log𝑏 𝑁 = 𝑁

1.2 Important Formulas
1. log𝑏(𝑥.𝑦) = log𝑏 𝑥 + log𝑏 𝑦, (𝑥 > 0, 𝑦 > 0)

Proof: Let log𝑏 𝑥 = 𝑚 ⇒ 𝑏𝑚 = 𝑥. Similarly, 𝑏𝑛 = 𝑦

𝑥𝑦 = 𝑏𝑚+𝑛 = 𝑏𝑜 (say)

𝑚+ 𝑛 = 𝑜 ⇒ log𝑏(𝑥.𝑦) = log𝑏 𝑥 + log𝑏 𝑦

Corollary: log𝑏(𝑥𝑦𝑧) = log𝑏 𝑥 + log𝑏 𝑦 + log𝑏 𝑧

If 𝑥, 𝑦 < 0, then log𝑏(𝑥.𝑦) = log𝑏 |𝑥|+ log𝑏 |𝑦|

2. log𝑏(
𝑥
⁄

𝑦) = log𝑏 𝑥 − log𝑏 𝑦, (𝑥, 𝑦 > 0)

Proof: Let log𝑏 𝑥 = 𝑚 ⇒ 𝑏𝑚 = 𝑥 and log𝑏 𝑦 = 𝑛 ⇒ 𝑏𝑛 = 𝑦

𝑥
⁄

𝑦 = 𝑏𝑚−𝑛 and log𝑏(
𝑥
⁄

𝑦) = 𝑜 ⇒ 𝑏𝑜 = 𝑥
⁄

𝑦

⇒ 𝑚− 𝑛 = 𝑜 ⇒ log𝑏(
𝑥
⁄

𝑦) = log𝑏 𝑥 − log𝑏 𝑦

log𝑏(
𝑥
⁄

𝑦) = log𝑏 |𝑥|− log𝑏 |𝑦|, (𝑥, 𝑦 < 0)

3. log𝑏 𝑁𝑘 = 𝑘 log𝑏 𝑁

Proof: Let log𝑏 𝑁 = 𝑥 ⇒ 𝑏𝑥 = 𝑁

Let log𝑏 𝑁𝑘 = 𝑦 ⇒ 𝑏𝑦 = 𝑁𝑘 ⇒ 𝑏𝑦 = 𝑏𝑘𝑥 ⇒ 𝑦 = 𝑘𝑥

⇒ log𝑏 𝑁𝑘 = 𝑘 log𝑏 𝑁

4. log𝑏 𝑎 = log𝑐 𝑎 log𝑏 𝑐

Proof: Let log𝑏 𝑎 = 𝑥 ⇒ 𝑏𝑥 = 𝑎

log𝑐 𝑎 = 𝑦 ⇒ 𝑐𝑦 = 𝑎

log𝑏 𝑐 = 𝑧 ⇒ 𝑏𝑧 = 𝑐

𝑏𝑥 = 𝑎 = 𝑐𝑦 = 𝑏𝑦𝑧 ⇒ 𝑥 = 𝑦𝑧 ⇒ log𝑏 𝑎 = log𝑐 𝑎 log𝑏 𝑐

Alternatively, we can also write it as log𝑏 𝑎 =
log𝑐 𝑎
⁄

log𝑐 𝑏

5. log𝑏𝑘 𝑁 = 1
⁄

𝑘 log𝑏 𝑁 [𝑏 > 0]

Proof: From previous item we can infer that log𝑏𝑘 𝑁 = log𝑁
⁄

log 𝑏𝑘 =
1
⁄

𝑘 log𝑏 𝑁
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log𝑏𝑘 𝑁 = 1
⁄

𝑘 log|𝑏|𝑁 [𝑏 < 0, 𝑘 = 2𝑚, 𝑚 ∈ 𝑁 ]

6. log𝑏 𝑎 =
1
⁄

log𝑎 𝑏

Proof: Let log𝑏 𝑎 = 𝑥 ⇒ 𝑏𝑥 = 𝑎

Also let log𝑎 𝑏 = 𝑦 ⇒ 𝑎𝑦 = 𝑏 = 𝑎𝑥𝑦 ⇒ 𝑥𝑦 = 1

⇒ log𝑏 𝑎 =
1
⁄

log𝑎 𝑏

1.3 Bases of Logarthims
There are two popular bases for logarithms. Common base is 10 and another is 𝑒. When base
is 10, logarithm is known as common logarithm and when base is 𝑒, logarithm is known
as natural or Napierian logarithm.

log10 𝑥 is also written as 𝑙𝑔 𝑥 and log𝑒 𝑥 as 𝑙𝑛 𝑥.

1.4 Characteristics and Mantissa
Typically a logarithm will have an integral part and a fractional part. The integral part
is called characteristics and fractional part is called mantissa.

For example, if log 𝑥 = 4.7 then 4 is characteristics and .7 is mantissa of logarithm. If
characteristics is less that zero then at times it is written with a bar above it. For example,
log 𝑥 = −5.3 = 5.3

As you can easily figure out the number of possitive integers having base 𝑏 and characteristics 𝑛
is 𝑏𝑛+1 − 𝑏𝑛.

1.5 Inequality of Logarithms
If 𝑏 > 1 and log𝑏 𝑥1 > log𝑏 𝑥2 then 𝑥1 > 𝑥2. If 𝑏 < 1 and log𝑏 𝑥1 > log𝑏 𝑥2 then 𝑥1 < 𝑥2.

1.6 Expansion of Logarithm and Its Graph
The logarithm series is given below:

log(1 + 𝑥) = 𝑥 − 𝑥2
⁄

2 + 𝑥3
⁄

3 − 𝑥4
⁄

4 + …

So we can see that rate of increment of logarithm function decreases. Rate of increment
of logarithm function is given by 1⁄𝑥 at any point 𝑥, as we will learn when we study Calculus
and derivatives.

1.7 Problems
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Figure 1.1 Graph of log 2.

1. Find the value of 𝑥, where log√8 𝑥 =
10
⁄

3 .

2. Prove that log𝑏 𝑎. log𝑐 𝑏. log𝑎 𝑐 = 1.

3. Prove that log3 log2 log√5 625 = 1.

4. If 𝑎2 + 𝑏2 = 23𝑎𝑏, then prove that log 𝑎+𝑏
⁄

5 = 1
⁄

2 (log 𝑎 + log 𝑏).

5. Prove that 7 log 16
⁄

15 + 5 log 25
⁄

24 + 3 log 81
⁄

80 = log 2.

6. Find the value of log tan 1∘ + log tan 2∘ + …+ log tan 89∘.

7. Evaluate log9 tan 𝜋
⁄

6.

8. Evaluate log𝑎2 𝑏⁄log√𝑎 𝑏2.
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9. Evaluate log√5 .008.

10. Evaluate log2√3 144.

11. Prove that log3 log2 log√3 81 = 1.

12. Prove that log𝑎 𝑥 log𝑏 𝑦 = log𝑏 𝑥 log𝑎 𝑦.

13. Prove that log2 log2 log2 16 = 1.

14. Prove that log𝑎 𝑥 = log𝑏 𝑥 log𝑐 𝑏… log𝑛 𝑚 log𝑎 𝑛.

15. Prove that 𝑎𝑥 = 10𝑥 log10 𝑎.

16. If 𝑎2 + 𝑏2 = 7𝑎𝑏, prove that log{1⁄3 (𝑎 + 𝑏)} = 1
⁄

2 (log 𝑎 + log 𝑏).

17. Prove that log 𝑎 log𝑎 𝑏⁄log 𝑏 log𝑎 𝑏 = − log𝑎 𝑏.

18. Prove that log(1 + 2 + 3) = log 1 + log 2 + log 3.

19. Prove that 2 log(1 + 2 + 4 + 7 + 14) = log 1 + log 2 + log 4 + log 7 + log 14.

20. Prove that log 2 + 16 log 16
⁄

15 + 12 log 25
⁄

24 + 7 log 81
⁄

80 = 1.

21. Simplify log9 11⁄log5 13 ÷
log3 11
⁄

log√5
13.

22. Simplify 3√


log3 2 − 2√


log2 3.

23. Find the least integer 𝑛 such that 7𝑛 > 105, given that log10 343 = 2.5353.

24. If 𝑎, 𝑏, 𝑐 are in G.P., prove that log𝑎 𝑥, log𝑏 𝑥, log𝑐 𝑥 are in H.P.

25. Prove that log sin 8𝑥 = 3 log 2 + log sin 𝑥 + log cos 𝑥 + log cos 2𝑥 + log cos 4𝑥.

26. If 𝑥 = log2𝑎 𝑎, 𝑦 = log3𝑎 2𝑎 and 𝑧 = log4𝑎 3𝑎 then prove that 𝑥𝑦𝑧 + 1 = 2𝑦𝑧.

27. If 𝑎 and 𝑏 are the lengths of the sides and 𝑐 be the length of the hypotenuse of a right-angle
triangle and 𝑐− 𝑏 ≠ 1 and 𝑐+ 𝑏 ≠ 1, prove that log𝑐+𝑏 𝑎+ log𝑐−𝑏 𝑎 = 2 log𝑐+𝑏 𝑎 log𝑐−𝑏 𝑎.

28. If log𝑥⁄𝑦−𝑧 =
log𝑦
⁄

𝑧−𝑥 =
log 𝑧
⁄

𝑥−𝑦, then prove that 𝑥𝑥𝑦𝑦𝑧𝑧 = 1.

29. If 𝑦𝑧 log(𝑦𝑧)⁄𝑦+𝑧 = 𝑧𝑥 log(𝑧𝑥)
⁄

𝑧+𝑥 = 𝑥𝑦 log(𝑥𝑦)
⁄

𝑥+𝑦 , prove that 𝑥2 = 𝑦𝑦 = 𝑧2.

30. Prove that (𝑦𝑧)log 𝑦−log 𝑧(𝑧𝑥)log 𝑧−log𝑥(𝑥𝑦)log𝑥−log 𝑦 = 1.

31. Prove that 1
⁄

log2 𝑁 + 1
⁄

log3 𝑁 +…+ 1
⁄

log1988 𝑁 = 1
⁄

log1988! 𝑁.

32. If 0 < 𝑥 < 1, prove that log(1+𝑥)+log(1+𝑥2)+log(1+𝑥4)+… to ∞=−log(1−𝑥).



Logarithm 6

33. Find the sum of the series 1
⁄

log2 𝑎 +
1
⁄

log4 𝑎 + … up to 𝑛 terms.

34. If log4 10 = 𝑥, log2 20 = 𝑦 and log5 8 = 𝑧, prove that 1
⁄

𝑥+1 +
1
⁄

𝑦+1 +
1
⁄

𝑧+1 = 1.

35. If 𝑥 = log𝑎 𝑏𝑐, 𝑦 = log𝑏 𝑐𝑎, 𝑧 = log𝑐 𝑎𝑏, prove that 1
⁄

𝑥+1 +
1
⁄

𝑦+1 +
1
⁄

𝑧+1 = 1.

36. Prove that 1
⁄

1+log𝑏 𝑎+log𝑏 𝑐 +
1
⁄

1+log𝑐 𝑎+log𝑐 𝑏 +
1
⁄

1+log𝑎 𝑏+log𝑎 𝑐 = 1.

37. Prove that 𝑥log 𝑦−log 𝑧𝑦log 𝑧−log𝑥𝑧log𝑥−log 𝑦 = 1.

38. If log 𝑎⁄𝑦−𝑧 =
log 𝑏
⁄

𝑧−𝑥 =
log 𝑐
⁄

𝑥−𝑦, prove that 𝑎𝑥𝑏𝑦𝑐𝑧 = 1.

39. If 𝑥(𝑦+𝑧−𝑥)⁄log𝑥 = 𝑦(𝑧+𝑥−𝑦)
⁄

log 𝑦 = 𝑧(𝑥+𝑦−𝑧)
⁄

𝑥−𝑦 , prove that 𝑦𝑧𝑧𝑦 = 𝑧𝑥𝑥𝑧 = 𝑥𝑦𝑦𝑥.

40. If log 𝑎⁄𝑏−𝑐 =
log 𝑏
⁄

𝑐−𝑎 =
log 𝑐
⁄

𝑎−𝑏 , prove that 𝑎𝑏+𝑐𝑏𝑐+𝑎𝑐𝑎+𝑏 = 1.

41. If log𝑥⁄𝑞−𝑟 =
log𝑦
⁄

𝑟−𝑝 =
log 𝑧
⁄

𝑝−𝑞, prove that 𝑥𝑞+𝑟𝑦𝑟+𝑝𝑧𝑝+𝑞 = 𝑥𝑝𝑦𝑞𝑧𝑟.

42. If 𝑦 = 𝑎
1
⁄

1−log𝑎𝑥 and 𝑧 = 𝑎
1
⁄

1−log𝑎 𝑦, prove that 𝑥 = 𝑎
1
⁄

1−log𝑎 𝑧.

43. Let 𝑓(𝑥) = 1
⁄

1−log𝑒 𝑥, 𝑓(𝑦) = 𝑒𝑓(𝑧) and 𝑧 = 𝑒𝑓(𝑥), prove that 𝑥 = 𝑒𝑓(𝑦).

44. Show that 1
⁄

log2 𝑛 +
1
⁄

log3 𝑛 +
1
⁄

log4 𝑛 + …+ 1
⁄

log43 𝑛 =
1
⁄

log43! 𝑛.

45. Show that 2(log 𝑎 + log 𝑎2 + log 𝑎3 + …+ log 𝑎𝑛) = 𝑛(𝑛 + 1) log 𝑎.

46. Find the number of digits in 1212, without actual computation. [Given log 2 = 0.301
and log 3 = 0.477]

47. How many positive integers have a characteristics of 2 when base is 3.

48. Prove that log𝑎 𝑥 log𝑏 𝑦 = log𝑏 𝑥 log𝑎 𝑦.

49. If 𝑎, 𝑏, 𝑐 are in G.P., prove that log𝑎 𝑥, log𝑏 𝑥, log𝑐 𝑥 are in H.P.

50. How many zeros are there between the decimal point and first significant digit in
0.050410? Given log 2 = 0.301, log 3 = 0.477, log 7 = 0.845.

51. Find the number of digits in 7215 without actual computation. Given log 2 = 0.301 and
log 3 = 0.477.

52. How many positive integers have characteristics 2 when base is 5?

53. If log 2 = 0.301 and log 3 = 0.477, find the number of digits in 315 × 210.

54. If log 2 = 0.301 and log 3 = 0.477, find the number of digits in 620.

55. If log 2 = 0.301 and log 3 = 0.477, find the number of digits in 525.
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56. Solve log𝑎[1 + log𝑏{1 + log𝑐(1 + log𝑝 𝑥)}] = 0.

57. Solve log7 log5(√


𝑥 + 5 +√


𝑥) = 0.

Solve the following equations:

58. log2 𝑥 + log4(𝑥 + 2) = 2.

59. log𝑥+2 𝑥 + log𝑥(𝑥 + 2) = 5
⁄

2.

60. log(𝑥 + 1) = 2 log 𝑥.

61. 2 log𝑥 𝑎 + log𝑎𝑥 𝑎 + 3 log𝑎2𝑥 𝑎 = 0. Given 𝑎 > 0.

62. 𝑥 + log10(1 + 2𝑥) = 𝑥 log10 5 + log10 6.

63. 𝑥
3
⁄

4(log2 𝑥)
2+log𝑥 2−5
⁄

4 = √


2.

64. (𝑥2 + 6)log3 𝑥 = (5𝑥)log3 𝑥.

65. (3 + 2√


2)𝑥
2−6𝑥+9 + (3 − 2√


2)𝑥
2−6𝑥+9 = 6.

66. log8( 8
⁄

𝑥2)÷ (log8 𝑥)2 = 3.

67. √


log2(𝑥)4 + 4 log4√


2
⁄

𝑥 = 2.

68. 2 log10 𝑥 − log𝑥 0.01 = 5.

69. logsin𝑥 2 logcos𝑥 2 + logsin𝑥 2 + logcos𝑥 2 = 0.

70. 2𝑥+3 + 2𝑥+2 + 2𝑥+1 = 7𝑥 + 7𝑥−1.

71. log√2 sin𝑥(1 + cos 𝑥) = 2.

72. log10[198 +√


𝑥3 − 𝑥2 − 12𝑥 + 36] = 2.

73. If log 2 = 0.30103 and log 3 = 0.47712, solve the equation 2𝑥32𝑥 − 100 = 0.

74. log𝑥 3 log𝑥
⁄

3
3 + log 𝑥
⁄

81
3 = 0.

75. log(2𝑥+3)(6𝑥2 + 23𝑥 + 21) = 4 − log(3𝑥+7)(4𝑥2 + 12𝑥 + 9).

76. log2(𝑥2 − 1) = log1
⁄

2
(𝑥 − 1).

77. log5(5
1
⁄

𝑥+125) = log5 6 + 1 + 1
⁄

2𝑥.

78. log100 |𝑥 + 𝑦| = 2
⁄

1 and log10 𝑦 − log10 |𝑥| = log100 4.
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79. 2 log2 log2 𝑥 + log1
⁄

2
log2(2√


2𝑥) = 1.

80. log3
⁄

4
log8(𝑥2 + 7)+ log1
⁄

2
log1
⁄

4
(𝑥2 + 7)−1 = 2.

81. log10 𝑥 + log10 𝑥
2
⁄

1 + log10 𝑥
1
⁄

4 + … to ∞ = 𝑦 and 1+3+5+…+(2𝑦−1)
⁄

4+7+10+…+(3𝑦+1) =
20
⁄

7 log10 𝑥.

82. 184𝑥−3 = (54√


2)3𝑥−4.

83. 4log9 3 + 9log2 4 = 10log𝑥 83.

84. 34 log9(𝑥+1) = 22 log2(𝑥+3).

85. 6
⁄

5 𝑎
log𝑎 𝑥 log10 𝑎 log𝑎 5 − 3log10

𝑥
⁄

10 = 9log100 𝑥+log4 2.

86. 23𝑥+
1
⁄

2 + 2𝑥+
1
⁄

2 = 2log2 6.

87. (5 + 2√


6)𝑥
2−3 + (5 − 2√


6)𝑥
2−3 = 10.

88. For 𝑥 > 1, show that 2 log10𝑥 𝑥 − log𝑥 .01 ≥ 4.

89. Show that | log𝑏 𝑎 + log𝑎 𝑏| > 2.

90. Solve log0.3(𝑥2 + 8) > 𝑙𝑜𝑔0.39𝑥.

91. Solve log𝑥−2(2𝑥 − 3) > log𝑥−2(24 − 6𝑥).

92. Find the interval in which 𝑥 will lie if log0.3(𝑥 − 1) < log0.09(𝑥 − 1).

93. Solve log1
⁄

2
𝑥 ≥ log1
⁄

3
𝑥.

94. Solve log1
⁄

3
log4(𝑥2 − 5) > 0.

95. Solve log(𝑥2 − 2𝑥 − 2) ≤ 0.

96. Solve log22(𝑥 − 1)2 − log0.5(𝑥 − 1) > 5.

97. Prove that log2 17 log1
⁄

5
2 log3 1⁄5 > 2.

98. Show that log20 3 lies between 1⁄2 and 1⁄3.

99. Show that log10 2 lies between 1⁄4 and 1⁄3.

100. Solve log0.1(4𝑥2 − 1) > log0.1 3𝑥.

101. Solve log2(𝑥2 − 24) > log2 5𝑥.

102. Show that 1
⁄

log3 𝜋 +
1
⁄

log4 𝜋 > 2.
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103. Without actual computation find greater among (0.01)
1
⁄

3 and (0.001)
1
⁄

5.

104. Without actual computation find greater among log2 3 and log3 11.

105. Solve log3(𝑥2 + 10) > log3 7𝑥.

106. Solve 𝑥log10 𝑥 > 10.

107. Solve log2 𝑥 log2𝑥 2𝑙𝑜𝑔24𝑥 > 1.

108. Solve log2 𝑥 log3 2𝑥 + log3 𝑥 log2 4𝑥 > 0.

109. Find the value of log12 60 if log6 30 = 𝑎 and log15 24 = 𝑏.

110. If log𝑎 𝑥, log𝑏 𝑥 and log𝑐 𝑥 are in A.P. and 𝑥 ≠ 1, prove that 𝑐2 = (𝑎𝑐)log𝑎 𝑏.

111. If 𝑎 = log1
⁄

2
√


0.125 and 𝑏 = log3( 1
⁄

√


24−√


17) then find whether 𝑎 > 0, 𝑏 > 0.

112. Which one is greater among cos(log𝑒 𝜃) and log𝑒(cos 𝜃) if 𝑒−
𝜋
⁄

2 < 𝜃 < 𝜋
⁄

2.

113. If log2 𝑥 + log2 𝑦 ≥ 6, prove that 𝑥 + 𝑦 ≥ 16.

114. If 𝑎,𝑏,𝑐 be three distinct positive numbers, each different from 1 such that log𝑏 𝑎 log𝑐 𝑎−
log𝑎 𝑎 + log𝑎 𝑏 log𝑐 𝑏 − log𝑏 𝑏 + log𝑎 𝑐 log𝑏 𝑐 − log𝑐 𝑐 = 0 then find 𝑎𝑏𝑐.

115. If 𝑦 = 10
1
⁄

1−log𝑥 and 𝑧 = 10
1
⁄

1−log𝑦, prove that 𝑥 = 10
1
⁄

1−log𝑧.

116. If 𝑛 is a natural number such that 𝑛 = 𝑝𝑎11 𝑝𝑎22 𝑝𝑎33 … 𝑝𝑎𝑘𝑘 and 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑘 are
distinct primes, then show that log 𝑛 ≥ 𝑘 log 2.

117. The numbers 3, 3 log𝑦 𝑥, 3 log𝑧 𝑦, 7 log𝑥 𝑧 form and A.P. then prove that 𝑥18 = 𝑦21 = 𝑧28.

118. Prove that log4 18 is an irrational number.

119. If 𝑥, 𝑦, 𝑧 > 1 are in G.P. then prove that 1
⁄

1+ln𝑥,
1
⁄

1+ln𝑦 ,
1
⁄

1+ln 𝑧 are in H.P.

120. Find the value of log30 8, if log30 3 = 𝑎 and log30 5 = 𝑏.

121. Find the value of log54 168, if log7 12 = 𝑎 and log12 24 = 𝑏.

122. If 𝑎 ≠ 0 and log𝑥(𝑎2 + 1) < 0 then find the interval in which 𝑥 lies.

123. If log12 18 − 𝑎 and log24 54 = 𝑏, prove that 𝑎𝑏 + 5(𝑎 − 𝑏) = 1.

124. If 𝑎,𝑏,𝑐 are in G.P., show that log𝑎 𝑥, log𝑏 𝑥, log𝑐 𝑥 are in H.P.

125. If 𝑎, 𝑎1, 𝑎2, … , 𝑎𝑛 are in G.P. and 𝑏, 𝑏1, 𝑏2, … , 𝑏𝑛 in A.P. with positive terms and also
the common difference of A.P. and common rations of G.P. are positive, show that
there exists a system of logarithm for which log 𝑎𝑛 − 𝑏𝑛 = log 𝑎 − 𝑏 for any 𝑛. Find the
base of this system.
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126. If log3 2, log3(2𝑥 − 5) and log3(2𝑥 − 7
⁄

2) are in A.P., find the value of 𝑥.

127. Prove that log2 7 is an irraational number.

128. If log0.5(𝑥 − 2) < log0.25(𝑥 − 2), then find the interval in which 𝑥 lies.
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Chapter 2
Progressions

There are three different progressions: arithmetic progression, geometric progression and
harmonic progression. We start this chapter with arithmetic progression or A.P.

2.1 Arithmetic Progressions
Consider sequences like 1, 2, 3, 4, … or −1, −2, −3, −4, … or 1, 3, 5, 7, … or 𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, …

These sequences increase or decrease with a common difference. When quantities increase
or decrease with a common difference they are said to be in Arithmetic Progression. The
common difference can be found by subtracting any term of the series that follows it. For
example for the first series it is 1 and for the last it is 𝑑.

Consider the series 𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, 𝑎 + 3𝑑, …

Simple observation tells us that 1st term is 𝑎, 2nd term is 𝑎 + 𝑑, the 3rd term is 𝑎 + 2𝑑 and
hence the 𝑛th term will be 𝑎+ (𝑛− 1)𝑑. These terms are typically written as 𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛.

2.1.1 𝑛th Term of Arithmetic Progression
Following above discussion, we can clearly say that the 𝑛th term of an arithmetic progression
is given by 𝑡𝑛 = 𝑎 + (𝑛 − 1)𝑑, where 𝑎 is called the first term and 𝑑 the common difference.

𝑡𝑛 = 𝑎 + (𝑛 − 1)𝑑 (2.1)

2.1.2 Sum of an Arithmetic Progression
Let 𝑆𝑛 represent the sum of first 𝑛 terms of an arithmetic progression, then we can write.

𝑆𝑛 = 𝑎 + (𝑎 + 𝑑)+ (𝑎 + 2𝑑)+⋯+ [𝑎 + (𝑛 − 2)𝑑]+ [𝑎 + (𝑛 − 1)𝑑]

Writing the terms in reverse order we have

𝑆𝑛 = [𝑎 + (𝑛 − 1)𝑠]+ [𝑎 + (𝑛 − 2)𝑑]+⋯+ (𝑎 + 𝑑)+ 𝑎

Adding term by term, we get

2𝑆𝑛 = [2𝑎 + (𝑛 − 1)𝑑]+ [2𝑎 + (𝑛 − 1)𝑑]+⋯ to 𝑛 terms

2𝑆𝑛 = 𝑛[2𝑎 + (𝑛 − 1)𝑑]

𝑆𝑛 =
𝑛
⁄

2 [2𝑎 + (𝑛 − 1)𝑑] (2.2)

We also see that 𝑆𝑛 = 𝑛
⁄

2 (𝑡1 + 𝑡𝑛)

We also see that if a series is
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1 + 2 + 3 + ⋯+ 𝑛 =
𝑛
∑
𝑖=0

𝑖 = 𝑛(𝑛 + 1)
⁄

2 . (2.3)

2.1.3 Arithmetic Mean
When three quantities are in arithmetic progression the quantity in the middle is known to
be arithmetic mean of the other two. For example, if 𝑎, 𝑏, 𝑐 are in A.P., then 𝑏 is said to be
arithmetic mean of 𝑎 and 𝑐. In general, it is written 𝑏 = 𝑎+𝑐

⁄

2 . This can be examined further.

Let 𝑏 = 𝑎 + 𝑑, then 𝑐 = 𝑎 + 2𝑑. Clearly, 𝑏 = 𝑎+𝑐
⁄

2 .

It is also possible to insert 𝑛 numbers between any two numbers such that all of them are in
A.P. Consider two numbers 𝑎 and 𝑏 in between which we want to insert 𝑛 numbers such that
they are in A.P. Clearly, 𝑏 will become 𝑛+ 2th term of A.P. Let common difference be 𝑑 then
we can write 𝑏 = 𝑎 + (𝑛 + 1)𝑑 ⇒ 𝑑 = 𝑏−𝑎

⁄

𝑛+1. Now all the 𝑛 arithmetic means can be deduced.

Let those be 𝑚1, 𝑚2, ⋯ , 𝑚𝑛 then 𝑚1 = 𝑎 + 𝑏−𝑎
⁄

𝑛+1, 𝑚2 = 𝑎 + 2(𝑏−𝑎)
⁄

𝑛+1 , ⋯ , 𝑚𝑛 = 𝑎 + 𝑛(𝑏−𝑎)
⁄

𝑛+1 .

First A.M. = 𝑎 + 𝑑 = 𝑎𝑛+𝑏
⁄

𝑛+1

Second A.M. = 𝑎 + 2𝑑 = 𝑎(𝑛−1)+𝑏
⁄

𝑛+1

⋯

𝑛th A.M. = 𝑎 + 𝑛𝑑 = 𝑎+𝑛𝑏
⁄

𝑛+1

𝐴𝑛 =
𝑎 + 𝑛𝑏
⁄

𝑛 + 1 (2.4)

Suppose there are 𝑛 terms of an A.P., then the arithmetic mean of those 𝑛 terms is given by
𝑡1+𝑡2+⋯+𝑡𝑛
⁄

𝑛 .

2.1.4 Deducing Number of Terms

We know that 𝑆𝑛 = 𝑛
⁄

2 [2𝑎+ (𝑛− 1)𝑑]. Say 𝑆𝑛, 𝑎 and 𝑑 are known and we have to evaluate 𝑛.
This being a quadratic equaion will have two roots for 𝑛. If the results are positive and
integral then there is no problem in interpreting the results. In some cases for a negative root
a suitable interpretation can be given.

Example: How many terms of the series −8, −6, −4, ⋯ must be added for the sum to be 36?

𝑛
⁄

2 [− 16+(𝑛 − 1)2] = 36 ⇒ 𝑛2 − 9𝑛 − 36 = 0 ⇒ 𝑛 = 12, −3

If we take 12 terms of the series, we have −8, −6, −4, −2, 0, 2, 4, 6, 8, 10, 12, 14. The sum of
these terms is 36 and sum of last three terms is also 36 which is represented by 𝑛 = −3.

2.1.5 Properties of an A.P.
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1. If a fixed number is added to or subtracted from each item of a given A.P., then the
resulting is also an A.P., and it has the same common difference as that of the given
A.P.

2. If each term of an A.P. is multiplied or divided by a non-zero fixed constant then the
resulting sequence is also an A.P. The common difference is multiplied or divided by the
same factor.

3. If 𝑎1, 𝑎2, 𝑎3,… and 𝑏1, 𝑏2, 𝑏3,… are two arithmetic progressions then 𝑎1+ 𝑏1, 𝑎2+ 𝑏2, 𝑎3+
𝑏3, ⋯ are also in A.P.

4. If we have to choose three unknown terms in an A.P. then it is best to choose them as
𝑎 − 𝑑, 𝑎, 𝑎 + 𝑑.

5. If we have to choose four unknown terms in an A.P. then it is best to choose them
as 𝑎 − 3𝑑, 𝑎 − 𝑑, 𝑎 + 𝑑, 𝑎 + 3𝑑.

6. In an A.P., the sum of terms equidistant from the beginning and end is constant and is
equal to the sum of first and last term.

7. Any term of an A.P., except the first, is equal to half the sum of terms which are
equidistant from it:

𝑎𝑛 =
1
⁄

2 (𝑎𝑛−𝑘 + 𝑎𝑛+𝑘), 𝑘 < 𝑛, and for 𝑘 = 1

𝑎𝑛 =
1
⁄

2 (𝑎𝑛−1 + 𝑎𝑛+1)

8. 𝑡𝑛 = 𝑆𝑛 − 𝑆𝑛−1, 𝑛 ≥ 2

9. If 𝑡𝑛 = 𝑝𝑛+ 𝑞 i.e. a linear expression in 𝑛 then it will form an A.P. of common difference
𝑝 = 𝑡𝑛 − 𝑡𝑛−1 and first term 𝑝 + 𝑞. For example, if 𝑡𝑛 = 3𝑛 + 4, then it is an A.P. of
common difference 3 anda the first term as 7.

10. If 𝑆𝑛 = 𝑎𝑛2 + 𝑏𝑛 + 𝑐 i.e. a quadratic function in 𝑛, then the series in an A.P. where
𝑎 = 2𝑎, twice the coefficient of 𝑛2.

2.1.6 Sum of Squares and Cubes and More
We observe that

𝑖3 − (𝑖 − 1)3 = 3𝑖3 − 3𝑖 + 1 ⇒
𝑛
∑
𝑖=1

[𝑖3 − (𝑖 − 1)3 ] = 3
𝑛
∑
𝑖=0

𝑖2 − 3𝑛(𝑛 + 1)
⁄

2 + 𝑛

(2.5)

𝑛3 = 3
𝑛
∑
𝑖=0

𝑖2 − 3𝑛(𝑛 + 1)
⁄

2 + 𝑛 ⇒ 3
𝑛
∑
𝑖=0

𝑖2 = 𝑛3 + 3𝑛(𝑛 + 1)
⁄

2 − 𝑛

𝑛
∑
𝑖=0

𝑖2 = 𝑛(𝑛 + 1)(2𝑛 + 1)
⁄

6 (2.6)
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Following in a similar fashion, we can show that
𝑛
∑
𝑖=0

= {𝑛(𝑛 + 1)
⁄

2 }
2

(2.7)

More powers can be evaluated in a similar fashion.

2.2 Geometric Progressions
A succession of numbers is said to be in geometric progressions or geometric sequence if the
ratio of any term and the term preceeding it is constant throughout. This constant is called
common ratio of the G.P.

Example: 1, 2, 4, 8, 16, …

Here, 𝑡2⁄𝑡1 =
𝑡3
⁄

𝑡2 = … = 2.

Also, 1, 3, 9, 27,… are in geometric progression whose first term is 1 and common ratio is 3.

Also, 2, −4, 8, −16, … are in geometric progression whose firts term is 2 and common ratio is
−2.

2.2.1 Properties of a G.P.

1. If the each term of a G.P. be multiplied by a non-zero number, then the sequence
obtained is also a G.P.

Proof: Let the given G.P. be 𝑎, 𝑎𝑟, 𝑎𝑟2, 𝑎𝑟3, …

Let 𝑘 be a non-zero number, the sequence obtained by multiplying each term of the
given G.P. by 𝑘 is 𝑎𝑘, 𝑎𝑟𝑘, 𝑎𝑟2𝑘, 𝑎𝑟3𝑘, …

Clearly, the series is in G.P. with the same common ratio as previous ratio i.e. 𝑟.

Again, dividing each term of G.P. 𝑎, 𝑎𝑟, 𝑎𝑟2, 𝑎3, … we obtain the sequence 𝑎⁄𝑘 ,
𝑎𝑟
⁄

𝑘 ,
𝑎𝑟2
⁄

𝑘 , …

It is clear that this new sequence is also a G.P., whose common ratio is 𝑟.

2. The reciprocals of the terms of a G.P. are also in G.P.

Proof: Let the G.P. be 𝑎, 𝑎𝑟, 𝑎𝑟2, …, the sequence whose terms are reciprocals of this
G.P. is 1⁄𝑎,

1
⁄

𝑎𝑟 ,
1
⁄

𝑎𝑟2 , ⋯

It is clear that this sequence is in G.P., whose first term is 1⁄𝑎 and common ratio is 1⁄𝑟.

2.2.2 Sum of the First 𝑛 Terms of a G.P.
Let 𝑎 be the first term and 𝑟 be the common ratio of a G.P. and 𝑆𝑛 be the sum of its first 𝑛
terms
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Case I: When 𝑟 ≠ 1

𝑆𝑛 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ⋯ + 𝑎𝑟𝑛−2 + 𝑎𝑟𝑛−1

𝑟𝑆𝑛 = 𝑎𝑟 + 𝑎𝑟2 + ⋯ + 𝑎𝑟𝑛−1 + 𝑎𝑟𝑛

Subtracting, we get (1 − 𝑟)𝑆𝑛 = 𝑎 − 𝑎𝑟𝑛 = 𝑎(1 − 𝑟𝑛)

∴𝑆𝑛 =
𝑎(1 − 𝑟𝑛)
⁄

1 − 𝑟 = 𝑎(𝑟𝑛 − 1)
⁄

𝑟 − 1

Case II: When 𝑟 = 1

𝑆𝑛 = 𝑎 + 𝑎 + ⋯+ 𝑎 = 𝑛𝑎 and this G.P. is also an A.P. whose common difference is 0.

2.2.3 Sum of Infinite Terms of a G.P.
If |𝑟| ≥ 1 then sum would be ±∞. However, if |𝑟| < 1 then sum would be finite.

We have obtained that 𝑆𝑛 = 𝑎(1−𝑟𝑛)
⁄

1−𝑟

We see that as 𝑛 approaches ∞, 𝑟𝑛 will approach 0. Thus, 𝑆∞ = 𝑎
⁄

1−𝑟

2.2.4 Recurring Decimals
Recurring decimals are a very interesting and nice example to demonstrate the infinite
G. P. and the value can be obtained by the formula derived in previous section. Consider a
recurring decimal ̇7.

. ̇7 = .777777…to ∞

= .7 + .07 + .007 + .0007 + ⋯

= 7
⁄

10 +
7
⁄

100 +
7
⁄

1000 + ⋯

= 7
⁄

10 +
7
⁄

102
+ 7
⁄

103
+ ⋯

= 7( 1
⁄

10 +
1
⁄

102
+ 1
⁄

103
+ ⋯)

= 7
⁄

9

2.2.5 Geometric Mean
Like arithmetic means; we also have geometric means. Say two numbers 𝑎 and 𝑏 are in G.P.
and 𝑥 is a geometric mean between them then by definition 𝑎, 𝑥, 𝑏 will be in G.P. Then,

𝑥
⁄

𝑎 =
𝑏
⁄

𝑥
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⇒ 𝑥2 = 𝑎𝑏 ⇒ 𝑥 = √


𝑎𝑏

If 𝐺1, 𝐺2, … , 𝐺𝑛 are 𝑛 geometric means between two numbers 𝑎 and 𝑏, then 𝐺1𝐺2 …𝐺𝑛 =
(√


𝑎𝑏)𝑛

Proof: 𝑏 is the 𝑛 + 2nd term. Thus, 𝑏 = 𝑎𝑟𝑛+1 where common ratio is 𝑟.

Thus, 𝐺1 = 𝑎𝑟, 𝐺2 = 𝑎𝑟2, ⋯ , 𝐺𝑛 = 𝑎𝑟𝑛

𝐺1𝐺2 …𝐺𝑛 = 𝑎𝑛𝑟1+2+⋯+𝑛 = 𝑎𝑛𝑟
𝑛(𝑛+1)
⁄

2

=√


(𝑎𝑏)𝑛

If 𝑎1, 𝑎2, … , 𝑎𝑛 are 𝑛 positive numbers in G.P. then their geometric mean is given by
𝐺 = (𝑎1𝑎2 …𝑎𝑛)

1
⁄

𝑛

Thus, first G.M. = 𝑎𝑟 = 𝑎(𝑏⁄𝑎)
1/(𝑛+1)

Second G.M. = 𝑎𝑟2 = 𝑎(𝑏⁄𝑎)
2/(𝑛+1)

⋯

𝑛th G.M. = 𝑎𝑟𝑛 = 𝑎(𝑏⁄𝑎)
𝑛/(𝑛+1)

2.2.6 Notes

1. Odd number of terms in a G.P. should be taken as ⋯ 𝑎
⁄

𝑟2 ,
𝑎
⁄

𝑟 , 𝑎, 𝑎𝑟, 𝑎𝑟
2, ⋯

2. Even number of terms in a G.P. should be taken as ⋯ , 𝑎⁄𝑟5 ,
𝑎
⁄

𝑟3 ,
𝑎
⁄

𝑟 , 𝑎𝑟, 𝑎𝑟
3, 𝑎𝑟5, ⋯

3. If 𝑎1, 𝑎2, … , 𝑎𝑛 and 𝑏1, 𝑏 − 2, … , 𝑏𝑛 be two G.P. of common ratios 𝑟1 and 𝑟2 then
𝑎1𝑏1, 𝑎2𝑏2, 𝑎3𝑏3, … and 𝑎1⁄𝑏1 ,

𝑎2
⁄

𝑏2 ,
𝑎3
⁄

𝑏3 , ⋯ also form G.P., where common ratios will be 𝑟1𝑟2
and 𝑟1⁄𝑟2 respectively.

4. Let 𝑎1, 𝑎2, 𝑎3, … be a G.P. of positive terms, then log 𝑎1, log 𝑎2, log 𝑎3, … will be an A.P.
and vice-versa.

Let 𝑎 be the first term and 𝑟 be the common ratio of the G.P. then 𝑎𝑖 = 𝑎𝑟𝑖−1. Now
log 𝑎𝑖 = log 𝑎 + (𝑖 − 1) log 𝑟 which represents 𝑖th term of an A.P. with first term as log 𝑎
and common difference log 𝑟.

Conversely, let us assume that log 𝑎1, log 𝑎2, log 𝑎3, … are in A.P. then 𝑎𝑖 = 𝑥𝑎+(𝑖−1)𝑑 =
𝑥𝑎𝑥𝑖−1𝑑 where 𝑥 is the base of the logarithm. This shows that 𝑎1, 𝑎2, 𝑎3,… will be in
G.P., whose first term is 𝑥𝑎 and whos ecommon ratio is 𝑥𝑑.

5. Increasing and decreasing G.P.

Case I: Let the first term 𝑎 be positive. Then if 𝑟 > 1, then it is an increasing G.P. but
if 0 < 𝑟 < 1 then it is a decreasing G.P.
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case II: Let the first term 𝑎 be negative. Then if 𝑟 > 1, then it is a decreasing G.P. but
if 0 < 𝑟 < 1 then it is an increasing G.P.

2.2.7 Arithmetico Geometric Series
If the termms of an A.P. are multiplied y corresponding terms of a G.P., then the new series
obtained is called an Arithmetico-Geometric series.

Exmaple: If the terms of the arithmetic series 2 + 5 + 8 + ⋯ are multiplied with the
corresponsing terms of the geometric series 𝑥 + 𝑥2 + 𝑥3 + ⋯ then the resulting arithmetico-
geometric series is 2𝑥 + 5𝑥2 + 8𝑥3 + ⋯

2.2.8 Sum of 𝑛 terms of an Arithmetico-Geometric Series
Let 𝑎1, 𝑎2, … , 𝑎𝑛 be an A.P. and 𝑏1, 𝑏2, … , 𝑏𝑛 be a G.P. Let 𝑑 be the common difference of
the A.P. and 𝑟 be the common ratio of the G.P. Also, let 𝑎 = 𝑎1 and 𝑏 = 𝑏1, then

𝑆𝑛 = 𝑎𝑏 + (𝑎 + 𝑑)𝑏𝑟 + (𝑎 + 2𝑑)𝑏𝑟2 + ⋯ + [𝑎 + (𝑛 − 1)𝑑]𝑏𝑟𝑛−1

𝑟𝑆𝑛 = 𝑎𝑏𝑟 + (𝑎 + 𝑑)𝑏𝑟2 + (𝑎 + 2𝑑)𝑏𝑟3 + ⋯ + [𝑎 + (𝑛 − 1)𝑑]𝑏𝑟𝑛

⇒ (1 − 𝑟)𝑆𝑛 = 𝑎𝑏 + 𝑑𝑏𝑟 + 𝑑𝑏𝑟62 + ⋯+ 𝑑𝑏𝑟𝑛−1 − [𝑎 + (𝑛 − 1)𝑑]𝑏𝑟𝑛

= 𝑎𝑏 + 𝑑𝑏𝑟(1 − 𝑟𝑛−1)
⁄

(1 − 𝑟)− [𝑎 + (𝑛 − 1)𝑑]𝑏𝑟𝑛

𝑆𝑛 =
𝑎𝑏
⁄

1 − 𝑟 +
𝑑𝑏𝑟(1 − 𝑟𝑛−1)
⁄

(1 − 𝑟)2
− [𝑎 + (𝑛 − 1)𝑑]𝑏𝑟𝑛
⁄

1 − 𝑟 (𝑟 ≠ 1)

If |𝑟| < 1, then lim
𝑛→∞

𝑟𝑛 = 0, therefore , sum of an infinite number of terms of an arithmetico-
geometric series is given by

𝑆∞ = 𝑎𝑏
⁄

1 − 𝑟 +
𝑑𝑏𝑟
⁄

(1 − 𝑟)2

2.3 Harmonic Progressions
Consider an A.P. then an H.P. is formed by terms given by reciprocal of terms of the
A.P. respectively. So if the terms of A.P. are 𝑎1, 𝑎2, … , 𝑎𝑛 then terms of H.P. are given by
1
⁄

𝑎1 ,
1
⁄

𝑎2 , ⋯ , 1
⁄

𝑎𝑛.

When we study H.P. and its properties we do that by studying the properties of the
corresponding A.P.

2.3.1 Harmonic Means
Numbers 𝐻1, 𝐻2, … , 𝐻𝑛 are said to be the 𝑛 H.M. between two numbers 𝑎 and 𝑏, if
𝑎, 𝐻1, 𝐻2, … , 𝐻𝑛, 𝑏 are in H.P. For example, 1⁄2 ,

1
⁄

3 ,
1
⁄

4 are the H.M. between 1 and 1⁄5 because

1, 1⁄2 ,
1
⁄

3 ,
1
⁄

4 ,
1
⁄

5 are in H.P.
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Let 𝑎 and 𝑏 be the two given quantities and 𝐻 be the H.M. between them. Then 𝑎, 𝐻, 𝑏 will
be in H.P.

∴ 1⁄𝑎,
1
⁄

𝐻 , 1⁄𝑏 will be in H.P.

1
⁄

𝐻 − 1
⁄

𝑎 =
1
⁄

𝑏 −
1
⁄

𝐻 ⇒ 𝐻 = 2𝑎𝑏
⁄

𝑎=𝑏

Let 𝐻1, 𝐻2, … , 𝐻𝑛 be the 𝑛 H.M. between two given quantities 𝑎 and 𝑏, and 𝑑 be the c.d. of
the corresponding A.P. Then 𝑎, 𝐻1, 𝐻2, … , 𝐻𝑛, 𝑏 will be in H.P.

∴ 1⁄𝑎,
1
⁄

𝐻1
, 1
⁄

𝐻2
, ⋯ , 1
⁄

𝐻𝑛
, 1⁄𝑏 will be in A.P.

1
⁄

𝑏 = 𝑡𝑛+2 = 1
⁄

𝑎 + (𝑛 + 1)𝑑 ⇒ 𝑑 = 𝑎−𝑏
⁄

𝑎𝑏(𝑛+1)

∴ 1
⁄

𝐻1
= 1
⁄

𝑎 + 𝑑 ⇒ 𝐻1 = 𝑎𝑏(𝑛+1)
⁄

𝑎+𝑛𝑏

𝐻2 = 𝑎𝑏(𝑛+1)
⁄

2𝑎+(𝑛−1)𝑏

⋯

𝐻𝑛 = 𝑎𝑏(𝑛+1)
⁄

𝑎𝑛+𝑏

2.4 Relation between A.M., G.M. and H.M.
Let 𝑎 and 𝑏 be two real, positive and unequal quantities and 𝐴, 𝐺 and 𝐻 be the single A.M.,
G.M. and H.M. between them respectively.

Then, 𝐴 = 𝑎+𝑏
⁄

2 , 𝐺 = √


𝑎𝑏, 𝐻 = 2𝑎𝑏
⁄

𝑎+𝑏

𝐴𝐻 = 𝑎𝑏 = 𝐺2 and thus 𝐴, 𝐺, 𝐻 form a G.P.

Similarly it can be probve that 𝐴 > 𝐺 > 𝐻

For equal 𝑎 and 𝑏, it can be easily verified that 𝐴 = 𝐺 = 𝐻

2.5 Problems
1. If 𝑛th term of a sequence is 2𝑛2 + 1, find the sequence. Is this seuquence in A.P.?

2. Find the first five terms of the sequence for which 𝑡1 = 1, 𝑡2 = 2 and 𝑡𝑛+2 = 𝑡𝑛 + 𝑡𝑛+1.

3. Write the sequence whose 𝑛th term is 3𝑛 + 5.

4. Write the sequence whose 𝑛th term is 2𝑛2 + 3.

5. Write the sequence whose 𝑛th term is 3𝑛
⁄

2𝑛+4.
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6. Write the first three terms of sequence defined by 𝑡1 = 2, 𝑡𝑛+1 = 2𝑡𝑛+1
⁄

𝑡𝑛+3 .

7. If 𝑛th term of a sequence is 4𝑛2 + 1, find the sequence. Is this sequence an A.P.?

8. If 𝑛th term of a sequence is 2𝑎𝑛 + 𝑏, where 𝑎, 𝑏 are constants, is this sequence an A.P.?

9. Find the 5th term of the sequence whose first three terms are 3, 3, 6 and each term
after the second is the sum of two preceding terms.

10. Consider the sequence defined by 𝑡𝑛 = 𝑎𝑛2 + 𝑏𝑛 + 𝑐. If 𝑡1 = 1, 𝑡2 = 5 and 𝑡3 = 11 then
find the value of 𝑡10.

11. Show that the seuquence 9, 12, 15, 18, … is an A.P. Find its 16𝑡ℎ term and the general
term.

12. Show that the sequence log 𝑎, log(𝑎𝑏), log(𝑎𝑏2), log(𝑎𝑏3), … is an A.P. Find its 𝑛th
term.

13. Find the sum to 𝑛 terms of the sequence ⟨𝑡𝑛⟩, where 𝑡𝑛 = 5 − 6𝑛, 𝑛 ∈ 𝑁 .

14. How many terms are there in the A.P. 3, 7, 11, … , 407?

15. If 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are in A.P. find the value of 𝑎 − 4𝑏 + 6𝑐 − 4𝑑 + 𝑒.

16. In a certain A.P. 5 times the 5th term is equal to 8 times the 8th term, then prove that
13th term is zero.

17. Find the term of the series 25, 22 3⁄4 , 20
1
⁄

2 ,18
1
⁄

4 , ⋯ which is numerically smallest positive
number.

18. A person was appointed in the pay scale of Rs. 700 − 40 − 1500. Find in how many
years he will reach the maximum of the scale.

19. Find the A.P. whose 7th and 13th terms are respectively 34 and 64.

20. Is 55 a term of the sequence 1, 3, 5, 7, …? If yes, find which term it is.

21. Find the first negative term of the sequence 2000, 1995, 1990, …

22. How many terms are identical in two arithmetic progressions 2, 4, 6, 8, … up to 100
terms and 3, 6, 9, … up to 80 terms.

23. Find the number of all positive integers of 3 digits which are divisible by 5.

24. Is 105 a term of the arithmetic progression 4, 9, 14, …?

25. Find the first negative term of the sequence 999, 995, 991, ….

26. Each of the series 3 + 5 + 7 + ⋯ and 4 + 7 + 10 + ⋯ is continued to 100 term. Find
how many terms are identical?

27. If 𝑚 times the 𝑚th term of an A.P. is equal to 𝑛 times the 𝑛th term, find its (𝑚+𝑛)th
term.
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28. If 𝑎, 𝑏, 𝑐 be the 𝑝th, 𝑞th and 𝑟th terms respectively of an A.P., prove that 𝑎(𝑞 − 𝑟)+
𝑏(𝑟 − 𝑝)+ 𝑐(𝑝 − 𝑞) = 0.

29. Find the number of integers between 100 and 1000 that are divisible by 7 and not
divisible by 7.

30. If 𝑎, 𝑏, 𝑐 be the 𝑝th, 𝑞th and 𝑟th terms respectively of an A.P., prove that (𝑎 − 𝑏)𝑟 +
(𝑏 − 𝑐)𝑝 + (𝑐 − 𝑎)𝑞 = 0.

31. The sum of three numbers in A.P. is 27 and the sum of their squares is 293. Find the
numbers.

32. The sum of four integers in A.P. is 24 and their product is 945. Find the numbers.

33. If the 𝑝th term of an A.P. is 𝑞 and the 𝑞th term is 𝑝, find the first term and common
difference. Also, show that (𝑝 + 𝑞)th term is zero.

34. For an A.P. show that 𝑡𝑚 + 𝑡2𝑛+𝑚 = 2𝑡𝑚+𝑛.

35. Divide 15 into three parts which are in A.P. and the sum of their squares is 83.

36. Three numbers are in A.P. Their sum is 27 and the sum of their squares is 275. Find
the numbers.

37. The sum of three numbers in A.P. is 12 and the sum of their cubes is 408. Find the
numbers.

38. Divide 20 into four parts which are in A.P. such that the product of first and fourth is
to product of second and third is 2 : 3.

39. The sum of three numbers in A.P. is −3 and their product is 8. Find the numbers.

40. Divide 32 into four parts which are in A.P. such that the ratio of product of extremes
to the product of means is 7 : 15.

41. If (𝑏 + 𝑐 − 𝑎)/𝑎, (𝑐 + 𝑎 − 𝑏)/𝑏, (𝑎 + 𝑏 − 𝑐)/𝑐 are in A.P. then prove that 1/𝑎, 1/𝑏, 1/𝑐
are also in A.P.

42. If 𝑎, 𝑏, 𝑐 ∈ 𝑅+ form an A.P., then prove that 𝑎 + 1/𝑏𝑐, 𝑏 + 1/𝑐𝑎, 𝑐 + 1/𝑎𝑏 are also in
A.P.

43. If 𝑎, 𝑏, 𝑐 are in A. P., then prove that 𝑎2(𝑏 + 𝑐), 𝑏2(𝑐 + 𝑎), 𝑐2(𝑎 + 𝑏) are also in A.P.

44. If 𝑎, 𝑏, 𝑐 are in A.P., then prove that 1
⁄

√


𝑏+√


𝑐 ,
1
⁄

√


𝑐+√


𝑎,
1
⁄

√


𝑎+√


𝑏 are also in A.P.

45. If 𝑎, 𝑏, 𝑐 are in A.P., then prove that 𝑎(1⁄𝑏 +
1
⁄

𝑐), 𝑏(
1
⁄

𝑐 +
1
⁄

𝑎), 𝑐(
1
⁄

𝑎 +
1
⁄

𝑏) are also in A.P.

46. If (𝑏 − 𝑐)2, (𝑐 − 𝑎)2, (𝑎 − 𝑏)2 are in A.P. then prove that 1
⁄

𝑏−𝑐,
1
⁄

𝑐−𝑎,
1
⁄

𝑎−𝑏 are also in A.P.

47. If 𝑎, 𝑏, 𝑐 are in A.P. then prove that 𝑏 + 𝑐, 𝑐 + 𝑎, 𝑎 + 𝑏 are also in A.P.

48. If 𝑎2, 𝑏2, 𝑐2 are in A.P. then prove that 1
⁄

𝑏+𝑐 ,
1
⁄

𝑐+𝑎,
1
⁄

𝑎+𝑏 are in A.P.
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49. If 𝑎, 𝑏, 𝑐 are in A.P., show that 2(𝑎 − 𝑏) = 𝑎 − 𝑐 = 2(𝑏 − 𝑐).

50. If 𝑎, 𝑏, 𝑐 are in A.P., then prove that (𝑎 − 𝑐)2 = 4(𝑏2 − 𝑎𝑐).

51. In an A.P. if 𝑆𝑛 = 𝑡1 + 𝑡2 + ⋯ + 𝑡𝑛 (𝑛 odd), 𝑆2 = 𝑡2 + 𝑡4 + ⋯ + 𝑡𝑛−1, then find the
value of 𝑆1/𝑆2 in terms of 𝑛.

52. Find the degree of the equation (1 + 𝑥)(1 + 𝑥6)(1 + 𝑥11)⋯ (1 + 𝑥101).

53. Prove that a sequence is an A.P. if the sum of its terms is of the form 𝐴𝑛2 + 𝐵𝑛,
where 𝐴, 𝐵 are constants.

54. If the sequence 𝑎1, 𝑎2, … , 𝑎𝑛 form an A.P., then prove that 𝑎21 − 𝑎22 + 𝑎23 − 𝑎24 + ⋯ +
𝑎22𝑛−1 − 𝑎22𝑛 =

𝑛
⁄

2𝑛−1 (𝑎
2
1 − 𝑎22𝑛).

55. Find the sum of first 24 terms of the A.P. 𝑎1, 𝑎2, 𝑎3, … , 𝑎24, if it is known that
𝑎1 + 𝑎5 + 𝑎10 + 𝑎15 + 𝑎20 + 𝑎24 = 225

56. If the arithmetic progression whose common difference is non-zero, the sum of first 3𝑛
terms is equal to next 𝑛 terms. Then, find the ratio of sum of first 2𝑛 terms to the sum
of next 2𝑛 terms.

57. If the sum of 𝑛 terms of a series be 5𝑛2 + 3𝑛, find its 𝑛th term. Are the terms of this
series in A.P.?

58. Find the sum of the series (𝑎 + 𝑏)2 + (𝑎2 + 𝑏2)+ (𝑎 − 𝑏)2 + ⋯ to 𝑛 terms.

59. Find 1 − 3 + 5 − 7 + 9 − 11 + ⋯ to 𝑛 terms.

60. The interior angles of a polygon are in A.P. The smallest angle is 120°and the commnon
difference is 5°. Find the number of sides of the polygon.

61. 25 trees are planted in a straight line at intervals of 5 meters. To water them the
gardener must bring water for each tree separately from a well 10 meters from the first
tree. How far he will have to travel to water all the trees beginning with the first if he
starts from the well.

62. If 𝑎 be the first term of an A.P. and the sum of its first 𝑝 terms is equal to zero, show
that the sum of the next 𝑞 terms is −𝑎(𝑝+𝑞)

⁄

𝑝−1 𝑞.

63. The sum of the first 𝑝 terms of an A.P. is equal to the sum of its first 𝑞 terms, prove
that the sum of its first (𝑝 + 𝑞) terms is zero.

64. Prove that the sum of latter half of 2𝑛 terms of a series in A.P. is equal to the one
third of the sum of first 3𝑛 terms.

65. If 𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑝 be the sum of 𝑛 terms of arithmetic progressions whose first terms
are respectively 1, 2, 3, … and common differences are 1, 2, 3, … prove that

𝑆1 + 𝑆2 + 𝑆3 + ⋯+ 𝑆𝑝 =
𝑛𝑝
⁄

4 (𝑛 + 1) (𝑝 + 1)
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66. If 𝑎,𝑏 and 𝑐 be the sum of 𝑝, 𝑞 and 𝑟 terms rspectively of an A.P., prove that

𝑎
⁄

𝑝 (𝑞 − 𝑟)+ 𝑏
⁄

𝑞 (𝑟 − 𝑝)+ 𝑐
⁄

𝑟 (𝑝 − 𝑞) = 0

67. If the sum of 𝑚 terms of an A.P. is equal to half the sum of (𝑚+ 𝑛) terms and is also
equal to half the sum of (𝑚+𝑝) terms, prove that (𝑚+𝑛)( 1

⁄

𝑚−1
⁄

𝑝) = (𝑚+𝑝)( 1
⁄

𝑚− 1
⁄

𝑛).

68. If there are (2𝑛 + 1) terms in an A.P., then prove that the ratio of sum of odd terms
and the sum of even terms is 𝑛 + 1 : 𝑛.

69. The sum of 𝑛 terms of two series in A.P. are in the ration (3𝑛 − 13) : (5𝑛 + 21). Find
the ratio of their 24th terms.

70. If the 𝑚th term of an A.P. is 1⁄𝑛 and 𝑛th term of an A.P. is 1⁄𝑚 then prove that the sum

to 𝑚𝑛 terms is 𝑚𝑛+1
⁄

2 .

71. If the sum of 𝑚 terms of an A.P.is 𝑛 and the sum of its 𝑛 terms is 𝑚, show that sum
of (𝑚+ 𝑛) terms is −(𝑚+ 𝑛).

72. If 𝑆 be the sum of 2𝑛 + 1 terms of an A.P., and 𝑆1 that of alternate terms beginning
with the first, then show that 𝑆⁄𝑆1

= 2𝑛+1
⁄

𝑛+1

73. If 𝑎, 𝑏, 𝑐 be the 1st, 3rd, 𝑛th terms respectively of an A.P., prove that the sum of 𝑛
terms is 𝑐+𝑎⁄2 + 𝑐2−𝑎2
⁄

𝑏−𝑎 .

74. The sum of 𝑛 terms of two series in A.P. are in ratio (3𝑛 + 8) : (7𝑛 + 15). Find the
ratio of their 12th terms.

75. If the ratio of the sum of 𝑚 terms and 𝑛 terms of an A.P. is 𝑚2 : 𝑛2, prove that the
ratio of its 𝑚th and 𝑛th term wil be (2𝑚 − 1) : (2𝑛 − 1).

76. How many terms are in the G.P. 5, 20, 80, …, 5120?

77. How many terms are in the G.P. 0.03, 0.06, 0.12, … , 3.84?

78. A boy agrees to work at the rate of one rupee the first day, two rupee the second day,
four rupees the third day, eight rupees the fourth day and so on. How much would he
get on 20𝑡ℎ day?

79. The population of a city in January 1987 was 20,000. It increased at the rate of 2%
per annum. Find the population of the city in January 1997.

80. The sum of 𝑛 terms of a sequence is 2𝑛 − 1, find its 𝑛th term. Is the sequence in G.P.?

81. If the fifth term of a G.P. is 81 and second term is 24. Find the G.P.

82. The seventh term of a G.P. is 8 times the fourth term. Find the G.P. when its 5th
term is 48.

83. If the 5th and 8th terms of a G.P. be 48 and 384 respectively, find the G.P
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84. If the 6th and 10th terms of a G.P. are 1⁄16 and 1
⁄

256 respectively, find the G.P.

85. If the 𝑝th, 𝑞th and 𝑟th terms of a G.P. be 𝑎, 𝑏, 𝑐(𝑎, 𝑏, 𝑐 > 0), then prove that
(𝑞 − 𝑟) log 𝑎 + (𝑟 − 𝑝) log 𝑏 + (𝑝 − 𝑞) log 𝑐 = 0.

86. If the (𝑝 + 𝑞)th term of a G.P. is 𝑎 and the (𝑝 − 𝑞)th term is 𝑏, show that its 𝑝th
term is √


𝑎𝑏.

87. If the 𝑝th, 𝑞th and 𝑟th terms of a G.P. be 𝑥, 𝑦 and 𝑧 respectively, prove that
𝑥𝑞−𝑟.𝑦𝑟−𝑝.𝑧𝑝−𝑞 = 1.

88. The first term of a G.P. is 1. The sum of third and fifth terms is 90. Find the common
ratio of G.P.

89. Fifth term of a G.P. is 2. Find the product of its first nine terms.

90. The fourth, seventh and last term of a G.P. are 10, 80 and 2560 respectively. Find the
first term and number of terms in the G.P.

91. Three numbers are in G.P. If we double the middle term they form an A.P. Find the
common ratio of the G.P.

92. If 𝑝, 𝑞 and 𝑟 are in A.P. show that 𝑝th, 𝑞th and 𝑟th term of a G.P. are in G.P.

93. If 𝑎, 𝑏, 𝑐 and 𝑑 are in G.P., show that (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑑)2 = (𝑎2 + 𝑏2 + 𝑐2)(𝑏2 + 𝑐2 + 𝑑2).

94. Three non-zero numbers 𝑎, 𝑏 and 𝑐 are in A.P. Increasing 𝑎 by 1 or increading 𝑐 by
2,the numbers are in G.P. Then find 𝑏.

95. Three numbers are in G.P. whose sum is 70. If the extremes be each multiplied by 4
and the mean by 5, they will be in A.P. Find the numbers.

96. If the product of three numbers in G.P. be 216 and their sum is 19, find the numbers.

97. A number consists of three digits in G.P. The sum of the right hand and left hand
digits exceed twice the middle digit by 1 and the sum of left hand and middle digit is
two-third of the sum of the middle and right hand digits. Find the number.

98. In a set of four numbers, the first three are in G.P. and the last three are in A.P. with
a common difference of 6. If the first number is same as fourth, find the four numbers.

99. The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the
numbers.

100. The prodduct of three consecutive terms of a G.P. is −64 and the first term is four
times the third. Find the terms.

101. Three numbers whose sum is 15 are in A.P. If 1, 4, 19 be added to them respectively
the resulting numbers are in G.P. Find the numbers.

102. From three numbers in G.P. other three numbers in G.P. are subtracted. Resulting
numbers are found to be in G.P. again. Prove that the three sequences have the same
common ratio.
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103. If 𝑎, 𝑏, 𝑐, 𝑑 are in G.P., show that (𝑏 − 𝑐)2 + (𝑐 − 𝑎)2 + (𝑑 − 𝑏)2 = (𝑎 − 𝑑)2.

104. If 𝑎,𝑏,𝑐,𝑑 are in G. P., then show that (𝑎2 + 𝑏2 + 𝑐2)(𝑏2 + 𝑐2 + 𝑑2) = (𝑎𝑑 + 𝑏𝑐 + 𝑐𝑑)2.

105. If 𝑎𝑥 = 𝑏𝑦 = 𝑐𝑧 where 𝑥, 𝑦, 𝑧 are in G.P., show that log𝑏 𝑎 = log𝑐 𝑏.

106. If the continued product of three numbers in a G.P. is 216 and the sum of their
products in pairs is 156, find the numbers.

107. If 𝑎, 𝑏, 𝑐, 𝑑 are in G.P., show that (𝑎 + 𝑏)2, (𝑏 + 𝑐)2, (𝑐 + 𝑑)2 are in G.P.

108. If 𝑎, 𝑏, 𝑐, 𝑑 are in G.P., show that (𝑎 − 𝑏)2, (𝑏 − 𝑐)2, (𝑐 − 𝑑)2 are in G.P.

109. If 𝑎, 𝑏, 𝑐, 𝑑 are in G.P., show that 𝑎2 + 𝑏2 + 𝑐2, 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑑, 𝑏2 + 𝑐2 + 𝑑2 are in G.P.

110. If 𝑎, 𝑏, 𝑐, 𝑑 are in G.P., show that 1
⁄

(𝑎+𝑏)2 ,
1
⁄

(𝑏+𝑐)2 ,
1
⁄

(𝑐+𝑑)2 are in G.P.

111. If 𝑎, 𝑏, 𝑐, 𝑑 are in G.P., show that 𝑎(𝑏 − 𝑐)3 = 𝑑(𝑎 − 𝑏)3.

112. If 𝑎, 𝑏, 𝑐, 𝑑 are in G.P., show that (𝑎 + 𝑏 + 𝑐 + 𝑑)2 = (𝑎 + 𝑏)2 + (𝑐 + 𝑑)2 + 2(𝑏 + 𝑐)2.

113. If 𝑎, 𝑏, 𝑐 are in G.P., show that 𝑎2𝑏2𝑐2( 1
⁄

𝑎3 +
1
⁄

𝑏3 +
1
⁄

𝑐3) = 𝑎3 + 𝑏3 + 𝑐3.

114. If 𝑎, 𝑏, 𝑐 are in G.P., show that (𝑎2 − 𝑏2)(𝑏2 + 𝑐2) = (𝑏2 − 𝑐2)(𝑎2 + 𝑏2).

115. If 𝑎, 𝑏, 𝑐 are in G.P., show that log 𝑎, log 𝑏, log 𝑐 are in A.P.

116. Find 1 + 1
⁄

2 +
1
⁄

4 +
1
⁄

8 + ⋯ to 𝑛 terms.

117. Find 1 + 2 + 4 + 8 + ⋯ to 12 terms.

118. Find 1 − 3 + 9 − 27 + ⋯ to 9 terms.

119. Find 1 + 1
⁄

3 +
1
⁄

9 +
1
⁄

27⋯ to 𝑛 terms.

120. Find the sum of 𝑛 terms of the series (𝑎 + 𝑏)+ (𝑎2 + 2𝑏)+ (𝑎3 + 3𝑏)+⋯ to 𝑛 terms.

121. A man agrees to work at the rate of one dollar the first day, two dollars the second
day, four dollars the third day, eight dollars the fourth day and so on. How much
would he get at the end of 120 days.

122. Find the sum to 𝑛 terms of the series 8 + 88 + 888 + ⋯.

123. Find the sum to 𝑛 terms of the series 6 + 66 + 666 + ⋯.

124. Find the sum to 𝑛 terms of the series 4 + 44 + 444 + ⋯.

125. Find the sum to 𝑛 terms of the series .5 + .55 + .555 + ⋯.

126. Find 1 − 1
⁄

2 +
1
⁄

4 −
1
⁄

8 to 𝑛 terms.
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127. If you had a choice of a salary of a salary of $1000 a day for a month of 31days or $1
for the first day, doubling every day which choice would you make?

128. How many terms of the series 1 + 3 + 32 + 33 + ⋯ must be taken to make 3280?

129. Find the least value of 𝑛 for which 1 + 3 + 32 + ⋯+ 3𝑛−1 > 1000.

130. Find 1 + 1
⁄

2 +
1
⁄

4 +
1
⁄

8 to ∞.

131. A person starts collecting $1 first day, $3 second day, $9 third day and so on. What
will be his collection in 20 days.

132. Find the sum of (𝑥2 + 1
⁄

𝑥2 + 2)+ (𝑥4 + 1
⁄

𝑥4 + 5)+ (𝑥6 + 1
⁄

𝑥6 + 8)+⋯ to 𝑛 terms.

133. How many terms of the series 1 + 2 + 22 + ⋯ must be taken to make 511?

134. Find the least value of 𝑛 such that 1 + 2 + 22 + ⋯+ 2𝑛−1 ≥ 300.

135. Determine the no. of terms of a G.P. if 𝑎1 = 3, 𝑎𝑛 = 96 and 𝑆𝑛 = 189.

136. Express 0.4 ̇2 ̇3 as a rational number.

137. Find 1⁄5 +
1
⁄

7 +
1
⁄

52 +
1
⁄

72 to ∞.

138. Prove that the sum of 𝑛 terms of the series 11 + 103 + 1005 + ⋯ is 10⁄9 (10
𝑛 − 1)+ 𝑛2.

139. Find the sum to 𝑛 terms of the series (𝑥 + 1
⁄

𝑥)
2
+ (𝑥2 + 1
⁄

𝑥2)
2
+ (𝑥3 + 1
⁄

𝑥3)
2
+ ⋯.

140. If 𝑆 be the sum, 𝑃 be the product and 𝑅 the sum of reciprocals of 𝑛 terms in G.P.,
prove that 𝑃2 = (𝑆⁄𝑅)

𝑛
.

141. Find 1 + 𝑥
⁄

1+𝑥 +
𝑥2
⁄

(1+𝑥)2 + ⋯ to ∞ if 𝑥 > 0.

142. Prove that in an infinite G.P. whose common ratio is 𝑟 is numerically less than one, the
ratio of any term to the sum of all the succeediing terms is 1−𝑟⁄𝑟 .

143. If 𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑝 are the sum of infinite geometric series whose first terms are
1, 2, 3, … , 𝑝 and whose common ratios are 1⁄2 ,

1
⁄

3 ,
1
⁄

4 , ⋯ , 1
⁄

𝑝+1 respectively, prove that
𝑆1 + 𝑆2 + 𝑆3 + ⋯+ 𝑆𝑝 = 𝑝(𝑝 + 3)/2.

144. If 𝑥 = 1 + 𝑎 + 𝑎2 + 𝑎3 +⋯ to∞ and 𝑦 = 1 + 𝑏 + 𝑏2 + 𝑏3 +⋯ to∞, show that 1 + 𝑎𝑏 +
𝑎2𝑏2 + 𝑎3𝑏3 + ⋯ to∞ = 𝑥𝑦
⁄

𝑥+𝑦−1 , where 0 < 𝑎 < 1 and 0 < 𝑏 < 1.

145. Find the sum to infinity for the series 1 + (1 + 𝑎)𝑟 + (1 + 𝑎 + 𝑎2)𝑟2 + ⋯ , where
0 < 𝑎 < 1 and 0 < 𝑟 < 1.
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146. After striking the floor a certain ball rebound to 4⁄5th of the height from which it has
fallen. Find the total distance it travels before coming to rest if it is gently dropped
from a height of 120 meters.

147. If 𝑎 be the first term and 𝑏 be the 𝑛th term and 𝑝 be the product of 𝑛 terms of a G.P.,
show that 𝑝2 = (𝑎𝑏)𝑛.

148. Show that the ratio of sum of 𝑛 terms of two G.P.'s having the same common ratio is
equal to the ratio of their 𝑛th terms.

149. If 𝑆1, 𝑆2, 𝑆3 be the sum of 𝑛, 2𝑛, 3𝑛 terms respectively of a G.P. show that (𝑆2−𝑆1)2 =
𝑆1(𝑆3 − 𝑆2).

150. If 𝑆𝑛 denotes the sum of 𝑛 terms of a G.P.,whose first term is 𝑎 and common ratio is 𝑟,
find 𝑆1 + 𝑆2 + ⋯+ 𝑆2𝑛−1.

151. The sum of 𝑛 terms of a series is 𝑎.2𝑛 − 𝑏, find its 𝑛th term. Are the terms of this
series in G.P.

152. Find 1
⁄

1+𝑥2 [1 +
2𝑥
⁄

1+𝑥2 + ( 2𝑥
⁄

1+𝑥2)
2
+ ⋯ to∞] where 𝑥 ≥ 0.

153. The sum of an infinite G.P. whose common ratio is numerically less than 1 is 32 and
the sum of their first two terms is 24. Find the terms of the G.P.

154. The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the
squares of its terms to infinity is 16⁄3 , find the G.P.

155. If 𝑝(𝑥) = (1 + 𝑥2 + 𝑥4 + ⋯+ 𝑥2𝑛−2)/(1 + 𝑥 + 𝑥2 + ⋯+ 𝑥𝑛−1) is a polynomial in 𝑥,
then find the possible values of 𝑛.

156. If 𝑥 = 𝑎 + 𝑎
⁄

𝑟 +
𝑎
⁄

𝑟2 + ⋯∞, 𝑦 = 𝑏 − 𝑏
⁄

𝑟 +
𝑏
⁄

𝑟2 − ⋯∞ and 𝑧 = 𝑐 + 𝑐
⁄

𝑟2 +
𝑐
⁄

𝑟4 + ⋯∞, then prove

that 𝑥𝑦⁄𝑧 = 𝑎𝑏
⁄

𝑐 .

157. A G.P. consists of an even number of terms. If the sum of all terms is 5 times the sum
of the terms occupying odd places, then find the common ratio.

158. If sum of 𝑛 terms of a G.P. is 3 − 3𝑛+1
⁄

42𝑛 , then find the common ratio.

159. In an infinite G.P. whose terms are all positive, the common ratio being less than
unity, prove that any term >, =, < the sum of all the succeeding terms according as
the common ratio <, =, > 1
⁄

2.

160. Prove that (666…𝑛digits)2 + 888…𝑛digits = 444…2𝑛digits.

161. Find the sum (𝑥 + 𝑦)+ (𝑥2 + 𝑥𝑦 + 𝑦2)+ (𝑥3 + 𝑥2𝑦 + 𝑥𝑦2 + 𝑦3)+⋯ to 𝑛 terms.

162. If the sum of the series 
∞
∑
𝑛=0

𝑟𝑛, |𝑟| < 1 is 𝑆, then find the sum of the series 
∞
∑
𝑛=0

𝑟2𝑛.
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163. If for a G.P. 𝑡𝑚 = 1
⁄

𝑛2 and 𝑡𝑛 = 1
⁄

𝑚2 then find the term 𝑡𝑚+𝑛
⁄

2
.

164. If 𝑎, 𝑏, 𝑐 be three successive terms of a G.P. with common ratio 𝑟 and 𝑎 < 0 satisfying
the condition 𝑐 > 4𝑏 − 3𝑎, then prove that 𝑟 > 3 or 𝑟 < 1.

165. If (1 − 𝑘)(1 + 2𝑥 + 4𝑥2 + 8𝑥3 + 16𝑥4 + 32𝑥5) = 1 − 𝑘6, where 𝑘 ≠ 1, then find 𝑘⁄𝑥.

166. If (𝑎2 + 𝑏2 + 𝑐2)(𝑏2 + 𝑐2 + 𝑑2) ≤ (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑑)2 , where 𝑎, 𝑏, 𝑐, 𝑑 are non-zero real
numbers, then show that they are in G.P.

167. If 𝑎1, 𝑎2, … , 𝑎𝑛 are 𝑛 non-zero numbers such that (𝑎21 + 𝑎22 + ⋯ + 𝑎2𝑛−1)(𝑎22 + 𝑎23 +
⋯ + 𝑎2𝑛) ≤ (𝑎1𝑎2 + 𝑎2𝑎3 + ⋯ + 𝑎𝑛−1𝑎𝑛)2 , then show that 𝑎1, 𝑎2, … , 𝑎𝑛 are in G.P.

168. 𝛼, 𝛽 be the roots of 𝑥2 − 3𝑥 + 𝑎 = 0 and 𝛾, 𝛿 be the roots of 𝑥2 − 12𝑥 + 𝑏 = 0 and the
numbers 𝛼, 𝛽, 𝛾, 𝛿 form an increasing G.P., then find the values of 𝑎 and 𝑏.

169. There are 4𝑛 + 1 terms in a certain sequence of which the first 2𝑛 + 1 terms are in
A.P. of common difference 2 and the last 2𝑛 + 1 terms are in G.P. of common ratio 1⁄2 .
If the middle terms of both the A.P. and G.P. are same then find the mid term of the
sequence.

170. If 𝑓(𝑥) = 2𝑥 + 1 and three unequal numbers 𝑓(𝑥), 𝑓(2𝑥), 𝑓(4𝑥) are in G.P, then find
the number of values for 𝑥.

171. Three distinct real numbers, 𝑎, 𝑏, 𝑐 are in G.P. such that 𝑎 + 𝑏 + 𝑐 = 𝑥𝑏, then show
that 𝑥 < −1 or 𝑥 > 3.

172. If 𝑥 =
∞
∑
𝑛=0

𝑎𝑛, 𝑦 =
∞
∑
𝑛=0

𝑏𝑛, 𝑧 =
∞
∑
𝑛=0

𝑐𝑛 where 𝑎, 𝑏, 𝑐 are in A.P., such that |𝑎| < 1, |𝑏| <

1, |𝑐| < 1, then show that 1⁄𝑥,
1
⁄

𝑦 ,
1
⁄

𝑧 are in A.P. as well.

173. Given that 0 < 𝑥 < 𝜋
⁄

4 ,
𝜋
⁄

4 < 𝑦 < 𝜋
⁄

2 and 
∞
∑
𝑘=0

(−1)𝑘 tan2𝑘 𝑥 = 𝑝,
∞
∑
𝑘=0

(−1)𝑘 cot2𝑘 𝑦 = 𝑞

then prove that 
∞
∑
𝑘=0

tan2𝑘 𝑥 cot2𝑘 𝑦 is 1
⁄

1
⁄

𝑝+
1
⁄

𝑞−
1
⁄

𝑝𝑞

174. An equilateral triangle is drawn by joining the mid-points of a given equilateral triangle.
A third equilateral triangle is drawn inside the second in the same manner and the
process is continued indefinitely. If the side of first equilateral triangle is 31/4 inch,
then find the sum of areas of all these triangles.

175. If 𝑆 = 𝑒𝑥𝑝{(1 + | cos 𝑥|+ cos2 𝑥 + | cos3 𝑥|+ cos4 𝑥⋯ to∞) log𝑒 4} satisfies the roots
of the equation 𝑡2 − 20𝑡 + 64 = 0 for 0 < 𝑥 < 𝜋 then find the values of 𝑥.

176. If 𝑆 ⊂ (−𝜋, 𝜋) , denote the set of values of 𝑥 satisfying the equation

81+| cos𝑥|+cos
2 𝑥+| cos3 𝑥|+⋯ to∞ = 43 then find the value of 𝑆.
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177. If 0 < 𝑥 < 𝜋
⁄

2 and 2sin
2 𝑥+sin4 𝑥+⋯ to∞ satisfies the roots of the equation 𝑥2−9𝑥+8 = 0,

then find the value of cos 𝑥/(cos 𝑥 + sin 𝑥).

178. If 𝑆𝜆 =
∞
∑
𝑟=0

1
⁄

𝜆𝑟 , then find 
𝑛
∑
𝜆=1

(𝜆 − 1)𝑆𝜆.

179. If 𝑎, 𝑏, 𝑐 are in A.P. then prove that 2𝑎𝑥+1, 2𝑏𝑥+1, 2𝑐𝑥+1 are in G.P. ∀𝑥 ≠ 0.

180. If 𝑎+𝑏𝑒
𝑥
⁄

𝑎−𝑏𝑒𝑥 =
𝑏+𝑐𝑒𝑥
⁄

𝑏−𝑐𝑒𝑥 =
𝑐+𝑑𝑒𝑥
⁄

𝑐−𝑑𝑒𝑥 then prove that 𝑎, 𝑏, 𝑐, 𝑑 are in G.P.

181. If 𝑥, 𝑦, 𝑧 are in G.P. and tan−1 𝑥, tan−1 𝑦, tan−1 𝑧 are in A.P. then prove that 𝑥 = 𝑦 = 𝑧
but their common values are not necessarily zero.

182. If 𝑎, 𝑏, 𝑐 are three unequal numbers such that 𝑎, 𝑏, 𝑐 are in A.P. and 𝑏 − 𝑎, 𝑐 − 𝑏, 𝑎 are
in G.P. then prove that 𝑎 : 𝑏 : 𝑐 = 1 : 2 : 3.

183. The sides 𝑎,𝑏,𝑐 of a triangle are in G.P. such that log 𝑎 − log 2𝑏, log 2𝑏 − log 3𝑐, log 3𝑐 −
log 𝑎 are in A.P., then prove that △𝐴𝐵𝐶 is an obtuse angled triangle.

184. If the roots of the equation 𝑎𝑥3+𝑏𝑥2+𝑐𝑥+𝑑 = 0 be in G.P. then prove that 𝑐3𝑎 = 𝑏3𝑑.

185. Find the 100th term of the sequence 1, 1⁄3 ,
1
⁄

5 ,
1
⁄

7 , ⋯.

186. If 𝑝th term of an H.P. is 𝑞𝑟, and 𝑞th term is 𝑟𝑝, prove that 𝑟th term is 𝑝𝑞.

187. If the 𝑝th, 𝑞th and 𝑟th terms of an H.P. be respectively 𝑎, 𝑏 and 𝑐, then prove that
(𝑞 − 𝑟)𝑏𝑐 + (𝑟 − 𝑝)𝑐𝑎 + (𝑝 − 𝑞)𝑎𝑏 = 0.

188. If 𝑎, 𝑏, 𝑐 are in H.P., prove that 𝑎−𝑏⁄𝑏−𝑐 =
𝑎
⁄

𝑐.

189. If 𝑎, 𝑏, 𝑐, 𝑑 are in H.P., then, prove that 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑑 = 3𝑎𝑑.

190. If 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 are in H.P., prove that 𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥3𝑥4 + ⋯ + 𝑥𝑛−1𝑥𝑛 =
(𝑛 − 1)𝑥1𝑥𝑛.

191. If 𝑎, 𝑏, 𝑐 are in H.P., show that 𝑎
⁄

𝑏+𝑐 ,
𝑏
⁄

𝑐+𝑎,
𝑐
⁄

𝑎+𝑏 are in H.P.

192. If 𝑎2, 𝑏2, 𝑐2 are in A.P. show that 𝑏 + 𝑐, 𝑐 + 𝑎, 𝑎 + 𝑏 are in H.P.

193. Find the sequence whose 𝑛th term is 1
⁄

3𝑛−2 . Is this sequence an H.P.?

194. If 𝑚th term of an H.P. be 𝑛 and 𝑛th term be 𝑚, prove that (𝑚+ 𝑛)th term = 𝑚𝑛
⁄

𝑚+𝑛
and (𝑚𝑛)th term = 1.

195. The sum of three rational numbers in H.P. is 37 and the sum of their reciprocals is 1⁄4 ,
find the numbers.

196. If 𝑎, 𝑏, 𝑐 are in H.P., prove that 1
⁄

𝑏−𝑎 +
1
⁄

𝑏−𝑐 =
1
⁄

𝑎 +
1
⁄

𝑐.
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197. If 𝑎, 𝑏, 𝑐 are in H.P., prove that 𝑏+𝑎⁄𝑏−𝑎 +
𝑏+𝑐
⁄

𝑏−𝑐 = 2.

198. If 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 are in H.P., prove that 𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥3𝑥4 + 𝑥4𝑥5 = 4𝑥1𝑥5.

199. If 𝑥1, 𝑥2, 𝑥3, 𝑥4 are in H.P., prove that (𝑥1 − 𝑥3)(𝑥2 − 𝑥4) = 4(𝑥1 − 𝑥2)(𝑥3 − 𝑥4).

200. If 𝑏 + 𝑐, 𝑐 + 𝑎, 𝑎 + 𝑏 are in H.P., prove that 𝑎
⁄

𝑏+𝑐 ,
𝑏
⁄

𝑐+𝑎,
𝑐
⁄

𝑎+𝑏 are in A.P.

201. If 𝑏 + 𝑐, 𝑐 + 𝑎, 𝑎 + 𝑏 are in H.P., prove that 𝑎2, 𝑏2, 𝑐2 are in A.P.

202. If 𝑎, 𝑏, 𝑐 are in A.P., prove that 𝑏𝑐
⁄

𝑎𝑏+𝑎𝑐 ,
𝑐𝑎
⁄

𝑏𝑐+𝑎𝑏 ,
𝑎𝑏
⁄

𝑐𝑎+𝑐𝑏 are in H.P.

203. If 𝑎, 𝑏, 𝑐 are in H.P., prove that 𝑎
⁄

𝑏+𝑐−𝑎,
𝑏
⁄

𝑐+𝑎−𝑏,
𝑐
⁄

𝑎+𝑏−𝑐 are in H.P.

204. If 𝑎, 𝑏, 𝑐 are in H.P., prove that 𝑎
⁄

𝑏+𝑐 ,
𝑏
⁄

𝑐+𝑎,
𝑐
⁄

𝑎+𝑏 are in H.P.

205. If 𝑎, 𝑏, 𝑐 are in A.P., and 𝑥, 𝑦, 𝑧 are in G.P.; show that 𝑥𝑏−𝑐.𝑦𝑐−𝑎.𝑧𝑎−𝑏 = 1.

206. If 𝑝th, 𝑞th, 𝑟th and 𝑠th term of an A.P. be in G.P., prove that 𝑝 − 𝑞, 𝑞 − 𝑟, 𝑟 − 𝑠 are in
G.P.

207. If 𝑝th, 𝑞th and 𝑟th terms of an A.P. and G.P. both be 𝑎, 𝑏 and 𝑐, show that
𝑎𝑏−𝑐𝑏𝑐−𝑎𝑐𝑎−𝑏 = 1.

208. If 𝑎, 𝑏, 𝑐 be in A.P. and 𝑏, 𝑐, 𝑑 be in H.P., prove that 𝑎𝑑 = 𝑏𝑐.

209. If 𝑎𝑥 = 𝑏𝑦 = 𝑐𝑧 and 𝑎, 𝑏, 𝑐 are in G.P., show that 𝑥, 𝑦, 𝑧 are in H.P.

210. If 𝑥+𝑦⁄2 , 𝑦, 𝑦+𝑧⁄2 be in H.P., show that 𝑥, 𝑦, 𝑧 are in G.P.

211. If 𝑥, 𝑦, 𝑧 be in G.P., and 𝑥 + 𝑎, 𝑦 + 𝑎, 𝑧 + 𝑎 be in H.P., prove that 𝑎 = 𝑦.

212. If three positive numbers 𝑎, 𝑏, 𝑐 are in A.P., G.P. and H.P. as well, then find their
values.

213. If 𝑎, 𝑏, 𝑐 be in A.P., 𝑏, 𝑐, 𝑑 be in G.P. and 𝑐, 𝑑, 𝑒 be in H.P., prove that 𝑎, 𝑐, 𝑒 are in G.P.

214. If 𝑎, 𝑏, 𝑐 be in A.P. and 𝑎2, 𝑏2, 𝑐2 be in H.P., prove that −𝑎
⁄

2 , 𝑏, 𝑐 are in G.P. or else
𝑎 = 𝑏 = 𝑐.

215. If 𝑎, 𝑏, 𝑐 are the 𝑝th, 𝑞th and 𝑟th terms of boht an A.P. and a G.P., prove that
𝑎𝑏𝑏𝑐𝑐𝑎 = 𝑎𝑐𝑏𝑎𝑐𝑏.

216. An A.P. and a G.P. of positive terms have the same first term. The sum of their first,
second and third terms are respectively 1, 1⁄2 and 2. Show that the sum of their fourth

terms is 19⁄2 .

217. If 𝑎−𝑥⁄𝑝𝑥 = 𝑎−𝑦
⁄

𝑞𝑦 = 𝑎−𝑧
⁄

𝑟𝑧 and 𝑝, 𝑞, 𝑟 be in A.P., show that 𝑥, 𝑦, 𝑧 are in H.P.
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218. An A.P. and a H.P. have the same first term 𝑎, the same last term 𝑏 and the same
number of terms 𝑛. Prove that the product of the 𝑟th term of A.P. and the (𝑛−𝑟+1)th
terrm of term of H.P. is 𝑎𝑏.

219. Prove that if from each term of the three consecutive terms of an H.P. half the second
term be subtracted the resulting terms are in G.P.

220. If 𝑦 − 𝑥, 2(𝑦 − 𝑎), 𝑦 − 𝑧 are in H.P., prove that 𝑥 − 𝑎, 𝑦 − 𝑎, 𝑧 − 𝑎 are in G.P.

221. If 𝑎, 𝑏, 𝑐 be in A.P., 𝑝, 𝑞, 𝑟 be in H.P, and 𝑎𝑝, 𝑏𝑞, 𝑐𝑟 be in G.P., show that 𝑝⁄𝑟 +
𝑟
⁄

𝑝 =
𝑎
⁄

𝑐 +
𝑐
⁄

𝑎.

222. If 𝑎, 𝑏, 𝑥 be in A.P., 𝑎, 𝑏, 𝑦 be in G.P. and 𝑎, 𝑏, 𝑧 be in H.P., prove that 4𝑧(𝑥−𝑦)(𝑦−𝑧) =
𝑦(𝑥 − 𝑧)2.

223. If 𝑥, 1, 𝑧 be in A.P., 𝑥, 2, 𝑧 be in G.P., show that 𝑥, 4, 𝑧 are in H.P.

224. Find the sum of 𝑛 terms of the series whose 𝑛th term is 12𝑛2 − 6𝑛 + 5.

225. Find the sum to 𝑛 terms of the series 12 + 32 + 52 + 72 + ⋯.

226. Find the sum to 𝑛 terms of the series 1.2.3 + 2.3.4 + 3.4.5 + ⋯.

227. Find the sum of the series 1.𝑛 + 2.(𝑛 − 1)+ 3.(𝑛 − 2)+⋯+ 𝑛.1.

228. Find the sum to 𝑛 terms of the series 1 + (1 + 2)+ (1 + 2 + 3)+⋯.

229. Find the sum to 𝑛 terms of the series 1 + (2 + 3)+ (4 + 5 + 6)+⋯.

230. Find the sum of series 1
3
⁄

1 + 13+23
⁄

1+3 + 13+23+33
⁄

1+3+5 + ⋯ to 16 terms.

231. Find (33 − 23)+ (53 − 43)+ (73 − 63)+⋯ to 10 terms.

232. Find 1
⁄

1.2 +
1
⁄

2.3 +
1
⁄

3.4 + ⋯ to 𝑛 terms.

233. Find the sum of 1
⁄

1.2.3 +
1
⁄

2.3.4 +
1
⁄

3.4.5 + ⋯ to infinity.

234. Find the sum of 𝑛 terms of the series 1 + 5 + 11 + 19 + ⋯.

235. A sum is distributed among certain number of persons. Second person gets one rupee
more than the first, third person gets two rupees more than the second, fourth person
gets three rupees more than the third and so on. If the first person gets one rupee and
the last person get 67 rupees, find the number of persons.

236. Natural numbers have been grouped in the following way 1, (2,3), (4,5, 6), (7,8, 9, 10),⋯
Show that the sum of the numbers in the 𝑛th group is 𝑛(𝑛

2+1)
⁄

2 .

237. Find 1 + 3 + 7 + 15 + ⋯ to 𝑛 terms.

238. Find 1 + 2𝑥 + 3𝑥2 + 4𝑥3 + ⋯ to 𝑛 terms.
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239. Find 1 + 2.2 + 3.22 + 4.33 + ⋯ + 100.299.

240. Find 1 + 22𝑥 + 32𝑥2 + 42𝑥4 + ⋯ to ∞, |𝑥| < 1

241. If the sum of 𝑛 terms of a sequence be 2𝑛2 + 4, find its 𝑛th term. Is this sequence in
A.P.?

242. Find the sum of 𝑛 terms of the series whose 𝑛th term is 𝑛(𝑛 − 1)(𝑛 + 1).

243. Find the sum of the series 13 + 33 + 53 + ⋯ to 𝑛 terms.

244. Find the sum of the series 12 + 42 + 72 + 102 + ⋯ to 𝑛 terms.

245. Find the sum of the series 12 + 2 + 32 + 4 + 52 + 6 + ⋯ to 2𝑛 terms.

246. Find the sum of the series 12 − 22 + 32 − 42 + ⋯ to 𝑛 terms.

247. Find the sum of the series 1.3 + 3.5 + 5.7 + ⋯ to 𝑛 terms.

248. Find the sum of the series 1.2 + 2.3 + 3.4 + ⋯ to 𝑛 terms.

249. Find the sum of the series 1.22 + 2.32 + 3.42 + ⋯ to 𝑛 terms.

250. Find the sum of the series 2.12 + 3.22 + 4.32 + ⋯ to 𝑛 terms.

251. Find the sum of the series 1 + (1 + 3)+ (1 + 3 + 5)+⋯ to 𝑛 terms.

252. Find the sum of the series 12 + (12 + 22)+ (12 + 22 + 32)+⋯ to 𝑛 terms.

253. Find the sum of the series 1.2.3 + 2.3.5 + 3.4.7 + ⋯ to 𝑛 terms.

254. Find the sum of the series 1.2.3 + 2.3.4 + 3.4.5 + ⋯ to 𝑛 terms.

255. Find the sum of the series 1.32 + 2.52 + 3.72 + ⋯ to 20 terms.

256. Find the sum of the series (𝑛2 − 12)+ 2(𝑛2 − 22)+ 3(𝑛2 − 32)+⋯ to 𝑛 terms.

257. Find the sum of the series (33 − 23)+ (53 − 43)+ (73 − 63)+⋯ to 10 terms.

258. Find the sum of the series 1 + 1
⁄

1+2 +
1
⁄

1+2+3 + ⋯ to 𝑛 terms.

259. Find the sum to infinity of the series 1
⁄

2.4 +
1
⁄

4.6 +
1
⁄

6.8 +
1
⁄

8.10 + ⋯.

260. Find the sum of the series 2 + 6 + 12 + 20 + ⋯ to 𝑛 terms.

261. Find the sum of the series 3 + 6 + 11 + 18 + ⋯ to 𝑛 terms.

262. Find the sum of the series 1 + 9 + 24 + 46 + 75 + ⋯ to 𝑛 terms.

263. Find the 𝑛th term of the series 2 + 4 + 7 + 11 + 16 + ⋯.

264. Find the sum to 10 terms of the series 1 + 3 + 6 + 10 + ⋯.
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265. The odd natural numbers have been divided in groups as (1, 3), (5, 7, 9, 11),

(13, 15, 17, 19, 21, 23), … Show that the sum of numbers in the 𝑛th group is 4𝑛3.

266. Show that the sum of numbers in each of the following groups is an square of an odd
positive integer (1), (2,3,4), (3,4,5,6,7), ….

267. Find the sum to 𝑛 terms of the series 2 + 5 + 14 + 41 + ⋯.

268. Find the sum to 𝑛 terms of the series 1.1 + 2.3 + 4.5 + 8.7 + ⋯.

269. If 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎2𝑛 are in A.P., show that 𝑎21 − 𝑎22 + 𝑎23 − 𝑎24 + ⋯ + 𝑎22𝑛−1 − 𝑎22𝑛 =
𝑛
⁄

2𝑛−1 (𝑎
2
1 − 𝑎22𝑛).

270. If 𝛼1, 𝛼2, 𝛼3, ⋯ , 𝛼𝑛 are in A.P., whose common difference is 𝑑 show that sin 𝑑

[sec 𝛼1 sec 𝛼2 + sec 𝛼2 sec 𝛼3 +⋯+ sec𝛼𝑛−1 sec 𝛼𝑛 ] = tan𝛼𝑛 − tan𝛼1.

271. If 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 be in A.P., prove that 1
⁄

𝑎1𝑎𝑛 +
1
⁄

𝑎2𝑎𝑛−1
+ ⋯ + 1
⁄

𝑎𝑛𝑎1 =
2
⁄

𝑎1+𝑎𝑛

( 1
⁄

𝑎1 +
1
⁄

𝑎2 + ⋯ + 1
⁄

𝑎𝑛).

272. If 𝑎1, 𝑎2, 𝑎3, … be in A.P. such that 𝑎𝑖 ≠ 0, show that 𝑆 = 1
⁄

𝑎1𝑎2 +
1
⁄

𝑎2𝑎3 + ⋯+ 1
⁄

𝑎𝑛𝑎𝑛+1
=

𝑛
⁄

𝑎1𝑎𝑛+1
.

273. If 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 be in A.P. and 𝑎1 = 0, show that 𝑎3⁄𝑎2 +
𝑎4
⁄

𝑎3 + ⋯+ 𝑎𝑛
⁄

𝑎𝑛−1
− 𝑎2( 1
⁄

𝑎2 +
1
⁄

𝑎3 +

⋯ + 1
⁄

𝑎𝑛−2
) = 𝑎𝑛−1
⁄

𝑎2 + 𝑎2
⁄

𝑎𝑛−1
.

274. If 𝑎1, 𝑎2, … , 𝑎𝑛 are in A.P., whose common difference is 𝑑, show that 
𝑛
∑
𝑘=1

𝑎𝑘𝑎𝑘+1𝑎𝑘+2
⁄

𝑎𝑘+𝑎𝑘+2

= 𝑛
⁄

2 [𝑎
2
1 + (𝑛 + 1)𝑎1𝑑 + (𝑛−1)(2𝑛+5)
⁄

6 𝑑2].

275. If 𝑥, 𝑦 and 𝑧 are positive real numbers different from 1, and 𝑥18 = 𝑦21 = 𝑧28, show
that 3, 3 log𝑦 𝑥, 3 log𝑧 𝑦, 7 log𝑥 𝑧 are in A.P.

276. If 𝐼𝑛 = ∫
𝜋
⁄

2

0

sin2 𝑛𝑥
⁄

sin2 𝑥 𝑑𝑥, then 𝐼1, 𝐼2, 𝐼3, … are in A.P.

277. Can there be an A.P. whose terms are distinct prime numbers?

278. Four distinct no. are in A.P. If one of these integers is sum of the squares of remaining
three, then 0 must be one of the numbers in A.P.

279. In an A.P. of 2𝑛 terms the middle pair of terms are 𝑝 + 𝑞 and 𝑝 − 𝑞. Show that the
sum of cubes of the terms in A.P. are 2𝑛𝑝[𝑝2 + (4𝑛2 − 1)𝑞2 ].

280. Find the sum 𝑆𝑛 of the cubes of the first 𝑛 terms of an A.P. and show that the sum of
the first 𝑛 terms of the A.P. is a factor of 𝑆𝑛.
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281. Show that any positive integral power (greater than 1) of a positive integer 𝑚, is the
sum of 𝑚 consecutive odd positive integers. Find the first odd integer for 𝑚𝑟(𝑟 > 1).

282. If 𝑎 be the sum of 𝑛 terms and 𝑏2 the sum of the square of 𝑛 terms of an A.P., find the
first term and common difference of the A.P.

283. If 𝑎1, 𝑎2, … , 𝑎𝑛 are in A.P., whose common diference is 𝑑, then find the sum of the
series sin 𝑑[csc 𝑎1 csc 𝑎2 + csc 𝑎2 csc 𝑎3 + ⋯ + csc 𝑎𝑛−1 csc 𝑎𝑛 ].

284. If 𝑎1, 𝑎2, … , 𝑎𝑛 are in A.P. where 𝑎𝑖 > 0∀𝑖, show that

1
⁄

√


𝑎1 +√


𝑎2
+ 1
⁄

√


𝑎2 +√


𝑎3
+ ⋯+ 1
⁄

√


𝑎𝑛−1 +√


𝑎𝑛
= 𝑛 − 1
⁄

√


𝑎1 +√


𝑎𝑛

285. If 𝑎1, 𝑎2, ⋯ , 𝑎𝑛 are in A.P., whose common differemce is 𝑑 show that
𝑛
∑
2
tan−1 𝑑
⁄

1+𝑎𝑛−1𝑎𝑛
= tan−1 𝑎𝑛−𝑎1
⁄

1+𝑎𝑛𝑎1
.

286. If 𝑎1, 𝑎2,… , 𝑎𝑛 are the first 𝑛 items of an A.P. with first term 𝑎 and common difference 𝑑
such that 𝑎𝑑 > 0. Let 𝑆𝑛 = 1

⁄

𝑎1𝑎2 +
1
⁄

𝑎2𝑎3 − ⋯ + 1
⁄

𝑎𝑛−1𝑎𝑛 Prove that the product 𝑎1𝑎𝑛𝑆𝑛
does not depend on 𝑎 or 𝑑.

287. If 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑎𝑛+1, … be in A.P., whose common difference is 𝑑 and 𝑆1 = 𝑎1 + 𝑎2 +
⋯ + 𝑎𝑛, 𝑆2 = 𝑎𝑛+1 + ⋯ + 𝑎2𝑛, 𝑆3 = 𝑎2𝑛+1 + ⋯ + 𝑎3𝑛 Show that 𝑆1, 𝑆2, 𝑆3, … are in
A.P. whose common difference is 𝑛2𝑑.

288. If 𝑎, 𝑏, 𝑐 are three terms of an A.P. such that 𝑎 ≠ 𝑏, show that (𝑏 − 𝑐)/(𝑎 − 𝑏) is a
rational number.

289. Prove that tan 70∘, tan 50∘ + tan 20∘, tan 20∘ are in A.P.

290. If log𝑙 𝑥, log𝑚 𝑥, log𝑛 𝑥 are in A.P. and 𝑥 ≠ 1, prove that 𝑛2 = (𝑛𝑙)log𝑙 𝑚.

291. The length of sides of a right angled triangle are in A.P., show that their ratio is
3 : 4 : 5

292. Find the values of 𝑎 for which 51+𝑥 + 51−𝑥, 𝑎⁄2 , 25
𝑥 + 25−𝑥 are in A.P.

293. If log 2, log(2𝑥 − 1) and log(2𝑥 + 3) are in A.P., then find 𝑥.

294. If 1, log𝑦 𝑥, log𝑧 𝑦, −15 log𝑥 𝑧 are in A.P., then prove that 𝑥 = 𝑧3 and 𝑦 = 𝑧−3.

295. Show that √


2,√


3,√


5 cannot be terms of a single A.P.

296. A circle of one centimeter radius is drawn on a piece of paper and with the same center
3𝑛 − 1 other circles are drawn of radii 2 cm, 3 cm, 4 cm and so on. The inner circle is
painted blue, the ring between that and next circle is painted red, the next ring yellow
then other rings blue, red, yellow and so on in this order. Show that the successive
areas of each color are in A.P.
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297. If 𝑥, 𝑦, 𝑧(𝑥, 𝑦, 𝑧 ≠ 0) are in A.P. and tan−1 𝑥, tan−1 𝑦, tan−1 𝑧 are also in A.P., then
prove that 𝑥 = 𝑦 = 𝑧.

298. If 𝜃 and 𝛼 are two real numbers such that cos
4 𝜃
⁄

cos2 𝛼,
1
⁄

2 ,
sin4 𝜃
⁄

sin2 𝛼 are in A.P., prove that
cos2𝑛+2 𝜃
⁄

cos2𝑛 𝛼 , 1⁄2 ,
sin2𝑛+2 𝜃
⁄

sin2𝑛 𝛼 are also in A.P..

299. If 𝑎𝑛 = ∫
𝜋

0
(sin 2𝑛𝑥/sin 𝑥)𝑑𝑥, show that 𝑎1, 𝑎2, 𝑎3, … are in A.P.

300. If 𝑙𝑛 = ∫
𝜋
⁄

4

0
tan𝑛 𝑥𝑑𝑥, show that 1
⁄

𝑙2+𝑙4 ,
1
⁄

𝑙3+𝑙5 ,
1
⁄

𝑙4+𝑙6 , ⋯ are in A.P. Find the common

difference of A.P.

301. If 𝐼𝑛 = ∫
𝜋

0

1−cos 2𝑛𝑥
⁄

1−cos 2𝑥 𝑑𝑥, then show that 𝐼1, 𝐼2, 𝐼3, … are in A.P.

302. If 𝛼, 𝛽, 𝛾 are in A.P.and 𝛼 = sin(𝛽 + 𝛾), 𝛽 = sin(𝛾 + 𝛼) and 𝛾 = sin(𝛼 + 𝛽) . Prove
that tan 𝛼 = tan 𝛽 = tan 𝛾.

303. Suppose 𝑎, 𝑏, 𝑐 are three positive real numbers in A.P., such that 𝑎𝑏𝑐 = 4. Prove that

the minimum value of 𝑏 is 4
1
⁄

3.

304. Find the sum of 𝑛 terms of the series: log 𝑎 + log 𝑎3
⁄

𝑏 + log 𝑎5
⁄

𝑏2 + log 𝑎7
⁄

𝑏3 + ⋯.

305. The first, second and the last terms of an A.P. are 𝑎,𝑏, 𝑐 respectively. Prove that the
sum of al the terms is (𝑏+𝑐−2𝑎)(𝑎+𝑐)⁄2(𝑏−𝑎) .

306. If 𝑆𝑛 denotes the sum of 𝑛 terms of an A.P., show that 𝑆𝑛+3 = 3(𝑆𝑛+2 − 𝑆𝑛+1)+𝑆𝑛.

307. If 𝑎1, 𝑎2, … , 𝑎𝑛 are in arithmetic progression with common difference 𝑑, prove that
∑
𝑟<𝑠

𝑎𝑟𝑎𝑠 =
1
⁄

2 𝑛(𝑛 − 1) [𝑎21 + (𝑛 − 1)𝑎1𝑑 +
1
⁄

12 (3𝑛
2 − 7𝑛 + 2)𝑑2 ].

308. Balls are arranged in rows to form an equilateral triangle. The first row consists of one
ball, the second of two balls and so on. If 669 more balls are added, then all balls can
be arranged in the shape of a square and each of the sides contained 8 balls less than
each side of the triangle did. Determine the initial no. of balls.

309. Find the sum of the product of the first 𝑛 natural numbers takes two at a time.

310. A postman delivered daily for 42 days 4 more letters each day than on the previous
day. The total delivery made for the first 24 days of the period was the same as that
for the last 18 days. How many letters did he deliver during the whole period?

311. If 𝑆𝑛 denotes the sum to 𝑛 terms of an A.P. and 𝑆𝑛 = 𝑛2𝑝, 𝑆𝑚 = 𝑚2𝑝, 𝑚 ≠ 𝑛, prove
that 𝑆𝑝 = 𝑝3.

312. There are 𝑛 A.P.'s whose common difference are 1, 2, 3, … , 𝑛 respectively the first term
of each being unity. Prove that the sum of their 𝑛th terms is 𝑛⁄2 (𝑛

2 + 1).
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313. If 𝑆1, 𝑆2, … , 𝑆𝑚 are the sum of 𝑛 terms of 𝑚 A.P.s whose first terms are 1, 2, … , 𝑚
and whose common differences are 1, 3, 5, … , 2𝑚− 1 respectively, show that 𝑆1 + 𝑆2 +
⋯+ 𝑆𝑚 = 1
⁄

2𝑚𝑛(𝑚𝑛+ 1)

314. A straight line is drawn through the center of a square 𝐴𝐵𝐶𝐷 intersecting side 𝐴𝐵 at
point 𝑁 so that 𝐴𝑁 : 𝑁𝐵 = 1 : 2. On this line take an arbitrary point 𝑀 lying inside
the square. Prove that the distances from 𝑀 to the sides 𝐴𝐵, 𝐴𝐷, 𝐵𝐶, 𝐶𝐷 of the
square taken in that order, form an A.P.

315. If the sides of a right-angled triangle are in G.P., find the cosine of the greater acute
angle.

316. Does there exist a geometric progression containing 27, 8 and 12 as three of its terms?
If it exists, how many such progressions are possible?

317. Show that 10, 11, 12 cannot be terms of a G.P.

318. If 𝐼𝑛 = ∫
𝜋
⁄

2

0
cos𝑛 𝑥 cos(𝑛𝑥)𝑑𝑥, then prove that 𝐼1, 𝐼2, 𝐼3, … are in G.P.

319. Let 𝐼𝑛 = ∫
𝜋

0

sin(2𝑛−1)𝑥
⁄

sin𝑥 𝑑𝑥. Show that 𝐼1, 𝐼2, 𝐼3, … are in A.P. as well as in G.P.

320. Prove that the three successive terms of a G.P. will form sides of a triangle if the
common ratio 𝑟 satisfied the inequality 1⁄2 (√



5 − 1) < 𝑟 < 1
⁄

2 (√


5 + 1).

321. Find out whether 111…1(91 digits ) is a prime number.

322. Find the natural number 𝑎 for which 
𝑛
∑
𝑘=1

𝑓(𝑎 + 𝑘) = 16(2𝑛 − 1) , where the function 𝑓

satisfied the relation 𝑓(𝑥 + 𝑦) = 𝑓(𝑥)𝑓(𝑦) for all natural numbers 𝑥, 𝑦 and further
𝑓(1) = 2.

323. In a certain test, there are 𝑛 questions. In this test 2𝑛−𝑖 students give wrong answers
to at least 𝑖 questions (1 ≤ 𝑖 ≤ 𝑛.) If total no. of wrong answers given is 2047, find the
value of 𝑛.

324. If 𝑆1, 𝑆2, 𝑆3, … , 𝑆2𝑛 are the sums of infinite geometric series whose first terms are
respectively 1, 2, 3, … , 2𝑛 and common ratio are respectively 1⁄2 ,

1
⁄

3 , ⋯ , 1
⁄

2𝑛+1 , find the
value of 𝑆21 + 𝑆22 + ⋯+ 𝑆22𝑛−1.

325. A sqaure is given, a second square is made by joining the middle points of the first
square and then a third square is made by joining the middle points of the sides of
second square and so on till infinity. Show that the area of first square is equal to sum
of the areas of all the succeeding squares.

326. If 𝑎 is the value of 𝑥 for which the function 7+ 2𝑥 log 25− 5𝑥−1− 52−𝑥 has the greatest

value and 𝑟 = lim
𝑥→0

∫
𝑥

0

𝑡2
⁄

𝑥2 tan(𝜋+𝑥) 𝑑𝑡, find lim
𝑛→∞

𝑛
∑
𝑛=1

𝑎𝑟𝑛−1.
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327. If 𝑝th, 𝑞th, 𝑟th terms of a G.P. are positive numbers 𝑎, 𝑏, 𝑐 respectively, show that
the vectors (log 𝑎) . ⃗𝚤 + (log 𝑏) ⃗𝚥 + (log 𝑐) �⃗� and (𝑞 − 𝑟) ⃗𝚤 + (𝑟 − 𝑝) ⃗𝚥 + (𝑝 − 𝑞) �⃗� are
perpendicular.

328. The pollution in a normal atmosphere is less that 0.01 % . Due to leakage of gas
from a factory the pollution increased to 20 % . If everyday 80% of the pollution us
neutralised, in how many days the atmosphere will be normal?

329. The sides of a triangle are in G.P. and its largest angle is twice the smallest one. Prove
that the common ratio of the G.P. lies in the interval (1,√



2).

330. If 𝑎, 𝑏, 𝑐, 𝑑 are in G.P., then prove that 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 is divisible by 𝑎𝑥2 + 𝑐.

331. If 𝑎, 𝑏, 𝑐, 𝑑, 𝑝 are real and (𝑎2 + 𝑏2 + 𝑐2)𝑝2 − 2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑑)𝑝 + (𝑏2 + 𝑐2 + 𝑑2) ≤ 0.
Show that 𝑎, 𝑏, 𝑐, 𝑑 are in G.P. whose common ratio is 𝑝.

332. If 2𝑥4 = 𝑦4+ 𝑧4, 𝑥𝑦𝑧 = 8 and log𝑦 𝑥, log𝑧 𝑦, log𝑥 𝑧 are in G.P., show that 𝑥 = 𝑦 = 𝑧 = 2.

333. If 𝑎, 𝑏, 𝑐, 𝑑 are in both A.P. and G.P. and 𝑏 = 2, then find the number of such sequences.

334. If log𝑥 𝑎, 𝑎𝑥/2, log𝑏 𝑥 are in G.P., then find 𝑥.

335. The (𝑚+𝑛)th and (𝑚−𝑛)th terms of a G.P. are 𝑝 and 𝑞 respectively. Show that 𝑚th

and 𝑛th terms are √


𝑝𝑞 and 𝑝(𝑞⁄𝑝)
𝑚
⁄

2𝑛 respectively.

336. If the 𝑝th, 𝑞th and 𝑟th terms of an A.P. are in G.P., then find the common ratio of the
G.P.

337. A G.P. consists of 2𝑛 terms. If the sum of the terms occupying the odd places is
𝑆1, and that of the terms in even places is 𝑆2, show that the common ratio of the
progression is 𝑆2/𝑆1.

338. If 𝑆𝑛 denotes the sum of 𝑛 terms of a G.P. whose first term and common ratio are 𝑎
and 𝑟 respectively, show that

𝑟𝑆𝑛 + (1 − 𝑟)
𝑛
∑
𝑛=1

𝑆𝑛 = 𝑛𝑎

339. Find the sum of 2𝑛 terms of the series where every even term is 𝑥 times the term just
before it and every odd term is 𝑦 times the term just before it, the first term being 1.

340. Prove that in the sequence of numbers 49, 4489, 444889, … in which every number is
made by inserting 48 in the middle of previous number as indicated, each number
is the square of an integer.

341. If there be 𝑚 quantities in a G.P., whose common ratio is 𝑟 and 𝑆𝑚 denotes the sum
of the first 𝑚 terms then prove that the sum of their products taken two and two
together is 𝑟
⁄

𝑟+1 𝑆𝑚𝑆𝑚−1.
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342. Solve the following equations for 𝑥 and 𝑦

log10 𝑥 + log10 𝑥1/2 + log10 𝑥1/4 + ⋯ = 𝑦

1 + 3 + 5 + (2𝑦 − 1)
⁄

4 + 7 + 10 + ⋯+ 3𝑦 + 1 =
20
⁄

7 log10 𝑥

343. If 𝑎1, 𝑎2, … , 𝑎𝑛 are in G.P. and 𝑆 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛, 𝑇 = 1
⁄

𝑎1 +
1
⁄

𝑎2 + ⋯ + 1
⁄

𝑎𝑛 and

𝑃 = 𝑎1.𝑎2.… .𝑎𝑛 show that 𝑃2 = (𝑆⁄𝑇 )
𝑛
.

344. Let 𝑎, 𝑏, 𝑐 be respectively the sums of the first 𝑛 terms, the next 𝑛 terms and the
next 𝑛 terms of a G.P. show that 𝑎, 𝑏, 𝑐 are in G.P.

345. If 𝑆𝑛 denotes the sum to 𝑛 terms of a G.P. whose first term and common ratio are 𝑎
and 𝑟 respectively, then prove that 𝑆1 + 𝑆2 + ⋯+ 𝑆𝑛 = 𝑛𝑎

⁄

1−𝑟 −
𝑎𝑟(1−𝑟𝑛)
⁄

(1−𝑟)2

346. If 𝑆𝑛 denotes the sum to 𝑛 terms of a G.P. whose first term and common ratio are 𝑎
and 𝑟 respectively, then prove that 𝑆1 + 𝑆3 + 𝑆5 + ⋯+ 𝑆2𝑛−1 = 𝑛𝑎

⁄

1−𝑟 −
𝑎𝑟(1−𝑟2𝑛)
⁄

(1−𝑟)2(1+𝑟)

347. Let 𝑠 denote the sum of terms of an infinite geometric progression and 𝜎2 the sum of
squares of the terms. Show that the sum of first 𝑛 terms of this geometric progression
is given by 𝑠[1 − (𝑠

2−𝜎2
⁄

𝑠2+𝜎2)
𝑛
] , where |𝑟| < 1.

348. Let 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 be a geometric progression with first term 𝑎 and common ratio
𝑟, then the sum of the products 𝑎1, 𝑎2, … , 𝑎𝑛 taken two at a time i.e. ∑

𝑖<𝑗
𝑎𝑖𝑎𝑗 =

𝑎2𝑟(1−𝑟𝑛−1)(1−𝑟𝑛)
⁄

(1−𝑟)2(1+𝑟) .

349. If 𝑎1, 𝑎2, 𝑎3, … is a G.P. with first term 𝑎 and common ratio 𝑟, show that 1
⁄

𝑎21−𝑎22
+

1
⁄

𝑎22−𝑎23
+ ⋯ + 1
⁄

𝑎2𝑛−1−𝑎2𝑛
= 𝑟2(1−𝑟2𝑛−2)
⁄

𝑎2𝑟2𝑛−2(1−𝑟2)2.

350. If 𝑎1, 𝑎2, 𝑎3, … is a G.P. with first term 𝑎 and common ratio 𝑟, show that 1
⁄

𝑎𝑚1 +𝑎𝑚2
+

1
⁄

𝑎𝑚2 +𝑎𝑚3
+ ⋯+ 1
⁄

𝑎𝑚𝑛−1+𝑎𝑚𝑛
= 𝑟𝑚𝑛−𝑚−1
⁄

𝑎𝑚(1+𝑟𝑚)(𝑟𝑚𝑛−𝑚−𝑟𝑚𝑛−2𝑚).

351. If 𝑎1, 𝑎2, … , 𝑎2𝑛 are 2𝑛 positive real numbers which are in G.P. show that √


𝑎1𝑎2 +
√


𝑎3𝑎4 +√


𝑎5𝑎6 + ⋯ +√


𝑎2𝑛−1𝑎2𝑛 =√


𝑎1 + 𝑎3 + ⋯+ 𝑎2𝑛−1√


𝑎2 + 𝑎4 + ⋯+ 𝑎2𝑛.

352. Find the solution of the system of equations 1 + 𝑥 + 𝑥2 + ⋯ + 𝑥23 = 0 and 1 + 𝑥 +
𝑥2 + ⋯+ 𝑥19 = 0.

353. A man invests $𝑎 at the end of the first year, $2𝑎 at the end of the second year, $3𝑎
at the end of the third year, and so on up to the end of 𝑛th year. If the rate of interest
is $𝑟 per rupee and the interest is compounded annually, find the amount the man will
receive at the end of (𝑛 + 1)th year.
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354. Find the value of (0.16)log2.5(
1
⁄

3+
1
⁄

32
+ 1
⁄

33
+⋯∞)

355. If 𝐴 = 1 + 𝑟𝑎 + 𝑟2𝑎 + ⋯ to ∞ and 𝐵 = 1 + 𝑟𝑏 + 𝑟2𝑏 + ⋯ to ∞, prove that 𝑟 =

(𝐴−1
⁄

𝐴 )
1
⁄

𝑎 = (𝐵−1
⁄

𝐵 )
1
⁄

𝑏.

356. If 𝑠1, 𝑠2,… , 𝑠𝑛 are the sums of infinite geometric series whose first terms are 1, 2, 3,… , 𝑛
and common ratios are 1⁄2 ,

1
⁄

3 , ⋯ , 1
⁄

𝑛+1 respectively, then prove that 𝑠1 + 𝑠2 + ⋯+ 𝑠𝑛 =
1
⁄

2 𝑛(𝑛 + 3).

357. If 𝑆𝑛 be the sum of infinite G.P.'s whose first term is 𝑛 and the common ratio is 1
⁄

𝑛+1 ,

find lim
𝑛→∞

𝑆1𝑆𝑛+𝑆2𝑆𝑛−1+⋯+𝑆𝑛𝑆1
⁄

𝑆2
1+𝑆2

2+⋯+𝑆2
𝑛

.

358. The sum of the terms of an infinitely decreasing G.P. is equal to the greatest value of
the function 𝑓(𝑥) = 𝑥3+ 3𝑥− 9 on the interval [−5, 3] , and the difference between the
first and second terms is 𝑓′(0) . Prove that the common ratio of the progression is 2⁄3.

359. Find the sum of the series 5⁄13 +
55
⁄

132 +
555
⁄

133 + ⋯∞.

360. If −𝜋
⁄

2 < 𝑥 < 𝜋
⁄

2 and the sum to infinite number of terms of series cos 𝑥 + 2
⁄

3 cos 𝑥 sin
2 𝑥 +

4
⁄

9 cos 𝑥 sin
4 𝑥 + ⋯ is finite, then show that 𝑥 lies in the set (−𝜋

⁄

2 ,
𝜋
⁄

2)

361. An A.P. and a G.P. with positive terms have the same number of terms and their first
terms as well as the last terms are equal. Show that the sum of A.P. is greater than or
equal to the sum of the G.P.

362. Given a G.P. and A.P. of positive terms 𝑎, 𝑎1, 𝑎2, … , 𝑎𝑛, … and 𝑏, 𝑏1, 𝑏2, … , 𝑏𝑛, …
respectively, with the common ratio of the G.P. being different from 1, prove that
there exists 𝑥 ∈ 𝑅, 𝑥 > 0 such that log𝑥 𝑎𝑛 − 𝑏𝑛 = log𝑥 𝑎 − 𝑏, ∀𝑛 ∈ 𝑁 .

363. If the (𝑚+ 1)th, (𝑛 + 1)th and (𝑟 + 1)th terms of an A.P. are in G.P., and 𝑚, 𝑛, 𝑟
are in H.P., show that the ratio of the first term to the common difference of the A.P.
is −𝑛/2.

364. If 𝑎, 𝑏, 𝑐 are in G.P. and 𝑎 − 𝑏, 𝑐 − 𝑎, 𝑏 − 𝑐 are in H.P., then show that 𝑎 + 4𝑏 + 𝑐 = 0.

365. If 𝑆1, 𝑆2 and 𝑆3 denote the sum to 𝑛(> 1) terms of three sequences in A.P., whose first
terms are unity and common differences are in H.P., prove that 𝑛 = 2𝑆3𝑆1−𝑆1𝑆2−𝑆2𝑆3

⁄

𝑆1−2𝑆2+𝑆3

366. Find a three-digit number such that its digits are in G.P. and the digits of the number
obtained from it by subtracting 400 form an A.P.

367. If 𝑎, 𝑏, 𝑐 be distinct positive numbers in G.P. and log𝑐 𝑎, log𝑏 𝑐, log𝑎 𝑏 be in A.P., prove
that the common difference of the progression is 3/2.
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368. If 𝑝 be the first of the 𝑛 arithmetic means between two numbers 𝑎 and 𝑏 and 𝑞 the first
of the 𝑛 harmonic means between the same two numbers, prove that the value of 𝑞
cannot lie between 𝑝 and (𝑛+1⁄𝑛−1)

2
𝑝.

369. An A.P. and a G.P. each has 𝑝 as first term and 𝑞 as second term where 0 < 𝑞 < 𝑝.
Find the sum to infinity, 𝑠 of the G.P., and prove that the sum of first 𝑛 terms of the
A.P. may be written as 𝑛𝑝 − 𝑛(𝑛−1)

⁄

2 . 𝑝
2
⁄

𝑠 .

370. If log𝑥 𝑦, log𝑧 𝑥, log𝑦 𝑧 are in G.P., 𝑥𝑦𝑧 = 64 and 𝑥3, 𝑦3, 𝑧3 are in A.P., then find 𝑥, 𝑦
and 𝑧.

371. Find all complex numbers 𝑥 and 𝑦 such that 𝑥, 𝑥 + 2𝑦, 2𝑥 + 𝑦 are in A.P. and
(𝑦 + 1)2, 𝑥𝑦 + 5, (𝑥 + 1)2 are in G.P.

372. Find A.P. of distinct terms whose first term is 3 and second, tenth and thirty fourth
terms form a G.P.

373. Let 𝑎, 𝑏, 𝑐, 𝑑 be four positive real numbers such that the geometric mean of 𝑎 and 𝑏 is
equal to the gerometric mean of 𝑐 and 𝑑 and the arithmetic mean of 𝑎2 and 𝑏2 is equal
to the arithmetic mean of 𝑐2 and 𝑑2. Show that the arithmetic mean of 𝑎𝑛 and 𝑏𝑛
is equal to the arithmetic mean of 𝑐𝑛 and 𝑑𝑛 for every integral value of 𝑛.

374. The sum of first ten terms of an A.P. is equal to 155, and the sum of first two terms of
a G.P. is 9. Find these progressions if the first term of the A.P. euqals the common
ratio of the G.P. and the first term of G.P. equals the common difference of A.P.

375. If 𝑎, 𝑏, 𝑐 be in H.P., prove that (1⁄𝑎 +
1
⁄

𝑏 −
1
⁄

𝑐)(
1
⁄

𝑏 +
1
⁄

𝑐 −
1
⁄

𝑎) =
4
⁄

𝑎𝑐 −
3
⁄

𝑏2.

376. If 𝑎, 𝑏, 𝑐 are positive real numbers which are in H.P. show that 𝑎+𝑏⁄2𝑎−𝑏 +
𝑏+𝑐
⁄

2𝑐−𝑏 ≥ 4.

377. If (𝑎+ 𝑏)/(1 − 𝑎𝑏), 𝑏, (𝑏 + 𝑐)/(1 − 𝑏𝑐) are in A.P., then prove that 𝑎, 𝑏−1, 𝑐 are in H.P.

378. Suppose 𝑎,𝑏,𝑐 are in A.P. and |𝑎|, |𝑏|, |𝑐|< 1 if 𝑥 = 1+𝑎+𝑎2+⋯∞,𝑦 = 1+𝑏+𝑏2+⋯∞,
𝑧 = 1 + 𝑐 + 𝑐2 + ⋯∞ then prove that 𝑥, 𝑦, 𝑧 are in H.P.

379. If 𝑎
1
⁄

𝑥 = 𝑏
1
⁄

𝑦 = 𝑐
1
⁄

𝑧 and 𝑎, 𝑏, 𝑐 are in G.P. prove that 𝑥, 𝑦, 𝑧 are in A.P.

380. If 𝑎, 𝑏, 𝑐 be in A.P., 𝑙, 𝑚, 𝑛 be in H.P. and 𝑎𝑙, 𝑏𝑚, 𝑐𝑛 be in G.P. with common ratio not
equal to 1 and 𝑎, 𝑏, 𝑐, 𝑙, 𝑚, 𝑛 are positive show that 𝑎 : 𝑏 : 𝑐 = 1

⁄

𝑛 :
1
⁄

𝑚 : 1⁄𝑙.

381. An A.P., a G.P. and an H.P. have the same first term 𝑎 abd same second term 𝑏, show
that 𝑛 + 2th terms will be in G.P. is 𝑏

2𝑛+2−𝑎2𝑛+2
⁄

𝑎𝑏(𝑏2𝑛−𝑎2𝑛) =
𝑛+1
⁄

𝑛 .

382. If an A.P. and a G.P. have the same 1st and 2nd terms then show that every other
term of the A.P. will be less than the corresponding term of G.P. all the terms being
positive.
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383. If 𝐴, 𝐺, 𝐻 are the arithmetic, geometric and harmonic means of two positive real
numbers 𝑎 and 𝑏, and if 𝐴 = 𝑘ℎ, prove that 𝐴2 = 𝑘𝐺2. Find the ratio of 𝑎 to 𝑏. For
what value of 𝑘 does the ratio exist.

384. If 𝑝 be the 𝑟th term when 𝑛 A.M.'s are inserted between 𝑎 and 𝑏 and 𝑞 be the 𝑟th
term when 𝑛 H.M.'s are inserted between 𝑎 and 𝑏, then show that 𝑝⁄𝑎 +

𝑏
⁄

𝑞 is independent
of 𝑛 and 𝑟.

385. Two trains 𝐴 and 𝐵 start from the same station 𝑃 at the same time. 𝐴 covers half the
distance between first station 𝑃 and second station 𝑄 with speed 𝑥 and other half
distance with speed 𝑦. Train 𝐵 covers the whole distance with speed 𝑥+𝑦⁄2 . Which train
will reach 𝑄 earlier.

386. If 𝑛 is a root of equation 𝑥2(1 − 𝑎𝑐)− 𝑥(𝑎2 + 𝑐2)− (1 + 𝑎𝑐) = 0 and if 𝑛 H.M.'s are
inserted between 𝑎 and 𝑐, show that the difference between the first and last mean is
equal to 𝑎𝑐(𝑎 − 𝑐).

387. If 𝐴1, 𝐴2, … , 𝐴𝑛 are the 𝑛 A.M.'s and 𝐻1, 𝐻2, … , 𝐻𝑛 the 𝑛 H.M.'s between 𝑎 and 𝑏,
show that 𝐴𝑟𝐻𝑛−𝑟+1 = 𝑎𝑏 for 1 ≤ 𝑟 ≤ 𝑛.

388. Find the coefficient of 𝑥99 and 𝑥98 in the polynomial (𝑥−1)(𝑥−2)(𝑥−3)… (𝑥−100).

389. Find the 𝑛th term and sum to 𝑛 terms of the series 12, 40, 90, 168, 280, 432, …

390. Find the 𝑛th term and the sum to 𝑛 terms of the series 10, 23, 60, 169, 494, ….

391. Find the sum of the series 3 + 5𝑥 + 9𝑥2 + 15𝑥3 + 23𝑥4 + 33𝑥5 + ⋯∞.

392. If 𝐻𝑛 = 1 + 1
⁄

2 +
1
⁄

3 + ⋯+ 1
⁄

𝑛 and 𝐻′𝑛 = 𝑛+1
⁄

2 − { 1
⁄

𝑛(𝑛−1)+
2
⁄

(𝑛−1)(𝑛−2)+⋯+ 𝑛−2
⁄

2.3 } , show
that 𝐻𝑛 = 𝐻′𝑛.

393. Show that tan−1( 𝑥
⁄

1+1.2𝑥2) + tan−1( 𝑥
⁄

1+2.3𝑥2) + ⋯ + tan−1( 𝑥
⁄

1+𝑛(𝑛+1)𝑥2) =

tan−1( 𝑛𝑥
⁄

1+(𝑛+1)𝑥2).

394. Find the sum to 𝑛 terms of the series 1
⁄

1+12+14 +
2
⁄

1+22+24 +
3
⁄

1+32+34 + ⋯.

395. Find 
𝑛
∑
𝑘=𝑛

tan−1 2𝑘
⁄

2+𝑘2+𝑘4

396. Show that 1
4
⁄

1.3 +
24
⁄

3.5 +
34
⁄

5.7 + ⋯ + 𝑛4
⁄

(2𝑛−1)(2𝑛+1) =
𝑛(4𝑛2+6𝑛+5)
⁄

48 + 𝑛⁄
16(2𝑛+1)

397. If 𝑎1, 𝑎2, … , 𝑎𝑛, … are in A.P. with first term 𝑎 and common difference 𝑑, find the sum
for 𝑟 > 1 of 𝑎1𝑎2 …𝑎𝑟 + 𝑎2𝑎3 …𝑎𝑟+1 + ⋯ to 𝑛 terms.

398. If 𝑎1, 𝑎2, … , 𝑎𝑛, … are in A.P. and none of them is zero. Then prove that 1⁄
𝑎1𝑎2…𝑎𝑟 +

1⁄
𝑎2𝑎3…𝑎𝑟+1 + ⋯ + 1⁄

𝑎𝑛𝑎𝑛+1…𝑎𝑛+𝑟−1
= 1⁄

(𝑟−1)(𝑎2−𝑎1)

[ 1⁄
𝑎1𝑎2…𝑎𝑟−1 −

1⁄
𝑎𝑛+1𝑎𝑛+2…𝑎𝑛+𝑟−1

]
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399. Find the sum to 𝑛 terms of the series 1⁄
1.2.3.4 +

1⁄
2.3.4.5 +

1⁄
3.4.5.6 + ⋯.

400. Find the sum to 𝑛 terms of the series 3
⁄

2.4.6 +
4
⁄

2.3.5 +
5
⁄

3.4.6 + ⋯.

401. Find 1
⁄

1.3 +
2
⁄

1.3.5 +
3⁄

1.3.5.7 + ⋯ to 𝑛 terms.

402. Find 2
⁄

1.3 .
1
⁄

3 +
3
⁄

3.5 .
1
⁄

32 +
4
⁄

5.7 .
1
⁄

33 + ⋯ to 𝑛 terms.

403. Find the sum of 𝑛 terms of the series 1⁄3 +
3
⁄

3.7 +
5⁄

3.7.11 +
7⁄

3.7.11.15 + ⋯.

404. Find the sum of the series: 1+2(1−𝑎)+3(1−𝑎)(1−2𝑎)+4(1−𝑎)(1−2𝑎)(1−3𝑎)+
⋯ to 𝑚 terms.

405. Find the sum of the series 1 + 𝑥
⁄

𝑏1 +
𝑥(𝑥+𝑏1)⁄
𝑏1𝑏2 + 𝑥(𝑥+𝑏1)(𝑥+𝑏2)⁄

𝑏1𝑏2𝑏3 + ⋯ + 𝑥(𝑥+𝑏1)⋯(𝑥+𝑏𝑛−1)⁄
𝑏1𝑏2⋯𝑏𝑛 .

406. Let 𝑆𝑘(𝑛) = 1𝑘+2𝑘+⋯+𝑛𝑘, show that 𝑛𝑆𝑘(𝑛) = 𝑆𝑘+1(𝑛)+𝑆𝑘(𝑛−1)+𝑆𝑘(𝑛−2)+
⋯+ 𝑆𝑘(2)+ 𝑆𝑘(1).

407. Find the sum of all the numbers of the form 𝑛3 which lie between 100 and 10000.

408. If 𝑆 be the sum of the 𝑛 consecutive integers beginning with 𝑎 and 𝑡 the sum of their
squares, show that 𝑛𝑡 − 𝑆2 is independent of 𝑎.

409. If 
𝑛+5
∑
𝑥=5

4(𝑥 − 3) = 𝑃𝑛2 + 𝑄𝑛 + 𝑅, find the value of 𝑃 +𝑄.

410. Find the sum to 2𝑛 terms of the series 53 + 4.63 + 73 + 4.83 + 93 + 4.103 + ⋯.

411. Find the sum to 𝑛 terms of the series (2𝑛+1⁄2𝑛−1)+ 3(2𝑛+1⁄2𝑛−1)
2
+ 5(2𝑛+1⁄2𝑛−1)

3
+ ⋯.

412. Find the sum to 𝑛 terms of the series 1 + 5(4𝑛+1⁄4𝑛−3)+ 9(4𝑛+1⁄4𝑛−3)
2
+ 13(4𝑛+1⁄4𝑛−3)

3
+ ⋯.

413. Prove that the numbers of the sequence 121, 12321, 1234321, ⋯ are each a perfect
square of an odd integer.

414. Prove that the sum to 𝑛 terms of the series 3⁄12 +
5
⁄

12+22 +
7
⁄

12+22+32 +
9⁄

12+22+32+42 + ⋯
is 6𝑛/(𝑛 + 1).

415. Find the sum to 𝑛 terms of the series 1⁄
(1+𝑥)(1+2𝑥)+

1⁄
(1+2𝑥)(1+3𝑥)+

1⁄
(1+3𝑥)(1+4𝑥)+⋯.

416. Find the sum to 𝑛 terms of the series 1⁄
(1+𝑥)(1+𝑎𝑥)+

𝑎⁄
(1+𝑎𝑥)(1+𝑎2𝑥)+

𝑎2⁄
(1+𝑎2𝑥)(1+𝑎3𝑥)+

⋯.

417. Find the sum to 𝑛 terms of the series 1⁄
√


1+√


3 +
1⁄

√


3+√


5 +
1⁄

√


5+√

7 + ⋯.
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418. If 𝑎1, 𝑎2, … , 𝑎𝑛, … are in A.P. with first term 𝑎 and common difference 𝑑, then prove
that 𝑎1𝑎2 + 𝑎2𝑎3 +⋯+ 𝑎𝑛𝑎𝑛+1 = [𝑎+(𝑛−1)𝑑](𝑎+𝑛𝑑)−(𝑎−𝑑)𝑎(𝑎+𝑑)⁄

3𝑑 = 𝑛
⁄

3 [3𝑎
2 + 2𝑎𝑛𝑑 +

(𝑛2 − 1)𝑑2 ].

419. If 𝑎1, 𝑎2, … , 𝑎𝑛, … are in A.P. with first term 𝑎 and common difference 𝑑, then prove
that 𝑎1𝑎2𝑎3 + 𝑎2𝑎3𝑎4 +⋯ + 𝑎𝑛𝑎𝑛+1𝑎𝑛+2 =

[𝑎+(𝑛−1)𝑑](𝑎+𝑛𝑑)[𝑎+(𝑛+1)𝑑][𝑎+(𝑛+2)𝑑]−(𝑎−𝑑)𝑎(𝑎+𝑑)(𝑎+2𝑑)⁄
4𝑑 =

𝑛
⁄

4 [4𝑎
3 + 6(𝑛 + 1)𝑎2𝑑 + 2(2𝑛2 + 3𝑛 − 1)𝑎𝑑2 + (𝑛3 − 2𝑛2 − 𝑛 − 2)𝑑3 ].

420. Find the sum to 𝑛 terms of the series 3⁄
12.22 +

5⁄
22.32 +

7⁄
32.42 + ⋯.

421. Let 𝑆𝑛 denote the sum to 𝑛 terms of the series 1.2+2.3+3.4+⋯ and 𝜎𝑛−1 that to 𝑛−1
terms of the series 1⁄

1.2.3.4 +
1⁄

2.3.4.5 +
1⁄

3.4.5.6 +⋯ Then prove that 18𝑆𝑛𝜎𝑛−1 − 𝑆𝑛 = −2.

422. Find 5
⁄

1.2 .
1
⁄

3 +
7
⁄

2.3 .
1
⁄

32 +
9
⁄

3.4 .
1
⁄

33 + ⋯ to 𝑛 terms.

423. If 1⁄12 +
1
⁄

22 +
1
⁄

32 +
1
⁄

42 + ⋯∞ = 𝜋2⁄
6 then find 1⁄12 +

1
⁄

32 +
1
⁄

52 + ⋯∞.

424. If 1⁄12 +
1
⁄

22 +
1
⁄

32 +
1
⁄

42 + ⋯∞ = 𝜋2⁄
6 , then find 1 − 1
⁄

22 +
1
⁄

32 −
1
⁄

42 + ⋯∞.

425. If 𝐻𝑛 = 1 + 1
⁄

2 +
1
⁄

3 + ⋯ + 1
⁄

𝑛 , then prove that 𝐻𝑛 = 𝑛 − (1⁄2 +
2
⁄

3 +
3
⁄

4 + ⋯ + 𝑛−1
⁄

𝑛 ).

426. Show that 1
⁄

𝑥+1 +
2
⁄

𝑥2+1 +
4
⁄

𝑥4+1 + ⋯ + 2𝑛⁄
𝑥2𝑛+1 =

1
⁄

𝑥−1 −
2𝑛+1⁄

𝑥2𝑛+1−1
.

427. Show that (1 + 1
⁄

3)(1 +
1
⁄

32)(1 +
1
⁄

34)⋯(1 +
1⁄
32𝑛) =

3
⁄

2(1 −
1⁄

32𝑛+1).

428. If 𝑥+𝑦+𝑧 = 1 and 𝑥, 𝑦, 𝑧 are positive numbers show that (1−𝑥)(1−𝑦)(1−𝑧) ≥ 8𝑥𝑦𝑧.

429. If 𝑎 > 0, 𝑏 > 0 and 𝑐 > 0, prove that (𝑎 + 𝑏 + 𝑐)(1⁄𝑎 +
1
⁄

𝑏 +
1
⁄

𝑐) ≥ 9.

430. If 𝑎 + 𝑏 + 𝑐 = 3 and 𝑎 > 0, 𝑏 > 0, 𝑐 > 0, find the greatest value of 𝑎2𝑏3𝑐2.

431. Let 𝑎𝑖 + 𝑏𝑖 = 1(𝑖 = 1, 2, … , 𝑛) and 𝑎 = 1
⁄

𝑛 (𝑎1 + 𝑎2 +⋯+ 𝑎𝑛), 𝑏 = 1
⁄

𝑛 (𝑏1 + 𝑏2 +⋯+ 𝑏𝑛) ,
show that 𝑎1𝑏1 + 𝑎2𝑏2 + ⋯ + 𝑎𝑛𝑏𝑛 = 𝑛𝑎𝑏 − (𝑎1 − 𝑎)2 − (𝑎2 − 𝑎)2 − ⋯ − (𝑎𝑛 − 𝑎)2.

432. A sequence 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 of real numbers is such that 𝑎1 = 0, |𝑎2| = |𝑎1 + 1|, |𝑎3| =
|𝑎2 + 1|, … , |𝑎𝑛| = |𝑎𝑛−1 + 1|. Prove that the arithmetic mean (𝑎1 + 𝑎2 + ⋯+ 𝑎𝑛)/𝑛
of these numbers cannot be less than −1/2.

433. If 𝑎,𝑏,𝑐 > 0, show that (𝑎 + 𝑏)(𝑏 + 𝑐)(𝑎 + 𝑐) ≥ 8𝑎𝑏𝑐.

434. If 𝑥 + 𝑦 + 𝑧 = 𝑎, show that 1⁄𝑥 +
1
⁄

𝑦 +
1
⁄

𝑧 ≥
9
⁄

𝑎.
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435. If 𝑛 is a positive integer, show that 𝑛𝑛 ≥ 1.3.5… (2𝑛 − 1).

436. Find the greatest value of (7 − 𝑥)4(2 + 𝑥)5 if −2 < 𝑥 < 7.

437. If 𝑎, 𝑏, 𝑐 > 0, show that 𝑏𝑐
⁄

𝑏+𝑐 +
𝑐𝑎
⁄

𝑐+𝑎 +
𝑎𝑏
⁄

𝑎+𝑏 ≤
𝑎+𝑏+𝑐
⁄

2 .

438. If 𝑎, 𝑏, 𝑐 > 0, show that 𝑏+𝑐⁄𝑎 + 𝑐+𝑎
⁄

𝑏 + 𝑎+𝑏
⁄

𝑐 ≥ 6.

439. If 𝑥𝑖 > 0, 𝑖 = 1, 2, 3, … , 𝑛 show that (𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛)( 1
⁄

𝑥1 +
1
⁄

𝑥2 + ⋯ + 1⁄
𝑥𝑛) ≥ 𝑛2.

440. If 𝑥,𝑦 are positive real numbers and 𝑚, 𝑛 are positive integers, then show that
𝑥𝑛𝑦𝑚⁄

(1+𝑥2𝑛)(1+𝑦2𝑚) ≤
1
⁄

4.

441. If the arithmetic mean of (𝑏 − 𝑐)2, (𝑐 − 𝑎)2 and (𝑎 − 𝑏)2 is the same as that of
(𝑏 + 𝑐 − 2𝑎)2, (𝑐 + 𝑎 − 2𝑏)2 and (𝑎 + 𝑏 − 2𝑐)2, show that 𝑎 = 𝑏 = 𝑐.
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Chapter 3
Complex Numbers

By definition a complex number has two parts: a real part and an imaginary part. You
already know about real numbers and know about them. However, imaginary numbers
is something different. 

3.1 Imaginary Numbers
Imaginary numbers are called so because there cannot be physical representation of these
quantities. Like we use real numbers for counting physical objects we cannot do that with
imaginary numbers. In real world, they do not exist. Square root of negative numbers are
called imaginary numbers. For example, √


−1,√

−2.√

−3, … and so on.

We denote √

−1 with the Greek symbol 𝜄, which stands for iota. We also use English letters i

or j to represent this imaginary number. Clearly, 𝑖2 = −1, 𝑖3 = −𝑖, 𝑖4 = 1. If you examine
carefully, you will find that following holds true:

𝑖4𝑚 = 1, 𝑖4𝑚+1 = 𝑖, 𝑖4𝑚+2 = −1 and 𝑖4𝑚+3 = −1, ∀𝑚 ∈ 𝑃

Gotcha:

Consider the following:

1 = √


1 = √

−1 ∗ −1 = √

−1 ∗√

−1 = 𝑖 ∗ 𝑖 = −1

However, the above result is wrong. The reason being is that for any two real numbers 𝑎 and
𝑏,√


𝑎 ∗√

𝑏 = √


𝑎𝑏 holds good if and only if two numbers are either zero or positive. Also,
√


1 ≠ √

−1 ∗ −1 because power of − is 1⁄2 which results in −1.

3.2 Definitions Related to Complex Numbers
A complex number is written as 𝑎 + 𝑖𝑏 or 𝑥 + 𝑖𝑦 or 𝑎 + 𝑗𝑏 or 𝑥 + 𝑗𝑏. Here, 𝑎, 𝑏, 𝑥, 𝑦 are all
real numbers. The complex numbers itself is denoted by 𝑧. Therefore, we have 𝑧 = 𝑥 + 𝑖𝑦.
Here, 𝑥 is called the real part and is also denoted by ℜ(𝑧) and 𝑦 is called the imaginary part
and is also denoted by ℑ(𝑧).

A complex number is purely real if its imaginary part or 𝑦 or ℑ(𝑧) is zero. Similarly, a
complex number is purely imaginary if its real part or 𝑥 or ℜ(𝑧) is zero. Clearly, as you can
imagine that there can exist only one number which has both the parts as zero and certainly
that is 0. That is, 0 = 0 + 𝑖0.

The set of all complex number is typically denoted by 𝐶. Two complex numbers 𝑧1 and 𝑧2
are said to be true if there real parts are equal and imaginary parts are equal. That is if
𝑧1 = 𝑥1 + 𝑖𝑦1 and 𝑧2 = 𝑥2 + 𝑖𝑦2 then 𝑥1 must be equal to 𝑥2 and similarly for imaginary
part for two complex numbers to be equal.
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3.3 Simple Arithmetic Operations

3.3.1 Addition
(𝑎 + 𝑖𝑏)+ (𝑐 + 𝑖𝑑) = (𝑎 + 𝑐)+ 𝑖(𝑏 + 𝑑)

3.3.2 Subtraction
(𝑎 + 𝑖𝑏)− (𝑐 + 𝑖𝑑) = (𝑎 − 𝑐)+ 𝑖(𝑏 − 𝑑)

3.3.3 Multiplication

(𝑎 + 𝑖𝑏) ∗ (𝑐 + 𝑖𝑑) = 𝑎𝑐 + 𝑖𝑏𝑐 + 𝑖𝑎𝑑 + 𝑏𝑑𝑖2 = (𝑎𝑐 − 𝑏𝑑)+ 𝑖(𝑏𝑐 + 𝑎𝑑)

3.3.4 Division
The complex number in denominator must not have both parts as zero. At least one part
must be non-zero.

𝑎 + 𝑖𝑏⁄
𝑐 + 𝑖𝑑 =

(𝑎 + 𝑖𝑏)(𝑐 − 𝑖𝑑)⁄
(𝑐 + 𝑖𝑑)(𝑐 − 𝑖𝑑) =

(𝑎𝑐 + 𝑏𝑑)+ 𝑖(𝑏𝑐 − 𝑎𝑑)⁄
𝑐2 + 𝑑2

3.4 Conjugate of a Complex Number
Let 𝑧 = 𝑥 + 𝑖𝑦 be a complex number then its complex conjugate is a number with imaginary
part made negative. It is written as 𝑧 = 𝑥− 𝑖𝑦.𝑧 is the typical representation for conjugate of
a complex number 𝑧.

3.4.1 Properties of Conjugates

1. 𝑧1 = 𝑧2 ⇔ 𝑧1 = 𝑧2

Clearly as we know for two complex numbers to be equal, both parts must be equal.
So this is very easy to understand that if 𝑥1 = 𝑥2 and 𝑦1 = 𝑦2 then this bidirectional
condition is always satisfied.

2. (𝑧) = 𝑧

𝑧 = 𝑥 + 𝑖𝑦, hence, 𝑧 = 𝑥 − 𝑖𝑦. Hence, (𝑧) = 𝑥 − (−𝑖𝑦) = 𝑥 + 𝑖𝑦 = 𝑧

3. 𝑧 + 𝑧 = 2ℜ(𝑧)

𝑧 + 𝑧 = 𝑥 + 𝑖𝑦 + 𝑥 − 𝑖𝑦 = 2𝑥 = 2ℜ(𝑧).

4. 𝑧 − 𝑧 = 2𝑖ℑ(𝑧)

𝑧 − 𝑧 = 𝑥 + 𝑖𝑦 − (𝑥 − 𝑖𝑦) = 2𝑖𝑦 = 2𝑖ℑ(𝑧)



Complex Numbers 46

5. 𝑧 = 𝑧 ⇔ 𝑧 is purely real.

Clearly, 𝑥 + 𝑖𝑦 = 𝑥 − 𝑖𝑦 ⇒ 2𝑖𝑦 = 0 ⇒ 𝑦 = 0. Therefore, 𝑧 is purely real. Conversely, if 𝑧
is purely real then 𝑧 = 𝑥, and thus 𝑧 = 𝑧.

6. 𝑧 + 𝑧 = 0 ⇔ 𝑧 is purely imaginary.

Clearly, 𝑥 + 𝑖𝑦 + 𝑥 − 𝑖𝑦 = 0 ⇒ 2𝑥 = 0. Therefore, 𝑧 is purely imaginary. Conversely, if 𝑧
is purely imaginary then 𝑧 = 𝑖𝑦, and thus 𝑧 + 𝑧 = 0.

7. 𝑧𝑧 = [ℜ(𝑧)]2 + [ℑ(𝑧)]2

Clearly, 𝑧𝑧 = (𝑥 + 𝑖𝑦)(𝑥 − 𝑖𝑦) = 𝑥2 + 𝑦2 = [ℜ(𝑧)]2 + [ℑ(𝑧)]2

8. 𝑧1 + 𝑧2 = 𝑧1 + 𝑧2

𝑧1 + 𝑧2 = (𝑥1 + 𝑖𝑦1)+ (𝑥2 + 𝑖𝑦2) = (𝑥1 + 𝑥2)+ 𝑖(𝑦1 + 𝑦2) = (𝑥1+𝑥2)− 𝑖(𝑦1+ 𝑦2) =
(𝑥1 − 𝑖𝑦1)+ (𝑥2 − 𝑖𝑦2) = 𝑧1 + 𝑧2

9. 𝑧1 − 𝑧2 = 𝑧1 − 𝑧2

This can be proven like previous item.

10. 𝑧1𝑧2 = 𝑧1𝑧2

This can be proven like previous item.

11. (𝑧1⁄𝑧2) = 𝑧1⁄
𝑧2 if 𝑧2 ≠ 0

It can be proven by multiplying and dividing by conjugate of denominator and then
applying division formula given above.

12. If 𝑃 (𝑧) = 𝑎0+ 𝑎1𝑧 + 𝑎2𝑧2 +…+ 𝑎𝑛𝑧𝑛, where 𝑎0, 𝑎1, … , 𝑎𝑛 and 𝑧 are complex numbers,
then

𝑃 (𝑧) = 𝑎0 + 𝑎1(𝑧)+ 𝑎2(𝑧)2 + 𝑎𝑛(𝑧)𝑛 = 𝑃 (𝑧)

where

𝑃 (𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + …+ 𝑎𝑛𝑧𝑛

13. If 𝑅(𝑧) = 𝑃 (𝑧)⁄
𝑄(𝑧), where 𝑃 (𝑧) and 𝑄(𝑧) are polynomials in 𝑧, and𝑄(𝑧) ≠ 0, then

𝑅(𝑧) = 𝑃 (𝑧)⁄
𝑄(𝑧)

14. If

𝑧 = ∣
𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3
𝑐1 𝑐2 𝑐3 ∣, then 𝑧 = ∣

𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3
𝑐1 𝑐2 𝑐3 ∣ ,
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where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖(𝑖 = 1,2,3) are complex numbers.

3.5 Modulus of a Complex Number
Modulus of a complex number 𝑧 is denoted by |𝑧| and is equal to the real number √


𝑥2 + 𝑦2.

Note that |𝑧| ≥ 0∀𝑧 ∈ 𝐶. 

3.5.1 Properties of Modulus

1. |𝑧| = 0 ⇔ 𝑧 = 0

Clearly, this means 𝑥2 + 𝑦2 = 0 ⇒ 𝑥 = 0 and 𝑦 = 0 ⇒ 𝑧 = 0.

2. |𝑧| = |𝑧| = |− 𝑧| = |− 𝑧|

Clearly, all result in √

𝑥2 + 𝑦2.

3. −|𝑧| ≤ ℜ(𝑧) ≤ |𝑧|.

Clearly, −√

𝑥2 + 𝑦2 ≤ 𝑥 ≤√

𝑥2 + 𝑦2.

4. −|𝑧| ≤ ℑ(𝑧) ≤ |𝑧|.

Clearly, −√

𝑥2 + 𝑦2 ≤ 𝑦 ≤√

𝑥2 + 𝑦2.

5. 𝑧𝑧 = |𝑧|2

Clearly, (𝑥 + 𝑖𝑦)(𝑥 − 𝑖𝑦) = 𝑥2 + 𝑦2 = |𝑧|2.

Following relations are very easy and can be proved by the student. If 𝑧1 and 𝑧2 are two
complex numbers then,

6. |𝑧1𝑧2| = |𝑧1||𝑧2|

|𝑧1𝑧2| = |𝑥1𝑥2 − 𝑦1𝑦2 + 𝑖(𝑥1𝑦2 + 𝑥2𝑦1) | = √

(𝑥1𝑥2 − 𝑦1𝑦2)2 + (𝑥1𝑦2 + 𝑥2𝑦1)2 =

√

(𝑥1 + 𝑦1)2(𝑥2 + 𝑦2)2 = |𝑧1||𝑧2|

7. ∣𝑧1⁄𝑧2∣ = |𝑧1|⁄
|𝑧2| if 𝑧2 ≠ 0

8. |𝑧1 + 𝑧2|2 = |𝑧1|2 + |𝑧2|2 + 𝑧1𝑧2 + 𝑧2𝑧1 = |𝑧1|2 + |𝑧2|2 + 2ℜ(𝑧1𝑧2).

9. |𝑧1 − 𝑧2|2 = |𝑧1|2 + |𝑧2|2 − 𝑧1𝑧2 − 𝑧1𝑧2 = |𝑧1|2 + |𝑧2|2 + 2ℜ(𝑧1𝑧2).

10. |𝑧1 + 𝑧2|2 + |𝑧1 − 𝑧2|2 = 2(|𝑧1|2 + |𝑧2|2).

11. If 𝑎 and 𝑏 are real numbers, and 𝑧1 and 𝑧2 are complex numbers, then

|𝑎𝑧1 + 𝑏𝑧2|2 + |𝑏𝑧1 − 𝑎𝑧2|2 = (𝑎2 + 𝑏2)(|𝑧1|2 + |𝑧2|2).
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12. If 𝑧1, 𝑧2 ≠ 0, then |𝑧1 + 𝑧2|2 = |𝑧1|2 + |𝑧2|2 ⇔ 𝑧1⁄
𝑧2 is purely imaginary.

13. If 𝑧1 and 𝑧2 are complex numbers then |𝑧1 + 𝑧2| ≤ |𝑧1|+ |𝑧2|. This inequality can be
generalized to more terms as well.

14. |𝑧1 − 𝑧2| ≤ |𝑧1| + |𝑧2|, ||𝑧1| − |𝑧2|| ≤ |𝑧1| + |𝑧2| and |𝑧1 − 𝑧2| ≥ ||𝑧1| − |𝑧2||. These are
trivial to prove.

3.6 Geometrical Representation
A complex number 𝑧 which we have considered to be equal to 𝑥 + 𝑖𝑦 in our previous
representations can be represented by a point 𝑃 whose Cartesian coordinates are (𝑥,𝑦)
referred to rectangular axes 𝑂𝑥 and 𝑂𝑦 where 𝑂 is origin i.e. (0, 0) and are called real and
imaginary axes respectively. The 𝑥𝑦 two-dimensional plane is also called Argand plane,
complex plane or Gaussian plane. The point 𝑃 is also called the image of the complex number
and 𝑧 is also called the affix or complex coordinate of point 𝑃 .

Now as you can easily figure out that all real numbers will lie on real axis and all imaginary
numbers will lie on imaginary axis as their counterparts will be zero.

The modulus is given by the length of segment 𝑂𝑃 which is equal to 𝑂𝑃 =√

𝑥2 + 𝑦2 = |𝑧|.

This, |𝑧| si the length of the 𝑂𝑃 . Given below is the graphical representation of the complex
number.

𝑋

𝑌

𝜃 𝑥

𝑦
𝑂𝑃 = |𝑧|
arg(𝑧) = 𝜃

𝑃 = 𝑥 + 𝑖𝑦

Figure 3.1 Complex number in argand
plane or complex plane.

In the diagram, 𝜃 is known as the argument of 𝑧. This is nothing but angle made with
positive direction (i.e. counter-clockwise) of real axis. Now, this argument is not unique.
If 𝜃 is an argument of a complex number 𝑧 then, 2𝑛𝜋 + 𝜃, where 𝑛 ∈ 𝐼, where I is the set
of integers. The value of argument for which −𝜋 < 𝜃 ≤ 𝜋 is called the principal value of
argument or principal argument.

3.6.1 Different Arguments of a Complex Number

In the diagram, the argument is given as arg(𝑧) = tan−1(𝑦⁄𝑥), this value is for when 𝑧 in first
quadrant. When 𝑧 will lie in second, third and fourth quadrants the arguments will be
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𝑎𝑟𝑔(𝑧) = 𝜋 − tan−1( 𝑦⁄
|𝑥|), arg(𝑧) = −𝜋 + tan−1(|𝑦|⁄|𝑥|) and arg(𝑧) = −tan−1(|𝑦|⁄𝑥 )

respecticely.

3.6.2 Polar Form of a Complex Number
If 𝑧 is a non-zero complex number, then we can write 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃), where 𝑟 = |𝑧|
and 𝜃 = arg(𝑧).

In this case, 𝑧 is also given by 𝑧 = 𝑟[cos(2𝑛𝜋 + 𝜃)+ 𝑖 sin(2𝑛𝜋 + 𝜃)], where 𝑛 ∈ 𝐼 .

A Euler's Formula

The complex number cos 𝜃 + 𝑖 sin 𝜃 is denoted by 𝑒𝑖𝜃 or arg(𝑐) is 𝜃, where 𝑐 is the complex
number.

3.6.3 Important Results Involving Arguments
If 𝑧, 𝑧1 and 𝑧2 are complex numbers, then

1. arg((𝑧)) = −arg(𝑧). This can be easily proven as if 𝑧 = 𝑥 + 𝑖𝑦, then 𝑧 = 𝑥 − 𝑖𝑦 i.e.
sign of argument will get a -ve sign as 𝑦 gets one.

2. arg(𝑧1𝑧2) = arg(𝑧1)+ arg(𝑧2)+ 2𝑛𝜋, where

𝑛 = {
0 if −𝜋 < arg(𝑧1)+ arg(𝑧2) ≤ 𝜋
1 if −2𝜋 < arg(𝑧1)+ arg(𝑧2) ≤ −𝜋
−1 if 𝜋 < arg(𝑧1)+ arg(𝑧2) ≤ 2𝜋

3. Similarly, arg(𝑧1𝑧2) = arg(𝑧1)− arg(𝑧2).

4. |𝑧1 + 𝑧2| = |𝑧1 − 𝑧2|⇔ arg(𝑧1)− arg(𝑧2) = 𝜋/2.

5. |𝑧1 + 𝑧2| = |𝑧1|+ |𝑧2|⇔ arg(𝑧1) = arg(𝑧2).

6. |𝑧1 + 𝑧2|2 = 𝑟21 + 𝑟22 + 2𝑟1𝑟2 cos(𝜃1 − 𝜃2).

7. |𝑧1 − 𝑧2|2 = 𝑟21 + 𝑟22 + 2𝑟1𝑟2 cos(𝜃1 + 𝜃2).

3.7 Vector Representation
Complex numbers can also be represented as vectors. Length of the vector is nothing but
modulus of complex number and argument is the angle which the vector makes with read
axis. It is denoted as 𝑂𝑃
⟶

, where 𝑂𝑃 represents the vector of the complex number 𝑧.

3.8 Algebraic Operation's Representation
Let 𝑧1 = 𝑥1 + 𝑖𝑦1 and 𝑧2 = 𝑥2 + 𝑖𝑦2 be two complex numbers, which are represented by two
point 𝑃1 and 𝑃2 in the following diagrams.
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3.8.1 Addition
Now, as we know that 𝑧1 + 𝑧2 = (𝑥1 + 𝑥2) + 𝑖(𝑦1 + 𝑦2). Let us see how it looks using
geometrically:

𝑋

𝑌

𝑂 𝐿 𝑀 𝑁

𝐾
𝑃1(𝑥1 + 𝑖𝑦1)

𝑃2(𝑥2 + 𝑖𝑦2)

𝑃 (𝑥 + 𝑖𝑦)

Figure 3.2 Complex numbers addition

Clearly, 𝑧 = 𝑧1 + 𝑧2 = 𝑥1 + 𝑥2 + 𝑖(𝑦1 + 𝑦2). Let 𝑃1𝑀, 𝑃2𝐿 and 𝑃𝑁 be parallel to the 𝑦-axis;
𝑃1𝐾 be parallet to the 𝑥-axis. This implied that triangle 𝑂𝑃2𝐿 and 𝑃𝑃1𝐾 are congruent.

We have 𝑃1𝐾 = 𝑂𝐿 = 𝑥1 and 𝑃2𝐿 = 𝑃𝐾 = 𝑦1

Thus, 𝑂𝑁 = 𝑂𝑀 +𝑀𝑁 = 𝑂𝐿 + 𝑃1𝐾 = 𝑥1 + 𝑥2 and 𝑃𝑁 = 𝑃𝐾 +𝐾𝑁 = 𝑃2𝐿 + 𝑃1𝑀 =
𝑦2 + 𝑦1

So we can say that coordinates of 𝑃 are (𝑥1 + 𝑥2, 𝑦1 + 𝑦2) which represents the complex
number 𝑧.

We also see that this obeys vector addition i.e. 𝑂𝑃1 + 𝑂𝑃2 = 𝑂𝑃1 + 𝑃1𝑃 = 𝑂𝑃

3.8.2 Subtraction
In Figure 3.3, we first represent −𝑧2 by 𝑃′2 so that 𝑃2𝑃 ′2 is bisected at 𝑂. Complete the
parallelogram 𝑂𝑃1𝑃𝑃′2. Then it can be easily seen that 𝑃 representd the difference 𝑧1 − 𝑧2.

As 𝑂𝑃1𝑃𝑃′2 is a parallelogram so 𝑃1𝑃 = 𝑂𝑃′2. Using vetor notation, we have, 𝑧1 − 𝑧2 =
𝑂𝑃1 − 𝑂𝑃2 = 𝑂𝑃1 + 𝑂𝑃′2 = 𝑂𝑃1 + 𝑃1𝑃 = 𝑃2𝑃1

It follows that the complex number 𝑧1−𝑧2 is represented by the vector 𝑃1𝑃2, where points 𝑃1
and 𝑃2 represent the complex numbers 𝑧1 and 𝑧2 respectively.

It should be noted that arg(𝑧1 − 𝑧2) is the angle through which 𝑂𝑋 must be rotated in the
anticlockwise direction to make it parallel with 𝑃1𝑃2.
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𝑥

𝑦

𝑃1(𝑥1, 𝑦1)

𝑃2(𝑥2, 𝑦2)

𝑃 (𝑥1 − 𝑥2, 𝑦1 − 𝑦2)

𝑃′2(−𝑥2, − 𝑦2)
Figure 3.3 Complex numbers subtraction

θ1
θ2

(θ1 + θ2)

x

y

P1(r1.e
iθ1 )P2(r2.e

iθ2 )

P (r1r2.e
i(θ1+θ2))

Figure 3.4 Complex
numbers subtraction

3.8.3 Multiplication
For multiplication it is convenient to use Euler's formula of complex numbers.

Let 𝑧1 = 𝑟1𝑒𝑖𝜃1 and 𝑧2 = 𝑟2𝑒𝑖𝜃2, then clealry, 𝑧1𝑧2 = 𝑟1𝑟2𝑒𝑖(𝜃1+𝜃2)

3.8.4 Division
For division also it is convenient to use Euler's formula of complex numbers.

Let 𝑧1 = 𝑟1𝑒𝑖𝜃1 and 𝑧2 = 𝑟2𝑒𝑖𝜃2, then clealry, 𝑧1/𝑧2 = 𝑟1/𝑟2𝑒𝑖(𝜃1−𝜃2)

3.9 Three Important Results

𝑧1 − 𝑧2 = 𝑂𝑃
⟶

−𝑂𝑄
⟶

= 𝑄𝑃
⟶
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θ1
θ2

(θ1 − θ2) x

y

P1(r1.e
iθ1)

P2(r2.e
iθ2 )

P (r1/r2.e
i(θ1−θ2))

Figure 3.5 Complex numbers division

x

y

O

Q(z2)

P (z1)

θ

Figure 3.6 External angle

∴ |𝑧1 − 𝑧2| = |𝑄𝑃
⟶

| = 𝑄𝑃 which is nothing but distance between 𝑃 and 𝑄.

arg(𝑧1 − 𝑧2) is the angle made by 𝑄𝑃
⟶

with 𝑥-axis which is nothing but 𝜃.

x

y

O

θ

αβ

P (z1)

Q(z2)

R(z3)

Figure 3.7 Angle relation
between three complex numbers

In Figure 3.7, 𝜃 = 𝛼 − 𝛽 = arg(𝑧3 − 𝑧1)− arg(𝑧2 − 𝑧1)⇒ 𝜃 = 𝑎𝑟𝑔 𝑧3−𝑧1⁄𝑧2−𝑧1
Similarly if three complex numbers are vertices of a triangle then angles of those vertices can
also be computed using previous results.
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Similarly, for four points to be concyclic where those points are represented by 𝑧1, 𝑧2, 𝑧3
and 𝑧4 if

𝑎𝑟𝑔(𝑧2 − 𝑧4⁄
𝑧1 − 𝑧4

. 𝑧1 − 𝑧3⁄
𝑧2 − 𝑧4

) = 0

3.10 More Roots

3.10.1 Any Root of an Complex Number is a Complex Number
Let 𝑥 + 𝑖𝑦 be a complex number, where 𝑦 ≠ 0.

Let (𝑥 + 𝑖𝑦)𝑛 = 𝑎∴𝑥 + 𝑖𝑦 = 𝑎𝑛

Now, if 𝑎 is real, 𝑎𝑛 will also be real but from above a complex number 𝑥 + 𝑖𝑦 is equal to a
real number, 𝑎𝑛, which is not possible. Hence, it must be complex.

3.10.2 Square Root of a Complex Number
Consider a complex number 𝑧 = 𝑥 + 𝑖𝑦. Let 𝑎 + 𝑖𝑏 be its square root. Then

√

𝑥 + 𝑖𝑦 = 𝑎 + 𝑖𝑏 ⇒ 𝑥 + 𝑖𝑦 = (𝑎2 − 𝑏2)+ 2𝑎𝑏𝑖

Equating real and imaginary parts

𝑥 = 𝑎2 − 𝑏2, 𝑦 = 2𝑎𝑏 ⇒ (𝑎2 + 𝑏2)2 = (𝑎2 − 𝑏2)2 + (2𝑎𝑏)2

From these two equations, we have

𝑎 = ±√

√

𝑥2 + 𝑦2 + 𝑥⁄

2 , 𝑏 = ±√

√

𝑥2 − 𝑦2 − 𝑥⁄

2

3.10.3 Cube Roots of Unity

Let 𝑥 = 3√


1 ⇒ 𝑥3 − 1 = 0

⇒ (𝑥 − 1)(𝑥2 + 𝑥 + 1) = 0

So the three roots are 𝑥 = 1, −1±√


3⁄
2 i.e. 1, −1±√


3𝑖⁄
2 .

It can be easily verified that if 𝜔 = −1−√


3𝑖⁄
2 , then 𝜔2 = −1+√


3𝑖⁄
2 , thus, three cube roots are

represented as 1, 𝜔 and 𝜔2. 𝜔 is the symbol used for representing cube root of unity. 

A Important Identities
Following identities can be proved easily. The proof is left as an exercise to the reader.

1. 𝑥2 + 𝑥 + 1 = (𝑥 − 𝜔)(𝑥 − 𝜔2)

2. 𝑥2 − 𝑥 + 1 = (𝑥 + 𝜔)(𝑥 + 𝜔2)
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3. 𝑥2 + 𝑥𝑦 + 𝑦2 = (𝑥 − 𝑦𝜔)(𝑥 − 𝑦𝜔2)

4. 𝑥2 − 𝑥𝑦 + 𝑦2 = (𝑥 + 𝑦𝜔)(𝑥 + 𝑦𝜔2)

5. 𝑥3 + 𝑦3 = (𝑥 + 𝑦)(𝑥 + 𝑦𝜔)(𝑥 + 𝑦𝜔2)

6. 𝑥3 − 𝑦3 = (𝑥 − 𝑦)(𝑥 − 𝑦𝜔)(𝑥 − 𝑦𝜔2)

7. 𝑥2+ 𝑦2 + 𝑧2 − 𝑥𝑦 − 𝑦𝑧 − 𝑧𝑥 = (𝑥+ 𝑦𝜔+ 𝑧𝜔2)(𝑥+ 𝑦𝜔2+ 𝑧𝜔) or (𝑥𝜔+ 𝑦𝜔2+ 𝑧)(𝑥𝜔2+
𝑦𝜔 + 𝑧) or (𝑥𝜔 + 𝑦 + 𝑧𝜔2)(𝑥𝜔2 + 𝑦 + 𝑧𝜔)

8. 𝑥3 + 𝑦3 + 𝑧3 − 3𝑥𝑦𝑧 = (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦𝜔 + 𝑧𝜔2)(𝑥 + 𝑦𝜔2 + 𝑧𝜔)

3.10.4 𝑛th Root of Unity

1 = cos 0 + 𝑖 sin 0 ⇒ 𝑛√


1 = 𝑛√

cos 0 + 𝑖 sin 0

= cos 2𝑘𝜋⁄𝑛 + 𝑖 sin 2𝑘𝜋⁄
𝑛 , where 𝑘 = 0, 1, 2, 3, 4, … (𝑛 − 1)

= 𝑒
2𝑘𝜋⁄
𝑛 = 1, 𝑒

𝑖2𝜋⁄
𝑛 , 𝑒

𝑖4𝜋⁄
𝑛 , … , 𝑒

𝑖2(𝑛−1)𝜋⁄
𝑛 = 1, 𝛼, 𝛼2, … , 𝛼𝑛−1, where 𝛼 = 𝑒

𝑖2𝜋⁄
𝑛

Similar to cube roots of unity it can be proven that 1 + 𝛼 + 𝛼2 + … + 𝛼𝑛−1 = 0 and
1.𝛼.𝛼2.…𝛼𝑛−1 = (−1)𝑛−1

3.11 De Moivre's Theoremm
This theorem's proof uses mathematical induction, so read the chapter on it.

Statement: If 𝑛 is any integer then (cos 𝜃 + 𝑖 sin 𝜃)𝑛 = cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃.

Proof: Case I. When 𝑛 is 0. Clearly, (cos 𝜃 + 𝑖 sin 𝜃)0 = 1

Case II. When 𝑛 is a positive integer. Clearly is it true for 𝑛 = 1

Let it is true for 𝑛 = 𝑚. Then (cos 𝜃 + 𝑖 sin 𝜃)𝑚 = cos𝑚𝜃 + 𝑖 sin𝑚𝜃

For 𝑛 = 𝑚+ 1, (cos 𝜃 + 𝑖 sin 𝜃)𝑚+1 = (cos𝑚𝜃 + 𝑖 sin𝑚𝜃)(cos 𝜃 + 𝑖 sin 𝜃) = cos(𝑚+ 1)𝜃 +
𝑖 sin(𝑚+ 1)𝜃 [this result comes from trigonometry]

Thus, by mathematical induction we have proven the theorem for positive integers.

Case III. When 𝑛 is negative number. For 𝑛 = −1, (cos 𝜃 + 𝑖 sin 𝜃)−1 = 1⁄
cos 𝜃+𝑖 sin 𝜃

= cos 𝜃−𝑖 sin 𝜃⁄
cos2 𝜃+sin2 𝜃 = cos 𝜃 − 𝑖 sin 𝜃

Let it be true for 𝑛 = −𝑚, (cos 𝜃 + 𝑖 sin 𝜃)−𝑚 = cos𝑚𝜃 − 𝑖 sin𝑚𝜃

For 𝑛 = −(𝑚+ 1), (cos 𝜃 + 𝑖 sin 𝜃)−(𝑚+1) = cos𝑚𝜃−𝑖 sin𝑚𝜃⁄
cos 𝜃+𝑖 sin 𝜃

= (cos𝑚𝜃 − 𝑖 sin𝑚𝜃)(cos 𝜃 − 𝑖 sin 𝜃) = cos(𝑚+ 1)𝜃 + 𝑖 sin(𝑚+ 1)𝜃
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Thus, it is proven for negative numbers as well. Proof for fractional powers is left as an
exercise.

3.12 Some Important Geometrical Results

3.12.1 Section Formula
Let 𝑧1 = 𝑥1 + 𝑖𝑦1, 𝑧2 = 𝑥2 + 𝑖𝑦2 then 𝑧 = 𝑥 + 𝑖𝑦, which divides the previous two points in
the ratio 𝑚 : 𝑛 can be given by using the results from coordinate geometry as below:

𝑥 = 𝑚𝑥2 + 𝑛𝑥1⁄
𝑚+ 𝑛 , 𝑦 = 𝑚𝑦2 + 𝑛𝑦1⁄

𝑚+ 𝑛 and 𝑧 = 𝑚𝑧2 + 𝑛𝑧1⁄
𝑚+ 𝑛

Extending this section formula, we can say that if there is a point which is mid-point i.e.
divides a line in two equal parts, then 𝑚 = 1 and 𝑛 = 1 then 𝑧 is given by 1⁄2 (𝑧1 + 𝑧2). 

3.12.2 Distance Formula
Distance between 𝐴(𝑧1) and 𝐵(𝑧2) is given by 𝐴𝐵 = |𝑧1 − 𝑧2|. 

3.12.3 Equation of a Line
The equation between two points 𝑧1 and 𝑧2 is given by the determinant

∣
𝑧 𝑧 1
𝑧1 𝑧1 1
𝑧2 𝑧2 1 ∣ = 0

or,

𝑧 − 𝑧1⁄
𝑧 − 𝑧1

= 𝑧1 − 𝑧2⁄
𝑧1 − 𝑧2

The parametric form is given by 𝑧 = 𝑖𝑧1 + (1 − 𝑡)𝑧2

3.12.4 Collinear Points
Three points 𝑧1, 𝑧2 and 𝑧3 are collinear if and only if

∣
𝑧1 𝑧1 1
𝑧2 𝑧2 1
𝑧3 𝑧3 1 ∣ = 0

3.12.5 Parallelogram
Four complex numbers 𝐴(𝑧1), 𝐵(𝑧2), 𝐶(𝑧3) and 𝐷(𝑧4) represent the vertices of a parallel
ogram if 𝑧1 + 𝑧3 = 𝑧2 + 𝑧4.This result comes from the fact that diagonals of a parallelogram
bisect each other.
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A(z1) B(z2)

C(z3)D(z4)

Figure 3.8 Parallelogram

3.12.6 Rhombus
Four complex numbers 𝐴(𝑧1), 𝐵(𝑧2), 𝐶(𝑧3) and 𝐷(𝑧4) represent the vertices of a rhombus
if 𝑧1 + 𝑧3 = 𝑧2 + 𝑧4 and |𝑧4 − 𝑧1| = |𝑧2 − 𝑧1|.

A(z1) B(z2)

C(z3)D(z4)

Figure 3.9 Rhombus

The diagonals must bisect each other. Thus, 𝑧1 + 𝑧3 = 𝑧2 + 𝑧4. Also, four sides of a rhombus
are equal i.e. 𝐴𝐷 = 𝐴𝐵 ⇒ |𝑧4 − 𝑧1| = |𝑧2 − 𝑧1|.

3.12.7 Square
Four complex numbers 𝐴(𝑧1), 𝐵(𝑧2), 𝐶(𝑧3) and 𝐷(𝑧4) represent the vertices of a square if
𝑧1 + 𝑧3 = 𝑧2 + 𝑧4, |𝑧4 − 𝑧1| = |𝑧2 − 𝑧1| and |𝑧3 − 𝑧1| = |𝑧4 − 𝑧2|.

A(z1) B(z2)

C(z3)D(z4)

Figure 3.10 Square

The diagonals must bisect each other. Thus, 𝑧1 + 𝑧3 = 𝑧2 + 𝑧4. Also, four sides of a square
are equal i.e. 𝐴𝐷 = 𝐴𝐵 ⇒ |𝑧4 − 𝑧1| = |𝑧2 − 𝑧1|.

Also the digonals are equal in length so |𝑧3 − 𝑧1| = |𝑧4 − 𝑧2|.

3.12.8 Rectangle
Four complex numbers 𝐴(𝑧1), 𝐵(𝑧2), 𝐶(𝑧3) and 𝐷(𝑧4) represent the vertices of a square if
𝑧1 + 𝑧3 = 𝑧2 + 𝑧4 and |𝑧3 − 𝑧1| = |𝑧4 − 𝑧2|.

A(z1) B(z2)

C(z3)D(z4)

Figure 3.11 Rectangle
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The diagonals must bisect each other. Thus, 𝑧1 + 𝑧3 = 𝑧2 + 𝑧4. Also, the digonals are equal
in length so |𝑧3 − 𝑧1| = |𝑧4 − 𝑧2|.

3.12.9 Centroid of a Triangle
Let 𝐴(𝑧1), 𝐵(𝑧2) and 𝐶(𝑧3) be the vertices of a △𝐴𝐵𝐶. Centroid 𝐺(𝑧) of the △𝐴𝐵𝐶 is
the point of concurrence of the medians of all three sides and is given by

𝑧 = 𝑧1 + 𝑧2 + 𝑧3⁄
3

A(z1)

B(z1) C(z3)D

EF
G(z)

Figure 3.12 Centroid of a triangle.

3.12.10 Incenter of a Triangle
Let 𝐴(𝑧1), 𝐵(𝑧2) and 𝐶(𝑧3) be the vertices of a △𝐴𝐵𝐶. Incenter 𝐼(𝑧) of the △𝐴𝐵𝐶 is
the point of concurrence of the internal bisectors of and is given by

𝑧 = 𝑎𝑧1 + 𝑏𝑧2 + 𝑐𝑧3⁄
𝑎 + 𝑏 + 𝑐

where 𝑎, 𝑏, 𝑐 are the lengths of the sides.

3.12.11 Circumcenter of a Triangle
Circumcenter 𝑆(𝑧) of a △𝐴𝐵𝐶 is the point of concurrence of perpendicular bisectors of
sides of the triangle. It is given by

𝑧 = (𝑧2 − 𝑧3) |𝑧1|2 + (𝑧3 − 𝑧1) |𝑧2|2 + (𝑧1 − 𝑧2) |𝑧3|2⁄
𝑧1(𝑧2 − 𝑧3)+ 𝑧2(𝑧3 − 𝑧1)+ 𝑧3(𝑧1 − 𝑧2)

= ∣
|𝑧1|2 𝑧1 1
|𝑧2|2 𝑧2 1
|𝑧3|2 𝑧3 1 ∣⁄
∣
𝑧1 𝑧1 1
𝑧2 𝑧2 1
𝑧3 𝑧3 1 ∣

Also,
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𝑧 = 𝑧1 sin 2𝐴 + 𝑧2 sin 2𝐵 + 𝑧3 sin 2𝐶⁄
sin 2𝐴 + sin 2𝐵 + sin 2𝐶

3.12.12 Orthocenter of a Triangle
The orthocenter 𝐻(𝑧) of the △𝐴𝐵𝐶 is the point of concurrence of altitudes of the side. It is
given by

𝑧 = ∣
𝑧21 𝑧1 1
𝑧22 𝑧2 1
𝑧23 𝑧3 1 ∣+ ∣

|𝑧1|2 𝑧1 1
|𝑧2|2 𝑧2 1
|𝑧3|2 𝑧3 1 ∣⁄
∣
𝑧1 𝑧1 1
𝑧2 𝑧2 1
𝑧3 𝑧3 1 ∣

= 𝑧1 tan𝐴 + 𝑧2 tan𝐵 + 𝑧3 tan𝐶⁄
tan𝐴 + tan𝐵 + tan𝐶

= 𝑧1𝑎 sec𝐴 + 𝑏𝑧2 sec𝐵 + 𝑐𝑧3 sec𝐶⁄
𝑎 sec𝐴 + 𝑏 sec𝐵 + 𝑐 sec𝐶

3.12.13 Euler's Line
The centroid 𝐺 of a triangle lies on the segment joining the orthocenter 𝐻 and the
circumcenter 𝑆 of the triangle. 𝐺 divides the line 𝐻 and 𝑆 in the ratio 2 : 1.

3.12.14 Length of Perpendicular from a Point to a Line
Length of a perpendicular of point 𝐴(𝜔) from the line 𝑎𝑧 + 𝑎𝑧 + 𝑏 = 0, (𝑎 ∈ 𝐶, 𝑏 ∈ 𝑅) is
given by

𝑝 = |𝑎𝜔 + 𝑎𝜔 + 𝑏|⁄
2|𝑎|

3.12.15 Equation of a Circle

The equation of a circle with center 𝑧0 and radius 𝑟 is |𝑧 − 𝑧0| = 𝑟 or 𝑧 = 𝑧0+ 𝑟𝑒𝑖𝜃, 0 ≤ 𝜃 ≤ 2𝜋
or 𝑧𝑧 − 𝑧0𝑧 − 𝑧0𝑧 + 𝑧0𝑧0 − 𝑟2 = 0

General equation of a circle is 𝑧𝑧 − 𝑎𝑧 + 𝑎𝑧 + 𝑏 = 0, (𝑎 ∈ 𝐶, 𝑏 ∈ 𝑅) such that √

𝑎𝑎 − 𝑏 ≥ 0.

Center of this circle is −𝑎 and radius is 𝑎𝑎 − 𝑏.

An equation of the circle, one of whose diameter is the line segment joining 𝑧1 and 𝑧2 is
(𝑧 − 𝑧1)(𝑧 − 𝑧2)+ (𝑧 − 𝑧1)(𝑧 − 𝑧2) = 0

An equation of the the circle passing through two points 𝑧1 and 𝑧2 is

(𝑧 − 𝑧1) (𝑧 − 𝑧2)+ (𝑧 − 𝑧1) (𝑧 − 𝑧2)+ 𝑘∣
𝑧 𝑧 1
𝑧1 𝑧1 1
𝑧2 𝑧2 1 ∣ = 0
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where 𝑘 is a parameter.

3.12.16 Equation of a Circle Passing through Three Points

A(z1) B(z2)

C(z3)P (z)

P (z)

Figure 3.13 Circle through three points

We choose any point 𝑃 (𝑧) on the circle. Two such points are shown in the figure above one
is in same segment with 𝐶 and the other one in different segement. So we have

∠𝐴𝐶𝐵 = ∠𝐴𝑃𝐵 or ∠𝐴𝐶𝐵 +∠𝐴𝑃𝐵 = 𝜋

arg 𝑧3 − 𝑧2⁄
𝑧3 − 𝑧1

− 𝑎𝑟𝑔 𝑧 − 𝑧2⁄
𝑧 − 𝑧1

= 0 or arg 𝑧3 − 𝑧2⁄
𝑧3 − 𝑧1

+ 𝑎𝑟𝑔 𝑧 − 𝑧2⁄
𝑧 − 𝑧1

= 𝜋

Clearly, in both cases the fraction must be purely real. Thus we can apply the property
of conjugates i.e. 𝑧 = 𝑧 which also gives us the condition for four concyclic points.

⇒ (𝑧 − 𝑧1)(𝑧3 − 𝑧2)⁄
(𝑧 − 𝑧2)(𝑧3 − 𝑧1)

= (𝑧 − 𝑧1)(𝑧3 − 𝑧2)⁄
(𝑧 − 𝑧2)(𝑧3 − 𝑧1)

From this we can also deduce the condition for four points to be concyclic. Treating 𝑃 (𝑧) as
just another point 𝐷(𝑧4), we can rewrite the abobe result as

(𝑧4 − 𝑧1)(𝑧3 − 𝑧2)⁄
(𝑧4 − 𝑧2)(𝑧3 − 𝑧1)

= (𝑧4 − 𝑧1)(𝑧3 − 𝑧2)⁄
(𝑧4 − 𝑧2)(𝑧3 − 𝑧1)

3.12.17 Finding Loci by Examination
1. 𝑎𝑟𝑔(𝑧 − 𝑧0) = 𝛼

If 𝛼 is a real number and 𝑧0 is a fixed point, then 𝑎𝑟𝑔(𝑧 − 𝑧0) = 𝛼 represents a vector
starting at 𝑧0(exlcluding the point 𝑧0) and making an angle 𝛼 with real 𝑥-axis.

x

y

z0
O

z

α

Figure 3.14
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Now suppose 𝑧0 is origin 𝑂, then the above equation becomes 𝑎𝑟𝑔(𝑧) = 𝛼, which is a
vector starting at origin and making an angle 𝛼, which is a vector starting at origin and
making an angle 𝛼 with 𝑥-axis.

2. If 𝑧1 and 𝑧2 are two fixed points such that |𝑧 − 𝑧1| = |𝑧 − 𝑧2| then 𝑧 represents
perpendicular bisector of the segment joining 𝐴(𝑧1) and 𝐵(𝑧2) . And 𝑧, 𝑧1, 𝑧2 will form
an isoscles triangle.

A(z1) B(z2)

—
z
−
z
1
| —

z
−
z
2 |

z

Figure 3.15

If 𝑧1 and 𝑧2 are two fixed points and 𝑘 > 0, 𝑘 ≠ 1 is a real number then |𝑧−𝑧1|⁄|𝑧−𝑧2| = 𝑘
represents a circle.

3. |𝑧 − 𝑧1|+ |𝑧 − 𝑧2| = 𝑘. Let 𝑧1 and 𝑧2 be two fixed points and 𝑘 be a positive real number.

i. Refer Figure 3.16, if 𝑘 > |𝑧 − 𝑧2|, then |𝑧 − 𝑧1|+ |𝑧 − 𝑧2| = 𝑘 represents an ellipse
with foci at 𝐴(𝑧1) and 𝐵(𝑧2) and length of major axis = 𝑘.

𝐶 𝐷
𝐴(𝑧1) 𝐵(𝑧2) 𝐶𝐷 = 𝑘

Figure 3.16 Locus of an Ellipse

ii. If 𝑘 = |𝑧 − 𝑧2|, then it represents the line segment joining 𝑧1 and 𝑧2.

iii. If 𝑘 < |𝑧 − 𝑧2|, thne it does not represent any curve/line in Argand plane.

4. If |𝑧 − 𝑧1| − |𝑧 − 𝑧2| = 𝑘. Let 𝑧1 and 𝑧2 be two fixed points and 𝑘 be a positive real
number.

i. Refer Figure 3.17, if 𝑘 ≠ |𝑧 − 𝑧2|, then it represnts a parabola with foci at 𝐴(𝑧1)
and 𝐵(𝑧2).

𝐴(𝑧1) 𝐵(𝑧2)

Figure 3.17 Locus of a Parabola

ii. If 𝑘 = |𝑧1 − 𝑧2|, then it represents the straight line joining 𝐴(𝑧1) and 𝐵(𝑧2) but
excluding the segment 𝐴𝐵
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𝐴(𝑧1) 𝐵(𝑧2)
Figure 3.18

5. |𝑧 − 𝑧1|2 + |𝑧 − 𝑧2|2 = |𝑧1 − 𝑧2|2. If 𝑧1 and 𝑧2 are two fixed points then it represents a
circle with 𝑧1 and 𝑧2 as the endpoints of one of the diameters.

𝐴(𝑧1) 𝐵(𝑧2)𝑂(𝑧)

Figure 3.19

6. arg(𝑧−𝑧1⁄𝑧−𝑧2) = 𝛼. Let 𝑧1 and 𝑧2 be any two fixed points and 𝛼 be a real number such
that 0 ≤ 𝛼 ≤ 𝜋.

i. If 0 < 𝛼 < 𝜋 and 𝛼 ≠ 𝜋/2, then it represents a segment of a circle passing through
𝐴(𝑧1) and 𝐵(𝑧2).

𝐴(𝑧1) 𝐵(𝑧1)

𝛼

Figure 3.20

ii. If 𝛼 = 𝜋/2, then it represents a circle with diameter as the line segment joining
𝐴(𝑧1) and 𝐵(𝑧2).

𝐴(𝑧1) 𝐵(𝑧2)

𝜋/2

𝜋/2

Figure 3.21

iii. If 𝛼 = 𝜋, then it represents the straight line joining 𝐴(𝑧1) and 𝐵(𝑧2) but excluding
the line segment 𝐴𝐵.
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𝐴(𝑧1) 𝐵(𝑧2)
Figure 3.22

𝐴(𝑧1) 𝐵(𝑧2)
Figure 3.23

iv. If 𝛼 = 0, then it represents the straight line joining 𝐴(𝑧1) and 𝐵(𝑧2).

3.13 Problems
Find the square root of the following complex numbers:

1. 7 + 8𝑖

2. 𝑎2 − 𝑏2 + 2𝑎𝑏𝑖

3. 4√

−81

4. Find the square root of

𝑥2
⁄

𝑦2
+ 𝑦2
⁄

𝑥2
+ 1⁄
2𝑖(

𝑥
⁄

𝑦 +
𝑦
⁄

𝑥)+
31
⁄

16

Simplify the following in the form of 𝐴+ 𝑖𝐵

5. 𝑖𝑛+80 + 𝑖𝑛+50

6. (𝑖17 + 1⁄
𝑖15)

3

7. (1+𝑖)2⁄
2+3𝑖

8. ( 1⁄
1+𝑖 +

1⁄
1−𝑖)

7+8𝑖⁄
7−8𝑖

9. (1+𝑖)4𝑛+7⁄
(1−𝑖)4𝑛−1

10. 1⁄
1−cos 𝜃+2𝑖 sin 𝜃

11. (cos𝑥+𝑖 sin𝑥)(cos 𝑦+𝑖 sin 𝑦)⁄
(cot𝑢+𝑖)(𝑖+tan𝑣) Evaluate:

12. 𝑖5

13. 𝑖67

14. 𝑖−59

15. 𝑖2014
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16. If 𝑎 < 0, 𝑏 > 0, then prove that √


𝑎𝑏 is equal to √

|𝑎|𝑏 𝑖.

17. Prove that 𝑖𝑛 + 𝑖𝑛+1 + 𝑖𝑛+2 + 𝑖𝑛+3 = 0.

18. Find the value of the sum 
13
∑
𝑛=1

(𝑖𝑛 + 𝑖𝑛+1).

19. Simplify and find the value of 2𝑛⁄
(1+𝑖)2𝑛 +

(1+𝑖)2𝑛⁄
2𝑛

20. Find different values of 𝑖𝑛 + 𝑖−𝑛, ∀𝑛 ∈ 𝐼 .

21. If 4𝑥 + (3𝑥 − 𝑦) 𝑖 = 3 − 6𝑖, then find the value of 𝑥 and 𝑦.

22. Find the value of (1⁄3 + 𝑖 7⁄3)+ (4 + 𝑖 1⁄3)− (−4
⁄

3 + 𝑖).

23. Find the real values of 𝑥 and 𝑦, if (1+𝑖)𝑥−2𝑖⁄3+𝑖 + (2−3𝑖)𝑦+𝑖⁄
3−𝑖 = 𝑖.

24. Find the multiplicative inverse of 4 − 3𝑖.

25. If 𝑧1 = 2 + 3𝑖 and 𝑧2 = 1 + 2𝑖, then find the value of 𝑧1/𝑧2.

26. If 𝑧1 = 9𝑦2 − 4 − 𝑖10𝑥 and 𝑧2 = 8𝑦2 − 20𝑖 such that 𝑧1 = 𝑧2, then find 𝑧 = 𝑥 + 𝑖𝑦.

27. Find 𝑧 if |𝑧 + 1| = 𝑧 + 2(1 + 𝑖), where 𝑧 ∈ 𝐶.

28. Find the modulus and argument of the complex number 1+2𝑖⁄1−3𝑖
29. If 𝑥−3⁄3+𝑖 +

𝑦−3
⁄

3−𝑖 = 𝑖, where 𝑥, 𝑦 ∈ 𝑅, then find 𝑥 and 𝑦.

30. What is the real part of (1 + 𝑖)50.

31. If a complex number is 𝑧, such that 𝑧 + |𝑧| = 2 + 8𝑖, then find 𝑧.

32. Find the sum of sequence 𝑆 = 𝑖 + 2𝑖2 + 3𝑖3 + … up to 100 terms.

33. Find the value of the sum 1⁄
1+𝑖 +

1⁄
1−𝑖 +

1⁄
−1+𝑖 +

1⁄
−1−𝑖 +

2⁄
1+𝑖 +

2⁄
1−𝑖 +

2⁄
−1+𝑖 +

2⁄
−1−𝑖 + …+

𝑛⁄
1+𝑖 +

𝑛⁄
1−𝑖 +

𝑛⁄
−1+𝑖 +

𝑛⁄
−1−𝑖

34. Find the product of the real parts of the root 𝑧2 − 𝑧 − 5 + 5𝑖 = 0.

35. Find the number of complex numbers satisfying 𝑧3 + 𝑧 = 0.

36. Find the number of real roots of the equation 𝑧3 + 𝑖𝑧 − 1 = 0.

37. In the following diagram, if given circle is unit circle then find the reciprocal of point 𝐴.
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38. If 𝑧 = (3 + 7𝑖)(𝑝 + 𝑖𝑞), where 𝑝, 𝑞 ∈ 𝐼, is purely imaginary, then find the minimum
value of |𝑧|2.

39. If 𝛼 = (𝑎−𝑖𝑏⁄𝑎+𝑖𝑏)2 + (𝑎+𝑖𝑏⁄𝑎−𝑖𝑏)2 , ∀ 𝑎, 𝑏 ∈ 𝑅, then prove that 𝛼 is real.

40. If 𝛽 = 𝑧−1
⁄

𝑧+1 such that |𝑧| = 1, then prove that 𝛽 is imaginary.

41. If |𝑧 − 3𝑖| = 3 such the arg(𝑧) ∈ (0, 𝜋⁄2), then find the value of cos(arg(𝑧))− 6
⁄

𝑧.

42. Find the polar form of the complex number −16⁄
1+𝑖√


3

43. Let 𝑧 and 𝑤 be the two non-zero complex numbers such that |𝑧| = |𝑤| and arg(𝑧)+
arg(𝑤) = 𝜋, then prove that 𝑧 = −𝑤.

44. If 𝑥 − 𝑖𝑦 =√

𝑎−𝑖𝑏⁄
𝑐−𝑖𝑑, then prove that (𝑥2 + 𝑦2)2 = 𝑎2+𝑏2⁄

𝑐2+𝑑2

45. Find the minimum value of |𝑧|+ |𝑧 − 2|.

46. If |𝑧1 − 1| < 1, |𝑧2 − 2| < 2 and |𝑧3 − 3| < 3, then prove that the maximum value of
|𝑧1 + 𝑧2 + 𝑧3| is 12.

47. If 𝛼, 𝛽 are two complex numbers, then prove that |𝛼|2 + |𝛽|2 = 1
⁄

2 (|𝛼+ 𝛽|2 + |𝛼− 𝛽|2).

48. Show that for 𝑧 ∈ 𝐶, |𝑧| = 0, if and only if 𝑧 = 0.

49. If 𝑧1 and 𝑧2 are 1 − 𝑖 and 2 + 7𝑖, then find 𝐼𝑚(𝑧1𝑧2⁄𝑧1 ).
50. If |𝑧 − 𝑖| < 1, then prove that |𝑧 + 12 − 6𝑖| < 14.

51. If |𝑧 + 6| = |2𝑧 + 3|, then prove that |𝑧| = 3.

52. If √

𝑎 − 𝑖𝑏 = 𝑥 − 𝑖𝑦, then prove that √


𝑎 + 𝑖𝑏 = 𝑥 + 𝑖𝑦.

53. If 𝑥𝑟 = cos 𝜋⁄
2𝑟 + 𝑖 sin 𝜋
⁄

22, then find the value of 𝑥1𝑥2𝑥3 … to ∞.
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54. Find the value of (cos 𝜃+𝑖 sin 𝜃)
4⁄

(sin 𝜃+𝑖 cos 𝜃)2.

55. If 𝑧 = (√


3⁄
2 + 𝑖
⁄

2)
5
+ (√


3⁄
2 − 𝑖
⁄

2)
5
, then find ℑ(𝑧).

56. Find the product of all values of (cos 𝜋⁄3 + 𝑖 sin 𝜋
⁄

3)
3
⁄

4.

57. If 𝑧1 and 𝑧2 are two non-zero complex numbers such that|𝑧1 + 𝑧2| = |𝑧1|+ |𝑧2|, then
find arg(𝑧1)− arg(𝑧2).

58. If 𝑧 = 1 − sin 𝛼 + 𝑖 cos 𝛼, where 𝛼 ∈ (0, 𝜋⁄2), then find the modulus and principal value
of the argument.

59. Find the value of expression (
1+sin𝜋
⁄

8+𝑖 cos
𝜋
⁄

8⁄
1+sin𝜋
⁄

8−𝑖 cos
𝜋
⁄

8
)
8
.

60. If 𝑧𝑟 = cos 2𝑟𝜋⁄5 + 𝑖 sin 2𝑟𝜋⁄
5 , 𝑟 = 0, 1, 2, 3, 4, then find 𝑧1𝑧2𝑧3𝑧4𝑧5.

61. If 𝑧𝑛 = cos 𝜋
⁄

(2𝑛+1)(2𝑛+3)+ 𝑖 sin 𝜋
⁄

(2𝑛+1)(2𝑛+3), then find 𝑧1𝑧2𝑧3 …∞.

62. If 𝑧1, 𝑧2 be two complex numbers and 𝑎, 𝑏 are two real numbers, then prove that
|𝑎𝑧1 − 𝑏𝑧2|2 + |𝑏𝑧1 + 𝑎𝑧2|2 = (𝑎2 + 𝑏2)(|𝑧1|2 + |𝑧2|2).

63. Show that the equation 𝐴2
⁄

𝑥−𝑎 +
𝐵2⁄
𝑥−𝑏 + … + 𝐻2⁄

𝑥−ℎ = 𝑥 + 𝑙, where 𝐴, 𝐵, …𝐻, 𝑎, 𝑏, … , ℎ
and 𝑙 are real, cannot have imaginary roots.

64. Find all real number 𝑥, such that |1 + 4𝑖 − 2−𝑥| ≤ 5.

65. Show that a unimodular complex number, not purely real can be expressed as 𝑐+𝑖⁄𝑐−𝑖
for some real 𝑐.

66. If (𝑧2 + 3)2 = −16, then find |𝑧|.

67. If 
sin𝑥
⁄

2+cos
𝑥
⁄

2−𝑖 tan𝑥⁄
1+2𝑖 sin𝑥
⁄

2
is real, then find the set of all possible values of 𝑥.

68. Prove that |𝑧1 + 𝑧2|2 + |𝑧1 − 𝑧2|2 = 2(|𝑧1|2 + |𝑧2|2).

69. If 𝑥2 − 𝑥 + 1 = 0, then find the value of ∑5
𝑛=1(𝑥

𝑛 + 1⁄
𝑥𝑛)

5
.

70. If 349(𝑥 + 𝑖𝑦) = (3⁄2 +
√


3⁄
2 𝑖)

100
, then find 𝑥 and 𝑦.

71. For any two complex numbers 𝑧1 and 𝑧2, prove that |𝑧1 + 𝑧2|2 = |𝑧1|2 + |𝑧2|2 +
2ℜ(𝑧1𝑧2) = |𝑧1|2 + |𝑧2|2 + 2ℜ(𝑧1𝑧2).

72. If |𝑧1| = |𝑧2| = 1, then prove that |𝑧1 + 𝑧2| = ∣ 1⁄𝑧1 + 1⁄
𝑧2∣.
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73. If |𝑧 − 2| = 2|𝑧 − 1|, then prove that |𝑧|2 = 4
⁄

3ℜ(𝑧).

74. If 3√

𝑎 + 𝑖𝑏 = 𝑥 + 𝑖𝑦, then prove that 𝑎⁄𝑥 +

𝑏
⁄

𝑦 = 4(𝑥2 − 𝑦2).

75. If 𝑥 + 𝑖𝑦 =√

𝑎+𝑖𝑏⁄
𝑐+𝑖𝑑, then prove that (𝑥2 + 𝑦2)2 = 𝑎2+𝑏2⁄

𝑐2+𝑑2

76. If 𝑧1, 𝑧2, … , 𝑧𝑛 are cube roots of unity, then prove that |𝑧𝑘| = |𝑧𝑘+1|∀𝑘 ∈ [1, 𝑛 − 1].

77. If 𝑛 is a positive integer greater than unity and 𝑧 is a complex number satisfying the
equation 𝑧𝑛 = (1 + 𝑧)2, then prove that ℜ(𝑧) < 0.

78. Prove that 𝑥3𝑚 + 𝑥3𝑛−1 + 𝑥3𝑟−2 ∀ 𝑚,𝑛,𝑟 ∈ 𝑁 , is divisible by 1 + 𝑥 + 𝑥2.

79. If (√


3 + 𝑖)𝑛 = (√


3 − 𝑖)𝑛 ∀ 𝑛 ∈ 𝑁 , then prove that minimum value of 𝑛 is 6.

80. If (√


3 − 𝑖)𝑛 = 2𝑛, 𝑛 ∈ 𝐼 , the set of integers, then prove that 𝑛 is multiple of 12.

81. If 𝑧4 + 𝑧3 + 2𝑧2 + 𝑧 + 1 = 0, then prove that |𝑧| = 1.

82. If 𝑧 = 7√

−1, then find the value of 𝑧86 + 𝑧175 + 𝑧289.

83. If 𝑧3 + 2𝑧2 + 3𝑧 + 2 = 0, then find all the non-real, complex roots of the equation.

84. If 𝑧 is a non-real root of 𝑧 = 5√


1, then find the value of 2|1+𝑧+𝑧
2+𝑧−2+𝑧−1|.

85. If 𝑧 is a non-real root of unity, then find the value of 1 + 3𝑧 + 5𝑧2 +…+ (2𝑛− 1)𝑧𝑛−1.

86. Find the value of √

−1 −√

−1 −√

−1 − to ∞.

87. If 𝑧 = 𝑒
𝑖2𝜋⁄
𝑛 , then find the value of (11 − 𝑧)(11 − 𝑧2)… (11 − 𝑧𝑛−1).

88. If 3⁄
2+cos 𝜃+𝑖 sin 𝜃 = 𝑎 + 𝑖𝑏, then prove that 𝑎2 + 𝑏2 = 4𝑎 − 3.

89. If |2𝑧 − 1| = |𝑧 − 2|, then prove that |𝑧| = 1.

90. If 𝑥 is real and 1−𝑖𝑥⁄1+𝑖𝑥 = 𝑚+ 𝑖𝑛, then prove that 𝑚2 + 𝑛2 = 1.

91. Find the general equation of the straigt line joining the points 𝑧1 = 1+ 𝑖 and 𝑧2 = 1− 𝑖.

92. If 𝑧1, 𝑧2, 𝑧3 are three complex numbers such that 5𝑧1 − 13𝑧2 + 8𝑧3 = 0, then prove that

∣
𝑧1 𝑧1 1
𝑧2 𝑧2 1
𝑧3 𝑧3 1 ∣ = 0

93. Find the length of perpendicualr from 𝑃 (2−3𝑖) to the line (3+4𝑖)𝑧+ (3−4𝑖)𝑧+9 = 0.

94. If a point 𝑧1 is a reflection of a point 𝑧2 through the line 𝑧𝑧 + 𝑏𝑧 = 𝑐, 𝑏 ≠ 0 in the
argand plane, thne prove that 𝑏𝑧2 + 𝑏𝑧1 = 𝑐.
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95. The point represented by the complex number 2 − 𝑖 is rotated by origin by an angle
𝜋/2 in the anti-clockwise direction. Find the new coordinates.

96. A particle 𝑃 starts from the point 𝑧0 = 1 + 2𝑖. It first moves horizontally, away from
origin by 5 units and then vertically, away from origin by 3 units to reach a point 𝑧1.
From 𝑧1 the particle moves √



2 units in the direction of vector ̂𝚤 + ̂𝚥 and it then
rotaes about origin in anti-clockwise direction for an angle 𝜋/2 to reach 𝑧2. Find the
coordinates of 𝑧2.

97. A man walks a distance of 3 units from the origin in North-East direction. Then he
walks 4 units in North-West direction. Find the final coordinates.

98. If three complex numbers satisfty the relationship 𝑧1−𝑧3⁄𝑧2−𝑧3 = 1−𝑖√


3⁄
2 , then prove that

𝑧1, 𝑧2 and 𝑧3 form an equilateral triangle.

99. If 𝑧1, 𝑧2 and 𝑧3 form an equilateral triangle then prove that 𝑧21 + 𝑧22 + 𝑧23 = 𝑧1𝑧2 +
𝑧2𝑧3 + 𝑧3𝑧1, and hence 1⁄

𝑧1−𝑧2 +
1⁄

𝑧2−𝑧3 +
1⁄

𝑧3−𝑧1 = 0.

100. If 𝑧1, 𝑧2 and 𝑧3 are vertices of an equilateral triangle and 𝑧0 is the circumcenter then
prove that 3𝑧20 = 𝑧21 + 𝑧22 + 𝑧23.

101. If 𝑧1, 𝑧2 and 𝑧3 form a right-angled, isosceles triangle with right angle at 𝑧3, then prove
that (𝑧1 − 𝑧2)2 = 2(𝑧1 − 𝑧3)(𝑧3 − 𝑧2).

102. Find the equation of the circle whose center is 𝑧0 and radius is 𝑟.

103. If 𝑧 = 1− 𝑡+ 𝑖√

𝑡2 + 𝑡 + 2, where 𝑡 is a real parameter. Prove that locus of 𝑧 in argand

plane is a hyperbola.

104. Find the locus of 𝑧 if 𝑧 = 𝑎 + 𝑟2
⁄

𝑧−𝑎.

105. If the equation |𝑧 − 𝑧1|2 + |𝑧 − 𝑧2|2 = 𝑘 represents the equation of a cirlce, where
𝑧1 = 2 + 3𝑖, 𝑧2 = 4 + 3𝑖 are the ends of a diameter, then find the value of 𝑘.

106. If |𝑧 + 1| = √


2 |𝑧 − 1|, then show that locus of 𝑧 is a circle.

107. Prove that the locus of 𝑧 given by ∣𝑧−1⁄𝑧−𝑖 ∣ = 1 is a straight line.

108. Find the condition for four complex numbers 𝑧1, 𝑧2, 𝑧3 and 𝑧4 to lie on a cyclic
quadrilateral.

109. If 𝑧1, 𝑧2 and 𝑧3 are complex numbers, such that 2⁄𝑧1 = 1⁄
𝑧2 +

1⁄
𝑧3 , then show that these

points lie on a circle passing through origin.

110. If |𝑧 − 𝜔|2 + |𝑧 − 𝜔2|2 = 𝑟2, where 𝑟 is radius and 𝜔, 𝜔2 are cube roots of unity and
ends of diameter of the circle then find radius.

111. Find the region represented by |𝑧 − 4| < |𝑧 − 2|.

112. If 2𝑧1 − 3𝑧2 + 𝑧3 = 0, then find the geometrical relationship between them.
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113. If 𝑧 = 𝑥 + 𝑖𝑦, such that |𝑧 + 1| = |𝑧 − 1| and arg 𝑧−1
⁄

𝑧+1 =
𝜋
⁄

4 , find 𝑥 and 𝑦.

114. If |𝑧|8 = |𝑧 − 1|8, then prove that roots of this equation are collinear.

115. Prove that 𝑧𝑧 + 𝑎𝑧 + 𝑎𝑧 + 𝑏 = 0, represents a circle if |𝑎|2 > 𝑏.

116. If 𝑧 = (𝜆 + 3)+ 𝑖√

3 − 𝜆2, where |𝜆| < √


3, then prove that it represents a circle.

117. If 𝑧 is a complex number such that |ℜ(𝑧) |+ |ℑ(𝑧) | = 𝑘, ∀ 𝑘 ∈ 𝑅, then find the locus
of 𝑧.

118. Consider a sequence of complex numbers such that 𝑧𝑛+1 = 𝑧2𝑛 + 𝑖, ∀ 𝑛 ≥ 1, where
𝑧1 = 0. Find 𝑧111.

119. The complex numbers whose real and imaginary parts are integers and satisfy the
relation 𝑧𝑧3 + 𝑧3𝑧 = 350, forms a rectangle in the argand plane. Find length of its
diagonals.

120. If 𝑧1, 𝑧2 are two complex numbers and arg 𝑧1+𝑧2⁄
𝑧1−𝑧2 but |𝑧1 + 𝑧2| ≠ |𝑧1 − 𝑧2| then find the

figure formed by 0, 𝑧1, 𝑧2 and 𝑧1 + 𝑧2.

121. If 𝑧1 and 𝑧2 are complex numbers such that 𝑎|𝑧1| = 𝑏|𝑧2|, 𝑎, 𝑏 ∈ 𝑅, then prove that
𝑎𝑧1⁄
𝑏𝑧2 +

𝑏𝑧2⁄
𝑎𝑧1 lies on the segment [−2, 2] of the real axis.

122. If 𝑧1, 𝑧2, 𝑧3 are roots of the equation 𝑧3 + 3𝛼𝑧2 + 3𝛽𝑧 + 𝛾 = 0, such that they form an
equilateral triangle then prove that 𝛼2 = 𝛽.

123. If 𝑧21 + 𝑧22 + 2𝑧1𝑧2 cos 𝜃 = 0, then prove that 𝑧1, 𝑧1 and the origin form an isosceles
triangle.

124. 𝐴, 𝐵 and 𝐶 represent 𝑧1, 𝑧2 and 𝑧3 on argnad plane. The circumcenter of this triangle
lies on the origin. If the altitude 𝐴𝐷 meets circumcircle again at 𝑃, then find the
complex number representing 𝑃 .

125. If 𝑧1 and 𝑧2 are the roots of the equation 𝑧2 + 𝑝𝑧 + 𝑞 = 0, where 𝑝,𝑞 can be complex
numbers. Let 𝐴, 𝐵 represent 𝑧1, 𝑧2 in the complex plane. If ∠𝐴𝑂𝐵 = 𝛼 ≠ 0 and
𝑂𝐴 = 𝑂𝐵, where 𝑂 is the origin then find 𝑝2.

126. If ℜ( 𝑧+4⁄
2𝑥−1) =

1
⁄

2 then prove that locus of 𝑧 is a straight line.

127. If 𝑧1, 𝑧2 and 𝑧3 are vertices of an equilateral triangle inscribed in the circle |𝑧| = 2.
If 𝑧1, 𝑧2, 𝑧3 are in clockwise sense then find 𝑧2 and 𝑧3.

128. If 𝑧1 = 𝑎⁄
1−𝑖 , 𝑧2 =

𝑏⁄
2+𝑖 , 𝑧3 = 𝑎 − 𝑏𝑖 for 𝑎, 𝑏 ∈ 𝑅 and 𝑧1 − 𝑧2 = 1. Then find the centroid

of the triangle formed by 𝑧1, 𝑧2 and 𝑧3.

129. Let 𝜆 ∈ 𝑅. If the origin and the non-real roots of 2𝑧2 + 2𝑧 + 𝜆 = 0 form three vertices
of an equilateral triangle in the argand plane, then find 𝜆.
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130. If 𝑎, 𝑏, 𝑐 and 𝑢, 𝑣, 𝑤 are complex numbers such that 𝑐 = (1 − 𝑟)𝑎 + 𝑟𝑏 and 𝑤 =
(1 − 𝑟)𝑢 + 𝑟𝑣, where 𝑟 is a complex number then prove that the triangles are similar.

131. Find the intercept made by the circle 𝑧𝑧 + 𝛼𝑧 + 𝛼𝑧 + 𝑟 = 0 on real axis on the complex
plane.

132. If 𝑎 = cos 𝛼 + 𝑖 sin 𝛼, 𝑏 = cos 𝛽 + 𝑖 sin 𝛽, 𝑐 = cos 𝛾 + 𝑖 sin 𝛾 and 𝑎⁄𝑏 +
𝑏⁄
𝑐 +

𝑐
⁄

𝑎 = 1, then find
the value of cos(𝛼 − 𝛽)+ cos(𝛽 − 𝛾)+ cos(𝛾 − 𝛼).

133. Find the locus of the center of a circle which touches the circles |𝑧 − 𝑧1| = 𝑎 and
|𝑧 − 𝑧2| = 𝑏 externally.

134. Prove that tan[𝑖 log(𝑎−𝑖𝑏⁄𝑎+𝑖𝑏)] = 2𝑎𝑏⁄
𝑎2−𝑏2.

135. 𝑧1 = 𝑎 + 𝑖𝑏 and 𝑧2 = 𝑐 + 𝑖𝑑 are complex numbers such that |𝑧1| = |𝑧2| = 1 and
ℜ(𝑧1𝑧2) = 0. Also, 𝑤1 = 𝑎 + 𝑖𝑐, 𝑤2 = 𝑏 + 𝑖𝑑 then prove that |𝑤1| = |𝑤2| = 1 and
ℜ(𝑤1𝑤2) = 0.

136. If ∣𝑧1⁄𝑧2∣ = 1 and arg(𝑧1𝑧2) = 0, then prove that |𝑧2|2 = 𝑧1𝑧2.

137. Find the value of the expression 2(1+ 1⁄
𝜔)(1+

1⁄
𝜔2)+3(2+ 1⁄

𝜔)(2+
1⁄
𝜔2)+4(3+ 1⁄

𝜔)(3+
1⁄
𝜔2)+…+ (𝑛 + 1)(𝑛 + 1⁄

𝜔)(𝑛 +
1⁄
𝜔2).

138. If 𝑧1 and 𝑧2 are two complex numbers satisfying the equation ∣𝑧1+𝑖𝑧2⁄𝑧1−𝑖𝑧2∣ = 1, then prove

that 𝑧1⁄𝑧2 is purely real.

139. If 𝑧 = −2 + 2√


3𝑖, then find values of 𝑧2𝑛 + 22𝑛𝑧𝑛 + 24𝑛.

140. If 2 cos 𝜃 = 𝑥 + 1
⁄

𝑥 and 2 cos 𝜙 = 𝑦 + 1
⁄

𝑦 , then find the values of 𝑥⁄𝑦 +
𝑦
⁄

𝑥, 𝑥𝑦 +
1
⁄

𝑥𝑦.

141. The complex numbers 𝑧1 and 𝑧2 such that 𝑧1 ≠ 𝑧2 and |𝑧1| = |𝑧2|. If 𝑧1 has positive
real part and 𝑧2 has negative imaginary part, prove that 𝑧1+𝑧2⁄𝑧1−𝑧2 is purely imaginary.

142. If 𝐴(𝑧1), 𝐵(𝑧1) and 𝐶(𝑧3) are the vertices of a △𝐴𝐵𝐶 in which ∠𝐴𝐵𝐶 = 𝜋
⁄

4 and
𝐴𝐵⁄
𝐵𝐶 = √


2, then prove that the value of 𝑧2 = 𝑧3 + 𝑖(𝑧1 − 𝑧3).

143. If 𝑧1𝑧2 ∈ 𝐶, 𝑧21 + 𝑧22 ∈ 𝑅, 𝑧1(𝑧21 − 3𝑧22 ) = 2 and 𝑧2(3𝑧21 − 𝑧22 ) = 11, then find the value
of 𝑧21 + 𝑧22.

144. If √

1 − 𝑐2 = 𝑛𝑐 − 1 and 𝑧 = 𝑒𝑖𝜃, then find the value of 𝑐⁄2𝑛 (1 + 𝑛𝑧)(1 + 𝑛

⁄

𝑧).

145. Consider an ellipse having its foci at 𝐴(𝑧1) and 𝐵(𝑧2) in the argand plane. If the
eccentricity of the ellipse is 𝑒 and it is known that origin is an interior point of the
ellipse, then prove that 𝑒 ∈ (0, |𝑧1−𝑧2|⁄|𝑧1|+|𝑧2|)
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146. If |𝑧 − 2 − 𝑖| = |𝑧|∣sin(𝜋⁄4 − arg(𝑧))∣, then find the locus of 𝑧.

147. Find the maximum area of the triangle formed by the complex coordinates 𝑧𝑧1 and 𝑧2,
which satisfy the relation |𝑧 − 𝑧1| = |𝑧 − 𝑧2| and ∣𝑧 − 𝑧1+𝑧2⁄

2 ∣ ≤ 𝑟, where 𝑟 > |𝑧1 − 𝑧2|.

148. If 𝑧1 = 𝑎1 + 𝑖𝑏1 and 𝑧2 = 𝑎2 + 𝑖𝑏2 are complex numbers such that |𝑧1| = 1, |𝑧1| = 2 and
ℜ(𝑧1𝑧2) = 0, and 𝜔1 = 𝑎1 + 𝑖𝑎2⁄

2 and 𝜔2 = 2𝑏1 + 𝑖𝑏2, then prove that |𝜔1| = 1, |𝜔2| = 2
and ℜ(𝜔1𝜔2) = 0.

149. Let 𝑧 be a complex number and 𝑎 be 𝑎 be a real number such that 𝑧2 + 𝑎𝑧 + 𝑎2 = 0,
then prove that i) locus of 𝑧 is a pair of straight lines ii) arg(𝑧) = ±2𝜋⁄

3 iii) |𝑧| = |𝑎|

150. If 𝑥+ 1
⁄

𝑥 = 1 and 𝑝 = 𝑥4000+ 1⁄
𝑥4000 and 𝑞 is the the digit at units place in 22

𝑛
+ 1, 𝑛 ∈ 𝑁

and 𝑛 > 1, then find 𝑝 + 𝑞.

151. Consider an equilateral triangle 𝐴( 2⁄
√


3 𝑒
𝑖𝜋/2), 𝐵( 2⁄

√


3 𝑒
−𝑖𝜋/6) and 𝐶( 2⁄

√


3 𝑒
−𝑖5𝜋/6). If

𝑃 (𝑧) is any point on the incircle then find the value of 𝐴𝑃2 + 𝐵𝑃2 + 𝐶𝑃2.

152. If 𝐴1, 𝐴2, … , 𝐴𝑛 be the vertices of a regular polygon of 𝑛 sides in a circle of unit radius
and 𝑎 = |𝐴1𝐴2|2 + |𝐴1𝐴3|2 + …+ |𝐴1𝐴𝑛|2, 𝑏 = |𝐴1𝐴2||𝐴1𝐴3|… |𝐴1𝐴𝑛|, then find 𝑎⁄𝑏.

153. If (1+𝑖 𝑥⁄𝑎)(1+𝑖 𝑥⁄𝑏)(1+𝑖 𝑥⁄𝑐)…=𝐴+𝑖𝐵, then prove that (1+𝑥2
⁄

𝑎2)(1+
𝑥2
⁄

𝑏2) (1+
𝑥2
⁄

𝑐2)…=
𝐴2 + 𝐵2.

154. Find the range of real number 𝛼 for which the equations 𝑧 +𝛼|𝑧 −1|+2𝑖 = 0; 𝑧 = 𝑥+ 𝑖𝑦
has a solution. Also, find the solution.

155. For every real number 𝑎 ≥ 0, find all the complex numbers satisfying the equation
2|𝑧|− 4𝑎𝑧 + 1 + 𝑖𝑎 = 0.

156. Show that (𝑥2 + 𝑦2)5 = (𝑥5 − 10𝑥3𝑦2 + 5𝑥𝑦4)+ (5𝑥4𝑦 − 10𝑥2𝑦3 + 𝑦5)2.

157. Express (𝑥2 + 𝑎2)(𝑥2 + 𝑏2)(𝑥2 + 𝑐2) as sum of two squares.

158. If (1+𝑥)𝑛 = 𝑎0+𝑎1𝑥+𝑎2𝑥2+…+𝑎𝑛𝑥𝑛, then prove that 2𝑛 = (𝑎0−𝑎2+𝑎4−…)2+
(𝑎1 − 𝑎3 + 𝑎5 −…)2.

159. Dividing 𝑓(𝑧) by 𝑧 − 𝑖, we get 𝑖 as remainder and if we divide by 𝑧 + 𝑖, we get 1 + 𝑖 as
remainder. Find the remainder upon division of 𝑓(𝑧) by 𝑧2 + 1.

160. If |𝑧| ≤ 1, |𝑤| ≤ 1, show that |𝑧 − 𝑤|2 ≤ (|𝑧|− |𝑤|)2 + [arg(𝑧)− arg(𝑤)]2.

161. If 𝑧 is any complex number, then show that ∣ 𝑧⁄|𝑧|− 1∣ ≤ |𝑎𝑟𝑔(𝑧) |.

162. If 𝑧 is any complex number, then show that |𝑧 − 1| ≤ ||𝑧|− 1|+ |𝑧||𝑎𝑟𝑔𝑧|.
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163. If ∣𝑧 + 1
⁄

𝑧∣ = 𝑎, where 𝑧 is a complex number and 𝑎 > 0, find the greatest and least
values of |𝑧|.

164. If 𝑧1, 𝑧2 be complex numebrs and 𝑐 is a positive number, prove that |𝑧1 + 𝑧2|2 <
(1 + 𝑐) |𝑧1|2 + (1 + 1
⁄

𝑐)|𝑧2|
2.

165. If 𝑧1 and 𝑧2 are two complex numbers such that ∣𝑧1−𝑧2⁄𝑧1+𝑧2∣ = 1, prove that 𝑖𝑧1⁄𝑧2 = 𝑥 where 𝑥
is a real number. Find the angle between the lines from origin to the points 𝑧1 + 𝑧2
and 𝑧1 − 𝑧2 in terms of 𝑥.

166. Let 𝑧1, 𝑧2 be any two complex numbers and 𝑎, 𝑏 be two real numbers such that
𝑎2+ 𝑏2 ≠ 0. Prove that |𝑧1|2+ |𝑧2|2− |𝑧21 + 𝑧22 | ≤ 2 |𝑎𝑧1+𝑏𝑧2|

2⁄
𝑎2+𝑏2 ≤ |𝑧1|2+ |𝑧2|2+ |𝑧21 + 𝑧22 |.

167. If 𝑏 + 𝑖𝑐 = (1 + 𝑎)𝑧 and 𝑎2 + 𝑏2 + 𝑐2 = 1, prove that 𝑎+𝑖𝑏⁄1+𝑐 = 1+𝑖𝑧⁄
1−𝑖𝑧, where 𝑎, 𝑏,𝑐 are real

numbers and 𝑧 is a complex number.

168. If 𝑎, 𝑏, 𝑐, … , 𝑘 are all 𝑛 real roots of the equation 𝑥𝑛 + 𝑝1𝑥𝑛−1 + 𝑝2𝑥𝑛−2 + … +
𝑝𝑛−1𝑥+ 𝑝𝑛 = 0, where 𝑝1, 𝑝2, … , 𝑝𝑛 are real, show that (1+ 𝑎2)(1+ 𝑏2)… (1+ 𝑘2) =
(1 − 𝑝2 + 𝑝4 + …)2 + (𝑝1 − 𝑝3 + …)2.

169. If 𝑓(𝑥) = 𝑥4 − 8𝑥3 + 4𝑥2 + 4𝑥 + 39 and 𝑓(3 + 2𝑖) = 𝑎 + 𝑖𝑏, find 𝑎 : 𝑏.

170. Let 𝐴 and 𝐵 be two complex numbers such that 𝐴⁄𝐵 + 𝐵⁄
𝐴 = 1, prove that the triangle

formed by origin and these two points is equilateral.

171. If 𝑛 > 1, show that the roots of the equation 𝑧𝑛 = (1 + 𝑧)𝑛 are collinear.

172. If 𝐴,𝐵,𝐶 and 𝐷 are four complex number then show that 𝐴𝐷.𝐵𝐶 ≤ 𝐵𝐷.𝐶𝐴+𝐶𝐷.𝐴𝐵.

173. If 𝑎, 𝑏 ∈ 𝑅 and 𝑎, 𝑏 ≠ 0, then show that the equation of line joining 𝑎 and 𝑖𝑏 is
( 1⁄
2𝑎 −

𝑖⁄
2𝑏)𝑧 + ( 1⁄

2𝑎 +
𝑖⁄
2𝑏)𝑧 = 1.

174. If 𝑧1 and 𝑧2 are two compelx numbers such that |𝑧1|− |𝑧2| = |𝑧1 − 𝑧2|, then show that
arg(𝑧1)− arg(𝑧2) = 2𝑛𝜋 where 𝑛 ∈ 𝐼 .

175. Let 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 be points in the complex plane representing complex numbers
𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5 respectvely. If (𝑧3 − 𝑧2)𝑧4 = (𝑧1 − 𝑧2)𝑧5, prove that △𝐴𝐵𝐶 and
△𝐷𝑂𝐸 are similar.

176. Let 𝑧 and 𝑧0 are two complex numbers and 𝑧, 𝑧0, 𝑧𝑧0, 1 are represented by points
𝑃,𝑃0,𝑄,𝐴 respectively. If |𝑧| = 1, show that the triangle 𝑃𝑂𝑃0 and 𝐴𝑂𝑄 are congruent
and hence |𝑧 − 𝑧0| = |𝑧𝑧0 − 1|, where 𝑂 represents the origin.

177. If the line segment joining 𝑧1 and 𝑧2 is divided by 𝑃 and 𝑄 in the ratio 𝑎 : 𝑏 internally
and externally, then find 𝑂𝑃2 + 𝑂𝑄2 where 𝑂 is origin.

178. Let 𝑧1, 𝑧2, 𝑧3 be three complex numbers and 𝑎, 𝑏, 𝑐 be real numbers not all zero such
that 𝑎 + 𝑏 + 𝑐 = 0 and 𝑎𝑧1 + 𝑏𝑧2 + 𝑐𝑧3 = 0, then show that 𝑧1, 𝑧2, 𝑧3 are collinear.
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179. If 𝑧1 + 𝑧2 +…+ 𝑧𝑛 = 0, prove that if a line passes through origin then all these do not
lie of the same side of the line provided they do not lie on the line.

180. The points 𝑧1 = 9 + 12𝑖 and 𝑧2 = 6 − 8𝑖 are given on a complex plane. Find the
equation of the angle formed by the vector representing 𝑧1 and 𝑧2.

181. If the vertices of a △𝐴𝐵𝐶 are represented by 𝑧1, 𝑧2, 𝑧3 respectively, then show that
the orthocenter of △𝐴𝐵𝐶 is 𝑧1𝑎 sec𝐴+𝑧2𝑏 sec𝐵+𝑧3𝑐 sec𝐶⁄

𝑎 sec𝐴+𝑏 sec𝐵+𝑐 sec𝐶 or

𝑧1 tan𝐴+𝑧2 tan𝐵+𝑧3 tan𝐶⁄
tan𝐴+tan𝐵+tan𝐶 .

182. If the vertices of a △𝐴𝐵𝐶 are represented by 𝑧1, 𝑧2 and 𝑧3 respectively, show that its
circumcenter is 𝑧1 sin 2𝐴+𝑧2 sin 2𝐵+𝑧3 sin 2𝐶⁄

sin 2𝐴+sin2𝐵+sin2𝐶 .

183. Show that the circumcenter of the triangle whose vertices are given by the complex
numbers 𝑧1, 𝑧2, 𝑧3 is given by 𝑧 = ∑𝑧1𝑧1(𝑧2−𝑧3)⁄

∑𝑧1(𝑧2−𝑧3) .

184. Find the orthocenter of the triangle with vertices 𝑧1, 𝑧2, 𝑧3.

185. 𝐴𝐵𝐶𝐷 is a rhombus described in clockwise direction. Suppose that the vertices
𝐴, 𝐵, 𝐶, 𝐷 are given by 𝑧1, 𝑧2, 𝑧3, 𝑧4 respectively and ∠𝐶𝐵𝐴 = 2𝜋/3. Show that
2√


3𝑧2 = (√


3 − 𝑖)𝑧1 + (√


3 + 𝑖)𝑧3 and 2√


3𝑧4 = (√


3 + 𝑖)𝑧1 + (√


3 − 𝑖)𝑧3.

186. The points 𝑃, 𝑄 and 𝑅 represent the numbers 𝑧1, 𝑧2 and 𝑧3 respectively and the
angles of the △𝑃𝑄𝑅 at 𝑄 and 𝑅 are both 1⁄2 (𝜋 − 𝛼). Prove that (𝑧3 − 𝑧2)2 =

4(𝑧3 − 𝑧1)(𝑧1 − 𝑧2) sin2 𝛼⁄2.
187. Points 𝑧1 and 𝑧2 are adjacent vertices of a regular polygon of 𝑛 sides. Find the vertex 𝑧3

adjacent to 𝑧2(𝑧1 ≠ 𝑧3).

188. Let 𝐴1, 𝐴2, … , 𝐴𝑛 be the vertices of an 𝑛 sided regular polygon such that 1⁄
𝐴1𝐴2

=
1⁄

𝐴1𝐴3
+ 1⁄

𝐴1𝐴4
, find the value of 𝑛.

189. If |𝑧| = 2, then show that the points representing the complex numbers −1 + 5𝑧 lie on
a circle.

190. If |𝑧 − 4 + 3𝑖| ≤ 2, find the least and tghe greatest values of |𝑧| and hence find the
limits between which |𝑧| lies.

191. If 𝑧 − 6 − 8𝑖 ≤ 4, then find the least and greatest value of 𝑧.

192. If 𝑧 − 25𝑖 ≤ 15 then find the least positive value of arg(𝑧).

193. Show that the equation |𝑧 − 𝑧1|2 + |𝑧 − 𝑧2|2 = 𝑘 where 𝑘 ∈ 𝑅 will represent a circle if
𝑘 ≥ 1
⁄

2 |𝑧1 − 𝑧2|2.

194. If |𝑧 − 1| = 1, prove that 𝑧−2⁄𝑧 = 𝑖 tan(arg 𝑧).
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195. Find the locus of 𝑧 if arg(𝑧−1⁄𝑧+1) =
𝜋
⁄

4

196. If 𝛼 is real and 𝑧 is a complex number and 𝑢 and 𝑣 be the real and imaginary parts
of (𝑧 − 1)(cos 𝛼 − 𝑖 sin 𝛼)+ (𝑧 − 1)−1(cos 𝛼 + 𝑖 sin 𝛼), prove that the locus of points
representing the complex number such that 𝑣 = 0 is a circle of unit radius with center
at point (1, 0) and a straight line through the center of the circle.

197. If |𝑎𝑛| < 2 for 𝑛 = 1, 2, 3, … and 1 + 𝑎1𝑧 + 𝑎2𝑧2 +…+ 𝑎𝑛𝑧𝑛 = 0, show that 𝑧 does not
lie in the interior of the circle |𝑧| = 1

⁄

3.

198. Show that the roots of the equation 𝑧𝑛 cos 𝜃0 + 𝑧𝑛−1 cos 𝜃1 + … + cos 𝜃𝑛 = 2, where
𝜃1 + 𝜃2 + …+ 𝜃𝑛 ∈ 𝑅 lies outside the circle |𝑧| = 1

⁄

2.

199. 𝑧1, 𝑧2, 𝑧3 are non-zero, non-collinear complex numbers such that 2⁄𝑧1 = 1⁄
𝑧2 +

1⁄
𝑧3, show

that 𝑧1, 𝑧2, 𝑧3 lie on a circle passing through origin.

200. 𝐴, 𝐵, 𝐶 are the points representing the complex numbers 𝑧1,𝑧2,𝑧3 respectively on the
complex plane and the circumcenter of the △𝐴𝐵𝐶 lies on the origin. If the altitude of
the triangle through the vertex 𝐴 meets the circle again at 𝑃 , prove that 𝑃 represents
the complex number 𝑧2𝑧3⁄𝑧1 .

201. Two different non-parallel lines cut the circle |𝑧| = 𝑟 at points 𝑎, 𝑏, 𝑐, 𝑑 respectively.
Prove that these two lines meet at a point given by 𝑎

−1+𝑏−1−𝑐−1−𝑑−1⁄
𝑎−1𝑏−1−𝑐−1𝑑−1 .

202. Let 𝑧1, 𝑧2, 𝑧3 be three non-zero complex numbners such that 𝑧2 ≠ 1, 𝑎 = |𝑧1|, 𝑏 = |𝑧2|

and 𝑐 = |𝑧3|. If ∣
𝑎 𝑏 𝑐
𝑏 𝑐 𝑎
𝑐 𝑎 𝑏 ∣= 0 then show that arg(𝑧3⁄𝑧2) = arg(𝑧3−𝑧1⁄𝑧2−𝑧1)2.

203. 𝑃 is a point on a circle with 𝑂𝑃 as diameter. Two points 𝑄 and 𝑅 are taken such
that ∠𝑃𝑂𝑄 = ∠𝑄𝑂𝑅 = 𝜃. If 𝑂 is the origin and 𝑃, 𝑄 and 𝑅 are represented by the
complex numbers 𝑧1, 𝑧2 and 𝑧3 respectively, show that 𝑧22 cos 2𝜃 = 𝑧1𝑧3 cos2 𝜃.

204. Find the equation in complex variables of all circles which are orthogonal to |𝑧| = 1
and |𝑧 − 1| = 4.

205. Find the real values of the parameter 𝑡 for which there is at least one complex number
𝑧 = 𝑥+𝑖𝑦 satisfying the condition |𝑧+3| = 𝑡2−2𝑖+6 and the ineuqality 𝑧−3√



3𝑖 < 𝑡2.

206. If 𝑎, 𝑏, 𝑐 and 𝑑 are real and 𝑎𝑑 > 𝑏𝑐, show that the imaginary parts of the complex
number 𝑧 and 𝑎𝑧+𝑏⁄𝑐𝑎+𝑑 have the same sign.

207. If 𝑧1 = 𝑥1 + 𝑖𝑦1, 𝑧2 = 𝑥2 + 𝑖𝑦2 and 𝑧1 = 𝑖(𝑧2+1)⁄
𝑧2−1 , prove that 𝑥21 + 𝑦21 − 𝑥1 =

𝑥22−𝑦22+2𝑥2−2𝑦2+1⁄
(𝑥2−1)2+𝑦22

.

208. Simplify (cos 3𝜃−𝑖 sin 3𝜃)
6(sin 𝜃−𝑖 cos 𝜃)3⁄

(cos 2𝜃+𝑖 sin 2𝜃)5 .
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209. Find all complex numbers such that 𝑧2 + |𝑧| = 0.

210. Solve the equation 𝑧2 + 𝑧|𝑧|+ |𝑧2| = 0.

211. If 𝑎 > 0 and 𝑧|𝑧|+ 𝑎𝑧 + 1 = 0, show that 𝑧 is a negative real number.

212. For every real number 𝑎 > 0, find all complex numbers 𝑧 such that |𝑧|2 − 2𝑖𝑧 +
2𝑎(1 + 𝑖) = 0.

213. Find the integral solution of the following equations: i. (3+4𝑖)𝑥 = 5𝑥/2 ii. (1−𝑥)𝑥 = 2𝑥
iii. (1 − 𝑖)𝑥 = (1 + 𝑖)𝑥.

214. Find the common roots of the equations 𝑧3+ 2𝑧2+2𝑧 +1 = 0 and 𝑧1985+ 𝑧100+ 1 = 0.

215. If 𝑧1 + 𝑧2 + 𝑧3 = 𝛼, 𝑧1 + 𝑧2𝜔 + 𝑧3𝜔2 = 𝛽 and 𝑧1 + 𝑧2𝜔2 + 𝑧3𝜔 = 𝛾, express 𝑧1, 𝑧2, 𝑧3 in
terms of 𝛼, 𝛽, 𝛾. Hence prove that |𝛼|2 + |𝛽|2 + |𝛾|2 = 3(|𝑧1|2 + |𝑧2|2 + |𝑧3|2).

216. If 𝑛 is an odd integer greater than 3, but not a multiple of 3, prove that 𝑥3 + 𝑥2 + 𝑥 is
a factor of (𝑥 + 1)𝑛 − 𝑥𝑛 − 1.

217. If 𝑛 is an odd integer greater than 3, but not a multiple of 3, prove that (𝑥+𝑦)𝑛−𝑥𝑛−𝑦𝑛

is divisible by 𝑥𝑦(𝑥 + 𝑦)(𝑥2 + 𝑥𝑦 + 𝑦2).

218. If |𝑧1| = |𝑧1| = ⋯ = |𝑧𝑛| = 1, prove that |𝑧1 + 𝑧2 + ⋯+ 𝑧𝑛| = ∣ 1⁄𝑧1 + 1⁄
𝑧2 + ⋯ + 1⁄

𝑧𝑛∣.

219. If 𝛼, 𝛽 ∈ ℂ, show that |𝛼 +√

𝛼2 − 𝛽2 |+ |𝛼 −√

𝛼2 − 𝛽2 | = |𝛼 + 𝛽|+ |𝛼 − 𝛽|.

220. If 𝑧1 = 𝑎 + 𝑖𝑏 and 𝑧2 = 𝑐 + 𝑖𝑑 are complex numbers such that |𝑧1| = |𝑧2| = 1 and
ℜ(𝑧1𝑧2) = 0, then show that the pair of complex numbers 𝜔1 = 𝑎+ 𝑖𝑐 and 𝜔2 = 𝑏 + 𝑖𝑑
satisfy i. |𝜔1| = 1 ii. |𝜔2| = 1 iii. ℜ(𝜔1𝜔2) = 0.

221. Prove that ∣ 𝑧1−𝑧2⁄1−𝑧1𝑧2∣ < 1 if |𝑧1| < 1, |𝑧2| < 1.

222. Let 𝑧1 = 10 + 6𝑖 and 𝑧2 = 4 + 6𝑖. If 𝑧 is any complex number such that the argument
of 𝑧−𝑧1⁄𝑧−𝑧2 is 𝜋⁄2, then prove that |𝑧 − 7 − 9𝑖| = 3√



2.

223. Find all complex numbers 𝑧 for which arg(3𝑧−6−3𝑖⁄2𝑧−8−6𝑖) = 𝜋
⁄

4 and |𝑧 − 3 + 𝑖| = 3.

224. If |𝑧| ≤ 1, |𝑤| ≤ 1, show that |𝑧 − 𝑤|2 ≤ (|𝑧|− |𝑤|)2 + (arg(𝑧)− arg(𝑤))2.

225. If 𝑧 is any non-zero complex number, show that ∣ 𝑧⁄|𝑧| − 1∣ ≤ | arg(𝑧) | and |𝑧 − 1| ≤
||𝑧|− 1|+ |𝑧|| arg(𝑧) |.

226. If ∣𝑧 + 1
⁄

𝑧∣ = 𝑎, where 𝑧 is a complex number and 𝑎 > 0, find the greatest value of |𝑧|.

227. If 𝑧1, 𝑧2 are complex numbers and 𝑐 is a positive number, prove that |𝑧1 + 𝑧2|2 <
(1 + 𝑐) |𝑧1|2 + (1 + 1
⁄

𝑐)|𝑧2|
2.
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228. If 𝑧1 and 𝑧2 are two complex numbers such that ∣𝑧1−𝑧2⁄𝑧1+𝑧2∣ = 1, prove that 𝑖𝑧1⁄𝑧2 = 𝑥,
where 𝑥 is a real number. Find the angle between the lines from the origin to the
points 𝑧1 + 𝑧2 and 𝑧1 − 𝑧2 in terms of 𝑥.

229. Let 𝑧1, 𝑧2 be any two complex numbers and 𝑎, 𝑏 be two real numbers such that
𝑎2+ 𝑏2 ≠ 0. Prove that |𝑧1|2+ |𝑧2|2− |𝑧21 + 𝑧22 | ≤ 2 |𝑎𝑧1+𝑏𝑧2|

2⁄
𝑎2+𝑏2 ≤ |𝑧1|2+ |𝑧2|2+ |𝑧21 + 𝑧22 |.

230. If 𝑏 + 𝑖𝑐 = (1 + 𝑎)𝑧 and 𝑎2 + 𝑏2 + 𝑐2 = 1, prove that 𝑎+𝑖𝑏⁄1+𝑐 = 1+𝑖𝑧⁄
1−𝑖𝑧, where 𝑎, 𝑏, 𝑐 are real

numbers and 𝑧 is a complex number.

231. For any two complex numbers 𝑧1 and 𝑧2 and any real numbers 𝑎 and 𝑏, show that
|𝑎𝑧1 − 𝑏𝑧2|2 + |𝑏𝑧1 − 𝑎𝑧2|2 = (𝑎2 + 𝑏2)(|𝑧1|2 + |𝑧2|2).

232. If 𝛼 and 𝛽 are any two complex numbers, show that |𝛼 + 𝛽|2 = |𝛼|2 + |𝛽|2 + ℜ(𝛼𝛽)+
ℜ(𝛼𝛽).

233. Prove that |1 − 𝑧1𝑧2|2 − |𝑧1 − 𝑧2|2 = (1 − |𝑧1|2)(1 − |𝑧2|2).

234. If 𝑎𝑖, 𝑏𝑖 ∈ 𝑅, 𝑖 = 1, 2, … , 𝑛, show that (
𝑛
∑
𝑖=1

𝑎𝑖)
2

+(
𝑛
∑
𝑖=1

𝑏𝑖)
2

≤ (
𝑛
∑
𝑛=1

√

𝑎2𝑖 + 𝑏2𝑖)

2

.

235. Let ∣𝑧1−2𝑧2⁄2−𝑧1𝑧2∣ = 1 and |𝑧2| ≠ 1, where 𝑧1 and 𝑧2 are complex nubers, show that |𝑧1| = 2.

236. If 𝑧1 and 𝑧2 are complex numbers and 𝑢 =√

𝑧1𝑧2, prove that |𝑧1|+ |𝑧2| = ∣𝑧1+𝑧2⁄2 +

𝑢∣+ ∣𝑧1+𝑧2⁄2 − 𝑢∣

237. If 𝑧1 and 𝑧2 are roots of the equation 𝛼𝑧2+2𝛽𝑧+𝛾 = 0, then prove that |𝛼|(|𝑧1|+ |𝑧2|)=
|𝛽 +√

𝛼𝛾 |+ |𝛽 −√

𝛼𝛾 |

238. If 𝑎, 𝑏, 𝑐 are complex numbers such that 𝑎 + 𝑏 + 𝑐 = 0 and |𝑎| = |𝑏| = |𝑐| = 1, find the
value of 1⁄𝑎 +

1
⁄

𝑏 +
1
⁄

𝑐.

239. If |𝑧 + 4| ≤ 3, find the least and greatest value of |𝑧 + 1|.

240. Show that for any two non-zero complex numbers 𝑧1 and 𝑧2, (|𝑧1|+ |𝑧2|) ∣ 𝑧1⁄|𝑧1|+ 𝑧2⁄
|𝑧2|∣ ≤

2|𝑧1 + 𝑧2|

241. Show that the necessary and sufficient condition for both the roots of the equation
𝑧2 + 𝑎𝑧 + 𝑏 = 0 to be unimodular are |𝑎| ≤ 2, |𝑏| = 1 and arg(𝑏) = 2arg(𝑎).

242. If 𝑧 is a complex number, show that |𝑧| ≤ |ℜ(𝑧) |+ |ℑ(𝑧) | ≤ √


2 |𝑧|.

243. If ∣𝑧 − 4
⁄

𝑧∣ = 2, show that the greatest value of |𝑧| is √


5 + 1.

244. If 𝛼, 𝛽, 𝛾, 𝛿 be the real roots of the equation 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑠2 + 𝑑𝑥 + 𝑒 = 0, show that
𝑎2(1 + 𝛼2)(1 + 𝛽2)(1 + 𝛾2)(1 + 𝛿2) = (𝑎 − 𝑐 + 𝑒)2 + (𝑏 − 𝑑)2.
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245. If 𝑎𝑖 ∈ 𝑅, 𝑖 = 1, 2, … , 𝑛 and 𝛼1, 𝛼2, … , 𝛼𝑛 are the roots of the equation 𝑥𝑛+ 𝑎1𝑥𝑛−1 +

𝑎2𝑥𝑛−2 +…+ 𝑎𝑛−1𝑥 + 𝑎𝑛 = 0, show that 
𝑛
∏
𝑖=1

(1 + 𝛼2𝑖 ) = (1 − 𝑎2 + 𝑎4 −…)2 + (𝑎1 −

𝑎3 +…)2

246. If the complex numbers 𝑧1, 𝑧2, 𝑧3 are the vertices of an equilateral triangle such that
|𝑧1| = |𝑧2| = |𝑧3|, prove that 𝑧1 + 𝑧2 + 𝑧3 = 0.

247. If 𝑧1 + 𝑧2 + 𝑧3 = 0 and |𝑧1| = |𝑧2| = |𝑧3| = 1, then prove that the complex numbers
𝑧1, 𝑧2, 𝑧3 are the vertices of an equilateral triangle inscribed in a unit circle.

248. If 𝑧1, 𝑧2, 𝑧3 be the vertices of an equilateral triangle whose circumcenter is 𝑧0, then
prove that 𝑧21 + 𝑧22 + 𝑧23 = 3𝑧20.

249. Prove that the complex numbers 𝑧1 and 𝑧2 and the origin form an equilateral triangle
if 𝑧21 + 𝑧22 − 𝑧1𝑧2 = 0.

250. If 𝑧1 and 𝑧2 be the roots of the equation 𝑧2 + 𝑎𝑧 + 𝑏 = 0, then prove that the origin, 𝑧1
and 𝑧2 form an equilateral triangle if 𝑎2 = 3𝑏.

251. Let 𝑧1, 𝑧2 and 𝑧3 be the roots of the equation 𝑧3 + 3𝛼𝑧2 + 3𝛽𝑧 + 𝛾 = 0, where 𝛼, 𝛽
and 𝛾 are complex numbers and that these represent the vertices of 𝐴, 𝐵 and 𝐶 of
a triangle. Find the centroid of △𝐴𝐵𝐶. Show that the triangle will be equilateral,
if 𝛼2 = 𝛽.

252. If 𝑧1, 𝑧2, 𝑧3 are in A.P., prove that they are collinear.

253. If 𝑧1, 𝑧2 and 𝑧3 are collinear points in argand plane then show that one of the following
holds: −𝑧1|𝑧2−𝑧3|+𝑧2|𝑧3−𝑧1|+𝑧3|𝑧1−𝑧2|= 0,𝑧1|𝑧2−𝑧3|−𝑧2|𝑧3−𝑧1|+𝑧3|𝑧1−𝑧2|=
0, 𝑧1|𝑧2 − 𝑧3|+ 𝑧2|𝑧3 − 𝑧1|− 𝑧3|𝑧1 − 𝑧2| = 0.

254. What region in the argand plane is represented by the inequality 1 < |𝑧 − 3 − 4𝑖| < 2.

255. Find the locus of point 𝑧 if |𝑧 − 1|+ |𝑧 + 1| ≤ 4.

256. If 𝑧 = 𝑡 + 5 + 𝑖√

4 − 𝑡2 and 𝑡 is real, find the locus of 𝑧.

257. If 𝑧2
⁄

𝑧−1 is real, show that locus of 𝑧 is a circle with center (1, 0) and radius unity.

258. If |𝑧2 − 1| = |𝑧|2 + 1, show that locus of 𝑧 is a straight line.

259. Find the locus of the point 𝑧 if 𝜋⁄3 ≤ arg(𝑧) ≤ 3𝜋⁄
2 .

260. Find the locus of the point 𝑧 if arg(𝑧−2⁄𝑧+2) =
𝜋
⁄

3.

261. Show that the locus of the point 𝑧 satisfying the condition arg(𝑧−1⁄𝑧+1) = 𝜋
⁄

2 is the
semicircle above 𝑥-axis, whose diameter is the joints of the points (−1, 0) and (1, 0)
excluding these points.
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262. Find the locus of the point 𝑧 if log√3
|𝑧|2−|𝑧|+1⁄

2+|𝑧| < 2.

263. If 𝑂 be the center of the circle circumscribing the equilateral △𝐴𝐵𝐶 and its radius be
unity and 𝐴 lies on the 𝑥-axis. Find the complex numbers represented by 𝐵 and 𝐶.

264. 𝐴𝐵𝐶𝐷 is a rhombus. Its diagonals 𝐴𝐶 and 𝐵𝐷 intersect at a point 𝑀 and satisfy
𝐵𝐷 = 2𝐴𝐶. If the points 𝐷 and 𝑀 represent the complex numbers 1 + 𝑖 and 2 − 𝑖
respectively, then find the complex number represented by 𝐴.

265. If 𝑧1, 𝑧2, 𝑧3 and 𝑧4 are the vertices of a square taken in anticlockwise order, prove that
𝑧3 = −𝑖𝑧1 + (1 + 𝑖)𝑧2 and 𝑧4 = (1 − 𝑖)𝑧1 + 𝑖𝑧2.

266. Let 𝑧1, 𝑧2 and 𝑧3 are vertices of an equilateral triangle in the circle |𝑧| = 2. If
𝑧1 = 1 + 𝑖√


3, then find 𝑧2 and 𝑧3.

267. If 𝑎 and 𝑏 are real numbers between 0 and 1 such that points 𝑧1 = 𝑎 + 𝑖, 𝑧2 = 1 + 𝑏𝑖,
and 𝑧3 = 0 form an equilateral triangle, then find 𝑎 and 𝑏.

268. Let 𝐴𝐵𝐶𝐷 be a square described in the anticlockwise sense in the argand plane. If 𝐴
represents 3 + 5𝑖 and the center of the square represents 7⁄2 +

5
⁄

2 𝑖. Find the numbers
represented by 𝐵, 𝐶 and 𝐷.

269. Find the vertices of a regular polygon of 𝑛 sides, if its center is located at origin and
one of its vertices is 𝑧1.

270. Prove that the points 𝑎(cos 𝛼 + 𝑖 sin 𝛼), 𝑏(cos 𝛽 + 𝑖 sin 𝛽) and 𝑐(cos 𝛾 + 𝑖 sin 𝛾) in the
argand plane are collinear, if 𝑏𝑐 sin(𝛽 − 𝛾)+ 𝑐𝑎 sin(𝛾 − 𝛼)+ 𝑎𝑏 sin(𝛼 − 𝛽) = 0.

271. 𝐴 represents the number 6𝑖, 𝐵 the number 3 and 𝑃 the complex number 𝑧. If 𝑃 moves
such that 𝑃𝐴 : 𝑃𝐵 = 2 : 1, show that 𝑧𝑧 = (4 + 2𝑖)𝑧 + (4 − 2𝑖)𝑧. Also, show that the
locus of 𝑃 is a circle, find its radius and center.

272. Show that if the points 𝑧1, 𝑧2, 𝑧3 and 𝑧4 taken in order are concyclic, then the expression
(𝑧3−𝑧1)(𝑧4−𝑧2)⁄
(𝑧3−𝑧2)(𝑧4−𝑧1) is purely real.

273. Let 𝑧1, 𝑧2, 𝑧3 and 𝑧4 be the vertices of a quadrilateral. Prove that the quadrilateral is
cyclic if 𝑧1𝑧2 + 𝑧3𝑧4 = 0 and 𝑧1 + 𝑧2 = 0.

274. Show that the triangles whose vertices are 𝑧1, 𝑧2, 𝑧3 and 𝑧′1, 𝑧′2, 𝑧′3 are similar if

∣
𝑧1 𝑧′1 1
𝑧2 𝑧′2 1
𝑧3 𝑧′3 1 ∣ = 0

275. If 𝑎, 𝑏, 𝑐 and 𝑢, 𝑣, 𝑤 are the complex numbers representing two triangles such that
𝑐 = (1 − 𝑟)𝑎 + 𝑟𝑏 and 𝑤 = (1 − 𝑟)𝑢 + 𝑟𝑣, where 𝑟 is a complex number, prove that
the two triangles are similar.

276. Find the equation of perpendicular bisector of the line segment joining points 𝑧1
and 𝑧2.
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277. Find the equation of a circle having the line segment joining 𝑧1 and 𝑧2 as diameter.

278. If ∣𝑧−𝑧1⁄𝑧−𝑧2∣ = 𝑐, 𝑐 ≠ 0, then show that locus of 𝑧 is a circle.

279. If |𝑧| = 1, find the locus of the point 2⁄𝑧.

280. If for any two complex numbers 𝑧1 and 𝑧2, |𝑧1 + 𝑧2| = |𝑧1|+ |𝑧2|, prove that arg(𝑧1)−
arg(𝑧2) = 2𝑛𝜋.

281. Find the complex number 𝑧, the least in absolute value, which satisfies the condition
|𝑧 − 2 + 2𝑖| = 1.

282. Find the point in the first quadrant, on the curve |𝑧 − 5𝑖| = 3, whose argument is
minimum.

283. Find the set of points of the cooradinate plane, which satisfy the inequality

log1/2(
|𝑧−1|+4⁄
3|𝑧−1|−2) > 1

284. Find the set of all points on the 𝑥𝑦-plane whose coordinates satisfy the following
condition: the number 𝑧2 + 𝑧 + 1 is real and positive.

285. Find the real values of the parameter 𝑎 for which at least one complex number 𝑧
satisfies the equality |𝑧 − 𝑎𝑧| = 𝑎 + 4 and the inequality |𝑧 − 1| < 1.

286. Find the real values of the parameter 𝑡 for whihc at least one complex number 𝑧
satisfied the equality |𝑧 +√



2 | = 𝑡2 − 3𝑡 + 2 and the inequality |𝑧 + 𝑖√


2 | < 𝑡2.

287. Find the real value of 𝑎 for which there is at least one complex number satisfying
|𝑧 + 4𝑖| =√

𝑎2 − 12𝑎 + 28 and |𝑧 − 4√


3 | < 1.

288. Find the set of points belonging to the coordinate plane 𝑥𝑦, for which the real part of
the complex number (1 + 𝑖)𝑧2 is positive.

289. Solve the equation 2𝑧 = |𝑧|+ 2𝑖 in complex numbers.

290. Three points represented by the complex numbers 𝑎, 𝑏, 𝑐 lie on a circle with center 𝑂
and radius 𝑟. The tangent at 𝑐 cuts the chord joining the points 𝑎, 𝑏 at 𝑧. Show that
𝑧 = 𝑎−1+𝑏−1−2𝑐−1⁄

𝑎−1𝑏−1−𝑐−2 .

291. Show that all roots of the equation 𝑎1𝑧3 + 𝑎2𝑧2 + 𝑎3𝑧 + 𝑎4 = 3, where |𝑎𝑖| ≤ 1, 𝑖 =
1, 2, 3, 4 lie outside the circle with center as origin and radius 2⁄3.

292. Given that 
𝑛
∑
𝑖=1

𝑏𝑖 = 0 and 
𝑛
∑
𝑖=1

𝑏𝑖𝑧𝑖 = 0, where 𝑏𝑖s are non-zero real numbers, no three

of 𝑧𝑖's form a straight line. Prove that 𝑧𝑖's are concyclic if 𝑏1𝑏2|𝑧1−𝑧2|2 = 𝑏3𝑏4|𝑧3−𝑧4|2.

293. A cubic equation 𝑓(𝑥) = 0 has one real root 𝛼 and two complex roots 𝛽 ± 𝑖𝛾. Points
𝐴,𝐵 and 𝐶 represent these roots. Show that the roots of the derived equation 𝑓′(𝑥) = 0
are complex if 𝐴 falls inside one of the two equilateral triangles described on base 𝐵𝐶.
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294. Prove that the reflection of 𝑎𝑧 + 𝑎𝑧 = 0 in the real axis is 𝑎𝑧 + 𝑎𝑧 = 0.

295. If 𝛼, 𝛽, 𝛾, 𝛿 are four complex numbers such that 𝛾⁄𝛿 is real and 𝛼𝛿 − 𝛽𝛾 ≠ 0, then prove

that 𝑧 = 𝛼+𝛽𝑡⁄
𝛾+𝛿𝑡 , 𝑡 ∈ 𝑅 represents a straight line.

296. If 𝜔, 𝜔2 are cube roots of unity, then prove that

i. (3 + 3𝜔 + 5𝜔2)6 − (2 + 6𝜔 + 2𝜔2)3 = 0.

ii. (2 − 𝜔)(2 − 𝜔2)(2 − 𝜔10)(2 − 𝜔11) = 49.

iii. (1 − 𝜔)(1 − 𝜔2)(1 − 𝜔4)(1 − 𝜔5) = 9.

iv. (1 − 𝜔 + 𝜔2)5 + (1 + 𝜔 − 𝜔2)5 = 32.

v. 1 + 𝜔𝑛 + 𝜔2𝑛 = 3, where 𝑛 > 0, 𝑛 ∈ 𝐼 and is a multiple of 3.

vi. 1 + 𝜔𝑛 + 𝜔2𝑛 = 0, where 𝑛 > 0, 𝑛 ∈ 𝐼 and is not a multiple of 3.

297. Resolve into linear factors 𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑏𝑐 − 𝑐𝑎.

298. If 𝑥 = 𝑎 + 𝑏, 𝑦 = 𝑎𝜔 + 𝑏𝜔2, 𝑧 = 𝑎𝜔2 + 𝑏𝜔, prove that 𝑥3 + 𝑦3 + 𝑧3 = 3(𝑎3 + 𝑏3) and
𝑥𝑦𝑧 = 𝑎3 + 𝑏3.

299. Resolve into linear factors:

i. 𝑎2 − 𝑎𝑏 + 𝑏2

ii. 𝑎2 + 𝑎𝑏 + 𝑏2

iii. 𝑎3 + 𝑏3

iv. 𝑎3 − 𝑏3

v. 𝑎3 + 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐

300. Show that 𝑥3𝑝 + 𝑥3𝑞+1 + 𝑥3𝑟+2, where 𝑝, 𝑞, 𝑟 are positive integers is divisible by
𝑥2 + 𝑥 + 1.

301. Show that 𝑥4𝑝+𝑥4𝑞+1+𝑥4𝑟+2+𝑥4𝑠+3, where 𝑝, 𝑞, 𝑟, 𝑠 are positive integers is divisible
by 𝑥3 + 𝑥2 + 𝑥 + 1.

302. If 𝑝 = 𝑎 + 𝑏 + 𝑐, 𝑞 = 𝑎 + 𝑏𝜔 + 𝑐𝜔2, 𝑟 = 𝑎 + 𝑏𝜔2 + 𝑐𝜔, where 𝜔 is a cube root of unity,
prove that 𝑝3 + 𝑞3 + 𝑟3 − 3𝑝𝑞𝑟 = 27𝑎𝑏𝑐.

303. If 𝜔 is a cube root of unity, prove that (𝑎 + 𝑏𝜔 + 𝑐𝜔2)3 + (𝑎 + 𝑏𝜔2 + 𝑐𝜔)3 = (2𝑎 − 𝑏 −
𝑐)(2𝑏 − 𝑎 − 𝑐)(2𝑐 − 𝑎 − 𝑏).

304. If 𝑎𝑥 + 𝑐𝑦 + 𝑏𝑧 = 𝑋, 𝑐𝑥 + 𝑏𝑦 + 𝑎𝑧 = 𝑌, 𝑏𝑐 + 𝑎𝑦 + 𝑐𝑧 = 𝑍, show that
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i. (𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑏𝑐 − 𝑐𝑎)(𝑥2 + 𝑦2 + 𝑧2 − 𝑥𝑦 − 𝑦𝑧 − 𝑧𝑥) = 𝑋2 + 𝑌 2 + 𝑍2 −
𝑋𝑌 − 𝑌 𝑍 − 𝑍𝑋

ii. (𝑎3 + 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐)(𝑥3 + 𝑦3 + 𝑧3 − 3𝑥𝑦𝑧) = 𝑋3 + 𝑌 3 + 𝑍3 − 3𝑋𝑌 𝑍

305. Prove that (cos 𝜃+𝑖 sin 𝜃⁄sin 𝜃+𝑖 cos 𝜃)4 = cos 8𝜃 + 𝑖 sin 8𝜃.

306. If 𝑧2 − 2𝑧 cos 𝜃 + 1 = 0, show that 𝑧2 + 𝑧−2 = 2 cos 2𝜃.

307. Prove that (1 + 𝑖)𝑛 + (1 − 𝑖)𝑛 = 2𝑛/2+1 cos 𝑛𝜋⁄4 .

308. Show that the value of 
6
∑
𝑘=1

(sin 2𝜋𝑘⁄
7 − 𝑖 cos 2𝜋𝑘⁄7 ) is 𝑖.

309. Show that 𝑒2𝑚𝑖 cot−1 𝑝(𝑝𝑖+1⁄𝑝𝑖−1)𝑚 = 1.

310. Prove that (1+sin𝜙+𝑖 cos𝜙⁄1+sin𝜙−𝑖 cos𝜙)𝑛 = cos(𝑛𝜋⁄2 − 𝑛𝜙)+ 𝑖 sin(𝑛𝜋⁄2 − 𝑛𝜙).

311. If sin 𝛼+ sin 𝛽 + sin 𝛾 = cos 𝛼+ cos 𝛽 + cos 𝛾 = 0, show that cos 3𝛼+ cos 3𝛽 + cos 3𝛾 =
3 cos(𝛼 + 𝛽 + 𝛾) and sin 3𝛼 + sin 3𝛽 + sin 3𝛾 = 3 sin(𝛼 + 𝛽 + 𝛾).

312. If sin 𝛼+ sin 𝛽 + sin 𝛾 = cos 𝛼+ cos 𝛽 + cos 𝛾 = 0, show that cos 2𝛼+ cos 2𝛽 + cos 2𝛾 =
sin 2𝛼 + sin 2𝛽 + sin 2𝛾 = 0.

313. If 𝛼, 𝛽 are the roots of the equation 𝑡2 − 2𝑡 + 2 = 0, show that a value of 𝑥, satisfying
(𝑥+𝛼)𝑛−(𝑥+𝛽)𝑛⁄

𝛼−𝛽 = sin 𝜃⁄
sin𝑛 𝜃 is 𝑥 = cot 𝜃 − 1.

314. If (1 + 𝑥)𝑛 = 𝑝0 + 𝑝1𝑥 + 𝑝2𝑥2 +…+ 𝑝𝑛𝑥𝑛, show that 𝑝0 − 𝑝2 + 𝑝4 −… = 2𝑛/2 cos 𝑛𝜋⁄4
and 𝑝1 − 𝑝3 + 𝑝5 − … = 2𝑛/2 sin 𝑛𝜋⁄

4 .

315. If (1 − 𝑥 + 𝑥2)𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + … + 𝑎2𝑛𝑥2𝑛, show that 𝑎0 + 𝑎3 + 𝑎6 + … =
1
⁄

3 (1 + 2𝑛+1 cos 𝑛𝜋⁄3 ).
316. If 𝑛 is a positive integer and (1 + 𝑥)𝑛 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + … + 𝑐𝑛𝑥𝑛, show that

𝑐0 + 𝑐4 + 𝑐8 + … = 2𝑛−2 + 2𝑛/2−1 cos 𝑛𝜋⁄4 .

317. Solve the equation 𝑧8+ 1 = 0 and deduce that cos 4𝜃 = 8(cos 𝜃 − cos 𝜋⁄8)(cos 𝜃 − cos 3𝜋⁄8 )
(cos 𝜃 − cos 5𝜋⁄8 )(cos 𝜃 − cos 7𝜋⁄8 ).

318. Prove that the roots of the equation 8𝑥3 − 4𝑥2 − 4𝑥 + 1 = 0 are cos 𝜋⁄7 , cos
3𝜋⁄
7 , cos

5𝜋⁄
7 .

319. Solve the equation 𝑧10−1 = 0 and deduce that sin 5𝜃 = 5 sin 𝜃(1− sin 𝜃⁄
sin2𝜋⁄5

)(1− sin 𝜃⁄
sin22𝜋⁄5 ).

320. Solve the equation 𝑥7 + 1 = 0 and deduce that cos 𝜋⁄7 cos
3𝜋⁄
7 cos 5𝜋⁄7 = −1
⁄

8.
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321. Form the equation whose roots are cot2 𝜋
⁄

2𝑛+1, cot
2 2𝜋
⁄

2𝑛+1, … , cot2 𝑛𝜋
⁄

2𝑛+1, and hence find

the value of cot2 𝜋
⁄

2𝑛+1 + cot2 2𝜋
⁄

2𝑛+1 + …+ cot2 𝑛𝜋
⁄

2𝑛+1.

322. If 𝜃 ≠ 𝑘𝜋, show that cos 𝜃 sin 𝜃 + cos2 𝜃 sin 2𝜃 + … + cos𝑛 𝜃 sin 𝑛𝜃 = cot 𝜃(1 −
cos𝑛 𝜃 cos 𝑛𝜃).

323. Show that −3 − 4𝑖 = 5𝑒𝑖(𝜋+tan
−1 4/3).

324. Solve the equation 2√


2𝑥4 = (√

3 − 1)+ 𝑖(√


3 + 1).

325. If 𝑧𝑟 = cos 𝜋⁄
3𝑟 + 𝑖 sin 𝜋⁄

3𝑟, prove that 𝑧1𝑧2𝑧3 … to ∞ = 𝑖.

326. If cos 𝜃 + 𝑖 sin 𝜃 is a solution of the equation 𝑝0𝑥𝑛 + 𝑝1𝑥𝑛−1 + 𝑝2𝑥𝑛−2 + ⋯+ 𝑝𝑛 = 0,
prove that 𝑝1 sin 𝜃 + 𝑝2 sin 2𝜃 +⋯+ 𝑝𝑛 = 0 and 𝑝0 + 𝑝2 cos 𝜃 +⋯+ 𝑝𝑛 cos 𝑛𝜃 = 0, 𝑝𝑖 ∈
ℝ, 𝑖 = 1, 2, 3, … , 𝑛.

327. Show that (1+cos𝜙+𝑖 sin𝜙⁄1+cos𝜙−𝑖 sin𝜙)𝑛 = cos 𝑛𝜙 + 𝑖 sin 𝜙.

328. If 2 cos 𝜃 = 𝑥 + 1
⁄

𝑥 and 2 cos 𝜙 = 𝑦 + 1
⁄

𝑦, then prove that

i. 𝑥
⁄

𝑦 +
𝑦
⁄

𝑥 = 2 cos(𝜃 − 𝜙),

ii. 𝑥𝑦 + 1
⁄

𝑥𝑦 = 2 cos(𝜃 + 𝜙),

iii. 𝑥𝑚𝑦𝑛 + 1⁄
𝑥𝑚𝑦𝑛 = 2 cos(𝑚𝜃 + 𝑛𝜙), and

iv. 𝑥𝑚⁄
𝑦𝑛 + 𝑦𝑛⁄

𝑥𝑚 = 2 cos(𝑚𝜃 − 𝑛𝜙).

329. If 𝛼, 𝛽 are the roots of the equation 𝑥2− 2𝑥+ 4 = 0, prove that 𝛼𝑛+𝛽𝑛 = 2𝑛+1 cos 𝑛𝜋⁄3 .

330. Find the equation whose roots are 𝑛th powers of the roots of the equation 𝑥2 −
2𝑥 cos 𝜃 + 1 = 0.

331. Find the values of 𝐴 and 𝐵, where 𝐴𝑒2𝑖𝜃 + 𝐵𝑒−2𝑖𝜃 = 5 cos 2𝜃 − 7 sin 2𝜃.

332. If 𝑥 = cos 𝜃 + 𝑖 sin 𝜃 and √

1 − 𝑐2 = 𝑛𝑐 − 1, prove that 1+ 𝑐 cos 𝜃 = 𝑐⁄

2𝑛 (1+𝑛𝑥)(1+𝑛
⁄

𝑥).

333. Show that the roots of equation (1+ 𝑧)𝑛 = (1− 𝑧)𝑛 are 𝑖 tan 𝑟𝜋⁄
𝑛 , 𝑟 = 0, 1, 2, … , (𝑛− 1)

excluding the value when 𝑛 is even and 𝑟 = 𝑛
⁄

2.

334. If 𝑥 = cos 𝛼 + 𝑖 sin 𝛼, 𝑦 = cos 𝛽 + 𝑖 sin 𝛽, show that (𝑥+𝑦)(𝑥𝑦−1)⁄(𝑥−𝑦)(𝑥𝑦+1) = sin𝛼+sin𝛽⁄
sin𝛼−sin𝛽

335. Show that 𝐶𝑛
0 + 𝐶𝑛

3 + 𝐶𝑛
6 + ⋯ = 1
⁄

3 [2
𝑛 + 2 cos 𝑛𝜋⁄3 ].

336. Show that 𝐶𝑛
1 + 𝐶𝑛

4 + 𝐶𝑛
7 + ⋯ = 1
⁄

3 [2
𝑛−2 + 2 cos (𝑛−2)𝜋⁄3 ].
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337. Show that 𝐶𝑛
2 + 𝐶𝑛

5 + 𝐶𝑛
8 + ⋯ = 1
⁄

3 [2
𝑛+2 + 2 cos (𝑛+2)𝜋⁄3 ].

338. If 𝐶𝑟 stands for 𝐶4𝑛
𝑟 , prove that 𝐶0 + 𝐶4 + 𝐶8 + ⋯ = 24𝑛−2 + (−1)𝑛 22𝑛−1.

339. If (1 − 𝑥+ 𝑥2)6𝑛 = 𝑎0+ 𝑎1𝑥+ 𝑎2𝑥2 +⋯, show that 𝑎0 + 𝑎3+ 𝑎6+… = 1
⁄

3 (2
6𝑛+1+ 1).

340. If (1 − 𝑥 + 𝑥2)𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯, show that 𝑎0 + 𝑎3 + 𝑎6 + … = 1
⁄

3 (1 +

(−1)𝑛 2𝑛+1 cos 𝑛𝜋⁄3 ).
341. Let 𝐴 = 𝑥 + 𝑦 + 𝑧, 𝐴′ = 𝑥′ + 𝑦′ + 𝑧′, 𝐴𝐴′ = 𝑥″ + 𝑦″ + 𝑧″, 𝐵 = 𝑥 + 𝑦𝜔 + 𝑧𝜔2, 𝐵′ =

𝑥′+ 𝑦′𝜔+ 𝑧′𝜔2, 𝐵𝐵′ = 𝑥″+ 𝑦″𝜔+ 𝑧″𝜔2, 𝐶 = 𝑥+𝑦𝜔2+ 𝑧𝜔, 𝐶′ = 𝑥′𝑦′𝜔2+ 𝑧′𝜔, 𝐶𝐶′ =
𝑥″ + 𝑦″𝜔2 + 𝑧″𝜔, then find 𝑥″, 𝑦″ and 𝑧″ in terms of 𝑥, 𝑦, 𝑧 and 𝑥′, 𝑦′𝑧′.

342. Prove the equaity (𝑎𝑥− 𝑏𝑦 − 𝑐𝑧 − 𝑑𝑡)2+ (𝑏𝑥+ 𝑎𝑦 − 𝑑𝑧 + 𝑐𝑡)2+ (𝑐𝑥+ 𝑑𝑦 + 𝑎𝑧 − 𝑏𝑡)2+
(𝑑𝑥 − 𝑐𝑦 + 𝑏𝑧 + 𝑎𝑡)2 = (𝑎2 + 𝑏2 + 𝑐2 + 𝑑2)(𝑥2 + 𝑦2 + 𝑧2 + 𝑡2).

343. Prove the equality: cos𝑛𝜃⁄cos𝑛 𝜃 = 1 − 𝐶𝑛
2 tan2 𝜃 + 𝐶𝑛

4 tan4 𝜃 − … + 𝐴, where 𝐴 =
(−1)𝑛/2 tan𝑛 𝜃 if 𝑛 is even, 𝐴 = (−1)(𝑛−1)/2 .𝐶𝑛

𝑛−1 tan
𝑛 𝜃 if 𝑛 is odd.

344. Prove the equality: sin𝑛𝜃⁄cos𝑛 𝜃 =𝑛 𝐶1 tan 𝜃 −𝑛 𝐶3 tan3 𝜃 +𝑛 𝐶5 tan5 𝜃 − … + 𝐴, where
𝐴 = (−1)(𝑛−2)/2 .𝑛𝐶𝑛−1 tan𝑛−1 𝜃 if 𝑛 is odd, 𝐴 = (−1)𝑛/2 . tan𝑛 𝜃 if 𝑛 is odd.

345. Prove the following equality:

22𝑚 cos2𝑚 𝑥 =
𝑚−1
∑
𝑘=0

2(2𝑚𝑘 ) cos 2(𝑚− 𝑘)𝑥 + (2𝑚𝑚 )

346. Prove the following equality:

22𝑚 sin2𝑚 𝑥 =
𝑚−1
∑
𝑘=0

(−1)𝑚+𝑘 2(2𝑚𝑘 ) cos 2(𝑚− 𝑘)𝑥 + (2𝑚𝑚 )

347. Prove the following equality:

22𝑚 cos2𝑚+1 𝑥 =
𝑚
∑
𝑘=0

2(2𝑚 + 1
𝑘 ) cos(2𝑚 − 2𝑘 + 1)𝑥

348. Prove the following equality:

22𝑚 sin2𝑚+1 𝑥 =
𝑚
∑
𝑘=0

(−1)𝑚+𝑘 2(2𝑚 + 1
𝑘 ) cos(2𝑚 − 2𝑘 + 1)𝑥

349. Let 𝑢𝑛 = cos 𝛼 + 𝑟 cos(𝛼 + 𝜃) + 𝑟2 cos(𝛼 + 2𝜃) + … + 𝑟𝑛 cos(𝛼 + 𝑛𝜃), 𝑣𝑛 = sin 𝛼 +
𝑟 sin(𝛼 + 𝜃)+ 𝑟2 sin(𝛼 + 2𝜃)+…+ 𝑟𝑛 sin(𝛼 + 𝑛𝜃), then show that

𝑢𝑛 =
cos 𝛼 − 𝑟 cos(𝛼 − 𝜃)− 𝑟𝑛+1 cos[𝛼 + (𝑛 + 1)𝜃]+ 𝑟𝑛+2 cos(𝛼 + 𝑛𝜃)⁄

1 − 2𝑟 cos 𝜃 + 𝑟2
,
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𝑣𝑛 =
sin 𝛼 − 𝑟 sin(𝛼 − 𝜃)− 𝑟𝑛+1 sin[𝛼 + (𝑛 + 1)𝜃]+ 𝑟𝑛+2 sin(𝛼 + 𝑛𝜃)⁄

1 − 2𝑟 cos 𝜃 + 𝑟2

350. Simplify the following sums:

𝑆 = 1 + 𝑛 cos 𝜃 + 𝑛(𝑛 − 1)
⁄

1.2 cos 2𝜃 + … =
𝑛
∑
𝑘=0

𝑛 𝐶𝑘 cos 𝑘𝜃, [𝑛𝐶0 = 1]

𝑆′ = 1 + 𝑛 sin 𝜃 + 𝑛(𝑛 − 1)
⁄

1.2 sin 2𝜃 + … =
𝑛
∑
𝑘=0

𝑛 𝐶𝑘 sin 𝑘𝜃, [𝑛𝐶0 = 1]

351. If 𝛼 = 𝜋⁄
2𝑛 and 𝑝 < 2𝑛(𝑝 a popsitive integer), then prove that

sin2𝑝 𝛼 + sin2𝑝 2𝛼 +…+ sin2𝑝 𝑛𝛼 = 1
⁄

2 + 𝑛1.3.5.… (2𝑝 − 1)⁄
2.4.… 2𝑝

352. Prove that (𝑥 + 𝑦)𝑛 − 𝑥𝑛 − 𝑦𝑛 is divisible by 𝑥𝑦(𝑥 + 𝑦)(𝑥2 + 𝑥𝑦 + 𝑦2) if 𝑛 is an odd
number and not divisible by 3.

353. Prove that (𝑥 + 𝑦)𝑛 − 𝑥𝑛 − 𝑦𝑛 is divisible by 𝑥𝑦(𝑥 + 𝑦)(𝑥2 + 𝑥𝑦 + 𝑦2)2 if 𝑛, when
divided by 6 has a remainder of 1.

354. Prove that the polynomial (cos 𝜃 + 𝑥 sin 𝜃)𝑛 − cos 𝑛𝜃 − 𝑥 sin 𝑛𝜃 is divisible by 𝑥2 + 1.

355. Prove that the polynomial 𝑥𝑛 sin 𝜃 − 𝑝𝑛−1𝑥 sin 𝑛𝜃 + 𝑝𝑛 sin(𝑛 − 1)𝜃 is divisible by
𝑥2 − 2𝑝𝑥 cos 𝜃 + 𝑝2.

356. Find out for what values of 𝑝 and 𝑞 the binomial 𝑥4 + 1 is divisible by 𝑥2 + 𝑝𝑥 + 𝑞.

357. Find the sum of the 𝑝th(𝑝 ∈ ℙ) power of the roots of the equation 𝑥𝑛 = 1.

358. Let 𝜖 = cos 2𝜋⁄𝑛 + 𝑖 sin 2𝜋⁄
𝑛 , ∀ 𝑛 ∈ 𝑃 , and let 𝐴𝑘 = 𝑥 + 𝑦𝜖𝑘 + 𝑧𝜖2𝑘 + ⋯ + 𝑤𝜖(𝑛−1)𝑘, (𝑘 =

0, 1, 2, … , 𝑛 − 1) where 𝑥, 𝑦, 𝑧, … , 𝑤 are 𝑛 arbitrary complex numbers. Prove that

𝑛−1
∑
𝑘=0

|𝐴𝑘|2 = 𝑛(|𝑥|2 + |𝑦|2 + …+ |𝑤|2)

359. Prove the identity 𝑥2𝑛 − 1 = (𝑥2 − 1)
𝑛−1
∏
𝑘=1

(𝑥2 − 2𝑥 cos 𝑘𝜋⁄𝑛 + 1).

360. Prove the identity 𝑥2𝑛+1 − 1 = (𝑥 − 1)
𝑛
∏
𝑘=1

(𝑥2 − 2𝑥 cos 2𝑘𝜋
⁄

2𝑛+1 + 1).

361. Prove the identity 𝑥2𝑛+1 + 1 = (𝑥 + 1)
𝑛
∏
𝑘=1

(𝑥2 + 2𝑥 cos 2𝑘𝜋
⁄

2𝑛+1 + 1).

362. Prove the identity 𝑥2𝑛 + 1 =
𝑛−1
∏
𝑘=0

(𝑥2 − 2𝑥 cos (2𝑘+1)𝜋⁄2𝑛 + 1).
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363. If 𝑛 is even, then prove the identity sin 𝜋⁄
2𝑛 sin

2𝜋⁄
2𝑛… sin (𝑛−1)𝜋⁄2𝑛 = √

𝑛
⁄

2𝑛−1.

364. If 𝑛 is even, then prove the identity cos 2𝜋
⁄

2𝑛+1 cos
4𝜋
⁄

2𝑛+1… cos 2𝑛𝜋
⁄

2𝑛+1 =
(−1)𝑛/2⁄

2𝑛 .

365. Prove that if cos 𝛼 + 𝑖 sin 𝛼 is the solution of the equation 𝑥𝑛 + 𝑝1𝑥𝑛−1 + ⋯+ 𝑝𝑛 = 0,
then 𝑝1 sin 𝛼 + 𝑝2 sin 2𝛼 + ⋯+ 𝑝𝑛 sin 𝑛𝛼 = 0(𝑝1, 𝑝2, … , 𝑝𝑛 are real).

366. Prove the identity 3√

cos 2𝜋⁄7 + 3√

cos 4𝜋⁄7 + 3√

cos 8𝜋⁄7 = 3√

1
⁄

2 (5 − 3 3√

7).

367. Prove the identity 3√

cos 2𝜋⁄9 + 3√

cos 4𝜋⁄9 + 3√

cos 8𝜋⁄9 = 3√

1
⁄

2 (3
3√


9 − 6).

368. Let 𝐴 = 𝑥1 + 𝑥2𝜔 + 𝑥3𝜔2, 𝐵 = 𝑥1 + 𝑥2𝜔2 + 𝑥3𝜔, where 𝜔, 𝜔2 are complex roots of
unity and 𝑥1, 𝑥2, 𝑥3 are roots of the cubic equation 𝑥3 + 𝑝𝑥 + 𝑞 = 0. Prove that 𝐴3

and 𝐵3 are the roots of the quadratic equation 𝑥2 + 27𝑞𝑥 − 27𝑝3 = 0.

369. Solve the equation (5𝑥
4+10𝑥2+1)(5𝑎4+10𝑎2+1)⁄

(𝑥4+10𝑥2+1)(𝑎4+10𝑎2+5) = 𝑎𝑥.

370. Find the magnitude of the sum 𝑆 = 𝐶𝑛
1 − 3𝐶𝑛

3 + 32𝐶𝑛
5 − 33𝐶𝑛

7 + ⋯.

371. Find the magnitude of the follwing sums:

𝜎 = 1 − 𝐶𝑛
2 + 𝐶𝑛

4 − 𝐶𝑛
6 + ⋯

𝜎′ = 𝐶𝑛
1 − 𝐶𝑛

3 + 𝐶𝑛
5 − 𝐶𝑛

7 + ⋯
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Chapter 4
Polynomials and Theory of Equations

4.1 Polynomial Functions
A function of the form 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 is callled a polynomial
function where 𝑎𝑖 ∈ ℂ, where 𝑖 = 0, 1, 2, … , 𝑛 i.e. 𝑖 ≥ 0 and 𝑖 ∈ 𝕀. Since 𝑎𝑖 ∈ ℂ, it is evident
that 𝑎𝑖 ∈ ℝ because ℝ ⊂ ℂ. This equation will be called an equation of degree 𝑛 if and only
if 𝑎𝑛 ≠ 0. 𝑎𝑛 is called leading coefficient of the polynomial. If the leading coefficient is 1
then the polynomial is also callled monic polynomial. A polynomial with one term is called
monomial, with two terms, a binomial and with three terms it is called a trinomial. The
most useful trinomials are quadratic equations, which we will study further in this chapter. If
𝑓(𝑥) = 𝑎0, then it is called a constant polynomial. If 𝑛 = 0 implies 𝑓(𝑥) = 𝑎0, which will be
a polynomial of degree 0. If 𝑓(𝑥) = 0, then it is callled zero polynomial, in this case the
degree is defined as −∞ to satisfy the first two properties given below. We take domain and
range of these polynimoials or functions as set of complex numbers, ℂ. A real number 𝑟
or a complex number 𝑧, for which 𝑓(𝑟) = 0 or 𝑓(𝑧) = 0, then 𝑟 and 𝑧 are called zeros, roots
or solutions of the polynomial.

If 𝑓(𝑥) is a polynomial of degree 𝑝, and 𝑔(𝑥) is a polynomial of degree 𝑞, then

1. 𝑓(𝑥)± 𝑔(𝑥) is a polymnoial of degree max(𝑝, 𝑞),

2. 𝑓(𝑥) .𝑔(𝑥) is a polynomial of degree 𝑝 + 𝑞, and

3. 𝑓(𝑔(𝑥)) is a polynomial of degree 𝑝.𝑞, where 𝑔(𝑥) is not a constant polynomial.

The 𝑓(𝑥) shown at the beginning is a polynomial in one variable, and similarly, we can have
polynomials in 2, 3, … , 𝑚 variables. The domain of such a polynomial of 𝑚 variables is set of
ordered 𝑚 tuple of complex numbers and range is ℂ.

4.2 Division of Polynomials
If 𝑃 (𝑥) and 𝐷(𝑥) are any two polynomials such that 𝐷(𝑥) ≢ 0, then two unique polynomilas
𝑄(𝑥) and 𝑅(𝑥) can be found such that 𝑃 (𝑥) = 𝐷(𝑥) .𝑄(𝑥)+ 𝑅(𝑥). Here, the degree of
𝑅(𝑥) would be less than the degree of 𝐷(𝑥) or 𝑅(𝑥) ≡ 0. Like numbers 𝑄(𝑥) denotes the
quotient, and is called so, while 𝑅(𝑥) is called the remainder.

Particulalrly, if 𝑃 (𝑥) is a polynomial with complex coefficients and 𝑧 is a complex number, then
a polynomial 𝑄(𝑥) of degree 1 less than 𝑃 (𝑥) will exist such that 𝑃 (𝑥) = (𝑥− 𝑧)𝑄(𝑥)+𝑅,
where 𝑅 is a complex number.

4.3 Remainder Theorem
Theorem 1

If 𝑓(𝑥), a polynomial, is divided by (𝑥 − 𝛼), then the remainder is 𝑓(𝛼).
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Proof

𝑓(𝑥) = (𝑥 − 𝛼)𝑄(𝑥)+𝑅 ⇒ 𝑓(𝛼) = (𝛼 − 𝛼)𝑄(𝑥)+𝑅 ⇒ 𝑅 = 𝑓(𝛼). □

4.4 Factor Theorem
Theorem 2

𝑓(𝑥) has a factor (𝑥 − 𝛼), if and only if, 𝑓(𝛼) = 0

Proof

Following from remainder theorem, described above, if 𝑅 = 𝑓(𝛼) = 0, then 𝑓(𝛼) = (𝑥 −
𝛼)𝑄(𝑥), and thus, 𝑓(𝑥) has a factor (𝑥 − 𝛼). □

4.5 Fundamental Theorem of Algebra
Every polynomial of degree greater or equal than one has at least one root/solution/zero in
the complex numbers. We can also say that for 𝑓(𝑥) introduced in the beginning with 𝑛 ≥ 1,
then there exists a 𝑧 ∈ ℂ, such that

𝑓(𝑧) = 𝑎𝑛𝑧𝑛 + 𝑎𝑛−1𝑧𝑛−1 + ⋯+ 𝑎1𝑧 + 𝑎0 = 0.

Now it is trivial to deduce that an 𝑛th degree polynomial will have exactly 𝑛 roots i.e.
𝑓(𝑥) = 𝑎(𝑥 − 𝛼1)(𝑥 − 𝛼2)⋯ (𝑥 − 𝛼𝑛−1)(𝑥 − 𝛼𝑛).

Notes:

1. Some of the roots of the polynomial may have repetition.

2. If a root 𝛼 repeats 𝑚 times, then 𝑚 is called multiplicity of the root 𝛼 or 𝛼 is called 𝑚
fold root.

3. Quadratic surds of the form √


𝑎 +√

𝑏, where √


𝑎 and √

𝑏 are irrational numbers, then it

will have its conjugate as a root. Similarly, if a complex root occurs, then it always
occurs in pair with its complex conjugate as another root of the polynomial. However, if
the coefficients are complex numbers then it is not mandatory for complex roots to
appear in conjugate pairs.

4.6 Identity Theorem
Theorem 3

If 𝑓(𝑥), a polynomial of degree 𝑛, vanishes for at least 𝑛 + 1 distinct values of 𝑥, then it is
identically 0.

Proof

We have 𝑓(𝑥) = 𝑎(𝑥 − 𝛼1)(𝑥 − 𝛼2)⋯ (𝑥 − 𝛼𝑛−1)(𝑥 − 𝛼𝑛), and we let that it vanishes
for 𝛼𝑛+1, then
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𝑓(𝑥) = 𝑎(𝛼𝑛+1 − 𝛼1) (𝛼𝑛+1 − 𝛼2)⋯ (𝛼𝑛+1 − 𝛼𝑛−1) (𝛼𝑛+1 − 𝛼𝑛) = 0

Because 𝛼𝑛+1 is different from 𝛼1, 𝛼2, … , 𝛼𝑛−1, 𝛼𝑛 none of the terms will vanish, which
implies that 𝑎 = 0 ⇒ 𝑓(𝑥) = 0. □

Corollary 1

Consider two poynomials 𝑓(𝑥) and 𝑔(𝑥) having degrees 𝑝 and 𝑞 respectively, such that 𝑝 ≤ 𝑞.
If both of them have equal value for 𝑞 + 1 distinct values of 𝑥, then they must be equal.

Proof

Let ℎ(𝑥) = 𝑓(𝑥)− 𝑔(𝑥). This implies that the degree of ℎ(𝑥) is at most 𝑞 and it vanishes
for 𝑞 + 1 distinct values of 𝑥. ⇒ ℎ(𝑥) = 𝑓(𝑥)− 𝑔(𝑥) = 0 ⇒ 𝑓(𝑥) = 𝑔(𝑥). □

Corollary 2

If 𝑓(𝑥) is a periodic polynomial with some constant period 𝑇 i.e. 𝑓(𝑥) = 𝑓(𝑥 + 𝑇 ) ∀ 𝑥 ∈ ℝ,
then 𝑓(𝑥) = 𝑐.

Proof

Let 𝑓(0) = 𝑥, then 𝑓(0) = 𝑓(𝑇 ) = 𝑓(2𝑇 ) = ⋯ = 𝑐. Thus, polynomials 𝑓(𝑥) and 𝑔(𝑥) = 𝑐
take same values for infinite number of points. Hence, they must be identical. □

4.7 Rational Root Theorem
Theorem 4

If 𝑝, 𝑞 ∈ ℤ, 𝑞 ≠ 0 such that they are relatively prime i.e. 𝑔𝑐𝑑(𝑝, 𝑞) = 1, then if 𝑝⁄𝑞 is a root
of the equation 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = 0, where 𝑎0, 𝑎1, … , 𝑎𝑛−1, 𝑎𝑛 ∈ 𝕀 and
𝑎𝑛 = 0, then 𝑝 is a divisor of 𝑎0 and 𝑞 that of 𝑎𝑛.

Proof

Since 𝑝⁄𝑞 is a root, we have

𝑎𝑛(
𝑝
⁄

𝑞)
𝑛
+ 𝑎𝑛−1(

𝑝
⁄

𝑞)
𝑛−1

+ ⋯+ 𝑎1
𝑝
⁄

𝑞 + 𝑎0 = 0

⇒ 𝑎𝑛𝑝𝑛 + 𝑎𝑛−1𝑝𝑛−1𝑞 + ⋯ + 𝑎1𝑞𝑛−1𝑝 + 𝑎0𝑞𝑛 = 0

⇒ 𝑎𝑛−1𝑝𝑛−1 + 𝑎𝑛−1𝑝𝑛−2𝑞 + ⋯ + 𝑎1𝑝𝑞𝑛−2 + 𝑎0𝑞𝑛−1 = −𝑎𝑛 𝑝𝑛⁄
𝑞

Everything on L.H.S. is integer and 𝑝, 𝑞 are relatively prime therefore 𝑞 must divide 𝑎𝑛.
Similalry, it can be proven that 𝑎0 is divisible by 𝑞. □

Corollary 3 (Integer Root Theorem)

If roots of 𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = 0, where 0 ≤ 𝑖 ≤ 𝑛 − 1 are integers and
coefficients are also integer, are integer then all the roots divide 𝑎0.
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Proof

This corollary is a direct result from previous corollary. □

4.8 Vieta's Relations
If 𝛼1, 𝛼2, … , 𝛼𝑛 are 𝑛 roots of the equation 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = 0,

then 
𝑛
∑
𝑖=0

𝛼𝑖 = −𝑎𝑛−1
⁄

𝑎𝑛
, ∑
1≤𝑖≤𝑗≤𝑛

𝛼𝑖𝛼𝑗 =
𝑎𝑛−2
⁄

𝑎𝑛
, ∑
1≤𝑖≤𝑗≤𝑘≤𝑛

𝛼𝑖𝛼𝑗𝛼𝑛 = −𝑎𝑛−3
⁄

𝑎𝑛
, ⋯ , 𝛼1𝛼2 …𝛼𝑛 =

(−1)𝑛 𝑎0
⁄

𝑎𝑛
.

These relations are denoted as 𝜎1, 𝜎2, … , 𝜎𝑛 as well. These relations are known as Vieta's
relations.

4.9 Symmetric Functions
Consider functions 𝑎 + 𝑏 + 𝑐, 𝑎2 + 𝑏2 + 𝑐2, (𝑎 − 𝑏)2 + (𝑏 − 𝑐)2 + (𝑐 − 𝑎)2 , and (𝑎 + 𝑏)(𝑏 +
𝑐)(𝑐 + 𝑎) in which the terms can be interchanged without changing the overall function.
Functions demonstrating such behavior are known as symmetric functions.

In general, if a function is of 𝑛 variables then this definition warrants that any two variable
can be interchanged without changing the function. Thus, we see that Vieta's relations
are symmetric functions.

4.10 Common Roots of Polynomial Equations
If 𝛼 is a common root of the polynomial equations 𝑓(𝑥) = 0 and 𝑔(𝑥) = 0, if and only if, it
is a root of the HCF of the polynomilas 𝑓(𝑥) and 𝑔(𝑥). The HCF of two polynomials can be
found exactly like HCF of two integers using Euclid's method.

4.11 Irreducabilty of Polynomials
When we talk of irreducability we talk in terms of set to which the coefficients of the
polynomial belong. The set could be ℚ, ℤ, ℝ or ℂ.

An irreducible polynomial is, a non-constant polynomial which cannot have non-constant
factors in the same set as coefficients of the polynomial itself.

Consider following example:

1. 𝑥2 − 5𝑥 + 6 = (𝑥 − 2)(𝑥 − 3)

2. 𝑥2 − 4
⁄

9 = (𝑥 − 2
⁄

3)(𝑥 +
2
⁄

3)
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3. 𝑥2 − 5 = (𝑥 −√


5)(𝑥 +√


5)

4. 𝑥2 + 9 = (𝑥 + 3𝑖)(𝑥 − 3𝑖)

Over 𝕀, first is reducible while other are irreducible, over ℚ first two are reducible bit last two
are not, over ℝ, first three are reducible but last one is not and over ℂ all are reducible.

4.11.1 Gausss' Lemma
If a polynomial with integer coefficients is reducible over ℚ, then it is reducible over ℤ.

4.12 Eisenstein's Irreducibility Criterion Theorem
Theorem 5

Consider the polynomial 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯+ 𝑎1𝑥 + 𝑎0 with integer coefficients.
If there exists a prime 𝑝 such that the following three conditions apply

1. 𝑝 divides each 𝑎𝑖 for 0 ≤ 𝑖 < 𝑛,

2. 𝑝 does not divide 𝑎𝑛, and

3. 𝑝2 does not divide 𝑎0,

then 𝑓(𝑥) is irreducible over rational numbers and integers.

Proof

If possible, let us assume that 𝑓(𝑥) = 𝑔(𝑥) .ℎ(𝑥) such that 𝑔(𝑥) = 𝑏𝑘𝑥𝑘 + 𝑏𝑘−1𝑥𝑘−1 + ⋯+
𝑏1𝑥 + 𝑏0 and ℎ(𝑥) = 𝑐𝑙𝑥𝑙 + 𝑐𝑙−1𝑥𝑙−1 + ⋯ + 𝑐1 + 𝑐0, where 𝑏𝑖, 𝑐𝑖 ∈ ℤ ∀ 𝑖 = 0, 1, 2, … ; 𝑏𝑘 ≠
, 𝑐𝑙 ≠ 0; 1 ≤ 𝑘, 𝑙 ≤ 𝑛 − 1.

Comparing leading coefficient on both sides, we have 𝑎𝑛 = 𝑏𝑘𝑐𝑙. As 𝑝 ∤ 𝑎𝑛 ⇒ 𝑝 ∤ 𝑏𝑘𝑐𝑙 ⇒ 𝑝 ∤ 𝑏𝑘
and 𝑝 ∤ 𝑐𝑙.

Similarly, 𝑎0 = 𝑏0𝑐0. As 𝑝|𝑎0 and 𝑝2 ∤ 𝑎0 ⇒ 𝑝|𝑏0𝑐0, but both 𝑏0 and 𝑐0 cannot be divided by 𝑝.
Without loss of generality, we suppose 𝑝|𝑏0 and 𝑝 ∤ 𝑐0. Suppose 𝑖 be the smallest index such
that 𝑏𝑖 is not divisible by 𝑝. There is such an index 𝑖 since 𝑝 ∤ 𝑏𝑘, where 1 ≤ 𝑖 ≤ 𝑘. Depending on
𝑖 and 𝑘, for 𝑖 ≤ 𝑘, 𝑎𝑖 = 𝑏𝑖𝑐0+ 𝑏𝑖−1𝑐1+⋯+𝑏0𝑐𝑖 and for 𝑖 > 𝑘, 𝑎𝑖 = 𝑏𝑖𝑐0+ 𝑏𝑖−1𝑐1+⋯+𝑏𝑖−𝑘𝑐𝑘.

We have 𝑝|𝑎𝑖 and by supposition 𝑝 divides each one of 𝑏0, 𝑏1, … , 𝑏𝑖−1 ⇒ 𝑝|𝑏𝑖𝑐0. But
𝑝 ∤ 𝑐0 ⇒ 𝑝|𝑏𝑖, which is a contradiction, and therefore, 𝑓(𝑥) is irreducible. □

4.13 Extended Eisenstein's Irreducibility Criterion Theo
rem

Theorem 6

Let 𝑓(𝑥) = 𝑎𝑛𝑥𝑛+𝑎𝑛−1𝑥𝑛−1+⋯+𝑎1𝑥+𝑎0 be a polynomial with integer coefficient. If there
exists a prime number 𝑝 and an integer 𝑘 ∈ {0,1,2,… ,𝑛−1} such that 𝑝 ∣ 𝑎0,𝑎1,… ,𝑎𝑘; 𝑝 ∤ 𝑎𝑘+1
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and 𝑝2 ∤ 𝑎0, then 𝑓(𝑥) has an irreducible factor of degree at least 𝑘 + 1. In particular if 𝑝
can be taken so that 𝑘 = 𝑛 − 1, then 𝑓(𝑥) is irreducible.

Proof

Suppose that 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥) such that

𝑔(𝑥) = 𝑏𝑘𝑥𝑘 + 𝑏𝑘−1𝑥𝑘−1 + ⋯+ 𝑏1𝑥 + 𝑏0

ℎ(𝑥) = 𝑐𝑟𝑥𝑟 + 𝑐𝑟−1𝑥𝑟−1 + ⋯+ 𝑐1𝑥 + 𝑐0

where 𝑏𝑖, 𝑐𝑖 ∈ ℤ ∀ 𝑖 = 0, 1, 2, … ; 𝑏𝑘 ≠ 0, 𝑐𝑟 ≠ 0; 1 ≤ 𝑚, 𝑟 ≤ 𝑛 − 1.

Since 𝑎0 = 𝑏0𝑐0 is divisible by 𝑝 and not by 𝑝2, exactly one of 𝑏0, 𝑐0 is a multiple of 𝑝.
Without loss of generality assume that 𝑝 ∣ 𝑏0 and 𝑝 ∤ 𝑐0.

Now 𝑝 ∣ 𝑎1 = 𝑏0𝑐1 + 𝑏1𝑐0 ⇒ 𝑝 ∣ 𝑏1𝑐0 ⇒ 𝑝 ∣ 𝑏1.

Simmilarly, 𝑝 ∣ 𝑎2 = 𝑏0𝑐2 + 𝑏1𝑐2 + 𝑏2𝑐0 ⇒ 𝑝 ∣ 𝑏2𝑐0 ⇒ 𝑝 ∣ 𝑏2 and so on.

We conclude that all coefficients 𝑏0, 𝑏1,… , 𝑏𝑘 are divisible by 𝑝. Now, 𝑎𝑘+1 = 𝑏𝑘𝑐1+ 𝑏𝑘−1𝑐2+
𝑏𝑘−2𝑐2 + … ⇒ 𝑝 ∤ 𝑎𝑘+1. It follows that degree of 𝑔 ≥ 𝑘 + 1. □

4.14 Quadratic Equations
An equation of the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, where 𝑎, 𝑏, 𝑐 ∈ ℂ, the set of complex numbers,
is called a quadratic equation. The numbers 𝑎, 𝑏, 𝑐 are called coefficients of the equation. The
quantity 𝑏2 − 4𝑎𝑐 is called the discriminant of the equation. It is represented by 𝐷 or Δ. A
quadratic equation represents a parabola geometrically.

Examples:

1. 4𝑥2 + 4𝑥 + 1 = 0, 𝑎 = 4, 𝑏 = 4, 𝑐 = 1.

2. 7𝑥3 + 10 = 0 is not a quadratic equation because the power of 𝑥 is greater than 2.

3. 3𝑥2 − 2𝑥1/2 + 7 = 0 is not a quadratic equation is not a quaadratic equation because
the power of 𝑥 in the second term is not 1.

4. 2𝑥2 − 4 = 0, 𝑎 = 2, 𝑏 = 0, 𝑐 = −4.

A quadratic equation is called incomplete if one of 𝑏 or 𝑐 is zero. Thus, the last example
above represents an incomplete quadratic equation.

An expression of the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 is called a quadratic expression while other elements
are same as a quadratic equation.

If two expression in 𝑥 are equal for all values of 𝑥 then this statement of equality between
the two expression is called an identity.
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𝑓(𝑥) = 0 is said to be an identity in 𝑥 if it is satisfied by all values of 𝑥 in the domain of
𝑓(𝑥). Thus, an identity in 𝑥 is satisfied by all values of 𝑥 while an equation is satisfied for
particular values of 𝑥.

Example: (𝑥 + 1)2 = 𝑥2 + 2𝑥 + 1 is an identity in 𝑥.

Two equations are called identical equations if they have same roots.

Example: 𝑥2 − 5𝑥 + 4 = 0 and 2𝑥2 − 10𝑥 + 8 = 0 are identical equations because both have
same roots 1 and 4.

Note:

1. Two equations in 𝑥 are identical if and only if the coefficients of similar power of 𝑥 in
the two equations are proportional. Thus, if 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 and 𝑎1𝑥2 + 𝑏1𝑥 + 𝑐1 = 0
are identical equations, then 𝑎⁄𝑎1 =

𝑏
⁄

𝑏1 =
𝑐⁄
𝑐1

2. An equation remains unchanged if it is multiplied or divided by non-zero number.

An expression of the form 𝑎0𝑥𝑛+𝑎1𝑥𝑛−1+𝑎2𝑥𝑛−2+…+𝑎𝑛−1𝑥+𝑎0, where 𝑎0, 𝑎1, 𝑎2,… , 𝑎𝑛
are constants (𝑎0 ≠ 0) and 𝑛 is a positive integer is called a polynomial in 𝑥 of degree 𝑛.

As a special case a constant is also called a polynomial of degree zero.

4.15 Rational Expression and Rational Function
An expression of the form 𝑃 (𝑥)⁄𝑄(𝑥), where 𝑃 (𝑥) and 𝑄(𝑥) are polynomials in 𝑥, is called a
rational expression.

In the particular case, when 𝑄(𝑥) is a non-zero constant, 𝑃 (𝑥)⁄𝑄(𝑥) reduces to a polynomial.Thus,
every polynomial is a rational expression but the converse is not true.

Examples:

1. 𝑥2−5𝑥+4⁄
𝑥−2

2. 1⁄
𝑥−7

4.16 Roots of a Quadratic Equation
The values 𝑥 for which the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 are satisfied are called roots of the
equation. They are also called roots of the quadratic expression 𝑎𝑥2 + 𝑏𝑥 + 𝑐

Every quadratic equation has at most two roots. Let 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, where 𝑎 ≠ 0

Multiplying both sides of the equation with 𝑎

𝑎2𝑥2 + 𝑎𝑏𝑥 + 𝑎𝑐 = 0 ⇒ (𝑎𝑥)2 + 2.𝑎𝑥. 𝑏⁄2 +
𝑏2
⁄

4 + 𝑎𝑐 − 𝑏2
⁄

4 = 0
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(𝑎𝑥 + 𝑏
⁄

2)
2
= 𝑏2−4𝑎𝑐⁄

4 ⇒ 𝑥 = −𝑏±√

𝑏2−4𝑎𝑐⁄
2𝑎

These are two roots of the quadratic equation. Let us suppose the above quadratic equation
has three roots 𝛼, 𝛽 and 𝛾. These roots will satisfy the above equation. Thus,

𝑎𝛼2 + 𝑏𝛼 + 𝑐 = 0, 𝑎𝛽2 + 𝑏𝛽 + 𝑐 = 0, 𝑎𝛾2 + 𝑏𝛾 + 𝑐 = 0

Subtracting the first two, we get (𝛼 − 𝛽)[𝑎(𝛼 + 𝛽)+ 𝑏] = 0

∵𝛼 ≠ 𝛽 ∴ 𝑎(𝛼 + 𝛽)+ 𝑏 = 0

Similarly, 𝑎(𝛼 + 𝛾)+ 𝑏 = 0

Subtracting these two, we get 𝑎(𝛼 − 𝛾) = 0

∵ 𝑎 ≠ 0 ∴𝛼 = 𝛾

Thus, a quadratic equation has at most two roots.

4.17 Sum and Product of the Roots
From the two obtained we observe that 𝛼 + 𝛽 = − 𝑏

⁄

𝑎 and 𝛼𝛽 = 𝑐
⁄

𝑎

4.18 Nature of Roots
For equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 when 𝑎,𝑏,𝑐 are real.

1. When 𝐷 < 0

In this case, both roots will be either imaginary or complex numbers depending on
whether 𝑏 is zero or not. These roots are conjugate of each other.

2. When 𝐷 = 0

In this case, both roots will be equal.

3. When 𝐷 > 0

In this case, both roots will be equal and unqual. If 𝐷 is not a perfect square then roots
are irrational and come as a pair of conjugate irrational numbers.

4. When 𝐷 is a perfect square and 𝑎, 𝑏, 𝑐 are rationals.

In this case, both roots are real and unequal.

4.18.1 Conjugate Roots
Imaginary/complex roots of a quadratic equation with real coefficients always occur in
conjugate pair.
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Let 𝛼 + 𝑖𝛽 be a root of the quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, where 𝑎, 𝑏, 𝑐 are real
numbers. Thus,

𝑎(𝛼 + 𝑖𝛽)2 + 𝑏(𝛼 + 𝑖𝛽)+ 𝑐 = 0

⇒ (𝑎𝛼2 − 𝑎𝛽2 + 𝑏𝛼 + 𝑐)+ (2𝑎𝛼𝛽 + 𝑏𝛽) 𝑖 = 0

Equating real and imaginary parts

𝑎𝛼2 − 𝑎𝛽2 + 𝑏𝛼 + 𝑐 = 0, 2𝑎𝛼𝛽 + 𝑏𝛽 = 0

Using 𝛼 − 𝑖𝛽 as the second root of the equation

𝑎(𝛼 − 𝑖𝛽)2 + 𝑏(𝛼 − 𝑖𝛽)+ 𝑐 = (𝑎𝛼2 − 𝑎𝛽62 + 𝑏𝛼 + 𝑐)+ (2𝑎𝛼𝛽 + 𝑏𝛽) 𝑖

= 0 + 𝑖.0

Thus, we see that 𝛼 − 𝑖𝛽 also satisfied the equation and is second root of the equation.
Similarly, if the roots are irrational they also appear as conjugate pair.

4.19 Quadratic Expression and its Graph
Let 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, where 𝑎, 𝑏, 𝑐 ∈ ℝ and 𝑎 ≠ 0.

𝑓(𝑥) = 𝑎[(𝑥 + 𝑏⁄
2𝑎)

2
+ 4𝑎𝑐 − 𝑏2⁄

4𝑎2
] (4.1)

4.19.1 When a Quadratic Equation is Always Positive/Negative
It follows from Eq. 4.1, that 𝑓(𝑥) > 0(< 0) ∀ 𝑥 ∈ ℝ if and only if 𝑎 > 0(< 0) and
𝐷 = 𝑏2 − 4𝑎𝑐 < 0. See Figure 4.1(Figure 4.2). Also, it follows from eq:1 that 𝑓(𝑥) ≥
0(≤ 0) ∀ 𝑥 ∈ ℝ if and only if 𝑎 > 0(< 0) and 𝐷 = 𝑏2 − 4𝑎𝑐 = 0. in this case 𝑓(𝑥) < 0(< 0)
for each 𝑥 ∈ 𝑅, 𝑥 ≠ −𝑏/2𝑎, and the graph of 𝑦 = 𝑓(𝑥) touches the 𝑥-axis at 𝑥 = −𝑏/2𝑎.

y

x
O

D = b2 − 4ac < 0
a > 0

f(x) > 0 ∀ x ∈ R

A(−b/2a, (4ac− b2)/4a)

-b/2a

Figure 4.1 When quadratic equation is always positive
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y

x
O

D = b2 − 4ac < 0
a < 0

f(x) < 0 ∀ x ∈ R

A(−b/2a, (4ac− b2)/4a)

-b/2a

Figure 4.2 When quadratic equation is always negative

4.20 Sign of a Quadratic Equation
If 𝐷 = 𝑏2 − 4𝑎𝑐 > 0, then eq. Equation 4.1 can be written as

𝑓(𝑥) = 𝑎[(𝑥 + 𝑏⁄
2𝑎)

2
−(

√

𝑏2 − 4𝑎𝑐⁄
2𝑎 )

2

]
= 𝑎[(𝑥 + 𝑏 +√

𝑏2 − 4𝑎𝑐⁄
2𝑎 )(𝑥 + 𝑏 −√

𝑏2 − 4𝑎𝑐⁄
2𝑎 )]

= 𝑎(𝑥 − 𝛼) (𝑥 − 𝛽)

If 𝐷 = 𝑏2 − 4𝑎𝑐 > 0 and 𝑎 > 0, then (See Figure 4.3)

𝑓(𝑥) = {
> 0 for 𝑥 < 𝛼 or 𝑥 > 𝛽
> 0 for 𝛼 < 𝑥 < 𝛽 = 0 for 𝑥 = 𝛼,𝛽
y

x
O

D = b2 − 4ac > 0
a > 0

y = f(x)

A(−b/2a, (4ac− b2)/4a)

-b/2a

Figure 4.3 When 𝐷 > 0 and 𝑎 > 0
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If 𝐷 = 𝑏2 − 4𝑎𝑐 > 0 and 𝑎 < 0, then (See Figure 4.4)

𝑓(𝑥) = { < 0 for 𝑥 < 𝛼 or 𝑥 > 𝛽 > 0 for 𝛼 < 𝑥 < 𝛽 = 0 for 𝑥 = 𝛼,𝛽

Note that if 𝑎 > 0, then 𝑓(𝑥) attains the least value at 𝑥 = −𝑏/2𝑎, a value which is achieved
by differentiating the function once and at this point the tangent to parabola has slope 0.
The least value is given by

𝑓(− 𝑏⁄
2𝑎) = 4𝑎𝑐 − 𝑏2⁄

4𝑎

If 𝑎 < 0, then 𝑓(𝑥) is maximum at value 𝑥 = − 𝑏⁄
2𝑎 and value of function has the same formula

which is for least value shown above.

y

x
O

D = b2 − 4ac > 0
a < 0 y = f(x)

A(−b/2a, (4ac− b2)/4a)

-b/2a

Figure 4.4 When 𝐷 > 0 and 𝑎 < 0

4.21 Position of Roots
Conditions for both roots to be more than a real number 𝑘

Form the Fig. Figure 4.5, we note that both the roots are more than 𝑘 if and only if
𝐷 > 0, 𝑘 < − 𝑏⁄

2𝑎 and 𝑓(𝑘) > 0.

In case 𝑎 < 0, from Fig. Figure 4.6, both the roots are more than 𝑘 if and only if 𝐷> 0, 𝑘 < − 𝑏⁄
2𝑎

and 𝑓(𝑘) < 0.

Combining the above two equations, we get the condition for the roots to be more than
a real number 𝑘 if and only if 𝐷 > 0, 𝑘 < − 𝑏⁄

2𝑎 and 𝑎𝑓(𝑘) > 0. Similarly, condition for the

roots to be more than a real number 𝑘 if and only if 𝐷 > 0, 𝑘 > − 𝑏⁄
2𝑎 and 𝑎𝑓(𝑘) > 0.

Conditions for a real number 𝑘 to lie between two roots

Similarly, the real number 𝑘 lies between the roots of the quadratic equation if and only if 𝑎 and
𝑓(𝑘) are of opposite signs, i.e. if and only if 𝑎 > 0, 𝐷 > 0, 𝑓(𝑘) < 0 or 𝑎 < 0, 𝐷 > 0, 𝑓(𝑘) > 0.
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x

D = b2 − 4ac > 0
a > 0

y = f(x)

A(−b/2a, (4ac− b2)/4a)

−b/2a
α βk

f(k)

Figure 4.5 When 𝐷 > 0 and 𝑎 > 0

x

D = b2 − 4ac > 0
a < 0

y = f(x)

A(−b/2a, (4ac− b2)/4a)

−b/2a

α βk

f(k)

Figure 4.6 When 𝐷 > 0 and 𝑎 < 0

Combining these two, we get 𝐷 > 0, 𝑎𝑓(𝑘) < 0 as the condition for 𝑘 to lie between two
roots.

Conditions for exactly one root to lie in between (𝑘1, 𝑘2) where 𝑘1 < 𝑘2

If 𝑎 > 0, then exactly one root lies in the interval (𝑘1, 𝑘2) if and only if 𝑓(𝑘1) > 0 and
𝑓(𝑘2) < 0. Also, same is true if anad only if 𝑓(𝑘1) < 0 and 𝑓(𝑘2) > 0. Combining these two
we get 𝑓(𝑘1)𝑓(𝑘2) < 0. This condition is also true if 𝑎 < 0.
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Conditions for both roots to lie in between (𝑘1, 𝑘2) where 𝑘1 < 𝑘2

If 𝑎 > 0, both the roots will lies in the interval (𝑘1, 𝑘2) if and only if 𝐷 > 0, 𝑘1 < − 𝑏⁄
2𝑎 <

𝑘2, 𝑓(𝑘1) > 0 and 𝑓(𝑘1) > 0. In case 𝑎 < 0, the conditions are 𝐷> 0, 𝑘1 < − 𝑏⁄
2𝑎 < 𝑘2, 𝑓(𝑘1) <

0 and 𝑓(𝑘1) < 0.

Conditions for the quadratic equation to have repeated roots

The quadratic equation 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, 𝑎 ≠ 0 has a repeated root if and only if
𝑓(𝛼) = 𝑓′(𝛼) = 0, where 𝛼 is the repeated root. In this case, 𝑓(𝑥) = 𝑎(𝑥 − 𝛼)2, In fact,
𝛼 = −𝑏/2𝑎. Geometrically, the 𝑥-axis will be a tangent to the parabola at 𝑥 = −𝑏/2𝑎. See
Figure 4.7 and Fig. Figure 4.8.

x

f(x) = a(x− α)2

a > 0

−b/2a

α

Figure 4.7 𝑓(𝛼) = 0, 𝑓′(𝛼) = 0

x

f(x) = a(x− α)2

a < 0

−b/2a

α

Figure 4.8 𝑓(𝛼) = 0, 𝑓′(𝛼) = 0

bf Conditions for two quadratic equations to have one common root

Consider two quadratic equations 𝑎𝑥2+ 𝑏𝑥+𝑐 = 0 and 𝑎′𝑥2+ 𝑏′𝑥2+ 𝑐′ = 0 having a common
root 𝛼. Clearly, this common root will satisfy both the equations, i.e. 𝑎𝛼2 + 𝑏𝛼 + 𝑐 = 0 and
𝑎′𝛼2 + 𝑏′𝛼 + 𝑐′ = 0.

Solving these two equations, we get

𝛼2⁄
𝑏𝑐′ − 𝑏′𝑐 =

𝛼⁄
𝑎′𝑐 − 𝑎𝑐′ =

1⁄
𝑎𝑏′ − 𝑎′𝑏
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⇒ 𝛼2 = 𝑏𝑐′ − 𝑏′𝑐⁄
𝑎𝑏′ − 𝑎′𝑏 , 𝛼 = 𝑎′𝑐 − 𝑎𝑐′⁄

𝑎𝑏′ − 𝑎′𝑏

Eliminating 𝛼, we get

(𝑎′𝑐 − 𝑎𝑐′)2 = (𝑏𝑐′ − 𝑏′𝑐) (𝑎𝑏′ − 𝑎′𝑏)

This is the required condition for two quadratic equations to have one common root.

x

y = ax2
+ bx+ c y = a′x2

+ b′x+ c′

α

Figure 4.9 Common roots

x

y = ax2
+ bx+ c

y = a′x2
+ b′x+ c′

α

Figure 4.10 Common roots

To obtain the common root make coefficients of 𝑥2 in both the equations same and subtract
one equation from the other to obtain a linear equation in 𝑥, which you can solve to obtain
the common root.

For having both roots common the two equations must be identical i.e. 𝑎⁄𝑎′ = 𝑏⁄
𝑏′ =

𝑐⁄
𝑐′

4.22 General Quadratic Equation in 𝑥 and 𝑦
The general quadratic equation in 𝑥 and 𝑦 is given by 𝑎𝑥2 + 2ℎ𝑥𝑦 + 𝑏𝑦2 + 2𝑔𝑥 + 2𝑓𝑦 + 𝑐 = 0

∴𝑥 = −2(ℎ𝑦 + 𝑔)±√

4(ℎ𝑦 + 𝑔)2 − 4𝑎(𝑏𝑦2 + 2𝑓𝑦 + 𝑐)⁄

2𝑎

⇒ 𝑥 + ℎ𝑦 + 𝑔 = ±√

(ℎ2 − 𝑎𝑏)𝑦2 + 2(𝑔ℎ − 𝑎𝑓 )𝑦 + 𝑔2 − 𝑎𝑐
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It can be resolved into two linear factors if (ℎ2 − 𝑎𝑏)𝑦2 + 2(𝑔ℎ − 𝑎𝑓 )𝑦 + 𝑔2 − 𝑎𝑐 is a perfect
square and ℎ2 − 𝑎𝑏 > 0.

The condition for (ℎ2 − 𝑎𝑏)𝑦2 + 2(𝑔ℎ − 𝑎𝑓 )𝑦 + 𝑔2 − 𝑎𝑐 to be a perfect square is that its
discriminant is 0, i.e.

4(𝑔ℎ − 𝑎𝑓 )2 − 4(ℎ2 − 𝑎𝑏) (𝑔2 − 𝑎𝑐) = 0

⇒ 𝑎𝑏𝑐 + 2𝑓𝑔ℎ − 𝑎𝑓2 − 𝑏𝑔2 − 𝑐ℎ2 = 0

4.23 Equations of Higher Degree
The equation 𝑓(𝑥)= 𝑎0𝑥𝑛+𝑎1𝑥𝑛−1+𝑎2𝑥𝑛−2+…+𝑎𝑛−1𝑥+𝑎𝑛 = 0, where 𝑎0,𝑎1 … ,𝑎𝑛 ∈ ℂ,
the set of complex numbers and 𝑎0 ≠ 0, is said to be an equation of degree 𝑛. An equation of
degree 𝑛 has exactly 𝑛 roots. Let 𝛼1, 𝛼2, … , 𝛼𝑛 ∈ ℂ be the 𝑛 roots. Then

𝑓(𝑥) = 𝑎0(𝑥 − 𝛼1) (𝑥 − 𝛼2)… (𝑥 − 𝛼𝑛)

∑𝛼𝑖 = −𝑎1⁄
𝑎0
,∑𝛼𝑖𝛼𝑗 =

𝑎2⁄
𝑎0
, … ,∏𝛼𝑖 = (−1)𝑛 𝑎𝑛⁄𝑎0

4.24 Cubic and Biquadratic Equation
If 𝛼, 𝛽, 𝛾 are the roots of 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0, then

𝛼 + 𝛽 + 𝛾 = − 𝑏⁄
𝑎, 𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼 = 𝑐⁄

𝑎, 𝛼𝛽𝛾 = −𝑑⁄
𝑎

Also, if 𝛼, 𝛽, 𝛾, 𝛿 are the roots of the equation 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑 + 𝑒 = 0, then

𝛼 + 𝛽 + 𝛾 + 𝛿 = − 𝑏⁄
𝑎, 𝛼𝛽 + 𝛼𝛾 + 𝛼𝛿 + 𝛽𝛾 + 𝛽𝛿 + 𝛾𝛿 = 𝑐⁄

𝑎

𝛼𝛽𝛾 + 𝛼𝛽𝛿 + 𝛼𝛾𝛿 + 𝛽𝛾𝛿 = −𝑑⁄
𝑎, 𝛼𝛽𝛾𝛿 =

𝑒⁄
𝑎

4.25 Transformation of Equations
Let the given equation be

𝑓(𝑥) = 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛−2 + …+ 𝑎𝑛−1𝑥 + 𝑎𝑛 = 0 (4.2)

1. To form an equation whose roots are 𝑘(≠ 0) times roots of the Equation 4.2, replace 𝑥
by 𝑥/𝑘.

2. To form an equation whose roots are the negatives of the roots of Equation 4.2, replace 𝑥
by −𝑥. Alternatively, change the sign of the coefficients of 𝑥𝑛−1, 𝑥𝑛−3, 𝑥𝑛−5, … etc. in
Equation 4.2.
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3. To form an equation whose roots are 𝑘 more than the roots of Equation 4.2, replace 𝑥
by 𝑥 − 𝑘 in .

4. to form an equation whose roots are reciprocals of roots in Equation 4.2, replace 𝑥
by 1/𝑥 in Equation 4.2 and then multiply both sides by 𝑥𝑛.

5. To form an equation whose roots are squares of roots in Equation 4.2, replace 𝑥 by
√


𝑥. Then you can collect all terms involving √


𝑥 on one side and square both sides
followed by simplification.

6. To form an equation whose roots are cubes of roots in Equation 4.2, replace 𝑥 by 3√


𝑥.
Then you can collect all terms involving 3√



𝑥 and 3√

𝑥2 on one side and cube both sides

followed by simplification.

4.26 Descartes Rule
1. The maximum no. of positive real roots of Equation 4.2 is the number of changes of sign

of coefficients from positive to negative and negative to positive.

2. The maximum no. of negtive real roots of Equation 4.2 is the number of changes of
sign of coefficients from positive to negative and negative to positive in the equation
𝑓(−𝑥) = 0.

4.27 Hints for Solving Polynomial Equations
1. To solve the equation of the form (𝑥 − 𝑎)2𝑛 + (𝑥 − 𝑏)2𝑛 = 𝐴, where 𝑛 ∈ ℙ, put

𝑦 = 𝑥 − 𝑎+𝑏
⁄

2 .

2. To solve the equation of the form 𝑎0(𝑓(𝑥))2𝑛 + 𝑎1(𝑓(𝑥))𝑛 + 𝑎2 = 0, put (𝑓(𝑥))𝑛 = 𝑦
then we obtain two roots 𝑦1, 𝑦2 to solve again for 𝑓(𝑥) = 𝑦1, 𝑓(𝑥) = 𝑦2.

3. An equation of the form (𝑎𝑥2 + 𝑏𝑥 + 𝑐1)(𝑎𝑥2 + 𝑏𝑥 + 𝑐2)… (𝑎𝑥2 + 𝑏𝑥 + 𝑐𝑛) = 𝐴 can be
solved by putting 𝑎𝑥2 + 𝑏𝑥 = 𝑦.

4. An equation of the form (𝑥 − 𝑎)(𝑥 − 𝑏)(𝑥 − 𝑐)(𝑥 − 𝑑) = 𝐴𝑥2, where 𝑎𝑏 = 𝑐𝑑, can be
reduced to a product of two quadratic polynomials by putting 𝑦 = 𝑥 + 𝑎𝑏

⁄

𝑥 .

5. An equation of the form (𝑥−𝑎)(𝑥−𝑏)(𝑥−𝑐)(𝑥−𝑑) = 𝐴, where 𝑎 < 𝑏 < 𝑐 < 𝑑, 𝑏−𝑎 =
𝑑 − 𝑐 can be solved by putting 𝑦 = 𝑥 − 𝑎+𝑏+𝑐+𝑑⁄

4 .

6. A polynomial 𝑓(𝑥, 𝑦) is said to be symmetric if 𝑓(𝑥, 𝑦) = 𝑓(𝑦, 𝑥) ∀ 𝑥, 𝑦. All symmetric
polynomials can be represented as a function of 𝑥 + 𝑦 and 𝑥𝑦.

4.28 Problems
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1. What is the remainder when 𝑥 + 𝑥9 + 𝑥25 + 𝑥49 + 𝑥81 is divided by 𝑥3 − 𝑥?

2. Prove that the polynomial 𝑥9999 + 𝑥8888 + 𝑥7777 + ⋯ + 𝑥1111 + 1 is divisible by
𝑥9 + 𝑥8 + 𝑥7 + ⋯+ 𝑥 + 1.

3. If 𝑓(𝑥) is a polynomial with integral coefficients and suppose that 𝑓(1) and 𝑓(2) are
both odd, then prove that there exists no integer 𝑛 for which 𝑓(𝑛) = 0.

4. If 𝑓 is a polynomial with integer coefficients such that there exists four distinct integers
𝑎1, 𝑎2, 𝑎3, and 𝑎4 such that 𝑓(𝑎1) = 𝑓(𝑎2) = 𝑓(𝑎3) = 𝑓(𝑎4) = 1991, show that there
exists no integer 𝑏, such that 𝑓(𝑏) = 1993.

5. Find a polynomial function of lowest degree with integral coefficients with √


5 as one of
its roots.

6. Find a polynomial of the lowest degree with integer coefficients whose one of the zeroes
is √


5 +√


2.

7. If 𝑓(𝑥) is a polynomial such that 𝑥.𝑓(𝑥 − 1) = (𝑥 − 4)𝑓(𝑥)∀ 𝑥 ∈ ℝ. Find all such
𝑓(𝑥).

8. Let 𝑓(𝑥) be a monic cubic equation such that 𝑓(1) = 1, 𝑓(2) = 2, 𝑓(3) = 3 then find
𝑓(4).

9. Find a fourth degree equation with rational coefficients, one of whose roots is, √


3+√

7.

10. Form the equation of the lowest degree with rational coefficients which has 2 +√


3 and
3 +√


2 as two of its roots.

11. Find a polynomial equation of the lowest degree with rational coefficients whose one
root is 3√


2 + 3 3√


4.

12. Show that (𝑥 − 1)2 is a factor of 𝑥𝑛 − 𝑛𝑥 + 𝑛 − 1.

13. If 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are all zeroes of the polynomial 6𝑥5 + 5𝑥4 + 4𝑥3 + 3𝑥2 + 2𝑥 + 1, find the
value of (1 + 𝑎)(1 + 𝑏)(1 + 𝑐)(1 + 𝑑)(1 + 𝑒).

14. If 1, 𝛼1, 𝛼2, … , 𝛼𝑛−1 be the roots of the equation 𝑥𝑛 − 1, 𝑛 ∈ ℕ, 𝑛 ≥ 2, show that
𝑛 = (1 − 𝛼1)(1 − 𝛼2)⋯ (1 − 𝛼𝑛−1).

15. If 𝑓(𝑥) = 𝑥4+𝑎𝑥3+𝑏𝑥2+𝑐𝑥+𝑑 is a poynomial such that 𝑓(1) = 10, 𝑓(2) = 20, 𝑓(3) =
30, find the value of 𝑓(12)+𝑓(−8)⁄10 .

16. If the polynomial 𝑥2𝑘 + 1+ (𝑥+ 1)2𝑘 is not divisible by 𝑥2 + 𝑥+ 1, then find the value
of 𝑘 ∈ ℕ.

17. Find all polynomials 𝑃 (𝑥) with real coefficients such that (𝑥 − 8)𝑃 (2𝑥) = 8(𝑥 −
1)𝑃 (𝑥).

18. If (𝑥 − 1)3 divides 𝑓(𝑥)+ 1 and (𝑥 + 1)3 divides 𝑓(𝑥)− 1, then find the polynomial
𝑓(𝑥) of degree 5.
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19. Find the polynomial equation of lowest degree with rational coefficients, two of whose
roots are 3 + 2𝑖 and 2 + 3𝑖.

20. Find the roots of the equation 𝑥4 + 𝑥3 − 19𝑥2 − 49𝑥 − 30, if all roots are rational
numbers.

21. Find the rational roots of 2𝑥3 − 3𝑥2 − 11𝑥 + 6 = 0.

22. Solve 𝑥3 − 3𝑥3 + 5𝑥 − 15 = 0.

23. Show that 𝑓(𝑥) = 𝑥1000 − 𝑥500 + 𝑥 + 1 = 0 has no rational roots.

24. If 𝑥2 + 𝑎𝑥 + 𝑏 + 1 = 0, where 𝑎, 𝑏 ∈ ℤ and 𝑏 ≠ −1, has a root in integers then prove
that 𝑎2 + 𝑏2 is composite.

25. For what values of 𝑝, will the sum of squares of the roots 𝑥2 − 𝑝𝑥 + 𝑝 − 1 = 0 be
minimum?

26. Let 𝛼, 𝛽 be two real numbers not equal to −1, such that 𝛼, 𝛽 and 𝛼𝛽 are the roots of a
cubic polynomial with rational coefficients. Prove or disprove that 𝛼𝛽 is rational.

27. Find the roots of the cubic equation 9𝑥3 − 27𝑥2 + 26𝑥 − 8 = 0, given that one of the
roots of the equation is double the other.

28. If the product of two roots of the equation 4𝑥4 − 24𝑥3 + 31𝑥2 + 6𝑥 − 8 = 0 is 1, find
all the roots.

29. One root of the equation 𝑥4 − 5𝑥3 + 𝑎𝑥2 + 𝑏𝑐 + 𝑐 = 0 is 3 +√


2. If all the roots of the
equation are real, find extremum values of 𝑎, 𝑏, 𝑐; given that 𝑎, 𝑏 and 𝑐 are rational.

30. Find the rational roots of the equation 𝑥4 − 4𝑥3 + 6𝑥2 − 4𝑥 + 1 = 0.

31. Solve the equation 𝑥4 + 10𝑥3 + 35𝑥2 + 50𝑥+ 24 = 0, if some of two of its roots is equal
to the sum of the other two roots.

32. Find the rational roots of 6𝑥4 + 𝑥3 − 3𝑥2 − 9𝑥 − 4 = 0.

33. Find the rational roots of 6𝑥4 + 35𝑥3 + 62𝑥2 + 35𝑥 + 2 = 0.

34. Given that the sum of two of the roots of 4𝑥3 + 𝑎𝑥2 − 𝑥+ 𝑏 = 0 is zero, where 𝑎, 𝑏 ∈ ℚ.
Solve the equation for all values of 𝑎 and 𝑏.

35. Find all 𝑎, 𝑏 such that 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 − 8 = 0 are real and in G.P.

36. Show that 2𝑥6 + 12𝑥5 + 30𝑥4 + 60𝑥3 + 80𝑥2 + 30𝑥 + 45 = 0 has no real roots.

37. Construct a polynomial equation, of the least degree with rational coefficients one
of whose roots is sin 10∘.

38. Construct a polynomial equation, of the least degree with rational coefficients one
of whose roots is sin 20∘.
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39. Construct a polynomial equation, of the least degree with rational coefficients one
of whose roots is cos 10∘.

40. Construct a polynomial equation, of the least degree with rational coefficients one
of whose roots is cos 20∘.

41. Construct a polynomial equation, of the least degree with rational coefficients one
of whose roots is tan 10∘.

42. Construct a polynomial equation, of the least degree with rational coefficients one
of whose roots is tan 20∘.

43. Construct a polynomial equation, of the least degree with rational coefficients two
of whose roots are sin 10∘ and cos 20∘.

44. If 𝑝, 𝑞, 𝑟 are the real roots of 𝑥3 − 6𝑥2 + 3𝑥 + 1 = 0, determine the possible values of
𝑝2𝑞 + 𝑞2𝑟 + 𝑟2𝑝.

45. The product of two of the four roots of the equation 𝑥4− 18𝑥3+ 𝑘𝑥2+ 200𝑥− 1984 = 0
is 32. Determine the value of 𝑘.

46. If 𝑥 + 𝑦 = 1 and 𝑥4 + 𝑦4 = 𝑐, find 𝑥3 + 𝑦3 and 𝑥2 + 𝑦2 in terms of 𝑐.

47. Find all 𝑥 and 𝑦 that satisfy 𝑥3 + 𝑦3 = 7 and 𝑥2 + 𝑦2 + 𝑥 + 𝑦 + 𝑥𝑦 = 4.

48. If 𝛼, 𝛽, 𝛾 are the roots of the equation 𝑥3 + 𝑝𝑥 + 𝑞 = 0, then prove that 𝛼
5+𝛽5+𝛾5⁄

5 =
𝛼3+𝛽3+𝛾3⁄

3 × 𝛼2+𝛽2+𝛾2⁄
2 .

49. If 𝛼, 𝛽, 𝛾 are the roots of the equation 𝑥3 + 𝑝𝑥 + 𝑞 = 0, then prove that 𝛼
7+𝛽7+𝛾7⁄

7 =
𝛼5+𝛽5+𝛾5⁄

5 × 𝛼2+𝛽2+𝛾2⁄
2 .

50. If 𝛼 + 𝛽 + 𝛾 = 0, then show that 3(𝛼2 + 𝛽2 + 𝛾2)(𝛼5 + 𝛽5 + 𝛾5) = 5(𝛼3 + 𝛽3 +
𝛾3)(𝛼4 + 𝛽4 + 𝛾4).

51. Show that there does not exist any distinct natural numbers 𝑎, 𝑏, 𝑐 and 𝑑 such that
𝑎3 + 𝑏3 = 𝑐3 + 𝑑3 and 𝑎 + 𝑏 = 𝑐 + 𝑑.

52. Determine all the roots of the system of simultaneous equations 𝑥 + 𝑦 + 𝑧 = 3, 𝑥2 +
𝑦2 + 𝑧2 = 3, and 𝑥3 + 𝑦3 + 𝑧3 = 3.

53. Given real numbers 𝑥, 𝑦, 𝑧, such that 𝑥+ 𝑦 + 𝑧 = 3, 𝑥2 + 𝑦2 + 𝑧2 = 5, 𝑥3 + 𝑦3 + 𝑧3 = 7,
find 𝑥4 + 𝑦4 + 𝑧4.

54. If 𝛼, 𝛽 are the roots of the equation 𝑥2 − (𝑎 + 𝑑)𝑥 + 𝑎𝑑 − 𝑏𝑐 = 0, show that 𝛼3 and 𝛽3

are the roots of the equation 𝑥2 − (𝑎3 + 𝑑3 + 3𝑎𝑏𝑐 + 3𝑏𝑐𝑑)𝑥 + (𝑎𝑑 − 𝑏𝑐)3 = 0.

55. If 𝑎3 + 𝑏3 + 𝑐3 = (𝑎 + 𝑏 + 𝑐)3, prove that 𝑎5 + 𝑏5 + 𝑐5 = (𝑎 + 𝑏 + 𝑐)5. Generalize your
result.
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56. If 𝑝, 𝑞 and 𝑟 are distinct roots of 𝑥3 − 𝑥2 + 𝑥 − 2 = 0, find the value of 𝑝3 + 𝑞3 + 𝑟3.

57. Find the sum of the 5th powers of the roots of the equation 𝑥3 + 3𝑥 + 9 = 0.

58. Find the sum of the 5th powers of the roots of the equation 𝑥3 − 7𝑥2 + 4𝑥 − 3 = 0.

59. 𝛼, 𝛽, 𝛾 are the roots of the equation 𝑥3− 9𝑥+9 = 0. Find the value of 𝛼−3+𝛽−3+ 𝛾−3

and 𝛼−5 + 𝛽−5 + 𝛾−5.

60. Find the cubic equation whose roots are 𝛼, 𝛽 and 𝛾, such that 𝛼 + 𝛽 + 𝛾 = 9, 𝛼2 +
𝛽2 + 𝛾2 = 29, 𝛼3 + 𝛽3 + 𝛾3 = 99. Also, find the value of 𝛼4 + 𝛽4 + 𝛾4.

61. If 𝛼+𝛽+𝛾 = 4,𝛼2+𝛽2+𝛾2 = 7,𝛼3+𝛽3+𝛾3 = 28, find 𝛼4+𝛽4+𝛾4 and 𝛼5+𝛽5+𝛾5.

62. Solve: 𝑥3 + 𝑦3 + 𝑧3 = 𝑎3, 𝑥2 + 𝑦2 + 𝑧2 = 𝑎2, 𝑥 + 𝑦 + 𝑧 = 𝑎 in terms of 𝑎.

63. If 𝛼, 𝛽, 𝛾 be the roots of 2𝑥3 + 𝑥2 + 𝑥 + 1 = 0, show that ( 1⁄
𝛽3 +

1⁄
𝛾3 −

1⁄
𝛼3)(

1⁄
𝛾3 +

1⁄
𝛼3 −

1⁄
𝛽3)(

1⁄
𝛼3 +

1⁄
𝛽3 −

1⁄
𝛾3) = 16.

64. Find 𝑥, 𝑦 ∈ ℂ such that 𝑥5 + 𝑦5 = 275, 𝑥 + 𝑦 = 5.

65. Find real 𝑥 such that 4√

97 − 𝑥 + 4√


𝑥 = 5.

66. Find the common roots of the polynomials 𝑥3 + 𝑥2 − 2𝑥 − 2 and 𝑥3 − 𝑥2 − 2𝑥 + 2.

67. Find the common roots of 𝑥4 + 5𝑥3 − 22𝑥2 − 50𝑥 + 132 = 0 and 𝑥4 + 𝑥3 − 20𝑥2 +
16𝑥 + 24 = 0, and solve the equations.

68. Show that the set of polynomials 𝑃 = {𝑝𝑘(𝑥) : 𝑝𝑘(𝑥) = 𝑥5𝑘+4+𝑥3+𝑥2+𝑥+1}, 𝑘 ∈ ℕ
has a common non-trivial polynomial divisor.

69. Find the common roots of the equations 𝑥3−3𝑥−4𝑥+12 = 0 and 𝑥3+9𝑥2+26𝑥+24 =
0.

70. Find the common roots of the equations 𝑥4− 5𝑥3+ 2𝑥2+ 20𝑥− 24 = 0 and 𝑥4+ 7𝑥3+
8𝑥2 − 28𝑥 − 48 = 0.

71. If 𝑑, 𝑒, 𝑓 are in G.P. and the two quadratic equations 𝑎𝑥2 + 2𝑏𝑥 + 𝑐 = 0 and 𝑑𝑥2 +
2𝑒𝑥 + 𝑓 = 0 have a common root, then prove that 𝑑⁄𝑎,

𝑒⁄
𝑏 ,

𝑓⁄
𝑐 are in H.P.

72. If 𝑛 is even and 𝛼, 𝛽 are the roots of the equation 𝑥2 + 𝑝𝑥 + 𝑞 = 0 and also of the
equation 𝑥2𝑛 + 𝑝𝑛𝑥𝑛 + 𝑞𝑛 = 0 and 𝑓(𝑥) = (1+𝑥)𝑛⁄

1+𝑥𝑛 where 𝛼𝑛 + 𝛽𝑛 ≠ 0, 𝑝 ≠ 0, find the

value of 𝑓(𝛼⁄𝛽).
73. Factorize 𝑥4 + 4 as a product of irreducible polynomials over the sets ℚ, ℝ and ℂ.

74. Check if 𝑥4 + 𝑥3 − 𝑥 − 1 is irreducible over ℤ.

75. Check if 𝑥3 + 𝑥2 + 𝑥 + 3 is irreducible over ℤ.
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76. Show that 𝑥4 + 𝑥3 − 𝑥 + 1 is irreducible over ℤ.

77. Prove that if the integer ‘a’ is not divisible by 5, then 𝑓(𝑥) = 𝑥5 − 𝑥 + 𝑎 cannot be
factored as the product of two non-constant polynomials with integer coefficients.

78. Let 𝑓(𝑥) = 𝑎𝑛𝑥𝑛+ 𝑎𝑛−1𝑥𝑛−1+⋯+𝑎1𝑥+ 𝑎0 be a polynomial with integer coefficients
such that |𝑎0| is a prime and |𝑎0| > |𝑎1|+ |𝑎2|+⋯+ |𝑎𝑛|. Prove that 𝑓(𝑥) is irreduicible
over ℤ.

79. Prove that 16𝑥3 − 35𝑥2 + 105𝑥 + 175 is irreducible over ℤ.

80. Prove that 𝑥3 − 3𝑥2 + 3𝑥 + 22 is irreducible over ℤ.

81. Let 𝑝 be a prime number. Show that Φ𝑝(𝑥) = 𝑥𝑝−1 + 𝑥𝑝−2 + ⋯+ 𝑥 + 1 is irreducible.

82. Let 𝑓(𝑥) = 𝑥𝑛 + 5𝑥𝑛−1 + 3, 𝑛 > 1 is an integer. Prove that 𝑓(𝑥) cannot be expressed
as a product of two polynomials, each of which has all its coefficient integers and
degree at least 1.

83. Prove that for any prime 𝑝, polynomial, 𝑥𝑛 − 𝑝 is irreducible over ℤ.

84. Prove that 𝑥7 + 48𝑥 − 24 is irreducible over ℤ.

85. Prove that 𝑥4 + 2𝑥2 + 2𝑥 + 2 is not product of two polynomials 𝑥2 + 𝑎𝑥 + 𝑏 and
𝑥2 + 𝑐𝑥 + 𝑑, where 𝑎, 𝑏, 𝑐, 𝑑 are integers.

86. Prove that 𝑥5 − 36𝑥4 + 6𝑥3 + 30𝑥2 + 24 is irreducible over ℤ.

87. Prove that 𝑥3 + 3𝑥2 + 3𝑥 + 5 is irreducible over ℤ.

88. Prove that 𝑥𝑝 + 𝑝𝑥 + 𝑝 − 1 is reducible for some prime 𝑝 then it must be ‘2’.

89. Let 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯+ 𝑎1𝑥 + 𝑎0 is a polynomial over ℤ and irreducible over it.
Prove that 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 + ⋯+ 𝑎𝑛−1𝑥 + 𝑎0 is also irreducible over ℤ and use this to
show that 21𝑥5 − 49𝑥3 + 14𝑥2 − 4 is irreducible over ℤ.

90. If 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ ℤ are distinct, then prove that (𝑥 − 𝑎1)(𝑥 − 𝑎2)⋯ (𝑥 − 𝑎𝑛)− 1 is
irreducible over 𝕫.

91. Prove that 1 + 𝑥𝑝 + 𝑥2𝑝 + ⋯+ 𝑥𝑝(𝑝−1) is irreducible over ℤ.

92. Solve for 𝑥 : 2𝑝(𝑝 − 2)𝑥 = 𝑝 − 2.

93. If 𝑥1 and 𝑥2 are non-zero roots of the equations 𝑎𝑥2+ 𝑏𝑥+ 𝑐 = 0 and −𝑎𝑥2+ 𝑏𝑥+ 𝑐 = 0
respectively, prove that 𝑎⁄2 𝑥

2 + 𝑏𝑥 + 𝑐 has a root between 𝑥1 and 𝑥2, where 𝑎 ≠ 0.

94. Let 𝑃 (𝑥) = 𝑥2+ 𝑎𝑥+ 𝑏 be a quadratic polynomial in which 𝑎 and 𝑏 are integers. Show
that there exists an integer 𝑀 such that 𝑃 (𝑛) .𝑃 (𝑛 + 1) = 𝑃 (𝑀 ) for any integer 𝑛.

95. Prove that, if the coefficients of the quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 are odd
integers, then the roots of the equation cannot be rational numbers.
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96. If 1⁄𝑎 +
1
⁄

𝑏 +
1
⁄

𝑐 =
1
⁄

𝑎+𝑏+𝑐, then prove that 1⁄𝑎𝑛 +
1⁄
𝑏𝑛 +

1⁄
𝑐𝑛 =

1⁄
𝑎𝑛+𝑏𝑛+𝑐𝑛 for all odd 𝑛.

97. Show that 𝑎3⁄
(𝑎−𝑏)(𝑎−𝑐)+

𝑏3⁄
(𝑏−𝑎)(𝑏−𝑐)+

𝑐3⁄
(𝑐−𝑎)(𝑐−𝑏) = 𝑎 + 𝑏 + 𝑐.

98. Let 𝑎1, 𝑎2, … , 𝑎𝑛 be non-negative real numbers not all zero. Prove that 𝑥𝑛 − 𝑎1𝑥𝑛−1 −
⋯− 𝑎𝑛−1𝑥 − 𝑎𝑛 = 0 has exactly one positive real root.

99. Let 𝑃 (𝑥) be a real polynomial function, and 𝑃 (𝑥) = 𝑎𝑥3 + 𝑏𝑥3 + 𝑐𝑥 + 𝑑. Prove that if
𝑃 (𝑥) ≤ 1 for all 𝑥 such that |𝑥| ≤ 1, then |𝑎|+ |𝑏|+ |𝑐|+ |𝑑| ≤ 7.

100. A person who left home between 4 p.m. and 5 p.m. returned between 5 p.m. and 6
p.m. and found that the hands of his watch has exactly changed places. When did
he go out?

101. If 𝛼13 = 1 and 𝛼 ≠ 1, find the quadratic equation whose roots are 𝛼+𝛼3+𝛼4+𝛼−4+
𝛼−3 + 𝛼−1 and 𝛼2 + 𝛼5 + 𝛼6 + 𝛼−6 + 𝛼−5 + 𝛼−2.

102. Determine all pairs of positive integers (𝑚, 𝑛), such that (1 + 𝑥𝑛 + 𝑥2𝑛 +⋯+ 𝑥𝑚𝑛) is
divisible by (1 + 𝑥 + 𝑥2 + ⋯+ 𝑥𝑚).

103. Show that (𝑎 − 𝑏)2 + (𝑎 − 𝑐)2 = (𝑏 − 𝑐)2 is not solvable when 𝑎, 𝑏, 𝑐 are all distinct.

104. If 𝑃 (𝑥) is a polynomial of degree 𝑛 such that 𝑃 (𝑥) = 2𝑥 for 𝑥 = 1, 2, 3, … , 𝑛 + 1, find
𝑃 (𝑥 + 2).

105. If 𝑎, 𝑏, 𝑐, 𝑑 are all real and 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 = 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑑 + 𝑑𝑎, then show that
𝑎 = 𝑏 = 𝑐 = 𝑑.

106. Determine 𝑥, 𝑦, 𝑧 ∈ ℝ, such that 2𝑥2 + 𝑦2 + 2𝑥2 − 8𝑥+ 2𝑦 − 2𝑥𝑦 + 2𝑥𝑧 − 16𝑧 = 35 = 0.

107. Find all real numbers satisfying 𝑥8 + 𝑦8 = 8𝑥𝑦 − 6.

108. Solve the system of equations for real 𝑥 and 𝑦, 5𝑥(1+ 1⁄
𝑥2+𝑦2) = 12, 5𝑦(1− 1⁄

𝑥2+𝑦2) = 4.

109. Solve the system (𝑥+𝑦)(𝑥+𝑦+𝑧) = 18, (𝑦+𝑧)(𝑥+𝑦+𝑧) = 30, (𝑧+𝑥)(𝑥+𝑦+𝑧) =
2𝐿 in terms of 𝐿, where 𝑥, 𝑦, 𝑧, 𝐿 ∈ ℝ+.

110. Solve 𝑥 + 𝑦 − 𝑧 = 4, 𝑥2 − 𝑦2 + 𝑧2 = −4, 𝑥𝑦𝑧 = 6, where 𝑥, 𝑦, 𝑧 ∈ ℝ.

111. Solve 3𝑥(𝑥 + 𝑦 − 2) = 2𝑦⋯ (1), 𝑦(𝑥 + 𝑦 − 1) = 9𝑥⋯ (2).

112. Solve 𝑥𝑦 + 𝑥 + 𝑦 = 23⋯ (1), 𝑦𝑧 + 𝑦 + 𝑧 = 31⋯ (2), 𝑧𝑥 + 𝑧 + 𝑥 = 47⋯ (3).

113. Find all the solutions of the system of equations 𝑦 = 4𝑥3 − 3𝑥, 𝑧 = 4𝑦3 − 3𝑦 and
𝑥 = 4𝑧3 − 3𝑧.

114. Let 𝑥 = 𝑝, 𝑦 = 𝑞, 𝑧 = 𝑟 and 𝑤 = 𝑠 be the unique solutions of the system of linear
equations 𝑥+ 𝑎𝑖𝑦 + 𝑎2𝑖 𝑧 + 𝑎3𝑖 𝑤 = 𝑎4𝑖 , 𝑖 = 1, 2, , 3,4. Express the solution of the following
system in the terms of 𝑝, 𝑞, ,𝑟 and 𝑠.𝑥 + 𝑎2𝑖 𝑦 + 𝑎4𝑖 𝑧 + 𝑎6𝑖 𝑤 = 𝑎8𝑖 , 𝑖 = 1, 2, 3, 4. Assume
the uniqueness of the solution.
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115. Find out all values of 𝑎 and 𝑏, for which 𝑥𝑦𝑧 + 𝑧 = 𝑎⋯ (1), 𝑥𝑦𝑧2 + 𝑧 = 𝑏⋯ (2) and
𝑥2 + 𝑦2 + 𝑧2 = 4 has only one solution.

116. Given 𝑎, 𝑏 and 𝑐 are positive real numbers, such that 𝑎2 + 𝑎𝑏 + 𝑏2
⁄

3 = 25, 𝑏
2
⁄

3 + 𝑐2 =
9, 𝑐2 + 𝑐𝑎 + 𝑎2 = 16. Find out the value of 𝑎𝑏 + 2𝑏𝑐 + 3𝑐𝑎.

117. Solve log3(log2 𝑥)+ log1/3(log1/2 𝑦) = 1, 𝑥𝑦2 = 4.

118. Solve log2 𝑥+log4 𝑦+log4 𝑧 = 2, log3 𝑦+log9 𝑧+log9 𝑥 = 2, log4 𝑧+log16 𝑥+log16 𝑦 =
2.

119. Find all real numbers 𝑥 and 𝑦 satisfying log3 𝑥 + log2 𝑦 = 2, 3𝑥 − 2𝑦 = 23.

120. Let 𝛼, 𝛽, 𝛾 be the roots of 𝑥3 − 𝑥2 − 1 = 0, then find the value of 1+𝛼⁄1−𝛼 + 1+𝛽⁄
1−𝛽 +

1+𝛾
⁄

1+𝛾.

121. Show that (𝑥 − 1)2 is a factor of 𝑥𝑚+1 − 𝑥𝑚− 𝑥 + 1.

122. Find all real solution 𝑥 of the equation 𝑥10 − 𝑥8 + 8𝑥6 − 24𝑥4 + 32𝑥2 − 48 = 0.

123. Solve 2𝑥99 + 3𝑥98 + 2𝑥97 + 3𝑥96 + ⋯ + 2𝑥 + 3 = 0 in ℝ.

124. Prove that 1 + 𝑥111 + 𝑥222 + 𝑥333 + 𝑥444 divides 1 + 𝑥111 + 𝑥222 + 𝑥333 + ⋯ + 𝑥999.

125. If 𝑥, 𝑦, 𝑧 are rational and strictly positive and if 1⁄𝑥 +
1
⁄

𝑦 =
1
⁄

𝑧 show that √

𝑥2 + 𝑦2 + 𝑧2 is

rational.

126. If 𝑎2𝑥3+ 𝑏2𝑦3 + 𝑐2𝑧3 = 𝑝5, 𝑎𝑥2 = 𝑏𝑦2 = 𝑐𝑧2 and 1⁄𝑥+
1
⁄

𝑦 +
1
⁄

𝑧 =
1
⁄

𝑝, find √


𝑎+√

𝑏 +√

𝑐 only

in terms of 𝑝.

127. If 𝑎𝑥3 = 𝑏𝑦3 = 𝑐𝑧3 and 1⁄𝑥 +
1
⁄

𝑦 +
1
⁄

𝑧 = 1; prove that 3√

𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 = 3√


𝑎 + 3√

𝑏 + 3√

𝑐.

128. Prove that, if (𝑥, 𝑦, 𝑧) is a solution of the system of equations 𝑥+𝑦+𝑧 = 𝑎, 1⁄𝑥+
1
⁄

𝑦+
1
⁄

𝑧 =
1
⁄

𝑎.
Then, at least one of the numbers 𝑥, 𝑦, 𝑧 is ‘𝑎’.

129. If one root of the equation 2𝑥2 − 6𝑥 + 𝑘 = 0 is 1⁄2 (𝑎 + 5𝑖), where 𝑖2 = −1; 𝑘, 𝑎 ∈ ℝ, find
the values of ‘𝑎’ and ‘𝑘’.

130. If 𝑥3 + 𝑝𝑥2 + 𝑞 = 0, where 𝑞 ≠ 0 has a root of multiplicity 2, prove that 4𝑝3 + 27𝑞 = 0.

131. If 𝑓(𝑥) is a quadratic polynomial with 𝑓(0) = 6, 𝑓(1) = 1 and 𝑓(2) = 0, find 𝑓(3).

132. Show that, if 𝑎, 𝑏, 𝑐 are real number and 𝑎𝑐 = 2(𝑏 + 𝑑), then, at least one of the
equations 𝑥2 + 𝑎𝑥 + 𝑏 = 0 and 𝑥2 + 𝑐𝑥 + 𝑑 = 0 has real roots.

133. Given any four positive, distinct, real numbers, show that one can choose three numbers
𝐴, 𝐵, 𝐶 among them, such that all the quadratic equations have only real roots and all
of them have only imaginary roots 𝐵𝑥2+𝑥+𝐶 = 0;𝐶𝑥2+𝑥+𝐴 = 0;𝐴𝑥2+𝑥+𝐵 = 0.

134. Show that the equation 𝑥4 − 𝑥3 − 6𝑥2 − 2𝑥 + 9 = 0 has no negative roots.
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135. If 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ such that 𝑎 < 𝑏 < 𝑐 < 𝑑, then show that, the roots of the equation
(𝑥 − 𝑎)(𝑥 − 𝑐)+ 2(𝑥 − 𝑏)(𝑥 − 𝑑) = 0 are real and distinct.

136. Find the maximum no. of positive and negative real roots of the equation 𝑥3 + 𝑥3 +
𝑥2 − 𝑥 − 1 = 0.

137. If 𝑃 (𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 and 𝑄(𝑥) = −𝑎𝑥2 + 𝑏𝑥 + 𝑐, where 𝑎𝑐 ≠ 0, show that the
equation 𝑃 (𝑥) .𝑄(𝑥) has at least two real roots.

138. Let 𝑓(𝑥) be the cubic polynomial 𝑥3 + 𝑥 + 1; suppose 𝑔(𝑥) is a cubic polynomial such
that 𝑔(0) = −1 and the roots of 𝑔(𝑥) = 0 are square roots of 𝑓(𝑥) = 0. Determine
𝑔(9).

139. If 𝑝, 𝑞, 𝑟, 𝑠 ∈ ℝ, show that the equation (𝑥2+ 𝑝𝑥+3𝑞)(𝑥2+𝑟𝑥+𝑞)(−𝑥2+𝑠𝑥+2𝑞) = 0
has at least two real roots.

140. If 𝑡𝑛 denotes the 𝑛th term of an A.P., and 𝑡𝑝 = 1
⁄

𝑞 , 𝑡𝑞 =
1
⁄

𝑝, then show that 𝑡𝑝𝑞 is a root
of the equation (𝑝 + 2𝑞 − 3𝑟)𝑥2 + (𝑞 + 2𝑟 − 3𝑝)𝑥 + (𝑟 + 2𝑝 − 3𝑞) = 0.

141. If 𝑝 and 𝑞 are odd integers, show that the equation 𝑥2 + 2𝑝𝑥 + 2𝑞 = 0 has no rational
roots.

142. Show that there cannot exist an integer 𝑛, such that 𝑛3−𝑛+3 divides 𝑛3+𝑛2+𝑛+2.

143. If 𝑠𝑛 = 1+ 𝑞 + 𝑞2 +⋯+ 𝑞𝑛 and 𝑆𝑛 = 1+ 1+𝑞⁄
2 + (1+𝑞⁄

2 )
2
+⋯+ (1+𝑞⁄

2 )
𝑛
, then prove that

(𝑛+11 )+ (𝑛+12 ) 𝑠 + (𝑛+13 ) 𝑠2 + ⋯ + (𝑛+1𝑛+1) 𝑠
𝑛 = 2𝑛𝑆𝑛.

144. Solve for 𝑥, 𝑦, 𝑧 the equations 𝑎 = 𝑥𝑦
⁄

𝑥+𝑦 , 𝑏 =
𝑦𝑧
⁄

𝑦+𝑧, 𝑐 =
𝑧𝑥⁄
𝑧+𝑥 (𝑎, 𝑏, 𝑐 ≠ 0).

145. Solve and find the non-trivial solutions: 𝑥2+𝑥𝑦+𝑧𝑥 = 0,𝑦2+𝑦𝑧+𝑧𝑥 = 0,𝑧2+𝑧𝑥+𝑧𝑦 =
0

146. Solve: 𝑥2 + 𝑥𝑦 + 𝑦2 = 7, 𝑦2 + 𝑦𝑧 + 𝑧2 = 19, 𝑧2 + 𝑧𝑥 + 𝑥2 = 3.

147. Determine all solutions of the equation in ℝ, (𝑥2 + 3𝑥 − 4)3 + (2𝑥2 − 5𝑥 + 3)3 =
(3𝑥2 − 2𝑥 − 1)3.

148. Show that there is no positive integer, satisfying the condition that 𝑛4 + 2𝑛3 + 2𝑛2 +
2𝑛 + 1 is a perfect square.

149. Find the possible solutions of the system of equations: 𝑎𝑥 = (𝑥 + 𝑦 + 𝑧)𝑦, 𝑎𝑦 =
(𝑥 + 𝑦 + 𝑧)𝑧, 𝑧𝑧 = (𝑥 + 𝑦 + 𝑧)𝑥.

150. Show that 2𝑥3−4𝑥2+𝑥−5 cannot be factored into polynomials with integer coefficients.

151. The product of two of the four roots of the equation 𝑥4 + 7𝑥3 − 240𝑥2 + 𝑘𝑥+ 2000 = 0
is −200, find 𝑘.

152. The product of the two of the four roots of 𝑥4 − 20𝑥3 + 𝑘𝑥2 + 590𝑥 − 1992 = 0 is 24,
find 𝑘.
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153. Let 𝑎, 𝑏, 𝑐, 𝑑 be any four real numbers not all equal to zero. Prove that the roots of the
polynomial 𝑓(𝑥) = 𝑥6 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 can all not be real.

154. If 𝑎, 𝑏, 𝑐 and 𝑝, 𝑞, 𝑟 are real numbers, such that for every real number 𝑥, 𝑎𝑥2+2𝑏𝑥+𝑐 ≥ 0
and 𝑝𝑥2 + 2𝑞𝑥 + 𝑟 ≥ 0, then prove that 𝑎𝑝𝑥2 + 𝑏𝑞𝑥 + 𝑐𝑟 ≥ 0 for all real 𝑥.

155. Find a necessary and sufficient condition on the natural number 𝑛, for the equation
𝑥𝑛 + (2 + 𝑥)𝑛 + (2 − 𝑥)𝑛 = 0 to have an integral root.

156. Given that 𝛼, 𝛽 and 𝛾 are the angles of a right angled triangle. Prove that
sin 𝛼 sin 𝛽 sin(𝛼−𝛽)+sin 𝛽 sin 𝛾 sin(𝛽−𝛾)+sin 𝛾 sin 𝛼 sin(𝛾−𝛼)+sin(𝛼−𝛽) sin(𝛽−
𝛾) sin(𝛾 − 𝛼) = 0.

157. Suppose 𝑎, 𝑏 and 𝑐 are three real numbers, such that the quadratic equation 𝑥2 −
(𝑎+ 𝑏 + 𝑐)𝑥+ (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) = 0 has roots of the form 𝛼± 𝑖𝛽, where 𝛼 > 0 and 𝛽 ≠ 0
are real numbers. Show that the numbers 𝑎, 𝑏, 𝑐 are all positive and the numbers
√


𝑎,√

𝑏,√

𝑐 form the sides of a triangle.

158. Find the number of quadratic polynomials 𝑎𝑥2 + 𝑏𝑥 + 𝑐, where, 𝑎, 𝑏, 𝑐 are distinct,
𝑎, 𝑏, 𝑐 ∈ {1, 2, 3, … , 999} and (𝑥 + 1) divides 𝑎𝑥2 + 𝑏𝑥 + 𝑐.

159. Show that there are infinitely many pairs (𝑎, 𝑏) of relatively prime integers (not
necessarily positive) such that both quadratic equations 𝑥2 + 𝑎𝑥 + 𝑏 = 0 and 𝑥2 +
2𝑎𝑥 + 𝑏 = 0 have integer roots.

160. If the magnitude of the quadratic function 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 never exceeds 1 for
0 ≤ 𝑥 ≤ 1, prove that the sum of the magnitudes of the coefficients cannot exceed 17.

161. Suppose that −1 ≤ 𝑎𝑥2 + 𝑏𝑥 + 𝑐 ≤ 1 for −1 ≤ 𝑥 ≤ 1, where 𝑎, 𝑏, 𝑐 are real numbers,
prove that −4 ≤ 2𝑎𝑥 + 𝑏 ≤ 4 for −1 ≤ 𝑥 ≤ 1.

162. Find the polynomial 𝑝(𝑥) = 𝑥2 + 𝑝𝑥 + 𝑞 for which max𝑥∈[−1,1]|𝑝(𝑥) | is minimal.

163. Find real numbers 𝑎, 𝑏, 𝑐 for which |𝑎𝑥2 + 𝑏𝑥 + 𝑐| ≤ 1 ∀ 𝑥 < 1 and 8⁄3 𝑎
2 + 2𝑏2 is

maximal.

164. Let 𝑎, 𝑏, 𝑐 ∈ ℝ and 𝑎 < 3 and all roots of 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 are negative real
numbers. Prove that 𝑏 + 𝑐 < 4.

165. 𝑥𝑝(𝑥 − 1) = (𝑥 − 30)𝑝(𝑥) ∀ 𝑥 ∈ ℝ, find all such polynomial 𝑝(𝑥).

166. Find a polynomial 𝑝(𝑥) if it exist such that 𝑥𝑝(𝑥 − 1) = (𝑥 + 1)𝑝(𝑥).

167. Let 𝑓(𝑥) be a quadratic function. Suppose 𝑓(𝑥) = 𝑥 has no real roots, then prove that
𝑓(𝑓(𝑥)) = 𝑥 has also no real roots.

168. The polynnomial 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 with integral coefficients is divisible by 7
for every integer 𝑥. Show that 7|𝑎, 7|𝑏, 7|𝑐, 7|𝑑, 7|𝑒.

169. Prove that 𝑎2 + 𝑎𝑏 + 𝑏2 ≥ 3(𝑎 + 𝑏 − 1) ∀ 𝑎,𝑏 ∈ ℝ.
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170. Let 𝑝(𝑥) = 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1. Find the remainder on dividing 𝑝(𝑥5) by 𝑝(𝑥).

171. Find the remainder when 𝑥2025 is divided by (𝑥2 + 1)(𝑥2 + 𝑥 + 1).

172. Prove that there does not exist a polynomial, 𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛,
such that 𝑝(0), 𝑝(1), 𝑝(2), … are all prime numbers.

173. Solve: 𝑥 +√

𝑎 +√


𝑥 = 𝑎 for real 𝑥 and 𝑎.

174. Solve: 𝑥2 −√

𝑎 − 𝑥 = 𝑎 for real 𝑥 and 𝑎.

175. Solve: √

𝑎 −√


𝑎 + 𝑥 = 𝑥 for real 𝑥 and 𝑎.

176. The polynomial 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0 has integral coefficinets with 𝑎𝑑 odd and 𝑏𝑐
even. Prove that all the roots cannot rational.

177. If roots of 𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑎𝑥 + 1 = 0 has real roots, then find the minimum value of
𝑎2 + 𝑏2.

178. If the coefficient of 𝑥𝑘 upon the expansion and collecting of terms in the expansion

(⋯(((𝑥 − 2)2 − 2)2 − 2)
2
⋯ − 2)

2

⏟
𝑛 times

is 𝑎𝑘, then find 𝑎0, 𝑎1, 𝑎2 and 𝑎2𝑘.

179. Prove that the equations 𝑥2 − 3𝑥𝑦 + 2𝑦2 + 𝑥 − 𝑦 = 0 and 𝑥2 − 2𝑥𝑦 + 𝑦2 − 5𝑥 + 7𝑦 = 0
imply the equation 𝑥𝑦 − 12𝑥 + 15𝑦 = 0.

180. If 𝑎 and 𝑏 are integers, and the solution of the equation 𝑦 − 2𝑥 − 𝑎 = 0 and 𝑦2 − 𝑥𝑦 +
𝑥2 − 𝑏 = 0 are rational, then prove that the solutions are integers.

181. Solve the following system of equations for real numbers 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 : 3𝑎 = (𝑏 + 𝑐 +
𝑑)3, 3𝑏 = (𝑐 + 𝑑 + 𝑒)3, 𝑐 = (𝑑 + 𝑒 + 𝑑)3, 𝑑 = (𝑒 + 𝑎 + 𝑏)3, 3𝑒 = (𝑎 + 𝑏 + 𝑐)3.

182. Solve for real numbers 𝑥 and 𝑦, simultaneously the equations 𝑥𝑦2 = 15𝑥2+ 17𝑥𝑦 + 15𝑦2

and 𝑥2𝑦 = 20𝑥2 + 3𝑦2.

183. Solve the system of equations in integers: 3𝑥2 − 3𝑥𝑦 + 𝑦2 = 7, 2𝑥2 − 3𝑥𝑦 + 2𝑦2 = 14.

184. In the sequence 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛, the sum of any three consecutive terms is 40; if the
third term is 10, and the eighth term is 8; find the 2013th term.

185. A sequence has first term 2007, after which every term is the sum of the squares of the
digits of the preceding term. Find the sum of this sequence up to 2013 terms.

186. Find a finite sequence of 16 numbers, such that it reads same from left to right as
from right to left, the sum of any 7 consecutive terms is −1, and the sum of any 11
consecutive terms is +1.

187. A two-pan balance is inaccurate since its balance arms are of different lengths and
its pans are of different weights. Three objects of different weights 𝐴, 𝐵 and 𝐶 are



Polynomials and Theory of Equations 111

each weighed separately. When they are placed on left pan, they are balanced by
weights 𝐴1, 𝐵1 and 𝐶1 respectively. When 𝐴 and 𝐵 are placed in the right pan, they
are balanced by 𝐴2 and 𝐵2 respectively. Determine the true weights of 𝐶 in terms
of 𝐴1, 𝐵1, 𝐶1, 𝐴2 and 𝐵2.

188. If 𝑎 and 𝑏 are two of the roots of 𝑥4 + 𝑥3 − 1 = 0, prove that 𝑎𝑏 is a root of
𝑥6 + 𝑥4 + 𝑥3 − 𝑥2 − 1 = 0.

189. If 𝑃 (𝑥), 𝑄(𝑥), 𝑅(𝑥) and 𝑆(𝑥) are all polynomials, such that 𝑃 (𝑥5) + 𝑥𝑄(𝑥5) +
𝑥2𝑅(𝑥5) = (𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1)𝑆(𝑥), prove that (𝑥 − 1) is a factor of 𝑃 (𝑥).

190. If 𝑥5 − 𝑥3 + 𝑎, prove that 𝑥6 ≥ 2𝑎 − 1.

191. The roots 𝑥1, 𝑥2 and 𝑥3 of the equation 𝑥3 + 𝑎𝑥 + 𝑎 = 0, where 𝑎 is real and 𝑎 ≠ 0,
satisfy 𝑥

2
1
⁄

𝑥2 +
𝑥22
⁄

𝑥3 +
𝑥23
⁄

𝑥1 = −8, find 𝑥1, 𝑥2 and 𝑥3.

192. Let 𝑝(𝑥) be a polynomial with degree 2008 and leading coefficient 1 such that
𝑝(0) = 2007, 𝑝(1) = 2006, 𝑝(2) = 2005, … , 𝑝(2007) = 0; determine 𝑝(2008).

193. If 𝑃 (𝑥) denotes a polynomial of degree 𝑛, such that 𝑃 (𝑘) = 1
⁄

𝑘, for 𝑘 = 1, 2, 3, … , 𝑛+ 1,
find 𝑃 (𝑛 + 1).

194. If 𝑃 (𝑥) denotes a polynomial of degree 𝑛, such that 𝑃 (𝑘) = 𝑘⁄
𝑘+1, for 𝑘 = 1, 2, 3, … , 𝑛,

find 𝑃 (𝑛 + 1).

195. Let 𝑎, 𝑏 and 𝑐 denote three integers, and let 𝑃 denote a polynomial having all integral
coefficients. Show that it is impossible that 𝑃 (𝑎) = 𝑏, 𝑃 (𝑏) = 𝑐 and 𝑃 (𝑐) = 𝑎.

196. In the polynomial 𝑃 (𝑥) = 𝑥𝑛 + 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛−2 + ⋯+ 𝑎𝑛−1𝑥 + 1, the coefficients
𝑎1, 𝑎2, … , 𝑎𝑛−1 are non-negative, and it has 𝑛 real roots. Prove that 𝑃 (2) ≥ 3𝑛.

197. Determine all the polynomials of degree 𝑛 with each of its 𝑛 + 1 coefficients equal
to ±1, which have only real roots.

198. Let 𝑝(𝑥) be a polynomial over ℤ, and at three distinct integers it takes ±1 value,
prove that it has no integral roots.

199. Let 𝛼, 𝛽 be the roots of 𝑥2 − 6𝑥 + 1 = 0. Prove that 𝛼𝑛 + 𝛽𝑛 ∈ ℤ ∀ 𝑛 ∈ ℕ, also prove
that 5 ∤ (𝛼𝑛 + 𝛽𝑛) ∀ 𝑛 ∈ ℕ.

200. Let 𝑃 (𝑥) be a polynomial with real coefficients such that 𝑃 (𝑥) ≥ 0 for every real 𝑥.
Prove that 𝑃 (𝑥) = 𝑓1(𝑥)2 + 𝑓2(𝑥)2 + ⋯ + 𝑓𝑛(𝑥)2.

201. Is it possible to find three quadratic polynomial 𝑓(𝑥), 𝑔(𝑥), ℎ(𝑥) such that the equation
𝑓(𝑔(ℎ(𝑥))) has eight roots 1, 2, 3, 4, 5, 6, 7, 8.

202. Let 𝑃 (𝑧) = 𝑎𝑧3 + 𝑏𝑧2 + 𝑐𝑧 + 𝑑, where 𝑎, 𝑏, 𝑐, 𝑑 are complex numbers with |𝑎| = |𝑏| =
|𝑐| = |𝑑| = 1. Show that |𝑃 (𝑧) | ≥ √



6 for at least one complex number 𝑧 satisfying
|𝑧| = 1.
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203. Consider two monic polynomials 𝑓(𝑥) and 𝑔(𝑥) of degree 4 and 2 respectively over
real numbers. Let there be an interval (𝑎, 𝑏) of length more than 2 such that both
𝑓(𝑥) and 𝑔(𝑥) are negative for 𝑥 ∈ (𝑎, 𝑏) and both are positive for 𝑥 < 𝑎 and 𝑥 > 𝑏.
Prove that there is a real number 𝛼 such that 𝑓(𝛼) < 𝑔(𝛼).

204. Let 𝑃1(𝑥) = 𝑥2− 2 and 𝑃𝑗(𝑥) = 𝑃1(𝑃𝑖(𝑥)) ∀ 𝑖 = 1, 2, 3, …. Show that for any positive
integer 𝑛, the roots of the equation 𝑃𝑛(𝑥) = 𝑥 are real and distinct.

205. Find all polynomials 𝑓 satisfying 𝑓(𝑥2)+ 𝑓(𝑥)𝑓(𝑥 + 1) = 0 ∀𝑥 ∈ ℂ.

206. Find all polynomials 𝑃 (𝑥), for which 𝑃 (𝑥)𝑃 (2𝑥2) = 𝑃 (2𝑥3 + 𝑥) ∀𝑥 ∈ ℝ.

207. Find all polynomials 𝑓(𝑥) such that 𝑓(𝑥)𝑓(𝑥 + 1) = 𝑓(𝑥2 + 𝑥 + 1).

208. Find all polynomials 𝑓(𝑥) such that 𝑓(𝑥)𝑓(−𝑥) = 𝑓(𝑥2).

209. Prove that if a polynomial of degree 7 over ℤ is equal to ±1 for 7 different integers
then it is irreducible over ℤ.

210. Prove that (𝑥 − 𝑎1)2(𝑥 − 𝑎2)2 ⋯ (𝑥 − 𝑎𝑛)2 + 1 is irreducible over ℤ.

211. For what values of (1 +𝑚)𝑥2 − 2(1 + 3𝑚)𝑥 + (1 + 8𝑚) = 0 has equal roots?

212. If 𝑎+𝑏+𝑐 = 0 and 𝑎,𝑏,𝑐 are rational. Prove that the roots of the equation (𝑏+𝑐−𝑎)𝑥2+
(𝑐 + 𝑎 − 𝑏)𝑥 + (𝑎 + 𝑏 − 𝑐) = 0 are rational.

213. Show that if the roots of the equation (𝑎2 + 𝑏2)𝑥2 + 2(𝑎𝑐 + 𝑏𝑑)𝑥 + 𝑐2 + 𝑑2 = 0 are
real, they will be equal.

214. If the roots of the equation 𝑎(𝑏 − 𝑐)𝑥2 + 𝑏(𝑐 − 𝑎)𝑥 + 𝑐(𝑎 − 𝑏) = 0 be equal, prove
that 𝑎, 𝑏, 𝑐 are in H.P.

215. If 𝑎 + 𝑏 + 𝑐 = 0 and 𝑎,𝑏,𝑐 are real, prove that equation (𝑏 − 𝑥)2 − 4(𝑎 − 𝑥)(𝑐 − 𝑥) = 0
has real roots and roots will not be equal unless 𝑎 = 𝑏 = 𝑐.

216. Show that if 𝑝,𝑞,𝑟,𝑠 are real numbers and 𝑝𝑟 = 2(𝑞 + 𝑠) then at least one of the
equations 𝑥2 + 𝑝𝑥 + 𝑞 = 0 and 𝑥2 + 𝑟𝑥 + 𝑠 = 0 has real roots.

217. If the equation 𝑥2 − 2𝑝𝑥 + 𝑞 = 0 has two equal roots, then the equation (1 + 𝑦)𝑥2 −
2(𝑝 + 𝑦)𝑥 + (𝑞 + 𝑦) = 0 will have its roots real and distinct only when 𝑦 is negative
and 𝑝 is not unity.

218. If the equation 𝑎𝑥2 + 2𝑏𝑥 + 𝑐 = 0 has real roots. 𝑎,𝑏,𝑐 being real numbers and
if 𝑚 and 𝑛 are real numbers such that 𝑚2 > 𝑛2 > 0 then prove that the equation
𝑎𝑥2 + 2𝑚𝑏𝑥 + 𝑛𝑐 = 0 has real roots.'

219. If theq equations 𝑎𝑥 + 𝑏𝑦 = 1 and 𝑐𝑥2 + 𝑑𝑦2 = 1 have only one solution, prove that
𝑎2
⁄

𝑐 + 𝑏2
⁄

𝑑 = 1 and 𝑥 = 𝑎
⁄

𝑐 , 𝑦 =
𝑏⁄
𝑑.

220. If 𝑟 be the ratio of the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, show that (𝑟+1)
2⁄

𝑟 = 𝑏2
⁄

𝑎𝑐.
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221. If one root of the eq. (𝑙 − 𝑚)𝑥2 + 𝑙𝑥 + 1 = 0 be double of the other and if 𝑙 be real,
show that 𝑚 ≤ 9
⁄

7.

222. If one root of the quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 is equal to the 𝑛th power of the
other, then show that

(𝑎𝑐𝑛)1/(𝑛+1)+ (𝑎𝑛𝑐)1/(𝑛+1)+ 𝑏 = 0

223. If the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 be in the ratio 𝑝 : 𝑞, show that

√

𝑝
⁄

𝑞 +
√

𝑞
⁄

𝑝 +
√

𝑐⁄
𝑎 = 0

224. If 𝛼 and 𝛽 be the roots of the equation 𝑥2 + 𝑝𝑥+ 𝑞 = 0. Find the value of the following
in the terms of 𝑝 and 𝑞.

i. 𝛼2⁄
𝛽 + 𝛽2⁄

𝛼

ii. (𝜔𝛼 + 𝜔2𝛽)(𝜔2𝛼 + 𝜔𝛽), where 𝜔 an imaginary cube root fo unity.

225. If 𝛼 and 𝛽 be the roots of the equation 𝐴(𝑥2 +𝑚2)+𝐴𝑚𝑥 + 𝑐𝑚2𝑥2 = 0, prove that
𝐴(𝛼2 + 𝛽2)+𝐴𝛼𝛽 + 𝑐𝛼2𝛽2 = 0.

226. If 𝛼 and 𝛽 be the roots of the euqation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, prove that 𝑎(𝛼
2⁄
𝛽 + 𝛽2⁄

𝛼 ) +

𝑏(𝛼⁄𝛽 + 𝛽⁄
𝛼) = 𝑏.

227. If 𝑎 and 𝑏 are the roots of the equation 𝑥2 + 𝑝𝑥 + 1 = 0 and 𝑐 and 𝑑 are the roots of
the equation 𝑥2 + 𝑞𝑥 + 1 = 0, show that 𝑞2 − 𝑝2 = (𝑎 − 𝑐)(𝑏 − 𝑐)(𝑎 + 𝑑)(𝑏 + 𝑑).

228. If the roots of the equation 𝑥2 + 𝑝𝑥 + 𝑞 = 0 differ from the roots of the equation
𝑥2 + 𝑞𝑥 + 𝑝 = 0 by the same quantity, show that 𝑝 + 𝑞 + 4 = 0.

229. If 𝛼, 𝛽 are the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 and 𝑆𝑛 = 𝛼𝑛 + 𝛽𝑛, show that
𝑎𝑆𝑛+1 + 𝑏𝑆𝑛 + 𝑐𝑆𝑛−1 = 0 and hence find 𝑆5.

230. If the sum of roots of the equation 𝑎𝑥2 + 𝑏𝑐 + 𝑐 = 0 is equal to the sum of the squares
of their reciprocals, show that 𝑏𝑐2, 𝑐𝑎2, 𝑎𝑏2 are in A.P.

231. If 𝛼 and 𝛽 be the values of 𝑥 obtained from the equation 𝑚2(𝑥2 − 𝑥)+ 2𝑚𝑥 + 3 = 0
and if 𝑚1 and 𝑚2 be the two values of 𝑚 for which 𝛼 and 𝛽 are connected by the
relation 𝛼⁄𝛽 + 𝛽⁄

𝛼 = 4
⁄

3, find the value of 𝑚
2
1
⁄

𝑚2
+ 𝑚2

2
⁄

𝑚1
.

232. If the ratio of the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 be equal to the roots of
equation 𝑎1𝑥2 + 𝑏1𝑥 + 𝑐1 = 0, prove that ( 𝑏

⁄

𝑏1)
2
= 𝑐𝑎⁄

𝑐1𝑎1.

233. Find the quantity equation with the rational coefficients one of whose roots is 1⁄
2+√


5.
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234. If 𝛼 and 𝛽 be the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, find the quantity equation
whose roots are 1⁄

𝑎𝛼+𝑏 and 1⁄
𝑎𝛽+𝑏.

235. If 𝑐, 𝑑 are the roots of the equation (𝑥 − 𝑎)(𝑥 − 𝑏) = 𝑘, show that 𝑎,𝑏 are the roots of
the equation (𝑥 − 𝑐)(𝑥 − 𝑑)+ 𝑘 = 0

236. The coefficients of 𝑥 in the equation 𝑥2+ 𝑝𝑥+ 𝑞 = 0 was wrongly written as 17 in place
of 13 and roots were found to be −2 and −15. Find the roots of the correct equation.

237. If 𝛼 and 𝛽 be the roots of the equation 𝑥2 + 𝑝𝑥 + 𝑞 = 0, show that 𝛼⁄𝛽 is a root of the
equation 𝑞𝑥2 − (𝑝2 − 2𝑞)𝑥 + 𝑞 = 0.

238. If 𝑥2 − 𝑎𝑥 + 𝑏 = 0 and 𝑥2 − 𝑝𝑥 + 𝑞 = 0 have a common root and the second equation
has equal roots then show that 𝑏 + 𝑞 = 𝑎𝑝⁄

2 .

239. If 𝑎𝑥2 + 2𝑏𝑥 + 𝑐 = 0 and 𝑎1𝑥2 + 2𝑏1𝑥 + 𝑐1 = 0 have a common root and 𝑎⁄𝑎1 ,
𝑏
⁄

𝑏1 ,
𝑐⁄
𝑐1 are

in A.P., show that 𝑎1, 𝑏1, 𝑐1 are in G.P.

240. If each pair of the following three equations 𝑥2 + 𝑝1𝑥 + 𝑞1 = 0, 𝑥2 + 𝑝2𝑥 + 𝑞2 =
0, 𝑥2+ 𝑝3𝑥+𝑞3 = 0 have exactly one root in common, then show that (𝑝1+ 𝑝2+ 𝑝3)2 =
4(𝑝1𝑝2 + 𝑝2𝑝3 + 𝑝3𝑝1 − 𝑞1 − 𝑞2 − 𝑞3).

241. If the equations 𝑥2 + 𝑐𝑥 + 𝑏𝑐 = 0 and 𝑥2 + 𝑏𝑥 + 𝑐𝑎 = 0 have a common root, show
that 𝑎 + 𝑏 + 𝑐 = 0; show that other roots are given by the equation 𝑥2 + 𝑎𝑥 + 𝑏𝑐 = 0.

242. If 𝑎, 𝑏, 𝑐 ∈ ℝ and equations 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 and 𝑥2 + 2𝑥 + 9 = 0 have a common root,
show that 𝑎 : 𝑏 : 𝑐 = 1 : 2 : 9.

243. Find the value of 𝑝 if the equation 3𝑥2 − 2𝑥 + 𝑝 = 0 and 6𝑥2 − 17𝑥 + 12 = 0 have a
common root.

244. Show that |𝑥|2 − |𝑥|− 2 = 0 is an equation.

245. Show that (𝑥+𝑏)(𝑥+𝑐)⁄
(𝑏−𝑎)(𝑐−𝑎) +

(𝑥+𝑐)(𝑥+𝑎)⁄
(𝑐−𝑏)(𝑎−𝑏) +

(𝑥+𝑎)(𝑥+𝑏)⁄
(𝑎−𝑐)(𝑏−𝑐) = 1 is an indenity.

246. If 𝑎, 𝑏, 𝑐, 𝑎1, 𝑏1, 𝑐1 are rational and equations 𝑎𝑥2+2𝑏𝑥+𝑐 = 0 and 𝑎1𝑥2+2𝑏1𝑥+𝑐1 = 0
have one and only one root in common, prove that 𝑏2 − 𝑎𝑐 and 𝑏21 − 𝑎1𝑐1 must be
perfect squares.

247. If (𝑎2− 1)𝑥2+ (𝑎− 1)𝑥+ 𝑎2− 4𝑎+ 3 = 0 be an identity in 𝑥, then find the value of 𝑎.

248. Solve (𝑥 + 1
⁄

𝑥)
2
= 4 + 3
⁄

2 (𝑥 +
1
⁄

𝑥).

249. Solve (𝑥 + 4)(𝑥 + 7)(𝑥 + 8)(𝑥 + 11)+ 20 = 0.

250. Solve 32𝑥+1 + 32 = 3𝑥+3 + 3𝑥.

251. Solve (5 + 2√


6)𝑥
2−3 + (5 − 2√


6)𝑥
2−3 = 10.
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252. A car travels 25 km per hour faster than a bus for a jouney of 500 km. The bus takes
10 hours more than the car. Find the speed of the bus and the car.

253. Show that the roots of the equation (𝑎+ 𝑏)2𝑥2− 2(𝑎2− 𝑏2)𝑥+ (𝑎− 𝑏)2 = 0 are equal.

254. Show that the equation 3𝑥2 + 7𝑧 + 8 = 0 cannot be satisfied by any real values of 𝑥.

255. For what values of 𝑎 will the roots of the equation 3𝑥2+ (7 + 𝑎)𝑥+ 8− 𝑎 = 0 be equal.

256. If the roots of the equation (𝑎2 + 𝑏2)𝑥2 + 2(𝑎𝑐 + 𝑏𝑑)𝑥 + (𝑐2 + 𝑑2) = 0 are equal then
show that 𝑎 : 𝑏 = 𝑐 : 𝑑.

257. Prove that the roots of the equation (𝑏 − 𝑐)𝑥2 + 2(𝑐 − 𝑎)𝑥 + (𝑎 − 𝑏) = 0 are always
real.

258. Show that the roots of the equation 1
⁄

𝑥−𝑎 +
1
⁄

𝑎 +
1
⁄

𝑥−1 = 0 are real for all real values of 𝑎.

259. Show that if 𝑎 + 𝑏 + 𝑐 = 0, the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 are rational.

260. Prove that the roots of the equation (𝑏 + 𝑐 − 2𝑎)𝑥2 + (𝑐 + 𝑎− 2𝑏)𝑥+ (𝑎+ 𝑏 − 2𝑐) = 0
are rational.

261. Show that the roots of the equation 𝑥2 + 𝑟𝑥+ 𝑠 = 0 will be rational if 𝑟 = 𝑘 + 𝑠
⁄

𝑘, where
𝑟, 𝑠 and 𝑘 are rational.

262. Prove that roots of the equation (𝑥− 𝑎)(𝑥− 𝑏)+ (𝑥− 𝑏)(𝑥− 𝑐)+ (𝑥− 𝑐)(𝑥− 𝑎) = 0
are always real and cannot be equal unless 𝑎 = 𝑏 = 𝑐.

263. If 𝑎, 𝑏, 𝑐 are rational, show that the roots of the equation 𝑎2(𝑏2−𝑐2)𝑥2+𝑏2(𝑐2−𝑎2)𝑥+
𝑐2(𝑎2 − 𝑏2) = 0 are rational.

264. Show that the roots of the equation (𝑎4 + 𝑏4)𝑥2 + 4𝑎𝑏𝑐𝑑𝑥 + 𝑐4 + 𝑑4 = 0 cannot be
different, if real.

265. If 𝑝, 𝑞, 𝑟 are in H.P. and 𝑝 and 𝑟 are of the same sign, prove that the roots of the
equation 𝑝𝑥2 + 2𝑞𝑥 + 𝑟 = 0 will be complex.

266. Prove that the roots of the equation 𝑏𝑥2 + (𝑏 − 𝑐)𝑥 + (𝑏 − 𝑐 − 𝑎) = 0 are real if those
of equation 𝑎𝑥2 + 2𝑏𝑥 + 𝑏 = 0 are imaginary and vice-versa.

267. Prove that the values of 𝑥 obtained from the equations 𝑎𝑥2 + 𝑏𝑦2 = 1 and 𝑎𝑥 + 𝑏𝑦 = 1
will be equal if 𝑎 + 𝑏 = 1.

268. Prove that the values of 𝑥 obtained from the equations 𝑥2 + 𝑦2 = 𝑎2 and 𝑦 = 𝑚𝑥 + 𝑐
will be equal if 𝑐2 = 𝑎2(1 +𝑚2).

269. The roots of the equation 4𝑥2− (5𝑎+ 1)𝑥+ 5𝑎 = 0 are 𝛼 and 𝛽. If 𝛽 = 1+𝛼, calculate
the possible values of 𝑎, 𝛼 and 𝛽.

270. If one root of the equation 5𝑥2 + 13𝑥 + 𝑘 = 0 be reciprocal of another, find 𝑘.



Polynomials and Theory of Equations 116

271. Find the values of 𝑚, for which the equation 5𝑥2 − 4𝑥 + 2 +𝑚(4𝑥2 − 2𝑥 − 1) = 0 has
(a) equal roots, (b)the products of root is 2, and (c) the sum of roots is 6.

272. Find the relation between the coefficients of the quadratic equal 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 if
one root is 𝑛 times the another.

273. If the roots of the equation 𝑎𝑥2+𝑏𝑥+𝑐 = 0 are in the ratio 3 : 4, prove that 12𝑏2 = 49𝑎𝑐.

274. If the roots of the equation 4𝑥2 + 𝑎𝑥 + 3 = 0 are in the ratio 1 : 2, show that the roots
of the equation 𝑎𝑥2 + 3𝑥 + 𝑎 = 2 are imaginary.

275. If one root of the equation 𝑥2 − 𝑝𝑥 + 𝑞 = 0 be 𝑚 times their difference, prove that
𝑝2(𝑚2 − 1) = 4𝑚2𝑞.

276. If the difference of the roots 𝑥2 − 𝑝𝑥 + 𝑞 = 0 is unity, then prove that 𝑝2 − 4𝑞 = 1 and
𝑝2 + 4𝑞 = (1 + 2𝑞)2.

277. Find the condition that the equation 𝑎
⁄

𝑥−𝑎+
𝑏⁄

𝑥−𝑏 = 𝑚 may have roots equal in magnitude
but opposite in sign.

278. Find the relation between coefficients of the euqation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 if one root
exceeds other by 𝑘.

279. If one root of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 be square of the other, show that
𝑏3 + 𝑎2𝑐 + 𝑎𝑐2 = 3𝑎𝑏𝑐.

280. Determine the value 𝑝 for which one root of the equation 𝑥2 + 𝑝𝑥 + 1 = 0 is the square
of the other.

281. If one root of the equation 𝑥2 + 𝑝𝑥 + 𝑞 = 0 be the square of the other then show that
𝑝3 − 𝑞(3𝑝 − 1)+ 𝑞2 = 0.

282. If 𝛼, 𝛽 be the roots of the equation 2𝑥2 + 3𝑥 + 4 = 0. Find the values of

i. 𝛼2 + 𝛽2

ii. 𝛼⁄
𝛽 +

𝛽⁄
𝛼

283. If 𝛼, 𝛽 are the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, find the values of 𝛼
2⁄
𝛽 + 𝛽2⁄

𝛼 in
terms of 𝑎, 𝑏, 𝑐.

284. If 𝛼, 𝛽 are the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, prove that √

𝛼⁄
𝛽 +√


𝛽⁄
𝛼 +√


𝑏
⁄

𝑎 = 0.

285. Show that the two equations 𝑥2 − 2𝑎𝑥 + 𝑏2 = 0 and 𝑥2 − 2𝑏𝑥 + 𝑏2 = 0 are such that
the G.M. of the roots of one is equal to the A.M. of the roots of the another.

286. If sum of the roots of the equation 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0 be equal to the sum of their
squares, show that 2𝑝𝑟 = 𝑝𝑞 + 𝑞2.

287. If 𝛼, 𝛽 be the roots of the equation 𝑥2 − 𝑝𝑥 + 𝑞 = 0, prove that 𝛼
2⁄

𝛽2 +
𝛽2⁄
𝛼2 =

𝑝4
⁄

𝑞2 −
4𝑝2⁄
𝑞 + 2.
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288. If 𝛼, 𝛽 be the roots of the equation 𝑎𝑥2+𝑏𝑥+𝑐 = 0, find the value of 1⁄
(𝑎𝛼+𝑏)2+

1⁄
(𝑎𝛽+𝑏)2.

289. If 𝛼, 𝛽 be the roots of the equation 𝜆(𝑥2 − 𝑥)+ 𝑥+ 5 = 0 and if 𝜆1 and 𝜆2 are the two
values for which the roots 𝛼, 𝛽 are connected by the relation 𝛼⁄𝛽 + 𝛽⁄

𝛼 = 4
⁄

5, then prove that

i. 𝜆1⁄
𝜆2
+ 𝜆2⁄

𝜆1
= 254

ii. 𝜆2
1⁄

𝜆2
+ 𝜆2

2⁄
𝜆1

= 4048

290. If 𝛼, 𝛽 be the roots of the equation 𝑥2+ 𝑝𝑥+ 𝑞 = 0 and 𝛾, 𝛿 be the roots of the equation
𝑥2 + 𝑟𝑥 + 𝑠 = 0, find the values of

i. (𝛼 + 𝛾)(𝛼 + 𝛿)(𝛽 + 𝛾)(𝛽 + 𝛿)

ii. (𝛼 − 𝛾)(𝛽 − 𝛿)+ (𝛽 − 𝛾)(𝛼 − 𝛿)

iii. (𝛼 − 𝛾)2 + (𝛽 − 𝛿)2 + (𝛽 − 𝛾)2 + (𝛼 − 𝛿)2

291. If 𝛼, 𝛽 be the roots of the equation 𝑥2 − 𝑝𝑥 + 𝑞 = 0 and 𝜈𝑛 = 𝛼𝑛 + 𝛽𝑛, prove that
𝜈𝑛+1 = 𝑝𝜈𝑛−1 − 𝑞𝜈𝑛−1.

292. If 𝛼, 𝛽 be the roots of the equation 𝑥2 + 𝑝𝑥 + 𝑞 = 0 and 𝛾, 𝛿 those of equation
𝑥2 + 𝑝𝑥 + 𝑟 = 0, prove that (𝛼 − 𝛾)(𝛼 − 𝛿) = (𝛽 − 𝛾)(𝛽 − 𝛿) = −(𝑞 + 𝑟).

293. If 𝛼, 𝛽 be the roots of the equation 𝑥2 − 2𝑝𝑥 + 𝑞 = 0 and 𝛾, 𝛿 those of equation
𝑥2 − 2𝑟𝑥 + 𝑠 = 0 and if

i. 𝛼𝛿 = 𝛽𝛾, prove that 𝑝2𝑠 = 𝑟2𝑞.

ii. 𝛼, 𝛽, 𝛾, 𝛿 be in G.P., prove that 𝑝2𝑠 = 𝑟2𝑞

iii. 𝛼, 𝛽, 𝛾, 𝛿 be in A.P., prove that 𝑠 − 𝑞 = 𝑟2 − 𝑝2.

294. If the roots of the equation 𝑎𝑥2 + 2𝑏𝑥 + 𝑐 = 0 be 𝛼 and 𝛽, and those of the equation
𝐴𝑥2 + 2𝐵𝑥 + 𝐶 = 0 be 𝛼 + 𝑘 and 𝛽 + 𝑘, prove that 𝑏2−𝑎𝑐⁄

𝐵2−𝐴𝐶 = 𝑎2⁄
𝐴2.

295. If the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 be 𝛼 and 𝛽, and those of the equation
𝐴𝑥2 + 𝐵𝑥 + 𝐶 = 0 be 𝛼 + 𝑘 and 𝛽 + 𝑘, prove that 𝑏2−4𝑎𝑐⁄

𝐵2−4𝐴𝐶 = 𝑎2⁄
𝐴2.

296. If the roots of the equation 𝑥2 + 2𝑝𝑥 + 𝑞 = 0 and 𝑥2 + 2𝑞𝑥 + 𝑝 = 0 differ by a constant
then show that 𝑝 + 𝑞 + 1 = 0.

297. If 𝛼, 𝛽 be the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 then find the equations whose
roots are

i. 𝛼⁄
𝛽 and 𝛽⁄𝛼

ii. 𝛼2⁄
𝛽 and 𝛽

2⁄
𝛼
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iii. (𝛼 + 𝛽)2 and (𝛼 − 𝛽)2

iv. 1−𝛼⁄
1+𝛼 and 1−𝛽⁄1+𝛽

v. 1⁄
(𝛼+𝛽)2 and (𝛼 − 𝛽)2

298. Find those equations whose roots are (a) reciprocal of the roots of (b) equal in
magnitude but opposite in sign to the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0.

299. If 𝛼, 𝛽 be the roots of the equation 𝑥2 + 𝑝𝑥 + 𝑞 = 0, find the value of (a) 𝛼4 + 𝛽4 (b)
𝛼−4 + 𝛽−4

300. If 𝛼, 𝛽 be the roots of the equation 𝑥2 − 𝑝𝑥 + 𝑞 = 0, find the equation whose roots are

i. 𝑞⁄
𝑝−𝛼 and 𝑞⁄

𝑝−𝛽

ii. 𝛼 + 1⁄
𝛽 and 𝛽 + 1⁄

𝛼

301. Find the values of 𝑝 and 𝑞 such that the equation 𝑥2 + 𝑝𝑥 + 𝑞 = 0 has 5 + 3𝑖 as a root.

302. Form the quadratic equation whose one root is 3 + 4𝑖.

303. If one root of the equation 4𝑥2 + 2𝑥 − 1 = 0 be 𝛼 then prove that its second root is
4𝛼2 − 3𝛼.

304. If 𝛼 ≠ 𝛽 and 𝛼2 = 5𝛼 − 3, 𝛽2 = 5𝛽 − 3, form the quadratic equation whose roots are 𝛼⁄𝛽
and 𝛽⁄𝛼.

305. In copying a quadratic equation of the form 𝑥2 + 𝑝𝑥 + 𝑞 = 0, the coefficient of 𝑥 was
wrongly written as −10 in place of −11 and the roots were found to be 4 and 6. Find
the roots of the correct equation.

306. In writing a quadratic equation of the form 𝑥2 + 𝑝𝑥 + 𝑞 = 0, the constant term was
wrongly written as −6 in place of 2 and the roots were found to be 6 and −1. Find the
correct equation.

307. Two candidaes attempt to solve a quadratic equation of the form 𝑥2 + 𝑝𝑥 + 𝑞 = 0. One
starts wiith a wrong values of 𝑝 and finds the roots to be 2 and 6. The other starts
with a wrong value of 𝑞 and finds the roots too be 2 and −9. Find the correct roots.

308. If 𝛼, 𝛽 be the roots of the quadratic equation 𝑥2+ 𝑝𝑥+ 𝑞 = 0 and 𝛼1, 𝛽1 be the roots of
the equation 𝑥2 − 𝑝𝑥 + 𝑞 = 0. Form the quadratic equation whose roots are 1⁄

𝛼1𝛽 +
1⁄

𝛼𝛽1
and 1⁄

𝛼𝛼1
+ 1⁄

𝛽𝛽1.

309. If 2 +√


3𝑖 is a root of the equation 𝑥2 + 𝑝𝑥 + 𝑞 = 0, where 𝑝, 𝑞 are real, then find
them.

310. Find the equation whose one root is 1⁄
2+√


3.
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311. If 𝛼, 𝛽 are the roots of equation 𝑥2 − 𝑝𝑥 + 𝑞 = 0, show that 𝛼 + 1⁄
𝛽 is a root of equation

𝑞𝑥2 − 𝑝(1 + 𝑞)𝑥 + (1 + 𝑞)2 = 0.

312. Determine the value of 𝑚 for which 3𝑥2 + 4𝑚𝑥 + 2 = 0 and 2𝑥2 + 3𝑥 − 2 = 0 may
have a common root.

313. Find the value of 𝑎 if 𝑥2 − 11𝑥 + 𝑎 = 0 and 𝑥2 − 14𝑥 + 2𝑎 = 0 have a common root.

314. If the equations 𝑎𝑥2 + 𝑏𝑥+ 𝑥 = 0 and 𝑏𝑥2 + 𝑐𝑥+ 𝑎 = 0 have a common root then show
either 𝑎 + 𝑏 + 𝑐 = 0 or 𝑎 = 𝑏 = 𝑐.

315. Find the value of 𝑚 so that equations 𝑥2 + 10𝑥 + 21 = 0 and 𝑥2 + 9𝑥 +𝑚 = 0 may
have a common root. Find also the equation formed by the other roots.

316. Show that the equations 𝑥2 − 𝑥 − 12 = 0 and 3𝑥2 + 10𝑥 + 3 = 0 have a common root.
Also, find the common root.

317. If the equations 3𝑥2 + 𝑝𝑥 + 1 = 0 and 2𝑥2 + 𝑞𝑥 + 1 = 0 have a common root, show
that 2𝑝2 + 3𝑞2 − 5𝑝𝑞 + 1 = 0.

318. Show that the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 and 𝑥2 + 𝑥 + 1 = 0 cannot have a common
root unless 𝑎 = 𝑏 = 𝑐.

319. If the equations 𝑥2 + 𝑝𝑥 + 𝑞 = 0 and 𝑥2 + 𝑝1𝑥 + 𝑞1 = 0 have a common root, show
that it must be either 𝑝𝑞1−𝑝1𝑞⁄

𝑞−𝑞1 or 𝑞−𝑞1⁄
𝑝1−𝑝.

320. Prove that the two quadratic equations 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 and 2𝑥2 − 3𝑥 + 4 = 0 cannot
have common root unless 6𝑎 = −4𝑏 = 3𝑐.

321. Prove that the equations (𝑞 − 𝑟)𝑥2+ (𝑟 − 𝑝)𝑥+ 𝑝− 𝑞 = 0 and (𝑟 − 𝑝)𝑥2+ (𝑝 − 𝑞)𝑥+
𝑞 − 𝑟 = 0 have a common root.

322. If the equations 𝑥2 + 𝑎𝑏𝑥 + 𝑐 = 0 and 𝑥2 + 𝑎𝑐𝑥 + 𝑏 = 0 have a common root, prove
that their other roots satisfy the equation 𝑥2 − 𝑎(𝑏 + 𝑐)𝑥 + 𝑎2𝑏𝑐 = 0.

323. If the equations 𝑥2 − 𝑝𝑥 + 𝑞 = 0 and 𝑥2 − 𝑎𝑥 + 𝑏 = 0 have a common root and the
other root of the second equation is the reciprocal of the other root of the first, then
prove that (𝑞 − 𝑏)2 = 𝑏𝑞(𝑝 − 𝑎)2.

324. Show that (𝑥 − 2)(𝑥 − 3)− 8(𝑥 − 1)(𝑥 − 3)+ 9(𝑥 − 1)(𝑥 − 2) = 2𝑥2 is an identity.

325. Show that 𝑎
2(𝑥−𝑏)(𝑥−𝑐)⁄
(𝑎−𝑏)(𝑎−𝑐) + 𝑏2(𝑥−𝑎)(𝑥−𝑐)⁄

(𝑏−𝑎)(𝑏−𝑐) + 𝑐2(𝑥−𝑎)(𝑥−𝑏)⁄
(𝑐−𝑎)(𝑐−𝑏) = 𝑥2 is an identity.

326. Show that 3𝑥10 − 2𝑥5 + 8 = 0 is an equation.

327. Solve the equation 𝑥+2⁄𝑥−2 −
𝑥−2
⁄

𝑥+2 =
5
⁄

6.

328. Solve the equation 2√

𝑥+1⁄

3−√

𝑥 = 11−3√


𝑥⁄

5√

𝑥−9 .

329. Solve the equation (𝑥 + 1)(𝑥 + 2)(𝑥 − 3)(𝑥 − 4) = 336.
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330. Solve the equation √


𝑥 + 1 +√

2𝑥 − 5 = 3.

331. Solve the equation 22𝑥 + 2𝑥+2 − 32 = 0.

332. A pilot flies an aircraft with a cetain speed for a distance of 800 km. He could have
saved 40 minutes by increasing the average speed of the aircraft by 40 km/hour. Find
the average speed of the aircraft.

333. The length of a rectangle is 2 meters more than its width. If the length is increased
by 6 meters and width is decreased by 2 meters, the area becomes 119 sq. mt. Find the
dimensions of original rectangle.

334. Find the range of values of 𝑥 for which −𝑥2 + 3𝑥 + 4 > 0.

335. Find all integral values of 𝑥 for which 5𝑥 − 1 < (𝑥 + 1)2 < 7𝑥 − 3.

336. Find all values of 𝑥 for which the inequality 8𝑥
2+16𝑥−51⁄

(2𝑥−3)(𝑥+4) > 3 holds.

337. Show that the expression 𝑥
2−3𝑥+4⁄

𝑥2+3𝑥+4 lies between 7 and 1⁄7 for real values of 𝑥.

338. If 𝑥 be real, prove that the expression 𝑥
2+34𝑥−71⁄
𝑥2+2𝑥−7 has no value between 5 and 9.

339. If 𝑥 be real, show that the expression 4𝑥
2+36𝑥+9⁄

12𝑥2+8𝑥+1 can have any real value.

340. Prove that if 𝑥 is real, the expression (𝑥−𝑎)(𝑥−𝑐)⁄
𝑥−𝑏 is capable of assuming all values

if 𝑎 > 𝑏 > 𝑐 or 𝑎 < 𝑏 < 𝑐.

341. If 𝑥 + 𝑦 is constant, prove that 𝑥𝑦 is maximum when 𝑥 = 𝑦.

342. If 𝑥 be real, find the maximum value of 3 − 6𝑥 − 8𝑥2 and the corresponding value of 𝑥.

343. Prove that ∣ 12𝑥⁄
4𝑥2+9∣ ≤ 1 for all real values of 𝑥 or the equality being satisfied only if

|𝑥| = 3
⁄

2.

344. Prove that if the equation 𝑥2+ 9𝑦2− 4𝑥+ 3 = 0 is satisfied for real values of 𝑥 and 𝑦, 𝑥
must lie between 1 and 3, and 𝑦 must lies between −1

⁄

3 and 1⁄3.

345. Find the value of 𝑎 for which 𝑥2 − 𝑎𝑥 + 1 − 2𝑎2 > 0 for all real values of 𝑥.

346. Determine 𝑎 such that 𝑥2 − 11𝑥 + 𝑎 and 𝑥2 − 14𝑥 + 2𝑎 may have a common factor.

347. Find the condition that the expressions 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 and 𝑎1𝑥2 + 𝑏1𝑥𝑦 + 𝑐1𝑦2 may
have factors 𝑦 −𝑚𝑥 and 𝑚𝑦 − 𝑥 respectively.

348. Find the values of 𝑚 for which the expression 2𝑥2+𝑚𝑥𝑦+3𝑦2− 5𝑦 −2 can be resolved
into two linear factors.
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349. If the expression 𝑎𝑥2+ 𝑏𝑦2+ 𝑐𝑧2+2𝑎𝑦𝑧 +2𝑏𝑧𝑥+2𝑐𝑥𝑦 can be resolved into two rational
factors prove that 𝑎3 + 𝑏3 + 𝑐3 = 3𝑎𝑏𝑐.

350. Find the linear factors of 2𝑥2 − 𝑦2 − 𝑥 + 𝑥𝑦 + 2𝑦 − 1.

351. Show that the expression 𝑥2 + 2(𝑎 + 𝑏 + 𝑐)𝑥+ 3(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) will be a perfect square
if 𝑎 = 𝑏 = 𝑐.

352. If 𝑥 is real, prove that 2𝑥2 − 6𝑥 + 9 is always positive.

353. Prove that 8𝑥 − 15 − 𝑥2 > 0 for limited values of 𝑥 and also find the limits.

354. Find the range of the values of 𝑥 for which −𝑥2 + 5𝑥 − 4 > 0.

355. Find the range of the values of 𝑥 for which 𝑥2 + 6𝑥 − 27 > 0.

356. Find the solution set of inequation 4𝑥
⁄

𝑥2+3 ≥ 1, 𝑥 ∈ ℝ.

357. Find the real values of 𝑥 which satisfy 𝑥2 − 3𝑥 + 2 > 0 and 𝑥2 − 3𝑥 − 4 ≤ 0.

358. If 𝑥 be real and the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 are imaginary, prove that
𝑎2𝑥2 + 𝑎𝑏𝑥 + 𝑎𝑐 is always positve.

359. Prove that the expression 𝑥
2−2𝑥+4⁄

𝑥2+2𝑥+4 lies between 1⁄3 and 3 for real values of 𝑥.

360. If 𝑥 be real, show that 2𝑥
2−3𝑥+2⁄

2𝑥2+3𝑥+2 lies between 7 and 1⁄7.

361. If𝑝 > 1 and 𝑥 is real, show that 𝑥
2−2𝑥+𝑝2⁄

𝑥2+2𝑥+𝑝2 lies between 𝑝−1⁄𝑝+1 and 𝑝+1⁄𝑝−1.

362. if 𝑥 be real, prove that the expansion (𝑥−1)(𝑥+3)⁄
(𝑥−2)(𝑥+4) does not lie between 4⁄9 and 1.

363. if 𝑎2 + 𝑐2 > 𝑎𝑏 and 𝑏2 > 4𝑐2 for real 𝑥, show that 𝑥+𝑎⁄
𝑥2+𝑏𝑥+𝑐2 cannot lie betwen two

limits.

364. show that if 𝑥 real, the expression 𝑥2−𝑏𝑐⁄
2𝑥−𝑏−𝑐 has no real value between 𝑏 and 𝑐.

365. show that no real values of 𝑥 and 𝑦 besides 4 can satisfy the equation 𝑥2 − 𝑥𝑦 + 𝑦2 −
4𝑥 − 4𝑦 + 16 = 0.

366. prove that if 𝑥2 + 12𝑥𝑦 + 4𝑦2 + 4𝑥 + 8𝑦 + 20 = 0 is satisfied by real values of 𝑥 and
𝑦, 𝑥 cannot lies between −2 and 1 whereas 𝑦 cannot lie betweenn −1 and 1⁄2.

367. a rectangular field, one of whose sides is a straight edge of a river is to be enclosed by
600 meters of fencing on the remaining three sides. what would be the length and
breadth of the rectangle if the ecnlosed area is to be as large as possible.

368. find the condition that the expression 𝑎𝑥2 + 2ℎ𝑥𝑦 + 𝑏𝑦2 may have two factors of the
form 𝑦 −𝑚𝑥 and 𝑚𝑦 + 𝑥.
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369. if 𝑝(𝑥) = 𝑎𝑥2+ 𝑏𝑥+ 𝑐 and 𝑞(𝑥) = −𝑎𝑥2+ 𝑏𝑥+ 𝑐, where 𝑎𝑐 ≠ 0, show that the equation
𝑝(𝑥) .𝑞(𝑥) = 0 has at least two real roots.

370. prove that the roots of the equation 𝑏𝑥2 + (𝑏 − 𝑐)𝑥 + 𝑏 − 𝑐 − 𝑎 = 0 are real if those of
equation 𝑎𝑥2 + 2𝑏𝑥 + 𝑏 = 0 are imaginary and vice-versa, where 𝑎, 𝑏, 𝑐 ∈ 𝕣.

371. if 𝑎, 𝑏, 𝑐 are odd numbers, show that the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 cannot
be rational.

372. if roots of the equation 𝑎𝑥2+2𝑏𝑥+ 𝑐 = 0 are real and distinct, then show that the roots
of the equation (𝑎 + 𝑐)(𝑎𝑥2 + 2𝑏𝑥 + 𝑐) = 2(𝑎𝑐 − 𝑏2)(𝑥2 + 1) are complex numbers
and vice-versa.

373. if 𝑛, 𝑟 ∈ 𝕡 such that 0 < 𝑟 < 𝑛, then show that the roots of the quadratic equation
𝐶𝑛
𝑟−1𝑥

2 + 𝐶𝑛
𝑟 𝑥 + 𝐶𝑛

𝑟+1 = 0 are real and distinct.

374. show that the equation 𝑒sin𝑥 − 𝑒−sin𝑥 − 4 = 0 has no real solutions.

375. if 𝑎, 𝑏, 𝑐 are non-zero, real numbers and the equation 𝑎𝑧2 + 𝑏𝑧 + 𝑐 + 𝑖 = 0 have purely
imaginary roots then prove that 𝑎 = 𝑏2𝑐.

376. if 𝑎 and 𝑏 are integers and the roots of the equation 𝑥2 + 𝑎𝑥 + 𝑏 = 0 are rational, show
that they will be integers.

377. show that the quadratic equation 𝑥2 + 7𝑥 − 14(𝑞2 + 1) = 0, where 𝑞 is an integer has
no integral roots.

378. solve the equation 𝑎3(𝑏 − 𝑐)(𝑥− 𝑏)(𝑥− 𝑐)+ 𝑏3(𝑐 − 𝑎)(𝑥− 𝑎)(𝑥− 𝑐)+ 𝑐3(𝑎− 𝑏)(𝑥−
𝑎)(𝑥 − 𝑏) = 0. also show that the roots are equal if 1⁄

√


𝑎 ±
1⁄
√


𝑏 ±
1
⁄

𝑐 = 0.

379. if roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 be 𝑘+1⁄
𝑘 and 𝑘+2⁄

𝑘+1, prove that (𝑎 + 𝑏 + 𝑐)2 =
𝑏2 − 4𝑎𝑐.

380. if 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, and 𝛼, 𝛽 be the roots of the equation 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0,
show that 𝑓(𝛼)𝑓(𝛽) = (𝑐𝑝−𝑎𝑟)2−(𝑏𝑝−𝑎𝑞)(𝑐𝑞−𝑏𝑟)⁄

𝑝2 . hence or otherewise, show that if
𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0a nd 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0 have a common root, then 𝑏𝑝 − 𝑎𝑞, 𝑐𝑝 − 𝑎𝑟 and
𝑐𝑞 − 𝑏𝑟 are in g.p.

381. if 𝑎(𝑝 + 𝑞)2 + 2𝑝𝑏𝑞 + 𝑐 = 0 and 𝑎(𝑝 + 𝑟)2 + 2𝑏𝑝𝑟 + 𝑐 = 0, then show that 𝑞𝑟 = 𝑝2 + 𝑐
⁄

𝑎.

382. If 𝛼, 𝛽 are the roots of the equation 𝑥2− 𝑝(𝑥+ 1)− 𝑐 = 0, show that (𝛼+ 1)(𝛽 + 1) =
1 − 𝑐. Hence, prove that 𝛼

2+2𝛼+1⁄
𝛼2+2𝛼+𝑐 +

𝛽2+2𝛽+1⁄
𝛽2+2𝛽+𝑐 = 1.

383. If 𝛼, 𝛽 be the roots of the equation 𝑥2 + 𝑝𝑥 + 𝑞 = 0 and 𝑥2𝑛 + 𝑝𝑛𝑥𝑛 + 𝑞𝑛 = 0, where 𝑛
is an even integer, prove that 𝛼⁄𝛽 , 𝛽⁄𝛼 are the roots of the equation 𝑥𝑛 + 1 + (𝑥 + 1)𝑛 = 0.

384. If the roots of the equation 𝑥2 − 𝑎𝑥 + 𝑏 = 0be real and differ by less than 𝑐, the show
that 𝑏 must lie between 𝑎

2−𝑐2
⁄

4 and 𝑎
2
⁄

4 .



Polynomials and Theory of Equations 123

385. Let 𝑎, 𝑏 and 𝑐 be interger with 𝑎 > 1, and let 𝑝 be a prime number. Show that if
𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 𝑝 for two distinct integral values of 𝑥, then it cannot be equal to 2𝑝 for
any integral value of 𝑥.

386. If 𝛼 and 𝛽 are the roots of equation 𝑥2 + 𝑝𝑥 + 𝑞 = 0 and 𝛼4, 𝛽4 are the roots of the
equation 𝑥2− 𝑟𝑥+ 𝑠 = 0, show that the equation 𝑥2− 4𝑞𝑥+ 1𝑞2− 𝑟 = 0 has real roots.

387. If 𝛼, 𝛽 are the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 and 𝛼1, −𝛽 are those of equation
𝑎1𝑥2 + 𝑏1𝑥 + 𝑐1 = 0, show that 𝛼, 𝛼1 are the roots of the equation

𝑥2⁄
𝑏
⁄

𝑎 +
𝑏1
⁄

𝑎1

+ 𝑥 + 1⁄
𝑏⁄
𝑐 +

𝑏1⁄
𝑐1

= 0.

388. How many quadratic equations are possible which remains unchanged when its roots
are squared?

389. If 𝑎,𝑏, 𝑐 are in G.P. then show that the equations 𝑎𝑥2+2𝑏𝑥+𝑐 = 0 and 𝑑𝑥2+2𝑒𝑥+𝑓 = 0
have a common root if 𝑎⁄𝑑 ,

𝑏⁄
𝑒 ,

𝑐⁄
𝑓 are in H.P.

390. If the three equations 𝑎2 + 𝑎𝑥 + 12 = 0, 𝑥2 + 𝑏𝑥 + 15 = 0 and 𝑥2 + (𝑎 + 𝑏)𝑥 + 36 = 0
have a common root, find 𝑎, 𝑏 and the roots of the equaiton.

391. If 𝑚(𝑎𝑥2 + 2𝑏𝑥 + 𝑐)+ 𝑝𝑥2 + 2𝑞𝑥 + 𝑟 cab be expressed in the form of 𝑛(𝑥 + 𝑘)2, then
show that (𝑎𝑘 − 𝑏)(𝑞𝑘 − 𝑟) = (𝑝𝑘 − 𝑞)(𝑏𝑘 − 𝑐) .

392. The real numbers 𝑥2, 𝑥2, 𝑥3 satisfying the equation 𝑥3 − 𝑥2 + 𝛽𝑥 + 𝛾 = 0are in A.P.
Find the intervals in which 𝛽 and 𝛾 must lie.

393. If equations 𝑥3 + 3𝑝𝑥2 + 3𝑞𝑥 + 𝑟 = 0 and 𝑥2 + 2𝑝𝑥 + 𝑞 = 0 have a common root, show
that 4(𝑝2 − 𝑞)(𝑞2 − 𝑝𝑟) = (𝑝𝑞 − 𝑟)2.

394. If 𝑐 ≠ 0 and the equations 𝑥3 + 2𝑎𝑥2 + 3𝑏𝑥 + 𝑐 = 0 and 𝑥3 + 𝑎𝑥2 + 2𝑏𝑥 = 0 have a
common root, show that (𝑐 − 2𝑎𝑏)2 = (2𝑏2 − 𝑎𝑐)(𝑎2 − 𝑏).

395. If equation 𝑥3 + 𝑎𝑥 + 𝑏 = 0 have only real roots, then prove that 4𝑎3 + 27𝑏2 ≤ 0.

396. Let 𝛼 be a root of 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 and 𝛽 be a root of −𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 show that
there exists a root of the equation 𝑎⁄2 𝑥

2 + 𝑏𝑥 + 𝑐 = 0 that lie between 𝛼 and 𝛽 or 𝛽
and 𝛼 as the case may be(𝛼, 𝛽 ≠ 0)

397. If 𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 ≠ 0 and the quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 has no real root then
show that (𝑎 + 𝑏 + 𝑐)𝑐 > 0.

398. If 𝑎 < 𝑏 < 𝑐 < 𝑑, then show that the quadratic equation (𝑥−𝑎)(𝑥− 𝑐)+𝜆(𝑥− 𝑏)(𝑥−
𝑑) = 0 has real roots for all real values of 𝜆.

399. If 𝑎𝑥 + 3𝑏 + 6𝑐 = 0, (𝑎, 𝑏, 𝑐 ∈ ℝ) then show that the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 has at
least one root between 0 and 2.
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400. If 𝑎, 𝑏, 𝑐 be non-zero real numbers such that ∫
1

0
(1 + cos8 𝑥(𝑎𝑥2 + 𝑏𝑥 + 𝑐)𝑑𝑥 =

∫
2

0
(1+ cos8 𝑥) (𝑎𝑥2+ 𝑏𝑥+ 𝑐)𝑑𝑥, show that the equation 𝑎𝑥2+ 𝑏𝑥+ 𝑐 = 0 has at least

one real root between 1 and 2.

401. Let 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, where 𝑎, 𝑏,𝑐 ∈ 𝑅 and 𝑎 ≠ 0. If 𝑓(𝑥) = 𝑥 has non-real roots,
show that the equation 𝑓(𝑓(𝑥)) = 𝑥 has all non-real roots.

402. Let 𝑎, 𝑏, 𝑐 ∈ ℙ and consider all quadratic equations of the form 𝑎𝑥2 − 𝑏𝑥+ 𝑐 = 0, which
have two distinct real roots in ]0, 1[. Find the least positive integers 𝑎 and 𝑏 for which
such a quadratic equation exist.

403. If equation 𝑎𝑥2 − 𝑏𝑥 + 𝑐 = 0 have two distinct real roots in (0, 1), 𝑎,𝑏, 𝑐 ∈ ℕ, then
prove that log5(𝑎𝑏𝑐) ≥ 2.

404. If equation 𝑎𝑥2 + 𝑏𝑥 + 6 = 0 does not have two distinct real roots, then find the least
value of 3𝑎 + 𝑏.

405. If equation 2𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 4 = 0 has three real roots, where 𝑎, 𝑏 > 0, show that
𝑎 + 𝑏 > −6.

406. Show that equation 𝑥3 + 2𝑥2 + 𝑥 + 5 = 0 has only real root 𝛼 such that [𝛼] = −3,
where [𝑥] denotes the integral part of 𝑥.

407. Solve (𝑥2 + 2)2 + 8𝑥2 = 6𝑥)(𝑥2 + 2).

408. Solve 3𝑥3 = (𝑥2 +√

18𝑥 +√


32)(𝑥2 −√


18𝑥 −√


32)− 4𝑥2.

409. Solve (15 + 4√

14)𝑡 + (15 − 4√


14)𝑡 = 30, where 𝑡 = 𝑥2 − 2|𝑥|.

410. For 𝑎 ≤ 0, determine all the roots of the equation 𝑥2 − 2𝑎|𝑥 − 𝑎|− 3𝑎2 = 0.

411. Find all solution of equation |𝑥2 − 𝑥 − 6| = 𝑥 + 2, where 𝑥 is a real number.

412. Solve the equation 2|𝑥+2|− |2𝑥+1 − 1| = 2𝑥+1 + 1.

413. Solve 3𝑥 + 4𝑥 + 5𝑥 = 6𝑥.

414. Solve (√

2 +√


3)𝑥 +√

2 −√


3
𝑥
= 2𝑥.

415. Let {𝑥} and [𝑥] denote the fractional and integral part of a real number 𝑥 respectively.
Solve 4{𝑥} = 𝑥 + [𝑥].

416. For the same notation as previous problem, solve [𝑥]2 = 𝑥(𝑥 − [𝑥]).

417. Solve 𝑥3 − 𝑦3 = 127, 𝑥2𝑦 − 𝑥𝑦2 = 42.

418. Solve the system of equations 𝑥 − 2𝑦 + 𝑧 = 0, 4𝑥 − 𝑦 − 3𝑧 = 0, 𝑥2 − 2𝑥𝑦 + 3𝑥𝑧 = 14.

419. Solve 𝑥4 + 𝑦4 = 82, 𝑥 + 𝑦 = 4.
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420. Solve √

𝑎(2𝑥 − 2)+ 1 = 1 − 2𝑥, 𝑥 ∈ ℝ.

421. If 𝑥 ∈ 𝕀, find the integral values of 𝑚 satisfying the equation (𝑥 − 5)(𝑥 +𝑚)+ 2 = 0.

422. Find ll the positive solutions of the system of equations 𝑥𝑥+𝑦 = 𝑦𝑛 and 𝑦𝑥+𝑦 = 𝑥2𝑛𝑦𝑛,
where 𝑛 > 0.

423. Solve the equation (144|𝑥|− 2(12)|𝑥|+ 𝑎 = 0) for every value of the parameter 𝑎.

424. If 𝑚 and 𝑛 are odd integers, show that the equation 𝑥2 + 2𝑚𝑥 + 2𝑛 = 0 cannot have
rational roots.

425. If 𝑓(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 has local extrema at two points of opposite sign, then
prove that the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 are real and distinct.

426. If 𝑎, 𝑏 ∈ ℝ, 𝑏 ≠ 0, prove that the roots of the quadratic equation (𝑥−𝑎)(𝑎𝑥−1)⁄
𝑥2−1 = 𝑏, can

never be equal.

427. If 𝑛, 𝑟 ∈ ℙ such that 𝑟 < 𝑛, then show that the roots of the quadratic equation
𝐶𝑛
𝑟 𝑥2 + 2𝐶𝑛

𝑟+1𝑥 + 𝐶𝑛
𝑟+2 = 0 are real.

428. If 𝑎, 𝑏, 𝑐 are rational, show that the roots of the equation 𝑎𝑏𝑐2𝑥2 + 3𝑎2𝑐𝑥 + 𝑏2𝑐𝑥 −
6𝑎2 − 𝑎𝑏 + 2𝑏2 = 0 are rational.

429. If the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 be in the ratio 𝑚 : 𝑛, prove that
√

𝑚
⁄

𝑛 +√

𝑛
⁄

𝑚+ 𝑏⁄
√

𝑎𝑐 = 0.

430. If one root of the equation 𝑥2 + 𝑥𝑓(𝑎)+ 𝑎 = 0 is equal to the third power of the other,
determin the function 𝑓(𝑥).

431. If 𝛼, 𝛽 are the roots of the equation 𝑥2 − 𝑝𝑥 + 𝑞 = 0, then find the quadratic equation
the roots of which are (𝑎2 − 𝛽2)(𝛼3 − 𝛽3) and 𝛼3𝛽2 + 𝛼2𝛽3.

432. If 𝛼, 𝛽 are the roots of the equation 𝑥2 − 𝑏𝑥 + 𝑐 = 0, then find the quadratic equation
the roots of which are (𝛼2 + 𝛽2)(𝛼3 + 𝛽3) and 𝛼5𝛽3 + 𝛼3𝛽5 − 2𝛼4𝛽4.

433. If the sum of the roots of the quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 is equal to the sum
of squares of their reciprocals, then show that 𝑏

2
⁄

𝑎𝑐 +
𝑏𝑐
⁄

𝑎2 = 2.

434. The time of oscillation of a rigid body about a horizontal axis at a distance ℎ from the

C.G. is given by 𝑇 = 2𝜋√

ℎ2+𝑘2⁄
𝑔ℎ , where 𝑘 is a constant. Show that there are two values

of ℎ for a given value of 𝑇 . If ℎ1 and ℎ2 are two values of ℎ, show that ℎ1 + ℎ2 = 𝑔𝑇2⁄
4𝜋2

and ℎ1ℎ2 = 𝑘2.

435. If 𝛼1, 𝛼2 be the roots of the equation 𝑥2 + 𝑝𝑥 + 𝑞 = 0 and 𝛽1, 𝛽2 be the roots of
𝑥2 + 𝑟𝑥 + 𝑠 = 0 and the system of equations 𝛼1𝑦 + 𝛼2𝑧 = 0 and 𝛽1𝑦 + 𝛽2𝑧 = 0 has
non-trivial solutions then show that 𝑝

2
⁄

𝑟2 =
𝑞
⁄

𝑠.
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436. If 𝑎, 𝑏, 𝑐 are in H.P. and 𝛼, 𝛽 be the roots of 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, show that −(1 + 𝛼𝛽) is
the H.M. of 𝛼 and 𝛽.

437. If 𝛼, 𝛽 are roots of the equation 𝑥 + 1 = 𝜆𝑥(1 − 𝜆𝑥) and if 𝜆1, 𝜆2 are the two values
of 𝜆 determined from the equation 𝛼⁄𝛽 + 𝛽⁄

𝛼 = 𝑟 − 2, show that 𝜆
2
1⁄

𝜆2
2
+ 𝜆2

2⁄
𝜆2
1
+ 2 = 4(𝑟+1⁄𝑟−1)

2
.

438. If the roots of equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 are reciprocals of those 𝑙𝑥2 + 𝑚𝑥 + 𝑛 = 0,
then prove that 𝑎 : 𝑏 : 𝑐 = 𝑛 : 𝑚 : 𝑙, where 𝑎, 𝑏, 𝑐, 𝑙, 𝑚, 𝑛 are all non-zero.

439. If 𝑥1, 𝑥2 be the roots of the equation 𝑥2 − 3𝑥 + 𝐴 = 0 and 𝑥3, 𝑥4 be those of equation
𝑥2 − 12𝑥 + 𝐵 = 0 and 𝑥1, 𝑥2, 𝑥3, 𝑥4 be an increasing G.P., find 𝐴 and 𝐵.

440. Let 𝑝 and 𝑞 be roots fo the equation 𝑥2 − 2𝑥 + 𝐴 = 0 and let 𝑟 and 𝑠 be the roots
of the equation 𝑥2 − 18𝑥 + 𝐵 = 0. If 𝑝 < 𝑞 < 𝑟 < 𝑠 are in A.P., find the values of 𝐴
and 𝐵.

441. Let 𝛼, 𝛽 be the roots of the equation 𝑥2 + 𝑎𝑥 − 1⁄
2𝑎2 = 0, 𝑎 being a real parameter,

prove that 𝛼4 + 𝛽4 ≥ 2 +√


2.

442. If 𝛼, 𝛽 be the roots of the equation 𝑥2 − 𝑝𝑥 + 𝑞 = 0 and 𝛼 > 0, 𝛽 > 0, then find the
value of 𝛼1/4 + 𝛽1/4.

443. If the difference between roots of the equation 𝑎𝑥2− 𝑏𝑥+ 𝑐 = 0 is same as the difference
between the roots of equation 𝑏𝑥2−𝑐𝑥+𝑎 = 0, then show that 𝑏4−𝑎2𝑐2 = 4𝑎𝑏(𝑏𝑐−𝑎2).

444. If 𝑓(𝑥) = 0 is a cubic equation with real roots 𝛼, 𝛽, 𝛾 on order of magnitudes, show
that one root of the equation 𝑓′(𝑥) = 0 lies between 1⁄2 (𝛼 + 𝛽) and 1⁄2 (2𝛼 + 𝛽) and the

other root lies between 1⁄2 (𝛽 + 𝛾) and 1⁄2 (2𝛽 + 𝛾).

445. Show that the roots of the polynomial equation 𝑥𝑛 + 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛−2 + …+ 𝑎𝑛 = 0
cannot be all real if (𝑛 − 1)𝑎21 − 2𝑛𝑎2 < 0.

446. Let 𝐷1 be the discriminant and 𝛼, 𝛽 be the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0
and 𝐷2 be the discriminant and 𝛾, 𝛿 be the roots of the equation 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0. If
𝛼, 𝛽, 𝛾, 𝛿 are in A.P., then prove that 𝐷1 : 𝐷2 = 𝑎2 : 𝑝2.

447. If 𝛼, 𝛽 be the roots of the equatio 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 and 𝛼 + ℎ, 𝛽 + ℎ be those of
equation 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0, then show that 𝑏

2−4𝑎𝑐⁄
𝑎2 = 𝑞2−4𝑝𝑟⁄

𝑝2 .

448. If 𝛼, 𝛽 be the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 and 𝛼 + ℎ, 𝛽 + ℎ be those of
equation 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0, then show that 2ℎ = 𝑏

⁄

𝑎 −
𝑞
⁄

𝑝.

449. If 𝛼, 𝛽 be the real and distinct roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 and 𝛼4, 𝛽4 be
those of equation 𝑙𝑥2 +𝑚𝑥 + 𝑛 = 0,prove that the roots of equation 𝑎2𝑙𝑥2 − 4𝑎𝑐𝑙𝑥 +
2𝑥2𝑙 + 𝑎2𝑚 = 0 are real and opposite in sign.

450. If 𝛼,𝛽 be the roots of equation 𝑎𝑥2+𝑏𝑥+𝑐 = 0 and 𝛾,𝛿 those of equation 𝑙𝑥2+𝑚𝑥+𝑛 =
0, then find the equation whose roots are 𝛼𝛾 + 𝛽𝛿 and 𝛼𝛿 + 𝛽𝛾.
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451. If 𝑝, 𝑞 be the roots of the equation 𝑥2 + 𝑏𝑥 + 𝑐 = 0, prove that 𝑏 and 𝑐 are the roots of
the equation 𝑥2 + (𝑝 + 𝑞 − 𝑝𝑞)𝑥 − 𝑝𝑞(𝑝 + 𝑞) = 0.

452. If 3𝑝2 = 5𝑝 + 2 and 3𝑞2 = 5𝑞 + 2, where 𝑝 ≠ 1, obtain the equation whose roots are
3𝑝 − 2𝑞 and 3𝑞 − 2𝑝.

453. If 𝛼 ±√

𝛽 be the roots of the equation 𝑥2 + 𝑝𝑥 + 𝑞 = 0, prove that 1⁄𝛼 ± 1⁄

√

𝛽 will be the

roots of the equation (𝑝2 − 4𝑞)(𝑝2𝑥2 + 4𝑝𝑥) = 16𝑞.

454. If 𝛼, 𝛽 be the roots of the equation 𝑥2 − 𝑝𝑥 + 𝑞 = 0, form the equation whose roots are
𝛼2(𝛼

2⁄
𝛽 − 𝛽) and 𝛽2(𝛽

2⁄
𝛼 − 𝛼).

455. Let 𝑎, 𝑏, 𝑐, 𝑑 be real numbers in G.P. If 𝑢, 𝑢, 𝑤 satisfy the system of equations
𝑢 + 2𝑣 + 3𝑤 = 6, 4𝑢 + 5𝑣 + 6𝑤 = 12, 6𝑢 + 9𝑣 = 4, then show that the roots of the
equation (1⁄𝑢 + 1⁄

𝑣 +
1⁄
𝑤)𝑥

2 + [(𝑏 − 𝑐)2 + (𝑐 − 𝑎)2 + (𝑑 − 𝑏)2 ]𝑥 + 𝑢 + 𝑣 + 𝑤 = 0 and
20𝑥2 + 10(𝑎 − 𝑑)2 𝑥 − 9 = 0 are reciprocals of each other.

456. If 𝛼1, 𝛼2, … , 𝛼𝑛 be the roots of equation (𝛽1 − 𝑥)(𝛽2 − 𝑥)… (𝛽𝑛 − 𝑥)+𝐴 = 0, find
the equation whose roots are 𝛽1, 𝛽2, … , 𝛽𝑛.

457. If 𝛼1, 𝛼2, … , 𝛼𝑛 be the roots of equation 𝑥𝑛 + 𝑛𝑎𝑥 − 𝑏 = 0, show that (𝛼1 − 𝛼2)(𝛼1 −
𝛼3)… (𝛼1 − 𝛼𝑛) = 𝑛(𝑥𝑛−1 + 𝑎).

458. If 𝛼, 𝛽, 𝛾, 𝛿 be the real roots of the equation 𝑥4 + 𝑞𝑥2 + 𝑟𝑥 + 𝑡 = 0, find the quadratic
equation whose roots are (1 + 𝛼2)(1 + 𝛽2)(1 + 𝛾2)(1 + 𝛿2) and 1.

459. If 𝛼, 𝛽, 𝛾 be the roots of the equation 𝑥3 + 𝑝𝑥 + 𝑞 = 0, find the cubic equation whose
roots are 𝛼+1⁄𝛼 , 𝛽+1⁄𝛽 , 𝛾+1⁄𝛾 .

460. Show that one of the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 may be reciprocal of of
one of the roots of 𝑎1𝑥2 + 𝑏1𝑥 + 𝑐1 = 0 if (𝑎𝑎1 − 𝑐𝑐1)2 = (𝑏𝑐1 − 𝑎𝑏1)(𝑏1𝑐 − 𝑎1𝑏).

461. If every pair of the equations 𝑥2 + 𝑝𝑥 + 𝑞𝑟 = 0, 𝑥2 + 𝑞𝑎 + 𝑝𝑟 = 0 and 𝑥2 + 𝑟𝑥 + 𝑝𝑞 = 0
have a common root, find the sum of the three common roots.

462. If equation 𝑎2(𝑏2 − 𝑐2)𝑥2 + 𝑏2(𝑐2 − 𝑎2)𝑥 + 𝑐2(𝑎2 − 𝑏2) = 0 has equal roots and has
common root with the equation 4𝑥2 sin2 𝜃 − 4𝑥 sin 𝜃 + 1 = 0,find the value of 𝜃.

463. If 𝑎 ≠ 0, find the value of 𝑎 for which one of the roots of equation 𝑥2 − 𝑥 + 3𝑎 = 0 is
double the roots of the equation 𝑥2 − 𝑥 + 𝑎 = 0.

464. If by eliminating 𝑥 between the equations 𝑥2 + 𝑎𝑥 + 𝑏 = 0 and 𝑥𝑦 + 𝑙(𝑥 + 𝑦)+𝑚 = 0,
a quadratic equation in terms of 𝑦 is formed whose roots are same as those of original
quadratic equation in 𝑥, then prove that either 𝑎 = 2𝑙 or 𝑏 = 𝑚 or 𝑏 +𝑚 = 𝑎𝑙.

465. The roots of equation 10𝑥3 − 𝑐𝑥2 − 54𝑥 − 27 = 0 are in H.P., then find 𝑐.

466. If 𝑎, 𝑏, 𝑐 are the roots of the equation 𝑥3 + 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0 such that 𝑐2 = −𝑎𝑏, show
that (2𝑞 − 𝑝2)3 .𝑟 = (𝑝𝑞 − 4𝑟)3.
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467. Let 𝛼 + 𝑖𝛽, 𝛼, 𝛽 ∈ ℝ be roots of the equation 𝑥3 + 𝑞𝑥 + 𝑟 = 0, 𝑞, 𝑟 ∈ ℝ. Find a real
cubic equation independent of 𝛼 and 𝛽, whose one root is 2𝛼.

468. If 𝛼, 𝛽, 𝛾 be the roots of the equation 2𝑥3 + 𝑥2 − 7 = 0, show that ∑(𝛼⁄𝛽 + 𝛽⁄
𝛼) = −3.

469. The equations 𝑥3 + 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0 and 𝑥3 + 𝑝′𝑥2 + 𝑞′𝑥 + 𝑟′ = 0 have two common
roots, find the quadratic equations whose roots are these common roots.

470. Find the condition that the roots of equation 𝑎𝑥3 + 3𝑏𝑥2 + 3𝑐𝑥 + 𝑑 = 0 may be in G.P.

471. Find the condition that the roots of equation 𝑥3 − 𝑝𝑥2 + 𝑞𝑥 − 𝑟 = 0 may be in H.P.

472. If 𝑓(𝑥) = 𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 and 𝑓(0), 𝑓(−1) are odd integers, prove that 𝑓(𝑥) = 0
cannot have all integral roots.

473. If equation 2𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 4 = 0 has three real roots (𝑎, 𝑏 > 0), prove that

𝑎 + 𝑏 ≥ 6(2
1
⁄

3 + 4
1
⁄

3).

474. Find the condition that 𝑎1𝑥3 + 𝑏1𝑥2 + 𝑐1𝑥 + 𝑑1 = 0 and 𝑎2𝑥3 + 𝑏2𝑥2 + 𝑐2𝑥 + 𝑑2 = 0
have a common pair of repeated roots.

475. Let 𝛼 be a non-zero real root of the equation 𝑎1𝑥2 + 𝑏1𝑥 + 𝑐1 = 0. Find the condition
for 𝛼 to be repeated root of the equation 𝑎2𝑥3 + 𝑏2𝑥2 + 𝑐2𝑥 + 𝑑2 = 0.

476. If 𝛼, 𝛽, 𝛾 are real roots of the equation 𝑥3 − 𝑎𝑥2 + 𝑏𝑥 − 𝑐 = 0, prove that the area of
the triangle whose sides are 𝛼, 𝛽, 𝛾 is 1⁄4√


𝑎(4𝑎𝑏 − 𝑎3 − 8𝑐).

477. If 𝑎 < 𝑏 < 𝑐 < 𝑑, then show that the quadratic equation 𝜇(𝑥 − 𝑎)(𝑥 − 𝑐) + 𝜆(𝑥 −
𝑏)(𝑥 − 𝑑) = 0 has real roots for all real 𝜇 and 𝜆.

478. Show that equation 3𝑥5 − 5𝑥3 + 21𝑥 + 3 sin 𝑥 + 4 cos 𝑥 + 5 = 0 can have at most one
real root.

479. Find the integral part of the greatest root of equation 𝑥3 − 10𝑥2 − 11𝑥 − 100 = 0.

480. If 𝑛 ∈ ℕ, 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝕀 and 𝑎𝑛 and 𝑎0+ 𝑎1+…+𝑎𝑛 are odd numbers, show that
equation 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛−2 +…+ 𝑎𝑛−1𝑥+ 𝑎𝑛 = 0 cannot have integeral roots.

481. If the cubic equation 𝑓(𝑥) = 0 has three real roots 𝛼, 𝛽, 𝛾 such that 𝛼 < 𝛽 < 𝛾, show
that the equation 𝑓(𝑥)+ 2𝑓′(𝑥)+ 𝑓″(𝑥) = 0 has a root between 𝛼 and 𝛾.

482. Find the values of 𝑎 for which all the roots of the equation 𝑥4 − 4𝑥3 − 8𝑥2 + 𝑎 = 0 are
real.

483. If the equation 𝑎𝑥2 − 𝑏𝑥 + 𝑐 = 0 has two distinct real roots between 1 and 2 where
𝑎, 𝑏, 𝑐 ∈ ℕ, show that 𝑎 ≥ 5 and 𝑏 ≥ 11.

484. Show that the equation (𝑥− 1)5 + (𝑥+ 2)7 + (7𝑥− 5)9 = 10 has exactly one real root.

485. Find the value of tan(𝜃 + 𝜙) and cot(𝜃 − 𝜙) where tan 𝜃 and tan 𝜙 are respectively
actual and extraneous root of the equation √


2𝑥 + 6 −√


𝑥 + 2 = 3.
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486. Solve |𝑥 + 1|− |𝑥|+ 3|𝑥 − 1|− 2|𝑥 − 2| = 𝑥 + 2.

487. Solve 2|𝑥+1|− 2𝑥 = |2𝑥 − 1|+ 1.

488. Solve |𝑥2 − 2𝑥|+ 𝑦 = 1, 𝑥2 + |𝑦| = 1.

489. Solve |𝑥2 + 4𝑥 + 3|+ 2𝑥 + 5 = 0.

490. Solve 𝑥2 + 9𝑥2
⁄

(𝑥+3)2 = 27.

491. Solve 1⁄
[𝑥]+

1⁄
[2𝑥] = {𝑥}+ 1
⁄

3, where [𝑥] denotes the integral part of 𝑥 and {𝑥} = 𝑥− [𝑥].

492. Solve 6⁄5 𝑎
log𝑎 𝑥 log10 𝑎 log𝑎 5 − 3

log10(
𝑥⁄
10) = 9log100 𝑥+log4 2.

493. Solve log5(5
1⁄
𝑥 + 125) = log5 6 + 1 + 1
⁄

2𝑥.

494. Solve 𝑥
2
⁄

3[(log2 𝑥)
2+log2 𝑥−

5
⁄

4] = √


2.

495. Find all the real solutions of the equation 3𝑥2 − 8[𝑥]+ 1 = 0.

496. If 𝑡 > 1, solve the equation (𝑡 +√

𝑡2 − 1)𝑥

2−2𝑥 + (𝑡 −√

𝑡2 − 1)𝑥

2−2𝑥 = 2𝑡.

497. Obtain real solutions of the simultaneous equation

𝑥𝑦 + 3𝑦2 − 𝑥 + 4𝑦 − 7 = 0

2𝑥𝑦 + 𝑦2 − 2𝑥 − 2𝑦 + 1 = 0

498. Solve 2𝑥−1.27
𝑥⁄

𝑥+2 = 3.

499. Solve 4𝑥 − 3
𝑥−1⁄2 = 3

𝑥+1⁄2 − 22𝑥−1.

500. Solve log10[98 +√


𝑥3 − 𝑥2 − 12𝑥 + 36] = 2.

501. Solve log2𝑥+3(6𝑥2 + 23𝑥 + 21) = 4 − log3𝑥+7(4𝑥2 + 12𝑥 + 9).

502. Prove that 2𝑥4 + 1402 − 𝑦4 = 0 has no integral solution.

503. Solve for 𝑥, |𝑥 − 1|log3 𝑥
2−2 log𝑥 9 = (𝑥 − 1)7.

504. Solve (cos 𝑥)
sin2 𝑥−3⁄2sin𝑥+

1
⁄

2 = 1.

505. Find the integral values of 𝑎 for which the equation (𝑥 + 𝑎)(𝑥 + 1991)+ 1 = 0 has
integral roots.
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506. Solve 2sin
2 𝑥 + 5(2cos

2 𝑥) = 7.

507. Solve 𝑥 + log10(1 + 2𝑥) = 𝑥 log10 5 + log10 6.

508. If 𝑎 > 0, solve the equation log𝑎(𝑎𝑥) . log𝑥(𝑎𝑥)+ log𝑎2(𝑎) = 0.

509. Solve √

11𝑥 − 6 +√


𝑥 − 1 = √

4𝑥 + 5.

510. Solve √

3𝑥2 − 7𝑥 − 30 −√


2𝑥2 − 7𝑥 − 5 = 𝑥 − 5.

511. If 𝑥 and 𝑦 satisfy the equations 𝑦 = 2[𝑥]+3 and 𝑦 = 3[𝑥−2] simultaneously, determine
[𝑥 + 𝑦].

512. If 𝑥 ∈ ℝ and 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ ℝ, then find the value for which 
𝑛
∑
𝑖=1

(𝑥 − 𝑎𝑖)2 is least.

513. Let there be a quotient of two natural numbers in which the denominator is one less
than the square of the numerator. If we add two to both nuerator and denominator,
the quotient will exceed 1⁄3, and if we subtract 3 from both numerator and denominator,

the quotient will be between 0 and 1⁄10. Determine the quotient.

514. Let 𝑓(𝑥) be a quadratic expression which is positive for all real 𝑥. If 𝑔(𝑥) = 𝑓(𝑥)+
𝑓′(𝑥)+ 𝑓″(𝑥), the for all real 𝑥, show that 𝑔(𝑥) > 0.

515. By considering the quadratic equation 𝑓(𝑥) = (𝑎1𝑥 + 𝑏1)2 + (𝑎2𝑥 + 𝑏2)2 + … +
(𝑎𝑛𝑥 + 𝑏𝑛)2, prove the inequality (𝑎1𝑏1 + 𝑎2𝑏2 + …+ 𝑎𝑛𝑏𝑛)2.

516. Find the real values of 𝑚 for which the equation 𝑥(𝑥 + 1)(𝑥 +𝑚)(𝑥 +𝑚+ 1) = 𝑚2

has four real roots.

517. Find all real values of 𝑎 for which the equation 𝑥4+ (𝑎− 1)𝑥3+ 𝑥2+ (𝑎− 1)𝑥+ 1 = 0
possesses at least two distinct negative roots.

518. Find the real values of the parameter 𝑎 for which the equation 𝑥4+2𝑎𝑥3+𝑥2+2𝑎𝑥+1 =
0 has at least two distinct negative roots.

519. If 𝑎, 𝑏, 𝑐 ∈ 𝑅 and 𝑎 ≠ 0, solve the following system of equation in 𝑛 unknowns
𝑥1, 𝑥2, … , 𝑥𝑛

𝑎𝑥21 + 𝑏𝑥1 + 𝑐 = 𝑥2

𝑎𝑥22 + 𝑏𝑥2 + 𝑐 = 𝑥3

…

𝑎𝑥2𝑛 + 𝑏𝑥𝑛 + 𝑐 = 𝑥1

when (a) (𝑏 − 1)2 < 4𝑎𝑐 (b) (𝑏 − 1)2 = 4𝑎𝑐 (c) (𝑏 − 1)2 > 4𝑎𝑐.

520. Solve the inequality log𝑥(𝑥2 − 3
⁄

16) > 4.
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521. Find the values of 𝑚 for which every solution of the inequality log1
⁄

2
𝑥2 ≥ log1
⁄

2
(𝑥+ 2) is

a solution of the ineuqality 49𝑥2 − 4𝑚4 ≤ 0.

522. Find all values of 𝑎 for which the inequality, 1 + log5(𝑥2 + 1) ≥ log5(𝑎𝑥2 + 4𝑥 + 𝑎) is
valid for all real 𝑥.

523. Find the values of the parameter 𝑎 for which 1 + log2(2𝑥2 + 2𝑥 + 7
⁄

2) ≥ log2(𝑎𝑥2 + 𝑎)
is satisfied by at least one real 𝑥.

524. Prove that the minimum value of (𝑎+𝑥)(𝑏+𝑥)⁄
𝑐+𝑥 , 𝑥 > −𝑐 is (√


𝑎 − 𝑐 +√


𝑏 − 𝑐)2.

525. If 𝑥, 𝑎, 𝑏 are real, prove that 4(𝑎 − 𝑥)(𝑥 − 𝑎 +√

𝑎2 + 𝑏2) ≯ 𝑎2 + 𝑏2.

526. If 𝛽 is such that sin 2𝛽 ≠ 0, show that for real 𝑥 the expression 𝑥
2+2𝑥cos 2𝛼+1⁄

𝑥2+2𝑥cos 2𝛽+1 always

lies between cos
2 𝛼
⁄

cos2 𝛽 and sin
2 𝛼
⁄

sin2 𝛽.

527. Show that for all real values of 𝑥, the expression 2𝑎(𝑥−1) sin
2 𝛼⁄

𝑥2−sin2 𝛼 cannot lie between

2𝑠 sin2 𝛼⁄2 and 2𝑎 cos2 𝛼⁄2.
528. Show that the expression tan(𝑥 + 𝛼)/tan(𝑥 − 𝛼) cannot lie between tan2(𝜋⁄4 − 𝛼) and

tan2(𝜋⁄4 + 𝛼).

529. Prove that for real values of 𝑥 the expression 𝑎𝑥
2+3𝑥−4⁄

3𝑥−4𝑥2+𝑎 may have any value provided 𝑎
lies between 1 and 7.

530. Prove that the expression (𝑎𝑥−𝑏)(𝑑𝑥−𝑐)⁄
(𝑏𝑥−𝑎)(𝑐𝑥−𝑑) will take all real values when 𝑥 is real provided

𝑎2 − 𝑏2 and 𝑐2 − 𝑑2 have the same sign.
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Chapter 5
Combinatorics

In this chapter we will study basic principles of counting, permutations and combinations.
This study will enable you to further study the branch of mathematics called combinatorics.
You would have certainly encountered a combinatorical problem in your life. It would be
really surprising if you have not. Have you ever solved a Sudoku puzzle or Rubik's cube?
Have you ever counted the number of poker hands that are full houses in order to determine
the odds against a full house? Have you ever attempted to trace through a network without
removing your pencil from paper and without tracing any part of network more than once?
These are all combinatorical problems. As you can see that combinatorics has evolved from
mathematical games.

With the invention of modern computers, we are enabled to solve more and more problems
of combinatorics which were earlier not feasible due to calculations involved. The computer
programs are often based on combinatorical algorithms which determine the speed and
efficiency of the solution. Analysis of these programs and algorithms require sound knowledge
of combinatorical mathematics and thinking. In computer science we write test cases for
our programs, and those test cases can be enumerated by applying permutations and
combinations on input data and states produced in the program. Combinatorics is a powerful
tool for making sure that the tester does not miss any test case, which in mission-critical
programs is of paramount importance.

The best way to learn combinatorics is to solve a lot of problems. This is in general true
for all branches of mathematics but even more so for combinatorics because a problem which
appears simple may be quite difficult to solve or require critical thinking. By solving problems
of different kinds, and by repeating them the concepts will be enforced and discipline will
develop.

We start with four basic counting principles and then we will progress into permutations and
combinatins. To study the topic of permutations and combinations it is required to have
basic knowledge in set theory which the reader is expected to know.

5.1 Four Basic Counting Principles
Let 𝑆 be a set. A partition of 𝑆 is a collection of 𝑆1, 𝑆2, … , 𝑆𝑚 of subsets of 𝑆 such that
each element in 𝑆 is in exactly one of these subsets:

𝑆 = 𝑆1 ∪ 𝑆2 ∪ … ∪ 𝑆𝑚

𝑆𝑖 ∩ 𝑆𝑗 = 𝜙(𝑖 ≠ 𝑗)

Thus, the sets 𝑆1, 𝑆2, … , 𝑆𝑚 are pairwise disjoint sets, and their union is 𝑆. The subsets
𝑆1, 𝑆2, … , 𝑆𝑚 are called the parts of the partition. Note that by this definition a part of the
partition may be empty, but usually there is no advantage in considering partitions with one
or more empty sets. The number of objects of a set 𝑆 is denoted by |𝑆|, and is called the size
of 𝑆.
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5.1.1 Addition Principle
Suppose that a 𝑆 is partitioned into pairwise disjoint partys 𝑆1, 𝑆2, … , 𝑆𝑚. The number
of objects in 𝑆 can be determined by finding the number of objects in each of the parts, and
adding the numbers so obtained:

|𝑆| = |𝑆1|+ |𝑆2|+… |𝑆𝑚|.

If the sets 𝑆1, 𝑆2, … , 𝑆𝑚 are allowed to overlap, then a more profound principle, the
inclusion-exclusion principle can be used to count the number of objects in 𝑆.

We need to be careful when partitioning 𝑆 into too many parts. For example, if we partition 𝑆
into parts in such a way that each part contains only one element then addition princinple is
becomes counting the number of parts, which is basically same as listing all objects of 𝑆.
Thus the art of applying addition princinple is to partition the set 𝑆 into not too many parts.

Example: In a university there are four mathematics courses, two economics courses, and
three lietrature courses. A student is allowed to enroll into one course at most. Thus, we see
that a student can take a course in 4 + 2 + 3 = 9 ways.

Next principle is multiplication principle which will be stated for two sets, but it can be
generalized to any finite number of sets.

5.1.2 Multiplication Principle
Let 𝑆 be a set of ordered pairs (𝑎, 𝑏), where the first object comes from a set of size 𝑝, and
for each choice of object 𝑎 there are 𝑞 choices for object 𝑏. Then the size of 𝑆 is 𝑝 × 𝑞:

|𝑆| = 𝑝 × 𝑞

As in basic arithmetic multiplication is repeated addition, similarly multiplication principle is
actuallly a consequence of the addition principle i.e. repeated addition. Let 𝑎1, 𝑎2, … , 𝑎𝑝
be 𝑝 different choices for the object 𝑎. We partition 𝑆 into parts 𝑆1, 𝑆2, … , 𝑆𝑝 where 𝑆𝑖 is
the set of ordered pairs in 𝑆 with first object 𝑎𝑖(𝑖 = 1, 2, … , 𝑝). The size of each 𝑆𝑖 is 𝑞;
hence, by the addition principle,

|𝑆| = |𝑆1|+ |𝑆2|+…+ |𝑆𝑝|

= 𝑞 + 𝑞 +…+ 𝑞(𝑝𝑞′s)

= 𝑝 × 𝑞

The multiplication principle can be stated in another way as: If a first task has 𝑝 outcomes,
and no matter what the outcome of of the first task, a second task has 𝑞 outcomes i.e.
outcomes for two tasks are mutually exclusive, then the two tasks can be performed in 𝑝 × 𝑞
outcomes.

Example: Pencil comes in two different lengths, four different hardness, and three different
thickness. How many different types of pencils are there?

The pencil has three different properties, which are exclusive of each other, and thus, we can
apply multiplication principle. Hence, number of different types of pencils is 2 × 4 × 3 = 24.
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Example: The number of ways a man, woman, boy, and girl can be selected from three men,
three women, five boys and four girls is 3 × 3 × 5 × 4 = 180.

Example: Determine the number of positive integers that are factors of the number

23 × 34 × 55 × 77

The numbers 2, 3, 5, and 7 are prime numbers. By the fundamental theorem of arithmetic,
each factor is of the form

2𝑖 × 3𝑗 × 5𝑘 × 7𝑙

where 0 ≤ 𝑖 ≤ 2, 0 ≤ 𝑗 ≤ 3, 0 ≤ 𝑘 ≤ 5, and 0 ≤ 𝑙 ≤ 7. There are three choices for 𝑖,
four for 𝑗, six for 𝑘, and eight for 𝑙. By multiplication principle, the number of factors is
3 × 4 × 6 × 8 = 576.

In the multiplication principle the 𝑞 choices for object 𝑏 may vary with the choices of 𝑎.
The only requirement is that there be the same number 𝑞 of choices, not necessarily the
same choices.

Example: How many two-digit numbers have distinct, and nonzero digits?

A two-digit number 𝑎𝑏 can be regarded as an ordered pair (𝑎, 𝑏), where 𝑎 is the tens digit,
and 𝑏 is the units digit. Both are not allowed to be 0, and they must be different. Thus,
we see that there are 9 ways to choose 𝑎, which are 1, 2, … , 9. Once 𝑎 is chosen we cannot
use the same digit for 𝑏, which means we are left with 8 choices for 𝑏. Here we see that
choice of 𝑎 makes a difference on what choices 𝑏 has. However, for multiplication principle to
be applicable what matters is that the number of choices remain constant which is 8 in this
case. Applying multiplication principle, we arrive at the answer of the question as 9× 8 = 72.

There is another way to arrive at the same result. Total number of two-digit number is
90, 10,11, 12, … , 99. Of these 90 numbers 9 have a zero in them(10, 20, 30, … , 90), and 9 have
repeated digits(11, 22,… , 99). Thus, total number of required numbers equals 90−9−9 = 72.

We can derive two important ideas from the previous example. First is that it is possible to
solve a counting problem in many ways. The second idea is that to find the number of
objects in a set 𝐴 (in this csae the set of two-digit numbers with nonzero, and distinct digits)
it may be easier to find the number of objects in a larger set 𝑈 containing 𝑆 (the set of all
two-digit numbers), and then subtract the number of objects of 𝑈 that do not belong to 𝐴
(the two-digit numbers containing 0 or repeated digit). This leads us to subtraction principle.

5.1.3 Subtraction Principle:
Let 𝐴 be a set, and let 𝑈 be a larger set containing 𝐴. Let

𝐴 = 𝑈\𝐴 = {𝑥 ∈ 𝑈 : 𝑥 ∉ 𝐴}

be the complement of 𝐴 in 𝑈 . Then the numebr |𝐴| of object in 𝐴 is given by the rule

|𝐴| = |𝑈 |− |𝐴|
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The set 𝑈 is usually some natural set containing all the objects under discussion (it is called
universal set). Using the subtraction principle should be used only if it is easier to count the
number of object in 𝑈 nd 𝐴 tha to count the number of objects in 𝐴.

Example: Most websites on internet have a lower limit of 8 characters as password length.
Suppose if these passwordss are to made up of the digits 0, 1, 2, … , 9, and the lowercase
letters 𝑎, 𝑏, 𝑐, … , 𝑧 then how many passwords will have a repeated symbol?

There are a total of 10 digits, and 26 letters i.e. 36 symbols. So by two applications of
multiplication principle, we get

|𝑈 | = 368 = 2,821,109,907,456

and

|𝐴| = 36.35.34.33.32.31.30.29 = 1,220,096,908,800

Therefore,

|𝐴| = |𝑈 |− |𝐴| = 1,601,012,998,656.

Now we will formulate the last principle of counting principles.

5.1.4 Division Principle
Let 𝑆 be a finite set that is partitioned into 𝑘 parts in such a way that each part contains
the same number of objects. Then the number of parts in the partition is given by the rule

𝑘 = |𝑆|⁄
number of objects in a part

Example; There are 240 rats in a collection of cages. If each cage contains 2 rats, the
number of cages equals

240
⁄

2 = 120.

Interesting problems of division principle will be found in the problems section.

Most counting problems can be classified as one of the following types:

1. Count the number of ordered arrangements or ordered selection of objects

i. without repeating any object,

ii. with repetion(perhaps limited) of objects permitted.

2. Count the number of unordered arrangements or unordered selection of objects

i. without repeating any object,

ii. with repetion(perhaps limited) of objects permitted.
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We can represent repetition, and nonrepetition of objects as selection from a set, and a
multiset. The latter might prove to be more useful in some cases. A multiset is like a set
except that its members need not be distinct.1 For example, a multiset 𝑀 with three 𝑎's,
two 𝑏's i.e. 5 elements of 2 different types. We usually indicate a multiset by specifying the
number of times different types of elements occur in it. Thus, 𝑀 is denoted by {3.𝑎,2.𝑏}.2.
The numbers 3, and 2 are the repetition members of the multiset 𝑀 . Thus we can extrapolate
that a set is a multiset with all repetition numbers equal to 1. Often there is no limit on
number of repetitions i.e. infinite repetitions are allowed.3

5.2 Factorial of 𝑛
Factorial of 𝑛 is denoted by 𝑛!. In the old style it is written as 𝑛 . 𝑛! is given by the first 𝑛
natural numbers, i.e.

𝑛! = 1.2.3.4… (𝑛 − 1) .𝑛

Also, 0! = 1, which we will prove later.

Permutation means arrangement of objects along with selection. In the permutation of object
order matter. If order of object changes then their permutation also changes. Combination of
objects means selection of objects in such a way that order does not matter.

5.3 Permutation of Sets
Let 𝑟 ∈ ℙ. By an 𝑟-permutation of a set 𝑆 of 𝑛 elements has a meaning of an ordered(by
definition of permutation) arrangement of 𝑟 of the 𝑛 elements(𝑟 ≤ 𝑛). If 𝑆 = {𝑎, 𝑏, 𝑐} , then
the three 1-permutations of 𝑆 are

𝑎 𝑏 𝑐,

the six 2-permutations of 𝑆 are

𝑎𝑏 𝑎𝑐 𝑏𝑎 𝑏𝑐 𝑐𝑎 𝑐𝑏,

and the six 3-permutations of 𝑆 are

𝑎𝑏𝑐 𝑎𝑐𝑏 𝑏𝑎𝑐 𝑏𝑐𝑎 𝑐𝑎𝑏 𝑐𝑏𝑎.

There are no 4-permutations of 𝑆 because that will violate the assumption that 𝑟 ≤ 𝑛.

The 𝑟-permutations of an 𝑛-element set is denoted by 𝑃 (𝑛, 𝑟) or 𝑛𝑃𝑟 or 𝑛𝑃𝑟 or 𝑃𝑛
𝑟 . If 𝑟 > 𝑛

then 𝑛𝑃𝑟 = 0. Clearly, 𝑛𝑃1 = 𝑛 for each 𝑛 ∈ ℙ.

For 𝑛 and 𝑟 positive integers with 𝑟 ≤ 𝑛,

1 Thus, a cardinal rule of sets is broken by multisets because a set is not supposed to have duplicates or repeated
elements. The set {𝑎, 𝑎, 𝑏} is same as the set {𝑎, 𝑏} but not so for multisets

2 In standard set-theory's notation, we could denote the multiset 𝑀 using ordered pairs as {(𝑎, 3), (𝑏, 2)}
3 In no circumstance, we need to consider different sizes of ∞.
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𝑛𝑃𝑟 = 𝑛 × (𝑛 − 1)×…× (𝑛 − 𝑟 + 1) .

Permutation of 𝑛 objects taken 𝑟 at a time is equivalent ot filling 𝑟 different vacant spots
from 𝑛 different objects. We can fill first spot by 𝑛 ways, second spot can be filled by
remaining objects i.e. 𝑛 − 1 ways, and proceeding this way we find that 𝑟th spot can be
filled in 𝑛 − 𝑟 + 1 ways. Thus total number of ways is

𝑛 × (𝑛 − 1)×… (𝑛 − 𝑟 + 1) .

We can rewrite the above as

𝑛 × (𝑛 − 1)… (𝑛 − 𝑟 + 1)× (𝑛 − 𝑟)×…2 × 1⁄
(𝑛 − 𝑟)× (𝑛 − 𝑟 − 1)×…2 × 1

𝑛𝑃𝑟 =
𝑛!⁄

(𝑛 − 𝑟)!

Alternatively, first place can be filled in 𝑛 ways. Rest of 𝑟 − 1 spots from 𝑛− 1 objects can be
filled in 𝑛−1𝑃𝑟−1 ways. Thus, 𝑛𝑃𝑟 = 𝑛.𝑛−1𝑃𝑟−1. Similarly, 𝑛−1𝑃𝑟−1 = (𝑛 − 1) .𝑛−2𝑃𝑟−2.
Proceeding this way we find that 𝑛−𝑟+1𝑃1 = 𝑛 − 𝑟 + 1. Multiplying and cancelling common
factors, we get 𝑛𝑃𝑟 = 𝑛 × (𝑛 − 1)×…× (𝑛 − 𝑟 + 1) .

The number of permutations of 𝑛 elements is 𝑛𝑃𝑛 = 𝑛!⁄
0! = 𝑛!. If we follow first result then it

is evident that 0! = 1.

5.3.1 Meaning of 1
⁄

(−𝑘)! , 𝑘 ∈ ℙ

We have 𝑛𝑃𝑟 = 𝑛!⁄
(𝑛−𝑟)!. Putting 𝑟 = 𝑛 + 𝑘, we have 𝑛𝑃𝑛+𝑘 =

𝑛!⁄
(−𝑘)!. But the number of ways

of arranging 𝑛 + 1 objects out of 𝑛 different objects = 0 ⇒ 1⁄
(−𝑘)! = 0.

Note: Although (−𝑘)! has no meaning by the definition of factorial but if we consider the
above result then the formula for permutation becomes valid even for 𝑟 > 𝑛.

5.3.2 Circular Permutation
Let us consider arranging objects along a circle. Let us consider that four persons 𝐴, 𝐵, 𝐶,
and 𝐷 are sitting around a table. We can have following arrangements:

𝐴

𝐵

𝐶

𝐷

𝐷

𝐴

𝐵

𝐶

𝐶

𝐷

𝐴

𝐶

𝐵

𝐶

𝐷

𝐴
Figure 5.1

As shown four persons are sitting around a round table, and four anticlockwise rotations
have lead to four arrangements. But if 𝐴,𝐵,𝐶,𝐷 are sitting in a row, and then are shiftedd
such that last occupies the place of first, then the four arrangements will be different. Thus,
if there are 𝑛 objects then for each circular arrangement there are nn linear arrangements.
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But for 𝑛 different objects total number of linear arrengements are 𝑛! so the total number of
circular arrangements are

𝑛!⁄
𝑛 = (𝑛 − 1)! .

Thus, we can say that number of circular 𝑟-permutations of a set of 𝑛 elements is given by
𝑛𝑃𝑟⁄
𝑟 = 𝑛!⁄

𝑟.(𝑛 − 𝑟)!

5.3.3 Clockwise and Anti-Clockwise Arrangements
When clockwise and anticlockwise arranegemnts are same then total number of permutations
will become half of what we computed in previous case i.e.

𝑛𝑃𝑟⁄
2𝑟 = 𝑛!⁄

2𝑟.(𝑛 − 𝑟)!

5.4 Combination of Sets
Consider a set 𝑆 having 𝑛 elements. A combination of a set 𝑆 has a meaning of an unordered
selection of the elements of 𝑆. The result of each selection is a subset 𝐴 of the elements
of 𝑆 : 𝐴 ⊂ 𝑆. Thus, the terms combination and subset are interchangeable.

Now let 𝑟 be a non-negative integer. By an 𝑟-combination of a set 𝑆 of 𝑛 elements, we
understand an unordered selection of 𝑟 of the 𝑛 objects of 𝑆. The result will be an 𝑟-subset
of 𝑆.

If 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑} , then

{𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}

are the four 3-subsets of 𝑆. We denote the number of 𝑟-subsets or 𝑟-combinations of
an 𝑛-element set by (𝑛𝑟) or 𝑛𝐶𝑟 or 𝑛𝐶𝑟 or 𝐶𝑛

𝑟 . Obviously,

(𝑛𝑟) = 0 if 𝑟 > 𝑛.

Also,

(0𝑟) = 0 if 𝑟 > 0.

The following facts are easy to figure out for each non-negative integer 𝑛

(00) = (𝑛0) = (𝑛𝑛) = 1, (𝑛1) = 𝑛,

For 0 ≤ 𝑟 ≤ 𝑛,
𝑛𝑃𝑟 = 𝑟!𝑛 𝐶𝑟.
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Hence,

𝑛𝐶𝑟 =
𝑛!⁄

𝑟!(𝑛 − 𝑟)!

Let 𝑆 be an 𝑛-element set. Each 𝑟-permutation of 𝑆 arises from following tasks

1. Choose 𝑟 elements from 𝑆.

2. Arrange the chose 𝑟 elements in some order.

The number of ways to carry out first task, by definition, is 𝑛𝐶𝑟. The number of ways to
carry out second task is 𝑛𝑃𝑟 = 𝑟!. By the multiplication principle, we have 𝑛𝑃𝑟 = 𝑟!𝑛 𝐶𝑟.
Now applying the formula for permutations, we have

𝑛𝐶𝑟 =
𝑛!⁄

𝑟!(𝑛 − 𝑟)! .

5.5 Permutation of Multisets
Let 𝑆 be a multiset with objects of 𝑘 different types, where each object can be repeated
infinitely. Then the number of 𝑟-permutations of 𝑆 is 𝑘𝑟.

To prove this, we can choose the first item to be an object of any one of the 𝑘 types. Since the
number of repetitions are infinite the second item can be also chose in 𝑘 ways. In fact, any
item can be chosen in 𝑘 ways due to infinite repetition. Following, multiplication principle,
total number of such permutations is 𝑘𝑟.

Let 𝑆 be a multiset with objects of 𝑘 different types with finite repetition numbers 𝑛1,𝑛2,… ,𝑛𝑘
respectively. Let the size of 𝑆 be 𝑛 = 𝑛1 + 𝑛2 +…+ 𝑛𝑘. Then the number of permutations
of 𝑆 equals

𝑛!⁄
𝑛!! 𝑛2!…𝑛𝑘!

.

We can calculate this by thinking in terms of 𝑛 places, and we want to put exactly one of the
objects of 𝑆 in each of the places. We have 𝑛1 objects of one type in 𝑆, so we must choose a
subset of 𝑛1 places from the set of 𝑛 places. We can do this in 𝑛𝐶𝑛1 ways. After this we have
𝑛 − 𝑛1 places left, and we have 𝑛2 objects of second type. So following similarly we can do
this in 𝑛−𝑛1𝐶𝑛2 ways. Following this way invoking multiplication principle, the number
of permutations of 𝑆 equals

𝑛𝐶𝑛1.𝑛−𝑛1𝐶𝑛2.𝑛−𝑛1−𝑛2𝐶𝑛3 …𝑛−𝑛1−𝑛2−…−𝑛𝑘−1 𝐶𝑛𝑘

which gives

𝑛!⁄
𝑛1!(𝑛 − 𝑛1)!

. (𝑛 − 𝑛1)!⁄
𝑛2!(𝑛 − 𝑛1 − 𝑛2)!

. (𝑛 − 𝑛1 − 𝑛2)!⁄
𝑛3!(𝑛 − 𝑛1 − 𝑛2 − 𝑛3)!

… (𝑛 − 𝑛1 − 𝑛2 −…− 𝑛𝑘−1)!⁄
𝑛𝑘!(𝑛 − 𝑛1 − 𝑛2 −…− 𝑛𝑘)!

which after cancellation, reduces to
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𝑛!⁄
𝑛1! 𝑛2!…𝑛𝑘!

Let 𝑛 be a positive integer, and let 𝑛1,𝑛2,… ,𝑛𝑘 be positive integers with 𝑛 = 𝑛1+𝑛2+…+𝑛𝑘.
The number of ways to partition a set of 𝑛 objects into 𝑘 labeled boxes in which Box 1
contains 𝑛1 objects, Box 2 contains 𝑛2 objects, …, Box 𝑘 contains 𝑛𝑘 objects equals

𝑛!⁄
𝑛1! 𝑛2!…𝑛𝑘!

.

If the boxes are not labeled, and 𝑛1 = 𝑛2 = … = 𝑛𝑘, then the number of partitions equals

𝑛!⁄
𝑘! 𝑛1! 𝑛2!…𝑛𝑘!

.

We can calculate this by direct application of the multiplication principle. So we first
choose 𝑛1 objects for the first box, then 𝑛2 of the remaining 𝑛 − 𝑛1 objects for the second
box and so on. By the multiplication principle, the number of ways is

𝑛𝐶𝑛1.𝑛−𝑛1𝐶𝑛2.𝑛−𝑛1−𝑛2𝐶𝑛3 …𝑛−𝑛1−𝑛2−…−𝑛𝑘−1 𝐶𝑛𝑘

which is same as the last result, i.e.

𝑛!⁄
𝑛1! 𝑛2!…𝑛𝑘!

If boxes are not labeled and 𝑛1 = 𝑛2 = … = 𝑛𝑘, then the result has to be divided by 𝑘!
because for each way of distributing the objects into the 𝑘 unalbeled boxes there are 𝑘!
ways in which we can attach the labels to the boxes. Thus, using the division principle,
we arrive at the result as

𝑛!⁄
𝑛1! 𝑛2!…𝑛𝑘!

.

5.6 Combination of Multisets
If 𝑆 is a multiset, then an 𝑟-combination of 𝑆 is an unorndered selection of 𝑟 of the objects
of 𝑆. Thus, an 𝑟-combination of 𝑆 is itslef a multiset, a submultiset of 𝑆 of size 𝑟, or, for short,
an 𝑟-submultiset. If 𝑆 has 𝑛 objects, then there is only one 𝑛-combination of 𝑆, namely, 𝑆
itself. If 𝑆 contains objects of 𝑘 different types, then there are 𝑘1-combinations of 𝑆.

Let 𝑆 be a multiset with objects of 𝑘 types, each with an infinite repetitions, then the
number of 𝑟-combinations of 𝑆 equals

𝑟+𝑘−1𝐶𝑟 =𝑟+𝑘−1 𝐶𝑘−1.

Let 𝑘 types of objects of 𝑆 be 𝑎1, 𝑎2, … , 𝑎𝑘 so that

𝑆 = {∞.𝑎1, ∞.𝑎2, … , ∞.𝑎𝑘}
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Any 𝑟-combination of 𝑆 is of the form {𝑥1.𝑎1, 𝑥2.𝑎2, … , 𝑥𝑘.𝑎𝑘}, where 𝑥1, 𝑥2, … , 𝑥𝑘 are
non-negative integers with 𝑥1+ 𝑥2+…+𝑥𝑘 = 𝑟. The converse is also true. Thus, the number
of 𝑟-combinations of 𝑆 equals the number of solutions of the equation

𝑥1 + 𝑥2 +…+ 𝑥𝑘 = 𝑟.

We will show that the number of solutions of this equation is given by number of permuations
of the multiset

𝑇 = {𝑟.1, (𝑘 − 1) . ∗}

of 𝑟 + 𝑘 − 1 objects of two different types. Given a permuation of 𝑇, the 𝑘 − 1∗'s divide the
𝑟1s into 𝑘 groups. Let there be 𝑥11s to the left of the first ∗, 𝑥21s between the first and
second ∗,… , and 𝑥𝑘1s to the right of last ∗. Clearly, 𝑥1 + 𝑥2 +…+ 𝑥𝑘 = 𝑟. The converse of
this is also true. Thus, required combination is given by the formula

𝑟+𝑘−1𝐶𝑟 =𝑟+𝑘−1 𝐶𝑘−1.

5.7 Some Important Indentities
1. 𝑛𝑃𝑟 = 𝑟.𝑛−1𝑃𝑟−1 +𝑛−1 𝑃𝑟.

2. 𝑛𝐶𝑟 =𝑛 𝐶𝑛−𝑟.

3. 𝑛𝐶𝑟−1 +𝑛 𝐶𝑟 =𝑛+1 𝐶𝑟.

4. 𝑛𝐶𝑟 =𝑛 𝐶𝑠 ⇒ 𝑟 = 𝑠 or 𝑟 + 𝑠 = 𝑛.

5. 𝑛𝐶𝑟 = 𝑛−𝑟+1⁄
𝑟 .𝑛𝐶𝑟−1 (1 ≤ 𝑟 ≤ 𝑛).

6. If 𝑛 is even, then the greatest value of 𝑛𝐶𝑟 is 𝑛𝐶𝑚, where 𝑚 = 𝑛/2. If 𝑛 is odd, then
the greatet value is 𝑛𝐶𝑚, where 𝑚 = (𝑛 − 1)/2 or 𝑚 = (𝑛 + 1)/2.

7. If 𝑛 = 2𝑚 + 1, then 𝑛𝐶0 <𝑛 𝐶1 <𝑛 𝐶2 < … <𝑛 𝐶𝑚 =𝑛 𝐶𝑚+1. 𝑛𝐶𝑚+1 >𝑛 𝐶𝑚+2 >
… >𝑛 𝐶𝑛.

8. If 𝑛 = 2𝑚+ 1, then 𝑛𝐶0 <𝑛 𝐶1 <𝑛 𝐶2 < … <𝑛 𝐶𝑚 >𝑛 𝐶𝑚+1 >𝑛 𝐶𝑚+1 > … >𝑛 𝐶𝑛.

9. 𝑛𝐶0 +𝑛 𝐶1 +𝑛 𝐶2 +…+𝑛 𝐶𝑛 = 2𝑛.

10. 𝑛𝐶0 +𝑛 𝐶1 +𝑛 𝐶2 +… =𝑛 𝐶1 +𝑛 𝐶3 +… = 2𝑛−1.

11. 2𝑛+1𝐶0 +2𝑛+1 𝐶1 + … +2𝑛+1 𝐶𝑛 =2𝑛+1 𝐶𝑛+1 =2𝑛+1 𝐶𝑛+1 +2𝑛+1 𝐶𝑛+2 + … +2𝑛+1

𝐶2𝑛+1 = 22𝑛.

12. 𝑟.𝑛𝐶𝑟 = 𝑛.𝑛−1𝐶𝑟−1.

5.8 Some Useful Results
Number of selections of 𝑟 objects out of 𝑛 different objects:
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1. When 𝑝 paticular objects are always included =𝑝 𝐶𝑝.𝑛−𝑝𝐶𝑟−𝑝 =𝑛−𝑝 𝐶𝑟−𝑝.

2. When 𝑝 paticular objects are excluded =𝑛−𝑝 𝐶𝑟.

3. Number of selections of 𝑟 objects out of 𝑛 different objects such that 𝑝 particular objects
are not together in any selection =𝑛 𝐶𝑟 =𝑛−𝑝 𝐶𝑟−𝑝.

4. Number of selection of 𝑟 consecutive objects out of 𝑛 objects in a row = 𝑛 − 𝑟 + 1.

5. Number of selection of 𝑟 consecutive objects out of 𝑛 objects along a circle = 𝑛 when
𝑟 < 𝑛, 1 when 𝑟 = 𝑛.

6. Number of selections of zero or more objects out of 𝑛 different objects =𝑛 𝐶0 +𝑛 𝐶1 +𝑛

𝐶2 +…+𝑛 𝐶𝑛 = 2𝑛.

7. Number of selections of one or more objects out of 𝑛 different objects =𝑛 𝐶1 +𝑛 𝐶2 +
…+𝑛 𝐶𝑛 = 2𝑛 − 1.

8. Number of selections of zero or more objects out of 𝑛 identical objects = 𝑛 + 1.

9. Number of selections of one or more objects out of 𝑛 identical objects = 𝑛.

10. Number of selection of one or more objects from (𝑝 + 𝑞 + 𝑟) objects, out of which 𝑟
objects are identical and of one type, 𝑞 objects are identical and of second type, 𝑟
objects are identical and of third type = (𝑝 + 1)(𝑞 + 1)(𝑟 + 1)− 1.

11. Number of selection of one or more objects from (𝑝 + 𝑞 + 𝑟 + 𝑛) objects, out of which 𝑟
objects are identical and of one type, 𝑞 objects are identical and of second type, 𝑟
objects are identical and of third type and rest 𝑛 are different = (𝑝 + 1)(𝑞 + 1)(𝑟 +
1)(𝑛𝐶0 +𝑛 𝐶1 +𝑛 𝐶2 +…+𝑛 𝐶𝑛)− 1 = (𝑝 + 1)(𝑞 + 1)(𝑟 + 1)2𝑛 − 1

12. Number of ways of distributing 𝑛 different objects among 3 persons such that they
gey 𝑥, 𝑦, 𝑧 objects =𝑛 𝐶𝑥.𝑛−𝑥𝐶𝑦.𝑛−𝑥−𝑦𝐶𝑧.3! = 𝑛!⁄

𝑥!𝑦!𝑧! .3!.

13. Number of ways of distributing 𝑛 different objects in 5 sets having 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 objects(𝑎+
𝑏 + 𝑐 + 𝑑 + 𝑑 = 𝑛):

i. When two sets have equal number of objects and three sets have equal number of
objects = 𝑛!⁄

𝑎!𝑏!𝑐!𝑑!𝑒!2!3!

ii. When all sets have equal number of objects = 𝑛!⁄
𝑎!𝑏!𝑐!𝑑!𝑒!5!

14. Number of ways of distributing 𝑛 different objects among 5 persons

i. When all person get different number of objects = 𝑛!⁄
𝑎!𝑏!𝑐!𝑑!𝑒! .5!.

ii. When two persons get equal number of objects and three get equal number of
objects = 𝑛!⁄

𝑎!𝑏!𝑐!𝑑!𝑒!2!3! .5!.

iii. When all get equal number of objects = 𝑛!⁄
𝑎!𝑏!𝑐!𝑑!𝑒!5! .5! =

𝑛!⁄
𝑎!𝑏!𝑐!𝑑!𝑒!.
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5.9 Permutations with Repetitions
The objective is to find permutation of 𝑟 objects out of 𝑛 objects of which 𝑝 are of one
type, 𝑞 of second type and so on.

Let the different objects be denoted by 𝑎, 𝑏, 𝑐, …

Consider the product

(1 + 𝑎𝑥⁄
1! +

𝑎2𝑥2⁄
2! + …+ 𝑎𝑝𝑥𝑝⁄

𝑝! )(1 +
𝑏𝑥⁄
1! +

𝑏2𝑥2⁄
2! + …+ 𝑏𝑞𝑥𝑞⁄

𝑞! )…

Required number of permutations = sum of all possible terms of the form = 𝑟!⁄
𝑝!𝑞!… 𝑎

𝑝𝑏𝑞 …
where 𝑝 + 𝑞 +… = 𝑟

= 𝑟!. coeff. of 𝑥𝑟 in [(1 + 𝑥⁄
1! +

𝑥2
⁄

2! + … + 𝑥𝑝⁄
𝑝!)(1 +

𝑥⁄
1! +

𝑥2
⁄

2! + … + 𝑥𝑞⁄
𝑞!)…]

5.10 Combinations with Repetitions
The objective is to find combinations of 𝑟 objects out of 𝑛 objects under different cases
of repetitions. To begin with we consider combinations of 𝑟 objects taken out of 𝑛 objects of
which 𝑝 are of one type, 𝑞 of the second type and so on.

Let the different things be denoted by the letters 𝑎, 𝑏, …

Consider the product (1 + 𝑎𝑥 + 𝑎2𝑥2 + … + 𝑎𝑝𝑥2)(1 + 𝑏𝑥 + 𝑏2𝑥2 + … + 𝑏𝑞𝑥2)…. All the
terms in the product is of the same degree in the letters 𝑎, 𝑏, … as in 𝑥. The coefficient of 𝑥𝑟
in the product is the number of ways of taking 𝑟 of the letters 𝑎, 𝑏, … with the restriction
that maximum number of 𝑎's is 𝑝, maximum number of 𝑏's is 𝑞 and so on. Coeff. of 𝑥𝑟
will not change if 𝑎 = 𝑏 = … = 1. Thus required number of combinaitons = Coeff. of 𝑥𝑟 in
(1 + 𝑥 + 𝑥2 +…+ 𝑥2)(1 + 𝑥 + 𝑥2 +…+ 𝑥2)…

Similarly, number of combinaitons of 𝑟 objects out of 𝑛 objects of which 𝑝 are of one
type, 𝑞 are of second type and (𝑛 − 𝑝 − 𝑞) things are all different = Coeff. of 𝑥𝑟 in
[(1 + 𝑥 + 𝑥2 +…+ 𝑥𝑝)(1 + 𝑥 + 𝑥2 +…+ 𝑥𝑞)(1 + 𝑥)(1 + 𝑥)… to (𝑛 − 𝑝 − 𝑞) factors ]

= Coeff. of 𝑥𝑟 in [(1 + 𝑥 + 𝑥2 +…+ 𝑥𝑝)(1 + 𝑥 + 𝑥2 +…+ 𝑥𝑞)(1 + 𝑥)(1 + 𝑥)𝑛−𝑝−𝑞 ]

Similarly, number of combinations of 𝑟 objects out of 𝑛 objects of which 𝑝 are of one type, 𝑞
are of second type and so on, when each thing is taken at least once = Coeff. of 𝑥𝑟 in
[(𝑥 + 𝑥2 +…+ 𝑥𝑝)(𝑥 + 𝑥2 +…+ 𝑥𝑞)…]

= Coeff. of 𝑥𝑟−3 in [(1 + 𝑥 + 𝑥2 +…+ 𝑥𝑝)(1 + 𝑥 + 𝑥2 +…+ 𝑥𝑞)

If 𝑛 is a negative integer, then (1 + 𝑥)𝑛 = 1 + 𝑛⁄
1! 𝑥 +

𝑛(𝑛−1)
⁄

2! 𝑥2 + … to ∞ [this comes from
binomial theorem]

So if 𝑛 is a positive inetger then (1 + 𝑥)−𝑛 = 1 + 𝑛⁄
1! 𝑥 +

𝑛(𝑛+1)
⁄

2! 𝑥2 + … to ∞
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Coeff. of 𝑥𝑟 in (1 − 𝑥)−𝑛 =𝑛+𝑟−1 𝐶𝑟 which is number of ways in which 𝑟 identical objects
can be distributed among 𝑛 persons can get zero of more objects = Coeff. of 𝑥𝑟 in (1 + 𝑥 +
…+ 𝑥𝑟)𝑛 = (1−𝑥

𝑟+1⁄
1−𝑥 )

𝑛
= [(1 − 𝑥𝑟+1)(1 − 𝑥)−𝑛 ].

= Coeff. of 𝑥𝑟 in (1 − 𝑥)−𝑛 (leaving powers higher than 𝑥𝑟) =𝑛+𝑟−1 𝐶𝑟.

5.11 Integral Solutions of Equations
As we have proved earlier, for equation 𝑥1 + 𝑥2 +…+ 𝑥𝑟 = 𝑛 is equivalent of distributing 𝑟
identical objects among 𝑛 persons when each person getting zero or more things =𝑛+𝑟−1 𝐶𝑟

Similarly, number of non-negative integral solutions of equation 𝑥+ 2𝑦 + 3𝑧 + 4𝑤 = 𝑛, equals
coeff. of 𝑥𝑛 in [(1 − 𝑥)−1(1 − 𝑥)−2(1 − 𝑥)−3(1 − 𝑥)−4 ].

Similarly, number of positive integral solutions of equation 𝑥 + 2𝑦 + 3𝑧 + 4𝑤 = 𝑛, equals
coeff. of 𝑥𝑛−(1+2+3+4) in [(1 − 𝑥)−1(1 − 𝑥)−2(1 − 𝑥)−3(1 − 𝑥)−4 ].

5.12 Geometrical Applications of Combinations
Some basic geometrical results involving combinations are given below:

1. 𝑛 non-concurrent and non-parallel straight lines, points of intersection are 𝑛𝐶2.

2. The number of straight lines constructed out of 𝑛 points, when no three points are
collinear, are 𝑛𝐶2.

3. Given 𝑛 points, if 𝑚 are collinear, then number of straight lines possible are 𝑛𝐶2 −𝑚

𝐶2 + 1.

4. In a polygon, total number of diagonals out of a 𝑛 points, when no three points are
collinear, are 𝑛(𝑛−3)⁄2 .

5. Number of triangles formed from 𝑛 points, when no three points are collinear, are 𝑛𝐶3.

6. Number of triangles formed out of 𝑛 points in which 𝑚 are collinear, 𝑛𝐶3 −𝑚 𝐶3.

7. Number of triangles constructed out of 𝑛 points, when none of the side is common with
the sides of polygon, are 𝑛𝐶3 −𝑛 𝐶1 −𝑛 𝐶1.𝑛−4𝐶1.

8. Number of parallelogram constructed by two system of parallel lines, when first set
contains 𝑚 parallel lines and second set contains 𝑛 parallel lines, are 𝑛𝐶2 ×𝑚 𝐶2.

9. Number of squares formed by two system of parallel lines in which first set is perpendicular
to second set of lines, when first set contains 𝑚 parallel lines and second set contains 𝑛

parallel lines is 
𝑚−1
∑
𝑟=1

(𝑚− 𝑟) (𝑛 − 𝑟); 𝑚 < 𝑛.
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5.13 Number of Divisors and Sum of Divisors
Let 𝑛 = 𝑝𝑛1

1 .𝑝𝑛2
2 … 𝑝𝑛𝑘

𝑛 where 𝑝1, 𝑝2, … , 𝑝𝑘 are distinct prime numbers and 𝑛1, 𝑛2, … , 𝑛𝑘 ∈ ℙ.
Obvously, any divisor of 𝑛 is of the form 𝑑 = 𝑝𝑚1

1 .𝑝𝑚2
2 … 𝑝𝑚𝑘

𝑘 where 𝑚1,𝑚2, … ∈ ℕ such that
0 ≤ 𝑚𝑖 ≤ 𝑛𝑖, 𝑖 = 1, 2, … , 𝑘. Therefore, the total no. of divisors for 𝑛 will be equal to the
number of ways of selecting at least one from 𝑛1 identical prime numbers 𝑝1, 𝑛2 primes 𝑝2
and so on. The number of such ways is

(𝑛1 + 1) (𝑛2 + 1)… (𝑛𝑘 + 1) .

These divisors will also include 1 and 𝑛, so obviously, number of divisors other than 1 and 𝑛
is

(𝑛1 + 1) (𝑛2 + 1)… (𝑛𝑘 + 1)− 2

The sum of all divisors for 𝑛 is given by
𝑛1

∑
𝑟1=0

𝑛2

∑
𝑟2=0

…
𝑛𝑘

∑
𝑟𝑘=0

𝑝𝑟11 𝑝𝑟22 … 𝑝𝑟𝑘𝑘

= (
𝑝𝑛1+1
1 − 1⁄
𝑝1 − 1 )(

𝑝𝑛2+1
2 − 1⁄
𝑝2 − 1 )…(

𝑝𝑛𝑘+1
𝑘 − 1⁄
𝑝𝑘 − 1 )

5.14 Exponent of Prime 𝑝 in 𝑛!
Let 𝐸𝑝(𝑚) denote the exponent of the prime 𝑝 in the positive integer 𝑚. We have

𝐸𝑝(𝑛!) = 𝐸𝑝[1.2.3.4… (𝑛 − 1) .𝑛]

The last integer amongst 1, 2, 3, … , (𝑛 − 1), 𝑛 which is divisible by 𝑝 is [𝑛/𝑝]𝑝, where [𝑥]
denotes the greatest integer ≤ 𝑥. Therefore,

𝐸𝑝(𝑛!) = 𝐸𝑝(𝑝.2𝑝.3𝑝… [𝑛⁄𝑝 𝑝])

because the remaining integers from the set (1, 2, 3, … , (𝑛 − 1), 𝑛) are not divisible by 𝑝.

𝐸𝑝(𝑛!) = [𝑛⁄𝑝]+𝐸𝑝(1.2.3… [𝑛⁄𝑝])

The last integer amongst 1, 2, … , [𝑛/𝑝] which is divisible by 𝑝 is

[[𝑛/𝑝]⁄
𝑝 ]𝑝 = [ 𝑛⁄

𝑝2
]𝑝

⇒ 𝐸𝑝(𝑛!) = [𝑛⁄𝑝]+ [ 𝑛⁄
𝑝2
]+𝐸𝑝(1.2… [ 𝑛⁄

𝑝2
])

Proceeding similarly,
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𝐸𝑝(𝑛!) = [𝑛⁄𝑝]+ [ 𝑛⁄
𝑝2
]+… [ 𝑛⁄𝑝𝑠]

where 𝑝𝑠 ≤ 𝑛 ≤ 𝑝𝑠+1

5.15 Inclusion-Exclusion Principle(PIE)
We have seen examples of subtraction principle. Inclusion exclusion principle is an extension
of subtraction principle. In this type of problems, it is easier to make an indect coutnt of
object in a set rather than to count the objects directly. Consder following examples:

Example: Count the permutations 𝑖1𝑖2 … 𝑖𝑛 of 1, 2, … , 𝑛 in which 1 is not in the first
position i.e 𝑖1 ≠ 1.

The number of permutations of {1, 2, … , 𝑛} with 1 in the first position is the same as the
number (𝑛 − 1)! of permutations of 2, 3, … , 𝑛. Since the total umber permutations is 𝑛!,
required number of permutations is 𝑛! − (𝑛 − 1)! = (𝑛 − 1) .(𝑛 − 1)! .

Definition: The number of objects of the set 𝑆 that have none of the properties 𝑃1,𝑃2,… ,𝑃𝑚
is given by the alternating expression

| ̅𝐴1 ∩ ̅𝐴2 ∩ … ∩ ̅𝐴𝑚| =
|𝑆|−∑ |𝐴𝑖|+∑ |𝐴𝑖 ∩ 𝐴𝑗|−∑ |𝐴𝑖 ∩ 𝐴𝑗 ∩ 𝐴𝑘|+…+ (−1)𝑚 |𝐴1 ∩ 𝐴2 ∩ …𝐴𝑚|,

where the first sum is over all 1-subsets of {𝑖} of {1, 2, … ,𝑚} , the second sum is over
all 2-subsets {𝑖, 𝑗} of {1, 2, … ,𝑚} the third sum is all over 3-subsets {𝑖, 𝑗, 𝑘} of {1, 2, … ,𝑚} ,
and so until the 𝑚th sum over all 𝑚-subsets of {1, 2, … , 2} of which the only one is itself.

The subtraction principle is the simplest instance of inclusion-exclusion principle. As a
first generalization of the substraction principle, let 𝑆 be a finite set of objects, and let 𝑃1
and 𝑃2 be two "properties" that each objects in 𝑆 may or may not possess. We wish to count
the number of object in 𝑆 that have neither the properties of 𝑃1 and 𝑃2. Extending the
subtracting principle, we can do this by first including of all objects of 𝑆 in our count, then
excluding all objects that have property 𝑃1 and excluding all objects that have property 𝑃2,
and then noting that we have excluded objects having both properties twice, readmitting all
such objects once. Let 𝐴1 be the subset of objects of 𝑆 that have property 𝐴1, and let 𝐴2 be
the subset that have property 𝑃1. Then ̅𝐴1 consists of those which do not have property 𝑃1,
and similarly ̅𝐴2 consists of those which do not have property 𝑃2. The objects of set ̅𝐴1 ∩ ̅𝐴2
are those that have neither property 𝑃1 nor property 𝑃1. Thus, we have

| ̅𝐴1 ∩ ̅𝐴2| = |𝑆|− |𝐴1|− |𝐴2|+ |𝐴1 ∩ 𝐴2|.

To further prove this, we argue as follows. Consider an object 𝑥 which has neither the
property 𝑃1, nor the property 𝑃2. In this case the contribution towards the count by this
object would be 1 − 0 − 0 + 0 = 1. Next, we consider if the object 𝑥 has property 𝑃2, then
its contribution is 1 − 1 − 0 + 0 = 0. Similarly, if it has property 𝑃1, then its contribution is
1 − 0 − 1 + 0 = 0. For the last possibility when 𝑥 has both the properties its contribution is
1 − 1 − 1 + 1 = 0. As it is obvious any object will fall in either of these four possibilities and
the total contribution is 1 only when it has neither of the properties. The inclusion-exclusion
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principle stated above is generalizatio of this two property example. We will now establish
the validity of the general case.

First, we conisder an object 𝑥 with none of the properties. Its contribution to the right
side would be 1 − 0 + 0 − 0 + … + (−1)𝑚0 = 1 since it is in 𝑆 but in none of the other
sets. Now consider an object 𝑦 with exactly 𝑛 ≥ 1 of the properties. The contribution
of 𝑦 to |𝑆| = 1 =𝑛 𝐶0. Its contribution to ∑ |𝐴𝑖| is 𝑛 =𝑛 𝐶1 since it has exactly 𝑛 of the
properties and so it is a member of exactly 𝑛 of the sets out of 𝐴1, 𝐴2, … , 𝐴𝑚. Similarly, the
contribution of 𝑦 to ∑ |𝐴𝑖 ∩ 𝐴𝑗| is 𝑛𝐶2 sinc ewe may select a pair of the properties 𝑦 has in
𝑛𝐶2 ways. Following similarly, the net contribution of 𝑦 is

𝑛𝐶0 −𝑛 𝐶1 +𝑛 𝐶2 −…+ (−1)𝑚𝑛𝐶𝑚

which equal
𝑛𝐶0 −𝑛 𝐶1 +𝑛 𝐶2 −…+ (−1)𝑛𝑛𝐶𝑛

because

𝑛 ≤ 𝑚

and 𝑛𝐶𝑘 = 0 if 𝑘 > 𝑛. The last expression is 0 from binomial theorem. Following similarly,
we prove the inclusion-exclusion principle.

Definition: The number of objects of 𝑆 which have at least one of the properties 𝑃1,𝑃2,… ,𝑃𝑚
is given by

|𝐴1 ∪ 𝐴2 ∪ … ∪ 𝐴𝑚| =
∑ |𝐴𝑖|−∑ |𝐴𝑖 ∩ 𝐴𝑗|+∑ |𝐴𝑖 ∩ 𝐴𝑗 ∩ 𝐴𝑘|−…+ (−1)𝑚+1 |𝐴1 ∩ 𝐴2 ∩ … ∩ 𝐴𝑚|

The set 𝐴1 ∪ 𝐴2 ∪…∪𝐴𝑚 consiste of all those objects in 𝑆 which possess at least one of the
properties. Also,

|𝐴1 ∪ 𝐴2 ∪ … ∪ 𝐴𝑚| = |𝑆|− |𝐴1 ∪ 𝐴2 ∪ … ∪ 𝐴𝑚|.

From Demorgan's law

|𝐴1 ∪ 𝐴2 ∪ … ∪ 𝐴𝑚| = ̅𝐴1 ∩ ̅𝐴2 ∩ … ∩ ̅𝐴𝑚

Following result from previous definition, we have the required equality.

5.15.1 A Special Case of PIE

For any set 𝐴 having 𝑛 ≥ 2 element, |𝐴1 + 𝐴2 + ⋯ + 𝐴𝑛 =
𝑛
∑
𝑖=0

|𝐴𝑖| − ∑
𝑖<𝑗

𝐴𝑖𝐴𝑗 +

∑
𝑖,𝑗<𝑘

𝐴𝑖𝐴𝑗𝐴𝑘|−⋯+ (−1)𝑛 |𝐴1𝐴2 …𝐴𝑛|

In some problems we deal with properties 𝑎1, 𝑎2, … , 𝑎𝑛 and numerical values associated with
properties i.e. 𝑛(𝑎1), 𝑛(𝑎2), … , 𝑛(𝑎𝑛), 𝑛(𝑎1𝑎2), … , 𝑛(𝑎𝑛−1𝑎𝑛)… and so on.

We can have
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1. 𝑛(𝑎1) = 𝑛(𝑎2) = ⋯ = 𝑛(𝑎𝑛)

2. 𝑛(𝑎1𝑎2) = 𝑛(𝑎2𝑎3) = ⋯ = 𝑛(𝑎1𝑎𝑛) = 𝑛(𝑎2𝑎3) = ⋯ = 𝑛(𝑎𝑛−1𝑎𝑛)

3. 𝑛(𝑎1𝑎2𝑎3) = 𝑛(𝑎1𝑎2𝑎4) = ⋯ = 𝑛(𝑎𝑖𝑎𝑗𝑎𝑘), where 𝑖 ≠ 𝑗 ≠ 𝑘

and so on.

Let 𝑁(𝑟) denote the common properties of 𝑎1, 𝑎2, … , 𝑎𝑛 when taken 𝑟 at a time. 𝑁(0) is
the value of 𝑛(𝑎′1𝑎′2 …𝑎′𝑛), where 𝑎′𝑖 is the complementary property of 𝑎𝑖, and 𝑁 is the value
of collection of zero property or at least one property.

Now we can rewrite the PIE in the form of

𝑁(0) = 𝑁 −𝐶𝑛
1 𝑁(1)+𝐶𝑛

2 𝑁(2)−𝐶𝑛
3 𝑁(3)+⋯+ (−1)𝑛𝐶𝑛

𝑛𝑁(𝑛)

5.16 Derangements
Consider following problems. At a party 14 gentlemen check their overcoats. In how many
ways can their overcoats be returned so that no gentleman get their own overcoat? In a
cricket team there are 11 players who bat in a certain order. In how many ways those can
bat so that no player bats at their pre-determined position? This type of problems fall in the
category of following general problem.

Given an 𝑛-element set 𝑆 in which each element has a specified position. We have to find the
number of permutations of 𝑆 in which no element is in its specified position. This can be
exemplified by a set 𝑆 = {1, 2, … , 𝑛} in which location of each integer is that specified
by its position in the sequence 1, 2, … , 𝑛. A derangement {1, 2, … , 𝑛} is a permutation of
𝑖1𝑖2 … 𝑖𝑛 of 1, 2, … , 𝑛 sucb that 𝑖≠1, 𝑖2 ≠ 2, … , 𝑖𝑛 ≠ 𝑛. Derangement of such an 𝑛-element
set is denoted by 𝐷𝑛

For 𝑛 ≥ 1

𝐷𝑛 = 𝑛!(1 − 1⁄
1! +

1⁄
2! −

1⁄
3! + …+ (−1)𝑛 1⁄

𝑛!) .

Let 𝑇 be the set of all 𝑛! permutations of 𝑋. For 𝑗 = 1, 2, … , 𝑛 let 𝑃𝑗 be the property that,
in a permutation, 𝑗 is in its proper position. Let 𝐴𝑗 denote the set of permutations with
property 𝑃𝑗. Thus,

𝐷𝑛 = | ̅𝐴1 ∩ ̅𝐴2 ∩ … ∩ ̅𝐴𝑛|.

The permutations in 𝐴1 are of the form 1𝑖2 … 𝑖𝑛, where 𝑖1 … 𝑖𝑛 is a permutation of {2,… , 𝑛}.
Thus, |𝐴1| = (𝑛 − 1)!. We can write the general form as |𝐴𝑗| = (𝑛 − 1)!. For 𝐴𝑗 ∩ 𝐴𝑘, two
elements have to be in the proper position. So, |𝐴𝑗 ∩ 𝐴𝑘| = (𝑛 − 2)!. For any integer 𝑘 with
1 ≤ 𝑘 ≤ 𝑛, |𝐴1 ∩ 𝐴2 ∩ … ∩ 𝐴𝑘| = (𝑛 − 𝑘)!. Since there are 𝑛𝐶𝑘 subsets of 𝑇 , applying the
inclusion and exclusion principle, we obtain

𝐷𝑛 = 𝑛! −𝑛 𝐶1(𝑛 − 1)! +𝑛 𝐶2(𝑛 − 2)! − … + (−1)𝑛𝑛𝐶𝑛0!
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⇒ 𝐷𝑛 = 𝑛!(1 − 1⁄
1! +

1⁄
2! −

1⁄
3! + …+ (−1)𝑛 1⁄

𝑛!) .

5.17 The Bijection Principle
Let 𝑃 = {𝑎1, 𝑎2, … , 𝑎𝑛}, and 𝑄 = {𝑏1, 𝑏2, … , 𝑏𝑛}. If 𝑓 : 𝑃 → 𝑄 is an injective function then
𝑛 ≤ 𝑚. If 𝑓 : 𝑃 → 𝑄 is a surjective function then 𝑛 ≥ 𝑚. If 𝑓 : 𝑃 → 𝑄 is injective and
surjective then 𝑓 is known to be a bijective function. For a bijective function 𝑛 = 𝑚.

5.18 Occupancy Problems
The problems related to distribution of balls into boxes are called occupancy problems.
We can have following cases: 

5.18.1 Distinguishable Balls and Distinguishable Boxes
Number of ways to divide 𝑛 non-identical balls in 𝑟 different boxes such that each box gets 0
or more number of balls (empty boxes allowed) = 𝑟𝑛.

If no box is empty, then the number is found by the inclusion/exclusion principle or by
recurrence relation or by generating function method. Using any one of them number of
ways, to divide 𝑛 non-identical balls in 𝑟 different boxes such that each box gets at least one
object, can be found.

= 𝑟𝑛 − 𝐶𝑟
1(𝑟 − 1)𝑛 + 𝐶𝑟

2(𝑟 − 2)𝑛 − ⋯+ (−1)𝑟 𝐶𝑟
𝑟−11

𝑛

5.18.2 Identical Balls and Distinguishable Boxes

Theorem 7

If an empty box is allowed, then the number of distributions is 𝐶𝑛+𝑟−1
𝑟−1 .

Proof

Let 𝑥1, 𝑥2, … , 𝑥𝑟 be the numnber of objects given to groups 1, 2, … , 𝑟 respectively.

Clearly, 𝑥1 + 𝑥2 + ⋯+ 𝑥𝑟 = 𝑛.

As each group can get zero or more, we have 0 ≤ 𝑥𝑖 ≤ 𝑛 ~ 𝑖 = 1, 2, 3, … , 𝑟.

We observe that the number of integral solutions ofthe above equation is equal to number of
ways of distributing 𝑛 identical objects among 𝑟 groups such that each gets zero or more

= 𝐶𝑛+𝑟−1
𝑛 = 𝐶𝑛+𝑟−1

𝑟−1 .

If no box is allowed to remain empty then the no. of ways become 𝐶𝑛−1
𝑟−1 . □
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5.18.3 Distinguishable Balls and Identical Boxes
We mark the balls by 𝑛 natural numbers 1, 2,… ,𝑛. A partition of {1, 2,… ,𝑛} in 𝑟 part is a set
if 𝑟 non-empty subsets 𝐴1,𝐴2,… ,𝐴𝑟 of {1, 2,… ,𝑛} such that 𝐴1∪𝐴2∪…∪𝐴𝑟 = {1, 2,… ,𝑛}
and any two of the sets 𝐴1, 𝐴2, … , 𝐴𝑟 are disjoint.

We denote the number of partitions of {1, 2, … , 𝑛} by 𝑆(𝑛, 𝑟), which is called a Stirling
number of the second kind.

We can easily verify that 𝑆(𝑛, 1) = 1, 𝑆(𝑛, 𝑛) = 1, 𝑆(𝑛, 𝑟) = 0, if 𝑟 > 𝑛.

Now we will find 𝑆(𝑛, 𝑟) for 1 < 𝑟 < 𝑛. First possibility is that the number 𝑛 is by itself a
partition, which implies that the number 1, 2, … , 𝑛 − 1 must form a 𝑟 − 1 partition. The
number of such partitions is 𝑆(𝑛 − 1, 𝑟 − 1).

Second case is that, the number 𝑛 is along with at least one of 1, 2, … , 𝑛 − 1 in a partition,
which implies that the numbers 1, 2, … , 𝑛 − 1 must form a 𝑟 partition, and 𝑛 must be
inserted in anyone of the 𝑟 subsets. So 𝑛 can be put in 𝑟 ways. The number of such partitions
is 𝑟𝑆(𝑛 − 1, 𝑟).

Hence, 𝑆(𝑛, 𝑟) = 𝑆(𝑛 − 1, 𝑟 − 1)+ 𝑟𝑆(𝑛 − 1, 𝑟)⇒ 𝑆(𝑛, 2) = 2𝑛−1 − 1.

In general, we can easily find

𝑆(𝑛, 𝑟) = 1⁄
𝑟! [𝑟

𝑛 − 𝐶𝑟
1(𝑟 − 1)𝑛 + 𝐶𝑟

2(𝑟 − 2)𝑛 − ⋯+ (−1)𝑟−1𝐶𝑟
𝑟−11

𝑛] .

5.18.4 Identical Balls and Identical Boxes
We find distribution of 𝑛 identical balls in 𝑟 identical boxes so that no box remains empty.

The number of distributions = The number of ways of writing 𝑛 as the sum 𝑥1+𝑥2+⋯+𝑥𝑟,
where 𝑥𝑖 ∈ ℙ, 𝑖 = 1, 2, … , 𝑟 = Number of partitions of 𝑛 in 𝑟 parts.

This is same as finding number of integral solutions of 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑟 = 𝑛 with 1 ≤
𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑟, which is equal to coeff. of 𝑥𝑛 in 𝑥𝑟⁄

(1−𝑥)(1−𝑥2)⋯(1−𝑥𝑟). Let us denote this
number by 𝑃𝑟(𝑛).

We see that 𝑃1(𝑛) = 𝑃𝑛(𝑛) = 1, 𝑃2(𝑛)⌊𝑛⁄2⌋, 𝑃𝑟(𝑛) = 0, 𝑟 > 𝑛. Now we will find 𝑃𝑟(𝑛), 1 <
𝑟 < 𝑛. We divide all partition in two types. (i) At least one partition of size 1 (ii) Nopartition
of size 1.

Number of partitions of in case (i) is 𝑃𝑟−1(𝑛 − 1). Number of partitions in case (ii) is
𝑃𝑟(𝑛 − 𝑟). Now we add one ball in each part so that each part will have size of at least 2.

Hence, 𝑃𝑟(𝑛) = 𝑃𝑟−1(𝑛 − 1) |𝑃𝑟(𝑛 − 𝑟), 1 < 𝑟 ≤ ⌊𝑛⁄2⌋.

5.19 Dirichlet Drawer Principle or Pigeonhole Principle
The simplest form of the pigeonhole principle is the following quite obvious statement.
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Theorem 8

If 𝑛+ 1 objects are distributed into 𝑛 boxes, then at least one box contains two or more of the
objects.

Proof

We will prove this by contradiction. If each box contains at most one object, then the total
number of objects is 1 + 1 +…+ 1(𝑛1𝑠) = 𝑛. Since we have 𝑛 + 1 objects for distribution,
some box will contain at least two of the obect. □

5.19.1 Pigeonhole Principle: Strong Form

Theorem 9

Let 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ ℙ. If 𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛 − 𝑛 + 1 objects are distributed into 𝑛 boxes, then
at least one of the 𝑖th boxes contain at least 𝑥𝑖 objects.

Proof

Suppose that we distribute 𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛 − 𝑛 + 1 objects among 𝑛 boxes. Let 𝑖th box

contain 𝑥𝑖 − 1 objects, then total would be 
𝑛
∑
𝑖=1

(𝑥𝑖 − 1) = 𝑥1+ 𝑥2 +⋯+ 𝑥𝑛− 𝑛 objects. And

hence, at least one of the 𝑖th box will contain at least 𝑥𝑖 objects. □
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5.20 Problems
1. If 𝑛𝑃4 = 360, find 𝑛.

2. If 𝑛𝑃3 = 9240, find 𝑛.

3. If 10𝑃𝑟 = 720, find 𝑟.

4. If 2𝑛+1𝑃𝑛−1 :2𝑛−1 𝑃𝑛 = 3 : 5, find 𝑛.

5. If 𝑛𝑃4 = 12 ×𝑛 𝑃2, find 𝑛.

6. If 𝑛𝑃5 = 20 × 𝑃𝑛
3 , find 𝑛.

7. If 𝑛𝑃4 : 𝑃𝑛+1
4 = 3 : 4, find 𝑛.

8. If 20𝑃𝑟 = 6840, find 𝑟.

9. If 𝑘+5𝑃𝑘+1 =
11(𝑘−1)⁄

2 .𝑘+3𝑃𝑘, find 𝑘.

10. If 22𝑃𝑟+1 :20 𝑃𝑟+2 = 11 : 52, find 𝑟.

11. If 𝑚+𝑛𝑃2 = 90 and 𝑚−𝑛𝑃2 = 30, find 𝑚 and 𝑛.

12. If 12𝑃𝑟 = 11880, find 𝑟.

13. If 56𝑃𝑟+6 :54 𝑃𝑟+3 = 30800 : 1, find 𝑟.

14. Prove that 1𝑃1 + 2.2𝑃2 + 3.3𝑃3 + ⋯+ 𝑛.𝑛𝑃𝑛 =𝑛+1 𝑃𝑛+1 − 1.

15. If 𝑛𝐶30 = 𝐶𝑛
4 , find 𝑛.

16. If 𝑛𝐶12 = 𝐶𝑛
8 , find 𝑛𝐶17 and 22𝐶𝑛.

17. If 18𝐶𝑟 = 𝐶18
𝑟+2, find 𝑟𝐶6.

18. If 𝑛𝐶𝑛−4 = 15, find 𝑛.

19. If 15𝐶𝑟 : 𝐶15
𝑟−1 = 11 : 5, find 𝑟.

20. If 𝑛𝑃𝑟 = 2520 and 𝐶𝑛
𝑟 = 21, find 𝑟.

21. Prove that 20𝐶13 + 𝐶20
14 − 𝐶20

6 − 𝐶20
7 = 0.

22. If 𝑛𝐶𝑟−1 = 36, 𝐶𝑛
𝑟 = 84 and 𝐶𝑛

𝑟+1 = 126, find 𝑛 and 𝑟.

23. How many numbers of four digits can be formed with digits 1, 2, 3, 4 and 5 if repetition
of digits is not allowed?

24. How many numbrs between 400 and 1000 can be made with the digits 2, 3, 4, 5, 6
and 0, with no repetitions?
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25. Find the number of numbers between 300 and 3000 that can be formed with the digits
0, 1, 2, 3, 4 and 5 with no repetitions.

26. How many numbers of four digits greater than 2300 can be formed with digits
0, 1, 2, 3, 4, 5 and 6 with no repetitions?

27. How many numbers can be formed by using any number of digits 0, 1, 2, 3 and 4 with
no repetitions?

28. How many numbers of four digits can be formed with the digits 1, 2, 3 and 4? Find the
sum of those numbers.

29. Find the sum of all four digit numbers that can be formed with the digits 0, 1, 2 and 3.

30. Find the sum of all four digits that can be formed with 1, 2, 2 and 3.

31. A person has to send invitation to 6 friends. In how many ways can he send invitations
to them if he has 3 servants?

32. In how many ways 3 prizes can be given away to 7 boys when each is eligible for any
number of prizes?

33. A telegraph has 5 arms and each arm is capable of 4 distinct positions, including the
position of rest. What is the total number of signals that can be made?

34. A letter lock consists of three ring each marked with 10 different letters. In how many
ways is it possible to make an unsuccessful attempts to open the lock?

35. How many numbers greater than 1000 but less than 4000 can be formed with the
digits 0, 1, 2, 3 and 4 with repetitions allowed?

36. In how many ways can 8 Indians, 4 Americans and 4 Englishmen be seated in a row so
that persons of same nationality sit together?

37. There are 20 books of which 4 are single volume and the other are books of 8, 5 and 3
volumes. In how many ways can all these books are arranged on a shelf so that volumes
of the same book are not separated?

38. A library has two books each having three copies and three other books each having
two copies each. In how many ways can all these books be arranged in a shelf so that
copies of same books are not separated?

39. In how many ways 10 examination papers be arranged so that the best and worst
papers never come together?

40. There are 5 boys and 3 girls. In how many ways can they be seated in a row so that
not all girls sit together?

41. In how many ways can 7 I.A. and 5 I.Sc. students can be seated in a row so that no
two of the I.Sc. students sit together?

42. In a class there are 7 boys and 3 girls. In how many different ways can they can be
seated in a row so that no two of the three girls are consecutive?
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43. In how many ways 4 boys and 4 girls can be seated in a row so that boys and girls
alternate?

44. In how many ways 4 boys and 3 girls can be seated in a row so that boys and girls
alternate?

45. In how many ways can the letters of the word “civilization” be rearranged?

46. How any different words can be formed from the word “university” so that all vowels
are together?

47. In how many ways can the letters of the word “director” be arranged so that vowles
are never together?

48. How many words can be formed by rearranging the letter of the word “welcome”? How
many of them end with ‘o’?

49. How many words can be formed with the letters of the word “California” in such a way
that vowels occupy vowels' position and consonants occupy consonants' position?

50. How many different words can be formed with the letters of the word “pencil” when
vowels occupy even place?

51. How many different words can be formed with five given letters of which three are
vowel and two are consonants? How many will have no two vowels together?

52. How many numbers greater than a million can be formed with the digits 2, 3, 0, 3, 4, 2
and 3?

53. In how many ways 5 Indians and 4 British can be seated at a round table if

i. there is no restriction?

ii. all British sit together?

iii. all 4 British do not sit together?

iv. no two British sit together?

54. In how many ways 5 Indians and 5 British can be seated along a circle so that they are
alternated?

55. A round table conference is to be held between 20 delegates of 20 countries. In how
many ways can they be seated if two particular delegates are always to sit together?

56. How many numbers of four digits can be formed with the digits 1, 2, 4, 5, 7 with no
repetitions?

57. How many numbers of 5 digits can be formed with the digits 0, 1, 2, 3 and 4?

58. How many numbers between 100 and 1000 can be formed with the digits 1, 2, 3, 4, 5, 6
and 7; with no repetitions?
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59. How many numbers between 100 and 1000 can be formed with the digits 0, 2, 3, 4, 8
and 9; with no repetitions?

60. Find the total no. of nine digit numbers which have all different digits.

61. How many number between 1000 and 10000 can be formed with the digits 0, 1, 2, 3, 4
and 5; with no repetitions?

62. How many different numbers greater than 5000 can be formed with the digits 0, 1, 5
and 9; with no repetitions?

63. Find the number of numbers between 300 and 4000 that can be formed with the digits
0, 1, 2, 3, 4 and 5; with no repetitions?

64. How many numbers of four digits divisible by 5 can be formed with the digits 0, 4, 5, 6
and 7; with no repetitions?

65. How many even numbers of 5 digits can be formed with the digits 1, 2, 3, 4 and 5?

66. How many numbers less than 1000 and divisible by 5 can be formed, in which no digit
repeats?

67. How many numbers between 100 and 999 can be formed with the digits 0, 4, 5, 6, 7
and 8? How many of them are odd?

68. Find the number of even numbers that can be formed with the digits 0, 1, 2, 3 and 4;
with no repetitions?

69. Find the number of numbers of six digits with the digit 1, 2, 3, 4,5 and 6, in which 5
alwyas occupied tens place; with no repetitions.

70. A number of four different digit is formed using the digits 1, 2, 3, 4, 5, 6 and 7. How
many such numbers can be formed? How many of them are greter than 3400?

71. Find the number of numbers of 4 digits formed with the digits 1, 2, 3, 4 and 5, in
which 3 occurs in the thousand's place and 5 occurs in the unit's place.

72. Find the number of numbers of 4 digits formed with the digits 0, 1, 2, 3, 4 and 5; with
no repetitions. How many of these are greter than 3000?

73. How many number of numbers can be formed by using any number of digits 0, 1, 2, 3, 5, 7
and 9?

74. How many different numbers can be formed with the digits 1, 3, 5, 7 and 9; when taken
all at a time and what is their sum?

75. Find the sum of all four digit numbers that can be foemd with the digits 3, 2, 3, 4.

76. Find the sum of all numbers greater than 10000 formed with the digits 0, 2, 4, 6 and 8;
with no repetitions.

77. Find the sum of all five digit numbers with the digits 3, 4, 5, 6 and 7; with no repetitions.
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78. Find the sum of all four digit numbers that can be formed with 0, 2, 3 and 5.

79. A servant has to post 5 letters and there are 4 letter boxes. In how many ways he can
post the letters?

80. In how many ways can 3 prizes be given to 5 students, when each student is eligible for
any number of prizes?

81. In how many ways can 𝑛 things be given to 𝑝 persons? Each person can get any
number of things(𝑛 > 𝑝).

82. There are 𝑚 men and 𝑛 monkeys(𝑚 < 𝑛). If a man can have any number of monkeys,
in how many wasy every monkey have a master?

83. In how many ways the following 5 prizes be given to 10 students? First and second in
mathematics; first and second in chemistry and first in physics?

84. There are stalls for 12 animals in a ship. In how many ways the shipload can be made
if there are cows, calves and horses to transported with each being 12 in number?

85. In how many ways 5 delegates be put in 6 hotels of a city of there is no restriction?

86. Find the numbers of 5 digits that can be formed with the digits 0, 1, 2, 3 and 4 if
repetition is allowed.

87. In how many ways rings of 6 different types can be had in 4 fingers?

88. Find the number of 4 digit numbers greater than 3000 that can be formed with the
digits 0, 1, 2, 3, 4 and 5 if repetition is allowed.

89. In a town, the car plate numbers can be of three or four digits without digit 0. What
is the maximum number of cars that can be numbered?

90. In how many ways can a ten question multiple choice examination with one correct
answer can be answered if there are four choices to each question? If no two consecutive
questions are answered the same way, how many ways are there?

91. There are two books each of three volumes and two books each of two volumes. In how
may ways can the ten books be arranged on a table so that the volumes of the same
book are not separated?

92. A library has 5 copies of 1 book, 4 copies of 2 books, 6 copies of 3 books and single
copy of 8 books. In how many ways all the books can be arranged in so that copies of
the same book stay together?

93. In a dinner part there are 10 Indians, 5 Americans and 5 Britishers. In how many
ways they can be seated if all persons of the same nationality always sit together?

94. In a class there are 4 girls and 6 boys. In how many ways can they be seated in a rows
so that no two girls are together?

95. Show that the number of ways in which 𝑛 books can be arranged on a shelf so that two
particular books shall not be together is (𝑛 − 2)(𝑛 − 1)!
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96. You are given six balls of different colors (black, white, red, green, violet, yellow).
In how many ways can you arrange them in a row so that black and white balls may
never come together?

97. Six papers are set an examination, 2 of them in mathematics. In how many different
orders can the papers be given if two mathematics papers are non successive?

98. In how many different ways can 15 I.Sc. and 12 B.Sc. students be arranged in a line so
that no two B.Sc. students occupy consecutive positions?

99. In how many ways can 18 white and 19 black balls be arranged in a line so that no two
white balls may be together. It is given that balls of same color are identical.

100. Show that the number of ways in which 𝑝 positive and 𝑛 negative signs mat be placed
in a row so that no two negative signs may be together is 𝐶𝑝+1

𝑛 .

101. 𝑚 men and 𝑛 women are to be seated in a row so that no two women sit together. If
𝑚 > 𝑛, then show that the number of ways in which they can be seated is 𝑚!(𝑚+1)!⁄

(𝑚−𝑛+1)!

102. 3 women and 5 men are to sit in a row. Find in how many ways they can be arranged
so that no two women sit next to each other.

103. Find the number of ways of arranging 5 a’s, 3 b’s, 3 c’s, 1 d, 2 e’s and 1 f in a row, if
letter 𝑐's are separated from one another.

104. Find the number of different permutations of the letters of the word “Banana”.

105. How many words can be formed from the letters of the word “circumference” taken all
together?

106. There are three copies of each of four different books. In how many ways they can
be arranged in a shelf?

107. Find the number of permutations of the letters of the word “Independence”.

108. How many different words can be formed can be formed with the letters of the word
“Principal” so that the vowels are together?

109. How many words can be formed with the letters of the word “Mathematics”? In how
many of them the vowels are togeter and consonants are together?x

110. In how many ways can the letters of the word “Director” be arranged so that the three
vowels are together?

111. In how many ways can the letters of the word “Plantain” be arranged so that the
three vowels are together?

112. Find the number of words that can be made by arranging the letters of the word
“Intermediate” so that the relative order of vowels and consonants do not change.

113. In how many permutations of the word “Parallel” all the 𝑙s do not come together?
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114. Find the number of words formed by the letters of the word “Delhi” which

i. begin with D.

ii. end with I.

iii. the letter L being always in the middle.

iv. begin with D and end with I

115. In how many ways can the letters of the word “Violent” be arraged so that vowels
occupy only the odd places?

116. In how many ways can the letters of the word “Saloon” be arraged if consonants and
vowels must occupy alternate places?

117. How many words can be formed out of the word “Article” so that vowels occupy the
even places?

118. How many numbers greater than four million can be formed with the digits 2, 2, 3, 0, 3, 4
and 5?

119. How many seven digits can be formed with the digits 1, 2, 2, 2, 3, 3 and 5? How many
of them are odd?

120. How many seven digits can be formed with the digits 1, 2, 3, 4, 3, 2 and 1, so that odd
digits always occupy the odd places?

121. How many numbers greater than 10, 000 can be formed with the digits 1, 1, 2, 3, 4
and 0?

122. Find the number of numbers of four digits that can be made from the digits 0, 1, 2, 3, 4
and 5 if the digits can be repeated in the same number. How many of these numbers
have at least one digit repeated?

123. How many signals can be made by hoisting 2 blue, 2 red and 5 yellow flags on a flag at
the same time?

124. How many signals can be made by hoisting 6 differently colored flags one above the
other when any number of them can be hoisted at once?

125. Find the number of arrangements of the letter of the word “Delhi” if 𝑒 always comes
before 𝑖.

126. In how many ways can 5 men sit around a table?

127. In how many ways 5 boys and 5 girls can site around a table, if there is no restriction;
if no two girls sit side-by-side?

128. In a class of students there are 6 boys and 4 girls. In how many ways can they be
seated around a table so that all 4 girls sit together?
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129. 5 boys and 5 girls from a line with the boys and girls alternating. Find the number of
ways in which line can be made. In how many different ways could they form a circle
so that boys and girls alternate?

130. In how many ways 6 boys and 5 girls can sit at a round table when no two girls sit
next to each other?

131. In how many ways 50 pearls be arranged to form a necklace?

132. A round table conference is to be held between 20 delegates of 20 countries. In how
many ways they and the host can be seated if two particular delegates are always
to sit on the either side of the host?

133. Four gentlemen and four ladies are invited to a certain party. Find the number of ways
of seating them around a table so that only ladies are seated on the two sides of each
gentleman.

134. In how many ways can 7 Englishmen and 6 Indians sit around a table so that no two
Indians are together?

135. If 𝐶15
3𝑟 = 𝐶15

𝑟+3, find 𝑟.

136. If 𝐶𝑛
6 : 𝐶𝑛−3

3 = 33 : 4, find 𝑛.

137. Find the value of the expression 𝐶47
4 +

5
∑
𝑗=1

𝐶52−𝑗
3 .

138. Prove that the product of 𝑟 consecutive integers is divisible by 𝑟!

139. Find the number of triangles, which can formed by joining the angular points of a
polygon of 𝑚 sides as vertices.

140. A man has 8 children to take them to a zoon. He takes three of them at a time to the
zoo as often as he can without the same 3 children together more than once. How
many times will he have to go to zoo? How many times a particular child will go?

141. On a new year day every student of a class sends a card to every other student. The
postman delivers 600 cards. How many students are there in the class?

142. Show that a polygon of 𝑚 sides has 𝑚(𝑚−3)⁄
2 diagonals.

143. Out of 6 gentelmen and 4 ladies a committee of 5 is to be formed. In how many ways
can this be done so as to include at least one lady in each committee?

144. There are ten point on a plane. Of these ten points four points are in a straight line.
With the exception of these four points, no other three points are in the same straight
line. Find (a) the number of triangles formed, (b) the number of straight lines formed,
and (c) the number of quadrilaterals formed, by joining these ten points.

145. There are 4 oranges, 5 apples and 6 mangoes in a fruit basket. In how many ways
a person make a selection of fruits from the fruits basket.
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146. Given 5 different green dyes, 4 different blue dyes and 3 different red dyes, how many
combinations of dies can be chosen taking at least one green and one blue dye?

147. Find the number of divisors of 216, 000.

148. In an examination a minimum is to be secured in each of 5 subjects to pass. In how
many ways can a student fail?

149. In how many ways 12 different things can be divided equally among 3 persons? Also
find in how many ways can these 12 things be divided in three sets having 4 things.

150. How many different words of 4 letters can be formed with the letters of the word
“Examination”?

151. How many quadrilaterals can be formed by joining vertices of a polygon of 𝑛 sides?

152. A man has 7 friends and he wants to invite 3 of them at a party. Find out how many
parties to each of his 3 friends he can give and how many times any particular friend
will attend the parties.

153. Prove that the number of combinations of 𝑛 things taken 𝑟 at a time in which 𝑝
particular things always occur is 𝐶𝑛−𝑝

𝑟−𝑝 .

154. A delegation of 6 members is to be sent abroad out of 12 members. In how many ways
can the selection be made so that (a) a particular member is always included, and
(b) a particular member is always exlcluded.

155. There are six students 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and 𝐹 . (a) In how many ways can they be seated
in a line so that 𝐶 and 𝐷 do not sit together? (b) In how many ways can a committe
of 4 be formed so as to always include 𝐶? (c) In how many ways can a committee of 4
be formed so as to always include 𝐶 but exclude 𝐸?

156. There are 𝑛 stations in a railway route. The number fo kinds of ticket printed (no
return ticket) is 105. Find the number of stations.

157. There are 15 points in a plane of which 6 are collinear. How many different straight
lines and triangles can be drawn by joining them?

158. There are 10 points in a plane out of which 5 are collinear. Find the number of
quadrilaterals formed having vertices at points.

159. The three sides of a triangle have 3, 4 and 5 interior points on them. Find the number
of triangles that can be constructed using given interior points as vertices.

160. In how many ways can a team of 11 be chosen from 14 football players if two of them
can be only goalkeepers?

161. A committee of 2 men and 2 women is to be chosen from 5 men and 6 women. In how
many ways can this be done?

162. Find the number of ways in which 8 different articles can be distributed among 7 boys,
if each boy is to receive at least one article.
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163. Out of 7 men and 4 ladies a committee of 5 is to be formed. In how many ways can
this be done so as to include at least 3 ladies?

164. A candidate is required to ansswer six out of ten questions which are divided into two
groups, each containing five questions and he is not permitted to attempt more than 4
from any group. In how many ways can he make up his choices?

165. There are 10 professors and 20 students out of whom a committee of 2 professors
and 3 students to be formed. Find in how many ways these committees can be formed
if (a) a particular professor is included? (b) a particular professor is excluded.

166. From 6 boys and 7 girls, a committee of 5 is to be formed so as to include at least one
girl. Find the number of ways in which this can be done.

167. From 6 gentlemen and 4 ladies, a committee of 5 is to be formed. In how many ways
can this be done if (a) there is no restriction? (b) the committee is to include at least
one lady?

168. From 8 gentlemen and 4 ladies, a committee of 5 is to be formed. In how many ways
can this be done so as to include at least one lady.

169. In a group of 15 boys, there are 6 hockey players. In how many ways can 12 boys be
selected so as to include at least 4 hockey players?

170. From 7 gentlemen and 4 ladies a boat party of 5 is to be formed. In how mny ways can
this be done so as to include at least one lady?

171. A committee of 6 is to formed out of 4 boys and 6 girls. In how many ways can this be
done if girls may not be outnumbered?

172. A person has 12 friends out of which 8 are relatives. In how many ways can he invite 7
friends such that at least 5 of them are relatives?

173. A student is required to answer 7 questions out of 12 questions which are divided into
two groups of 6 questions each. He is not permitted to attempt more than 5 from
either group. In how many ways can he choose the 7 questions?

174. Each of two parallel lines has a number of distinct points marked on them. On one line
there are 2 points 𝑃 and 𝑄 and on the other there are 8 points. Find the number of
possible triangles out of these points. How many of these include 𝑃 but exclude 𝑄?

175. There are 7 men and 3 ladies contesting for 2 vacancies. An elector can vote for any no.
of candidates not exceeding no. of vacancies. In how many ways can the elector vote?

176. A party of 6 is to be formed from 10 boys and 7 girls so as to include 3 boys and 3
girls. In how many ways can this party be formed if two particular girls cannot be
together?

177. In an examination, the question paper consists of three different sections of 4, 5 and 6
questions. In how many ways, can a student make a selection of 7 questions, selecting
at least 2 questions from each section.
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178. From 5 apples, 4 oranges and 3 mangoes, how many selections of fruits can be made?

179. Find the total no. of selections of at least one red ball from 4 red and 3 green balls if
the balls of same color are different.

180. Find the number of different sums that can be formed with one dollar, one half dollar
and one quarter dollar coin.

181. There are 5 questions in a question paper. In how many ways can a boy solve one
or more questions?

182. In an election for 3 seats there are 6 candidates. A voter cannot vote for more than 3
candidates. In how many ways can he vote?

183. In an election the number of candidates is one more than the number of members
to be elected. If a voter can vote in 30 different ways, find the number of candidates.
(A voter has to vote for at least one candidate.)

184. In how many ways 12 different books can be distributed equally among 4 persons?

185. In how many ways 10 mangoes can be distributed among 4 person if any person can
get any number of mangoes?

186. How many words can be formed out of 10 consonants and 4 vowels, such that each
contains 3 consnants and 2 vowels?

187. A table has 7 seats, 4 being on one side facing the window and three being on the
opposite side. In how many ways can 7 people beseated at the table if 3 people 𝑋, 𝑌, 𝑍
must sit on the side facing the window?

188. A tea party is arranged for 16 people along two sides of a long table with 8 chairs
on each side. Four men wish to sit on one particular side and two on the other side. In
how many ways can they be seated.

189. Eight chairs are numbered 1 to 8. Two women and three men wish to occupy one
chair each. First two women choose chairs amongst the chair marked 1 to 4; and then
men select the chairs from remaining. Find the number of possible arrangements.

190. Show that 2𝑛𝐶𝑟(0 ≤ 𝑟 ≤ 2𝑛) is greatest when 𝑟 = 𝑛.

191. How many different numbers of seven digits can be formed by using all the digits
1, 2, 3, 4, 3, 2, 1, so that odd digits always occupy odd places?

192. Ten different letters of an alphabet are given. Words having five letters are formed from
these given letters. Find the number of words which have at least one letter repeated.

193. How many ternary sequences of length 9 are there which either begin with 210 or end
with 210?

194. Find the number of 7 digit numbers when the sum of those digits is even.

195. In how many ways 10 Indians, 5 Americans and 4 Britishers can be seated in a row so
that all Indians are together?
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196. In how many ways can the letters of the word ‘Arrange’ be arranged so that (a) the
two r's are never together? (b) the two a's are together but not the two r's? (c) neither
the two a's nor the two r's are together?

197. A man invites a party of 𝑚+ 𝑛 friends to dinner and places 𝑚 at around table and 𝑛
at another. Find the number of arranging the guests.

198. Find the total no. of signals that can be made by five flags of different colors when any
number of them may be used.

199. The letters of the word ‘Ought’ are written in all possible orders and these words are
written out in a dictionary. Find the rank of ‘Tough’ in the dictionary.

200. The streets of a city are arranged like the lines of a chessboard. There are 𝑚 streets
running north and south and 𝑛 east and west. Find the number of ways in which a
man can travel from the N.W. to S.E. corner, going the shortest distance possible.

201. There are 𝑛 letters and 𝑛 corresponding envelops. In how many ways, can the letters
be places in envelops (one letter in each envelop) so that no letter is put in the right
envelop?

202. Find the number of non-congruent rectangles that can be formed on a chessboard.

203. Show that the no. of ways in which three numbers in A.P. can be selected from
1, 2, 3, … , 𝑛 in 1⁄4 (𝑛 − 1)2 or 1⁄4 𝑛(𝑛 − 2); according as 𝑛 is odd or even.

204. Two packs of52 playing cards are shuffled together. Find the number of ways in which
a man can be dealt 26 cards so that he does not get two cards from the same suit and
same denomination.

205. There is a polygon of 𝑛 sides (𝑛 > 5). Triangles are formed by joining the vertices of
the polygon. How many triangles are there? Also, prove that number of these triangles
which have no side in common with any of the sides of the polygon is 1⁄6 𝑛(𝑛−4)(𝑛−5).

206. 𝑛 different objects are arranged in a row. In how many ways can 3 objects be selected so
that (a) all three objects are consecutive, and (b) all three objects are not consecutive.

207. There are 12 intermeditate stations between two places, 𝐴 and 𝐵. In how many ways
can a train be made to stop at 4 of those 12 intermeditate stations so that no two
of which are consecutive?

208. There are 𝑚 points in a plane which are joined by straight lines in all possible ways
and of these no two are coincident and no three of them are concurrent except at
the points. Show that the number of points of intersection, other than the given points
of the lines so formed is 𝑚!⁄

8.(𝑚−4)!.

209. Find the number of ways of choosing 𝑚 coupon out of an unlimited number of coupons
bearing the letters 𝐴, 𝐵 and 𝐶 so that they cannot be used to spell the word 𝐵𝐴𝐶.
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210. A straight is a five-card hand containing consecutive values. How many different
straights are tere? If the cards are not all from the same suit, then how many straights
are there?

211. 𝐴 is an 𝑛-element set. A subset 𝑃1 of 𝐴 is chosen. The set 𝐴 is reconstructed by
replacing the elements of 𝑃1. Then a subset 𝑃2 of 𝐴 is chosen and again set 𝐴 is
reconstructed by replacing the elements of 𝑃2. In this way 𝑚 subsets are chosen, where
𝑚 > 1. Find the number of ways of choosing 𝑃1, 𝑃2, … , 𝑃𝑚 such that

i. 𝑃1 ∪ 𝑃2 ∪ … ∪ 𝑃𝑚 contains exactly 𝑟 elements of 𝐴.

ii. 𝑃1 ∩ 𝑃2 ∩ … ∩ 𝑃𝑚 contains exactly 𝑟 elements of 𝐴.

iii. 𝑃𝑖 ∩ 𝑃𝑗 = 𝜙 for 𝑖 ≠ 𝑗.

212. Find the number of ways in which 𝑚 identical balls be distributed among 2𝑚 boxes so
that no box contains more than one ball and show that it lies between 4𝑚⁄

√

2𝑚+1 and

4𝑚⁄
2√


𝑚.

213. If 𝑚 parallel lines are intersected by 𝑛 other parallel lines find the number of parallelo
grams thus formed.

214. From 6 gentlemen and 4 ladies, a committee of 5 is to be formed. In how many ways
can this be done if the committee is to include at least one lady and if two particular
ladies refuse to server on the same committee?

215. A man has 7 relatives, 4 of them are ladies and 3 are gentlemen. His wife also has 7
relatives, 3 of them are ladies and 4 are gentlemen. In how many ways can they invite
to a dinner party of 3 ladies and 3 men so that there are 3 of the man's relatives and 3
of the wife's relatives?

216. Prove that if each of 𝑚 points on one straight line be joined to each of the 𝑛 points on
the other straight line terminated by the points, then excluding the points given on the
two lines, number of points of intersection of these lines is 1⁄4𝑚𝑛(𝑚− 1)(𝑛 − 1).

217. John has 𝑥 children with his first wife. Mary has 𝑥 + 1 children with her first husband.
They marry and have children of their own. The whole family has 24 children. Assuming
that two children of same parents do not fight, prove tha maximum possible no. of
ways fight can take place is 191.

218. Find the number of divisors and sum of divisors of 2520.

219. Five balls of different colors are to be placed in three boxes of different sizes. Each box
can hold all five balls. In how many different ways can we place the balls so that no
box remains empty.

220. Prove that (𝑛!)! is divisible by (𝑛!)(𝑛−1)!.

221. If 𝑎 and 𝑏 are positive integers, show that (𝑎𝑏)!⁄
𝑎!(𝑏!)𝑎 is an integer.
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222. A conference attended by 200 delegates is held in a hall. The hall has seven doors,
marked 𝐴, 𝐵, … , 𝐺. At each door, an entry book is kept and the delegates entering
that door sign it in the order in which they enter. If each delegate is free to enter any
time and through any door they like, how many different sets of seven lists would arise
in all?

223. In how many ways 16 identical objects can be distributed among 4 persons if each
person gets at least 3 objects?

224. Show that a selection of 10 balls can be made from an unlimited number of red, while,
blue and green balls in 286 ways and that 84 of these contain balls of all four colors.

225. In how many ways 30 marks can be allotted to 8 questions if each question carries
at least 2 marks?

226. In an examination, the maximum marks for each of the three papers is 50 each.
Maximum marks for the fourth paper is 100. Find the number of ways in which a
student can score 60% marks in aggregate.

227. Let 𝑛 and 𝑘 be positive integers, such that 𝑛 ≥ 𝑘(𝑘+1)⁄
2 . Find the number of solutions

𝑥1, 𝑥2, … , 𝑥𝑘, 𝑥1 ≥ 1, 𝑥2 ≥ 2, … , 𝑥𝑘 ≥ 𝑘 all satisfyinng 𝑥1 + 𝑥2 +…+ 𝑥𝑘 = 𝑛.

228. Find the number of integral solution of equation 𝑥+ 𝑦 + 𝑧 +𝑤 = 29, 𝑥 > 0, 𝑦 > 1, 𝑧 > 2
and 𝑤 ≥ 0.

229. Find the number of non-negative integral solutions of the equation 𝑥+ 𝑦+ 𝑧 +4𝑤 = 20.

230. Find the number of non-negative integral solutions to the system of equations 𝑥 +
𝑦 + 𝑧 + 𝑤 + 𝑣 = 20 and 𝑥 + 𝑦 + 𝑧 = 5.

231. Find the number of positive integral solutions of the inequality 3𝑥 + 𝑦 + 𝑧 ≤ 30.

232. Find the number of positive unique integral solution of the equation 𝑎+ 𝑏 + 𝑐 + 𝑑 = 20.

233. How many integers between 1 and 1,000,000 have the sum of digits 18?

234. Prove that the number of combinations of 𝑛 letters together out of 3𝑛 letters of which 𝑛
are 𝑎 and 𝑛 are 𝑏 and the rest unlike is (𝑛 + 2)2𝑛−1.

235. An eight-oared boat is to be manned by a crew chose from 11 men of whom 3 can steer
but cannot row and the rest cannot steer. In how many ways can the crew be arranged
if two of them can only row the bow side?

236. Find the total number of ways of selecting five letters from the letters of the word
‘Independence’.

237. Find the number of combinations, and the number of permutations of the letters of the
word ‘Parallel’, taken four at a time.

238. Prove that 
𝑛
∑
𝑛=1

(𝑛2 + 1)𝑛! = 𝑛.(𝑛 + 1)!.
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239. Find the value of 𝑛 for which 
𝑛+4𝑃4⁄
(𝑛+2)! −

143⁄
4.𝑛! < 0.

240. Find the value of 𝑛 for which 195⁄
4.𝑛! −

(𝑛+3)(𝑛+2)(𝑛+1)⁄
(𝑛+1)! > 0.

241. If 𝑛−2𝑃4 :𝑛+2 𝐶8 = 16 : 57, find the value of 𝑛.

242. If 𝑛𝑃𝑟 =𝑛 𝑃𝑟+1 and 𝑛𝐶𝑟 =𝑛 𝐶𝑟−1, find 𝑛 and 𝑟.

243. If 𝑛𝑃𝑟−1 :𝑛 𝑃𝑟 :𝑛 𝑃𝑟+1 = 𝑎 : 𝑏 : 𝑐, prove that 𝑏2 = 𝑎(𝑏 + 𝑐).

244. If 𝑛+1𝐶𝑟+1 :𝑛 𝐶𝑟 :𝑛−1 𝐶𝑟−1 = 11 : 6 : 3, find 𝑛 and 𝑟.

245. Show that 
𝑛
∑
𝑘=𝑚

𝑘 𝐶𝑟 =𝑛+1 𝐶𝑟+1 −𝑚 𝐶𝑟+1.

246. Show that 𝐶𝑛
𝑟 + 3.𝐶𝑛

𝑟−1 + 3.𝐶𝑛
𝑟−2 + 𝐶𝑛

𝑟−3 = 𝐶𝑛+3
𝑟 .

247. Find 𝑟 for which 18𝐶𝑟−2 + 2.18𝐶𝑟−1 +18 𝐶𝑟 ≥20 𝐶13.

248. Prove that 4𝑛𝐶2𝑛 :2𝑛 𝐶𝑛 = 1.3.5… (4𝑛 − 1) : [1.3.5… (2𝑛 − 1)]2.

249. Find the positive integral values of 𝑥 such that 𝑥−1𝐶4−𝑥−1 𝐶3− 5
⁄

4 (𝑥− 2)(𝑥− 3) < 0.

250. Prove that 2𝑛𝑃𝑛 = 2𝑛.1.3.5… (2𝑛 − 1).

251. Show that there cannot exist two positive integers 𝑛 and 𝑟 for which 𝑛𝐶𝑟,𝑛 𝐶𝑟+1,𝑛 𝐶𝑟+2
are in G.P.

252. Show that there cannot exist two positive integers 𝑛 and 𝑟 for which
𝑛𝐶𝑟,𝑛 𝐶𝑟+1,𝑛 𝐶𝑟+2,𝑛 𝐶𝑟+3 are in A.P.

253. For all positive integers show that 2.6.10… (4𝑛− 6)(4𝑛− 2) = (𝑛+1)(𝑛+2)… (2𝑛−
2)2𝑛.

254. Show that 47𝐶4 +
3
∑
𝑖=0

50−𝑖 𝐶3 +
5
∑
𝑗=1

56−𝑗 𝐶53−𝑗 =57 𝐶4.

255. Show that 𝑛𝐶𝑘 +
𝑚
∑
𝑗=0

𝑛+𝑗 𝐶𝑘−1 =𝑛+𝑚+1 𝐶𝑘.

256. Show that 𝑚𝐶1 +𝑚+1 𝐶2 + ⋯+𝑚+𝑛−1 𝐶𝑛 =𝑛 𝐶1 +𝑛+1 𝐶2 + ⋯+𝑛+𝑚−1 𝐶𝑚.

257. How many numbers of 5 digits divisible by 25 can be made with the digits 0, 1, 2, 3, 4, 5, 6
and 7?

258. How many numbers of 5 digits divisible by 4 can be made with the digits 1, 2, 3, 4
and 5?

259. How many numbers of 4 digits divisible by 3 can be made with the digits 0, 1, 2, 3, 4
and 5, digits being unrepeated in the same number? How many of these will be divisible
by 6?
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260. Find the sum of all the 4 digit numbers formed with the digits 1, 3, 3 and 0?

261. Show that the number of permutation of 𝑛 different objects taken not more than 𝑟 at a
time, when each object may be repeated any number of times is 𝑛(𝑛

𝑟−1)⁄
𝑛−1 .

262. How many different 7 digit numbers are there sum of whose digits is even?

263. 𝑘 numbers are chosne with replacement from the numbers 1, 2, 3, … , 𝑛. Find the
number of ways of choosing the numbers so that the maximum number chosen is
exactly 𝑟(𝑟 ≤ 𝑛).

264. Find the number of 𝑛 digit numbers formed with the digits 1, 2, 3, … , 9 in which no
two consecutive digits repeat.

265. A valid FORTRAN identifier consists of a string of one to six alphanumeric characters
which are 𝐴, 𝐵, … , 𝑍, 1, 2, … , 9 beginnning with a letter. How many valid FORTRAN
identifiers are there.

266. Find the number of five digit number which can be made with at least one repeated
digit.

267. Find the number of numbers between 20, 000 and 60, 000 having sum of digits even.

268. Find th enumber of ways in which the candidates 𝐴1, 𝐴2, … , 𝐴10 can be ranked, (a)
if 𝐴1 and 𝐴2 are next to each other. (b) if 𝐴1 is always above 𝐴2.

269. 𝑚+ 𝑛 chairs are placed in a line. You have to seat 𝑛 men and 𝑚 women on these
chairs such that no man gets a seat between two women. In how many ways can these
people be seated?

270. How many words can be made with the letters of the word ‘Intermediate’ if no vowel is
between two consonants?

271. In how many ways can 5 identical black balls, 7 identical red balls and 6 identical green
balls be arranged so that at least one ball is sperated from balls of the same color?

272. Ten guests are to be seated in a row of which three are ladies. The ladies insist on
sitting together while two of gentlemen refuse to take consecutive seats. In how many
ways can they be seated?

273. Show that the number of permutations of 𝑛 different objects taken all at a time in
which 𝑝 particular objects are never together is 𝑛! − (𝑛 − 𝑝 + 1)! 𝑝!.

274. Find the number of ways in which six `+' signs and four `-' signs can be arranged so
that no two `-' signs occur together.

275. In how many ways can 3 ladies and 5 gentlemen arrange themselves about a round
table so that every gentleman may have one lady by his side?

276. How many words of 7 letters can be formed by using the letters of the word ‘success’
so that (a) no two C's are together but not the two S, (b) neither the two C nor the
two S are together?



Combinatorics 168

277. A dictionary is made of the words that can be formed from the letters of the word
‘Mother’. What is the position of the word ‘Mother’ in that dictionary if the words are
printed in the same order as that of a dictionary.

278. A train going from Kolkata to Delhi stops at 7 intermediate stations. Five persons
enter the train during the jouney with five different tickets of the same class. How
many different set of tickets they could have had.

279. A train going from Cambridge to London stops at 9 intermediate stations. Six persons
enter the train during the jouney with six different tickets of the same class. How many
different set of tickets they could have had.

280. In how many ways can clear and cloudy days occur in a week? It is given that any day
is entirely either clear or cloudy.

281. A student is allowed to select at most 𝑛 books from a collection of 2𝑛 + 1 books. If the
total no. of ways in which he can select at least one book is 63, find the value of 𝑛.

282. There are 𝑚 bags which are numbered by 𝑚 consecutive integers starting with the
number 𝑘. Each bag contains as many different flowers as the number marked on the
bag. A boy has to pick up 𝑘 flowers from any of the bags. In how many different ways
can he do it?

283. How many committes of 11 persons can be made out of 50 persons if three particular
person are not to be included together?

284. There are 𝑚 intermediate stations on a railway line between two place 𝑃 and 𝑄. In
how many ways can the train stop at three of these intermediate stations, no two
of which are consecutive?

285. 𝐴 is an 𝑛-element set. A subset of 𝑃 of 𝐴 is chosen. The set 𝐴 is reconstructed by
replacing the elements of 𝑃 . Then a subset 𝑄 of 𝐴 is chosen. Find the number of
ways of choosing 𝑃 and 𝑄 such that (a) 𝑃 ∩ 𝑄 contains exactly 2 elements, and (b)
𝑃 ∩ 𝑄 = 𝜙.

286. 𝐴 is an 𝑛-element set. A subset 𝑃1 is chosen. The set 𝐴 is reconstructed by replacing
the elements of 𝑃1. Then a subset 𝑃2 is chosen ad again the set is reconstructed by
replacing elements of 𝑃2. In this way 𝑚 subsets 𝑃1, 𝑃2,… , 𝑃𝑚 are chosen, where 𝑚 > 1.
Find the number of ways of choosing these subesets such that

i. 𝑃1 ∪ 𝑃2 ∪ … ∪ 𝑃𝑚 contains all the elements of 𝐴 except one.

ii. 𝑃1 ∪ 𝑃2 ∪ … ∪ 𝑃𝑚 = 𝐴.

iii. 𝑃1 ∩ 𝑃2 ∩ … ∩ 𝑃𝑚 = 𝜙.

287. There are three sections in a question paper, each containing 5 questions. A candidate
has to solve any 5 questions, choosing at least one from each section. Find the number
of ways in which the candidate can choose the questions.

288. Two numbers are selected at random from 1, 2, 3, … , 100 and are multiplied. Find
the number of ways in which the two numbers can be selected so that the product thus
obtained is divisible by 3.
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289. In how many ways can a mixed doubles game in tennis be arranged from 5 married
couples, if no husband and wife play in the same game?

290. There are 𝑛 concurrent lines and another line parallel to one of them. How many
different triangles will be formed by the (𝑛 + 1) lines?

291. In a plane there are 𝑛 lines no two of which are parallel and no three are concurrent.
How many different triangles can be formed with their points of intersection as vertices?

292. The England cricket team is to be selected out of fifteen players, five of them are
bowlers. In how many ways can the team be selected so the team contains at least
three bowler?

293. There are two bags each containing 𝑚 balls. Find the number of ways in which equal
no. of balls can be selected from both bags if at least one ball from each bag has to be
selected.

294. A committee of 12 is to be formed from 9 women and 8 men. In how many ways can
this be done if at least 5 wmen have to be included in a committee. In how many
of these committees, the women are in majority and the men are in majority?

295. 𝑚 equi-spaced horizontal lines are intersected by 𝑛 equi-spaced vertical lines. If 𝑚 < 𝑛
and the distance between two successive vertical lines, show that the number of squares
formed by these lines 1⁄6𝑚(𝑚− 1)(3𝑛 −𝑚− 1).

296. There are two sets of parallel lines, their equations being 𝑥 cos 𝛼 + 𝑦 sin 𝛼 = 𝑝; 𝑝 =
1, 2, 3, … , 𝑚 and 𝑦 cos 𝛼 − 𝑥 sin 𝛼 = 𝑞; 𝑞 = 1, 2, 3, … , 𝑛(𝑛 > 𝑚), where 𝛼 is a constant.
Show that the lines form 1⁄6𝑚(𝑚− 1)(3𝑛 −𝑚− 1) squares.

297. In how many different ways can a set 𝐴 of 3𝑛 elements be partitioned in 3 equal
number of elements?

298. In how many ways 50 different objects can be divided in 5 persons so that three of
them get 12 objects each and two of them get 7 objects each?

299. If 𝑎, 𝑏, 𝑐, … , 𝑘 are positive integers such that 𝑎 + 𝑏 + 𝑐 +…+ 𝑘 ≤ 𝑛, show that 𝑛!⁄
𝑎!𝑏!…𝑘!

is a positive integer.

300. If 𝑛 ∈ 𝑁 , show that (𝑛2)!⁄
(𝑛!)𝑛+1 is an integer.

301. If 𝑎𝑏 = 𝑛(𝑎 > 1, 𝑏 > 1), then show that (𝑛 − 1)! is divisible by both 𝑎 and 𝑏.

302. Show that (𝑘𝑛)! is divisible by (𝑛!)𝑘.

303. In how may ways 20 apples be distributed among 5 persons if each person can get
any number of apples?

304. In how many ways 𝑟 flags be displayed on 𝑛 poles in a row, disregarding the limitation
on the number of flags on a pole?
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305. If 𝑥 + 𝑦 + 𝑧 = 𝑛, where 𝑥, 𝑦, 𝑧, 𝑛 ∈ ℙ, find the number of integral solution of this
equation.

306. Find the number of integeral soolutions of 𝑥 + 𝑦 + 𝑧 = 0, 𝑥, 𝑦, 𝑧 ≥ −5.

307. in an examination, the maximum marks for each of the three papers is 𝑛; for the fourth
paper it is 2𝑛. Prove that the number of ways in which a student can get 3𝑛 marks is
1
⁄

6 (𝑛 + 1)(5𝑛2 + 10𝑛 + 6).

308. Find the number of positive integral solutions of the equation 𝑥1 + 𝑥2 + 𝑥3 = 10.

309. Find the number of non-negative integral solutions of equation 3𝑥 + 𝑦 + 𝑧 = 24.

310. Find the number of non-negative integral solutions of equation 𝑥 + 𝑦 + 𝑧 + 𝑤 = 29,
where 𝑥 ≥ 1, 𝑦 ≥ 2, 𝑧 ≥ 3, 𝑤 ≥ 0.

311. Find the number of non-negative integral solutions of the equation 𝑎 + 𝑏 + 𝑐 + 𝑑 = 20.

312. Find the number of non-negative integral solutions of the equation 𝑥1+𝑥2+…+𝑥𝑘 ≤ 𝑛.

313. Find the number of non-negative integral solutions of the equation 2𝑥 + 2𝑦 + 𝑧 = 10.

314. How many sets of 2 and 3 (different) numbers can be formed by using numbers
between 0 and 180 (both inclusive) so that their average is 60.

315. If combinations of letters be formed by taking only 5 at a time out of the letters of the
word ‘Metaphysics’, in how many of them will the letter T occur?

316. How many selections and arrangements of 4 letters can be made from the letters of the
word ‘Proportion’?

317. A five letter word is formed such that the letter in the odd numbered positions are
taken from the letters which appear without repetitioni n the word ‘Mathematics’.
Further, the letters appearing in the even numbered positions are taken from the letter
which appear with repetitions in the same word ‘Mathematics’. In how many different
ways can the five letter word be formed?

318. Box 1 contains six block lettered 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and 𝐹 . Box 2 contains four block
lettered 𝑊, 𝑋, 𝑌 and 𝑍. How many five letter codewords can be formed by using three
blocks from box 1 and two blocks from box 2?

319. A tea party is arranged for 2𝑚 people along two sides of a long table with 𝑚 chairs on
each side. 𝑟 men wish to sit on one particular side and 𝑠 on the other. In how many
ways can then be seated? (𝑟, 𝑠 ≤ 𝑚)

320. A gentleman invites a party of 10 friends to a dinner and there are 6 places at round
tale and the remaining 4 at another. Prove that the no. of ways in which he can arrange
them among themselves is 151,200.

321. A family consists of a grandfather, 𝑚 sons and daughters and 2𝑛 grandchildren. There
are to be seated in a row for dinner. The grandchildren wish to occupy the 𝑛 seats
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at each end and grandfather refuses to have a grandchild on either side of him. In
how many ways can the family be seated?

322. There are 2𝑛 guests at a dinner party. If the master and mistress of the house have
fixed seats opposite one another and that there are two specified guests who must not
be placed next to one another, find the number of ways the guests can be placed.

323. There are 4𝑛 objects of which 𝑛 are alike and all the rest are different. Find the number
of permutations of 4𝑛 objects taken 2𝑛 at a time, each permutation containing the 𝑛
like objects.

324. A 7-digit number divisible by 9 is to be formed by using 7 digits out of digits
1, 2, 3, 4, 5, 6, 7, 8, 9. Find the number of ways in which this can be done.

325. Find the number of 9-digit numbers divisible by nine using the digits from 0 to 9 if
each digit is used atmost once.

326. Among 9! permutations of the digits 1, 2, 3, … , 9. Consider those arrangements which
have the property that if we take any five consecutive positions, the product of the
digits in those positions is divisible by 7. Find the number of such arrangements.

327. Three distinct dice are rolled. Find the number of possible outcomes in which at least
one die shows 5.

328. Find the number of possible outcomes in a throw of 𝑛 distinct dice in which at least
one of the dice shows an odd number.

329. Find the number of times the digit 5 will be written when listing integers from 1 to
1000.

330. If 33! is divisible by 2𝑛, then find the maximum value of 𝑛.

331. Let 𝐸 = ⌊1⁄3 +
1
⁄

50⌋+ ⌊1⁄3 +
2
⁄

50⌋+ ⌊1⁄3 +
3
⁄

50⌋+⋯ up to 50 terms, then find the exponent
of 2 in 𝐸!.

332. 3-digit numbers in which the middle one is a perfect square are formed using the
digits 1 to 9. Find their sum.

333. The integers from 1 to 1000 are written in order around a circle. Starting at 1, every
fifteenth number is marked (that is 1, 16, 31 etc.) This process is continued until a
number is reached which has already been marked, then find the all unmarked numbers.

334. Let 𝑆 be {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Find the number of subsets 𝐴 of 𝑆 such that 𝑥 ∈ 𝐴
and 2𝑥 ∈ 𝑆 ⇒ 2𝑥 ∈ 𝐴.

335. Prove that there are 2(2𝑛−1 − 1) ways of dealing 𝑛 distinct cards to two persons. The
persons may receive unequal no. of cards, and each one receiving at least one card.

336. Find the number of ways in which one or more letters can be selected from the letters:
A A A A B B B C D E.
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337. Find the number of factors (excluding 1 and the expression itself) of the product of
𝑎7𝑏4𝑐3𝑑𝑒𝑓 where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 are all prime numbers.

338. Find the no. of positive divisors of 𝑏𝑝11 𝑏𝑝22 … 𝑏𝑝𝑛𝑛 , where 𝑏1, 𝑏2, … , 𝑏𝑛 are prime numbers,
and 𝑝1, 𝑝2, … , 𝑝𝑛 are positive integers.

339. In how many ways we can select two unit square on an ordinary chess board such that
both square neither in same row nor in same column.

340. Find the number of pairings of a set of 2n elements [𝑒.𝑔., {(1, 2), (3, 4), (5, 6)}
{(1, 3), (2, 4), (5, 6)} are two pairings of the set {1, 2, 3, 4, 5, 6}].

341. There are 12 points in a plane, 5 of which are concyclic and out of remaining 7 points,
no three are collinear and none concylic with previous 5 points. Find the number
of circles passing through at least 3 points out of 12 given points.

342. In a plane there are 37 straight lines, of which 13 pass through the point 𝐴 and 11
pass through the point 𝐵. Besides, no three lines pass through one point, no line passes
through both points 𝐴 and 𝐵, and no two are parallel. Find the number of points
of intersection of the straight lines.

343. There are two lines 𝐿1 and 𝐿2, and there are 𝑚 and 𝑛 points on these two lines. How
many lines can be constructed using these points?

344. Let 𝑃𝑖, 𝑖 = 1, 2, … , 21 be the vertices of a 21-sided regular polygon inscribed in a circle
with center 𝑂. Triangle are formed by joining the vertices of the 21-sides polygon.
How many of them are acute-angled triangles? How many of them are right-angled
triangles? How many of them are obtuse-angled triangles? How many of them are
equilateral triangles? How many of them are isosceles triangles?

345. Let 𝑈 be a set containing 𝑛 elements. A subset 𝑆 of set 𝑈 is chosen at random. The
set 𝑈 is reconstructed by replacing the elements of 𝑆, and another set 𝑇 is chosen
at random. Find the number of ways of choosing 𝑆 and 𝑇 such that 𝑆 ∪ 𝑇 contains
exactly 𝑟 elements.

346. Let 𝑈 be a set containing 𝑛 elements. A subset 𝑆 of set 𝑈 is chosen at random. The
set 𝑈 is then reconstructed by replacing the elements of 𝑆 and another set 𝑇 is chosen
at random. Find the number of ways of selecting 𝑆 and 𝑇 such that 𝑆 = 𝑇 .

347. What is the total no. of subsets of a set containing 𝑛 elements?

348. Consider a network as shown in the figure.
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𝐴

𝐵

𝐶 𝐷

Paths from 𝐴 to 𝐵 consists of the horizontal or vertical line
segments. No diagonal movememnt is allowed. We can only
move from left to right or down to up. How many paths are
there from 𝐴 to 𝐵? How many paths go via 𝐶? How many
paths go via 𝐶 to 𝐷?

349. Find the number of ways in which we can choose 3 squares on
a chess board such that one of the squares has its two sides common to other two
squares.

350. A person predicts the outcome of 20 cricket matches of his home team. Each match
can result either in a win, loss or tie for the home team. Find the total number of ways
in which he can make the predictions so that exactly 10 predictions are correct.

351. A forecast is to be made of the results of five cricket matches, each of which can be a
win, a draw or a loss for Indian team. Find the number of different possible forecasts.
Also find the number of forecasts containing 0, 1, 2, 3, 4 and 5 errors respectively.

352. In a club election the number of contestants is one more than the number of maximum
candidates for which a voter can vote. If the total number of ways is which a voter can
vote be 62, then find the number of candidates.

353. Every one of the 10 available lamps can be switched on to illuminate certain Hall.
Find the total number of ways in which the hall can be illuminated.

354. In a unique hockey series between India and Pakistan, they decide to play on till a
team wins 5 matches . Find the number of ways in which the series can be won by
India, if no match ends in a draw.

355. There are 𝑛 different books and 𝑝 copies of each in a library. Find the number of ways
in which one or more books can be selected.

356. A class has 𝑛 students. We have to form a team of the students by including atleast
two students and also by excluding atleast two students. Find the number of ways of
forming the team.

357. If the (𝑛 + 1) numbers 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛+1, be all different and each of them is a prime
number, then find the number of different factors (other than 1) of 𝑎𝑚1 ⋅ 𝑎2 ⋅ 𝑎3 …𝑎𝑛+1.

358. In a polygon no three diagonals are concurrent. If the total number of points of
intersection of diagonals interior to the polygon be 70 then find the number of diagonals
of the polygon.

359. In a plane there are two families of lines 𝑦 = 𝑥+ 𝑟, 𝑦 = −𝑥+ 𝑟, where 𝑟 ∈ {0, 1, 2, 3, 4}.
Find the number of squares of diagonals of the length 2 formed by the lines.

360. Find the number of triangles whose vertices are at the vertices of an octagon, but none
of whose side happen to come from the sides of the octagon.
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361. Let there be 9 fixed points on the circumference of a circle . Each of these points
is joined to every one of the remaining 8 points by a straight line and the points are so
positioned on the circumference that atmost 2 straight lines meet in any interior point
of the circle. Find the number of such interior intersection points.

362. If a set 𝐴 has 𝑚 elements and another set 𝐵 has 𝑛 elements then find the number
of functions from 𝐴 to 𝐵.

363. Let 𝐴 = {𝑥 : 𝑥 is a prime number and 𝑥 < 30}. Find the number of different rational
numbers whose numerator and denominator belongs to 𝐴.

364. Find the number of all three elements subsets of the set {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛} which
contain 𝑎3.

365. If the total number of 𝑚-element subsets of the set 𝐴 = {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛} is 𝑘 times
the number of 𝑚-elements subsets containing 𝑎4, then find 𝑛.

366. A set contains (2𝑛 + 1) elements. Find the number of subsets of the set which contains
at most 𝑛 elements.

367. Find the number of subsets of the set 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} which contain even number
of elements.

368. Find the number of ways of choosing triplets (𝑥, 𝑦, 𝑧) such that 𝑧 ≥ max{𝑥, 𝑦} and
𝑥, 𝑦, 𝑧 ∈ {1, 2, … , 𝑛, 𝑛 + 1}.

369. In the decimal number system, find the number of 6-digits numbers in which the digit
in any place is greater than the digit to the left to it.

370. Find the number of 3-digit numbers of the form 𝑥𝑦𝑧 such that 𝑥 < 𝑦 and 𝑧 ≤ 𝑦.

371. Find the total number of 6-digit numbers 𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6 having the property 𝑥1 <
𝑥2 ≤ 𝑥3 < 𝑥4 < 𝑥5 ≤ 𝑥6.

372. If all the six digit numbers 𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6 with 0 < 𝑥1 < 𝑥2 < 𝑥3 < 𝑥4 < 𝑥5 < 𝑥6 are
arranged in the increasing order, then find the sum of the digits in the 72th number.

373. Let there be 𝑛 ≥ 3 circles in a plane. Find the value of n for which the number of
radical centres, is equal to the number of radical axes. (Assume that all radical axes
and radical centre exist and are different)

374. Find the number of functions 𝑓 from the set 𝐴 = {0, 1, 2} into the set 𝐵 =
{0, 1, 2, 3, 4, 5, 6, 7} such that 𝑓(𝑖) ≤ 𝑓(𝑗) for 𝑖 < 𝑗 and, 𝑖, 𝑗 ∈ 𝐴.

375. Show that the number of ways of selecting 𝑛 objects out of 3𝑛 objects, 𝑛 of which are
alike and rest are different is 22𝑛−1 + (2𝑛)!⁄

(𝑛!)2.

376. In a chess tournament, each participant was supposed to play exactly one game
with each of the others. However, two participants withdraw after having played
exactly 3 games each, but not with each other. The total number of games played
in the tournament was 84. How many participants were there in all?
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377. A positive integer 𝑛 is called strictly ascending if its digits are in the increasing order.
For example, 2368 and 147 are strictly ascending but 𝑥𝑚𝑙43679 is not. Find the number
of strictly ascending numbers < 109.

378. Consider the image given below:

Figure 5.2

There are 8 clay targets, arranged in 3 columns, to be shot by 8 bullets. Find the
number of ways in which they can be shot, such that no target is shot before all the
targets below it, if any, are first shot.

379. How many hexagons can be constructed by joining the vertices of a quindecagon (15
sides) if none of the sides of the hexagon is also the side of the quindecagon?

380. Let A be a set of 𝑛(≥ 3) distinct elements. Find the number of triplets (𝑥, 𝑦, 𝑧) of the
elements of 𝐴 in which atleast two coordinates are equal.

381. Find the number of ways of arranging m numbers out of 1, 2, 3, … , 𝑛 so that maximum
is (𝑛 − 2) and minimum is 2 (repetitions of numbers is allowed) such that maximum
and minimum both occur exactly once, (𝑛 > 5, 𝑚 > 3).

382. Eight identical rooks are to be placed on an 8 × 8 chess-board. Find the number of
ways of doing this, so that no two rooks are in attacking positions.

383. Define a good word as a sequence of letters that consists only of the letters 𝐴, 𝐵,
and 𝐶 - some of these letters may not appear in the sequence - and in which 𝐴 is
never immediately followed by 𝐵, 𝐵 is never immediately followed by 𝐶, and 𝐶 is
never immediately followed by 𝐴. How many seven-letter good words are there?

384. Two n-digit integers (leading 0 allowed) are said to be equivalent if one is a permutation
of the other. Thus 10,075 and 01,057 are equivalent. Find the number of 5-digit integers
such that no two are equivalent.
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385. If 𝑛 distinct objects are arranged in a circle, show that the number of ways of selecting
three of these things so that no two of them are next to each other is 𝑛⁄6 (𝑛− 4)(𝑛− 5).

386. There are 20 persons including two brothers. In how many ways can they be arranged
on a round table if there is exactly one person between the two brothers.

387. Find the number of different ways of painting a cube by using a different color for each
face from six available colors. (Any two color schemes are called different if one cannot
coincide with the other by a rotation of the cube.)

388. Find number of ways in which 𝑛 things of which 𝑟 alike and the rest distinct can be
arranged in a circle distinguishing between clockwise and anti-clockwise arrangement.

389. In how many ways can we divide 52 playing cards among 4 players equally? In 4 parts
equally?

390. 10 different toys are to be distributed among 10 children. Find the total number of
ways of distributing these toys so that exactly 2 children do not get any toy.

391. In how many ways can 7 departments be divided among 3 ministers such that every
minister gets at least one and atmost 4 departments to control?

392. Find the total number of ways of dividing 15 different things into groups of 8, 4 and 3
respectively.

393. Find the number of ways of distributing 50 identical things among 8 persons in such
a way that three of them get 8 things each, two of them get 7 things each, and
remaining 3 get 4 things each.

394. If 3𝑛 different things can be equally distributed among 3 persons in 𝑘 ways then find
the number of ways to divide the 3𝑛 things in 3 equal groups.

395. Find the number of ways in which 𝑛 different prizes can be distributed amongst 𝑚
(< 𝑛) persons if each is entitled to receive at most 𝑛 − 1 prizes.

396. 𝑛 different toys have to be distributed among 𝑛 children. Find the total number of
ways in which these toys can be distributed so that exactly one child gets no toy.

397. Find the number of non-negative integral solutions of 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 = 8.

398. Find the number of positive integral solutions of 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 = 8.

399. Find the number of integral solutions of 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 14, where 𝑥1 ≥ −2, 𝑥2 ≥
1, 𝑥3 ≥ 2 and 𝑥4 ≥ 0.

400. How many integral solutions are there to 𝑥 + 𝑦 + 𝑧 + 𝑡 = 29, when 𝑥 ≥ 1, 𝑦 ≥ 2, 𝑧 ≥ 3
and 𝑡 ≥ 0?

401. How many integral solutions are there of the system of equations 𝑥1+𝑥2+𝑥3+𝑥4+𝑥5 =
20 and 𝑥1 + 𝑥2 + 𝑥3 = 5, where 𝑥𝑖 ≥ 0?
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402. In a box there are 10 balls, 4 red, 3 black, 2 white and 1 yellow. In how many ways
can a child select 4 balls out of these 10 balls? (Assume that the balls of the same
colour are identical)

403. There are three papers of 100 marks each in an examination. Find the number of ways
in which a student can get 150 marks such that he gets atleast 60% in two papers.

404. Find the number of ways in which 30 marks can be allotted to 8 questions if each
questions carries atleast 2 marks.

405. In an examination the maximum marks for each of three papers is 𝑛, and that for
fourth paper is 2𝑛. Find the number of ways in which a candidate can get 3𝑛 marks.

406. In a shooting competition a man can score 5, 4, 3, 2 or 0 points for each shot. Find the
number of different ways in which he can score 30 in seven shots.

407. Find the number of non-negative integral solutions of 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 20.

408. Find the number of ways to select 10 balls from an unlimited number of red, white,
blue and green balls.

409. Find the number of ordered triples of positive integers which are solutions of the
equation 𝑥 + 𝑦 + 𝑧 = 100.

410. Find the number of integral solutions of 𝑥1 + 𝑥2 + 𝑥3 = 0, with 𝑥𝑖 ≥ −5.

411. Find the number of integral solutions for the equation 𝑥 + 𝑦 + 𝑧 + 𝑡 = 20, where
𝑥, 𝑦, 𝑧, 𝑡 are all ≥ −1.

412. Find the number of integral solutions of 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 = 22, subject to 𝑎 ≥ −3, 𝑏 ≥
1, 𝑐, 𝑑, 𝑒 ≥ 0.

413. If 𝑎, 𝑏, 𝑐 are three natural numbers in A.P. and 𝑎 + 𝑏 + 𝑐 = 21 then find the possible
number of values of the ordered triplet (𝑎, 𝑏, 𝑐).

414. If 𝑎, 𝑏, 𝑐, 𝑑 are odd natural numbers such that 𝑎 + 𝑏 + 𝑐 + 𝑑 = 20 then find the number
of values of the ordered quadruplet (𝑎, 𝑏, 𝑐, 𝑑).

415. Find the number of non-negative integral solution of the equation, 𝑥 + 𝑦 + 3𝑧 = 33.

416. Find the number of integral solutions of the equation 3𝑥+ 𝑦+ 𝑧 = 27, where 𝑥, 𝑦, 𝑧 > 0.

417. If 𝑎, 𝑏, 𝑐 are positive integers such that 𝑎 + 𝑏 + 𝑐 ≤ 8 then find the number of possible
values of the ordered triplet (𝑎, 𝑏, 𝑐).

418. Find the number of non-negative integral solution of the inequation 𝑥 + 𝑦 + 𝑧 +𝑤 ≤ 7.

419. Find the number of non-negative even integral solutions of 𝑥 + 𝑦 + 𝑧 = 100.

420. Find the number of non-negative integral solutions of 𝑥 + 𝑦 + 𝑧 + 𝑤 ≤ 23.

421. Find the total number of positive integral solution of 15 < 𝑎 + 𝑏 + 𝑐 ≤ 20.
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422. Find the number of non-negative integer solutions of (𝑎 + 𝑏 + 𝑐)(𝑝 + 𝑞 + 𝑟 + 𝑠) = 21.

423. Find the number of terms in a complete homogeneous expression of degree 𝑛 in 𝑥, 𝑦
and 𝑧.

424. In how many different ways can 3 persons 𝐴, 𝐵 and 𝐶 having 6 one rupee coins, 7 one
rupee coins and 8 one rupee coins respectively donate 10 one rupee coins collectively if
each one giving at least one coin. If each one can give 0 or more coin. Also answer the
above questions for 15 rupees donation.

425. In an examination, the maximum marks for each of the three papers are 50 each.
Maximum marks for the fourth paper is 100. Find the number of ways in which a
candidate can score 60% marks on the whole.

426. The minimum marks required for clearing a certain screening paper is 210 out of 300.
The screening paper consists of 3 sections each of Physics, Chemistry, and Mathematics
Each section has 100 as maximum marks. Assuming there is no negative marking
and marks obtained in each section are integers, find the number of ways in which a
student can qualify the examination (Assuming no subjectwise cut-off limit).

427. Find the number of ways in which the sum of upper faces of four distinct dices can be
six.

428. How many integers > 100 and < 106 have the digital sum = 5?

429. In how many ways can 14 be scored by tossing a fair die thrice?

430. Find the number of positive integral solutions of 𝑎𝑏𝑐 = 30.

431. Find The number of positive integral solutions of the equation 𝑎𝑏𝑐𝑑𝑒 = 1050.

432. Let y be an element of the set 𝐴 = {1, 2, 3, 5, 6, 10, 15, 30} and 𝑥1, 𝑥2, 𝑥3 be positive
integers such that 𝑥1𝑥2𝑥3 = 𝑦, then find the number of positive integral solutions of
𝑥1𝑥2𝑥3 = 𝑦.

433. Let 𝑥𝑖 ∈ ℤ such that |𝑥1𝑥2 …𝑥10| = 1080000. Find the number of solutions.

434. Let 𝑥𝑖 ∈ ℤ, such that |𝑥1|+ |𝑥2|+…+ |𝑥10| = 100. Find number of solutions.

435. Let there be 𝑛 lines in a plane such that no two lines are parallel and no three are
concurrent. Find the number of regions in which these lines divide the plane.

436. Determine the number of regions that are created by 𝑛 mutually overlapping circles in
a plane. Assume that no three circles passing through same points and every two
circles intersect in two distinct points.

437. Determine number of ways to perfectly cover a 2 × 𝑛 board with dominoes (domino
means a tile of size 2 × 1).

438. Tower of Brahma (or Tower of Hanoi) is a puzzle consisting of three pegs mounted
on a board and n discs of different sizes. Initially all the 𝑛 discs are stacked on the
first peg so that any disc is always above a larger disc. The problem is to transfer
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all these discs to peg 2, with minimum number of moves, each move consisting of
transferring one disc from any peg to another so that on the new peg the transferred
disc will be on top of a larger disc (i.e., keeping a disc on a smaller one is not allowed).
Find the total (minimum) number of moves required to do this.

439. Five letters are written to five different persons and their addresses are written on five
envelopes (one address on each envelope). In how many ways can the letters be placed
in the envelopes so that no letter is placed in the correct envelope?

440. Find the number of positive integers from 1 to 1000, which are divisible by at least one
of 2, 3 or 5.

441. Find the number of ways in which two Americans, two Britishers, one Chinese, one
Dutch and one Egyptian can sit on a round table so that persons of the same nationality
are separated.

442. In how many ways can 5 cards be drawn from a complete deck (of 52 cards) so that all
the suites are present?

443. In how many ways can 6 distinguishable objects be distributed in four distinguishable
boxes such that there is no empty box? If exactly one box is empty?

444. Find the number of ways to choose an ordered pair (𝑎, 𝑏) of numbers from the set
{1, 2,… , 10} such that |𝑎–𝑏| ≤ 5.

445. Suppose that in a poll made of 150 people, the following information was obtained: 70
of them read The Hindu, 80 read The Indian Express and 50 read Deccan Herald.
30 read both The Hindu and The Indian Express; 20 read both The Hindu and the
Deccan Herald and 25 read both The Indian Express and Deccan Herald. Find at most
how many of them read all the three.

446. Lewis Carroll, the famous author of Alice in Wonderland, Through the Looking Glass,
The hunting of the Shark and other wonderful works, was a mathematician whose real
name was Charles Lutwidge Dodgson (1832–1898). Here is a problem from his book ‘A
Tangled Tale’.

Let 𝑆 be the set of pensioners, 𝐸 the set of those who lost an eye, 𝐻 those who lost
an ear, 𝐴 those who lost an arm and 𝐿 those who lost a leg. Given that 𝑛(𝐸) =
70 %, 𝑛(𝐻 ) = 75 %, 𝑛(𝐴) = 80% and 𝑛(𝐿) = 85%. Find what percentage at least
must have lost all the four.

447. 𝑎, 𝑏, 𝑐, 𝑑 be integers ≥ 0, 𝑑 ≤ 𝑎, 𝑑 ≤ 𝑏, and 𝑎 + 𝑏 = 𝑐 + 𝑑. Prove that there exist sets 𝐴
and 𝐵 satisfying 𝑛(𝐴) = 𝑎, 𝑛(𝐵) = 𝑏, 𝑛(𝐴 ∪ 𝐵) = 𝑐, 𝑛(𝐴 ∩ 𝐵) = 𝑑.

448. How many positive integers of 𝑛 digits exist such that each digit is 1, 2 or 3? How
many of these contain all three of the digits 1, 2 and 3 at least once?

449. 𝐴, 𝐵 and 𝐶 are the set of all the positive divisors of 1060, 2050 and 3040 respectively.
Find 𝑛(𝐴 ∪ 𝐵 ∪ 𝐶).

450. Find the number of integer solutions to the equation 𝑥1 + 𝑥2 + 𝑥3 = 28, where
3 ≤ 𝑥1 ≤ 9, 0 ≤ 𝑥2 ≤ 8 and 7 ≤ 𝑥3 ≤ 17.
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451. I have six friends and during a certain vacation, I met them during several dinners. I
found that I dined with all the six exactly on 1 day, with every five of them on 2 days,
with every four of them on 3 days, with every three of them on 4 days and with every
two of them on 5 days. Further every friend was present at 7 dinners, and every friend
was absent at 7 dinners. How many dinners did I have alone?

452. A student on vacation for 𝑑 days observed that it rained seven times morning or
afternoon; when it rained in the afternoon, it was clear in the morning; there were five
clear afternoon, and there were six clear mornings. Find 𝑑.

453. On a rainy day 𝑛 people go to a party. Each of them leaves his raincoat at the counter
of the gate. Find the number of ways in which the raincoats are handed over to the
guests after the function is over so that no one receives his/her own raincoat.

454. Find the number of permutations of 1, 2, 3, 4, 5 in which exactly one number occupies
its natural position.

455. There are 5 boxes of 5 different colors. Also there are 5 balls of colors same as those of
the boxes. In how many ways we can place 5 balls in 5 boxes such that all balls are
placed in the boxes of colors not same as those of the ball. At least 2 balls are placed
in boxes of the same color.

456. In how many ways 6 letters can be placed in 6 envelopes such that no letter is placed
in its corresponding envelope. At least 4 letters are placed in correct envelopes. At
most 3 letters are placed in wrong envelopes.

457. Find the numbers from 1 to 100 which are neither divisible by 2 nor by 3 nor by 7.

458. Find the number of numbers, from amongst 1, 2, 3, … , 500, which are divisible by none
of 2, 3, 5.

459. Find the number of 3 element subsets of the set {1, 2, … , 10}, in which the least
element is 3 or the greatest element is 7.

460. Find the number of 𝑛 digit numbers, which contain the digits 2 and 7, but not the
digits 0, 1, 8, 9.

461. How many integers from 1 through 999 do not have any repeated digits?

462. Find the number of natural numbers less than or equal to 108 which are neither perfect
squares, nor perfect cubes, nor perfect fifth powers.

463. In a certain state, license plates consist of from zero to three letters followed by from
zero to four digits, with the provision, however, that a blank plate is not allowed. How
many different license plates can the state produce? Suppose 85 letter combinations are
not allowed because of their potential for giving offense. How many different license
plates can the state produce?

464. If the number of ways of selecting 𝐾 coupons one by one out of an unlimited number
of coupons bearing the letters 𝐴, 𝑇, 𝑀 so that they cannot be used to spell the word
𝑀𝐴𝑇 is 93, then find 𝐾.
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465. How many positive integers divide at least one of 1040 or 2030?

466. Find the number of permutations of letters 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔 taken all together if neither
‘𝑏𝑒𝑔’ nor ‘𝑐𝑎𝑑’ pattern appear.

467. Find the number of permutations of the letters of the word ‘𝐻𝐼𝑁𝐷𝑈𝑆𝑇𝐴𝑁’ such
that neither the pattern ‘𝐻𝐼𝑁’ nor ‘𝐷𝑈𝑆’ nor ‘𝑇𝐴𝑁’ appears.

468. Find the number of permutations of the 8 letters 𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷, taken all at a time,
such that no two adjacent letters are alike.

469. Find the number of non-negative integer solutions of 𝑥1 + 𝑥2 + 𝑥3 = 15, subject to
𝑥1 ≤ 5, 𝑥2 ≤ 6, and 𝑥3 ≤ 7.

470. According to the Gregorian calendar, a leap year is defined as a year 𝑛 such that (i) 𝑛
divides 4 but not 100; or (ii) 𝑛 divides 400. Find the number of leap years from the
year 1000 to the year 3000, inclusive.

471. Find the number of onto functions from a set containing 6 elements to a set containing 3
elements.

472. How many 6-digit numbers contain exactly three different digits?

473. Let 𝐷𝑛 be the nth derangement number. Prove that 𝐷𝑛 = (𝑛−1)(𝐷𝑛−1+𝐷𝑛−2), 𝑛 >
2.

474. Let 𝐷𝑛 be the nth derangement number. Prove that lim
𝑛→∞

𝐷𝑛⁄
𝑛! =

1
⁄

𝑒.

475. Five pairs of hand gloves of different colours are to be distributed to each of five people.
Each person must get a left glove and a right glove. Find the number of distributions
so that,exactly one person gets a proper pair.

476. Prove (combinatorially) that 
𝑛
∑
𝑟=1

𝑟! 𝑟 = (𝑛 + 1)! − 1.

477. In maths paper there is a question on ‘Match the column’ in which column A contains 6
entries and each entry of column A corresponds to exactly one of the 6 entries given in
column B written randomly. 2 marks are awarded for each correct matching and 1 mark
is deducted from each incorrect matching. A student having no subjective knowledge
decides to match all the 6 entries randomly. Find the number of ways in which he
can answer, to get atleast 25% marks in this question.

478. Ten parabolas are drawn in a plane. Any two parabola intersect in four real, and
distinct, points. No three parabola are concurrent. Find the total number of disjoint
regions of the plane.

479. In how many ways can a 12 step staircase be climbed taking 1 step or 2 steps at a
time?

480. A coin is tossed 10 times. Find the number of outcomes in which 2 heads are not
successive.
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481. Find the number of ways to pave a 1 × 7 rectangle by 1 × 1, 1 × 2, 1 × 3 tiles, if tiles of
the same size are indistinguishable

482. Find the number of distributions of 5 distinguishable balls in 3 distinguishable cells, if
empty cells are allowed, and if empty cells are not allowed.

483. How many terms are there in the expansion of (𝑎 + 𝑏 + 𝑐 + 𝑑)24?

484. Find the number of ways of distributing five identical balls into three boxes so that no
box is empty, and each box being large enough to accommodate all the balls.

485. Find the number of ways of distributing 10 identical balls in 3 boxes so that no box
contains more than four balls and less than two balls.

486. Find the number of ways in which 14 identical toys can be distributed among three
boys so that each one gets atleast one toy and no two boys get equal number of toys.

487. Find the number of distributions of 5 distinguishable balls in 3 identical boxes, empty
boxes are allowed.

488. What is the number of necklaces that can be made from 6𝑛 identical blue beads and 3
identical red beads?

489. Find the number of ways in which 𝑛 distinct objects can be put into two differentvboxes
so that no box remains empty.

490. Find the number of ways in which 𝑛 distinct objects can be kept into two identical
boxes so that no box remains empty.

491. 10 identical balls are to be distributed in 5 different boxes kept in a row andvlabeled
𝐴, 𝐵, 𝐶, 𝐷 and 𝐸. Find the number of ways in which the balls can be distributed in
the boxes if no two adjacent boxes remain empty.

492. Find the number of ways in which 12 identical coins can be distributed in 6 different
purses, if not more than 3 and not less than 1 coin goes in each purse.

493. Find the number of ways in which 30 coins of one rupee each be given to six persons so
that none of them receive less than four rupees.

494. Find the number of ways of wearing 8 distinguishable rings on 5 fingers of right hand.

495. 15 identical balls have to be put in 5 different boxes. Each box can contain any number
of balls. Find total number of ways of putting the balls into box so that each box
contains at least 2 balls.

496. In how many ways can 3 blue, 4 red and 2 green balls be distributed in 4 distinct
boxes? (Balls of the same colour are identical)

497. How many different ways can 15 candy bars be distributed to Tanya, Manya, Shashwat
and Adwik, if Tanya cannot have more than 5 candy bars and Manya must have at
least two. Assume all Candy bars to be alike.
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498. Prove that the number of 𝑛 digit quaternary sequences (whose digits are 0, 1, 2, and 3),
in which each of the digits 2 and 3 appear atleast once, is 4𝑛 − 2.3𝑛 + 2𝑛.

499. Shivank has 15 ping-pong balls each uniquely numbered from 1 to 15. He also has
a red box, a blue box, and a green box. How many ways can Shivank place the 15
distinct balls into the three boxes so that no box is empty? Suppose now that Shivank
has placed 5 ping-pong balls in each box. How many ways can he choose 5 balls from
the three boxes so that he chooses at least one from each box?

500. In how many ways we can place 9 different balls in 3 different boxes such that in every
box at least 2 balls are placed?

501. In how many ways can we put 12 different balls in three different boxes such that
first box contains exactly 5 balls.

502. A man has 3 daughters. He wants to bequeath his fortune of 101 identical gold coins to
them such that no daughter gets more share than the combined share of the other two.
Find the number of ways of accomplishing this task.

503. Divide the numbers 1, 2, 3, 4, 5 into two arbitrarily chosen sets. Prove that one of the
sets contains two numbers and their difference.

504. Show that for any set of 10 points chosen within a square whose sides are of length 3
units, there are two points in the set whose distance is at most √



2.

505. Show that given a regular hexagon of side 2 cm and 25 points inside it, there are at
least two points among them which are at most 1 cm distance apart.

506. Show that given a regular hexagon of side 2 cm and 25 points inside it, there are at
least two points among them which are at most 1 cm distance apart.

507. If 7 points are chosen on the circumference or in the interior of a unit circle, such that
their mutual distance apart is greater than or equal to 11, then one of them must
be the centre.

508. 4𝑛 + 1 points lie within an equilateral triangle of side 1 cm. Show that it is possible to
choose out of them, at least two, such that the distance between them is at most 1⁄2𝑛 cm.

509. Let 𝐴 be any set of 19 distinct integers chosen from the A.P. 1, 4, 7, … , 100. Prove
that there must be two distinct integers in 𝐴, whose sum is 104.

510. Let 𝑋 ⊂ {1, 2, 3, … , 99} and 𝑛(𝑥) = 10. Show that it is possible to choose two disjoin
non-empty proper subsets 𝑌, 𝑍 of 𝑋 such that ∑

𝑦∈𝑌
𝑦 = ∑

𝑧∈𝑍
𝑧.

511. If repetition of digits is not allowed in any number (in base 10), show that among
three four-digit numbers, two have a common digit occurring in them.

Also show that in base 7 system any two four-digit numbers without repetition of
digits will have a common number occurring in their digits.
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512. In base 2𝑘, 𝑘 ≥ 1 number system, any 3 non-zero, 𝑘-digit numbers are written without
repetition of digits. Show that two of them have a common digit among them.

In base 2𝑘 + 1, 𝑘 ≥ 1 among any 3𝑘 + 1 digit non-zero numbers, there is a common
digit occurring in any two numbers.

513. Let 𝐴 denote the subset of the set 𝑆 = {𝑎, 𝑎 + 𝑑, ⋯ , 𝑎 + 2𝑛𝑑} having the property
that no two distinct elements of 𝐴 add up to 2(𝑎 + 𝑛𝑑). Prove that 𝐴 cannot have
more than (𝑛 + 1) elements. If in the set 𝑆, 2𝑛𝑑 is changed to 𝑎 + (2𝑛 + 1)𝑑, what is
the maximum number of elements in 𝐴 if in this case no two elements of 𝐴 add up to
2𝑎 + (2𝑛 + 1)𝑑?

514. Given any five distinct real numbers, prove that there are two of them, say 𝑥 and 𝑦,
such that 0 < 𝑥−𝑦⁄

1+𝑥𝑦 < 1.

515. Prove that, among any 52 integers, two can always be found, such that the difference
of their squares, is divisible by 100.

516. There are 7 persons in a group, show that, some two of them, have the same number of
acquaintances among them.

517. 51 points are scattered inside a square, with a side of one metre. Prove that some
set of three of these points can be covered by a square, with side 20 cm.

518. Let 1 < 𝑎1 < 𝑎2 < 𝑎3 < ⋯ < 𝑎51 < 142. Prove that, among the 50 consecutive
differences (𝑎𝑖 − 𝑎𝑖−1) where 𝑖 = 1, 2, 3, … , 51, some value, must occur at least twelve
times.

519. You are given 10 segments, such that, every segment is larger than 1 cm but shorter
than 55 cm. Prove that, you can select three sides of a triangle, among these segments.

520. There are 9 cells in a 3 × 3 square. When these cells are filled by numbers 1, 2, 3 only,
prove that, of the eight sums obtained, at least, two sums are equal.

521. Let there be given nine lattice points (points with integral coordinates) in three
dimensional Euclidean space. Show that there is a lattice point on the interior of one of
the line segments joining two of these points.

522. Consider seven distinct positive integers, not exceeding 1706. Prove that, there are
three of them, say 𝑎, 𝑏, 𝑐 such that, 𝑎 < 𝑏 + 𝑐 < 4𝑎.

523. Consider a circle 𝐶 with a radius of 16 and an annulus, or ring, 𝐴, with an outer
radius of 3 and an inner radius of 2. Prove that wherever one might sprinkle a set 𝑆 of
650 points inside 𝐶 the annulus 𝐴 can always be placed on the figure so that it covers
at least 10 of the points.

524. On a rectangular table of dimensions 120" by 150", we set 14001 marbles of size 1″
by 1″. Prove that, no matter how these are arranged, one can place a cylindrical glass
with diameter of 5″ over atleast 8 marbles.
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525. If a line is colored in 11 colors, show that, there exist two points, whose distance apart,
is an integer, which have the same colour.

526. Show that, given 12 integers, there exists two of them whose difference is divisible
by 11.
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Chapter 6
Mathematical Induction

Any reasoning involving passage from particular assertions to general assertions, which derive
their validity from the validity of particular assertions is called induction. Mathematical
induction is a mathematical proof technique which enables us to draw conclusions about a
general law on the basis of particular cases. It is used to prove a statement 𝑃 (𝑛) holds
for every natural number 𝑛 = 0, 1, 2, 3, …; that is, the overall statement is a seuqnece of
infinitely many cases 𝑃 (0), 𝑃 (1), 𝑃 (2), 𝑃 (3), … The earliest rigorous use of induction was
by Gersonides (1288-1344). The first explicit formulation of the principle was given by Pascal
in his Traité du triangle arithmétique (1665).

In boolean algebra, a statement which is either true and false is called a proposition. 𝑃 (𝑛) will
denote a proposition whose truth value depends on natural numbers. For example, we recall
the sum of first 𝑛 natural numbers from arithmetic progression as 1 + 2 +…+ 𝑛 = 𝑛(𝑛+1)

⁄

2 is

denoted by 𝑃 (𝑛), then we can write 𝑃 (𝑛) = 1 + 2 +…+ 𝑛 = 𝑛(𝑛 + 1)
⁄

2 Here 𝑃 (2) is true

means the sum of first two natural numbers is equal to 1 + 2 = 2.3
⁄

2 = 3.

Mathematical induction is used to prove propositions in many branches of algebra, geometry
and analysis.

6.1 Principle of Finite Mathematical Induction
The proposition 𝑃 (𝑛) is assumed to be true for all natural numbers if the following two
conditions are satisfied:

1. The proposition 𝑃 (𝑛) is true for 𝑛 = 1 i.e. 𝑃 (1) is true.

2. 𝑃 (𝑚) is true ⇒ 𝑃 (𝑚+ 1) is true where 𝑚 is an arbitrary natural number.

6.2 Extended Form of Mathematical Induction
1. If 𝑃 (𝑛) is a proposition such that

1. 𝑃 (1), 𝑃 (2), … , 𝑃 (𝑘) are true.

2. 𝑃 (𝑚), 𝑃 (𝑚+ 1), … , 𝑃 (𝑚+ 𝑘 − 1) are true implies 𝑃 (𝑚+ 𝑘) is true.

2. If 𝑃 (𝑛) is a proposition such that

1. 𝑃 (𝑟) is true.

2. 𝑃 (𝑟), 𝑃 (𝑟 + 1), … , 𝑃 (𝑚) are true implies 𝑃 (𝑚+ 1) 𝑖𝑠𝑡𝑟𝑢𝑒.

6.3 Problems
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1. Show that 12 + 22 + ⋯+ 𝑛2 = 𝑛(𝑛+1)(2𝑛+1)⁄
6 .

2. Show that 1
⁄

1.2 +
1
⁄

2.3 + ⋯ + 1
⁄

𝑛(𝑛+1) =
𝑛
⁄

𝑛+1.

3. Show that 13 + 23 + ⋯+ 𝑛3 = [𝑛(𝑛+1)⁄2 ]
2
.

4. Show that 1⁄
𝑎+𝑑 +

𝑎⁄
(𝑎+𝑑)(𝑎+2𝑑)+⋯+ 𝑎⁄

[𝑎+(𝑛−1)𝑑](𝑎+𝑛𝑑) =
𝑛⁄

𝑎+𝑛𝑑.

5. Show that 1
⁄

1.2.3 +
1
⁄

2.3.4 + ⋯ + 1⁄
𝑛(𝑛+1)(𝑛+2) =

𝑛(𝑛+3)
⁄

4(𝑛+1)(𝑛+2)∀𝑛 ∈ ℕ.

6. Show that 1.3 + 2.32 + 3.33 + ⋯ + 𝑛.3𝑛 = (2𝑛−1)3𝑛+1+3⁄
4 .

7. Show that 1 + 4 + 7 + ⋯+ 3𝑛 − 2 = 𝑛(3𝑛−1)⁄
2 .

8. Show that 12 + 32 + 52 + ⋯+ (2𝑛 − 1)2 = 𝑛(2𝑛−1)(2𝑛+1)⁄
3 .

9. Show that 1 − 32 + 52 − 72 + ⋯+ (4𝑛 − 3)2 − (4𝑛 − 1)2 = −8𝑛2.

10. Show that 3.6 + 6.9 + 9.12 + ⋯ + 3𝑛(3𝑛 + 3) = 3𝑛(𝑛 + 1)(𝑛 + 2).

11. Prove the theorem of Nicomachus: 13 = 1, 23 = 3 + 5, 33 = 7 + 9 + 11, 43 = 13 + 15 +
17 + 19 and so on.

12. Show that 
𝑛
∑
𝑟=1

𝑟.𝐶𝑛
𝑟 = 𝑛.2𝑛−1.

13. Show that 
𝑛
∑
𝑟=1

𝑟(2𝑟 + 1) = 𝑛(𝑛+1)(4𝑛+5)⁄
6 .

14. Show that 1.2.3 + 2.3.4 + 3.4.5 + ⋯ + 𝑛(𝑛 + 1)(𝑛 + 2) = 𝑛(𝑛+1)(𝑛+2)(𝑛+3)⁄
4 .

15. Show that 1
⁄

1.4 +
1
⁄

4.7 +
1⁄

7.10 + ⋯ + 1
⁄

(3𝑛−2)(3𝑛+1) =
𝑛
⁄

3𝑛+1.

16. 7 + 77 + 777 + ⋯+ 7…77⏟
𝑛 digits

= 7
⁄

81 (10
𝑛+1 − 9𝑛 − 10).

17. Show that 1 + 1
⁄

1+2 +
1
⁄

1+2+3 + ⋯+ 1⁄
1+2+3+⋯+𝑛 =

2𝑛
⁄

𝑛+1.

18. Show that (1 − 1
⁄

22)(1 −
1
⁄

32)⋯(1 −
1⁄

(𝑛+1)2) =
𝑛+2
⁄

2𝑛+2.

19. Show that 1.3 + 2.32 + ⋯ + 𝑛.3𝑛 = (2𝑛−1)3𝑛+1+3⁄
4 .

20. Show that cos 𝛼 + cos 2𝛼 + ⋯+ cos 𝑛𝛼 = sin 𝑛𝛼⁄
2 csc 𝛼⁄2 cos (𝑛+1)𝛼⁄

2 .

21. Show that tan 𝛼 + 2 tan 2𝛼 + 22 tan 22𝛼 + ⋯+ 2𝑛−1 tan 2𝑛−1𝛼 = cot 𝛼 − 2𝑛 cot 2𝑛𝛼.
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22. Show that tan−1 1⁄3 + tan−1 1⁄7 + ⋯ + tan−1 1⁄
𝑛2+𝑛+1 = tan−1 𝑛
⁄

𝑛+2.

23. If 𝑢1 = 1,𝑢2 = 1 and 𝑢𝑛+2 = 𝑢𝑛+1+𝑢𝑛, 𝑛 ≥ 1.𝑢𝑛 = 1⁄
√


5 [(
1+√


5⁄
2 )

𝑛
−(1−√


5⁄
2 )

𝑛
] ∀ 𝑛 ≥ 1.

24. If 𝑝 ∈ ℕ, show that 𝑝𝑛+1 + (𝑝 + 1)2𝑛−1 is divisible by 𝑝2 + 𝑝 + 1 for every positive
integer 𝑛.

25. Show that 2𝑛 > 2𝑛 + 1 ∀ 𝑛 > 2.

26. Show that 2𝑛 > 𝑛3 if 𝑛 ≥ 10.

27. Show that tan 𝑛𝛼 > 𝑛 tan𝛼, where 0 < 𝛼 < 𝜋⁄
4(𝑛−1)∀𝑛 ∈ ℕ > 1.

28. Show that 𝑛4 < 10𝑛 ∀ 𝑛 ≥ 2.

29. Show that 13 + 33 + ⋯+ (2𝑛 − 1)3 = 𝑛2(2𝑛2 − 1).

30. Show that 3.22 + 33.23 + ⋯ + 3𝑛.2𝑛+1 = 12
⁄

5 (6
𝑛 − 1).

31. Show that 1
⁄

1.4 +
1
⁄

4.7 + ⋯ + 1
⁄

(3𝑛−2)(3𝑛+1) =
𝑛
⁄

3𝑛+1.

32. Show that (cos 𝜃 + 𝑖 sin 𝜃)𝑛 = cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃.

33. Show that cos 𝜃. cos 2𝜃… cos 2𝑛−1𝜃 = sin2𝑛𝜃⁄
2𝑛 sin 𝜃.

34. Show that sin 𝛼 + sin 2𝛼 + ⋯+ sin 𝑛𝛼 =
sin𝑛𝛼⁄

2⁄
sin𝛼⁄

2
sin 𝑛+1
⁄

2 𝛼.

35. If 𝑎1 = 1 and 𝑎𝑛+1 = 𝑎𝑛
⁄

𝑛+1 , 𝑛 ≥ 1, show that 𝑎𝑛+1 = 1⁄
(𝑛+1)!.

36. If 𝑎1 = 1, 𝑎2 = 5 and 𝑎𝑛+2 = 5𝑎𝑛+1 − 6𝑎𝑛, 𝑛 ≥ 1, show that 𝑎𝑛 = 3𝑛 − 2𝑛.

37. If 𝑢0 = 2, 𝑢1 = 3 and 𝑢𝑛+1 = 3𝑢𝑛 − 2𝑢𝑛−1, show that 𝑢𝑛 = 2𝑛 + 1, 𝑛 ∈ ℕ.

38. If 𝑎0 = 0, 𝑎1 = 1 and 𝑎𝑛+1 = 3𝑎𝑛 − 2𝑎𝑛−1, show that 𝑎𝑛 = 2𝑛 − 1.

39. If 𝐴1 = cos 𝜃, 𝐴2 = cos 2𝜃 and for every natural number 𝑚 > 2, 𝐴𝑚 = 2𝐴𝑚−1 cos 𝜃 −
𝐴𝑚−2, prove that 𝐴𝑛 = cos 𝑛𝜃.

40. For any positive number 𝑛, show that (2 cos 𝜃 − 1)(2 cos 2𝜃 − 1)⋯ (2 cos 2𝑛−1𝜃 − 1) =
2cos 2𝑛𝜃+1⁄
2 cos 𝜃+1 .

41. Show that tan−1 𝑥⁄
1.2+𝑥2 + tan−1 𝑥⁄

2.3+𝑥2 + ⋯ + tan−1 𝑥⁄
𝑛(𝑛+1)+𝑥2 = tan−1 𝑥 −

tan−1 𝑥
⁄

𝑛+1 , 𝑥 ∈ ℝ.

42. Prove that 3 + 33 + ⋯+ 33…3⏟
𝑛 digits

= 10𝑛+1−9𝑛−10⁄
27 .
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43. Show that ∫
𝜋

0

sin(2𝑛+1)𝑥
⁄

sin𝑥 𝑑𝑥 = 𝜋.

44. Show that ∫
𝜋

0

sin2 𝑛𝑥
⁄

sin2 𝑥 𝑑𝑥 = 𝑛𝜋.

45. Show that tan−1 1⁄
1+1+12 + tan−1 1⁄

1+2+22 + ⋯ + tan−1 1⁄
1+𝑛+𝑛2 = tan−1(𝑛 + 1)− 𝜋
⁄

4.

46. Show that if 𝑛 ∈ ℕ, 𝑛(𝑛 + 1)(𝑛 + 5) is divisible by 6.

47. Show that if 𝑛 ∈ ℕ, 𝑛3 + (𝑛 + 1)3 + (𝑛 + 2)3 is divisble by 9.

48. Show that if 𝑛 ∈ ℙ, and 𝑛 is even then 𝑛(𝑛2 + 20) is divisible by 48.

49. Show that if 𝑛 ∈ ℕ, 4𝑛 − 3𝑛 − 1 is divisible by 9.

50. Show that if 𝑛 ∈ ℕ, 32𝑛 − 1 is divisible by 8.

51. Show that if 𝑛 ∈ ℕ, 5.23𝑛−2 + 33𝑛−1 is divisible by 19.

52. Show that if 𝑛 ∈ ℕ, 72𝑛 + 23𝑛−3.3𝑛−1 is divisible by 25.

53. Show that if 𝑛 ∈ ℕ, 10𝑛 + 3.4𝑛+2 + 5 is divisible by 9.

54. Show that if 𝑛 ∈ ℕ, 34𝑛+2 + 52𝑛+1 is divisible by 14.

55. Show that if 𝑛 ∈ ℕ, 32𝑛+2 − 8𝑛 − 9 is divisible by 64.

56. Show that if 𝑛 ∈ ℕ, 𝑛7 − 𝑛 is divisible by 7.

57. Show that if 𝑛 ∈ ℕ, 11𝑛+2 + 122𝑛+1 is divisible by 133.

58. Show that if 𝑛 ∈ ℕ, 102𝑛−1 + 1 is divisible by 11.

59. Show that if 𝑛 ∈ ℕ, 7𝑛 − 3𝑛 is divisible by 4.

60. Show that if 𝑛 ∈ ℕ, 2.7𝑛 + 3.5𝑛 − 5 is divisible by 24.

61. Show that if 𝑛 ∈ ℕ, 32𝑛 − 1 is divisible by 8.

62. Show that if 𝑛 ∈ ℕ, 10𝑛 + 3.4𝑛+2 + 5 is divisible by 9.

63. Show that if 𝑛 ∈ ℕ, 52𝑛+1 + 2𝑛+4 + 2𝑛+1 is divisible by 23.

64. Show that if 𝑛 ∈ ℕ, 72𝑛 − 1 is divisible by 8.

65. Show that if 𝑛 ∈ ℕ, 32𝑛+2 − 8𝑛 − 9 is divisible by 8.

66. Show that if 𝑛 ∈ ℕ, 41𝑛 − 14𝑛 is divisible by 27.

67. Show that if 𝑛 ∈ ℕ, 152𝑛−1 + 1 is divisible by 16.
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68. Show that if 𝑛 ∈ ℕ, 52𝑛+1 + 3𝑛+2.2𝑛−1 is divisible by 19.

69. Show that if 𝑛 ∈ ℕ, 10𝑛 + 3.4𝑛+2 + 5 is divisible by 9.

70. Show that if 𝑛 ∈ ℕ, 9𝑛 − 8𝑛 − 1 is divisible by 64.

71. Show that if 𝑛 ∈ ℕ, 𝑛3 + 3𝑛2 + 5𝑛 + 3 is divisible by 3.

72. Show that if 𝑛 ∈ ℕ, (𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)(𝑛 + 5) is divisible by 120.

73. Show that if 𝑛 ∈ ℕ, 𝑛5 − 𝑛 is divisible by 5.

74. Show that if 𝑛 ∈ ℕ, (1 + 𝑥)𝑛 − 𝑛𝑥 − 1 is divisible by 𝑥2, where 𝑥 ≠ 0.

75. Show that 𝑛(𝑛2 − 1) is divisible by 24, where 𝑛 ∈ odd positive integers.

76. Show that 𝑛(𝑛2 + 20) is divisible by 48, where 𝑛 ∈ even positive integers.

77. Show that 22𝑛 + 1 or 22𝑛 − 1 is divisible by 5 according as 𝑛 is odd or even positive
integer.

78. Prove that 52𝑛 + 1 is divisible by 13 if 𝑛 is odd. Hence, deduce that 599 leaves a
remainder 8 when divided by 13.

79. Show that 4.6𝑛 + 5𝑛+1 leaves remainder 9 when divided by 20.

80. Show that if 𝑛 ∈ ℕ, 3𝑛 + 8𝑛 is not divisible by 8.

81. Prove that 22
𝑛
+ 1 has last digit as 7 for 𝑛 > 1.

82. Show that if 𝑛 ∈ ℕ, 𝑛
3
⁄

3 + 𝑛2 + 5
⁄

3 𝑛 + 1 is a natural number.

83. Show that 𝑥𝑛 + 𝑦𝑛 is divisible by 𝑥 + 𝑦, where 𝑛 is any odd integer.

84. Show that 𝑥𝑛 − 𝑦𝑛 is divisible by 𝑥 − 𝑦, where 𝑛 ∈ ℕ.

85. Prove that 𝑥(𝑥𝑛−1 − 𝑛𝑎𝑛−1) + 𝑎𝑛(𝑛 − 1) is divisible by (𝑥 − 𝑎)2 for all positive
integers 𝑛 > 1.

86. Show that 𝑛
5
⁄

5 + 𝑛3
⁄

3 + 7𝑛⁄
15 is a natural number.

87. Show that 𝑛
7
⁄

7 + 𝑛5
⁄

5 + 2𝑛3⁄
3 − 𝑛
⁄

105 is an integer.

88. Show that 2𝑛 > 𝑛2, 𝑛 ≥ 5.

89. Show that 1 + 2 + ⋯+ 𝑛 ≤ 1
⁄

8 (2𝑛 + 1)2.

90. Show that 𝑛𝑛 < (𝑛!)2 , 𝑛 > 2.

91. Show that 𝑛! > 2𝑛, 𝑛 > 3.
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92. Show that 𝑛! < (𝑛+1⁄2 )
𝑛
, 𝑛 > 1.

93. Show that 1
⁄

𝑛+1 +
1
⁄

𝑛+2 + ⋯+ 1⁄
2𝑛 >

13
⁄

24 , 𝑛 > 1.

94. Show that 1
⁄

𝑛+1 +
1
⁄

𝑛+2 + ⋯+ 1
⁄

3𝑛+1 > 1∀𝑛 ∈ ℕ.

95. Show that 1 + 1
⁄

4 + ⋯ + 1
⁄

𝑛2 < 2 − 1
⁄

𝑛∀𝑛 ∈ ℕ greater than 1.

96. Show that if 𝑛 ∈ ℕ, (2𝑛 + 7) < (𝑛 + 3)2.

97. Show that if 𝑛 ∈ ℕ, 2𝑛 > 𝑛.

98. Show that if 𝑛 ∈ ℕ, 1 + 2 + 3 + ⋯+ 𝑛 < (2𝑛+1)2⁄
8 .

99. Show that if 𝑛 ∈ ℕ, 12 + 22 + ⋯+ 𝑛2 > 𝑛3
⁄

3 .

100. Show that if 𝑛 ∈ ℕ, 2𝑛 > 𝑛2 for 𝑛 ≥ 5.

101. Show that if 𝑛 ∈ ℕ, (2𝑛)!⁄
(𝑛!)2 >

4𝑛
⁄

𝑛+1 for 𝑛 > 1.

102. Show that if 𝑛 ∈ ℕ, (1 + 𝑥)𝑛 > 1 + 𝑛𝑥, 𝑛 > 1 and 𝑥 > −1, 𝑥 ≠ 0.

103. In a sequence 1, 4, 10, … , 𝑡1 = 1, 𝑡2 = 4, and 𝑡𝑛 = 2𝑡𝑛−1 + 2𝑡𝑛−2 for 𝑛 ≥ 3. Show that
𝑡𝑛 = 1
⁄

2 [(1 +√


3)𝑛 + (1 −√


3)𝑛]∀𝑛 ∈ ℕ.

104. If 𝑥 + 𝑦 = 𝑎 + 𝑏, 𝑥2 + 𝑦2 = 𝑎2 + 𝑏2, prove that 𝑥𝑛 + 𝑦𝑛 = 𝑎𝑛 + 𝑏𝑛∀𝑛 ∈ ℕ.

105. Prove that 1⁄2 .
3
⁄

4 .⋯ . 2𝑛−1⁄2𝑛 ≤ 1⁄
√

3𝑛+1, where 𝑛 ∈ ℕ.

106. Prove that 1
⁄

𝑛+1 +
1
⁄

𝑛+2 + ⋯+ 1⁄
2𝑛 <

25
⁄

36, where 𝑛 ≥ 2, 𝑛 ∈ ℕ.

107. Prove that √

𝑎 +√


𝑎 +√


𝑎 + ⋯𝑛 ~ terms ≤ 1+√


4𝑎+1⁄
2 , where 𝑎 ≥ 0.

108. Prove that √

2√


3√


4…√


𝑛 < 3, where 𝑛 ≥ 2, 𝑛 ∈ ℕ.

109. For 𝑥3 = 𝑥+ 1, 𝑎𝑛 = 𝑎𝑛−1 + 𝑏𝑛−1, 𝑏𝑛 = 𝑎𝑛−1 + 𝑏𝑛−1 + 𝑐𝑛−1, 𝑐𝑛 = 𝑎𝑛−1 + 𝑐𝑛−1 prove
that 𝑥3𝑛 = 𝑎𝑛𝑥 + 𝑏𝑛 + 𝑐𝑛𝑥−1∀𝑛 ∈ ℕ, and 𝑎 = 0, 𝑏0 = 1, 𝑐0 = 0.

110. Prove that, for all natural numbers 𝑛, (3 +√


5)𝑛 + (3 −√


5)𝑛 is divisible by 2𝑛.

111. Prove that 𝑥21 + 3𝑥22 + 5𝑥23 +⋯+ (2𝑛− 1)𝑥2𝑛 ≤ (𝑥1 + 𝑥2 +⋯+𝑥𝑛)2, where 𝑥1 ≥ 𝑥2 ≥
⋯ ≥ 𝑥𝑛 ≥ 0.

112. Prove that | sin(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛) | ≤ | sin 𝑥1| + | sin 𝑥2| + ⋯ + | sin 𝑥𝑛|, where
𝑥1, 𝑥2, … , 𝑥𝑛 ∈ [0, 𝜋].
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113. Prove that tan 𝑥1− tan 𝑥2+⋯+ (−1)𝑛 tan 𝑥𝑛 ≥ tan(𝑥1− 𝑥2+⋯+ (−1)𝑛𝑥𝑛), where
𝜋
⁄

2 > 𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑛 ≥ 0.

114. Prove that 𝑎𝑟1 − 𝑎𝑟2 + ⋯ + (−1)𝑛 𝑎𝑟𝑛 ≥ (𝑎1 − 𝑎2 + ⋯ + (−1)𝑛 𝑎𝑛)𝑟, where 𝑎1 ≥ 𝑎2 ≥
⋯ ≥ 𝑎𝑛 ≥ 0, 𝑟 ≥ 1.
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Chapter 7
Binomials, Multinomials and Expan

sions

An algebraic expression containing one term is called monomial, two terms is callled binomial
and more than two is called is called multinomial. Examples of a monomial expressions
are 2𝑥, 4𝑦, examples of binomial expressions are 𝑎 + 𝑏, 𝑥2 + 𝑦2, 𝑥3 + 𝑦3, 𝑥 + 1

⁄

𝑦 and exaamples
of multinomial expressions are 1 + 𝑥 + 𝑥2, 𝑎2 + 2𝑎 + 𝑏2, 𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 𝑏3.

7.1 Binomial Theorem
Newton gave binomial theorem, by which we can expand any opwer of a binomial expression
as a series. First we consider only positive integral values of exponent. For positive integral
exponent the formula has the following form:

(𝑎 + 𝑥)𝑛 =𝑛 𝐶0𝑎𝑛𝑥0 +𝑛 𝐶1𝑎𝑛−1𝑥1 +𝑛 𝐶2𝑎𝑛−2𝑥2 + …+𝑛 𝐶𝑛𝑎0𝑥𝑛

7.1.1 Proof by Mathematical Induction
Let

𝑃 (𝑛) = (𝑎 + 𝑥)𝑛 =𝑛 𝐶0𝑎𝑛𝑥0 +𝑛 𝐶1𝑎𝑛−1𝑥1 +𝑛 𝐶2𝑎𝑛−2𝑥2 + …+𝑛 𝐶𝑛𝑎0𝑥𝑛

When 𝑛 = 1, 𝑃 (1) = 𝑎 + 𝑥 =1 𝐶0𝑎 +1 𝐶1𝑥. When 𝑛 = 2, 𝑃 (2) = 𝑎2 + 2𝑎𝑥 + 𝑥2 =2

𝐶0𝑎2 +2 𝐶1𝑎𝑥 +2 𝐶2𝑥2. Thus we see that 𝑃 (𝑛) holds good for 𝑛 = 1 and 𝑛 = 2. Let 𝑃 (𝑛)
is true for 𝑛 = 𝑘 i.e.

𝑃 (𝑘) = (𝑎 + 𝑥)𝑘 =𝑘 𝐶0𝑎𝑘𝑥0 +𝑘 𝐶1𝑎𝑘−1𝑥1 +𝑘 𝐶2𝑎𝑘−2𝑥2 + …+𝑘 𝐶𝑘𝑎0𝑥𝑘

Multiplying both sides with (𝑎 + 𝑥)

𝑃 (𝑘 + 1) = (𝑎 + 𝑥)𝑘+1 =𝑘 𝐶0𝑎𝑘+1𝑥0 +𝑘 𝐶1𝑎𝑘𝑥 +𝑘 𝐶2𝑎𝑘−1𝑥2 + …+𝑘 𝐶𝑘𝑎𝑥𝑘 +
𝑘𝐶0𝑎𝑘𝑥 +𝑘 𝐶1𝑎𝑘−1𝑥2 +𝑘 𝐶2𝑎𝑘−2𝑥3 + …+𝑘 𝐶𝑘𝑥𝑘+1

Combining terms with equal powers of 𝑎 and 𝑥, using the formula 𝑛𝐶𝑟 +𝑛 𝐶𝑟+1 =𝑛+1 𝐶𝑟+1
and rewriting 𝑘𝐶0 and 𝑘𝐶𝑘 as 𝑘+1𝐶0 and 𝑘+1𝐶𝑘+1, we get

𝑃 (𝑘 + 1) =𝑘+1 𝐶0𝑎𝑘+1𝑥0 +𝑘+1 𝐶1𝑎𝑘𝑥1 +𝑘+1 𝐶2𝑎𝑘−1𝑥2 + ⋯+𝑘+1 𝐶𝑘+1𝑎0𝑥𝑘+1

Thus, we see that 𝑃 (𝑛) holds good for 𝑛 = 𝑘 + 1 and we have proven binomial theorem by
mathemtical induction.

7.1.2 Proof by Combination
We know that (𝑎 + 𝑥)𝑛 = (𝑎 + 𝑥)(𝑎 + 𝑥)⋯ [𝑛 factors]. If see only 𝑎, then we see that 𝑎𝑛
exists and hence, 𝑎𝑛 is a term in the final product. This is the term 𝑎𝑛, which can be written
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as 𝑛𝐶0𝑎𝑛𝑥0. If we take the letter 𝑎, 𝑛 − 1 times and 𝑥 once then we observe ttat 𝑥 can be
taken in 𝑛𝐶1 ways. Thus, we can say that the term in final product is 𝑛𝐶1𝑎𝑛−1𝑥. Similarly,
if we choose 𝑎, 𝑛 − 2 times and 𝑥 twice then the term will be 𝑛𝐶2𝑎𝑛−2𝑥2. Finally, like 𝑎𝑛, 𝑥𝑛
will exist and can be written as 𝑛𝐶𝑛𝑥𝑛 for consistency. Thus, we have proven binomial
theorem by combination.

7.2 Special Forms of Binomial Expansion
We have

(𝑎 + 𝑥)𝑛 =𝑛 𝐶0𝑎𝑛𝑥0 +𝑛 𝐶1𝑎𝑛−1𝑥1 +𝑛 𝐶2𝑎𝑛−2𝑥2 + …+𝑛 𝐶𝑛𝑎0𝑥𝑛 (7.1)

1. Putting −𝑥 instead of 𝑥

(𝑎 − 𝑥)𝑛 =𝑛 𝐶0𝑎𝑛𝑥0 −𝑛 𝐶1𝑎𝑛−1𝑥1 +𝑛 𝐶2𝑎𝑛−2𝑥2 − …+ (−1)𝑛𝑛𝐶𝑛𝑎0𝑥𝑛

2. Putting 𝑎 = 1 in Eq. 7.1

(1 + 𝑥)𝑛 =𝑛 𝐶0 +𝑛 𝐶1𝑥 +𝑛 𝐶2𝑥2 + …+𝑛 𝐶𝑛𝑥𝑛

3. Putting 𝑥 = −𝑥 in above equation

(1 − 𝑥)𝑛 =𝑛 𝐶0 −𝑛 𝐶1𝑥 +𝑛 𝐶2𝑥2 − …+ (−1)𝑛𝑛𝐶𝑛𝑥𝑛

7.3 General Term of a Binomial Expansion
We see that first term is 𝑡1 =𝑛 𝐶0𝑎𝑛𝑥0, second term is 𝑡2 =𝑛 𝐶1𝑎𝑛−1𝑥1 so general term will
be

𝑡𝑟 =𝑛 𝐶𝑟−1𝑎𝑛−𝑟+1𝑥𝑟−1

7.4 Middle Term of a Binomial Expansion
When 𝑛 is an even number, i.e. 𝑛 = 2𝑚, 𝑚 ∈ ℙ. Middle term will be 𝑚+ 1th term i.e.

𝑡𝑚+1 =𝑛 𝐶𝑚𝑎𝑚𝑚𝑥𝑚.

When 𝑛 an odd number, i.e. 𝑛 = 2𝑚+ 1 𝑚 ∈ ℕ. There will be two middle terms i.e. 𝑚+ 1th
and 𝑚+ 2th terms will be middle terms. So

𝑡𝑚+1 =𝑛 𝐶𝑚𝑎𝑚+1𝑥𝑚, 𝑡𝑚+2 =𝑛 𝐶𝑚+1𝑎𝑚𝑥𝑚+1

The middle terms have the largest coefficient. In case of two middle terms the coefficients of
both the middle terms are equal.

7.5 Equidistant Coefficients
Binomial coefficients equidistant from start and end are equal. Coefficients of first term from
start and end are 𝑛𝐶0 and 𝑛𝐶𝑛 which are equal. Coefficients of second term from start
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and end are 𝑛𝐶1 and 𝑛𝐶𝑛−1 which are equal. Similarly, coefficient of 𝑟th term from start is
𝑛𝐶𝑟−1 and from end is 𝑛𝐶𝑛−𝑟+1. From combinations we know that 𝑛𝐶𝑟−1 =𝑛 𝐶𝑛−𝑟+1.
Thus, it is prove that coefficients of terms equidistant from start and end are equal.

7.6 Properties of Binomial Coefficients
We have proven earlier that

(1 + 𝑥)𝑛 =𝑛 𝐶0 +𝑛 𝐶1𝑥 +𝑛 𝐶2𝑥2 + ⋯+𝑛 𝐶𝑛𝑥𝑛.

Putting 𝑥 = 1, we get

2𝑛 =𝑛 𝐶0 +𝑛 𝐶1 +𝑛 𝐶2 + ⋯+𝑛 𝐶𝑛.

Putting 𝑥 = −1, we get

0 =𝑛 𝐶0 −𝑛 𝐶1 +𝑛 𝐶2 − ⋯+ (−1)𝑛𝑛𝐶𝑛.

Adding the last two, we have

2𝑛 = 2[𝑛𝐶0 +𝑛 𝐶2 +𝑛 𝐶4 + ⋯]

2𝑛−1 𝑛𝐶0 +𝑛 𝐶1 +𝑛 𝐶2 + ⋯

Subtracting, we get

2𝑛−1 =𝑛 𝐶1 +𝑛 𝐶3 +𝑛 𝐶5 + ⋯

7.7 Multinomial Theorem
Consider the multinomila (𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛)𝑝, where 𝑛 and 𝑝 are positive integers. The
general term of such a multinomial is givenby

𝑝!⁄
𝑝1! 𝑝2!… 𝑝𝑛!

𝑥𝑝11 𝑥𝑝22 ⋯𝑥𝑝𝑛𝑛

such that 𝑝1, 𝑝2, … , 𝑝𝑛 are non-negative integers and 𝑝1 + 𝑝2 + ⋯+ 𝑝𝑛 = 𝑝.

We can find the general term using the binomial theorem itself. General term in the expansion
[𝑥1 + (𝑥2 + 𝑥3 + ⋯+ 𝑥𝑛)]𝑛 is

𝑛!⁄
𝑝!(𝑛 − 𝑝1)!

𝑥𝑝11 (𝑥2 + 𝑥3 + ⋯+ 𝑥𝑛)𝑛−𝑝1 .

General term in expansion of (𝑥2 + 𝑥3 + ⋯+ 𝑥𝑛)𝑛−𝑝1 is

(𝑛 − 𝑝1)!⁄
𝑝2!(𝑛 − 𝑝1 − 𝑝2)!

𝑥𝑝22 (𝑥3 + 𝑥4 + ⋯+ 𝑥𝑛)𝑛−𝑝1−𝑝2 .

Proceding in this manner we obtain the general term given above.
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7.7.1 Som Results on Multinomial Expansions

1. No. of terms in the multinomial (𝑥1 + 𝑥2 +⋯+ 𝑥𝑛)𝑝 is number of non-negative integral
solution of the equation 𝑝1 + 𝑝2 + ⋯+ 𝑝𝑛 = 𝑝 i.e. 𝑛+𝑝−1𝐶𝑝 or 𝑛+𝑝−1𝐶𝑛−1.

2. Largest coeff. in (𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛)𝑝 is 𝑛!⁄
(𝑞!)𝑛−𝑟[(𝑞+1)!]𝑟, where 𝑞 is the quotient and 𝑟

is the remainder of 𝑝/𝑛.

3. Coefficient of 𝑥𝑟 in (𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯+ 𝑎𝑛𝑥𝑛)𝑝 is ∑ 𝑛!⁄
𝑝0!𝑝1!𝑝2!…𝑝𝑛! 𝑎

𝑝0
0 𝑎𝑝11 𝑎𝑝𝑛𝑛 where

𝑝0, 𝑝1, ⋯ , 𝑝𝑛 are non-negative integers satisfying the equation 𝑝0 + 𝑝1 + … + 𝑝𝑛 = 𝑛
and 𝑝1 + 2𝑝2 + ⋯+ 𝑛𝑝𝑛 = 𝑟.

7.8 Binomial Theorem for Any Index

7.8.1 Fractional Index

Let 𝑓(𝑚) = (1 + 𝑥)𝑚 = 1 +𝑚𝑥 +𝑚(𝑚−1)⁄
1.2 𝑥2 + 𝑚(𝑚−1)(𝑚−2)⁄

1.2.3 𝑥3 + ⋯, where 𝑚 ∈ 𝑅 then,

𝑓(𝑛) = (1 + 𝑥)𝑛 = 1 + 𝑛𝑥 + 𝑛(𝑛−1)
⁄

1.2 𝑥2 + 𝑛(𝑛−1)(𝑛−2)⁄
1.2.3 𝑥3 + ⋯

𝑓(𝑚)𝑓(𝑛) = (1 + 𝑥)𝑚+𝑛 = 𝑓(𝑚+ 𝑛)

𝑓(𝑚)𝑓(𝑛)… to 𝑘 factos = 𝑓(𝑚+ 𝑛+…) to 𝑘 terms

Let 𝑚, 𝑛, … each equal to 𝑗⁄𝑘

⇒ [𝑓(𝑗⁄𝑘)]𝑘 = 𝑓(𝑗)

but 𝑗 is a positive integer, 𝑓(𝑗) = (1 + 𝑥)𝑗

∴ (1 + 𝑥)
𝑗⁄
𝑘 = 𝑓(𝑗⁄𝑘)

∴ (1 + 𝑥)
𝑗⁄
𝑘 = 1 + 𝑗⁄

𝑘 𝑥 +
𝑗
⁄

𝑘 (
𝑗
⁄

𝑘 − 1)⁄
1.2 𝑥2 + …

And thus, we have proven binomial theorem for fractional index.

7.8.2 Negative Index
We can write

𝑓(𝑛)𝑓(−𝑛) = 𝑓(0) = 1

⇒ 𝑓(−𝑛) = 1⁄
𝑓(𝑛) = (1 + 𝑥)−𝑛 = 1 − 𝑛𝑥 + 𝑛(𝑛 − 1)

⁄

1.2 𝑥2 − …
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7.9 General Term in Binomial Theorem for Any Index
General term is given by

𝑛.(𝑛 − 1)… (𝑛 − 𝑟 + 1)⁄
𝑟! 𝑥𝑟

The above expansion does not hold true when |𝑥| > 1 which can be quickly proved by
making 𝑟 arbitrarily large. For example, (1 − 𝑥)−1 = 1 + 𝑥 + 𝑥2 + 𝑥3 +…. However, if we
put 𝑥 = 2, then we have (−1)−1 = 1 + 2 + 22 +… which shows that when 𝑥 > 1 the above
formula does not hold true.

From G.P. we know that 1 + 𝑥 + 𝑥2 +… for 𝑟 terms is

1⁄
1 − 𝑥 −

𝑥𝑟⁄
1 − 𝑥

Thus, if 𝑟 is very large and |𝑥| < 1, we can ignore the second fraction but not when |𝑥| > 1.

7.10 General Term for Negative Index
The 𝑟 + 1th term is given by

−𝑛(−𝑛 − 1)… (−𝑛 − 𝑟 + 1)⁄
𝑟! (−𝑥)𝑟

= 𝑛(𝑛 + 1)… (𝑛 + 𝑟 − 1)⁄
𝑟! 𝑥𝑟

7.11 Exponential and Logrithmic Series Expansions
Following expansions are useful for solving problem related to exponential and logarithmic
series:

1. 𝑒𝑥 = 1 + 𝑥⁄
1! +

𝑥2
⁄

2! +
𝑥3
⁄

3! + … to ∞, where 𝑥 is any number. 𝑒 lies between 2 and 3.

2. If 𝑎 > 0, 𝑎𝑥 = 𝑒𝑥 log𝑒 𝑎 = 1 + 𝑥 log𝑒 𝑎⁄
1! + (𝑥 log𝑒 𝑎)2⁄

2! + …

3. log𝑒(1 + 𝑥) = 𝑥 − 𝑥2
⁄

2 + 𝑥3
⁄

3 − 𝑥4
⁄

4 + … to ∞ where −1 < 𝑥 ≤ 1.
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7.12 Problems

1. Expand (𝑥 + 1
⁄

𝑥)
5
.

2. Use the bonimial theorem to find the exact value of (10.1)5.

3. Simplify (𝑥 +√


𝑥 − 1)6 + (𝑥 −√


𝑥 − 1)6.

4. If 𝐴 be the sum of odd terms and 𝐵 be the sum of even terms in the expansion of
(𝑥 + 𝑎)𝑛, prove that 𝐴2 − 𝐵2 = (𝑥2 − 𝑎2)𝑛.

5. If 𝑛 is a positive integer, prove that the integral part of (7 + 4√


3)𝑛 is an odd number.

6. If (7 + 4√


3)𝑛 = 𝛼 + 𝛽, where 𝛼 is a positive integer and 𝛽 is a proper fraction, then
prove that (1 − 𝛽)(𝛼 + 𝛽) = 1.

7. Find the coefficient of 1⁄𝑦2 in (𝑦 + 𝑐3⁄
𝑦2)

10
.

8. Find the coefficient of 𝑥9 in (1 + 3𝑥 + 3𝑥2 + 𝑥3)15.

9. Find the term independent of 𝑥 in (3⁄2 𝑥
2 − 1
⁄

3𝑥)
9
.

10. Find the term independent of 𝑥 in (1 + 𝑥)𝑚(𝑥 + 1
⁄

𝑥)
𝑛
.

11. Find the coefficient of 𝑥−1 in (1 + 3𝑥2 + 𝑥4)(1 + 1
⁄

𝑥)
8
.

12. If 𝑎𝑟 denotes the coefficient of 𝑥𝑟 in the expansion (1 − 𝑥)2𝑛−1, then prove that
𝑎𝑟−1 + 𝑎2𝑛−𝑟 = 0.

13. Find the vallue of 𝑘 so that the term independent of 𝑥 in (√


𝑥 + 𝑘
⁄

𝑥2)
10

is 405.

14. Show that there will be no term containing 𝑥2𝑟 in the expansion (𝑥 + 𝑥−2)𝑛−3, if
𝑛 − 2𝑟 is positive but not a multiple of 3.

15. Show that there will be a term independent of 𝑥 in the expansion (𝑥𝑎 + 𝑥−𝑏)𝑛, only if
𝑎𝑛 is a multiple of 𝑎 + 𝑏.

16. Expand (𝑥 + 1
⁄

𝑥)
7

using binomial theorem.

17. Use binomial theorem to expand (2𝑥⁄3 − 3
⁄

2𝑥)
6
.

18. If (1 + 𝑎𝑥)𝑛 = 1 + 8𝑥 + 24𝑥2 + …, find 𝑎 and 𝑛.

19. Find the 7th term in the expansion of (4𝑥⁄5 − 5
⁄

2𝑥)
9
.

20. Find the value of (√


2 + 1)6 + (√


2 − 1)6.
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21. If 𝐴 be the sum of the odd terms and 𝐵 be the sum of the even terms in the expansion
(𝑥 + 𝑎)𝑛, show that 4𝐴𝐵 = (𝑥 + 𝑎)2𝑛 − (𝑥 − 𝑎)2𝑛.

22. If 𝑛 be a positive integer, prove that the integral part of (5 + 2√


6)𝑛 is an odd integer.

23. If (3 +√


8)𝑛 = 𝛼 + 𝛽, where 𝛼, 𝑛 are positive integers and 𝛽 is a proper fraction, then
prove that (1 − 𝛽)(𝛼 + 𝛽) = 1.

24. Find the coefficient of 𝑥 in the expansion of (2𝑥 − 3
⁄

𝑥)
9
.

25. Find the coefficient of 𝑥7 in the expansion of (3𝑥2 + (5𝑥)−1)11.

26. Find the coefficient of 𝑥9 in the expansion of (2𝑥2 − 𝑥−1)20.

27. Find the coefficient of 𝑥24 in the expansion of (𝑥2 + 3𝑎𝑥−1)15.

28. Find the coefficient of 𝑥9 in the expansion of (𝑥2 − (3𝑥)−1)9.

29. Find the coefficient of 𝑥−7 in the expansion of (2𝑥 − 1⁄
3𝑥2)

11
.

30. Find the coefficient of 𝑥7 in the expansion of (𝑎𝑥2 + 1⁄
𝑏𝑥)

11
and the coefficient of 𝑥−7

in the expansion of (𝑎𝑥 − 1⁄
𝑏𝑥)

11
. Also, find the relation between 𝑎 and 𝑏 so that the

coefficients are equal.

31. If 𝑥𝑝 occurs in the expansion of (𝑥2 + 1
⁄

𝑥)
2𝑛

, show that its coefficient is 2𝑛!⁄
(4𝑛−𝑝⁄

3 )!(2𝑛+𝑝⁄
3 )!

.

32. Find the term independent of 𝑥 in the following binomial expansions:

i. (𝑥 + 1
⁄

𝑥)
2𝑛

,

ii. (2𝑥2 + 1
⁄

𝑥)
15

,

iii. (√


𝑥
⁄

3 +
3⁄
2𝑥2)

10
,

iv. (2𝑥2 − 1
⁄

𝑥)
12

,

v. (2𝑥2 − 3
⁄

𝑥3)
25

,

vi. (𝑥3 − 3
⁄

𝑥2)
15

,

vii. (𝑥2 − 3
⁄

𝑥3)
10

, and

viii. (1⁄2 𝑥
1/3 + 𝑥−1/3)

8
.
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33. If there is a term independent of 𝑥 in (𝑥 + 1
⁄

𝑥2)
𝑛
, show that it is equal to 𝑛!⁄

(𝑛⁄3)!(
2𝑛⁄
3 )!

34. Prove that in the expansion of (1 + 𝑥)𝑚+𝑛, coefficients of 𝑥𝑚 and 𝑥𝑛 are equal,
∀ 𝑚,𝑛 > 0,𝑚, 𝑛 ∈ ℕ.

35. Give that the 4th term in the expansion of (𝑝𝑥 + 1
⁄

𝑥)
𝑛

is 5⁄2. Find 𝑛 and 𝑝.

36. Find the middle term in the expansion of (𝑥 − 1
⁄

2𝑥)
12

.

37. Find the middle terms in the expansion of (2𝑥2 − 1
⁄

𝑥)
7
.

38. Prove that the middle term in the expansion of (𝑥 + 1
⁄

𝑥)
2𝑛

is 1.3.5…(2𝑛−1)⁄
𝑛! 2𝑛.

39. Show that the coefficient of the middle term in (1 + 𝑥)2𝑛 is equal to the sum of
coefficients of the two middle terms in (1 + 𝑥)2𝑛−1.

40. Find the middle term in the expansions of;

i. (2𝑥⁄3 − 3𝑦⁄
2 )

20
,

ii. (2𝑥⁄3 − 3
⁄

2𝑥)
6
,

iii. (𝑥⁄𝑦 −
𝑦
⁄

𝑥)
7
,

iv. (1 + 𝑥)2𝑛, and

v. (1 − 2𝑥 + 𝑥2)𝑛.

41. Find the general and middle term of the expansion (𝑥⁄𝑦 +
𝑦
⁄

𝑥)
2𝑛+1

; 𝑛 being a positive
integer show that there is no term free of 𝑥 and 𝑦.

42. Show that the middle term in the expansion of (𝑥 − 1
⁄

𝑥)
2𝑛

is 1.3.5…(2𝑛−1)⁄
𝑛! .(−2)𝑛.

43. If in the expansion of (1 + 𝑥)43, the coefficient of (2𝑟 + 1)th term is equal to the
coefficient of (𝑟 + 2)th term, find 𝑟.

44. If the 𝑟th term in the expansion of (1 + 𝑥)20 has coefficient equal to that of the
(𝑟 + 4)th term, find 𝑟.

45. If the coefficient of (2𝑟 + 4)th term and (𝑟 − 2)th term in the expansion of (1 + 𝑥)18
are equal, find 𝑟.

46. If the coefficient of (2𝑟 + 5)th term and (𝑟 − 6)th term in the expansion of (1 + 𝑥)39
are equal, fin 𝐶𝑟

12.

47. Given positive integers 𝑟 > 1, 𝑛 > 2, 𝑛 being even and the coefficient of 3𝑟th term and
(𝑟 + 2)th term in the expansion of (1 + 𝑥)2𝑛 are equal, find 𝑟.
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48. If the coefficient of (𝑝 + 1)th term in the expansion of (1 + 𝑥)2𝑛 be equal to that of
the (𝑝 + 3)th term, show that 𝑝 = 𝑛 − 1.

49. Show that the coefficient of (𝑟 + 1)th term in the expansion of (1 + 𝑥)𝑛+1 is equal to
the sum of the coefficients of the 𝑟th and (𝑟 + 1)th term in the expansion of (1 + 𝑥)𝑛.

50. Find the greatest term in the expansion of (7 − 10
⁄

3 )
11

.

51. Show that if the greatest term in the expansion of (1 + 𝑥)2𝑛 has also the greatest
coefficient 𝑥 lies between 𝑛
⁄

𝑛+1 and 𝑛+1⁄𝑛 .

52. Find the greatest terms in the expansions of:

i. (2 + 9
⁄

5)
10

,

ii. (4 − 2)7, and

iii. (5 + 2)13.

53. Find the limits between which 𝑥 must lie in order that the greatest term in the
expansion of (1 + 𝑥)30 may have the greatest coefficient.

54. If 𝑛 ∈ ℙ, then prove that 62𝑛 − 35𝑛 − 1 is divisible by 1225.

55. Show that 24𝑛 − 2𝑛(7𝑛 + 1) is some multuple of the square of 14, where 𝑛 ∈ ℙ.

56. Show that 34𝑛+1 − 16𝑛 − 3 is divisible by 256, if 𝑛 ∈ ℙ.

57. If 𝑛 ∈ ℙ, show that

i. 4𝑛 − 3𝑛 − 1 is divisible by 9,

ii. 25𝑛 − 31𝑛 − 1 is divisible by 961,

iii. 32𝑛+2 − 8𝑛 − 9 is divisible by 64,

iv. 25𝑛+5 − 31𝑛 − 32 is divisible by 961 if 𝑛 > 1, and

v. 32𝑛 − 32𝑛2 + 24𝑛 − 1 is divisible by 512 if 𝑛 > 2.

58. If three consecutive coefficients in the expansion of (1 + 𝑥)𝑛 be 165, 330 and 462,
find 𝑛 and 𝑟.

59. If 𝑎1, 𝑎2, 𝑎3 and 𝑎4 be any four consecutive coefficients in the expansion of (1 + 𝑥)𝑛,
prove that 𝑎1
⁄

𝑎1+𝑎2 +
𝑎3
⁄

𝑎3+𝑎4 =
2𝑎2
⁄

𝑎2+𝑎3.

60. If 2nd, 3rd and 4th terms in the expansion of (𝑥+𝑦)𝑛 be 240, 720 and 1080 respectively,
find 𝑥, 𝑦 and 𝑛.
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61. If 𝑎, 𝑏, 𝑐 be thre three consecutive terms in the expansion of some power of (1 + 𝑥),
prove that the exponent is 2𝑎𝑐+𝑎𝑏+𝑏𝑐⁄

𝑏2−𝑎𝑐 .

62. If 14the, 15th and 16th term in the expansion of (1 + 𝑥)𝑛 are in A.P., find 𝑛.

63. If three consecutive terms in the expansion of (1 + 𝑥)𝑛 be 56, 70 and 56, find 𝑛 and
the position of the coefficients.

64. If three successive coefficients in the expansion of (1 + 𝑥)𝑛 be 220, 495 and 792, find 𝑛.

65. If 3rd, 4th and 5th terms in the expansion of (𝑎 + 𝑥)𝑛 be 84, 280 and 560, find 𝑎, 𝑥
and 𝑛.

66. If 6th, 7th and 8th terms in the expansion of (𝑥 + 𝑦)𝑛 be 112, 7 and 1⁄4, find 𝑥, 𝑦 and 𝑛.

67. If 𝑎, 𝑏, 𝑐 and 𝑑 be the 6th, 7th, 8th and 9th terms respectively in any binomial expansion,
prove that 𝑏

2−𝑎𝑐⁄
𝑐2−𝑏𝑑 =

4𝑎⁄
3𝑐.

68. If the four consecutive coefficients in any binomial expansion be 𝑎, 𝑏, 𝑐, and 𝑑, then
prove that (a) 𝑎+𝑏⁄𝑎 , 𝑏+𝑐⁄𝑏 , 𝑐+𝑑⁄

𝑐 are in H.P., and (b) (𝑏𝑐 + 𝑎𝑑)(𝑏 − 𝑐) = 2(𝑎𝑐2 − 𝑏2𝑑).

69. The coefficients of the 5th, 6th and 7th terms in the expansion of (1 + 𝑥)𝑛 are in A.P.
Find the value of 𝑛.

70. If the coefficients of the 2nd, 3rd and 4th terms in the expansion of (1 + 𝑥)2𝑛 are in
A.P., show that 2𝑛2 − 9𝑛 + 7 = 0.

71. If the coefficients of 𝑟th, (𝑟 + 1)th and (𝑟 + 2)th terms in the expansion of (1 + 𝑥)𝑛

are in A.P. show that 𝑛2 − 𝑛(4𝑟 + 1)+ 4𝑟2 − 2 = 0.

72. If the coefficients of three consecutive terms in the expansion of (1 + 𝑥)𝑛 are in the
ratio 182 : 84 : 30, prove that 𝑛 = 18.

If (1 + 𝑥)𝑛 = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + ⋯+ 𝐶𝑛𝑥𝑛, prove that

73. 𝐶1 + 2.𝐶2 + 3.𝐶3 + ⋯+ 𝑛.𝐶𝑛 = 𝑛.2𝑛−1.

74. 𝐶0 + 2.𝐶1 + 3.𝐶2 + ⋯+ (𝑛 + 1) .𝐶𝑛 = (𝑛 + 2)2𝑛−1.

75. 𝐶0 + 3.𝐶1 + 5.𝐶2 + ⋯+ (2𝑛 + 1) .𝐶𝑛 = (𝑛 + 1)2𝑛.

76. 𝐶1 − 2.𝐶2 + 3.𝐶3 − 4.𝐶4 + ⋯+ (−1)𝑛−1𝑛.𝐶𝑛 = 0.

77. 𝐶0 + 𝐶1⁄
2 + 𝐶3⁄

3 + ⋯ + 𝐶𝑛
⁄

𝑛+1 =
2𝑛+1−1⁄
𝑛+1 .

78. 𝐶0 − 𝐶1⁄
2 + 𝐶3⁄

3 − ⋯ + (−1)𝑛 𝐶𝑛
⁄

𝑛+1 =
1
⁄

𝑛+1.

79. 𝐶1⁄
2 + 𝐶3⁄

4 + 𝐶5⁄
6 + ⋯ = 2𝑛−1⁄

𝑛+1 .
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80. 2.𝐶0 + 22. 𝐶1⁄
2 + 23. 𝐶2⁄

3 + ⋯ + 2𝑛+1. 𝐶𝑛
⁄

𝑛+1 =
3𝑛+1−1⁄
𝑛+1 .

81. 𝐶0.𝐶𝑟 + 𝐶1.𝐶𝑟+1 + ⋯+ 𝐶𝑛−𝑟.𝐶𝑛 = (2𝑛)!⁄
(𝑛+𝑟)!(𝑛−𝑟)!.

82. 𝐶2
0 + 𝐶2

1 + 𝐶2
2 + ⋯+ 𝐶2

𝑛 =
(2𝑛)!⁄
𝑛!𝑛! .

83. 𝐶1⁄
𝐶0

+ 2. 𝐶2⁄
𝐶1

+ 3. 𝐶3⁄
𝐶2

+ ⋯+ 𝑛. 𝐶𝑛⁄
𝐶𝑛−1

= 𝑛(𝑛+1)
⁄

2 .

84. (1 + 𝐶1 + 𝐶2 + ⋯+ 𝐶𝑛)2 = 1 + 𝐶2𝑛
1 + 𝐶2𝑛

2 + ⋯+ 𝐶2𝑛
2𝑛.

85. (1 + 𝐶1 + 𝐶2 + ⋯+ 𝐶𝑛)5 = 1 + 𝐶5𝑛
1 + 𝐶5𝑛

2 + ⋯+ 𝐶5𝑛
5𝑛.

86. 𝐶0 + 5.𝐶1 + 9.𝐶2 + ⋯+ (4𝑛 + 1) .𝐶𝑛 = (2𝑛 + 1)2𝑛.

87. 1 − (1 + 𝑥)𝐶1 + (1 + 2𝑥)𝐶2 − (1 + 3𝑥)𝐶3 + ⋯ = 0.

88. 3.𝐶1 + 7.𝐶2 + 11.𝐶3 + ⋯+ (4𝑛 − 1)𝐶𝑛 = (2𝑛 − 1)2𝑛+1.

89. 𝐶0 + 𝐶2⁄
3 + 𝐶4⁄

5 + ⋯ = 2𝑛
⁄

𝑛+1.

90. 𝐶𝑛
0 𝐶

𝑛+1
1 + 𝐶𝑛

1 𝐶
𝑛+1
2 + ⋯ + 𝐶𝑛

𝑛𝐶𝑛+1
𝑛+1 =

(2𝑛+1)!⁄
(𝑛+1)!𝑛!.

91. 𝐶0 − 2.𝐶1 + 3.𝐶2 − ⋯+ (−1)𝑛(𝑛 + 1)𝐶𝑛 = 0.

92. 𝐶0 − 3.𝐶1 + 5.𝐶2 − ⋯+ (−1)𝑛(2𝑛 + 1)𝐶𝑛 = 0.

93. 𝑎 − (𝑎 − 1)𝐶1 + (𝑎 − 2)𝐶2 − (𝑎 − 3)𝐶3 + ⋯+ (−1)𝑛(𝑎 − 𝑛)𝐶𝑛 = 0.

94. 12.𝐶1 + 22.𝐶2 + 32𝐶3 + ⋯+ 𝑛2.𝐶𝑛 = 𝑛(𝑛 + 1)2𝑛−2.

95. If 𝑛 > 3 and 𝑛 ∈ ℕ, prove that 𝐶0.𝑎𝑏𝑐 − 𝐶1(𝑎 − 1)(𝑏 − 1)(𝑐 − 1) + 𝐶2(𝑎 − 2)(𝑏 −
2)(𝑐 − 2)−⋯+ (−1)𝑛 .𝐶𝑛(𝑎 − 𝑛)(𝑏 − 𝑛)(𝑐 − 𝑛) = 0

96. 𝐶0 − 22.𝐶1 + 32.𝐶2 − ⋯+ (−1)𝑛(𝑛 + 1)2𝐶𝑛 = 0, 𝑛 > 2.

97. Prove that 
𝑛
∑
𝑟=0

𝑟2.𝐶𝑟𝑝𝑟𝑞𝑛−𝑟 = 𝑛𝑝𝑞 + 𝑛2𝑝2 if 𝑝 + 𝑞 = 1.

98. 2.𝐶0 + 22
⁄

2 .𝐶1 + 23
⁄

3 .𝐶2 + ⋯+ 211⁄
11 .𝐶11 = 311−1
⁄

11 .

99. 22
⁄

1.2𝐶0 + 23
⁄

2.3𝐶2 + 24
⁄

3.4𝐶2 + ⋯+ 2𝑛+2
⁄

(𝑛+1)(𝑛+2)𝐶𝑛 = 3𝑛+2−2𝑛−5
⁄

(𝑛+1)(𝑛+2).

100. 𝐶1 − 1
⁄

2𝐶2 + 1
⁄

3𝐶3 − ⋯+ (−1)𝑛 1
⁄

𝑛𝐶𝑛 = 1 + 1
⁄

2 +
1
⁄

3 + ⋯ + 1
⁄

𝑛.

101. 𝐶0⁄
1 − 𝐶1⁄

5 + 𝐶2⁄
9 − ⋯ + (−1)𝑛 𝐶𝑛
⁄

4𝑛+1 =
𝑛.4𝑛⁄

1.5.9…(4𝑛+1).

102. 𝐶0⁄
𝑛 − 𝐶1
⁄

𝑛+1 +
𝐶2
⁄

𝑛+2 − ⋯+ (−1)𝑛𝐶𝑛⁄
2𝑛 = 𝑛!(𝑛−1)!⁄

(2𝑛)! .
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103. 𝐶0
⁄

𝑛(𝑛+1)−
𝐶1
⁄

(𝑛+1)(𝑛+2)+
𝐶2
⁄

(𝑛+2)(𝑛+3)−⋯+ (−1)𝑛 𝐶𝑛⁄
2𝑛(2𝑛+1) =

1⁄
(2𝑛+1) .

1⁄
2𝑛𝐶𝑛−1

.

104. 𝐶0⁄
𝑘 − 𝐶1⁄

𝑘+1 +
𝐶2⁄
𝑘+2 − ⋯+ (−1)𝑛 𝐶𝑛⁄

𝑘+𝑛 =
𝑛!⁄

𝑘(𝑘+1)…(𝑘+𝑛).

105. Show that 𝐶2
0 − 𝐶2

1 + 𝐶2
2 −⋯+ (−1)𝑛 .𝐶2

𝑛 = 0 or (−1)𝑛/2 . 𝑛!⁄
(𝑛!⁄
2 )

2 according as 𝑛 is odd
or even.

106. Show that 𝐶𝑛
𝑟 𝐶0+𝑚𝐶𝑟−1.𝑛𝐶1+𝑚𝐶𝑟−2.𝑛𝐶2+⋯+𝑚𝐶0.𝑛𝐶𝑟 =𝑚+𝑛 𝐶𝑟, where 𝑚,𝑛, 𝑟

are positive integers and 𝑟 < 𝑚, 𝑟 < 𝑛.

107. 2𝑛𝐶2
0 −2𝑛 𝐶2

1 +2𝑛 𝐶2
2 − ⋯+ (−1)2𝑛 .2𝑛𝐶2

2𝑛 = (−1)𝑛 .2𝑛𝐶𝑛.

108. Show that 𝐶2
1 + 2.𝐶2

2 + 3.𝐶2
3 + ⋯ + 𝑛.𝐶2

𝑛 =
(2𝑛−1)!⁄
[(𝑛−1)!]2.

109. Show that 𝐶2
0 +

𝐶2
1⁄
2 + 𝐶2

2⁄
3 + ⋯ + 𝐶2

𝑛
⁄

𝑛+1 =
(2𝑛+1)!⁄
[(𝑛+1)!]2.

110. 𝐶0 − 22𝐶1 + 32𝐶2 − ⋯+ (−1)𝑛(𝑛 + 1)2𝐶𝑛 = 0, 𝑛 > 2.

111. 𝐶0
⁄

1.2 −
𝐶1
⁄

2.3 +
𝐶2
⁄

3.4 − ⋯ + (−1)𝑛 𝐶𝑛
⁄

(𝑛+1)(𝑛+2) =
1
⁄

𝑛+2

112. 𝐶0⁄
2 − 𝐶1⁄

3 + 𝐶2⁄
4 − ⋯ + (−1)𝑛 𝐶𝑛
⁄

𝑛+2 =
1
⁄

(𝑛+1)(𝑛+2).

113. 𝐶0⁄
3 − 𝐶1⁄

4 + 𝐶2⁄
4 − ⋯ + (−1)𝑛 𝐶𝑛
⁄

𝑛+3 =
2⁄

(𝑛+1)(𝑛+2)(𝑛+3).

114. 3.𝐶0 + 32𝐶1⁄
2 + 33𝐶2⁄

3 + ⋯ + 3𝑛+1 𝐶𝑛
⁄

𝑛+1 =
4𝑛+1−1⁄
𝑛+1 .

115. If 𝑛 is a positive integer in (1 + 𝑥)𝑛, show that 2.
(𝑛!⁄
2 )

2⁄
𝑛! [𝐶2

0 − 2.𝐶2
1 + 3.𝐶2

2 − ⋯+
(−1)𝑛 .(𝑛 + 1)𝐶2

𝑛 ] = (−1)𝑛/2(2 + 𝑛).

116. Show that ∑
0≤𝑖≤𝑛

∑
𝑖<𝑗≤𝑛

𝐶𝑖𝐶𝑗 = 22𝑛−1 − (2𝑛)!⁄
2(𝑛!)2.

117. Show that 𝑛𝑟=0𝐶
3
𝑟 is equal to the coefficient of 𝑥𝑛𝑦𝑛 in the expansion of [(1 + 𝑥)(1 +

𝑦)(𝑥 + 𝑦)]𝑛.

118. Prove that the sum of coefficients in the expansion (1 + 𝑥 − 3𝑥2)2163 is −1.

119. If (1+𝑥−2𝑥2)6 = 1+𝑎1𝑥+𝑎2𝑥2+⋯+𝑎12𝑥12 show that 1+𝑎3+𝑎6+𝑎9+⋯+𝑎12 =
31.

120. Find the sum of the rational terms in the expansion of (2 + 5√


3)10.

121. Find the fractional pert of 2
4𝑛⁄
15 .

122. Show that the integer just above (√


3 + 1)2𝑛 is divisible by 2𝑛+1, ∀ 𝑛 ∈ ℕ.
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123. Let 𝑅 = (5√


5 + 11)2𝑛+1 and 𝑓 = 𝑅 − [𝑅], where [ ] denotes the greatest integer
function. Prove that 𝑅𝑓 = 42𝑛+1.

124. Show that (101)50 > (100)50 + (99)50.

125. Find the sum of the series 
𝑛
∑
𝑟=0

(−1)𝑟 .𝑛𝐶𝑟[
1⁄
2𝑟 +

3𝑟⁄
22𝑟 +

7𝑟⁄
23𝑟 + ⋯ to 𝑚 terms].

126. Find the last digit of the number (32)32.

127. Prove that 
𝑘
∑
𝑟=0

(−3)𝑟−1 .3𝑛𝐶2𝑛−1 = 0, where 𝑘 = 3𝑛⁄
2 and 𝑛 is a positive even number.

128. If 𝑡0, 𝑡1, 𝑡2, 𝑡3, … be ther terms of expansion (𝑎 + 𝑥)𝑛, prove that (𝑡0 − 𝑡2 + 𝑡4 −⋯)2 +
(𝑡1 − 𝑡3 + 𝑡5 − ⋯)2 = (𝑎2 + 𝑥2)𝑛.

If (1 + 𝑥 + 𝑥2)𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯+ 𝑎2𝑛𝑥2𝑛, show that

129. 𝑎0 + 𝑎1 + 𝑎2 + ⋯+ 𝑎2𝑛 = 3𝑛.

130. 𝑎0 − 𝑎1 + 𝑎2 − ⋯+ 𝑎2𝑛 = 1.

131. 𝑎0 + 𝑎3 + 𝑎6 + ⋯ = 32𝑛−1.

132. If 𝑆𝑛 = 1+ 𝑞 + 𝑞2 +⋯+ 𝑞𝑛 and 𝑆′𝑛 = 1+ (𝑞+1⁄
2 )+ (𝑞+1⁄

2 )
2
+⋯+ (𝑞+1⁄

2 )
𝑛
, 𝑞 ≠ 1, prove

that 𝐶𝑛+1
1 + 𝐶𝑛+1

2 .𝑆1 + 𝐶𝑛+1
3 .𝑆2 + ⋯ + 𝐶𝑛+1

𝑛+1 .𝑆𝑛 = 2𝑛𝑆′𝑛.

133. Find the number of rational terms in the expansion of ( 4√


9 + 6√


8)1000.

134. Find the sum of rational terms in the expansion of ( 3√


2 + 5√


3)15.

135. Determine the values of 𝑥 in the expansion of(𝑥 + 𝑥 log10 𝑥)5 if the third term in that
expansion is 1,000,000.

136. Expand (𝑥 + 1 − 1
⁄

𝑥)
3
.

137. Find the value of 𝑥 for which the sixth term of (√

2log(10−3

𝑥)+ 5√

2(𝑥−2) log 3)

𝑚
is

equal to 21 and coefficients of second, third and fourth terms are the first, third and
fifth terms of an A.P., given base of log is 10.

138. Find the values of 𝑥 for which the sixth term of the expansion [2log2
√

9𝑥−1+7 +

1⁄
2
1⁄
5log2(3

𝑥−1+1)]
7

is equal to 84.

139. If 𝑛 ∈ ℕ, prove that 1⁄
(81)𝑛 −

10⁄
(81)𝑛 .𝐶

2𝑛
1 + 102⁄

(81)𝑛 .𝐶
2𝑛
2 − 103⁄

(81)𝑛 .𝐶
2𝑛
3 + ⋯ + 102𝑛⁄

(81)𝑛 = 1.
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140. Find the value of lim
𝑛→∞

𝑆𝑛 = 𝐶𝑛 −
2
⁄

3𝐶𝑛−1 + (2⁄3)
2
𝐶𝑛−2 − ⋯+ (−1)𝑛(2⁄3)

𝑛
𝐶0.

141. If 𝐸 = (6√


6 + 14)2𝑛+1 and 𝐹 be fractional part of 𝐸, prove that 𝐸𝐹 = 202𝑛+1.

142. Find the digits at units, tens and hundreds place in the number (17)256.

143. Show that for 𝑛 ≥ 3, 𝑛𝑛+1 > (𝑛 + 1)𝑛 , 𝑓𝑜𝑟𝑎𝑙𝑙 𝑛 ∈ ℙ.

144. Show that 2 < (1 + 1
⁄

𝑛)
𝑛
< 3 ∀ 𝑛 ∈ ℕ.

145. Show that 19921998 − 19551998 − 19381998 + 19011998 is divisible by 1998.

146. Show that 5353 − 3333 is divisible by 10.

147. Let 𝑘 and 𝑛 be positive integers and 𝑆𝑘 = 1𝑘 + 2𝑘 + ⋯ + 𝑛𝑘, show that 𝐶𝑚+1
1 𝑆1 +

𝐶𝑚+1
2 𝑆2 + 𝐶𝑚+1

𝑚 𝑆𝑚 = (𝑛 + 1)𝑚+1 − 𝑛 − 1.

148. Find 
𝑘
∑
𝑖=1

𝑛
∑
𝑘=1

𝐶𝑛
𝑘 𝐶

𝑘
𝑖 , 𝑖 ≤ 𝑘.

149. Prove that 
𝑛
∑
𝑟=0

(−1)𝑟 .𝑛𝐶𝑟
1+𝑟 log𝑒 10⁄

(1+log𝑒 10𝑛)𝑟
= 0.

150. Find the remainder when 3232
32

is divided by 7.

151. If 
2𝑛
∑
𝑟=0

𝑎𝑟(𝑥−2)𝑟 =
2𝑛
∑
𝑟=0

𝑏𝑟(𝑥−3)𝑟 and 𝑎𝑟 = 1 ∀ 𝑟 ≥ 𝑛, then show that 𝑏𝑛 =2𝑛+1 𝐶𝑛+1.

152. Find the coefficient of 𝑥50 in (1 + 𝑥)1000 + 2𝑥(1 + 𝑥)999 + 3𝑥2(1 + 𝑥)998 + ⋯ +
1001𝑥1000.

153. Show that 𝐶𝑛
𝑛 + 𝐶𝑛+1

𝑛 + 𝐶𝑛+2
𝑛 + ⋯+ 𝐶𝑛+1

𝑛 = 𝐶𝑛+𝑘+1
𝑛+1 .

154. Find the coefficient of 𝑥𝑛 in (1 + 𝑥 + 2𝑥2 + 3𝑥3 + ⋯+ 𝑛𝑥𝑛)2.

155. Find the coefficient of 𝑥𝑘, 0 ≤ 𝑘 ≤ 𝑛 in the expansion of 1 + (1 + 𝑥)+ (1 + 𝑥)2 + ⋯+
(1 + 𝑥)𝑛.

156. Find the coefficient of 𝑥3 in (𝑥 + 1)𝑛 + (𝑥 + 1)𝑛−1(𝑥 + 2)+ (𝑥 + 1)𝑛−2(𝑥 + 2)2 +
⋯ + (𝑥 + 2)𝑛.

157. Simplify ( 𝑎+1⁄
𝑎2/3−𝑎1/3+1 −

𝑎−1⁄
𝑎−𝑎1/2)

10
into a binomial and determine the term independent

of 𝑎.

158. Find the coefficient of 𝑥2 in (𝑥 + 1
⁄

𝑥)
10
(1 − 𝑥 + 2𝑥2).

159. Find the coefficient of 𝑥4 in the expansion of (1 + 𝑥 − 2𝑥2)6.
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160. Find the term independent of 𝑥 in (1 + 𝑥 + 2𝑥3)(3⁄2 𝑥
2 − 1
⁄

3𝑥)
9
.

161. Find the term independent of 𝑥 in (𝑥2 + 1
⁄

𝑥3)
7
(2 − 𝑥)10.

162. Find the term independent of 𝑥 in (1 + 𝑥 + 𝑥−2 + 𝑥−3)10.

163. Let (1 + 𝑥2)2 (1 + 𝑥)𝑛 =
𝑛+4
∑
𝑘=0

𝑎𝑘𝑥𝑘. If 𝑎1, 𝑎2 and 𝑎3 are in A.P., find 𝑛.

164. Show that 𝐶𝑚
1 +𝐶𝑚+1

2 +𝐶𝑚+2
3 +⋯+𝐶𝑚+𝑛−1

𝑛 = 𝐶𝑛
1 +𝐶𝑛+1

2 +𝐶𝑛+2
3 +⋯+𝐶𝑚+𝑛−1

𝑛 .

165. If 𝑛 ∈ ℕ and (1 + 𝑥 + 𝑥2)𝑛 =
2𝑛
∑
𝑟=0

𝑎𝑟𝑥𝑟, prove that (a) 𝑎𝑟 = 𝑎2𝑛−𝑟, (b) 𝑎0 + 𝑎1 + 𝑎2 +

⋯+ 𝑎𝑛−1 = 1
⁄

2 (3
𝑛 − 𝑎𝑛), and (c) (𝑟 + 1)𝑎𝑟+1 = (𝑛 − 𝑟)𝑎𝑟 + (2𝑛 − 𝑟 + 1)𝑎𝑟−1, where

0 < 𝑟 < 2𝑛.

166. If (1 − 𝑥3)𝑛 =
𝑛
∑
𝑟=0

𝑎𝑟.𝑥𝑟.(1 − 𝑥)3𝑛−2𝑟, where 𝑛 ∈ ℕ, then find 𝑎𝑟.

167. Show that the coefficient of middle term in the expansion of (1 + 𝑥)2𝑛 is double the
coefficient of 𝑥𝑛 in the expansion of (1 + 𝑥)2𝑛−1.

168. Find the value of 𝑟 for which 𝐶200
𝑟 is greatest.

169. Committees of how many persons should be made out of 20 persons so that the number
of committees is maximum.

170. Show that the number of permutations which can be formed from 2𝑛 letters which are
either ‘a’ or ‘b’ is greatest when the number of a's is equal to the number of b's.

171. Find the consecutive terms in the expansion of (3 + 2𝑥)7 whose coefficients are equal.

172. Find the sum of coefficients in the expansion of (1 + 5𝑥2 − 7𝑥3)2000.

173. If the sum of the binomial coefficients in the expansion of (3
−𝑥⁄4 + 3

5𝑥⁄
4 )

𝑛

is 64 and the

term with greatest coefficient exceeds the third term by 𝑛 − 1 and [𝛼] = 𝑥, where [𝛼]
denotes the integral part of 𝛼, find the value of 𝛼.

174. Find the sum of the coefficients in the expansion of (5𝑝 − 4𝑞)𝑛, where 𝑛 ∈ ℙ.

175. Find the sum of the coefficients in the expansion of the polynomial (1−3𝑥+𝑥3)201 .(1+
5𝑥 − 5𝑥2)503.

176. If the sum of the coefficients in the expansion of (𝑡𝑥2 − 2𝑥 + 1)𝑛 is equal to the sum of
coefficients in the expansion of (𝑥 − 𝑡𝑦)𝑛, where 𝑛 ∈ ℕ, then find the value of 𝑡.
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177. If 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛 be the successive coefficient of (1 + 𝑥)𝑛, show that (𝑎0 − 𝑎2 + 𝑎4 −
…)2 + (𝑎1 − 𝑎3 + 𝑎5 −…)2 = 𝑎0 + 𝑎1 + ⋯+ 𝑎𝑛 = 2𝑛.

178. Find the greatest term in the expansion of √


3(1 + 1⁄
√


3)
20

.

179. In the expansion of (𝑥 + 𝑎)15, if the eleventh term is the G.M. of the eighth and
twelfth terms, which term in the expression is the greatest?

180. if the greatest term in the expansion of (1 + 𝑥)2𝑛 has the greatest coefficient if and
only if 𝑥 ∈ (10⁄11 ,

11
⁄

10) and the fourth term in the expansion of (𝑘𝑥 + 1
⁄

𝑥)
𝑚

, is 𝑚⁄4 , then
find the value of 𝑚𝑘.

181. Given that the 4th term in the expansion of (2 + 3
⁄

8 𝑥)
10

has the maximum numerical
value, find the range of values of 𝑥 for which this would be true.

182. Show that the roots of the equation 𝑎𝑥2 + 2𝑏𝑥 + 𝑐 = 0 are real and unequal, where
𝑎, 𝑏, 𝑐 are three consecutive binomial expansion with positive integral index.

183. If 𝑛 ∈ ℙ, show that 9𝑛 + 7 is divisible by 8.

184. If 𝑛 ∈ ℙ, show that 32𝑛+1 + 2𝑛+2 is divisible by 7.

185. Show that no three consecutive binomial coefficients can be in G.P. or H.P.

186. Let 𝑛 be a positive integer and (1+ 𝑥+𝑥2)𝑛 = 𝑎0+ 𝑎1𝑥+ 𝑎2𝑥2+ 𝑎3𝑥3+⋯+𝑎2𝑛𝑥2𝑛,
show that 𝑎20 − 𝑎21 + 𝑎22 − ⋯ + 𝑎22𝑛 = 𝑎𝑛.

187. Let 𝑛 be a positive integer and (1+ 𝑥+𝑥2)𝑛 = 𝑎0+ 𝑎1𝑥+ 𝑎2𝑥2+ 𝑎3𝑥3+⋯+𝑎2𝑛𝑥2𝑛,
show that 𝑎20 − 𝑎21 + 𝑎22 − ⋯ + (−1)𝑛 𝑎2𝑛−1 =

1
⁄

2 𝑎𝑛[1 − (−1)𝑛 𝑎𝑛 ].

188. Show that ∑
0≤𝑖<𝑗

∑
0≤𝑗≤𝑛

(𝐶𝑖 + 𝐶𝑗)2 = (𝑛 − 1)2𝑛𝐶𝑛 + 22𝑛, (0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛).

189. Show that ∑
0≤𝑖<𝑗

∑
0≤𝑗≤𝑛

(𝑖 + 𝑗)𝐶𝑖𝐶𝑗 = 𝑛(22𝑛−1 − 1
⁄

2𝐶
2𝑛
𝑛 ).

190. Show that 1⁄
𝑚!𝐶0 + 𝑛⁄

(𝑚+1)! 𝐶1 + 𝑛(𝑛−1)
⁄

(𝑚+2)! 𝐶2 + ⋯ + 𝑛(𝑛−1)⋯3.2.1⁄
(𝑚+𝑛)! 𝐶𝑛 =

(𝑚+𝑛+1)(𝑚+𝑛+2)⋯(𝑚+2𝑛)⁄
(𝑚+𝑛)! .

191. Show that (𝐶0 + 𝐶1)(𝐶1 + 𝐶2)(𝐶2 + 𝐶3)⋯ (𝐶𝑛−1 + 𝐶𝑛) = (𝑛+1)𝑛⁄
𝑛! 𝐶1.𝐶2.… .𝐶𝑛.

192. If 𝑛 be a positive integer, prove that 1⁄
1!(𝑛−1)!+

1⁄
3!(𝑛−1)!+

1⁄
5!(𝑛−5)!+⋯+ 1⁄

(𝑛−1)!1! =
2𝑛−1
⁄

𝑛! .

193. Prove that 
𝑛
∑
𝑟=0

(−1)𝑟 .( 𝐶𝑛
𝑟⁄

𝐶𝑟+3
𝑟

) = 3!⁄
2(𝑛+3).

194. If (1 + 𝑥)𝑛 = 𝐶0+𝐶1𝑥+𝐶2𝑥2 +⋯+𝐶𝑛𝑥𝑛 show that for 𝑚 ≥ 2, 𝐶0 −𝐶1+𝐶2−⋯+
(−1)𝑚−1𝐶𝑚−1 = (−1)𝑚−1 (𝑛−1)(𝑛−2)…(𝑛−𝑚+1)⁄

(𝑚−1)! .
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195. Find the G.C.D. of 𝐶2𝑛
1 , 𝐶2𝑛

3 , 𝐶2𝑛
5 , … , 𝐶2𝑛

2𝑛−1.

196. Show that 
𝑛
∑
𝑟=0

𝐶𝑛
𝑟 . sin 𝑟𝑥 cos(𝑛 − 𝑟)𝑥 = 2𝑛−1 sin 𝑛𝑥.

197. 𝑎.𝐶0 + (𝑎 − 𝑏) .𝐶1 + (𝑎 − 2𝑏) .𝐶2 + ⋯ + (𝑎 − 𝑛𝑏) .𝐶𝑛 = 2𝑛−1(2𝑎 − 𝑛𝑏).

198. 𝑎2.𝐶0 − (𝑎 − 1)2 .𝐶1 + (𝑎 − 2)2 .𝐶2 − ⋯+ (−1)𝑛(𝑎 − 𝑛)2 .𝐶𝑛 = 0, 𝑛 > 3.

199. If 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛 be in an A.P., prove that 𝑎0− 𝑎1.𝐶1+ 𝑎2𝐶2−⋯+ (−1)𝑛𝑎𝑛𝐶𝑛 = 0.

200. Show that 𝑛 > 3,
𝑛
∑
𝑟=0

(−1)𝑟 (𝑎 − 𝑟) (𝑏 − 𝑟)𝐶𝑟 = 0.

201. Show that 𝑛 > 3,
𝑛
∑
𝑟=0

(−1)𝑟 (𝑎 − 𝑟) (𝑏 − 𝑟) (𝑐 − 𝑟)𝐶𝑟 = 0.

202. Find the value of 𝑛 for which 𝐶0⁄
2𝑛 +

2.𝐶1⁄
2𝑛 + ⋯ + (𝑛+1)𝐶𝑛⁄

2𝑛 = 16 is true.

203. If 𝑎1, 𝑎2, … , 𝑎𝑛+1 be an A.P., prove that 
𝑛
∑
𝑘=0

𝑎𝑘+1𝐶𝑘 = 2𝑛−1(𝑎1 + 𝑎𝑛+1).

204. If 𝑠 = 𝑛+1
⁄

2 [2𝑎 + 𝑛𝑑] and 𝑆 = 𝑎 + (𝑎 + 𝑑)𝐶1 + (𝑎 + 2𝑑)𝐶2 + ⋯+ (𝑎 + 𝑛𝑑)𝐶𝑛, prove
that (𝑛 + 1)𝑆 = 2𝑛.𝑠.

205. If (1 + 𝑥 + 𝑥2 + ⋯ + 𝑥𝑝)𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑝𝑥𝑛𝑝, show that 𝑎1 + 2𝑎2 +
3𝑎3 + ⋯+ 𝑛𝑝.𝑎𝑛𝑝 = 1
⁄

2 𝑛𝑝(𝑝 + 1)𝑛.

206. Show that 
15
∑
𝑘=0

𝐶15
𝑘⁄

(𝑘+1)(𝑘+2) =
217−18⁄
16.17 .

207. Show that 𝐶0⁄
1 − 𝐶1⁄

4 + 𝐶2⁄
7 − ⋯ + (−1)𝑛 𝐶𝑛
⁄

3𝑛+1 =
3𝑛.𝑛!⁄

1.4.5…(3𝑛+1).

208. Show that 
𝑛
∑
𝑟=0

(−1)𝑟𝐶𝑟⁄
(𝑟+1)(𝑟+2) =

1
⁄

𝑛+2.

209. Prove that 
𝑛
∑
𝑟=0

𝐶𝑟.3𝑟+3⁄
(𝑟+1)(𝑟+2)(𝑟+3) =

4𝑛+3−1−3
⁄

2(𝑛+3)(3𝑛+8)⁄
(𝑛+1)(𝑛+2)(𝑛+3) .

210. Prove that 
𝑛
∑
𝑟=0

𝑟+2
⁄

𝑟+1𝐶𝑟 =
2𝑛(𝑛+3)−1⁄

𝑛+1 .

211. Show that 
𝑛
∑
𝑟=0

3𝑟+4𝐶𝑟⁄
(𝑟+1)(𝑟+2)(𝑟+3)(𝑟+4) = 1⁄

(𝑛+1)(𝑛+2)(𝑛+3)(𝑛+4) [4
𝑛+4 −

𝑛
∑
𝑘=0

𝑛+4 𝐶𝑘3𝑘].



Binomials, Multinomials and Expansions 210

212. Show that 
𝑛−3
∑
𝑟=0

𝐶𝑟𝐶𝑟+3 =
(2𝑛)!⁄

(𝑛+3)!(𝑛−3)!.

213. Show that the sum of the product taken two at a time from 𝐶0, 𝐶1, 𝐶2, … is 22𝑛−1 −
(2𝑛−1)!⁄
𝑛!(𝑛−1)!.

214. If 𝑆𝑛 = 𝐶0𝐶1 + 𝐶1𝐶2 + ⋯+ 𝐶𝑛−1𝐶𝑛 and 𝑆𝑛+1⁄
𝑆𝑛

= 15
⁄

4 , find 𝑛.

215. Show that 𝐶2
0 + 2.𝐶2

1 + 3.𝐶2
2 + ⋯ + (𝑛 + 1)𝐶2

𝑛 =
(𝑛+2)(2𝑛−1)!⁄

𝑛!(𝑛−1)! .

216. Show that 𝐶0.𝐶2𝑛
𝑛 − 𝐶1.𝐶2𝑛−2

𝑛 + 𝐶2.𝐶2𝑛−4
𝑛 − ⋯ = 2𝑛.

217. Show that ∑
0≤𝑖≤𝑗

∑
0≤𝑗≤𝑛

(𝑖 + 𝑗) (𝐶𝑖 + 𝐶𝑗 + 𝐶𝑖𝐶𝑗) = 𝑛2.2𝑛 + 𝑛(22𝑛−1 − (2𝑛)!⁄
2(𝑛!)2) [0 ≤

𝑖 ≤ 𝑗 ≤ 𝑛].

218. If (1 + 𝑥 + 𝑥2)𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎2𝑛𝑥2𝑛, show that 𝑎0𝑎2𝑟 − 𝑎1𝑎2𝑟+1 +
𝑎2𝑎2𝑟+2 − ⋯+ 𝑎2𝑛−2𝑟𝑎2𝑛 = 𝑎𝑛+𝑟.

219. If 𝑃𝑛 denoted the product of all coefficients in the expansion of (1 + 𝑥)𝑛, show that
𝑃𝑛+1⁄
𝑃𝑛

= (𝑛+1)𝑛⁄
𝑛! .

220. Show that 
𝑛
∑
𝑟=1

𝑟3( 𝐶𝑟⁄
𝐶𝑟−1

)
2
= 1
⁄

12 𝑛(𝑛 + 1)2 (𝑛 + 2).

221. Show that 𝐶3 + 𝐶7 + 𝐶11 + … = 1
⁄

2 [2
𝑛−1 − 2𝑛/2 sin 𝑛𝜋⁄

4 ].

222. If (1 + 𝑥 + 𝑥2)20 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ = 𝑎40𝑥40, then find the value of 𝑎0 + 𝑎2 +
𝑎4 + ⋯+ 𝑎38.

223. If (1 + 𝑥 + 𝑥2)20 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ = 𝑎40𝑥40, then find the value of 𝑎1 + 𝑎3 +
𝑎5 + ⋯+ 𝑎37.

224. Show that 𝐶1 − 𝐶2⁄
2 + 𝐶3⁄

3 − ⋯ + (−1)𝑛𝐶𝑛⁄
𝑛 + 1
⁄

𝑛(𝑛−1)+
2
⁄

(𝑛−1)(𝑛−2)+⋯+ 𝑛−2
⁄

2.3 = 𝑛+1
⁄

2 .

225. Show that ∑
0≤𝑖<𝑗

∑
0≤𝑗≤𝑛

𝑖⁄
𝐶𝑖
+ 𝑗⁄

𝐶𝑗
= 𝑛2
⁄

2

𝑛
∑
𝑟=0

1⁄
𝐶𝑟

[0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛].

226. Show that ∑
0≤𝑖<𝑗

∑
0≤𝑗≤𝑛

𝑖.𝑗.𝐶𝑖.𝐶𝑗 = 𝑛2[22𝑛−3 − 1
⁄

2

2𝑛−2
𝐶𝑛−1] [0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛].

227. Prove that 𝐶1 − (1 + 1
⁄

2)𝐶2 + (1 + 1
⁄

2 +
1
⁄

3)𝐶3 − ⋯+ (−1)𝑛(1 + 1
⁄

2 + ⋯ + 1
⁄

𝑛)𝐶𝑛 = 1
⁄

𝑛.

228. Find the coefficient of 𝑥5 in the expansion of (1 + 2𝑥 + 3𝑥2)4.

229. Find the coefficient of 𝑥3𝑦4𝑧2 in the expansion of (2𝑥 − 3𝑦 + 4𝑧)9.
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230. Find the number of terms in (2𝑥 − 3𝑦 + 4𝑧)100.

231. Find the coefficient of 𝑥4 in the expansion of (1 + 𝑥 + 𝑥2)3.

232. Find the coefficient of 𝑥10 in (1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5)3.

233. Find the coefficient of 𝑥7 in (1 + 3𝑥 − 2𝑥3)10.

234. Find the coefficient of 𝑥3𝑦4𝑧5 in (𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥)6.

235. Find the greatest coefficient in (𝑤 + 𝑥 + 𝑦 + 𝑧)15.

236. Find the number of terms in (𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒)100.

237. If |𝑥| < 1, show that (1 + 𝑥)−2 = 1 + 2𝑥 + 3𝑥2 + 4𝑥3 + ⋯ to ∞.

238. Find 𝑎, 𝑏 so that the coefficient of 𝑥𝑛 in the expansion of (𝑎+𝑏𝑥)⁄(1−𝑥)2 may be 2𝑛 + 1 and

hence find the sum of the series 1 + 3(1⁄2)+ 5(1⁄2)
2
+ ⋯.

239. Sum the series 1 + 1
⁄

3 +
1.3.5
⁄

3.6.9 + ⋯ to ∞.

240. If |𝑥| < 1, show that (1 − 𝑥)−1 = 1 + 𝑥 + 𝑥2 + 𝑥3 +… to ∞.

241. If |𝑥| < 1, show that (1 + 𝑥)−1 = 1 − 𝑥 + 𝑥2 − 𝑥3 +… to ∞.

242. If |𝑥| < 1, show that (1 + 𝑥)−2 = 1 − 2𝑥 + 3𝑥2 − 4𝑥3 + … to ∞.

243. If |𝑥| < 1, show that (1 − 𝑥)−3 = 1 + 3𝑥 + 6𝑥2 + 10𝑥3 + … to ∞.

244. If |𝑥| < 1, show that (1 + 𝑥)−3 = 1 − 3𝑥 + 6𝑥2 − 10𝑥3 + … to ∞.

245. If |𝑥| < 1, show that (1 + 𝑥)−1/5 = 1 − 𝑥
⁄

5 +
3𝑥2⁄
25 − 11𝑥3⁄

125 + … to ∞.

246. Find the first four terms of (2𝑥⁄3 − 3
⁄

2𝑥)
−3/2

.

247. Find the first three terms of (1 − 𝑥
⁄

2)
−2

.

248. Find the coefficient of 𝑥6 in (1 − 2𝑥)−5/2.

249. Find the (𝑟 + 1)th term and the its coefficients in (1 − 2𝑥)−1/2.

250. Show that (1+ 2𝑥+ 3𝑥2+ 4𝑥3+… to ∞)3/2 = 1+ 3𝑥+ 6𝑥2+ 10𝑥3+… to ∞, |𝑥| < 1.

251. Sum the series 1 + 1
⁄

4 +
1.3
⁄

4.8 +
1.3.5⁄
4.8.12 + … to ∞.

252. Sum the series 1 + 2
⁄

6 +
2.5
⁄

6.12 +
2.5.8⁄
6.12.18 + … to ∞.
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253. If 𝑦 = 𝑥 − 𝑥2 + 𝑥3 − 𝑥4 +… to ∞, show that 𝑥 = 𝑦 + 𝑦2 + 𝑦3 + … to ∞.

254. Show that the coefficent of 𝑥𝑛 in (1 + 𝑥 + 𝑥2)−1 is 1, 0, −1 as 𝑛 is of the form
3𝑚, 3𝑚 − 1, 3𝑚 + 1.

255. Show that 1⁄𝑒 = 2[ 1⁄3! + 2⁄
5! +

3⁄
7! + … to ∞].

256. Sum the series 1 + 22
⁄

2! +
32
⁄

3! +
42
⁄

4! + … to ∞.

257. Show that log 2 = 1
⁄

1.2 +
1
⁄

3.4 +
1
⁄

5.6 + … to ∞.

258. If 𝑦 = 𝑥 − 𝑥2
⁄

2 + 𝑥3
⁄

3 − 𝑥4
⁄

4 + … to ∞, show that 𝑥 = 𝑦 + 𝑦2⁄
2! +

𝑦3⁄
3! + … to ∞.

259. If 𝛼, 𝛽 be the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, show that log(𝑎 − 𝑏𝑥 + 𝑐𝑥2) =
log 𝑎 + (𝛼 + 𝛽)𝑥 − (𝛼2+𝛽2)⁄

2 𝑥2 + … to ∞.

260. Sum the series 1⁄3! + 2⁄
5! +

3⁄
7! + ⋯ to ∞.

261. Sum the series 1⁄2! + 3⁄
4! +

5⁄
6! + ⋯ to ∞.

262. Sum the series 1⁄2! + 1+2
⁄

3! + 1+2+3
⁄

4! + ⋯ to ∞.

263. Sum the series 1
3
⁄

1! +
23
⁄

2! +
33
⁄

3! + ⋯ to ∞.

264. Prove that 1 − log 2 = 1
⁄

2.3 +
1
⁄

4.5 +
1
⁄

6.7 + ⋯ to ∞.

265. Prove that log(1 + 𝑥)− log(𝑥 − 1) = 2[1⁄𝑥 +
1⁄
3𝑥3 +

1⁄
5𝑥5 + ⋯ to ∞].

266. Prove that 2 log 𝑥 − log(𝑥 + 1)− log(𝑥 − 1) = 1
⁄

𝑥2 +
1⁄
2𝑥4 +

1⁄
3𝑥5 + ⋯ to ∞.

267. Prove that log[(1 + 𝑥)1+𝑥 log(1 − 𝑥)1−𝑥 ] = 2[ 𝑥
2
⁄

1.2 +
𝑥4
⁄

3.4 +
𝑥6
⁄

5.6 + ⋯ to ∞]
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Chapter 8
Determinants

Let 𝑎,𝑏,𝑐,𝑑 be any four numbers, real or complex, then the symbol

∣ 𝑎 𝑏
𝑐 𝑑 ∣

denotes 𝑎𝑑 − 𝑏𝑐 and is called a determinant of second order. 𝑎,𝑏,𝑐,𝑑 are called elements of the
determinant and 𝑎𝑑 − 𝑏𝑐 is called value of the determinant.

As you can see, the elements of a determinant are positioned in the form of a square in
its designation. The diagonal on which elements aa and dd lie is called the principal or
primary diagonal of the determinant and the diagonal which is formed on the line of bb
and cc is called the secondary diagonal. A row is constituted by elements lying in the same
horizontal line and a column is constituted by elements lying in the same vertical line.
Clearly, determinant of second order has two rows and two columns and its value is equal
to the products of elements along primary diagonal minus the product of elements along the
secondary diagonal. Thus, by definition

∣ 2 4
3 9 ∣ = 18 − 12 = 6

Let 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3, 𝑐1, 𝑐2, 𝑐3 be any nine numbers, then the symbol

∣
𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3
𝑐1 𝑐2 𝑐3 ∣

is another way of saying

𝑎1∣
𝑏2 𝑏3
𝑐2 𝑐3

∣− 𝑎2∣
𝑏1 𝑏3
𝑐1 𝑐3

∣+ 𝑎3∣
𝑏1𝑏2
𝑐1𝑐2

∣

i.e. 𝑎1(𝑏2𝑐3 − 𝑏3𝑐2)− 𝑎2(𝑏1𝑐3 − 𝑏3𝑐1)+ 𝑎3(𝑏1𝑐2 − 𝑏2𝑐1)

Rule to put + or - before any element: Find the sum of number of rows and columns in
which the considered element occus. If the sum is even put a + sign before the element
and if the sum is odd, put a − sign before the element. Since 𝑎1 occurs in first row and first
column whose sum is 1 + 1 = 2 which is an even number, therefore + sign occurs for it.
Since 𝑎2 occurs in first row and second column whose sum is 1 + 2 = 3 which is an odd
number, therefore − sign occurs before it.

We have expanded the determinant along first row in previous case. The value of determinant
does not change no matter which row or column we expand it along. Expanding the
determinant along second row, we get

∣
𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3
𝑐1 𝑐2 𝑐3 ∣ = −𝑏1∣

𝑎2 𝑎3
𝑐2 𝑐3

∣+ 𝑏2∣
𝑎1 𝑎3
𝑐1 𝑐3

∣− 𝑏3∣
𝑎1 𝑎2
𝑐1 𝑐2

∣
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= −𝑏1(𝑎2𝑐3 − 𝑎3𝑐2)+ 𝑏2(𝑎1𝑐3 − 𝑎3𝑐1)− 𝑏3(𝑎1𝑐2 − 𝑎2𝑐1)

= 𝑎1(𝑏2𝑐3 − 𝑏3𝑐2)− 𝑎2(𝑏1𝑐3 − 𝑏3𝑐1)+ 𝑎3(𝑏1𝑐2 − 𝑏2𝑐1)

Thus, we see that value of determinant remains unchanged irrespective of the change of
row and column against which it is expanded.

Usually, an element of a determinant is denoted by a letter with two suffices, first one
indicating the row and second one indicating the column in which the element occcur.
Thus, 𝑎𝑖𝑗 element indicates that it has occurred in 𝑖th row and 𝑗th column. We also denote
the rows by 𝑅1,𝑅2, 𝑅3 and so on. 𝑅𝑖 denotes the 𝑖th row of determinant while 𝑅𝑗 denotes 𝑗th
row. Columns are denoted by 𝐶1, 𝐶2, 𝐶3 and so on. 𝐶𝑖 and 𝐶𝑗 denote 𝑖th and 𝑗th column
of determinant. Δ is the usual symbol for a determinant. Another way of denoting the
determinant

∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣

is (𝑎1𝑏2𝑐3). The expanded form of determinant has 𝑛! terms where 𝑛 is the number of rows
or columns.

Ex 1. Find the value of the determinant

Δ = ∣
1 2 4
3 4 9
2 1 6 ∣

Δ = 1∣ 4 9
1 6 ∣− 2∣ 3 9

2 6 ∣+ 4∣ 3 4
2 1 ∣

Expanding the determinant along first row = 1(24 − 9)− 2(18 − 18)+ 4(3 − 8) = −5

Ex 2. Find the value of the determinant

Δ = ∣
3 1 7
5 0 2
2 5 3 ∣

Expanding the determinant along second row,

Δ = −5∣ 1 7
5 3 ∣+ 0∣ 3 7

23 ∣− 2∣ 3 1
2 5 ∣

= −5(3 − 35)− 2(15 − 2) = 134

8.1 Minors
Consider the determinant
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Δ = ∣
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎31 𝑎33 ∣

If we leave the elements belonging to row and column of a particular element 𝑎𝑖𝑗 then we will
obtain a second order determinant. The determinant thus obtained is called minor of 𝑎𝑖𝑗 and
it is denoted by 𝑀𝑖𝑗, since there are 9 elements in the above determinant we will have 9
minors.

For example, the minor of element

𝑎21 = ∣ 𝑎12 𝑎13
𝑎32 𝑎33

∣ = 𝑀21

The minor of element

𝑎32 = ∣ 𝑎11 𝑎13
𝑎21 𝑎23

∣ = 𝑀32

If we want to write the determinant in terms of minors then following is the expression
obtained if we expand it along first row

Δ = (−1)1+1 𝑎11𝑀11 + (−1)1+2 𝑎12𝑀12 + (−1)1+3 𝑎13𝑀13

= 𝑎11𝑀11 − 𝑎12𝑀12 + 𝑎13𝑀13

8.2 Cofactors
The minor 𝑀𝑖𝑗 multiplied with (−1)𝑖+𝑗 is known as cofactor of the element 𝑎𝑖𝑗 and is
denoted like 𝐴𝑖𝑗. Thus, we can say that, Δ = 𝑎11𝐴11 + 𝑎12𝐴12 + 𝑎13𝐴13

8.3 Theorems on Determinants
Theorem 10

The value of a determinant is not changed when rows are changed into corresponsing columns.

Proof

Let

Δ = ∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣

Expanding the determinant along first row,

Δ = 𝑎1(𝑏2𝑐3 − 𝑏3𝑐2)− 𝑏1(𝑎2𝑐3 − 𝑎3𝑐2)+ 𝑐1(𝑎2𝑏3 − 𝑎3𝑏2)
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If Δ′ be the value of the determinant when rows of determinant Δ are changed into
corresponding columns then

Δ′ = ∣
𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3
𝑐1 𝑐2 𝑐3 ∣

= 𝑎1(𝑏2𝑐3 − 𝑏3𝑐2)− 𝑎2(𝑏1𝑐3 − 𝑏3𝑐1)+ 𝑎3(𝑏1𝑐2 − 𝑏2𝑐1)

= 𝑎1(𝑏2𝑐3 − 𝑏3𝑐2)− 𝑎2𝑏1𝑐3 + 𝑎2𝑏3𝑐1 + 𝑎3𝑏1𝑐2 − 𝑎3𝑏2𝑐1

= 𝑎1(𝑏2𝑐3 − 𝑏3𝑐2)− 𝑏1(𝑎2𝑐3 − 𝑎3𝑐2)+ 𝑐1(𝑎2𝑏3 − 𝑎3𝑏2)

Thus, we see that Δ = Δ′. □

Theorem 11

If any two rows or columns of a determinant are interchanged, the sign of determinant
is changed, but its value remains the same.

Proof

Let

Δ = ∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣ ,

Expanding the determinant along first row, Δ = 𝑎1(𝑏2𝑐3 − 𝑏3𝑐2) − 𝑏1(𝑎2𝑐3 − 𝑎3𝑐2) +
𝑐1(𝑎2𝑏3 − 𝑎3𝑏2)

Now Δ′ = ∣
𝑎3 𝑏3 𝑐3
𝑎2 𝑏2 𝑐2
𝑎1 𝑏1 𝑐1 ∣ [𝑅1 ↔ 𝑅3 ]

= 𝑎3(𝑏2𝑐1 − 𝑏1𝑐2)− 𝑏3(𝑎2𝑐1 − 𝑎1𝑐2)+ 𝑐3(𝑎2𝑏1 − 𝑎1𝑏2)

= 𝑎3𝑏2𝑐1 − 𝑎3𝑏1𝑐2 − 𝑏3𝑎2𝑐2 + 𝑏3𝑎1𝑐2 + 𝑐3𝑎2𝑏1 − 𝑐3𝑎1𝑏2𝑥

= −𝑎1(𝑏2𝑐3 − 𝑏3𝑐2)+ 𝑏1(𝑎2𝑐3 − 𝑎3𝑐2)− 𝑐1(𝑎2𝑏3 − 𝑎3𝑏2)

= −Δ □

Theorem 12

The value of a determinant is zero if any two rows or columns are identical.

Proof

Let

Δ = ∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎1 𝑏1 𝑐1 ∣
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Δ = ∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎1 𝑏1 𝑐1 ∣ = −∣

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎1 𝑏1 𝑐1 ∣ = −Δ[𝑅1 ↔ 𝑅3 ]

Thus, Δ = −Δ ⇒ 2Δ = 0 ⇒ Δ = 0. □

Theorem 13

A common factor of all elements of any row(or of any column) may be taken outside the sign
of the determinant. In other owrds, if all the elements of the same row(or the same column)
are multiplies by a constant, then the determinant becomes multiplied by that number.

Proof

Δ = ∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣

Expanding the determinant along first row, Δ = 𝑎1(𝑏2𝑐3 − 𝑏3𝑐2) − 𝑏1(𝑎2𝑐3 − 𝑎3𝑐2) +
𝑐1(𝑎2𝑏3 − 𝑎3𝑏2)

and

Δ′ = ∣
𝑚𝑎1 𝑚𝑏1 𝑚𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣

= 𝑚𝑎1(𝑏2𝑐3 − 𝑏3𝑐2)−𝑚𝑏1(𝑎2𝑐3 − 𝑎3𝑐2)+𝑚𝑐1(𝑎2𝑏3 − 𝑎3𝑏2)

= 𝑚Δ □

Theorem 14

If every element of some row or column is the the sum of two terms, then the determinant is
equal to the sum of two determinants; one containing only the first term in place of each
term, the other only the second term. The remaining elements of both the determinants
are the same as in the given determinant.

Proof

We have to prove that

∣
𝑎1 + 𝛼1 𝑏1 𝑐1
𝑎2 + 𝛼2 𝑏2 𝑐2
𝑎3 + 𝛼3 𝑏3 𝑐3 ∣ = ∣

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣+ ∣

𝛼1 𝑏1 𝑐1
𝛼2 𝑏2 𝑐2
𝛼3 𝑏3 𝑐3 ∣

Let

Δ = ∣
𝑎1 + 𝛼1 𝑏1 𝑐1
𝑎2 + 𝛼2 𝑏2 𝑐2
𝑎3 + 𝛼3 𝑏3 𝑐3 ∣

Then,
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Δ = (𝑎1 + 𝛼1) ∣
𝑏2 𝑐2
𝑏3 𝑐3

∣− (𝑎2 + 𝛼2) ∣
𝑏1 𝑐1
𝑏3 𝑐3

∣+ (𝑎3 + 𝛼3) ∣
𝑏1 𝑐1
𝑏2 𝑐2

∣

= 𝑎1∣
𝑏2 𝑐2
𝑏3 𝑐3

∣− 𝑎2∣
𝑏1 𝑐1
𝑏3 𝑐3

∣+ 𝑎3∣
𝑏1 𝑐1
𝑏2 𝑐2

∣+ 𝛼1∣
𝑏2 𝑐2
𝑏3 𝑐3

∣− 𝛼2∣
𝑏1 𝑐1
𝑏3 𝑐3

∣+ 𝛼3∣
𝑏1 𝑐1
𝑏2 𝑐2

∣

= ∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣+ ∣

𝛼1 𝑏1 𝑐1
𝛼2 𝑏2 𝑐2
𝛼3 𝑏3 𝑐3 ∣ .

Theorem 15

The value of a determinant does not change when any row or column is multiplied by a
number or an expression and is then added to or subtracted from any other row or column.

Proof

We have to prove that

∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣ = ∣

𝑎1 +𝑚𝑏1 𝑏1 𝑐1
𝑎2 +𝑚𝑏2 𝑏2 𝑐2
𝑎3 +𝑚𝑏3 𝑏3 𝑐3 ∣

Let

Δ = ∣
𝑎1 +𝑚𝑏1 𝑏1 𝑐1
𝑎2 +𝑚𝑏2 𝑏2 𝑐2
𝑎3 +𝑚𝑏3 𝑏3 𝑐3 ∣

then

Δ = ∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣+ ∣

𝑚𝑏1 𝑏1 𝑐1
𝑚𝑏2 𝑏2 𝑐2
𝑚𝑏3 𝑏3 𝑐3 ∣

= ∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣+𝑚∣

𝑏1 𝑏1 𝑐1
𝑏2 𝑏2 𝑐2
𝑏3 𝑏3 𝑐3 ∣

= ∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣+𝑚.0 = Δ

8.4 Reciprocal Determinants
If

Δ = ∣
𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3
𝑐1 𝑐2 𝑐3 ∣
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then

∣
𝐴1 𝐴2 𝐴3
𝐵1 𝐵2 𝐵3
𝐶1 𝐶2 𝐶3 ∣ = Δ2

where capital letters denote the cofactors of corresponding small letters in Δ i.e. 𝐴𝑖 =
cofactor of 𝑎𝑖, 𝐵𝑖 = cofactor of 𝑏𝑖 and 𝐶𝑖 = cofactor of 𝑐𝑖 in the determinant Δ. Here, the
cofactors are sometimes called inverse elements and determinant made from them is called
reciprocal determinant.

We know that,

𝑎1𝐴1 + 𝑎2𝐴2 + 𝑎3𝐴3 = Δ, 𝑏1𝐵1 + 𝑏2𝐵2 + 𝑏3𝐶3 = Δ, 𝑐1𝐶1 + 𝑐2𝐶2 + 𝑐3𝐶3 = Δ, 𝑎1𝐵1 +
𝑎2𝐵2+ 𝑎3𝐵3 = 0, 𝑏1𝐴1 + 𝑏2𝐴2 + 𝑏3𝐴3 = 0, 𝑎1𝐶1 + 𝑎2𝐶2 + 𝑎3𝐶3 = 0, 𝑐1𝐴1 + 𝑐2𝐴2 + 𝑐3𝐴3 =
0, 𝑏1𝐶1 + 𝑏2𝐶2 + 𝑏3𝐶3 = 0, 𝑐1𝐵1 + 𝑐2𝐵2 + 𝑐3𝐵3 = 0. Let

Δ1 = ∣
𝐴1 𝐴2 𝐴3
𝐵1 𝐵2 𝐵3
𝐶1 𝐶2 𝐶3 ∣

Now,

ΔΔ1 = ∣
𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3
𝑐1 𝑐2 𝑐3 ∣ ∣

𝐴1 𝐴2 𝐴3
𝐵1 𝐵2 𝐵3
𝐶1 𝐶2 𝐶3 ∣

= ∣
𝑎1𝐴1 + 𝑎2𝐴2 + 𝑎3𝐴3 𝑎1𝐵1 + 𝑎2𝐵2 + 𝑎3𝐵3 𝑎1𝐶1 + 𝑎2𝐶2 + 𝑎3𝐶3
𝑏1𝐴1 + 𝑏2𝐴2 + 𝑏3𝐴3 𝑏1𝐵1 + 𝑏2𝐵2 + 𝑏3𝐶3 𝑏1𝐶1 + 𝑏2𝐶2 + 𝑏3𝐶3
𝑐1𝐴1 + 𝑐2𝐴2 + 𝑐3𝐴3 𝑐1𝐵1 + 𝑐2𝐵2 + 𝑐3𝐵3 𝑐1𝐶1 + 𝑐2𝐶2 + 𝑐3𝐶3 ∣

= ∣
Δ 0 0
0 Δ 0
0 0 Δ ∣

ΔΔ1 = Δ3

Δ1 = Δ2

Similarly, if Δ is a determinant of the 𝑛-th order and Δ′ is the reciprocal determinant, then

Δ′ = Δ𝑛−1

which can be proven by induction.

Any minor of Δ′ of order 𝑟 is equla to the complement of the corresponding minor of Δ
multiplied with Δ𝑟−1, provided that Δ ≠ 0. The proof of this is straightforward and has
been left as an exercise to the reader.

8.5 Two Methods of Expansions
Let
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Δ = ∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣, and 𝐷 = ∣

𝑎1 𝑏1 𝑐1 𝑙
𝑎2 𝑏2 𝑐2 𝑚
𝑎3 𝑏3 𝑐3 𝑛
𝑙′ 𝑚′ 𝑛′ 𝑟 ∣

Let 𝐴1, 𝐵1, … be the cofactors of 𝑎1, 𝑏1, … in Δ.

In the expansion of 𝐷, the sum of the terms containing 𝑟 is 𝑟Δ: every other term contains
one of the three 𝑙, 𝑚, 𝑚 and one of the three 𝑙′, 𝑚′, 𝑛′.

Again, ∣ 𝑎1 𝑙
𝑙′ 𝑟 ∣ and ∣ 𝑏2 𝑐2

𝑏3 𝑐3
∣ are complementary minors of Δ;

hence, cofficients of 𝑙𝑙′ in 𝐷 = − cofficient of 𝑎1𝑟 in 𝐷 = − coefficient of 𝑎1 in Δ = −𝐴1

and similarly, coefficient of 𝑚𝑛′ in 𝐷 = − coefficient of 𝑐2𝑟 in 𝐷 = − coefficient of 𝑐2 in
Δ = −𝐶2

Thus, we can show that

𝐷 =
𝑟Δ− [𝐴1𝑙𝑙′ + 𝐵2𝑚𝑚′ + 𝐶2𝑛𝑛′ + 𝐶2𝑚𝑛′ + 𝐵2𝑚′𝑛 + 𝐴2𝑛𝑙′ + 𝐶1𝑛′𝑙 + 𝐵1𝑙𝑚′ + 𝐴2𝑙′𝑚] .

8.6 Symmetric Determinants
A determinant of 𝑛th order is often wirtten in the form

∣
𝑎11 𝑎12 𝑎13 ⋯ 𝑎1𝑛
𝑎21 𝑎22 𝑎23 ⋯ 𝑎2𝑛
𝑎31 𝑎32 𝑎33 ⋯ 𝑎3𝑛
. . . . . . . . .
𝑎𝑛1 𝑎𝑛2 𝑎𝑛3 ⋯ 𝑎𝑛𝑛 ∣ = (𝑎11𝑎22 … , 𝑎𝑛𝑛)

Denoting any element by 𝑎𝑖𝑗, the determinant is said to be symmetric if 𝑎𝑖𝑗 = 𝑎𝑗𝑖. If
𝑎𝑖𝑗 = −𝑎𝑗𝑖, the determinant is skew-symmetric: it is implied that all the elements in the
leading diagonal are zero. For example, if

Δ1 = ∣
𝑎 ℎ 𝑔 𝑙
ℎ 𝑏 𝑓 𝑚
𝑔 𝑓 𝑐 𝑛
𝑙 𝑚 𝑛 0 ∣, Δ2 = ∣

0 𝑥 𝑦
−𝑥 0 𝑦
−𝑦 −𝑥 0 ∣

the determinant Δ1 is symmetric and Δ2 is skew-symmetric. We also say that Δ1 is bordered
by 𝑙, 𝑚, 𝑛.

If 𝐴𝑖𝑗, 𝐴𝑗𝑖 are the cofactors of the elements 𝑎𝑖𝑗, 𝑎𝑗𝑖 of a symmetric determinant Δ, then
𝐴𝑖𝑗 = 𝐴𝑗𝑖.

For 𝐴𝑖𝑗 is trandformed into 𝐴𝑗𝑖, by changing rows into columns. Thus, if Δ = (𝑎11 𝑎22 𝑎33)
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𝐴23 = −∣ 𝑎11 𝑎12
𝑎31 𝑎32

∣ = −∣ 𝑎11 𝑎31
𝑎12 𝑎32

∣ = −∣ 𝑎11 𝑎13
𝑎21 𝑎23

∣ = 𝐴32.

Similarly, for the skew-symmetric determinants 𝐴𝑖𝑗 = (−)1𝑛−1𝐴𝑗𝑖, where 𝑛 is the order of
the determinant. Also, every skew-symmetric determinant of odd order is equal to zero
(follows from the definition of skew-symmetric determinants).

8.7 System of Linear Equations

8.7.1 Consistent Linear Equations
A system of linear equations is said to be consistent if it has at least one solution.

Example: (i) System of equations 𝑥 + 𝑦 = 2 and 2𝑥 + 2𝑦 = 7 is inconsistent because it has
no solution i.e. no values of 𝑥 and 𝑦 exit which can satisfy the pair of equations. (ii) On the
other hand equations 𝑥 + 𝑦 = 2 and 𝑥 − 𝑦 = 0 has a solution 𝑥 = 1, 𝑦 = 1 which satisfies the
pair of equation making it a consistent system of linear equations.

8.8 Cramer's Rule
Cramer's rule is used to solve system of linear equations using determinants. Consider two
equations 𝑎𝑥 + 𝑏1𝑦 + 𝑐1 = 0 and 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2 = 0 where 𝑎1⁄𝑎2 ≠

𝑏1
⁄

𝑏2

Solving this by cross multiplication, we have,

𝑥⁄
𝑏1𝑐2 − 𝑏2𝑐1

= −𝑦⁄
𝑎1𝑐2 − 𝑎2𝑐1

= 1⁄
𝑎1𝑏2 − 𝑎2𝑏1

𝑥⁄
∣ 𝑏1 𝑐1
𝑏2 𝑐2

∣
= −𝑦⁄
∣ 𝑎1 𝑐1
𝑎2 𝑐2

∣
= 1⁄
∣ 𝑎1 𝑏1
𝑎2 𝑏2

∣

8.8.1 System of Linear Equations in Three Variables
Let the given system of linear equations given in 𝑥, 𝑦 and 𝑧 be 𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 = 𝑑1, 𝑎2𝑥 +
𝑏2𝑦 + 𝑐2𝑧 = 𝑑2 and 𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 = 𝑑3

Let

Δ = ∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣, Δ1 = ∣

𝑑1 𝑏1 𝑐1
𝑑2 𝑏2 𝑐2
𝑑3 𝑏3 𝑐3 ∣, Δ2 = ∣

𝑎1 𝑑1 𝑐1
𝑎2 𝑑2 𝑐2
𝑎3 𝑑3 𝑐3 ∣, Δ2 = ∣

𝑎1 𝑏1 𝑑1
𝑎2 𝑏2 𝑑2
𝑎3 𝑏3 𝑑3 ∣ .

Let

Δ ≠ 0
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Δ1 = ∣
𝑑1 𝑏1 𝑐1
𝑑2 𝑏2 𝑐2
𝑑3 𝑏3 𝑐3 ∣ = ∣

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 𝑏1 𝑐1
𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 𝑏2 𝑐2
𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 𝑏3 𝑐3 ∣ = ∣

𝑎1𝑥 𝑏1 𝑐1
𝑎2𝑥 𝑏2 𝑐2
𝑎3𝑥 𝑏3 𝑐3 ∣ [𝐶1 → 𝐶1 − 𝑦𝐶2 − 𝑧𝐶3 ]

= 𝑥∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣ = 𝑥Δ ⇒ 𝑥 = Δ1⁄

Δ

Similalry,

𝑦 = Δ2⁄
Δ , 𝑧 = Δ3⁄

Δ

This rule which gives the values of 𝑥, 𝑦 and 𝑧 is known as Cramer's rule.

8.8.2 Nature of Solution of System of Linear Equations
From previous section we have arrived at the fact that 𝑥Δ = Δ1, 𝑦Δ = Δ2, 𝑧Δ = Δ3

Case I. When Δ ≠ 0

In this case unique values of 𝑥, 𝑦, 𝑧 will be obtained and the system of equations will have a
unique solution.

Case II. When Δ = 0

Sub Case I. When at least one of Δ1, Δ2, Δ3 is non-zero.

Let Δ1 ≠ 0 then Δ1 = 𝑥Δ will not be satisfied for any value of 𝑥 because Δ = 0 and hence
no value is possible in this case. Same is the case for 𝑦 and 𝑧.

Thus, no solution is feasible and system of equations become inconsistent.

Sub Case II. When Δ1 = Δ2 = Δ3 = 0

In this case infinite number of solutions are possible.

8.8.3 Condition for Consistency of Three Linear Equations in Two
Unknonws

Consider a system of linear equations in 𝑥 and 𝑦m 𝑎1𝑥 + 𝑏1𝑦 + 𝑐1 = 0, 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2 = 0
and 𝑎3𝑥 + 𝑏3𝑦 + 𝑐3 = 0 will be consistent if the values of 𝑥 and 𝑦 obtained from any two
equations satisfy the third equations.

Solving first two equations by Cramer's rule, we have

𝑥⁄
∣ 𝑏1 𝑐1
𝑏2 𝑐2

∣
= −𝑦⁄
∣ 𝑎1 𝑐1
𝑎2 𝑐2

∣
= 1⁄
∣ 𝑎1 𝑏1
𝑎2 𝑏2

∣
= 𝑘(say)

Substituting these in third equation we get,

𝑘[𝑎3(𝑏1𝑐2 − 𝑏2𝑐1)− 𝑏3(𝑎1𝑐2 − 𝑎2𝑐1)+ 𝑐3(𝑎1𝑏2 − 𝑎2𝑏1)] = 0
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𝑎3(𝑏1𝑐2 − 𝑏2𝑐1)− 𝑏3(𝑎1𝑐2 − 𝑎2𝑐1)+ 𝑐3(𝑎1𝑏2 − 𝑎2𝑏1) = 0

∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣ = 0

This is the required condition for consistency of three linear equations in two variables.
If such a system of equations is consistent then number of solution is one i.e. a unique
solution exists.

8.8.4 System of Homogeneous Linear Equations
A system of linear equations is said to be homogeneous if the sum of powers of the variables
in each term is one. Let the three homogeneous equations in three unknowns 𝑥, 𝑦, 𝑧 be
𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 = 0, 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 = 0 and 𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 = 0

Clearly, 𝑥 = 0, 𝑦 = 0, 𝑧 = 0 is a solution of above system of equations. This solution is called
trivial solution and any other solution is called non-triivial solution. Let the above system of
equations has a non-trivial solution.

Let

Δ = ∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣

From first two we have

𝑥⁄
∣ 𝑏1 𝑐1
𝑏2 𝑐2

∣
= −𝑦⁄
∣ 𝑎1 𝑐1
𝑎2 𝑐2

∣
= 𝑧⁄
∣ 𝑎1 𝑏1
𝑎2 𝑏2

∣
= 𝑘(say)

Substituting these in third equation we get

𝑘[𝑎3(𝑏1𝑐2 − 𝑏2𝑐1)− 𝑏3(𝑎1𝑐2 − 𝑎2𝑐1)+ 𝑐3(𝑎1𝑏2 − 𝑎2𝑏1)] = 0

𝑎3(𝑏1𝑐2 − 𝑏2𝑐1)− 𝑏3(𝑎1𝑐2 − 𝑎2𝑐1)+ 𝑐3(𝑎1𝑏2 − 𝑎2𝑏1) = 0

∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣ = 0

This is the condition for system of equation to have non-trivial solutions.

8.9 Use of Determinants in Coordinate Geometry

8.9.1 Are of a Triangle
The area of a triangle whose vertices are (𝑥1, 𝑦1), (𝑥2, 𝑦2) and (𝑥3, 𝑦3) is
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Δ = 1
⁄

2 ∣
𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1 ∣

8.9.2 Condition of Concurrency of Three Lines
Three lines are said to be concurrent if they pass through a common point i.e. they meet at
a point.

Let 𝑎1𝑥 + 𝑏1𝑦 + 𝑐1 = 0 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2 = 0 and 𝑎3𝑥 + 𝑏3𝑦 + 𝑐3 = 0 be three lines.

These lines will be concurrent if

∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣ = 0

8.9.3 Condition for General Equation in Second Degree to Repre
sent a Pair of Straight Lines

The general second degree equation 𝑎𝑥2 + 2ℎ𝑥𝑦 + 𝑏𝑦2 + 2𝑔𝑥 + 2𝑓𝑦 + 𝑐 = 0 represent a pair
of straight lines if

∣
𝑎 ℎ 𝑔
ℎ 𝑏 𝑓
𝑔 𝑓 𝑐 ∣ = 0

8.10 Product of Two Determinants
Let

Δ1 = ∣
𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3
𝑐1 𝑐2 𝑐3 ∣, Δ2 = ∣

𝑥1 𝑥2 𝑥3
𝑦1 𝑦2 𝑦3
𝑧1 𝑧2 𝑧3 ∣

then Δ1Δ2 is defined as

Δ1Δ2 = ∣
𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 𝑎1𝑦1 + 𝑎2𝑦2 + 𝑎3𝑦3 𝑎1𝑧1 + 𝑎2𝑧2 + 𝑎3𝑧3
𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 𝑏1𝑦1 + 𝑏2𝑦2 + 𝑏3𝑦3 𝑏1𝑧1 + 𝑏2𝑧2 + 𝑏3𝑧3
𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥3 𝑐1𝑦1 + 𝑐2𝑦2 + 𝑐3𝑦3 𝑐1𝑧1 + 𝑐2𝑧2 + 𝑐3𝑧3 ∣

8.11 Differential Coefficient of Determinant
Let

𝑦 = ∣
𝑓1(𝑥) 𝑓2(𝑥) 𝑓3(𝑥)]
𝑔1(𝑥) 𝑔2(𝑥) 𝑔3(𝑥)
ℎ1(𝑥) ℎ2(𝑥) ℎ3(𝑥) ∣ ,
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where 𝑓𝑖(𝑥), 𝑔𝑖(𝑥), ℎ𝑖(𝑥), 𝑖 = 1, 2, 3 are differentiable functions of 𝑥.

Now, 𝑦 = 𝑓1(𝑥)[𝑔2(𝑥)ℎ3(𝑥) − 𝑔3(𝑥)ℎ2(𝑥)] − 𝑓2(𝑥)[𝑔1(𝑥)ℎ3(𝑥) − 𝑔3(𝑥)ℎ1(𝑥)]+
𝑓3(𝑥)[𝑔1(𝑥)ℎ2(𝑥)− 𝑔2(𝑥)ℎ1(𝑥)]

∴ 𝑑𝑦⁄𝑑𝑥 = 𝑓′1(𝑥)[𝑔2(𝑥)ℎ3(𝑥)−𝑔3(𝑥)ℎ2(𝑥)]+𝑓1(𝑥)[𝑔′2(𝑥)ℎ3(𝑥)−𝑔′3(𝑥)ℎ2(𝑥)+𝑔2(𝑥)ℎ′3(𝑥)−
𝑔3(𝑥)ℎ′2(𝑥)]+−𝑓′2(𝑥)[𝑔1(𝑥)ℎ3(𝑥)− 𝑔3(𝑥)ℎ1(𝑥)]+−𝑓2(𝑥)[𝑔′1(𝑥)ℎ3(𝑥)− 𝑔1(𝑥)ℎ′3(𝑥)+
𝑔1(𝑥)ℎ′3(𝑥) − 𝑔3(𝑥)ℎ′3(𝑥)] + 𝑓′3(𝑥)[𝑔1(𝑥)ℎ2(𝑥) − 𝑔2(𝑥)ℎ1(𝑥)] + 𝑓3(𝑥)[𝑔′1(𝑥)ℎ2(𝑥) −
𝑔′2(𝑥)ℎ1(𝑥)𝑥 + 𝑔1(𝑥)ℎ′2(𝑥)− 𝑔2(𝑥)ℎ′1(𝑥)]

= ∣
𝑓′1(𝑥) 𝑓′2(𝑥) 𝑓′1(𝑥)
𝑔1(𝑥) 𝑔2(𝑥) 𝑔3(𝑥)
ℎ1(𝑥) ℎ2(𝑥) ℎ3(𝑥) ∣+ ∣

𝑓1(𝑥) 𝑓2(𝑥) 𝑓3(𝑥)
𝑔′1(𝑥) 𝑔′2(𝑥) 𝑔′3(𝑥)
ℎ1(𝑥) ℎ2(𝑥) ℎ3(𝑥) ∣+ ∣ 𝑓(𝑥) 𝑓2(𝑥) 𝑓3(𝑥)

𝑔1(𝑥) 𝑔2(𝑥) 𝑔3(𝑥)
ℎ′1(𝑥) ℎ′2(𝑥) ℎ′3(𝑥) ∣

8.12 Problems

1. Evaluate ∣
4 9 7
3 5 7
5 4 5 ∣.

2. Show that ∣
1 𝑎 𝑎2

1 𝑏 𝑏2

1 𝑐 𝑐2 ∣ = (𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎).

3. Evaluate ∣
1 2 4
1 3 9
1 4 16 ∣ making use of relations between 2nd and 3rd column.

4. Evaluate ∣
4 9 2
3 5 7
8 1 6 ∣.

5. Evaluate ∣
18 1 17
22 3 19
26 5 21 ∣.

6. Evaluate ∣
4 9 7
3 5 7
5 4 5 ∣.

7. Evaluate ∣
12 22 32

22 32 42

32 42 52 ∣.
8. Let 𝑎, 𝑏, 𝑐 be positive and unequal. Show that the value of the determinant ∣

𝑎 𝑏 𝑐
𝑏 𝑐 𝑎
𝑐 𝑎 𝑏 ∣ is

negative.
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9. Evaluate ∣
𝑏 + 𝑐 𝑎 + 𝑏 𝑎
𝑐 + 𝑎 𝑏 + 𝑐 𝑏
𝑎 + 𝑏 𝑐 + 𝑎 𝑐 ∣.

10. Evaluate ∣
1 + 𝑎1 𝑎2 𝑎3
𝑎1 1 + 𝑎2 𝑎3
𝑎1 𝑎2 1 + 𝑎3 ∣.

11. Show that ∣
𝑎 + 𝑏 + 2𝑐 𝑎 𝑏

𝑐 𝑏 + 𝑐 + 2𝑎 𝑏
𝑐 𝑎 𝑐 + 𝑎 + 2𝑏 ∣ = 2(𝑎 + 𝑏 + 𝑐)3.

12. Show that ∣
𝑎 − 𝑏 + 𝑐 𝑎 + 𝑏 − 𝑐 𝑎 − 𝑏 − 𝑐
𝑏 − 𝑐 + 𝑎 𝑏 + 𝑐 − 𝑎 𝑏 − 𝑐 − 𝑎
𝑐 − 𝑎 + 𝑏 𝑐 + 𝑎 − 𝑏 𝑐 − 𝑎 − 𝑏 ∣ = 4(𝑎3 + 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐).

13. Prove that ∣
𝑎 − 𝑏 − 𝑐 2𝑎 2𝑎

2𝑏 𝑏 − 𝑐 − 𝑎
2𝑐 2𝑐 𝑐 − 𝑎 − 𝑏 ∣ = (𝑎 + 𝑏 + 𝑐)3.

14. Prove that ∣ 𝑥 𝑦 𝑧
𝑥2 𝑦2 𝑧2
𝑦𝑧 𝑧𝑥 𝑥𝑦 ∣ = ∣ 1 1 1

𝑥2 𝑦2 𝑧2

𝑥3 𝑦3 𝑧3 ∣ = (𝑥 − 𝑦)(𝑦 − 𝑧)(𝑧 − 𝑥)(𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥).

15. Prove that ∣
𝑎2 + 1 𝑎𝑏 𝑎𝑐
𝑎𝑏 𝑏2 + 1 𝑏𝑐
𝑎𝑐 𝑏𝑐 𝑐2 + 1 ∣ = 1 + 𝑎2 + 𝑏2 + 𝑐2.

16. Prove that ∣
1 + 𝑎1 1 1
1 1 + 𝑎2 1
1 1 1 + 𝑎3 ∣ = 𝑎1𝑎2𝑎3(1 + 1

⁄

𝑎1 +
1
⁄

𝑎2 +
1
⁄

𝑎3).

17. If 𝑥,𝑦,𝑧 are all different and if ∣
𝑥 𝑥2 1 + 𝑥3

𝑦 𝑦2 1 + 𝑦3

𝑧 𝑧2 1 + 𝑧3 ∣ = 0, prove that 𝑥𝑦𝑧 = −1.

18. Evaluate ∣
𝑏 + 𝑐 𝑎 𝑎
𝑏 𝑐 + 𝑎 𝑏
𝑐 𝑐 𝑎 + 𝑏 ∣.

19. Show that ∣
(𝑏 + 𝑐)2 𝑎2 𝑎2

𝑏2 (𝑐 + 𝑎)2 𝑏2

𝑐2 𝑐2 (𝑎 + 𝑏)2 ∣ = 2𝑎𝑏𝑐(𝑎 + 𝑏 + 𝑐)3.

20. Solve the equation ∣
15 − 𝑥 1 10
11 − 3𝑥 1 16
7 − 𝑥 1 13 ∣ = 0.
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21. If 𝑎 + 𝑏 + 𝑐 = 0, solve the equation ∣
𝑎 − 𝑥 𝑐 𝑏
𝑐 𝑏 − 𝑥 𝑎
𝑏 𝑎 𝑐 − 𝑥 ∣ = 0.

22. If 𝐷1 = ∣
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑘 ∣, 𝐷2 = ∣

𝑎 𝑔 𝑥
𝑏 ℎ 𝑦
𝑐 𝑘 𝑧 ∣ and 𝑑 = 𝑡𝑥, 𝑒 = ℎ𝑦, 𝑓 = 𝑡𝑧, prove without expanding

that 𝐷1 = −𝑡𝐷2

23. Show without expanding thet ∣
𝑎 𝑏𝑐 𝑎𝑏𝑐
𝑏 𝑐𝑎 𝑎𝑏𝑐
𝑐 𝑎𝑏 𝑎𝑏𝑐 ∣ = ∣

𝑎 𝑎2 𝑎3

𝑏 𝑏2 𝑏3

𝑐 𝑐2 𝑐3 ∣.
24. If 𝑎, 𝑏, 𝑐 are positive and are the 𝑝th, 𝑞th, 𝑟th terms of a G.P., respectively, then show

without expanding thet ∣
log 𝑎 𝑝 1
log 𝑏 𝑞 1
log 𝑐 𝑟 1 ∣ = 0.

25. Evaluate ∣
1 1 1
1 1 + 𝑥 1
1 1 1 + 𝑦 ∣.

26. Evaluate ∣ 1 1 1
𝑎 𝑏 𝑐
𝑎3 𝑏3 𝑐3 ∣.

27. Evaluate ∣
1 𝑏 + 𝑐 𝑏2 + 𝑐2

1 𝑐 + 𝑎 𝑐2 + 𝑎2

1 𝑎 + 𝑏 𝑎2 + 𝑏2 ∣.
28. Evaluate ∣

1 𝑎 𝑎2 − 𝑏𝑐
1 𝑏 𝑏2 − 𝑎𝑐
1 𝑐 𝑐2 − 𝑎𝑏 ∣.

29. Evaluate ∣
1 𝑏𝑐 𝑏𝑐(𝑏 + 𝑐)
1 𝑐𝑎 𝑐𝑎(𝑐 + 𝑎)
1 𝑎𝑏 𝑎𝑏(𝑎 + 𝑏) ∣.

30. Prove that ∣
1 𝑎 𝑏 + 𝑐
1 𝑏 𝑐 + 𝑎
1 𝑐 𝑐 + 𝑎 ∣ = 0.

31. If 𝑎, 𝑏, 𝑐 are the 𝑝th, 𝑞th, 𝑟th terms respectively of an H.P., show that ∣
𝑏𝑐 𝑝 1
𝑐𝑎 𝑞 1
𝑎𝑏 𝑟 1 ∣ = 0.

32. If ∣𝑥2 + 3𝑥 𝑥 − 1 𝑥 + 3
𝑥 + 1 1 − 2𝑥 𝑥 − 4
𝑥 − 2 𝑥 + 4 3𝑥 ∣ = 𝑝𝑥4 + 𝑞𝑥3 + 𝑟𝑥2 + 𝑠𝑥 + 𝑡 be an indentity in 𝑥, where

𝑝, 𝑞, 𝑟, 𝑠 and 𝑡 are constants, find the value of 𝑡.
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33. Prove that ∣ 𝑎 𝑏 𝑐
𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3 ∣ = 𝑎𝑏𝑐(𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎).

34. If 𝑎, 𝑏, 𝑐 are in A.P., show that ∣
𝑥 + 1 𝑥 + 2 𝑥 + 𝑎
𝑥 + 2 𝑥 + 3 𝑥 + 𝑏
𝑥 + 3 𝑥 + 4 𝑥 + 𝑐 ∣ = 0.

35. If 𝜔 is a complex cube root of unity, prove that ∣
1 𝜔 𝜔2

𝜔 𝜔2 1
𝜔 1 𝜔2 ∣ = 0

36. Evaluate ∣
𝑘 𝑘 𝑘
1 2 3
1 3 6 ∣.

37. Evaluate ∣
𝑎2 + 𝑥 𝑏2 𝑐2

𝑎2 𝑏2 + 𝑥 𝑐2

𝑎2 𝑏2 𝑐2 + 𝑥 ∣.
38. Evaluate ∣

𝑎 𝑏 + 𝑐 𝑎2

𝑏 𝑐 + 𝑎 𝑏2

𝑐 𝑎 + 𝑏 𝑐2 ∣.
39. Evaluate ∣

𝑏 + 𝑐 𝑎 − 𝑏 𝑎
𝑐 + 𝑎 𝑏 − 𝑐 𝑏
𝑎 + 𝑏 𝑐 − 𝑎 𝑐 ∣.

40. Show that ∣
𝑎 + 𝑏 𝑏 + 𝑐 𝑐 + 𝑎
𝑏 + 𝑐 𝑐 + 𝑎 𝑎 + 𝑏
𝑐 + 𝑎 𝑎 + 𝑏 𝑏 + 𝑐 ∣ = −2(𝑎3 + 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐).

41. Show that ∣
𝑥 + 𝑎 𝑥 + 𝑏 𝑥 + 𝑐
𝑦 + 𝑎 𝑦 + 𝑏 𝑦 + 𝑐
𝑧 + 𝑎 𝑧 + 𝑏 𝑧 + 𝑐 ∣ = 0.

42. Show that ∣
0 𝑝 − 𝑞 𝑝 − 𝑟

𝑞 − 𝑝 0 𝑞 − 𝑟
𝑟 − 𝑝 𝑟 − 𝑞 0 ∣ = 0.

43. Show that ∣
𝑎 𝑎 + 𝑏 𝑎 + 2𝑏

𝑎 + 2𝑏 𝑎 𝑎 + 𝑏
𝑎 + 𝑏 𝑎 + 2𝑏 𝑎 ∣ = 9𝑏2(𝑎 + 𝑏)

44. Show that ∣
𝑎 𝑏 − 𝑐 𝑐 + 𝑏

𝑎 + 𝑐 𝑏 𝑐 − 𝑎
𝑎 − 𝑏 𝑏 + 𝑎 𝑐 ∣ and (𝑎 + 𝑏 + 𝑐) have the same sign.
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45. Show that ∣
𝑏𝑐 𝑏𝑐′ + 𝑏′𝑐 𝑏′𝑐′
𝑐𝑎 𝑐𝑎′ + 𝑐′𝑎 𝑐′𝑎′
𝑎𝑏 𝑎𝑏′ + 𝑎′𝑏 𝑎′𝑏′ ∣ = (𝑎𝑏′ − 𝑎′𝑏)(𝑏′𝑐 − 𝑏𝑐′)(𝑎′𝑐 − 𝑐′𝑎).

46. Evaluate ∣
𝑏2 + 𝑐2 𝑎𝑏 𝑎𝑐
𝑎𝑏 𝑐2 + 𝑎2 𝑏𝑐
𝑐𝑎 𝑐𝑏 𝑎2 + 𝑏2 ∣.

47. Show that ∣
(𝑏 + 𝑐)2 𝑐2 𝑏2

𝑐2 (𝑐 + 𝑎)2 𝑎2

𝑏2 𝑎2 (𝑎 + 𝑏)2 ∣ = 2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)3.

48. Show that ∣
(𝑎 + 𝑏)2 𝑐𝑎 𝑏𝑐

𝑐𝑎 (𝑏 + 𝑐)2 𝑎𝑏
𝑏𝑐 𝑎𝑏 (𝑐 + 𝑎)2 ∣ = 2𝑎𝑏𝑐(𝑎 + 𝑏 + 𝑐)3.

49. Show that ∣
𝑎2+𝑏2⁄

𝑐 𝑐 𝑐

𝑎 𝑏2+𝑐2⁄
𝑎 𝑎

𝑏 𝑏 𝑐2+𝑎2
⁄

𝑏 ∣ = 4𝑎𝑏𝑐.

Solve the following equations:

50. ∣
𝑎 𝑎 𝑥
𝑎 𝑎 𝑎
𝑏 𝑥 𝑏 ∣ = 0.

51. ∣
𝑥 2 3
6 𝑥 + 4 4
7 8 𝑥 + 8 ∣ = 0.

52. ∣
𝑥 2 3
4 𝑥 1
𝑥 2 5 ∣ = 0.

53. ∣
𝑥 + 𝑎 𝑏 𝑐
𝑎 𝑥 + 𝑏 𝑐
𝑎 𝑏 𝑥 + 𝑐 ∣ = 0.

54. ∣
3 + 𝑥 5 2
1 7 + 𝑥 6
2 5 3 + 𝑥 ∣ = 0.

Show without expanding at any stage that:
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55. ∣
𝑎 + 𝑏 𝑏 + 𝑐 𝑐 + 𝑎
𝑏 + 𝑐 𝑐 + 𝑎 𝑎 + 𝑏
𝑐 + 𝑎 𝑎 + 𝑏 𝑏 + 𝑐 ∣ = 2∣

𝑎 𝑏 𝑐
𝑏 𝑐 𝑎
𝑐 𝑎 𝑏 ∣.

56. ∣
𝑏 + 𝑐 𝑐 + 𝑎 𝑎 + 𝑏
𝑞 + 𝑟 𝑟 + 𝑝 𝑝 + 𝑞
𝑦 + 𝑧 𝑧 + 𝑥 𝑥 + 𝑦 ∣ = 2∣

𝑎 𝑏 𝑐
𝑝 𝑞 𝑟
𝑥 𝑦 𝑧 ∣.

57. ∣
1 cos 𝛼 − sin 𝛼 cos 𝛼 + sin 𝛼
1 cos 𝛽 − sin 𝛽 cos 𝛽 + sin 𝛽
1 cos 𝛾 − sin 𝛾 cos 𝛾 + sin 𝛾 ∣ = 2∣

1 cos 𝛼 sin 𝛼
1 cos 𝛽 sin 𝛽
1 cos 𝛾 sin 𝛾 ∣.

58. ∣
(𝑎 − 1)2 𝑎2 + 1 𝑎
(𝑏 − 1)2 𝑏2 + 1 𝑏
(𝑐 − 1)2 𝑐2 + 1 𝑐 ∣ = 0

59. ∣
0 𝑐 𝑏
−𝑐 0 𝑎
−𝑏 −𝑎 0 ∣ = 0.

60. ∣
1 𝑎 𝑏𝑐
1 𝑏 𝑐𝑎
1 𝑐 𝑎𝑏 ∣ = ∣

1 𝑎 𝑎2

1 𝑏 𝑏2

1 𝑐 𝑐2 ∣.
61. ∣

𝑎 𝑏 𝑐
𝑥 𝑦 𝑧
𝑦𝑧 𝑧𝑥 𝑥𝑦 ∣ = ∣ 𝑎𝑥 𝑏𝑦 𝑐𝑧

𝑥2 𝑦2 𝑧2
1 1 1 ∣.

62. ∣
𝑎 𝑏 𝑐
𝑥 𝑦 𝑧
𝑝 𝑞 𝑟 ∣ = ∣

𝑦 𝑏 𝑞
𝑥 𝑎 𝑝
𝑧 𝑐 𝑟 ∣ = ∣

𝑥 𝑦 𝑧
𝑝 𝑞 𝑟
𝑎 𝑏 𝑐 ∣.

63. find the value of the following determinant Δ = ∣
𝑚! (𝑚+ 1)! (𝑚+ 2)!

(𝑚+ 1)! (𝑚+ 2)! (𝑚+ 3)!
(𝑚+ 2)! (𝑚+ 3)! (𝑚+ 4)! ∣, then

prove that Δ⁄
(𝑚!)3 − 4 is divisible by 𝑚.

64. Solve the following system of equations using Cramer'r rule: 𝑥 + 𝑦 = 4, 2𝑥 − 3𝑦 = 9.

65. Solve the following system of equations using Cramer'r rule: 2𝑥−𝑦+3𝑧 = 9, 𝑥+𝑦+𝑧 =
6, 𝑥 − 𝑦 + 𝑧 = 2.

66. Determine the nature of solution for the equations: 2𝑥 + 3𝑦 = 6, 4𝑥 + 6𝑦 = 10.

67. Show that the following system of equations is consistent 𝑥 + 𝑦 − 𝑧 = 1, 2𝑥 + 3𝑥 + 𝑧 =
4, 4𝑥 + 3𝑦 + 𝑧 = 16.

68. Determine the nature of solution for the equations: 𝑥 + 𝑦 = 2, 2𝑥 + 2𝑦 = 4.
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69. Determine whether the following system of equations is consistent: 2𝑥 + 𝑦 = 13, 6𝑥 +
3𝑦 = 18, 𝑥 − 𝑦 = −3.

70. Show that the system of following euqations has non-trivial solutions: 𝑥 + 𝑦 − 6𝑧 =
0, 3𝑥 − 𝑦 − 2𝑥 = 0, 𝑥 − 𝑦 + 2𝑥 = 0.

71. For what value of 𝑘 the following system of equations possess non-trivial solution. Also,
find all the solutions of the system for that value of 𝑘, 𝑥 + 𝑦 − 𝑘𝑧 = 0, 3𝑥 − 𝑦 − 2𝑥 =
0, 𝑥 − 𝑦 + 2𝑥 = 0.

Solve the following equations by Cramer's rule:

72. 𝑥 − 2𝑦 = 0; 7𝑥 + 6𝑦 = 40.

73. 𝑥 + 𝑦 + 𝑧 = 9; 3𝑥 + 2𝑦 − 3𝑧 = 0; 𝑧 − 𝑥 = 2.

74. 𝑥 − 𝑦 + 𝑧 = 0; 2𝑥 + 3𝑦 − 5𝑧 = 7; 3𝑥 − 4𝑦 + 2𝑧 = −1.

75. 2𝑥 + 3𝑦 − 3𝑧 = 0; 5𝑥 − 2𝑦 + 2𝑧 = 19; 𝑥 + 7𝑦 − 5𝑧 = 5.

76. 𝑥 + 𝑦 + 𝑧 = 1; 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑘; 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 = 𝑘2 where 𝑎 ≠ 𝑏 ≠ 𝑐.

Determine whether the following system of equations have no solution, unique solution
or infinite number of solution:

77. 3𝑥 + 9𝑦 = 5; 9𝑥 + 27𝑦 = 10.

78. 5𝑥 − 3𝑦 = 3; 𝑥 + 𝑦 = 7.

79. 𝑥 + 2𝑦 = 5; 3𝑥 + 6𝑦 = 15.

80. 2𝑥 + 3𝑦 + 𝑧 = 5; 3𝑥 + 𝑦 + 5𝑧 = 7; 𝑥 + 4𝑦 − 2𝑧 = 3.

81. 𝑥 + 𝑦 − 𝑧 = −2; 6𝑥 + 4𝑦 + 6𝑧 = 26; 2𝑥 + 7𝑦 + 4𝑧 = 31.

82. Find the value of 𝑘 such that following system of equations possess a non-trivial
solution over the set of rationals 𝑄. For that value of 𝑘 find all the solutions of the
system: 𝑥 + 𝑘𝑦3𝑧 = 0; 𝑥 + 𝑘𝑦 − 2𝑧 = 0; 2𝑥 + 3𝑦 − 4𝑧 = 0.

83. If 𝑎, 𝑏, 𝑐 are different, show that the following system of equations has non-trivial
solutions only when 𝑎+ 𝑏+ 𝑐 = 0, 𝑎𝑥+ 𝑏𝑦+ 𝑐𝑧 = 0; 𝑏𝑥+ 𝑐𝑦+𝑎𝑧 = 0; 𝑐𝑧 +𝑎𝑦+ 𝑏𝑧 = 0.

84. For what value of 𝜆 the following system of equations has non-trivial solutions:
3𝑥 − 𝑦 + 4𝑧 = 0; 𝑥2𝑦 − 3𝑧 = 0; 6𝑥 + 5𝑦 − 𝜆𝑧 = 0.

85. Let the three digit numbers 𝐴28, 3𝐵9, 62𝐶, where 𝐴,𝐵,𝐶 are integers between 0 and 9,

be divisible by a fixed integer 𝑘, show that the determinant ∣
𝐴 2 6
8 9 𝐶
2 𝐵 2 ∣ is divisible by 𝑘.

86. Evaluate ∣
𝑥𝐶1

𝑥𝐶2
𝑥𝐶3

𝑦𝐶1
𝑦𝐶2

𝑦𝐶3
𝑧𝐶1

𝑧𝐶2
𝑧𝐶3 ∣
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87. If 𝑎 ≠ 𝑝, 𝑏 ≠ 𝑞, 𝑐 ≠ 𝑟 and ∣
𝑝 𝑏 𝑐
𝑎 𝑞 𝑐
𝑎 𝑏 𝑟 ∣ = 0, then find the values of 𝑝⁄

𝑝−𝑎 +
𝑞⁄

𝑞−𝑏 +
𝑟⁄

𝑟−𝑐.

88. Show that ∣
(𝑥 − 𝑎)2 𝑏2 𝑐2

𝑎2 (𝑥 − 𝑏)2 𝑐2

𝑎2 𝑏2 (𝑥 − 𝑐)2 ∣ = 𝑥2(𝑥 − 2𝑎)(𝑥 − 2𝑏)(𝑥 − 2𝑐)

(𝑥 + 𝑎2⁄
𝑥−2𝑎 +

𝑏2⁄
𝑥−2𝑏 +

𝑐2⁄
𝑥−2𝑐).

89. If 𝑎 > 0, 𝑑 > 0, find the value of the determinant

∣
1
⁄

𝑎
1⁄

𝑎(𝑎+𝑑)
1⁄

(𝑎+𝑑)(𝑎+2𝑑)
1⁄

𝑎+𝑑
1⁄

(𝑎+𝑑)(𝑎+2𝑑)
1⁄

(𝑎+2𝑑)(𝑎+3𝑑)
1⁄

𝑎+2𝑑
1⁄

(𝑎+2𝑑)(𝑎+3𝑑)
1⁄

(𝑎+3𝑑)(𝑎+4𝑑) ∣ .
90. Show that ∣

1
⁄

𝑎+𝑥
1
⁄

𝑎+𝑦
1
⁄

𝑎+𝑧
1
⁄

𝑎+𝑦
1⁄

𝑏+𝑦
1⁄

𝑏+𝑧
1⁄

𝑐+𝑥
1⁄

𝑐+𝑦
1⁄

𝑐+𝑧 ∣ =
(𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎)(𝑥 − 𝑦)(𝑦 − 𝑧)(𝑧 − 𝑥)⁄

(𝑎 + 𝑥)(𝑏 + 𝑥)(𝑐 + 𝑥)(𝑏 + 𝑥)(𝑏 + 𝑦)(𝑏 + 𝑧)(𝑐 + 𝑥)(𝑐 + 𝑦)(𝑐 + 𝑧) .

91. If 2𝑠 = 𝑎 + 𝑏 + 𝑐, show that

∣
𝑎2 (𝑠 − 𝑎)2 (𝑠 − 𝑎)2

(𝑠 − 𝑏)2 𝑠2 (𝑠 − 𝑏)2

(𝑠 − 𝑐)2 (𝑠 − 𝑐)2 𝑠2 ∣ = 2𝑠3(𝑠 − 𝑎) (𝑠 − 𝑏) (𝑠 − 𝑐) .

92. Show that

∣
𝑎𝑥 − 𝑏𝑦 − 𝑐𝑧 𝑎𝑦 + 𝑏𝑥 𝑐𝑥 + 𝑎𝑧
𝑎𝑦 + 𝑏𝑥 𝑏𝑦 − 𝑐𝑧 − 𝑎𝑥 𝑏𝑧 + 𝑐𝑦
𝑐𝑥 + 𝑎𝑧 𝑏𝑧 + 𝑐𝑦 𝑐𝑧 − 𝑎𝑥 − 𝑏𝑦 ∣ =

(𝑥2 + 𝑦2 + 𝑧2) (𝑎2 + 𝑏2 + 𝑐2) (𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧) .

93. Find the value of 𝜃 between 0 and 𝜋/2 and satisfying the equation:

∣
1 + cos2 𝜃 sin2 𝜃 4 sin 𝜃
cos2 𝜃 1 + sin2 𝜃 4 sin 𝜃
cos2 𝜃 sin2 𝜃 1 + 4 sin 𝜃 ∣ = 0.

94. If 𝑎2 + 𝑏2 + 𝑐2 = 1, then prove that

∣
𝑎2 + (𝑏2 + 𝑐2) cos 𝜙 𝑎𝑏(1 − cos 𝜙) 𝑎𝑐(1 − cos 𝜙)

𝑎𝑏(1 − cos 𝜙) 𝑏2 + (𝑐2 + 𝑎2) cos 𝜙 𝑏𝑐(1 − cos 𝜙)
𝑐𝑎(1 − cos 𝜙) 𝑏𝑐(1 − cos 𝜙) 𝑐2 + (𝑎2 + 𝑏2) cos 𝜙 ∣ = cos2 𝜙.



Determinants 233

95. If none of the 𝑎,𝑏,𝑐 is zero, show that ∣
−𝑏𝑐 𝑏2 + 𝑎𝑐 𝑐2 + 𝑏𝑐

𝑎2 + 𝑎𝑐 −𝑎𝑐 𝑐2 + 𝑎𝑐
𝑎2 + 𝑎𝑏 𝑏2 + 𝑎𝑏 −𝑎𝑏 ∣ = (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)3.

96. If 𝑢, 𝑣 are functions of 𝑥, and 𝑦 = 𝑢⁄
𝑣, show that 𝑣3 𝑑

2𝑥⁄
𝑑𝑦2 = ∣

𝑢 𝑣 0
𝑢′ 𝑏′ 𝑣
𝑢″ 𝑣″ 2𝑣′ ∣ where primes

denote derivatives.

97. If 𝑎 ≠ 0 and 𝑎 ≠ 1, show that ∣𝑥 + 1 𝑥 𝑥
𝑥 𝑥 + 𝑎 𝑥
𝑥 𝑥 𝑥 + 𝑎2 ∣ = 𝑎3[1 + 𝑥(𝑎3−1)⁄

𝑎2(𝑎−1)].

98. If 𝑝 + 𝑞 + 𝑟 = 0, prove that ∣
𝑝𝑎 𝑞𝑏 𝑟𝑐
𝑞𝑐 𝑟𝑎 𝑝𝑏
𝑟𝑏 𝑝𝑐 𝑞𝑎 ∣ = 𝑝𝑞𝑟∣

𝑎 𝑏 𝑐
𝑐 𝑎 𝑏
𝑏 𝑐 𝑎 ∣.

99. Show without expanding that ∣
1 𝑎 𝑎2

1 𝑏 𝑏2

1 𝑐 𝑐2 ∣ = ∣
1 𝑏𝑐 𝑏 + 𝑐
1 𝑐𝑎 𝑐 + 𝑎
1 𝑎𝑏 𝑎 + 𝑏 ∣.

100. Show without expanding that ∣
𝑥2 + 𝑥 𝑥 + 1 𝑥 − 2

2𝑥2 + 3𝑥 − 1 3𝑥 3𝑥 − 3
𝑥2 + 2𝑥 + 3 2𝑥 − 1 2𝑥 − 1 ∣ = 𝑎𝐴+𝐵, where 𝐴 and 𝐵

are determinants of 3rd order not involving 𝑥.

101. If 𝐷𝑟 = ∣
𝑟 𝑥 𝑛(𝑛+1)
⁄

2

2𝑟 − 1 𝑦 𝑛(3𝑛−1)⁄
2

3𝑟 − 2 𝑧 𝑛(3𝑛−1)⁄
2 ∣ show that 

𝑛
∑
𝑟=1

𝐷𝑟 = 0.

102. Without expanding the determinant, show that the value of ∣
−5 3 + 5𝑖 3
⁄

2 − 4𝑖
3 − 5𝑖 8 4 + 5𝑖
3
⁄

2 + 4𝑖 4 − 5𝑖 9 ∣
is real.

103. Prove that ∣
−2𝑎 𝑎 + 𝑏 𝑏 + 𝑐
𝑏 + 𝑎 −2𝑏 𝑏 + 𝑐
𝑐 + 𝑎 𝑐 + 𝑏 −2𝑐 ∣ = 4(𝑎 + 𝑏)(𝑏 + 𝑐)(𝑐 + 𝑎) .

104. 𝑓𝑟(𝑥), 𝑔𝑟(𝑥), ℎ𝑟(𝑥), where 𝑟 = 1,2,3 are polynomials in 𝑥 such that 𝑓𝑟(𝑎) = 𝑔𝑟(𝑎) =
ℎ𝑟(𝑎) and

𝐹 (𝑥) = ∣
𝑓1(𝑥) 𝑓2(𝑥) 𝑓3(𝑥)
𝑔1(𝑥) 𝑔2(𝑥) 𝑔3(𝑥)
ℎ1(𝑥) ℎ2(𝑥) ℎ3(𝑥) ∣

then find 𝐹′(𝑥).
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105. Let 𝛼 be a repeated root of a quadratic equation 𝑓(𝑥) = 0 and 𝐴(𝑥), 𝐵(𝑥), 𝐶(𝑥) be

polynomials of degree 3,4,5 respectively. Show that Δ(𝑥) = ∣
𝐴(𝑥) 𝐵(𝑥) 𝐶(𝑥)
𝐴(𝛼) 𝐵(𝛼) 𝐶(𝛼)
𝐴′(𝛼) 𝐵′(𝛼) 𝐶′(𝛼) ∣

is divisible by 𝑓(𝑥), where prime denotes a derivative.

106. Prove that ∣
cos(𝜃 + 𝛼) cos(𝜃 + 𝛽) cos(𝜃 + 𝛾)
sin(𝜃 + 𝛼) sin(𝜃 + 𝛽) sin(𝜃 + 𝛾)
sin(𝛽 − 𝛾) sin(𝛾 − 𝛼) sin(𝛼 − 𝛽) ∣ is independent of 𝜃.

107. If 𝑓, 𝑔, ℎ are differential functions of 𝑥 and Δ = ∣ 𝑓 𝑔 ℎ
𝑓′ 𝑔′ ℎ′

(𝑥2𝑓 )″ (𝑥2𝑔)″ (𝑥2ℎ)″ ∣ prove that

Δ′ = ∣ 𝑓 𝑔 ℎ
𝑓′ 𝑔′ ℎ′

(𝑥3𝑓″)′ (𝑥3𝑦″)′ (𝑥3ℎ″)′ ∣
108. If 𝑓(𝑥) = ∣

𝑥𝑛 sin 𝑥 cos 𝑥
𝑛! sin 𝑛𝜋⁄

2 cos 𝑛𝜋⁄2
𝑎 𝑎2 𝑎3 ∣, then show that 𝑑

𝑛𝑓(𝑥)⁄
𝑑𝑥𝑛 = 0, where 𝑥 = 0.

109. Prove that ∣
cos(𝐴− 𝑃 ) cos(𝐴−𝑄) cos(𝐴−𝑅)
cos(𝐵 − 𝑃 ) cos(𝐵 −𝑄) cos(𝑄−𝑅)
cos(𝐶 − 𝑃 ) cos(𝐶 −𝑄) cos(𝐶 −𝑅) ∣ = 0.

110. Prove that ∣
2𝑏𝑐 − 𝑎2 𝑐2 𝑏2

𝑐2 2𝑏𝑐 − 𝑏2 𝑎2

𝑏2 𝑎2 2𝑏𝑐 − 𝑐2 ∣ = (𝑎3 + 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐)2.

111. Prove that ∣
1 cos(𝛽 − 𝛼) cos(𝛾 − 𝛼)

cos(𝛼 − 𝛽) 1 cos(𝛾 − 𝑏𝑒𝑡𝑎)
cos(𝛼 − 𝛾) cos(𝛽 − 𝛾) 1 ∣ = 0.

112. For what value of 𝑚 does the system of equation 3𝑥 +𝑚𝑦 = 𝑚 and 2𝑥 − 5𝑦 = 20 has
a solution satisfying the conditions 𝑥 > 0, 𝑦 > 0.

113. Prove that the system of equation 3𝑥−𝑦+4𝑧 = 0, 𝑥+2𝑦−3𝑧 = −2, 6𝑥+5𝑦+𝜆𝑧 = −3
has at least one solution for any real 𝜆. Find the set of solutions when 𝜆 = −5.

114. For what value of 𝑝 and 𝑞, the system of equations 2𝑥 + 𝑝𝑦 + 6𝑧 = 8, 𝑥 + 2𝑦 + 𝑞𝑧 = 5,
𝑥 + 𝑦 + 3𝑧 = 4 has (a) no solution (b) a unique solution, and (c) infinite solutions.

115. Let 𝜆 and 𝛼 be real. Find the set of all values of 𝜆 for which the system of equations:
𝜆𝑥 + 𝑦 sin 𝛼 − 𝑧 cos 𝛼 = 0, 𝑥 + 𝑦 cos 𝛼 + 𝑧 sin 𝛼 = 0, − 𝑥 + 𝑦 sin 𝛼 − 𝑧 cos 𝛼 = 0.

116. Evaluate ∣
𝑎 𝑏 + 𝑐 𝑎2

𝑏 𝑐 + 𝑎 𝑏2

𝑐 𝑎 + 𝑏 𝑐2 ∣.
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117. Evaluate ∣
√

13 +√


3 2√


5 √


5
√

15 +√


26 5 √


10

3 +√

65 √


15 5 ∣.

118. Evaluate ∣
𝑥 𝑥(𝑥2 + 1) 𝑥 + 1
𝑦 𝑦(𝑦2 + 1) 𝑦 + 1
𝑧 𝑧(𝑧2 + 1) 𝑧 + 1 ∣.

119. If 𝑥, 𝑦, 𝑧 are respectively 𝑙th, 2𝑚th, 3𝑛th terms of an H.P., then find the value of

∣
𝑦𝑧 𝑧𝑥 𝑥𝑦
𝑙 2𝑚 3𝑛
1 1 1 ∣.

120. Show that ∣
1 𝑎2 𝑎3

1 𝑏2 𝑏3

1 𝑐2 𝑐3 ∣ = (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) ∣
1 𝑎 𝑎2

1 𝑏 𝑏2

1 𝑐 𝑐2 ∣.
121. Evaluate ∣

(𝑏 + 𝑐)2 𝑎2 𝑏𝑐
(𝑐 + 𝑎)2 𝑏2 𝑐𝑎
(𝑎 + 𝑏)2 𝑐2 𝑎𝑏 ∣.

122. Prove that ∣
𝑥2 𝑥2 − (𝑦 − 𝑧)2 𝑦𝑧
𝑦2 𝑦2 − (𝑧 − 𝑥)2 𝑧𝑥
𝑧2 𝑧2 − (𝑥 − 𝑦)2 𝑥𝑦 ∣ = (𝑥− 𝑦)(𝑦 − 𝑧)(𝑧 − 𝑥)(𝑥+ 𝑦 + 𝑧)(𝑥2+ 𝑦2+ 𝑧2).

123. If 𝑎1𝑏1𝑐1, 𝑎2𝑏2𝑐2, 𝑎3𝑏3𝑐3 are three 3 digit numbers such that each of them is divisible

by 𝑘, then prove that the determinant ∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣ is divisible by 𝑘.

124. If 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 ∈ ℝ(𝑖 = 1, 2, 3) and 𝑥 ∈ 𝑅, show that ∣
𝑎1 + 𝑏1𝑥 𝑎1𝑥 + 𝑏1 𝑐1
𝑎2 + 𝑏2𝑥 𝑎2𝑥 + 𝑏2 𝑐2
𝑎3 + 𝑏3𝑥 𝑎3𝑥 + 𝑏3 𝑐3 ∣ = (1 −

𝑥2) ∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣.

125. If 𝑎, 𝑏, 𝑐 are the roots of the equation 𝑝𝑥3 + 𝑞𝑥2 + 𝑟𝑥 + 𝑠 = 0, then find the value of

∣
1 + 𝑎 1 1
1 1 + 𝑏 1
1 1 1 + 𝑐 ∣.

126. If 𝑎 < 𝑏 < 𝑐, prove that ∣ 1 𝑎 𝑎4

1 𝑏 𝑏4

1 𝑐 𝑐4 ∣ > 0.
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127. If 𝑎, 𝑏, 𝑐 are distinct and ∣ 𝑎 𝑎3 𝑎4 − 1
𝑏 𝑏3 𝑏4 − 1
𝑐 𝑐3 𝑐4 − 1 ∣ = 0, show that 𝑎𝑏𝑐(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) = 𝑎+ 𝑏 + 𝑐.

128. Show that 𝑥1, 𝑥2, 𝑥3 ≠ 0, ∣
𝑥1 + 𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑥2 + 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑥3 + 𝑎3𝑏3 ∣ = 𝑥1𝑥2𝑥3

(1 + 𝑎1𝑏1⁄
𝑥 + 𝑎2𝑏2⁄

𝑥 + 𝑎3𝑏3⁄
𝑥3 ).

129. Show that ∣
1
⁄

𝑎+𝑥
1
⁄

𝑎+𝑦 1
1⁄

𝑏+𝑥
1⁄

𝑏+𝑦 1
1⁄

𝑐+𝑥
1⁄

𝑐+𝑦 1 ∣ = (𝑎−𝑏)(𝑏−𝑐)(𝑐−𝑎)(𝑥−𝑦)⁄
(𝑎+𝑥)(𝑏+𝑥)(𝑐+𝑥)(𝑎+𝑦)(𝑏+𝑦)(𝑐+𝑦).

130. Show that ∣
𝑎2 𝑏𝑐 𝑎𝑐 + 𝑐2

𝑎2 + 𝑎𝑏 𝑏2 𝑎𝑐
𝑎𝑏 𝑏2 + 𝑏𝑐 𝑐2 ∣ = 4𝑎2𝑏2𝑐2.

131. Show that ∣
1 + 𝑎2 − 𝑏2 2𝑎𝑏 −2𝑏

2𝑎𝑏 1 − 𝑎2 + 𝑏2 2𝑎
2𝑏 −2𝑎 1 − 𝑎2 − 𝑏2 ∣ = (1 + 𝑎2 + 𝑏2)3.

132. If 𝑎, 𝑏, 𝑐 are sides of a triangle, show that ∣
𝑎2 (𝑠 − 𝑎)2 (𝑠 − 𝑏)2

(𝑠 − 𝑏)2 𝑏2 (𝑠 − 𝑏)2

(𝑠 − 𝑐)2 (𝑠 − 𝑐)2 𝑐2 ∣ = 1
⁄

2 𝑃
2𝐴2,

where 𝑃 denotes the perimeter of the triangle, 𝐴 its area and 𝑠 = 𝑃⁄
2 .

133. Show that ∣
(𝑥 − 𝑎)2 𝑎𝑏 𝑎𝑐

𝑏𝑎 (𝑥 − 𝑏)2 𝑏𝑐
𝑐𝑎 𝑐𝑏 (𝑥 − 𝑐)2 ∣ = 𝑥2(𝑥 − 2𝑎)(𝑥 − 2𝑏)(𝑥 − 2𝑐)

(𝑥 + 𝑎2⁄
𝑥−2𝑎 +

𝑏2⁄
𝑥−2𝑏 +

𝑐2⁄
𝑥−2𝑐).

134. If 𝑥, 𝑦, 𝑧 are unequal and ∣
𝑥3 (𝑥 + 𝑎)3 (𝑥 − 𝑎)3

𝑦3 (𝑦 + 𝑎)3 (𝑦 − 𝑎)3

𝑧3 (𝑧 + 𝑎)3 (𝑧 − 𝑧)3 ∣= 0, prove that 𝑎2(𝑥+𝑦+𝑧)= 3𝑥𝑦𝑧.

135. Show that ∣ (1 − 𝑥) 𝑎 𝑎2

𝑎 𝑎2 − 𝑥 𝑎3

𝑎2 𝑎3 𝑎4 − 𝑥 ∣ = 𝑥2(1 + 𝑎2 + 𝑎3)− 𝑥3.

136. If 𝑦 = sin 𝑝𝑥 and 𝑦𝑛 = 𝑑𝑛𝑥⁄
𝑑𝑦𝑛, find the value of ∣

𝑦 𝑦1 𝑦2
𝑦3 𝑦4 𝑦5
𝑦6 𝑦7 𝑦8 ∣.
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137. Evaluate ∣ cos
2 𝜃 cos 𝜃 sin 𝜃 − sin 𝜃

cos 𝜃 sin 𝜃 sin2 𝜃 cos 𝜃
sin 𝜃 − cos 𝜃 0 ∣.

138. Evaluate ∣
cos 𝛼 sin 𝛼 cos 𝛽 sin 𝛼 sin 𝛽
− sin 𝛼 cos 𝛼 cos 𝛽 cos 𝛼 sin 𝛽

0 − sin 𝛽 cos 𝛽 ∣.
139. Solve the equation ∣

𝑎2 + 𝑥 𝑎𝑏 𝑎𝑐
𝑎𝑏 𝑏2 + 𝑥 𝑏𝑐
𝑎𝑐 𝑏𝑐 𝑐2 + 𝑥 ∣ = 0.

140. Solve the equation for 𝑥, ∣
𝐶𝑥
𝑟 𝐶𝑛−1

𝑟 𝐶𝑛−1
𝑟−1

𝐶𝑥+1
𝑟 𝐶𝑛

𝑟 𝐶𝑛
𝑟−1

𝐶𝑥+2
𝑟 𝐶𝑛+1

𝑟 𝐶𝑛+1
𝑟−1 ∣ = 0 ∀𝑛,𝑟 > 1.

141. Solve the equation ∣
𝑢 + 𝑎2𝑥 𝑤′ + 𝑎𝑏𝑥 𝑣′ + 𝑎𝑐𝑥
𝑤′ + 𝑎𝑏𝑥 𝑣 + 𝑏2𝑥 𝑢′ + 𝑏𝑐𝑥
𝑣′ + 𝑎𝑐𝑥 𝑢′ + 𝑏𝑐𝑥 𝑤 + 𝑐2𝑥 ∣ = 0 expressing the result by means

of determinants.

142. If 𝑓(𝑎, 𝑏) = 𝑓(𝑏)−𝑓(𝑎)⁄
𝑏−𝑎 and 𝑓(𝑎, 𝑏, 𝑐) = 𝑓(𝑏,𝑐)−𝑓(𝑎,𝑏)⁄

𝑐−𝑎 , show that

𝑓(𝑎, 𝑏, 𝑐) = ∣
𝑓(𝑎) 𝑓(𝑏) 𝑓(𝑐)
1 1 1
𝑎 𝑏 𝑐 ∣÷ ∣ 1 1 1

𝑎 𝑏 𝑐
𝑎2 𝑏2 𝑐2 ∣ .

143. If 𝐴, 𝐵, 𝐶 are the angles of a △𝐴𝐵𝐶, then prove that ∣
𝑒2𝑖𝐴 𝑒−𝑖𝐶 𝑒−𝑖𝐵

𝑒−𝑖𝐶 𝑒2𝑖𝐵 𝑒−𝑖𝐴

𝑒−𝑖𝐵 𝑒−𝑖𝐴 𝑒2𝑖𝐶 ∣ is purely

real.

144. If 𝐴, 𝐵, 𝐶 are the angles of a △𝐴𝐵𝐶 such that 𝐴 ≥ 𝐵 ≥ 𝐶, find the minimum value

of Δ, where Δ = ∣
sin2 𝐴 sin𝐴 cos𝐴 cos2 𝐴
sin2 𝐵 sin𝐵 cos𝐵 cos2 𝐵
sin2 𝐶 sin𝐶 cos𝐶 cos2 𝐶 ∣. Also, show that Δ = 1

⁄

4 [sin(2𝐴− 2𝐵)+

sin(2𝐵 − 2𝐶)+ sin(2𝐶 − 2𝐴)].

145. Evaluate ∣ 𝑎2 𝑎 1
cos 𝑛𝑥 cos(𝑛 + 1)𝑥 cos(𝑛 + 2)𝑥
sin 𝑛𝑥 sin(𝑛 + 1)𝑥 sin(𝑛 + 2)𝑥 ∣.

146. If 0 < 𝑥 < 𝜋
⁄

2, the find the values of 𝑥 for which ∣
1 + sin2 𝑥 cos2 𝑥 4 sin 2𝑥
sin2 𝑥 1 + cos2 𝑥 4 sin 2𝑥
sin2 𝑥 cos2 𝑥 1 + 4 sin 2𝑥 ∣ has

maximum value.
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147. If 𝐴, 𝐵, 𝐶 are the angles of a triangle, show that ∣
−1 cos𝐶 cos𝐵
cos𝐶 −1 cos𝐴
cos𝐵 cos𝐴 1 ∣ = 0.

148. If 𝐴, 𝐵, 𝐶 are the angles of an isoscceles triangle, evaluate

∣ 1 1 1
1 + sin𝐴 1 + sin𝐵 1 + sin𝐶

sin𝐴 + sin2 𝐴 sin𝐵 + sin2 𝐵 sin𝐶 + sin2 𝐶 ∣ .
149. For positive numbers 𝑥, 𝑦, 𝑧 ≠ 1, show that the numeric value of the determinant

∣
1 log𝑥 𝑦 log𝑥 𝑧

log𝑦 𝑥 1 log𝑦 𝑧
log𝑧 𝑥 log𝑧 𝑦 1 ∣ = 0.

150. If 𝑎, 𝑏, 𝑐 > 0 and 𝑥, 𝑦, 𝑧 ∈ ℝ, then show without expanding that

∣
(𝑎𝑥 + 𝑎−𝑥)2 (𝑎𝑥 − 𝑎−𝑥)2 1
(𝑏𝑦 + 𝑏−𝑦)2 (𝑏𝑦 − 𝑏−𝑦)2 1
(𝑐𝑧 + 𝑐−𝑧)2 (𝑐𝑧 − 𝑐−𝑧)2 1 ∣ = 0.

151. Without expanding the determinants, prove that ∣
103 115 114
111 108 106
104 113 116 ∣+ ∣

113 116 104
108 106 111
115 114 103 ∣ = 0.

152. Evaluate 
𝑁
∑
𝑛=1

𝑈𝑛 if 𝑈𝑛 = ∣ 𝑛 1 5
𝑛2 2𝑁 + 1 2𝑁 + 1
𝑛3 3𝑁2 3𝑁 ∣.

153. If 𝐴, 𝐵,𝐶 are the angles of a triangle, then show without expanding that

∣
sin(𝐴+𝐵 +𝐶) sin𝐵 cos𝐶

− sin𝐵 0 tan𝐴
cos(𝐴+𝐵) −tan𝐴 0 ∣ = 0.

154. Evaluate without expanding ∣
𝑏2 − 𝑎𝑏 𝑏 − 𝑐 𝑏𝑐 − 𝑎𝑐
𝑎𝑏 − 𝑎2 𝑎 − 𝑏 𝑏2 − 𝑎𝑏
𝑏𝑐 − 𝑎𝑐 𝑐 − 𝑎 𝑎𝑏 − 𝑎2 ∣

155. Let Δ𝑖 = ∣ 𝑖 − 1 𝑛 6
(𝑖 − 1)2 2𝑛2 4𝑛 − 2
(𝑖 − 1)3 3𝑛3 3𝑛2 − 2𝑛 ∣. Show that 

𝑛
∑
𝑛=1

Δ𝑖 = 𝑘, a constant.

156. Let 𝑚 ∈ ℙ and Δ𝑟 = ∣ 2𝑟 − 1 𝑚𝐶𝑟 1
𝑚2 − 1 2𝑚 𝑚+ 1
sin2 𝑚2 sin2 𝑚 sin2(𝑚+ 1) ∣, then find the value of 

𝑚
∑
𝑟=0

Δ𝑟.
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157. Show that ∣
𝑥𝐶𝑟

𝑥𝐶𝑟+1
𝑥𝐶𝑟+2

𝑦𝐶𝑟
𝑦𝐶𝑟+1

𝑦𝐶𝑟+2
𝑧𝐶𝑟

𝑧𝐶𝑟+1
𝑧𝐶𝑟+2 ∣ = ∣

𝑥𝐶𝑟
𝑥+1𝐶𝑟+1

𝑥+2𝐶𝑟+1
𝑦𝐶𝑟

𝑦+1𝐶𝑟+1
𝑦+2𝐶𝑟+1

𝑧𝐶𝑟
𝑧+1𝐶𝑟+1

𝑧+2𝐶𝑟+1 ∣
158. If Δ𝑟 = ∣

𝑟 𝑛 + 1 1
𝑟2 2𝑛 − 1 2𝑛+1
⁄

3

𝑟3 3𝑛 + 2 𝑛(𝑛+1)
⁄

2 ∣, show that 
𝑛
∑
𝑟=1

Δ𝑟 = 0.

159. If Δ𝑟 = ∣ 2𝑟−1 2.3𝑟−1 4.5𝑟−1
𝑥 𝑦 𝑧

2𝑛 − 1 3𝑛 − 1 5𝑛 − 1 ∣, show that 
𝑛
∑
𝑟=1

Δ𝑟 = 0.

160. Show without expanding that ∣
𝑥2 (𝑥 − 1)2 (𝑥 − 2)2

(𝑥 − 1)2 (𝑥 − 2)2 (𝑥 − 3)2

(𝑥 − 2)2 (𝑥 − 3)2 (𝑥 − 4)2 ∣ is independent of 𝑥.

161. Show without expanding that ∣
2 1 + 𝑖 3

1 − 𝑖 0 2 + 𝑖
3 2 − 𝑖 1 ∣ is purely real.

162. Show without expanding that ∣
𝑥 − 3 2𝑥 + 1 2
3𝑥 + 2 𝑥 + 2 1
5𝑥 + 1 5𝑥 + 4 5 ∣ is independent of 𝑥.

163. If 𝑎 and 𝑥 are real numbers and 𝑛 is a positive integer, then show without expanding

that ∣ 𝑎
𝑛 − 𝑥 𝑎𝑛+1 − 𝑥 𝑎𝑛+2 − 𝑥

𝑎𝑛+3 − 𝑥 𝑎𝑛+4 − 𝑥 𝑎𝑛+5 − 𝑥
𝑎𝑛+6 − 𝑥 𝑎𝑛+7 − 𝑥 𝑎𝑛+8 − 𝑥 ∣ = 0.

164. Find 
𝑛
∑
𝑟=2

(−2)𝑟 ∣𝐶
𝑛−2
𝑟−2 𝐶𝑛−2

𝑟−1 𝐶𝑛−2
𝑟

−3 1 1
2 1 0 ∣, 𝑛 > 2.

165. If 𝑎, 𝑏, 𝑐 are non-zero real numbers, show without expanding that ∣
𝑏2𝑐2 𝑏𝑐 𝑏 + 𝑐
𝑐2𝑎2 𝑐𝑎 𝑐 + 𝑎
𝑎2𝑏2 𝑎𝑏 𝑎 + 𝑏 ∣ = 0.

166. Prove that ∣
𝑏 + 𝑐 − 𝑎 − 𝑑 𝑏𝑐 − 𝑎𝑑 𝑏𝑐(𝑎 + 𝑑)− 𝑎𝑑(𝑏 + 𝑑)
𝑐 + 𝑎 − 𝑏 − 𝑑 𝑐𝑎 − 𝑏𝑑 𝑐𝑎(𝑏 + 𝑑)− 𝑏𝑑(𝑐 + 𝑎)
𝑎 + 𝑏 − 𝑐 − 𝑑 𝑎𝑏 − 𝑐𝑑 𝑎𝑏(𝑐 + 𝑑)− 𝑐𝑑(𝑎 + 𝑏) ∣ = −2(𝑏 − 𝑐)(𝑐 − 𝑎)(𝑎 −

𝑏)(𝑎 − 𝑑)(𝑏 − 𝑑)(𝑐 − 𝑑).

167. Prove that ∣ 𝑏𝑐 − 𝑎2 𝑐𝑎 − 𝑏2 𝑎𝑏 − 𝑐2
𝑐𝑎 + 𝑎𝑏 − 𝑏𝑐 𝑏𝑐 + 𝑎𝑏 − 𝑐𝑎 𝑏𝑐 + 𝑐𝑎 − 𝑎𝑏
(𝑎 + 𝑏)(𝑎 + 𝑐) (𝑏 + 𝑐)(𝑏 + 𝑎) (𝑐 + 𝑎)(𝑐 + 𝑏) ∣ = 3(𝑏 − 𝑐)(𝑐 − 𝑎)(𝑎 −

𝑏)(𝑎 + 𝑏 + 𝑐)(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)x.
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168. Prove that ∣ 1 (𝑚+ 𝑛− 𝑙 − 𝑝)2 (𝑚+ 𝑛− 𝑙 − 𝑝)4

1 (𝑛 + 𝑙 −𝑚− 𝑝)2 (𝑛 + 𝑙 −𝑚− 𝑝)4

1 (𝑙 + 𝑚− 𝑛 − 𝑝)2 (𝑙 + 𝑚− 𝑛 − 𝑝)4 ∣ = 64(𝑙 − 𝑚)(𝑙 − 𝑛)(𝑙 − 𝑝)(𝑚−

𝑛)(𝑚− 𝑝)(𝑛 − 𝑝).

169. If 𝑢, 𝑣, 𝑤 are differentiable functions of 𝑓 and suffixes denote the derivatives w.r..t 𝑡,

prove that 𝑑⁄𝑑𝑡 ∣𝑢1 𝑣1 𝑤1
𝑢2 𝑣2 𝑤2
𝑢3 𝑣3 𝑤3 ∣ = ∣

𝑢1 𝑣1 𝑤1
𝑢2 𝑣2 𝑤2
𝑢4 𝑣4 𝑤4 ∣.

170. If 𝑌 = 𝑠𝑋 and 𝑍 = 𝑡𝑋, all the variables being differentiable functions of 𝑥, prove that

∣
𝑋 𝑌 𝑍
𝑋1 𝑌1 𝑍1
𝑋2 𝑌2 𝑍2 ∣ = 𝑋3∣ 𝑠1 𝑡1

𝑠2 𝑡2
∣, where suffixes denote the derivatives w.r.t. 𝑥.

171. If 𝑓(𝑥), 𝑔(𝑥), ℎ(𝑥) are polynomials in 𝑥, find the condition that ∣
𝑓(𝑥) 𝑔(𝑥) ℎ(𝑥)
𝑓(𝛼) 𝑔(𝛼) ℎ(𝛼)
𝑓(𝛽) 𝑔(𝛽) ℎ(𝛽) ∣,

which is a polynomial of degree 3, is expressible as 𝑎(𝑥 − 𝛼)2(𝑥 − 𝛽).

172. Show that ∣
sin(𝑥 + 𝛼) cos(𝑥 + 𝛼) 𝑎 + 𝑥 sin 𝛼
sin(𝑥 + 𝛽) cos(𝑥 + 𝛽) 𝑏 + 𝑥 sin 𝛽
sin(𝑥 + 𝛾) cos(𝑥 + 𝛾) 𝑐 + 𝑥 sin 𝛾 ∣ is independent of 𝑥.

173. If 𝑓(𝑥) = ∣ 2 cos
2 𝑥 sin 2𝑥 − sin 𝑥

sin 2𝑥 2 sin2 𝑥 cos 𝑥
sin 𝑥 − cos 𝑥 0 ∣, show that ∫

𝜋
⁄

2

0
[𝑓(𝑥)+ 𝑓′(𝑥)]𝑑𝑥 = 𝜋.

174. Prove that ∣
𝑎1𝛼1 + 𝑏1𝛽1 𝑎1𝛼2 + 𝑏1𝛽2 𝑎1𝛼3 + 𝑏1𝛽3
𝑎2𝛼1 + 𝑏2𝛽1 𝑎2𝛼2 + 𝑏2𝛽2 𝑎2𝛼3 + 𝑏2𝛽3
𝑎3𝛼1 + 𝑏3𝛽1 𝑎3𝛼2 + 𝑏3𝛽2 𝑎3𝛼3 + 𝑏3𝛽3 ∣ = 0.

175. If 𝑙𝑟 ⃗𝚤, 𝑚𝑟 ⃗𝚥, 𝑛𝑟�⃗�, 𝑟 = 1, 2,3 be three mutually perpendicular unit vectors, show that

∣
𝑙1 𝑙2 𝑙3
𝑚1 𝑚2 𝑚3
𝑛1 𝑛2 𝑛3 ∣ = ±1.

176. Let Δ = ∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣ and 𝐴𝑖, 𝐵𝑖, 𝐶𝑖 be the cofactors of 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 respectively and

𝛼𝑖, 𝛽𝑖, 𝛾𝑖 be the cofactors of 𝐴𝑖, 𝐵𝑖, 𝐶𝑖 respectively, where 𝑖 = 1, 2, 3, show that

∣
𝐴1 𝐵1 𝐶1
𝐴2 𝐵2 𝐶2
𝐴3 𝐵3 𝐶3 ∣ ∣

𝛼1 𝛽1 𝛾1
𝛼2 𝛽2 𝛾2
𝛼3 𝛽3 𝛾3 ∣ = Δ6

177. Using determinants, solve the equations: 𝑥+2𝑦+3𝑧 = 6,2𝑥+4𝑦+𝑧 = 17,3𝑥+2𝑦+9𝑧 =
2.



Determinants 241

178. Solve the system of equations 𝑎𝑥+𝑏𝑦+𝑐𝑎 = 𝑑, 𝑎2𝑥+𝑏2𝑦+𝑐2𝑎 = 𝑑2, 𝑎3𝑥+𝑏3𝑦+𝑐3𝑎 =
𝑑3. Will the solution always exist and be unique?

179. Determine the coefficients 𝑎, 𝑏, 𝑐 of the quadratic function where 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐,
if 𝑓(1) = 0, 𝑓(2) = −2 and 𝑓(3) = −6.

180. Determine the coefficients 𝑎, 𝑏, 𝑐 of the quadratic function where 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐,
if 𝑓(0) = 6, 𝑓(2) = 11, 𝑓(−3) = 6. Also, find 𝑓(1).

181. Solve (𝑏+𝑐)(𝑦+𝑧)−𝑎𝑥 = 𝑏−𝑐,(𝑐+𝑎)(𝑧+𝑥)−𝑏𝑦 = 𝑐−𝑎,(𝑎+𝑏)(𝑥+𝑦)−𝑐𝑧 = 𝑎−𝑏,
where 𝑎 + 𝑏 + 𝑐 ≠ 0.

182. Examine the consistency of the system of equations 7𝑥 − 7𝑦 + 5𝑧 = 3, 3𝑥 + 𝑦 + 5𝑧 = 7
and 2𝑥 + 3𝑦 + 5𝑧 = 5.

183. Find the value of 𝑘 for which the following system of equations is consistent 𝑥 + 𝑦 =
3, (1 + 𝑘)𝑥 + (2 + 𝑘)𝑦 = 8, 𝑥 − (1 + 𝑘)𝑦 + (2 + 𝑘) = 0.

184. Find the value of 𝑘 for which the following system of equations is consistent (𝑘+1)3𝑥+
(𝑘 + 2)3 𝑦 = (𝑘 + 1)3, (𝑘 + 1)𝑥 + (𝑘 + 2)𝑦 = 𝑘 + 3, 𝑥 + 𝑦 = 1.
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Chapter 9
Matrices

Matrices are an important concept which has numerous real life usage in various mathematical
branches. Also, it has huge importance in modern computer science. It has its applications in
computer graphics, artificial intelligence, data structures leading to various clever algorithms.
Thus, it is of paramount importance that the reader understand this particular concept
in a sound manner.

Definition: A matrix is a rectangular array of real or complex numbers. This rectangular
array is made up of rows and columns much like determinants. Let us consider a matrix of
𝑚× 𝑛 symbols, where 𝑚 is number of rows and :𝑛 is the number of columns.

𝐴 = [
𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛
⋮ ⋮ ⋮ ⋮

𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛]
Such a matrix is called 𝑚 by 𝑛 matrix or a matrix of order 𝑚× 𝑛. Sometimes a matrix
is shown with parenthese instead of square brackets as shown in last example.

𝐴 = (
𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋮ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛)
A compact way to write a matrix is 𝐴 = [𝑎𝑖𝑗 ], 1 ≤ 𝑖 ≤ 𝑚; 1 ≤ 𝑗 ≤ 𝑛 or simply [𝑎𝑖𝑗 ]𝑚×𝑛𝑎𝑖𝑗
is an element located at 𝑖𝑡ℎ row and 𝑗𝑡ℎ column and is called (𝑖, 𝑗)𝑡ℎ element of the matrix.
A matrix is just a rectangular array of numbers and unlike determinants it does not have a
value.

9.1 Classification of Matrices

9.1.1 Equal Matrices
Two matrices are said to be equal if they have same order and each corresponding element is
equal.

9.1.2 Row Matrix
A matrix having a single row is called a row matrix. For example, [1,2, 3, 4].

9.1.3 Column Matrix
A matrix having a single column is called a column matrix. For example,
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[
1
2
3
4] .

9.1.4 Square Matrix
If 𝑚 = 𝑛 i.e number of rows and columns are equal then the matrix is called a square matrix.
For example,

[
1 2 3
4 5 6
7 8 9]

is a 3 × 3 matrix.

9.1.5 Diagonal Matrix
The diagonal from left-hand side upper corner to right-hand side lower corner is known
as leading diagonal or principal diagonal. In the example of square matrix the elements
of diagonal are 1, 5, 9. When a matrix has all elements as zero except those belonging to
its diagonal, then it is called a diagonal matrix. Equivalently, We can say that a matrix
[𝑎𝑖𝑗 ]𝑚×𝑛 is a diagonal matrix if 𝑎𝑖𝑗 = 0 ∀ 𝑖 ≠ 𝑗. For example, the square matrix example
can be converted to a diagonal matrix like below:

[
1 0 0
0 5 0
0 0 9]

For an 𝑛 × 𝑛 matrix the diagonal elements are represented as [𝑑1, 𝑑2 … , 𝑑𝑛 ] This diagonal is
also written with a diag prefix like 𝑑𝑖𝑎𝑔[𝑑1, 𝑑2 … , 𝑑𝑛 ].

9.1.6 Scalar Matrix
A diagonal matrix whose elements of the diagonal are equal is called scalar matrix. For
example:

[
5 0 0
0 5 0
0 0 5]

For a square matrix [𝑎𝑖𝑗 ]𝑚×𝑛 to be a scalar matrix:

𝑎𝑖𝑗 = {
0, 𝑖 ≠ 𝑗
𝑚, 𝑖 = 𝑗

∀ 𝑚 ≠ 0

9.1.7 Unit Matrix or Identity Matrix
A diagonal matrix of order 𝑛, which has all elements of its diagonal as one, is called a unit
or identity matrix. It is also denoted by 𝐼𝑛. We can rewrite it in concise way like we did for
scalar matrix as
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𝑎𝑖𝑗 = {
0, 𝑖 ≠ 𝑗
1, 𝑖 = 𝑗

9.1.8 Horizontal Matrix
An 𝑚× 𝑛 matrix is called a horizontal matrix if 𝑚 < 𝑛. For example:

[ 1 2 3
4 5 6 ]

9.1.9 Vertical Matrix
An 𝑚× 𝑛 matrix is called a vertical matrix if 𝑚 > 𝑛. For example:

[
1 2
3 4
5 6]

9.1.10 Triangular Matrix
A sqaure matrix in which all the elements below the diagonal are zero is called upper
triangular matrix. Conversely, a sqaure matrix in which all the elements above the diagonal
matrix is called lower triangular matrix. Thus, for a lower triangular matrix 𝑎𝑖𝑗 = 0 when
𝑖 < 𝑗 and for an upper triangular matrix 𝑎𝑖𝑗 = 0 when 𝑖 > 𝑗

Clearly, a diagonal matrix is both lower and upper triangular matrix. A triangular matrix is
called strictly triangular if 𝑎𝑖𝑖 = 0 ∀ 1 ≤ 𝑖 ≤ 𝑛. Example of upper triangular matrix:

[
1 2 3
0 5 6
0 0 9]

Example of lower triangular matrix:

[
1 0 0
4 5 0
7 8 9]

9.1.11 Null or Zero Matrix
If all elements of a matrix is zero then it is a null or zero matrix.

9.1.12 Singular and Non-Singular Matrix
A matrix is said to be non-singular if |𝐴| ≠ 0 and singular if |𝐴| = 0.

9.1.13 Trace of Matrix
If sum of the elements of a sqaure matrix 𝐴 lying along the principal diagonal is called the
trace of 𝐴, i.e. 𝑡𝑟(𝐴). Thus, if 𝐴 = [𝑎𝑖𝑗 ]𝑛×𝑛 , then 𝑡𝑟(𝐴) = ∑𝑛

𝑖=1 𝑎𝑖𝑖
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9.1.14 Properties of Trace of a Matrix
To prove the second and third properties of a trace of matrix we will have to use properties
given further below on algebraic operations on a matrix. If 𝐴 = [𝑎𝑖𝑖 ]𝑛×𝑛 and 𝐵 = [𝑏𝑖𝑖 ]𝑛×𝑛
and 𝜆 is a scalar then

1. 𝑡𝑟(𝜆𝐴) = 𝜆𝑡𝑟(𝐴)

2. 𝑡𝑟(𝐴+𝐵) = 𝑡𝑟(𝐴)+ 𝑡𝑟(𝐵)

3. 𝑡𝑟(𝐴𝐵) = 𝑡𝑟(𝐵𝐴)

9.1.15 Determinant of a Matrix
Every square matrix 𝐴 has a determinant associated with it. This is written as 𝑑𝑒𝑡(𝐴) or |𝐴|
or Δ. We observe following for determinants of matrices:

1. If 𝐴1, 𝐴2, … , 𝐴𝑛 are square matrices of the same order then |𝐴1𝐴2 …𝐴𝑛| =
|𝐴1||𝐴2|… |𝐴𝑛|.

2. If 𝑘 is a scalar, then |𝑘𝐴| = 𝑘𝑛|𝐴|, where 𝑛 is the order of matrix.

3. If 𝐴 and 𝐵 are two matrices of equal order then |𝐴𝐵| = |𝐵𝐴| even though 𝐴𝐵 ≠ 𝐵𝐴.

9.2 Algebra of Matrices
9.2.1 Addition of Matrices
If any two matrices are of same order then addition of those can be performed. The result is
a matrix of same order with corresponding elements added. For example, consider two 3 × 3
matrices as given below:

𝐴 = [
𝑎1 𝑎2 𝑎3
𝑎4 𝑎5 𝑎6
𝑎7 𝑎8 𝑎9], 𝐵 = [

𝑏1 𝑏2 𝑏3
𝑏4 𝑏5 𝑏6
𝑏7 𝑏8 𝑏9]

then,

𝐴+𝐵 = [
𝑎1 + 𝑏1 𝑎2 + 𝑏2 𝑎3 + 𝑏3
𝑎4 + 𝑏4 𝑎5 + 𝑏5 𝑎6 + 𝑏6
𝑎7 + 𝑏7 𝑎8 + 𝑏8 𝑎9 + 𝑏9]

9.2.2 Subtraction of Matrices
The conditions are same for subtraction to happen i.e. order of the matrices must be same.
The result is like that of addition with resulting elements being the difference of original
matrices. For example,

𝐴−𝐵 = [
𝑎1 − 𝑏1 𝑎2 − 𝑏2 𝑎3 − 𝑏3
𝑎4 − 𝑏4 𝑎5 − 𝑏5 𝑎6 − 𝑏6
𝑎7 − 𝑏7 𝑎8 − 𝑏8 𝑎9 − 𝑏9]
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where 𝐴 and 𝐵 are matrices from previous example. Following is observed for addition and
subtraction:

1. Addition of matrices is commutative i.e. 𝐴 + 𝐵 = 𝐵 + 𝐴 as well as associative i.e.
(𝐴+𝐵)+𝐶 = 𝐴+ (𝐵 +𝐶).

2. Cancellation laws are true in case of addition.

3. The equation 𝐴+𝐵 = 𝑂 has a unique solution in the set of all 𝑚×𝑛 matrices (where 𝑂
is null matrix).

9.2.3 Scalar Multiplication
The scalar multiplication of a matrix 𝐴 with a scalar 𝜆 is defined as 𝜆𝐴 = [𝜆𝑎𝑖𝑗 ].

9.2.4 Multiplication of two Matrices
The prerequisite for matrix multiplication is that number of columns of first matrix must be
equal to number of rows of second matrix. The product is defined as

𝐴𝑚×𝑛𝐵𝑛×𝑝 =
𝑛
∑
𝑟=1

𝑎𝑚𝑟𝑏𝑟𝑝

It can be easily verified that the resulting matrix will have 𝑚 rows and 𝑝 columns.

A Properties of Matrix Multiplication

1. Commutative laws does not hold always for matrices.

2. If 𝐴𝐵 = 𝐵𝐴, then they are called commutative matrices.

3. If 𝐴𝐵 = −𝐵𝐴, then they are called anti-commutative matrices.

4. Matrix multiplication is associative i.e. (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶). Proof of this has been left as
an exercise.

5. Matrix mulplication is distributive wrt addition and subtraction i.e. 𝐴(𝐵 ± 𝐶) =
𝐴𝐵 ±𝐴𝐶.

9.2.5 Transpose of a Matrix
Let 𝐴 be any matrix then its transpose can be obtained by ecxchanging rows and columns. It
is denoted by 𝐴′ or 𝐴𝑇 and clearly, if order of 𝐴 is 𝑚× 𝑛 then 𝐴′ will have order of 𝑛 ×𝑚.

A Properties of Transpose Matrices

1. (𝐴+𝐵)′ = 𝐴′ + 𝐵′.

2. (𝐴′)′ = 𝐴.
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3. (𝑘𝐴)′ = 𝑘𝐴′ where 𝑘 is a constant.

4. (𝐴𝐵)′ = 𝐵′𝐴′.

Proofs of these properties are simple and have been left as an exercise.

9.2.6 Symmetric Matrix
A sqaure matrix 𝐴 = [𝑎𝑖𝑗 ] is called a symmetric matrix if 𝑎𝑖𝑗 = 𝑎𝑗𝑖 ∀ 𝑖,𝑗. We can also say
thet a matrix is symmetric if and only if 𝐴 = 𝐴′.

9.2.7 Skew Symmetric Matrix
A square matrix 𝐴 is said to be a skew symmetric matrix if 𝑎𝑖𝑗 = −𝑎𝑗𝑖 ∀𝑖, 𝑗. Clearly, if a
matrix is skew symmetric then elements of its diagonal are all zeros.

9.2.8 Orthogonal Matrix
A matrix is said to be orthogonal if 𝐴𝐴′ = 1.

Theorem 16

If 𝐴 is a square matrix then 𝐴+𝐴′ is a symmetric matrix and 𝐴−𝐴′ is a skew symmetric
matrix.

Proof

(𝐴 + 𝐴′)′ = 𝐴′ + (𝐴′)′ = 𝐴′ + 𝐴. Hence, 𝐴 + 𝐴′ is a symmetric matrix. (𝐴 − 𝐴′)′ =
𝐴′ − 𝐴 = −(𝐴−𝐴′). Hence, 𝐴−𝐴′ is a skew symmetric matrix. □

Theorem 17

Every square matrix can be shown as sum of a symetric matrix and a skew symmetric matrix.

Proof

Let 𝐴 be any square matrix. 1⁄2 (𝐴 + 𝐴′) + 1
⁄

2 (𝐴 − 𝐴′) = 𝐴 hus, the matrix 𝐴 is a sum of
symmetrix matrix 𝐴+𝐴′ and a skew symmetric matrix 𝐴−𝐴′ □

9.2.9 Adjoint of a Matrix
Let 𝐴 = [𝑎𝑖𝑗 ] be a square matrix. Let 𝐵 = [𝐴𝑖𝑗 ] where 𝐴𝑖𝑗 is the cofactor of the element 𝑎𝑖𝑗
in the det. 𝐴. The transpose 𝐵′ of the matrix 𝐵 is called the adjoint of the matrix 𝐴 and is
written by 𝑎𝑑𝑗.𝐴. For example,

Let 𝐴 = [
1 2 5
2 3 4
2 0 5], then 𝐵 = [

15 −2 −6
−10 −1 4
−1 2 −1]
𝑎𝑑𝑗.𝐴 = 𝐵′ = [

15 −10 −1
−2 −1 2
−6 −4 −1]
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𝐴.𝑎𝑑𝑗(𝐴) = 𝑎𝑑𝑗(𝐴) .𝐴 = |𝐴|𝐼𝑛

9.2.10 Inverse of a Matrix

Following from above, inverse of a matrix is 𝑎𝑑𝑗(𝐴)⁄|𝐴| . Inverse of a matrix 𝐴 is denoted by 𝐴−1.

9.2.11 Hermitian and Skew Hermitian Matrix

A sqaure matrix 𝐴 = [𝑎𝑖𝑗 ] is said to be a Hermitian matrix if 𝑎𝑖𝑗 = 𝑎𝑖𝑗 ∀ 𝑖, 𝑗 i.e. 𝐴 = 𝐴𝜃.
For example,

[ 𝑎 𝑏 + 𝑖𝑐
𝑏 − 𝑖𝑐 𝑑 ]

is a Hermitian matrix.

Similarly, a sqaure matrix 𝐴 = [𝑎𝑖𝑗 ] is said to be a skew Hermitian matrix if 𝑎𝑖𝑗 = 𝑎𝑗𝑖 ∀ 𝑖, 𝑗
i.e. 𝐴 = −𝐴𝜃. For example,

[ 0 −𝑏 + 𝑖𝑐
𝑏 + 𝑖𝑐 0 ]

is a skew Hermitian matrix. Following are observed for these types of matrices:

1. If 𝐴 is a hermitian matrix, then 𝑎𝑖𝑖 = 𝑎𝑖𝑖 ⇒ 𝑎𝑖𝑖 is real, ∀ 𝑖. Thus, members of diagonal
of a Hermitian matrix are all real.

2. A Hermitian matrix over the set of real numbers is actually a real symmetric matrix.

3. If 𝐴 is a skew Hermitian matrix, then 𝑎𝑖𝑖 = −(𝑎𝑖𝑖)⇒ 𝑎𝑖𝑖 = 0 i.e. 𝑎𝑖𝑖 must be purely
imaginary or zero.

4. A skew Hermitian matrix over the set of real numbers is acually a real skew-symmetric
matrix.

9.2.12 Idempotent Matrix

A square matrix 𝐴 is said to be idempotent if 𝐴2 = 𝐴 i.e. multiplication of the matrix with
itself yields itself.

9.2.13 Involuntary Matrix

A sqaure matrix 𝐴 is said to be involuntary if 𝐴2 = 𝐼 i.e. multiplication of the matrix with
itself yields an indetity matrix.

9.2.14 Nilpotent Matrix

For a positive integer 𝑖 if a square matrix satisfied the relationship 𝐴𝑖 = 𝑂 then it is called a
nilpotent matrix. Such smallest integer is called index of the nilpotent matrix.
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9.3 Properties of adjoint and inverse matrices
1. If 𝐴 is a sqaure matrix of order 𝑛, then 𝐴(𝑎𝑑𝑗(𝐴)) = |𝐴|𝐼𝑛 = (𝑎𝑑𝑗(𝐴))𝐴.

Let 𝐴 = [𝑎𝑖𝑗], and let 𝐶𝑖𝑗 be a cofactor of 𝑎𝑖𝑗 in 𝐴. Then, (𝑎𝑑𝑗(𝐴)) = 𝐶𝑗𝑖 ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛.
Now,

(𝐴 𝑎𝑑𝑗(𝐴)) =
𝑛
∑
𝑟=1

(𝐴)𝑖𝑟 (𝑎𝑑𝑗(𝐴))𝑟𝑗

=
𝑛
∑
𝑟=1

𝑎𝑖𝑟𝐶𝑟𝑗 = {
|𝐴|, if 𝑖 = 𝑗
0, if 𝑖 ≠ 𝑗

⇒= [
|𝐴| 0 0 … 0
0 |𝐴| 0… 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 … |𝐴|]
= |𝐴|𝐼𝑛

Similarly,

(𝑎𝑑𝑗(𝐴)𝐴)𝑖𝑗 =
𝑛
∑
𝑟=1

(𝑎𝑑𝑗(𝐴))𝑖𝑟 𝐴𝑟𝑗

=
𝑛
∑
𝑟=1

𝐶𝑟𝑖𝑎𝑟𝑗 = {
|𝐴|, if 𝑖 = 𝑗
0, if 𝑖 ≠ 𝑗

2. Every invertible matrix possesses a unique matrix. Let 𝐴 be a sqaure matrix of order
𝑛 × 𝑛. Let 𝐵 and 𝐶 be two inverses of 𝐴. Then, 𝐴𝐵 = 𝐵𝐴 = 𝐼𝑛 and 𝐴𝐶 = 𝐶𝐴 = 𝐼𝑛

𝐴𝐵 = 𝐼𝑛 ⇒ 𝐶(𝐴𝐵) = 𝐶𝐼𝑛 ⇒ (𝐶𝐴)𝐵 = 𝐶𝐼𝑛 ⇒ 𝐼𝑛𝐵 = 𝐶𝐼𝑛

⇒ 𝐵 = 𝐶

3. Reversal law: If 𝐴 and 𝐵 are invertible matrices of same oreder, then 𝐴𝐵 is invertible and
(𝐴𝐵)−1 = 𝐵−1𝐴−1. In general, if 𝐴,𝐵, 𝐶, … are invertible matrices then (𝐴𝐵𝐶 …)𝑛 =
…𝐶−1𝐵−1𝐴−1

If the given matrices are invertible |𝐴| ≠ 0 and |𝐵| ≠ 0 ⇒ |𝐴||𝐵| ≠ 0 Hence, 𝐴𝐵 is an
invertible matrix. Now,

(𝐴𝐵) (𝐵−1𝐴−1) = 𝐴(𝐵𝐵−1)𝐴−1

= 𝐴(𝐼𝑛)𝐴−1 = 𝐴𝐴−1 = 𝐼𝑛

Similarly,

(𝐵−1𝐴−1) (𝐴𝐵) = 𝐼𝑛
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4. If 𝐴 is an invertible matrix, then 𝐴′ is also invertible and (𝐴′)−1 = (𝐴−1)′.

𝐴 is an invertible matrix ∴ |𝐴| ≠ 0 ⇒ |𝐴′| ≠ 0[∵ |𝐴′| = |𝐴|]. Hence, 𝐴′ is also invertible.
Now,

𝐴𝐴−1 = 𝐼𝑛 = 𝐴−1𝐴

(𝐴𝐴−1)′ = (𝐴−1𝐴)′

(𝐴−1)′ 𝐴′ = 𝐼𝑛 = 𝐴′(𝐴−1)′

⇒ (𝐴′)−1 = (𝐴−1)′

5. If 𝐴 is a non-singular square matrix of order 𝑛, then |𝑎𝑑𝑗𝐴| = |𝐴|𝑛−1.

We have 𝐴(𝑎𝑑𝑗(𝐴)) = |𝐴|𝐼𝑛

𝐴(𝑎𝑑𝑗(𝐴)) = [
|𝐴| 0 0 ⋯ 0
0 |𝐴| 0 ⋯ 0
⋮ ⋮ ⋮
0 0 0 … |𝐴|]

|𝐴(𝑎𝑑𝑗(𝐴)) | = |𝐴|𝑛

|𝑎𝑑𝑗(𝐴) | = |𝐴|𝑛−1

6. Reversal law for adjoint: If 𝐴 and 𝐵 are non-singular sqaure matrices of the same order,
then

𝑎𝑑𝑗(𝐴𝐵) = 𝑎𝑑𝑗(𝐵)𝑎𝑑𝑗(𝐴) using (𝐴𝐵)−1 = 𝐵−1𝐴−1

7. If 𝐴 is an invertible square matrix, then 𝑎𝑑𝑗(𝐴′) = (𝑎𝑑𝑗(𝑎))′

8. If 𝐴 is a sqaure non-singular matrix, then 𝑎𝑑𝑗(𝑎𝑑𝑗(𝐴)) = 𝐴𝑛−2𝐴

We know that 𝐵(𝑎𝑑𝑗(𝐵)) = |𝐵|𝐼𝑛 for every sqaure matrix of order 𝑛. Replacing 𝐵 by
𝑎𝑑𝑗(𝐴) , we get (𝑎𝑑𝑗(𝐴))[𝑎𝑑𝑗(𝑎𝑑𝑗(𝐴))] = |𝑎𝑑𝑗(𝐴) |𝐼𝑛 = |𝐴|𝑛−1𝐼𝑛. Multiplying both
sides by 𝐴

(𝐴 𝑎𝑑𝑗(𝐴)) [𝑎𝑑𝑗(𝑎𝑑𝑗(𝐴))] = 𝐴{|𝐴|𝑛−1𝐼𝑛}

|𝐴|𝐼𝑛(𝑎𝑑𝑗(𝑎𝑑𝑗(𝐴))) = |𝐴𝑛−1|(𝐴𝐼𝑛)

𝑎𝑑𝑗(𝑎𝑑𝑗(𝐴)) = |𝐴𝑛−2|𝐴

9. If 𝐴 is a non-singular matrix then |𝐴−1|== |𝐴|−1 i.e. |𝐴−1|= 𝐼⁄
𝐴. Since |𝐴|≠ 0,∴𝐴𝐴−1 =

𝐼, |𝐴𝐴−1| = |𝐴|⇒ |𝐴||𝐴−1| = 1

10. Inverse of 𝑘𝑡ℎ power of 𝐴 is 𝑘𝑡ℎ power of the inverse of 𝐴.

9.4 Solution of Simultaneous Linear Equations
Consider the system of equations given below:
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{
𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛 = 𝑏2
⋮
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯+ 𝑎𝑛𝑛 = 𝑏𝑛

Let

𝐴 = [
𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋯ ⋮

𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛], 𝑋 = [
𝑥1
𝑥2
⋮
𝑥𝑛], 𝐵 = [

𝑏1
𝑏2
⋯
𝑏𝑛]

The system of equations can be written as 𝐴𝑋 = 𝐵 ⇒ 𝑋 = 𝐴−1𝐵. If |𝐴| ≠ 0, the system
of equations has only trivial solution and the number of solutions is finite. If |𝐴| = 0, the
system of equations has non-trivial solution and the number of solutions is infintite. If the
number of equations is less than the number of unknonwns then it has non-trivial solutions.

9.5 Elementary Operations/Transformations of a Matrix
Following are elementary operations of a matrix:

1. The interchange of any two rows or columns.

2. The multiplication of any row or column with a non-zero number.

3. The addition to the elements of any row or columns the corresponding elements of any
other row or column multiplied with any non-zero number.

Elementary operations are also called row or column operation.

9.5.1 Equivalent Matrices
If a matrix 𝐵 can be obtained from a matrix 𝐴 by elementary transformations, then they are
called equivalent matrices and are written as 𝐴 𝐵.

Every elementary row or column transformation of 𝑚×𝑛 matrix (not identiry matrix) can be
obtained by pre-multiplcation or post-multiplication with the corresponding elementary
matrix obtained from the identity matrix 𝐼𝑚(𝐼𝑛) by subjecting it to the same elementary
row or column transformation.

Let 𝐶 = 𝐴𝐵 be a product of two matrices. Any elementray row or column transformation of
𝐴𝐵 can be obained by subjecting the pre-factor 𝐴 or post-factor 𝐵 to the same elementary
row or column transformation.

9.5.2 Method of Finding Inverse of a Matrix by Elementary Trans
formation

Let 𝐴 be a non-singular matrix of order 𝑛. Then 𝐴 can be reduced to the identity matrix 𝐼𝑛
by a sequence of elementary transformations only. As we have discussed every elementary
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row transformation of a matrix is equivalent top pre-multiplication by the corresponding
elementary matrix. Therefore, there exists elementary matrices 𝐸1, 𝐸2,… , 𝐸𝑘 such that
(𝐸1,𝐸2,… , 𝐸𝑘)𝐴 = 𝐼𝑛 (𝐸1,𝐸2,… , 𝐸𝑘)𝐴𝐴−1 = 𝐼𝑛𝐴−1 (𝐸1,𝐸2,… , 𝐸𝑘)𝐼𝑛 = 𝐴−1

9.6 Echelon Form of a Matrix
A matrix is said to be in echelon form if

1. Every row of 𝐴 which has all its elements 0, occurs below row which has a non-zero
element.

2. The first non-zero element in each non-zero row is 1.

3. The number of zeros before the first non-zero element in a row is less than the number
of such zeros in the next row.

9.7 Rank of a Matrix
Let 𝐴 be a matrix of order 𝑚× 𝑛. If at least one of its minors of order 𝑟 is different from
zero and all minors of order 𝑟 + 1 are zero, then the number 𝑟 is called the rank of the
matrix 𝐴 and is denoted by 𝜌(𝐴).

1. The rank of a zero matrix is zero and rank of an identity matrix of order 𝑛 is 𝑛.

2. The rank of a non-singular matrix of order 𝑛 is 𝑛.

3. The rank of a matrix in echelon form is equal to the number of non-zero rows of the
matrix.

9.8 Application of Matrices to Geometry or Computer
Graphics

As said earlier matrices are very useful to represent many operaion in computer graphics or
geometry. It will require some knowledge of coordinate geometry.

9.8.1 Reflection Matrix
Consider a point 𝑃 (𝑥, 𝑦) and its reflection 𝑄(𝑥1, 𝑦1) along x-axis.

This may be written as 𝑥1 = 𝑥 + 0; 𝑦1 = 0 − 𝑦. This system of equation can be written in
matrix form as

[𝑥1𝑦1
] = [ 1 0

0 −1 ] [
𝑥
𝑦 ]

Thus the matrix [ 1 0
0 −1 ] is reflection matrix of a point along x-axis. Similarly, [−1 0

0 1 ]

is reflection matrix along y-axis.
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𝑃 (𝑥, 𝑦)

𝑄(𝑥1, 𝑦1)

𝑥

𝑦

Figure 9.1

Similarly, the reflection matrix through origin is [−1 0
0 −1 ]

Similarly, reflection along the line 𝑦 = 𝑥 is [ 0 1
1 0 ]

Similarly, reflection along the line 𝑦 = 𝑥 tan 𝜃 is [ cos 2𝜃 sin 2𝜃
sin 2𝜃 − cos 2𝜃 ]

9.8.2 Rotation Through an Angle

The rotation matrix in such a form would be [ cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ] for anti-clockwise rotation.
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9.9 Problems
1. Find the number of matrices having 12 elements.

2. Write down the matrix 𝐴 = [𝑎𝑖𝑗 ]2×3 where 𝑎𝑖𝑗 = 2𝑖 − 3𝑗.

3. If 𝐴 = [ 𝑎 𝑏
−𝑏 𝑎 ], 𝐵 = [−𝑎 𝑏

−𝑏 −𝑎 ], then find 𝐴+𝐵.

4. If 𝑌 = [ 3 2
1 4 ] and 2𝑋 + 𝑌 = [ 1 0

−3 2 ], find 𝑋.

5. If [𝑥
2 − 4𝑥 𝑥2

𝑥2 𝑥3
] = [ −3 1

𝑥 − +2 1 ], then find 𝑥.

6. Find 𝑥, 𝑦, 𝑧 and 𝑎 for which [𝑥 + 3 2𝑦 + 𝑥
𝑧 − 1 4𝑎 − 6 ] = [ 0 −7

3 2𝑎 ].

7. If 𝐴 = [
1 2 3
−1 0 2
1 −3 1], 𝐵 = [

4 5 6
−1 0 1
2 1 2], find 4𝐴 − 3𝐵.

8. If 𝐴 = [ 1 −2 3
−4 2 5 ], 𝐵 = [

2 3
4 5
2 1], find 𝐴𝐵 and 𝐵𝐴. Also, show that 𝐴𝐵 ≠ 𝐵𝐴.

9. If 𝐴, 𝐵, 𝐶 are three matrices such that 𝐴 = [𝑥 𝑦 𝑧 ], 𝐵 = [
𝑎 ℎ 𝑔
ℎ 𝑏 𝑓
𝑔 𝑓 𝑐 ], 𝐶 = [

𝑥
𝑦
𝑧 ], then

find 𝐴𝐵𝐶.

10. Find the transpose and adjoint of the matrix 𝐴, where 𝐴 = [
1 2 3
0 5 0
2 4 3].

11. Find the inverse of the matrix 𝐴 = [
0 1 2
1 2 3
3 1 1].

12. Find the inverse of the matrix 𝐴 = [
1 2 5
2 3 1
−1 1 1] and verify that 𝐴𝐴−1 = 1.

13. Let 𝐴 = [
1 2 2
2 1 2
2 2 1], prove that 𝐴2 − 4𝐴 − 5𝐼 = 0, hence obtain 𝐴−1.

14. Solve the following equations by matrix method: 5𝑥 + 3𝑦 + 𝑧 = 16, 2𝑥 + 𝑦 + 3𝑧 =
19 and 𝑥 + 2𝑦 + 4𝑧 = 25.
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15. Find the product of two matrices 𝐴 and 𝐵 where 𝐴 = [
−5 1 3
7 1 −5
1 −1 1 ], 𝐵 = [

1 1 2
3 2 1
2 1 3]

and use it for solving the equations 𝑥+𝑦+2𝑧 = 1, 3𝑥+2𝑦+𝑧 = 7 and 2𝑥+𝑦+3𝑧 = 2.

16. If [𝑥 + 𝑦 2
1 𝑥 − 𝑦 ] = [ 3 2

1 7 ], then find 𝑥 and 𝑦.

17. If [ 𝑥 − 𝑦 2𝑥 + 𝑥1
2𝑥 − 𝑦 3𝑥 + 𝑦1

] = [−1 5
0 13 ] and co-ordinates of points 𝑃 and 𝑄 be (𝑥, 𝑦) and

(𝑥1, 𝑦1), then find 𝑃𝑄.

18. Find 𝑋 and 𝑌 if 𝑋 + 𝑌 = [ 7 0
2 5 ] and 𝑋 − 𝑌 = [ 3 0

0 3 ].

19. Given 𝐴 = [
1 2 −3
5 0 2
1 −1 1 ] and 𝐵 = [

3 −1 2
4 2 5
2 0 3], find the matrix 𝐶 such that 𝐴+𝐶 = 𝐵.

20. If 𝐴 = [ 2 3 4
−3 0 2 ], 𝐵 = [ 3 −4 −5

1 2 1 ] and 𝐶 = [ 5 −1 2
7 0 3 ], find the matrix 𝑋 such that

2𝐴 + 3𝐵 = 𝑋 +𝐶.

21. If 𝐴 = [
1 2 3
−1 0 2
1 −3 1], 𝐵 = [

4 5 6
−1 0 1
2 1 2], 𝐶 = [

−1 2 1
−1 2 3
−1 −2 2], find 𝐴− 2𝐵 + 3𝐶.

22. If 𝑃 (𝑥) = [ cos 𝑥 sin 𝑥
− sin 𝑥 cos 𝑥 ] , then show that 𝑃 (𝑥) .𝑃 (𝑦) = 𝑃 (𝑥 + 𝑦) = 𝑃 (𝑦) .𝑃 (𝑥)

23. If 𝐴 = [
1 0 0
0 1 0
𝑎 𝑏 −1] , find 𝐴2.

24. If 𝐴 = [
−1 1 −1
3 −3 3
5 −5 5 ], 𝐵 = [

0 4 3
1 −3 −3
−1 4 4 ] , then find 𝐴2𝐵2.

25. If 𝐴 = [
2 3 4
1 2 3
−1 1 2], 𝐵 = [

1 3 0
−1 2 1
0 0 2], find 𝐴𝐵 and 𝐵𝐴 and show that 𝐴𝐵 ≠ 𝐵𝐴.

26. Find the product of the following two matrices: [
0 𝑐 −𝑏
−𝑐 0 𝑎
𝑏 −𝑎 0 ] and [ 𝑎

2 𝑎𝑏 𝑎𝑐
𝑎𝑏 𝑏2 𝑏𝑐
𝑎𝑐 𝑏𝑐 𝑐2 ].

27. If 𝐴 = [ 3 −5
−4 2 ], find 𝐴2 − 5𝐴 − 14𝐼, where 𝐼 is a unit matrix.

28. Verify that 𝐴 = [ 2 3
1 2 ] satisfies the equation 𝐴3 − 4𝐴2 + 𝐴 = 𝑂.
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29. If 𝐴 = [ 0.8 0.6
−0.6 0.8 ] , find 𝐴2.

30. If 𝐴 = [ 3 1
−1 2 ], find 𝑓(𝐴), where 𝑓(𝑥) = 𝑥2 − 5𝑥 + 7𝐼.

31. If 𝐴 = [ cos 𝜃 sin 𝜃
sin 𝜃 cos 𝜃 ], 𝐵 = [ cos 𝜙 sin 𝜙

sin 𝜙 cos 𝜙 ] , show that 𝐴𝐵 = 𝐵𝐴.

32. Let 𝑓(𝑥) = 𝑥2 − 5𝑥 + 6, find 𝑓(𝐴) , if 𝐴 = [
2 0 1
2 1 3
1 −1 0].

33. If the matrix 𝐴 = [ 5 3
12 7 ], then verify that 𝐴2− 12𝐴− 𝐼 = 0, where 𝐼 is a unit matrix.

34. Show that ([ 1 𝜔 𝜔2

𝜔 𝜔2 1
𝜔2 1 𝜔 ]+ [ 𝜔 𝜔2 1

𝜔2 1 𝜔
𝜔 𝜔2 1 ])[ 1𝜔𝜔2] = [ 000].

35. Let 𝐴 = [
0 − tan 𝛼⁄

2

tan 𝛼⁄
2 0 ] and 𝐼, the identity matrix of order 2. Show that 𝐼 + 𝐴 =

(𝐼 − 𝐴)[ cos 𝛼 − sin 𝛼
sin 𝛼 cos 𝛼 ].

36. Without using the concept of inverse of matrix, find the matrix [𝑥 𝑦
𝑧 𝑢 ] such that

[ 5 −7
−2 3 ][𝑥 𝑦

𝑧 𝑢 ] = [−16 −6
7 2 ].

37. Find 𝑥 so that [ 1 𝑥 1 ][
1 3 2
0 5 1
0 3 2][

1
1
𝑥] = 0.

38. Prove that the product of two matrices [ cos2 𝜃 cos 𝜃 sin 𝜃
cos 𝜃 sin 𝜃 sin2 𝜃

] and

[ cos2 𝜙 cos 𝜙 sin 𝜙
cos 𝜙 sin 𝜙 sin2 𝜙

] is a zero matrix when 𝜃 and 𝜙 differ by an odd multi

ple of 𝜋⁄2.

39. If 𝐴 = [ cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ], then show that 𝐴𝑛 = [ cos 𝑛𝜃 − sin 𝑛𝜃

sin 𝑛𝜃 cos 𝑛𝜃 ], where 𝑛 is a positive

integer.

40. If 𝐴 = [ 3 −4
1 −1 ], show that 𝐴𝑛 = [ 1 + 2𝑛 −4𝑛

𝑛 1 − 2𝑛 ], where 𝑛 is a positive integer.
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41. Let 𝐴 = [ 0 1
0 0 ]. Show that (𝑎𝐼 + 𝑏𝐴)𝑛 = 𝑎𝑛𝐼 + 𝑛𝑎𝑛−1𝑏𝐴, where 𝐼 is a unit matrix of

order 2 and 𝑛 is a positive integer.

42. Under what condition is the marix equation 𝐴2 − 𝐵2 = (𝐴+𝐵)(𝐴−𝐵) true?

43. A man buys 8 dozens of mangoes, 10 dozens of apples and 4 dozens of bananas.Mangoes
cost USD 18 per dozen, apples 9 per dozen and bananas 6 per dozen. Represent the
quntities by a row and a column matrix. Also, find the total cost.

44. A trust fund has USD 30,000 that is to be invested in two different types of bonds.
The first bond pays 5% interest per year and second bond pays 7% interest per year.
Using matrix multiplication determine how to divide USD 30,000 among the two types
of bonds if the turst find must obtain an annual interest of USD 2000.

45. A store has in stock 20 dozen shirts, 15 dozen trousers and 25 dozen pair of socks.
If the selling prices are USD 50 per shirt, 90 per trouser and 12 per pair of socks, then
find the toal amount store owner will get after selling all the items in the stock.

46. Co-operative store of a particular school has 10 dozen physics books, 8 dozen chemisty
books and 5 dozen mathematics books. Their selling prices are USD 8.3, 3.45, 4.5 each
respectively. Find the total amount the store owner will receive after selling all the
books.

47. If 𝐴 = [ cos 𝛼 sin 𝛼
− sin 𝛼 cos 𝛼 ], verify that 𝐴𝐴′ = 𝐼2 = 𝐴′𝐴.

48. Express the following matrix as a sum of a symmetric matrix and skew symmetric

matrix [
1 2 4
6 8 1
3 5 7 ].

49. Show that the following matrix is orthogonal [ cos 𝛼 sin 𝛼
− sin 𝛼 cos 𝛼 ].

50. Show that the matrix 1⁄3[
−1 2 2
2 −1 2
2 2 −1] is orthogonal.

51. If 𝐴 = [
1 2 3
2 3 2
3 3 4], find 𝑎𝑑𝑗(𝐴).

52. For the matrix [
cos 𝛼 − sin 𝛼 0
sin 𝛼 cos 𝛼 0
0 0 1] verify that 𝐴(𝑎𝑑𝑗 𝐴) = |𝐴|𝐼 .

53. For the matrix 𝐴 = [
1 −1 1
2 3 0
18 2 10], show that 𝐴(𝑎𝑑𝑗 𝐴) = 0.
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54. Find the inverse of [
1 3 3
1 4 3
1 3 4].

55. Find the inverse of [
2 −3 3
2 2 3
3 −2 2].

56. If 𝐴 = [ 𝑎 𝑏
𝑐 𝑑 ] such that 𝑎𝑑 − 𝑏𝑐 ≠ 0, then find the inverse of 𝐴.

57. If 𝐴 = [ 3 1
4 0 ], 𝐵 = [ 4 0

2 5 ], verify thet (𝐴𝐵)−1 = 𝐵−1𝐴−1.

58. If 𝐴 = [ 1 tan 𝑥
− tan 𝑥 1 ], show that 𝐴′𝐴−1 = [ cos 2𝑥 − sin 2𝑥

sin 2𝑥 cos 2𝑥 ].

59. If 𝐴 = [ 3 2
7 5 ] and 𝐵 = [ 6 7

8 9 ], find (𝐴𝐵)−1.

60. Solve the following system of equations by matrix method: 3𝑥−2𝑦 = 7 and 5𝑥+3𝑦 = 1.

61. Solve the following system of equations by matrix method: 2𝑥 − 3𝑦 + 3𝑧 = 1, 2𝑥 +
2𝑦 + 3𝑧 = 2 and 3𝑥 − 2𝑦 + 2𝑧 = 3.

62. Examine following system of equations for consistency: 2𝑥 + 3𝑦 = 5 and 6𝑥 + 9𝑦 = 10.
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Chapter 10
Inequalities

Till now we have used formulas and methods to prove results. Now we will study inequalities
which may require original thinking to (dis)prove them. This makes them fun and at times
irritating. There is no set method to solve them. Certainly there are techniques and with
time and practice you will learn these techniques to get better at solving these.

Ineuqalities come up in different branches of mathematics; for example in algebra, geometry
and trigonometry. They are very useful in establishing many relations among various
quantities. Certain inequalities are very useful in studying properties of many common
expressions which lead to interesting observations. In this chapter we will only study algebraic
inequalitites. The problems given are quite basic and simple. We start with some useful
theorems for these inequalities.

There are some facts which are the very important for proving inequalities. Some of them are
as follows:

1. If 𝑥 ≥ 𝑦 and 𝑦 ≥ 𝑧 then 𝑥 ≥ 𝑧, for any 𝑥, 𝑦, 𝑧 ∈ ℝ.

2. If 𝑥 ≥ 𝑎 and 𝑦 ≥ 𝑏 then 𝑥 + 𝑎 ≥ 𝑦 + 𝑏, for any 𝑥, 𝑦, 𝑎, 𝑏 ∈ ℝ.

3. If 𝑥 ≥ 𝑦 then 𝑥 + 𝑧 ≥ 𝑦 + 𝑧, for any 𝑥, 𝑦, 𝑧 ∈ ℝ.

4. If 𝑥 ≥ 𝑦 and 𝑎 ≥ 𝑏 then 𝑥𝑎 ≥ 𝑦𝑏, for any 𝑥, 𝑦 ∈ ℝ+ or 𝑎, 𝑏 ∈ ℝ+.

5. If 𝑥 ∈ ℝ then 𝑥2 ≥ 0, with equality holding if and only if 𝑥 = 0. More generally for
𝑎𝑖 ∈ ℝ+ and 𝑥𝑖 ∈ ℝ, 𝑖 = 1, 2, … , 𝑛 holds 𝑎𝑖𝑥2𝑖 + 𝑎2𝑥22 + ⋯ + 𝑎𝑛𝑥2𝑛 ≥ 0, with equality
holding if and only if 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 = 0.

10.1 Strum's Method
Strum's method is given by the German mathematician Friedrich Otto Rudolf Sturm.
Sturm's method helps prove a large number of different inequalities under certain conditions
along with various other applications.

Theorem 18

Prove that if the product of positive numbers 𝑥1, 𝑥2, ⋯ , 𝑥𝑛(𝑛 ≥ 2) is euqal to 1, then
𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛 ≥ 𝑛.

Proof

If 𝑥1 = ⋯ = 𝑥𝑛, then 𝑥1+⋯+𝑥𝑛 = 𝑛. So we see that the statement is true if all the numbers
are equal and are unity. Now we consider the case when at least two numbers are different
such that one is greater than 1 and the other one is smaller. Let us assume that these are 𝑥1
and 𝑥2 which does not cause loss of generality, and that 𝑥1 < 1 < 𝑥2. Note that 𝑥1 + 𝑥2 >
1 + 𝑥1𝑥2[∵ (1 − 𝑥1)(𝑥2 − 1) > 0]. If given numbers are substitued by 1, 𝑥1𝑥2, 𝑥3, … , 𝑥𝑛,
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then the product is equal to 1 and 1 + 𝑥1𝑥2 + 𝑥3 + ⋯+ 𝑥𝑛 < 𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛. Repeating
this we will find 𝑛 − 1 numbers equal to 1 and the 𝑛th number equal to 𝑥1𝑥2 …𝑥𝑛. Thus,
𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛 < 1. We see that equality holds if and only if 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 = 1 □

Theorem 19

Prove that if the sum of the numbers 𝑥1, 𝑥2, … , 𝑥𝑛(𝑛 ≥ 2) is equal to 1, then prove that
𝑥21 + 𝑥22 + ⋯ + 𝑥2𝑛 ≥

1
⁄

𝑛.

Proof

If 𝑥1 = 𝑥2 = … = 𝑥𝑛 = 1
⁄

𝑛 then 𝑥21 + 𝑥22 +⋯+ 𝑥2𝑛 =
1
⁄

𝑛. Like previous theorem we consider two

numbers 𝑥1 and 𝑥2 such that one of them is greater than 1⁄𝑛 while the other is smaller than 1⁄𝑛.
Assume that these two numbers are 𝑥1 and 𝑥2, which does not cause loss of generality, and
that 𝑥1 < 1
⁄

𝑛 and 𝑥2 > 1
⁄

𝑛. So we obtain a sequence of numbers 1⁄𝑛, 𝑥1 + 𝑥2 − 1
⁄

𝑛, 𝑥3, … , 𝑥𝑛 suhc

that their sum remains equal to 1. We can easily prove that 𝑥21 + 𝑥22 >
1
⁄

𝑛2 + (𝑥1 + 𝑥2 − 1
⁄

𝑛)
2
,

and hence

𝑥21 + 𝑥22 + ⋯ + 𝑥2𝑛 >
1⁄
𝑛2

+ (𝑥1 + 𝑥2 −
1
⁄

𝑛)
2
+ 𝑥23 + ⋯ + 𝑥2𝑛.

Repeating this we obtain a sequence in which all terms will be equal to 1⁄𝑛, and sum of their
square is less than the sum of squares of numbers 𝑥1, 𝑥2, … , 𝑥𝑛 i.e. 𝑥21 + 𝑥22 + ⋯ + 𝑥2𝑛 >
1
⁄

𝑛2 + to 𝑛 times. From this it follows that equality holds if and only if 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛. □

10.2 A.M., G.M., H.M. and Q.M.
Theorem 20 ((A.M.– G.M. – H.M. – Q.M. Inequality))

Let 𝑥1, 𝑥2, … , 𝑥𝑛 be positive real numbers, then

𝑛⁄
1
⁄

𝑥1 +
1
⁄

𝑥2 + ⋯ + 1⁄
𝑥𝑛

≤ 𝑛√

𝑥1𝑥2 …𝑥𝑛 ≤

𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛⁄
𝑛 ≤√

𝑥21 + 𝑥22 + ⋯ + 𝑥2𝑛⁄

𝑛 .

(10.1)

Proof

Consider the numbers 𝑥1⁄
𝑛√

𝑥1𝑥2⋯𝑥𝑛

, 𝑥2⁄
𝑛√

𝑥1𝑥2⋯𝑥𝑛

, ⋯ , 𝑥𝑛⁄
𝑛√

𝑥1𝑥2⋯𝑥𝑛

, we see that product is equal to 1.
From theorem 18, we have that

𝑥1⁄
𝑛√

𝑥1𝑥2 ⋯𝑥𝑛

+ 𝑥2⁄
𝑛√

𝑥1𝑥2 ⋯𝑥𝑛

+ ⋯+ 𝑥𝑛⁄
𝑛√

𝑥1𝑥2 ⋯𝑥𝑛

≥ 𝑛 ⇒ 𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛⁄
𝑛 ≥ 𝑛√

𝑥1𝑥2 ⋯𝑥𝑛.

The above inequality is also known as Cauchy's inequality.
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In the above inequality, if we substitute 𝑥𝑖 = 1⁄
𝑥𝑖, then

𝑛⁄
1
⁄

𝑥1 +
1
⁄

𝑥2 + ⋯ + 1⁄
𝑥𝑛

≤ 𝑛√

𝑥1𝑥2 ⋯𝑥𝑛.

Consider the numbers 𝑥1⁄
𝑥1+𝑥2+⋯+𝑥𝑛,

𝑥2⁄
𝑥1+𝑥2+⋯+𝑥𝑛, ⋯ , 𝑥𝑛⁄

𝑥1+𝑥2+⋯+𝑥𝑛, and note that their sum
is equal to 1. According to theorem 19, we have

( 𝑥1⁄
𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛

)
2
+ ( 𝑥2⁄

𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛
)
2
+ ⋯ + ( 𝑥𝑛⁄

𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛
)
2
≥ 1
⁄

𝑛

⇒ 𝑥21 + 𝑥22 + ⋯ + 𝑥2𝑛⁄
𝑛 ≥ (𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛⁄

𝑛 )
2
.

Hence, all the inequalities have been proven. □

10.3 Cauchy-Bunyakovsky-Schwarz Inequality
Theorem 21 ((Cauchy-Bunyakovsky-Schwarz Inequality))

Let 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑏1, 𝑏2, … , 𝑏𝑛 ∈ 𝑅. Then

(𝑎21 + 𝑎22 + ⋯ + 𝑎2𝑛) (𝑏21 + 𝑏22 + ⋯ + 𝑏𝑛)2 ≥ (𝑎1𝑏1 + 𝑎2𝑏2 + ⋯𝑎𝑛𝑏𝑛)2 . (10.2)

Proof

Let 𝑥𝑘 =√

(𝑎21 + 𝑎22 + ⋯ + 𝑎2𝑘)(𝑏

2
1 + 𝑏22 + ⋯ + 𝑏2𝑘), where 𝑘 = 1, 2, … , 𝑛. In this case,

𝑥𝑘+1 =√

(𝑎21 + 𝑎22 + ⋯ + 𝑎2𝑘 + 𝑎2𝑘+1) (𝑏

2
1 + 𝑏22 + ⋯ + 𝑏2𝑘 + 𝑏2𝑘+1)

√

[(√

𝑎21 + 𝑎22 + ⋯ + 𝑎2𝑘)

2
+ 𝑎2𝑘+1] [(√

𝑏21 + 𝑏22 + ⋯ + 𝑏𝑘)

2
+ 𝑏2𝑘+1]

≥√

(√

𝑎21 + 𝑎22 + ⋯ + 𝑎2𝑘.√

𝑏21 + 𝑏22 + ⋯ + 𝑏2𝑘 + 𝑎𝑘+1.𝑏𝑘+1)

2
= 𝑥𝑘 + 𝑎𝑘+1𝑏𝑘+1

Alternative Proof.

(𝑎21 + 𝑎22 + ⋯ + 𝑎2𝑛) (𝑏21 + 𝑏22 + ⋯ + 𝑏𝑛)2 − (𝑎1𝑏1 + 𝑎2𝑏2 + ⋯𝑎𝑛𝑏𝑛)2 =
𝑛
∑

𝑖,𝑗=1𝑖≥𝑗
(𝑎𝑖𝑏𝑗 − 𝑏𝑗𝑎𝑖)2 ≥ 0.

10.3.1 Titu's Lemma

Lemma 1

Let 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑏1, 𝑏2, … , 𝑏𝑛 be positive real numbers then
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𝑎21⁄
𝑏1
+ 𝑎22⁄
𝑏2
+ …+ 𝑎2𝑛⁄

𝑏𝑛
≥ (𝑎1 + 𝑎2 + ⋯+ 𝑎𝑛)2⁄

𝑏1 + 𝑏2 + ⋯ + 𝑏𝑛
(10.3)

Proof

This is a direct consequence of Cauchy-Bunyakovsky-Schwarz Inequality. It is obtained by
substituting 𝑎𝑖 = 𝑥𝑖⁄

√

𝑦𝑖

and 𝑏𝑖 =√

𝑦𝑖 into Cauchy-Bunyakovsky-Schwarz Inequality. Equality

holds if and only if 𝑎𝑖 = 𝑘𝑏𝑖 for a non-zero real constant 𝑘. □

10.4 Chebyshev's Inequality
Theorem 22

Let 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑏1, 𝑏2, … , 𝑏𝑛 be real numbers such that 𝑎1 ≤2≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑛 and 𝑏1 ≤ 𝑏2 ≤
⋯ ≤ 𝑏𝑛 or 𝑎1 ≥2≥ 𝑎2 ≥ ⋯ ≥ 𝑎𝑛 and 𝑏1 ≥ 𝑏2 ≥ ⋯ ≥ 𝑏𝑛, then the inequality

(𝑎1 + 𝑎2 + ⋯+ 𝑎𝑛⁄
𝑛 )(𝑏1 + 𝑏2 + ⋯ + 𝑏𝑛⁄

𝑛 ) ≤ 𝑎1𝑏1 + 𝑎2𝑏2 + ⋯ + 𝑎𝑛𝑏𝑛⁄
𝑛 (10.4)

holds. The inequality is strict unless at least one of the sequences is a constant sequence.

Proof

We have

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

(𝑎𝑖𝑏𝑖 − 𝑎𝑗𝑏𝑗) =
𝑛
∑
𝑖=1

(𝑛𝑎𝑖𝑏𝑖 − 𝑎𝑖
𝑛
∑
𝑗=1

𝑏𝑗) = 𝑛
𝑛
∑
𝑖=1

𝑎𝑖𝑏𝑖 −
𝑛
∑
𝑖=1

𝑎𝑖
𝑛
∑
𝑗=1

𝑏𝑗

Simiarly
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

(𝑎𝑗𝑏𝑗 − 𝑎𝑗𝑏𝑖) = 𝑛
𝑛
∑
𝑗=1

𝑎𝑗𝑏𝑗 −
𝑛
∑
𝑗=1

𝑎𝑗
𝑛
∑
𝑖=1

𝑏𝑖

From these two equations, we get

𝑛
𝑛
∑
𝑗=1

𝑎𝑗𝑏𝑗 −
𝑛
∑
𝑗=1

𝑎𝑗
𝑛
∑
𝑖=1

𝑏𝑖 =
1
⁄

2[
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

(𝑎𝑖𝑏𝑖 − 𝑎𝑖𝑏𝑗 + 𝑎𝑗𝑏𝑗 − 𝑎𝑗𝑏𝑖)]

= 1
⁄

2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

(𝑎𝑖 − 𝑎𝑗) (𝑏𝑖 − 𝑏𝑗)

Since both the sequences are either decreasing or increasing, we will have (𝑎𝑖−𝑎𝑗)(𝑏𝑖−𝑏𝑗)≥ 0.
Thus, we have

𝑛
𝑛
∑
𝑗=1

𝑎𝑗𝑏𝑗 −
𝑛
∑
𝑗=1

𝑎𝑗
𝑛
∑
𝑖=1

𝑏𝑖 ≥ 0.

Here equality holds if and only if for each of the indexes 𝑖, 𝑗 either 𝑎𝑖 = 𝑎𝑗 or 𝑏𝑖 = 𝑏𝑗. □
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Remark

If the the order of sequences ⟨𝑎𝑖⟩ and ⟨𝑏𝑖⟩ in the orevious theorem are reverses then the
inequlaity reverses as well.

The proof is similar to the proof of the theorem.

Remark

Chebyshev's inequality can be generalized to three or more sets of real numbers, with the
constraint that sets are in increasing or decreasing order.

Remark

If the two sequeqnces are non-increasing or non-decreasing, and let 𝑝1, 𝑝2,… , 𝑝𝑏 be a sequence
of non=negative real numbers such that ∑𝑛

𝑖=1 𝑝𝑖 is positive. Then the following inequality
holds

(
𝑛
∑
𝑖=1

𝑝𝑖𝑎𝑖𝑏𝑖⁄𝑛
∑
𝑖=1

𝑝𝑖 ) ≥ (
𝑛
∑
𝑖=1

𝑝𝑖𝑎𝑖⁄𝑛
∑
𝑖=1

𝑝𝑖 )(
𝑛
∑
𝑖=1

𝑝𝑖𝑏𝑖⁄𝑛
∑
𝑖=1

𝑝𝑖 ) .
The proof is similar to the theorem. This is called Chebyshev's inequality with weights.

10.5 Surányi's Inequality
Theorem 23

Let 𝑎1, 𝑎2, … , 𝑎𝑛 be non-negative real numbers, and let 𝑛 ∈ 𝑃 . Then

(𝑛 − 1) (𝑎𝑛1 + 𝑎𝑛2 + ⋯+ 𝑎𝑛𝑛)+ 𝑛𝑎1𝑎2 ⋯𝑎𝑛 ≥
(𝑎1 + 𝑎2 + ⋯+ 𝑎𝑛) (𝑎𝑛−11 + 𝑎𝑛−12 + ⋯ + 𝑎𝑛−1𝑛 ) . (10.5)

Proof

We will prove this by mathematical induction. Due to symmetry and homegeneity of the
inequality we may assume 𝑎1 ≥ 𝑎2 ≥ ⋯ ≥ 𝑎𝑛 and 𝑎1 + 𝑎2 + ⋯+ 𝑎𝑛 = 1. For 𝑛 = 1 equality
occurs. Let us assume that for 𝑛 = 1 the inequality holds i.e.

(𝑘 − 1) (𝑎𝑘1 + 𝑎𝑘2 + ⋯ + 𝑎𝑘𝑘)+ 𝑘𝑎1𝑎2 ⋯𝑎𝑘 ≥ 𝑎𝑘−11 + 𝑎𝑘−12 + ⋯ + 𝑎𝑘−1𝑘 .

We need to prove that:

𝑘
𝑘+1
∑
𝑖=1

𝑎𝑘+1𝑖 + (𝑘 + 1)
𝑘+1
∏
𝑖=1

𝑎𝑖 − (1 + 𝑎𝑘+1)
𝑘+1
∑
𝑖=1

𝑎𝑘𝑖 ≥ 0.

Hence

𝑘𝑎𝑘+1
𝑘
∏
𝑖=1

𝑎𝑖 ≥ 𝑎𝑘+1
𝑘
∑
𝑖=1

𝑎𝑘−1𝑖 − (𝑘 − 1)𝑎𝑘+1
𝑘
∑
𝑖=1

𝑎𝑘𝑖 .
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Using this last inequality, it remains to prove that:

(𝑘
𝑘+1
∑
𝑖=1

𝑎𝑘+1𝑖 −
𝑘
∑
𝑖=1

𝑎𝑘𝑖 )− 𝑎𝑘+1(𝑘
𝑘
∑
𝑖=1

𝑎𝑘𝑖 −
𝑘
∑
𝑖=1

𝑎𝑘−1𝑖 )+

𝑎𝑘+1(
𝑘
∏
𝑖=1

𝑎𝑖 + (𝑘 − 1)𝑎𝑘𝑘+1 − 𝑎𝑘−1𝑘+1) ≥ 0.

We have

𝑘
∏
𝑖=1

𝑎𝑖 + (𝑘 − 1)𝑎𝑘𝑘+1 − 𝑎𝑘−1𝑘+1 =
𝑘
∏
𝑖=1

(𝑎𝑖 − 𝑎𝑘+1 + 𝑎𝑘+1)+ (𝑘 − 1)𝑎𝑘𝑘+1 − 𝑎𝑘−1𝑘+1

≥ 𝑎𝑘𝑘+1 + 𝑎𝑘−1𝑘+1

𝑘
∑
𝑖=1

(𝑎𝑖 − 𝑎𝑘+1)+ (𝑘 − 1)𝑎𝑘𝑘+1 − 𝑎𝑘−1𝑘+1 = 0.

Also

(𝑘
𝑘+1
∑
𝑖=1

𝑎𝑘+1𝑖 −
𝑘
∑
𝑖=1

𝑎𝑘𝑖 )− 𝑎𝑘+1(𝑘
𝑘
∑
𝑖=1

𝑎𝑘𝑖 −
𝑘
∑
𝑖=1

𝑎𝑘−1𝑖 ) ≥ 0

⇒ 𝑘
𝑘
∑
𝑖=1

𝑎𝑘+1𝑖 −
𝑘
∑
𝑖=1

𝑎𝑘𝑖 ≥ 𝑎𝑘+1(𝑘
𝑘
∑
𝑖=1

𝑎𝑘𝑖 −
𝑘
∑
𝑖=1

𝑎𝑘−1𝑖 )

By Chebyshev's inequality, we have

𝑘
𝑘
∑
𝑖=1

𝑎𝑘𝑖 ≥
𝑘
∑
𝑖=1

𝑎𝑖
𝑘
∑
𝑖=1

𝑎𝑘−1𝑖 =
𝑘
∑
𝑖=1

𝑎𝑘−1𝑖

⇒ 𝑘
𝑘
∑
𝑖=1

𝑎𝑘𝑖 −
𝑘
∑
𝑖=1

𝑎𝑘−1𝑖 ≥ 0.

and since 𝑎1 + 𝑎2 + ⋯+ 𝑎𝑘+1 = 1, by the assumption 𝑎1 ≥ 𝑎2 ≥ ⋯ ≥ 𝑎𝑘+1, we deduce that

𝑎𝑘+1 ≤
1⁄
𝑘

So it is enough to prove that

𝑘
𝑘
∑
𝑖=1

𝑎𝑘+1𝑖 −
𝑘
∑
𝑖=1

𝑎𝑘𝑖 ≥
1⁄
𝑘(𝑘

𝑘
∑
𝑖=1

𝑎𝑘𝑖 −
𝑘
∑
𝑖=1

𝑎𝑘−1𝑖 ) .

which is equivalent to

𝑘
𝑘
∑
𝑖=1

𝑎𝑘+1𝑖 + 1⁄
𝑘

𝑘
∑
𝑖=1

𝑎𝑘−1𝑖 ≥ 2
𝑘
∑
𝑖=1

𝑎𝑘𝑖

Since AM ≥ GM we have that
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𝑘𝑎𝑘+1𝑖 + 1⁄
𝑘 𝑎

𝑘−1
𝑖 ≥ 2𝑎𝑘𝑖 ∀ 𝑖

Adding this inequality for 𝑖 = 1, 2, … , 𝑘 we obtain the required inequality. □

10.6 Rearrangement Inequality
Theorem 24

Let 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑛 and 𝑏1 ≤ 𝑏2 ≤ ⋯ ≤ 𝑏𝑛 (or 𝑎1 ≥ 𝑎2 ≥ ⋯ ≥ 𝑎𝑛 and 𝑏1 ≥ 𝑏2 ≥ ⋯ ≥ 𝑏𝑛)
be real numbers. If 𝑎′1, 𝑎′2, … , 𝑎′𝑛 is any permutation of 𝑎1, 𝑎2, … , 𝑎𝑛 then the equality

𝑛
∑
𝑖=1

𝑎𝑖𝑏𝑛+1−𝑖 ≤
𝑛
∑
𝑖=1

𝑎𝑖; 𝑏𝑖 ≤
𝑛
∑
𝑖=1

𝑎𝑖𝑏𝑖, (10.6)

holds. Thus the sum 
𝑛
∑
𝑖=1

𝑎𝑖𝑏𝑖 is maximum when the two sequences ⟨𝑎𝑖⟩ and ⟨𝑏𝑖⟩ are oredered

similarly. And the sum is minimum when these are ordered in opposite manner.

Proof

We start by assuming that both 𝑎𝑖's and 𝑏𝑖's are non-decreasing. Suppose ⟨𝑎′𝑖⟩ ≠ ⟨𝑎𝑖⟩. Let 𝑟
be the largest index such that 𝑎′𝑟 ≠ 𝑎𝑟 i.e. 𝑎′𝑟 ≠ 𝑎𝑟 and 𝑎′𝑖 = 𝑎𝑖 for 𝑟 < 𝑖 ≤ 𝑛. This implies that
𝑎′𝑟 is from the set {𝑎1, 𝑎2, … , 𝑎𝑟−1} and 𝑎′𝑟 < 𝑎𝑟. Further this also shows that 𝑎′1, 𝑎′2, … , 𝑎′𝑟
is a permutation of 𝑎1, 𝑎2, … , 𝑎𝑟. Thus we can find indices 𝑘 < 𝑟 and 𝑙 < 𝑟 such that 𝑎′𝑘 = 𝑎𝑟
and 𝑎′𝑟 = 𝑎𝑙. It follows that

𝑎′𝑘 − 𝑎′𝑟 = 𝑎𝑟 − 𝑎𝑙 ≥ 0, 𝑏𝑟 − 𝑏𝑘 ≥ 0

We now interchange 𝑎′𝑟 and 𝑎′𝑘 to get a permutation of 𝑎″1, 𝑎″2, … , 𝑎″𝑛 of 𝑎′1, 𝑎′2, … , 𝑎′𝑛; thus

{
𝑎″𝑖 = 𝑎′𝑖, if𝑖 ≠ 𝑟, 𝑘
𝑎″𝑟 = 𝑎′𝑘 = 𝑎𝑟,𝑎″𝑘 = 𝑎′𝑟 = 𝑎𝑙

Consider the sums

𝑆″ = 𝑎″1𝑏1 + 𝑎″2𝑏2 + ⋯ + 𝑎″𝑛𝑏𝑛, 𝑆′ = 𝑎′1𝑏1 + 𝑎′2𝑏2 + ⋯ + 𝑎′𝑛𝑏𝑛,

and the difference 𝑆″ − 𝑆′ :

𝑆″ − 𝑆′ =
𝑛
∑
𝑖=1

(𝑎″𝑖 − 𝑎′𝑖)𝑏𝑖

= (𝑎″𝑘 − 𝑎′𝑘)+ (𝑎″𝑟 − 𝑎′𝑟)𝑏𝑟
& = (𝑎′𝑟 − 𝑎′𝑘)𝑏𝑘 + (𝑎′𝑘 − 𝑎′𝑟)𝑏𝑟
= (𝑎′𝑘 − 𝑎′𝑟) (𝑏𝑟 − 𝑏𝑘) .

∵ 𝑎′𝑘 − 𝑎′𝑟 ≥ 0 and 𝑏𝑟 − 𝑏𝑘 ≥ 0, we can say that 𝑆″ ≥ 𝑆′. We observe that the permutations
𝑎″1,𝑎″2,… ,𝑎″𝑛 of 𝑎′1,𝑎′2,… ,𝑎′𝑛 has th eproperty that 𝑎″𝑖 = 𝑎𝑖 = 𝑎𝑖 for 𝑟 < 𝑖 ≤ 𝑛 and 𝑎″𝑟 = 𝑎′𝑘 = 𝑎𝑟.
Hence the permutation ⟨𝑎″𝑖 ⟩ in place of ⟨𝑎′𝑖⟩ may be considered and the steps can be continued
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like above. After at most 𝑛 − 1 such steps, we will arrive at the original permutation ⟨𝑎𝑖⟩
from ⟨𝑎′𝑖⟩. At each step the corresponding sum has the same order as 𝑎𝑖's i.e. non-decreasing.
Thus,

𝑎′1𝑏1 + 𝑎′2𝑏2 + ⋯ + 𝑎′𝑛𝑏𝑛 ≤ 𝑎1𝑏1 + 𝑎2𝑏2 + ⋯ + 𝑎𝑛𝑏𝑛 (10.7)

For the other part, let us put 𝑐𝑖 = 𝑎′𝑛+1−𝑖, 𝑑𝑖 = −𝑏𝑛+1−𝑖. Then 𝑐1, 𝑐2, … , 𝑐𝑛 is a permutation
of 𝑎1, 𝑎2,… , 𝑎𝑛 and 𝑑1 ≤ 𝑑2 ≤ ⋯ ≤ 𝑑𝑛. Using the inequality (Equation 10.7) for the sequences
⟨𝑐𝑖⟩ and ⟨𝑑𝑖⟩, we get

𝑐1𝑑1 + 𝑐2𝑑2 + ⋯ + 𝑐𝑛𝑑𝑛 ≤ 𝑎1𝑑2 + 𝑎2𝑑2 + ⋯ + 𝑎𝑛𝑑𝑛.

Thus,

−
𝑛
∑
𝑖=1

𝑎′𝑛+1−𝑖𝑏𝑛+1−𝑖 ≤ −
𝑛
∑
𝑛=1

𝑎𝑖𝑏𝑛+1−𝑖.

Thus,

𝑎′1𝑏1 + 𝑎′2𝑏2 + ⋯ + 𝑎′𝑛𝑏𝑛 ≥ 𝑎1𝑏1 + 𝑎2𝑏𝑛−1 + ⋯+ 𝑎𝑛𝑏1, (10.8)

which is the other part of the inequality.

For the equality, we consider pairs 𝑘, 𝑙 with 1 ≤ 𝑘 < 𝑙 ≤ 𝑛, either 𝑎 + 𝑘′ = 𝑎′𝑙 or 𝑎′𝑘 > 𝑎′𝑙 and
𝑏𝑘 = 𝑏𝑙, then the equality holds for (Equation ??rearrangement:2). For (Equation 10.8),
for each 𝑘, 𝑙 with 1 ≤ 𝑘 < 𝑙 ≤ 𝑛, either 𝑎′𝑛+1−𝑘 ≥ 𝑎′𝑛+1−𝑙 and 𝑏𝑛+1−𝑘 = 𝑏𝑛+1−𝑙. □

Corollary 4

Let 𝛼1, 𝛼2, … , 𝛼𝑛 be real numbers and 𝛽1, 𝛽2, … , 𝛽𝑛 be a permutation of 𝛼1, 𝛼2, … , 𝛼𝑛. Then
𝑛
∑
𝑖=1

𝛼𝑖𝛽1 ≤
𝑛
∑
𝑖=1

𝛼2𝑖 .

The equality holds if and only if ⟨𝛼𝑖⟩ = ⟨𝛽𝑖⟩.

Proof

Let 𝛼′1, 𝛼′2, … , 𝛼′𝑛 be a permutation of 𝛼1, 𝛼2, … , 𝛼𝑛 such that 𝛼′1 ≤ 𝛼′2 ≤ … ≤ 𝛼′𝑛. Then
we can find a bijections 𝜎 of {1,2,… ,𝑛} onto itself such that 𝛼′𝑖 = 𝛼𝜎(𝑖), 1 ≤ 𝑗 ≤ 𝑛; i.e. 𝜎 is
a permutation on the set {1,2,… , 𝑛}. Let 𝛽′𝑖 = 𝛽𝜎(𝑖). Then 𝛽′1, 𝛽′2, … , 𝛽′𝑛 is a permutation
of 𝛼′1 ≤ 𝛼′2 ≤ … ≤ 𝛼′𝑛. Applying the rearrangement inequality to 𝛼′1 ≤ 𝛼′2 ≤ … ≤ 𝛼′𝑛 and
𝛽′1, 𝛽′2, … , 𝛽′𝑛, we get

𝑛
∑
𝑖=1

𝛼′𝑖𝛽′𝑖 ≤
𝑛
∑
𝑖=1

(𝛼′𝑖)2 =
𝑛
∑
𝑖=1

𝛼2𝑖 .

We also have
𝑛
∑
𝑖=1

𝛼′𝑖𝛽′𝑖 =
𝑛
∑
𝑖=1

𝛼𝜎(𝑖)𝛽𝜎(𝑖) =
𝑛
∑
𝑖=1

𝛼𝑖𝛽𝑖,



Inequalities 267

because 𝜎 is a bijection on {1,2,… ,𝑛}. Thus,
𝑛
∑
𝑖=1

𝛼𝑖𝛽𝑖 ≤
𝑛
∑
𝑖=1

𝛼2𝑖 .

Say that equality holds and ⟨𝛼𝑖⟩ ≠ ⟨𝛽𝑖⟩. Then ⟨𝛼′𝑖⟩ ≠ ⟨𝛽′𝑖⟩. Let 𝑘 be the largest index
such that 𝛼′𝑘 ≠ 𝛽′𝑘 for 𝑘 < 𝑖 ≠ 𝑛. Let 𝑚 be the least integer such that 𝛼′𝑘 = 𝛽′𝑚. If 𝑚 > 𝑘,
then 𝛽′𝑚 = 𝛼′𝑘 and hence 𝛼′𝑘 = 𝛼′𝑚. This implies that 𝛼′𝑘 = 𝛼′𝑘+1 = ⋯ = 𝛼′𝑚 and hence
𝛽′𝑘+1 = ⋯ = 𝛽′𝑚. We now have an 𝑚1 > 𝑚 such that 𝛼′𝑘 = 𝛽′𝑚1. Using 𝑚1 as pivot, we get
𝛼′𝑘 = 𝛼′𝑘+1 = ⋯ = 𝛼′𝑚 = ⋯ = 𝛼′𝑚 and 𝛽′𝑘+1 = ⋯ = 𝛽′𝑚 = ⋯ = 𝛽′𝑚1. It can be concluded that
𝛼′𝑘 = 𝛽′𝑙 for some 𝑙 < 𝑘, thus forcing 𝑚 < 𝑘.

Clearly 𝛽′𝑚 ≠ 𝛽′𝑘 by our choice of 𝑘. We know that equality holds if and only if for any two
indexes 𝑟 ≠ 𝑠, either 𝛼′𝑟 = 𝛼′𝑠 or 𝛽′𝑟 = 𝛽′𝑠. Since 𝛽′𝑚 ≠ 𝛽′𝑘, we must have 𝛼′𝑚 = 𝛼′𝑘. But then
we have 𝛼′𝑚 = 𝛼′𝑚+1 = ⋯ = 𝛼′𝑘. From the minimality of 𝑚, we see that 𝑘 − 𝑚 + 1 equal
elements 𝛼′𝑚, 𝛼′𝑚+1, … , 𝛼′𝑘 must be among 𝛽′𝑚, 𝛽′𝑚+1, … , 𝛽′𝑛 and since 𝛽′𝑘 ≠ 𝛼′𝑘, we must
have 𝛼′𝑘 = 𝛽′𝑙 for some 𝑙 > 𝑘. But then using 𝛽′𝑙 = 𝛼′𝑙, we have

𝛼′𝑚 = 𝛼′𝑚+1 = ⋯ = 𝛼′𝑘 = ⋯ = 𝛼′𝑙.

Thus the number of equal elements gets enlarged to 𝑙 −𝑚+1 > 𝑘−𝑚+1. Since this process
cannot be continues indefinitely, we conclude that ⟨𝛼′𝑖⟩ = ⟨𝛽′𝑖⟩ which will be followed by
⟨𝛼𝑖⟩ ≠ ⟨𝛽𝑖⟩. □

Corollary 5

Let 𝛼1, 𝛼2, … , 𝛼𝑛 be positive real numbers and let 𝛽1, 𝛽2, … , 𝛽𝑛 be a permutation of
𝛼1, 𝛼2, … , 𝛼𝑛. Then

𝑛
∑
𝑖=1

𝛽𝑖⁄
𝛼𝑖

≥ 𝑛.

Equality holds if and only if ⟨𝛼𝑖⟩ ≠ ⟨𝛽𝑖⟩.

Proof

Let 𝛼′1, 𝛼′2, … , 𝛼′𝑛 be a permutation of 𝛼1, 𝛼2, … , 𝛼𝑛 suhc that 𝛼′1 ≤ 𝛼′2 ≤ …𝛼′𝑛. Like in
previous corollary, we can find a permutation 𝜎 of {1,2,… , 𝑛} such that 𝛼′𝑖 = 𝛼𝜎(𝑖) for
1 ≤ 𝑖 ≤ 𝑛. We defien 𝛽′𝑖 = 𝛽𝜎(𝑖). Then ⟨𝛽′𝑖⟩ is a permutation of ⟨𝛼′𝑖⟩. Using the rearrangement
theorem, we get

𝑛
∑
𝑖=1

𝛽′𝑖(−
1⁄
𝛼′𝑖
) ≤

𝑛
∑
𝑖=1

𝛼′𝑖(−
1⁄
𝛼′𝑖
) = −𝑛.

Thus, we have the desired inequality. Like previous case we camn derive the equality. □

10.7 Young's Inequality
Theorem 25

If 𝑝 ∈ [1,∞) and 𝑞 = 𝑝/(𝑝 − 1). 𝑞 ∈ [1, ∞] and 1⁄𝑝 +
1
⁄

𝑞 = 1. If 𝑎, 𝑏 > 0, then
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𝑎𝑝⁄
𝑝 + 𝑏𝑞⁄

𝑞 ≥ 𝑎𝑏 (10.9)

Proof

Taking log of L.H.S. log(𝑎
𝑝⁄
𝑝 + 𝑏𝑞⁄

𝑞 )

Notice that, since 1⁄𝑝 +
1
⁄

𝑞 = 1, so the L.H.S. is just a convext combination of 𝑎𝑝 and 𝑏𝑞. Since
log 𝑥 is a concave function, we have

log(𝑎
𝑝⁄
𝑝 + 𝑏𝑞⁄

𝑞 ) ≥ log 𝑎𝑝⁄
𝑝 + 𝑏𝑞⁄

𝑞 = log 𝑎 + log 𝑏 = log(𝑎𝑏) .

Hence, the inequality is proved(since log 𝑥 is strictly increasing).

Alternative Proof.

Using generalized AM-GM inequality,

𝑥𝑝⁄
𝑝 + 𝑏𝑞⁄

𝑞 ≥ [(𝑥𝑝)1/𝑝 (𝑦𝑞)1/𝑞 ] = 𝑥𝑦.

10.8 Hölder's Inequality
Theorem 26

Let 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑏1, 𝑏2, … , 𝑏𝑛 be real numbers and 𝑝, 𝑞 be two positive real numbers such that
1
⁄

𝑝 +
1
⁄

𝑞 = 1. (Such a pair of indices is called a pair of conjugate indices.) Then the inequality
holds

∣
𝑛
∑
𝑖=1

𝑎𝑖𝑏𝑖 ∣ ≤ (
𝑛
∑
𝑖=1

|𝑎𝑖|𝑝)
1/𝑝

(
𝑛
∑
𝑖=1

|𝑏𝑖|𝑞)
1/𝑞

(10.10)

holds. Equality holds if and only if |𝑎𝑖|𝑝 = 𝑐|𝑏𝑖|𝑞, 1 ≤ 𝑖 ≤ 𝑛, for some real constant 𝑐.

Proof

Following Young's inequality, consider

𝑥 = |𝑎𝑘|⁄
(

𝑛
∑
𝑖=1

|𝑎𝑖|𝑝)
1/𝑝 , 𝑦 =

|𝑏𝑘|⁄
(

𝑛
∑
𝑖=1

|𝑏𝑖|𝑞)
1/𝑞

so we get

|𝑎𝑘|𝑝⁄
𝑝(

𝑛
∑
𝑖=1

|𝑎𝑖|𝑝)
+ |𝑏𝑘|𝑞⁄
𝑞(

𝑛
∑
𝑖=1

|𝑏𝑖|𝑞)
≥ |𝑎𝑘||𝑏𝑘|⁄
(

𝑛
∑
𝑖=1

|𝑎𝑖|𝑝)
1/𝑝

(
𝑛
∑
𝑖=1

|𝑏𝑖|𝑞)
1/𝑞
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Now summing over 𝑘, we obtain

1
⁄

𝑝 +
1
⁄

𝑞 ≥

𝑛
∑
𝑖=1

|𝑎𝑘𝑏𝑘|⁄
(

𝑛
∑
𝑖=1

|𝑎𝑖|𝑝)
1/𝑝

(
𝑛
∑
𝑖=1

|𝑏𝑖|𝑞)
1/𝑞

Thus, we have

𝑛
∑
𝑖=1

|𝑎𝑘𝑏𝑘| ≤ (
𝑛
∑
𝑖=1

|𝑎𝑖|𝑝)
1/𝑝

(
𝑛
∑
𝑖=1

|𝑏𝑖|𝑞)
1/𝑞

.

It is now trivial to prove the condition for equality. □

Remark

If we take 𝑝 = 𝑞 = 3, Hölder's inequality reduces to the Cauchy-Schwarz inequality.

Remark

If either of 𝑝 and 𝑞 is negativem Hölder's inequality is reversed.

Remark

Hölder's inequality can have a version with weights. In addition to what we have, we also
consider consider weights 𝑤1, 𝑤2, … , 𝑤𝑛 then following equality holds

𝑛
∑
𝑖=1

𝑤𝑖|𝑎𝑖𝑏𝑖| ≤ (
𝑛
∑
𝑖=1

𝑤𝑖|𝑎𝑖|𝑝)
1/𝑝

(
𝑛
∑
𝑖=1

𝑤𝑖|𝑏𝑖|𝑞)
1/𝑞

Given below is generalized Hölder's inequaltiy and the proof is similar like above.

Theorem 27

Let 𝑎𝑖𝑗, 𝑖 = 1, 2, … , 𝑚; 𝑗 = 1, 2, … , 𝑛, be positive humbers and 𝛼1, 𝛼2, … , 𝛼𝑛 be positive real
numbers such that 𝛼1 + 𝛼2 + ⋯+ 𝛼𝑛 = 1. Then

𝑚
∑
𝑖=1

(
𝑛
∏
𝑗=1

𝑎𝑖𝑗𝑎
𝛼𝑗
𝑖𝑗 ) ≤

𝑛
∏
𝑗=1

(
𝑚
∑
𝑖=1

𝑎𝑖𝑗)
𝛼𝑗

. (10.11)

10.9 Minkowski's Inequality
Theorem 28

Let 𝑝 ≥ 1 be a real number and 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑏1, 𝑏2, … , 𝑏𝑛 be real numbers. Then

(
𝑛
∑
𝑖=1

|𝑎𝑖 + 𝑏𝑖|𝑝)
1/𝑝

≤ (
𝑛
∑
𝑖=1

|𝑎𝑖|𝑝)
1/𝑝

+(
𝑛
∑
𝑖=1

|𝑏𝑖|𝑝)
1/𝑝

(10.12)
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Here equality holds if and only if 𝑎𝑖 = 𝜆𝑏𝑖 for some constant 𝜆, 1 ≤ 𝑖 ≤ 𝑛.

Proof

We assume that 𝑝 > 1, because the result is clear for 𝑝 = 1. Observe the following:
𝑛
∑
𝑖=1

|𝑎𝑖 + 𝑏𝑖|𝑝 =
𝑛
∑
𝑖=1

|𝑎𝑖 + 𝑏𝑖|𝑝−1|𝑎𝑖 + 𝑏𝑖| ≤
𝑛
∑
𝑖=1

|𝑎𝑖 + 𝑏𝑖|𝑝−1|𝑎𝑖|+
𝑛
∑
𝑖=1

|𝑎𝑖 + 𝑏𝑖|𝑝−1|𝑏𝑖|.

Let 𝑞 be the conjugate index of 𝑝. Using Hölder's inequaity to each sum on the right hand
side, we have

𝑛
∑
𝑖=1

|𝑎𝑖 + 𝑏𝑖|𝑝−1|𝑎𝑖| ≤ (
𝑛
∑
𝑖=1

|𝑎𝑖|𝑝)
1/𝑝

(
𝑛
∑
𝑖=1

|𝑎𝑖 + 𝑏𝑖|(𝑝−1)𝑞)
1/𝑞

.

Since 𝑝, 𝑞 are conjugate indexes, we get (𝑝 − 1)𝑞 = 𝑝. It follows that

𝑛
∑
𝑖=1

|𝑎𝑖 + 𝑏𝑖|𝑝−1|𝑎𝑖| ≤ (
𝑛
∑
𝑖=1

|𝑎𝑖|𝑝)
1/𝑝

(
𝑛
∑
𝑖=1

|𝑎𝑖 + 𝑏𝑖|𝑝)
1/𝑞

.

Similarly,

𝑛
∑
𝑖=1

|𝑎𝑖 + 𝑏𝑖|𝑝−1|𝑏𝑖| ≤ (
𝑛
∑
𝑖=1

|𝑏𝑖|𝑝)
1/𝑝

(
𝑛
∑
𝑖=1

|𝑎𝑖 + 𝑏𝑖|𝑝)
1/𝑞

.

It now follows that

𝑛
∑
𝑖=1

|𝑎𝑖 + 𝑏𝑖|𝑝 ≤ [(
𝑛
∑
𝑖=1

|𝑎𝑖|𝑝)
1/𝑝

+(
𝑛
∑
𝑖=1

|𝑏𝑖|𝑝)
1/𝑝

](
𝑛
∑
𝑖=1

|𝑎𝑖 + 𝑏𝑖|𝑝)
1/𝑞

.

If we use 1 − (1/1) = 1/𝑝, we finally get the required inequaity.

Like Hölder's inequality the equality can be proven for this using the same conditions. □

Remark

For 0 < 𝑝 < 1, the inequality (Equation 10.12) gets reversed.

10.10 Convex and Concave Functions
Most of the inequalities discussed so far are consequencce of inequalities for a special class of
functions, known as convex and concave functions. Consider the function 𝑓(𝑥) = 𝑥𝑛 ∀ 𝑛 > 1
defined on ℝ. Consider the case of 𝑛 = 2, then on the graphs of this function, the chord
joining any two points always lies above the graph. In fact taking 𝑎 < 𝑏, and the point
𝑘𝑎 + (1 − 𝑘)𝑏 between 𝑎 and 𝑏, we see that

2− 𝑘𝑎2 − (1 − 𝑘)𝑏2 = −𝑘(1 − 𝑘) (𝑎 − 𝑏)2 ≤ 0.
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Thus,

𝑓(𝑘𝑎 + (1 − 𝑘)𝑏) ≤ 𝑘𝑓(𝑎)+ (1 − 𝑘)𝑓(𝑏) .

This property is the defining property of a convex function. The family of convex functions
obey a class of inequalities known as Jensen's inequality.

Let 𝐼 be an interval in ℝ. A function 𝑓 : 𝐼 → ℝ is said to be convext if for all 𝑥, 𝑦 in 𝐼 and 𝑘
in the interval [0, 1], the following inequality holds:

𝑓(𝑘𝑥 + (1 − 𝑘)𝑦) ≤ 𝑘𝑓(𝑥)+ (1 − 𝑘)𝑓(𝑦) . (10.13)

If the inequality is strict for all 𝑥 ≠ 𝑦, 𝑓 is said to be strictly convex on 𝐼 . If the inequality is
reverse for same conditions then 𝑓 is said to be concave and similarly for strictly concave 𝑓 .

There are other equivalent properties of a convex function. Let 𝑥1, 𝑥2, 𝑥3 are in 𝐼 such that
𝑥1 < 𝑥2 < 𝑥3 and we take 𝑘 = 𝑥3−𝑥2⁄

𝑥3−𝑥1 which gives us

1 − 𝑘 = 𝑥2 − 𝑥1⁄
𝑥3 − 𝑥1

, and 𝑥2 = 𝑘𝑥1 + (1 − 𝑘)𝑥3.

We have

𝑓(𝑥2) = 𝑓(𝑘𝑥1 + (1 − 𝑘)𝑥3)
≤ 𝑘𝑓(𝑥1)+ (1 − 𝑘)𝑓(𝑥3)

= 𝑥3 − 𝑥2⁄
𝑥3 − 𝑥1

𝑓(𝑥1)+
𝑥2 − 𝑥1⁄
𝑥3 − 𝑥1

𝑓(𝑥3) .

We can write this as

𝑓 𝑓(𝑥1)− 𝑓(𝑥2)⁄
𝑥1 − 𝑥2

≤ 𝑓(𝑥2)− 𝑓(𝑥3)⁄
𝑥2 − 𝑥3

,

for all 𝑥1 < 𝑥2 < 𝑥3 in 𝐼 . We can also write this as:

𝑓(𝑥1)⁄
(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)

+ 𝑓(𝑥2)⁄
(𝑥2 − 𝑥1)(𝑥2 − 𝑥3)

+ 𝑓(𝑥3)⁄
(𝑥3 − 𝑥1)(𝑥3 − 𝑥2)

≥ 0.

Consider 𝑧1 = (𝑎, 𝑓(𝑎)) and 𝑧2 = (𝑏, 𝑓(𝑏)) as two points on 𝑓 . The equation of line joining
these two points is given by

𝑔(𝑥) = 𝑓(𝑎)+ 𝑓(𝑏)− 𝑓(𝑎)⁄
𝑏 − 𝑧 (𝑥 − 𝑎) .

Any point between 𝑎 and 𝑏 is of the form 𝑥 = 𝑘𝑎 + (1 − 𝑘)𝑏. Thus,

𝑔(𝑥) = 𝑔(𝑘𝑎 + (1 − 𝑘)𝑏)

= 𝑓(𝑎)+ 𝑓(𝑏)− 𝑓(𝑎)⁄
𝑏 − 𝑎 (𝑘𝑎 + (1 − 𝑘)𝑏 − 𝑎)

= 𝑓(𝑎)+ (1 − 𝑘) [𝑓(𝑏)− 𝑓(𝑎)]
= 𝑘𝑓(𝑎)+ (1 − 𝑘)𝑓(𝑏)
≥ 𝑓(𝑘𝑎 + (1 − 𝑘)𝑏) = 𝑓(𝑥)
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Thus, (𝑥, 𝑔(𝑥)) lies above (𝑥, 𝑓(𝑥)), a point on 𝑓 .

We can look at this in another way. A subset 𝐸 of the plane ℝ2 is said to be convex if for
every pair of points 𝑧1 and 𝑧2 in 𝐸, the line joining 𝑧1 and 𝑧2 lies entirely in 𝐸. With every
function 𝑓 : 𝐼 → ℝ, we associate a subset of ℝ2 by

𝐸(𝑓 ) = {(𝑥, 𝑦) : 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑓(𝑥) ≤ 𝑦} .

Theorem 29

The function 𝑓 : 𝐼 → ℝ is convex if and only if 𝐸(𝑓 ) is a convex subset of ℝ2.

Proof

Let 𝑓 be convex. Let 𝑧1 = (𝑥1, 𝑦1) and 𝑧2 = (𝑥2, 𝑦2) be two points of 𝐸(𝑓 ). Consider any
point on the line zoining 𝑧1 and 𝑧2. Then,

𝑧 = 𝑘𝑧1 + (1 − 𝑘)𝑧2
= (𝑘𝑥1 + (1 − 𝑘)𝑥2, 𝑘𝑦1 + (1 − 𝑘)𝑦2)

for some 𝑘 ∈ [0, 1]. We see that 𝑎 ≤ 𝑘𝑥1 + (1 − 𝑘)𝑥2 ≤ 𝑏. Moreover,

𝑓(𝑘𝑥1 + (1 − 𝑘)𝑥2) ≤ 𝑘𝑓(𝑥1)+ (1 − 𝑘)𝑓(𝑥2)
≤ 𝑘𝑦1 + (1 − 𝑘)𝑦2.

Thus it follows that 𝑧 ∈ 𝐸(𝑓 ), proving that 𝐸(𝑓 ) is convex.

Conversely let 𝐸(𝑓 ) be convex. Let 𝑥1, 𝑥2 be two points in 𝐼 and let 𝑧1 = (𝑥1,𝑓(𝑥1)) and
𝑧2 = (𝑥2, 𝑓(𝑥2)). Then 𝑧1 and 𝑧2 are in 𝐸(𝑓). By conexity of 𝐸(𝑓), the point 𝑘𝑧1+ (1−𝑘)𝑧2
also lies in 𝐸(𝑓 ) for each 𝑘 ∈ [0, 1]. Thus,

(𝑘𝑥1 + (1 − 𝑘)𝑥2, 𝑘𝑓(𝑥1)+ (1 − 𝑘)𝑓(𝑥1)) ∈ 𝐸(𝑓 )

The definition of 𝐸(𝑓 ) shows that

𝑓(𝑘𝑥1 + (1 − 𝑘)𝑥2) ≤ 𝑘𝑓(𝑥1)+ (1 − 𝑘)𝑓(𝑥2) .

This shows that 𝑓 is convex on the interval 𝐼 . □

Following theorem gives description about slope of a function's graph.

Theorem 30

Let 𝑓 : 𝐼 → ℝ be a convex function and 𝑎 ∈ 𝐼 be a fixed point. Define a function 𝑃 : 𝐼 ∖{𝑎}→ℝ
by

𝑃 (𝑥) = 𝑓(𝑥)− 𝑓(𝑎)⁄
𝑥 − 𝑎 .

Then 𝑃 is a non-decreasing function on 𝐼 ∖ {𝑎}.
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Proof

Let 𝑓 is convex on 𝐼 and let 𝑥, 𝑦 be two points in 𝐼, 𝑥 ≠ 𝑎, 𝑥 ≠ 𝑏 such that 𝑥 < 𝑦. Then
exactly one of the three possibilities will be possible:

𝑎 < 𝑥 < 𝑦; 𝑥 < 𝑎 < 𝑦 𝑥 < 𝑦 < 𝑎.

Consider the case 𝑎 < 𝑥 < 𝑦; other cases can be handled similarly. We can write

𝑥 = 𝑥 − 𝑎⁄
𝑦 − 𝑎 𝑦 +

𝑦 − 𝑥⁄
𝑦 − 𝑎 𝑎.

The convexity of 𝑓 shows that

𝑓(𝑥 − 𝑎⁄
𝑦 − 𝑎 𝑦 +

𝑦 − 𝑥⁄
𝑦 − 𝑎 𝑎) ≤ 𝑥 − 𝑎⁄

𝑦 − 𝑎 𝑓(𝑦)+
𝑦 − 𝑥⁄
𝑦 − 𝑎 𝑓(𝑎) .

This is equivalent to

𝑓(𝑥)− 𝑓(𝑎)⁄
𝑥 − 𝑎 ≤ 𝑓(𝑦)− 𝑓(𝑎)⁄

𝑦 − 𝑎 .

Thus 𝑃 (𝑥) ≤ 𝑃 (𝑦) . This shows that 𝑃 (𝑥) is a non-decreasing function for 𝑥 ≠ 𝑎. □

Interestingly, the converse is also true; if 𝑃 (𝑥) is a non-decreasing function on 𝐼 ∖ {𝑎}
for every 𝑎 ∈ 𝐼, then 𝑓(𝑥) is convex. We fix 𝑥 < 𝑦 in 𝐼 and let 𝑎 = 𝑘𝑥 + (1 − 𝑘)𝑦 where
𝑘 ∈ (0,1). (The cases 𝑘 = 0 or 1 are obvious.) In this case

𝑃 (𝑥) = 𝑓(𝑥)− 𝑓(𝑎)⁄
𝑥 − 𝑎 = 𝑓(𝑥)− 𝑓(𝑎)⁄

(1 − 𝑘)(𝑥 − 𝑦)

𝑃 (𝑦) = 𝑓(𝑦)− 𝑓(𝑎)⁄
𝑦 − 𝑎 = 𝑓(𝑦)− 𝑓(𝑎)⁄

𝑘(𝑦 − 𝑥) .

The condition 𝑃 (𝑥) ≤ 𝑃 (𝑦) implies that 𝑓(𝑎) ≤ 𝑘𝑓(𝑥) + (1 − 𝑘)𝑓(𝑦) . Hence convexity
of 𝑓 is proven.

There is another easy way of deciding wherther a function is convex or concave for twice
differentiable functions. If 𝑓 is convex on an interval 𝐼 and if its second derivative exists
on 𝐼, then 𝑓 is convex(strictly convex) on 𝐼 if 𝑓″(𝑥) ≥ 0(> 0) for all 𝑥 ∈ 𝐼. Similarly 𝑓 is
concave(striclty concave) on 𝐼 if 𝑓″(𝑥) ≤ 0(< 0) for all 𝑥 ∈ 𝐼 .

When we defined conex function the inequality involved two points 𝑥, 𝑦; refer to (Equa
tion 10.13). Jensen's inequaity extends this to any finite number of points.

10.11 Jensen's Inequality
Theorem 31

Let 𝑓 : 𝐼 → ℝbe a convex function. Let 𝑥1, 𝑥2, … , 𝑥𝑛 are points in 𝐼 and 𝑘1, 𝑘2, … , 𝑘𝑛 are
real numbers in the interval [0, 1] such that 𝑘1 + 𝑘2 + ⋯+ 𝑘𝑛 = 1. Then
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𝑓(
𝑛
∑
𝑖=1

𝑘𝑖𝑥𝑖) ≤
𝑛
∑
𝑖=1

𝑘𝑖𝑓(𝑥𝑖) (10.14)

Proof

We will use induction to prove this. For 𝑛 = 2, this is the definition of a convex function.
Suppose the inequality (Equarion 10.14) is true for all 𝑝 < 𝑛; i.e. for 𝑝 < 𝑛 if 𝑥1, 𝑥 − 2, … , 𝑥𝑝
are 𝑝 points in 𝐼 and 𝑘1, 𝑘2, … , 𝑘𝑝 are real numbers in [0,1] such that ∑𝑛

𝑖=1 𝑘 − 𝑖 = 1, then

𝑓(
𝑝
∑
𝑖=1

𝑘𝑖𝑥𝑖) ≤
𝑝
∑
𝑖=1

𝑘 + 𝑖𝑓(𝑥𝑖) .

Now considering the conditions of the theorem,

𝑦1 =

𝑛−1
∑
𝑖=1

𝑘𝑖𝑥𝑖⁄
𝑛−1
∑
𝑖=1

𝑘𝑖
, 𝑦2 = 𝑥𝑛, 𝛼1 =

𝑛−1
∑
𝑗=1

𝑘𝑖, 𝛼2 = 𝑘𝑛.

We observe that 𝛼2 = 1 − 𝛼1, and 𝑦1, 𝑦2 are in 𝐼 . Using the conexity of 𝑓 , we get

𝑓(𝛼1𝑦1 + 𝛼2𝑦2) = 𝑓(𝛼1𝑦1 + (1 − 𝛼1)𝑦2)
≤ 𝛼1𝑓(𝑦1)+ (1 − 𝛼)1)𝑓(𝑦2)
= 𝛼1𝑓(𝑦1)+ 𝛼2𝑓(𝑦2) .

However, we have

𝛼1𝑦1 + 𝛼2𝑦2 =
𝑛
∑
𝑖=1

𝑘𝑖𝑥𝑖.

Now we consider 𝑓(𝑦1). If

𝜇𝑖 =
𝑘𝑖⁄

𝑛−1
∑
𝑖=1

𝑘𝑖
, 1 ≤ 𝑙 ≤ 𝑛 − 1

then it can be easily verifief that ∑𝑛−1
𝑙=1 𝜇𝑙 = 1. Using the induction hypothesis, we get

𝑓(
𝑛−1
∑
𝑙=1

𝜇𝑙𝑥𝑙) ≤
𝑛−1
∑
𝑙=1

𝜇𝑙𝑓(𝑥𝑙)

Since

𝑛−1
∑
𝑙=1

𝜇𝑙𝑥𝑙 = 𝑦1,

we get
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𝑓(𝑦1) ≤

𝑚−1
∑
𝑙=1

𝑘𝑙𝑓(𝑥𝑙)⁄
𝑛−1
∑
𝑖=1

𝑘𝑖
=

𝑛−1
∑
𝑖=1

𝑓(𝑥𝑖)⁄
𝛼1

Thus we obtain

𝑓
(

𝑛
∑
𝑖=1

𝑘𝑖𝑓(𝑥𝑖)) ≤ 𝛼1(
𝑛−1
∑
𝑖=1

𝑘𝑖𝑓(𝑥𝑖)⁄
𝑛−1
∑
𝑖=1

𝑘𝑖 )+ 𝑘𝑛𝑓(𝑥𝑛)

=
𝑛
∑
𝑖=1

𝑘𝑖𝑓(𝑥𝑖) .

Thus, the theorem is proved by induction. □

Remark

If 𝑓 : 𝐼 → ℝ is concave, then the inequality (Equarion 10.14) gets reversed. If 𝑥1, 𝑥2,… , 𝑥𝑛 are
points in 𝐼 and 𝑘1,𝑘2,… ,𝑘𝑛 are real numbers in the interval [0,1], such that 𝑘1+𝑘2+⋯+𝑘𝑛 =
1, then following inequality holds:

𝑓(
𝑛
∑
𝑖=1

𝑘𝑖𝑥𝑖) ≥
𝑛
∑
𝑖=1

𝑘𝑖𝑓(𝑥𝑖) (10.15)

Remark

Using the concavity of 𝑓(𝑥) = ln 𝑥 on (0, ∞), the AM-GM inequality can be proved. If
𝑥1, 𝑥2, … , 𝑥𝑛 are points in (0, ∞) and 𝑘1, 𝑘2, … , 𝑘𝑛 are real numbers in the interval [0,1]
such that 𝑘1 + 𝑘2 + …+ 𝑘𝑛 = 1, then we have

ln(
𝑛
∑
𝑖=1

𝑘𝑖𝑥𝑖) ≥
𝑛
∑
𝑖=1

𝑘𝑖 ln(𝑥𝑖)

Proof

Taking 𝑘𝑖 = 1
⁄

𝑛 for all 𝑖,

ln(
𝑛
∑
𝑖=1

𝑥𝑖⁄
𝑛) ≥ 1
⁄

𝑛

𝑛
∑
𝑖=1

ln 𝑥𝑖 =
𝑛
∑
𝑖=1

ln(𝑥1/𝑛𝑖 ) .

Using the fact that 𝑔(𝑥) = 𝑒𝑥 = exp(𝑥) is strictly increasing on the interval (−∞,∞), this
leads to

1
⁄

𝑛

𝑛
∑
𝑖=1

𝑥𝑖 ≥ exp(
𝑛
∑
𝑖=1

ln(𝑥1/𝑛𝑖 ))

=
𝑛
∏
𝑖=1

exp(ln(𝑥1/𝑛𝑖 ))

= (𝑥1𝑥2 …𝑥𝑛)1/𝑛 .
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We can also prove generalized AM-GM inequality with this method.

ln(
𝑛
∑
𝑖=1

𝑘𝑖𝑥𝑖 ≥
𝑛
∑
𝑖=1

𝑘𝑖 ln(𝑥𝑖)) =
𝑛
∑
𝑖=1

ln 𝑥𝑘𝑖𝑖 ,

Taking antilog
𝑛
∑
𝑖=1

𝑘𝑖𝑥𝑖 ≥
𝑛
∏
𝑖=1

𝑥𝑘𝑖𝑖 .

Nowfor any 𝑛 positive real numbers 𝛼1, 𝛼2, … , 𝛼𝑛, consider

𝑘𝑖 =
𝛼𝑖⁄𝑛

∑
𝑗=1

𝛼𝑗

Observe that 𝑘𝑖 are in [0, 1] and ∑𝑛
𝑖=1 𝑘𝑖 = 1. These choices of 𝑘𝑖 give

𝛼1𝑥1 + 𝛼2𝑥2 + ⋯+ 𝛼𝑛𝑥𝑛⁄
𝛼1 + 𝛼2 + ⋯+ 𝛼𝑛

≥ (𝑥𝛼1
1 𝑥𝛼2

2 …𝑥𝛼)2𝑛 )
1/(𝛼1+𝛼2+⋯+𝛼𝑛)

,

which is our generalized AM-GM inequality. □

Remark

Function 𝑓(𝑥) = 𝑥𝑝 can be used to prove Hölder's inequality. We know that 𝑓(𝑥) = 𝑥𝑝 is
convex for 𝑝 ≥ 1 and concave for 0,𝑝 < 1 for 𝑝 ∈ (0, ∞). Let 𝑥1, 𝑥2, … , 𝑥𝑛 be real numbers
and 𝑘1, 𝑘2, … , 𝑘𝑛 in [0, 1], then we have

(
𝑛
∑
𝑖=1

𝑘𝑖𝑥𝑖)
𝑝

≤
𝑛
∑
𝑖=1

𝑘𝑖𝑥𝑝𝑖 for 𝑝 ≥ 1

and

(
𝑛
∑
𝑖=1

𝑘𝑖𝑥𝑖)
𝑝

≥
𝑛
∑
𝑖=1

𝑘𝑖𝑥𝑝𝑖 for 0 < 𝑝 < 1.

Proof

Let 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑏1, 𝑏2, … , 𝑏𝑛 be real numbers and 𝑝 > 1 and 𝑞 be conjugate numbers. Thus,
1
⁄

𝑝 +
1
⁄

𝑞 = 1. We need to assume that 𝑏𝑖 ≠ 0 for all 𝑖; else we may delete all those 𝑏𝑖 which are
zero without having an effect on the equality. Let

𝑡 =
𝑛
∑
𝑖=1

|𝑏𝑖|𝑞, 𝑘𝑗 =
|𝑏𝑗|𝑞⁄
𝑡 , 𝑥𝑗 =

|𝑎𝑗|⁄
|𝑏𝑗|𝑞−1

We have 𝑘𝑗 ∈ [0, 1] and 𝑘1 + 𝑘2 + …+ 𝑘𝑛 = 1. Using the conexity of 𝑥𝑝, we have

(
𝑛
∑
𝑖=1

𝑘𝑖𝑥𝑖)
𝑝

≤
𝑛
∑
𝑖=1

𝑘𝑖𝑥𝑝𝑖 ,
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which implies that

(
𝑛
∑
𝑗=1

|𝑏𝑗|𝑞⁄
𝑡

|𝑎𝑗|⁄
|𝑏𝑗|𝑞−1

)
𝑝

≤
𝑛
∑
𝑗=1

|𝑏𝑗|1⁄
𝑡

|𝑎𝑗|𝑝⁄
|𝑏𝑗|(𝑞−1)𝑝

= 1
⁄

𝑡

𝑛
∑
𝑗=1

|𝑎𝑗|𝑝.

Futher simplification yields

𝑛
∑
𝑗=1

|𝑎𝑗𝑏𝑗| ≤ (
𝑛
∑
𝑗=1

|𝑎𝑗|𝑝)
1/𝑝

𝑡1−(1/𝑝) = (
𝑛
∑
𝑗=1

|𝑎𝑗|𝑝)
1/𝑝

(
𝑛
∑
𝑗=1

|𝑏𝑗|𝑞)
1/𝑞

For concave case the inequality is simply reversed. □

Theorem 32

Let 𝑓 : 𝐼 → ℝ be a convex function; 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑛, 𝑏1, 𝑏2, … , 𝑏𝑛 are real numbers in 𝐼
such that 𝑎1 + 𝑏1 ∈ 𝐼 and 𝑎𝑛 + 𝑏𝑛 ∈ 𝐼. Let 𝑎′1, 𝑎′2, … , 𝑎′𝑛 be a permutation of 𝑎1, 𝑎2, … , 𝑎𝑛.
Then the follwoing inequality is true:

𝑛
∑
𝑖=1

𝑓(𝑎𝑖 + 𝑏𝑛+1−𝑖) ≤
𝑛
∑
𝑖=1

𝑓(𝑎′𝑖 + 𝑏𝑖) ≤
𝑛
∑
𝑖=1

𝑓(𝑎𝑖 + 𝑏𝑖) .

Proof

We will use the proof of rearrangement inequality. Assume ⟨𝑎′𝑖⟩ ≠ ⟨𝑎𝑖⟩ and 𝑟 be the largest
index such that 𝑎′𝑟 ≠ 𝑎𝑟. Since 𝑎𝑖 = 𝑎′𝑖 for 𝑟 < 𝑖 ≤ 𝑛, we see that 𝑎′1, 𝑎′2,… , 𝑎′𝑟 is a permutation
of (𝑎1, 𝑎2, … , 𝑎𝑟). Thus we can find 𝑘 < 𝑟, 𝑙 < 𝑟 such that 𝑎′𝑘 = 𝑎𝑟 and 𝑎′𝑟 = 𝑎𝑙. We deduce
that 𝑎′𝑘 − 𝑎′𝑟 = 𝑎𝑟 − 𝑎𝑙 ≥ 0 and 𝑏𝑟 − 𝑏𝑘 ≥ 0. Interchanging 𝑎′𝑟 and 𝑎′𝑘 to get a permutation
(𝑎″1, 𝑎″2, … , 𝑎″𝑛) of (𝑎′1, 𝑎′2, … , 𝑎′𝑛). Thus

𝑎″𝑖 = 𝑎′𝑖 for 𝑗 ≠ 𝑟,𝑘, 𝑎″𝑟 = 𝑎′𝑘 = 𝑎𝑟, 𝑎″𝑘 = 𝑎′𝑟 = 𝑎𝑙.

Let

𝑆″ =
𝑛
∑
𝑖=1

𝑓(𝑎″𝑖 + 𝑏𝑖) , 𝑆′ =
𝑛
∑
𝑖=1

𝑓(𝑎′𝑖 + 𝑏𝑖) .

Then,

𝑆″ − 𝑆′ = 𝑓(𝑎″𝑟 + 𝑏𝑟)+ 𝑓(𝑎″𝑘 + 𝑏𝑘)− 𝑓(𝑎′𝑟 + 𝑏𝑟)− 𝑓(𝑎′𝑘 + 𝑏𝑘)
= 𝑓(𝑎𝑟 + 𝑏𝑟)+ 𝑓(𝑎𝑙 + 𝑏𝑘)− 𝑓(𝑎𝑙 + 𝑏𝑟)− 𝑓(𝑎𝑟 + 𝑏𝑘) .

We notice that

𝑎𝑙 + 𝑏𝑘 < 𝑎𝑟 + 𝑏𝑘 and 𝑎𝑙 + 𝑏𝑟 < 𝑎𝑟 + 𝑏𝑟.

These give

𝑎𝑙 + 𝑏𝑘 < 𝑎𝑟 + 𝑏𝑘 ≤ 𝑎𝑟 + 𝑏𝑟, 𝑎𝑙 + 𝑏𝑘 ≤ 𝑎𝑙 + 𝑏𝑟 < 𝑎𝑟 + 𝑏𝑟.

If 𝑥1, 𝑥2, 𝑥3 are in 𝐼 , then the convexity of 𝑓 implies that
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(𝑥3 − 𝑥1)𝑓(𝑥2) ≤ (𝑥3 − 𝑥2)𝑓(𝑥1)+ (𝑥2 − 𝑥1)𝑓(𝑥3) .

Putting 𝑥1 = 𝑎𝑙 + 𝑏𝑘, 𝑥2 = 𝑎𝑟 + 𝑏𝑘 and 𝑥3 = 𝑎𝑟 + 𝑏𝑟, we get

(𝑎𝑟 + 𝑏𝑟 − 𝑎𝑙 − 𝑏𝑘)𝑓(𝑎𝑟 + 𝑏𝑘) ≤ (𝑏𝑟 − 𝑏𝑘)𝑓(𝑎𝑙 + 𝑏𝑘)+ (𝑎𝑟 − 𝑎𝑙)𝑓(𝑎𝑟 + 𝑏𝑟) .

Similarly putting 𝑥1 = 𝑎𝑙 + 𝑏𝑘, 𝑥2 = 𝑎𝑙 + 𝑏𝑟 and 𝑥3 = 𝑎𝑟 + 𝑏𝑟, we get

(𝑎𝑟 + 𝑏𝑟 − 𝑎𝑙 − 𝑏𝑘)𝑓(𝑎𝑙 + 𝑏𝑟) ≤ (𝑎𝑟 − 𝑎𝑙)𝑓(𝑎𝑙 + 𝑏𝑘)+ (𝑏𝑟 − 𝑏𝑘)𝑓(𝑎𝑟 + 𝑏𝑟) .

Adding, we get

(𝑎𝑟 + 𝑏𝑟 − 𝑎𝑙 − 𝑏𝑘) {𝑓(𝑎𝑟 + 𝑏𝑘)+ 𝑓(𝑎𝑙 + 𝑏𝑟)} ≤
(𝑎𝑟 + 𝑏𝑟 − 𝑎𝑙 − 𝑏𝑘) {𝑓(𝑎𝑙 + 𝑏𝑘)+ 𝑓(𝑎𝑟 + 𝑏𝑟)} .

Since 𝑎𝑙 + 𝑏𝑘 < 𝑎𝑟 + 𝑏𝑟, we arrive at

𝑓(𝑎𝑟 + 𝑏𝑘)+ 𝑓(𝑎𝑙 + 𝑏𝑟) ≤ 𝑓(𝑎𝑙 + 𝑏𝑘)+ 𝑓(𝑎𝑟 + 𝑏𝑟) .

This proves that 𝑆″ − 𝑆′ ≥ 0.

Now we observe that the permutation (𝑎″1, 𝑎″2, … , 𝑎″𝑛) has the property 𝑎″𝑟 = 𝑎𝑟 and 𝑎″𝑖 = 𝑎𝑖,
for 𝑟 < 𝑗 ≤ 𝑛. We may consider the (𝑎″1, 𝑎″2, … , 𝑎″𝑛) in place (𝑎′1, 𝑎′2, … , 𝑎′𝑛) and proceed
as above. After at most 𝑛 − 1 steps we arrive at the original numbers ⟨𝑎𝑖⟩ from ⟨𝑎′𝑖⟩ and at
each stage the corresponding sum in non-decreasing. Thus, finally we arrive at

𝑛
∑
𝑖=1

𝑓(𝑎′𝑖 + 𝑛𝑖) ≤
𝑛
∑
𝑖=1

𝑓(𝑎𝑖 + 𝑏𝑖) .

For the other inequality we define 𝑐𝑖 = 𝑎𝑛+1−𝑖 so that 𝑐1 ≥ 𝑐2 ≥ ⋯ ≥ 𝑐𝑛. We have to show
that

𝑛
∑
𝑖=1

𝑓(𝑎𝑛+1−𝑖 + 𝑏𝑖) ≤
𝑛
∑
𝑖=1

𝑓(𝑎′𝑖 + 𝑏𝑖) .

Setting 𝑐′𝑖 = 𝑎′𝑖, we have
𝑛
∑
𝑖=1

𝑓(𝑐𝑖 + 𝑏𝑖) ≤
𝑛
∑
𝑖=1

𝑓(𝑐′𝑖 + 𝑏𝑖) ,

where (𝑐′1, 𝑐′2, … , 𝑐′𝑛) is a permutation of (𝑐1, 𝑐2, … , 𝑐𝑛). We take ⟨𝑐′𝑖⟩ ≠ ⟨𝑐𝑖⟩ and let 𝑟 be
the smallest index such that 𝑐′𝑟 ≠ 𝑐𝑟. This forces that 𝑐′𝑟 ∈ {𝑐𝑟+1, 𝑐𝑟+2,… , 𝑐𝑛} and 𝑐′𝑟 < 𝑐𝑟.
We see that (𝑐′𝑟, 𝑐′𝑟+1, … , 𝑐′𝑛) is a permutation of (𝑐𝑟, 𝑐𝑟+1, … , 𝑐𝑛). We can find 𝑘 > 𝑟, 𝑙 > 𝑟
such that 𝑐′𝑘 = 𝑐𝑟 and 𝑐′𝑟 = 𝑐𝑙. This implies that 𝑐′𝑘 − 𝑐′𝑟 = 𝑐𝑟 − 𝑐𝑙 ≥ 0 and 𝑏𝑘 − 𝑏𝑟 ≥ 0. Now
we can interchange 𝑐′𝑟 and 𝑐′𝑘 to get a permutation (𝑐″1, 𝑐″2, … , 𝑐″𝑛) of (𝑐′1, 𝑐′2, … , 𝑐′𝑛); thus

𝑐″𝑖 = 𝑐′𝑖 for 𝑖 ≠ 𝑟, 𝑘, 𝑐″𝑟 = 𝑐′𝑘 = 𝑐𝑟, 𝑐″𝑘 = 𝑐′𝑟 = 𝑐𝑙.

We compute the difference between

𝑆″ =
𝑛
∑
𝑖=1

𝑓(𝑐″𝑖 + 𝑏𝑖) , 𝑆′ =
𝑛
∑
𝑖=1

𝑓(𝑐′𝑖 + 𝑏𝑖) ,
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and obtain

𝑆″ − 𝑆′ = 𝑓(𝑐″𝑟 + 𝑏𝑟)+ 𝑓(𝑐″𝑘 + 𝑏𝑘)− 𝑓(𝑐′𝑟 + 𝑏𝑟)− 𝑓(𝑐′𝑘 + 𝑏𝑘)
= 𝑓(𝑐𝑟 + 𝑏𝑟)+ 𝑓(𝑐𝑙 + 𝑏𝑘)− 𝑓(𝑐𝑙 + 𝑏𝑟)− 𝑓(𝑐𝑟 + 𝑏𝑘) .

We see that

𝑐𝑙 + 𝑏𝑟 ≤ 𝑐𝑙 + 𝑏𝑘 < 𝑐𝑟 + 𝑏𝑘, 𝑐𝑙 + 𝑏𝑟 ≤ 𝑐𝑟 + 𝑏𝑟 < 𝑐𝑟 + 𝑏𝑘.

From the convexity of 𝑓

(𝑐𝑟 + 𝑏𝑘 − 𝑐𝑙 − 𝑏𝑟)𝑓(𝑐𝑙 + 𝑏𝑘) ≤ (𝑐𝑟 − 𝑐𝑙)𝑓(𝑐𝑙 + 𝑏𝑟)+ (𝑏𝑘 − 𝑏𝑟)𝑓(𝑐𝑟 + 𝑏𝑘) ,

and

(𝑐𝑟 + 𝑏𝑘 − 𝑐𝑙 − 𝑏𝑟)𝑓(𝑐𝑟 + 𝑏𝑟) ≤ (𝑏𝑘 − 𝑏𝑟)𝑓(𝑐𝑙 + 𝑏𝑟)+ (𝑐𝑟 − 𝑐𝑙)𝑓(𝑐𝑟 + 𝑏𝑘) .

Adding, we get

(𝑐𝑟 + 𝑏𝑘 − 𝑐𝑙 − 𝑏𝑟) {𝑓(𝑐𝑙 + 𝑏𝑘)+ 𝑓(𝑐𝑟 + 𝑏𝑟)} ≤
(𝑐𝑟 + 𝑏𝑘 − 𝑐𝑙 − 𝑏𝑟) {𝑓(𝑐𝑙 + 𝑏𝑟)+ 𝑓(𝑐𝑟 + 𝑏𝑘)} .

We know that 𝑐𝑟 + 𝑏𝑘 − 𝑐𝑙 − 𝑛𝑟 ≠ 0, so we have

𝑓(𝑐𝑙 + 𝑏𝑘)+ 𝑓(𝑐𝑟 + 𝑏𝑟) ≤ 𝑓(𝑐𝑙 + 𝑏𝑟)+ 𝑓(𝑐𝑟 + 𝑏𝑘) .

Thus, we see that 𝑆″ ≤ 𝑆′. We also see that the new sequence ⟨𝑐″𝑖 ⟩ has the property: 𝑐″𝑟 = 𝑐𝑟
and 𝐶″𝑖 = 𝑐𝑖 for 1 ≤ 𝑖 < 𝑟. Now we repeat the above argument by replacing ⟨𝑐′𝑖⟩ with ⟨𝑐″𝑖 ⟩.
At each step the sum will never increase. After at most 𝑛 − 1 steps we arrive at the sequence
⟨𝑐𝑖⟩. Thus, we find that the corresponding sum does not exceed to that of 𝑆′. Thus we get

𝑛
∑
𝑖=1

𝑓(𝑐𝑖 + 𝑏𝑖) ≤
𝑛
∑
𝑖=1

𝑓(𝑐′𝑖 + 𝑏𝑖) ,

which was to be proved. □

10.12 Bernoulli's Inequality
Theorem 33

For every real number 𝑟 ≥ 1 and real number 𝑥 ≥ −1, we have

(1 + 𝑥)𝑟 ≥ 1 + 𝑟𝑥

while for 0 ≤ 𝑟 ≤ 1 and real number 𝑥 ≥ −1 we have

(1 + 𝑥)𝑟 ≤ 1 + 𝑟𝑥.

Proof

Using the convexity of 𝑓(𝑥) = ln(𝑥) on (0,∞). Since 𝑥 ≥ −1, we have 1+𝑥 ≥ 0. If 0 ≤ 𝑟 ≤ 1,
we have
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ln(1 + 𝑟𝑥) = ln(𝑟(1 + 𝑥)+ 1 − 𝑟) ≥ 𝑟 ln(1 + 𝑥)+ (1 − 𝑟) ln(1) = 𝑟 ln(1 + 𝑥) .

Taking antilog gives (1 + 𝑥)𝑟 ≤ 1 + 𝑟𝑥. When 1 ≤ 𝑟 < ∞,

ln(1 + 𝑥) = ln(𝑟 − 1
⁄

𝑟 + 1
⁄

𝑟 (1 + 𝑟𝑥)) ≥ 𝑟 − 1
⁄

𝑟 ln(1)+ 1
⁄

𝑟 ln(1 + 𝑟𝑥) = 1
⁄

𝑟 ln(1 + 𝑟𝑥) .

This gives (1 + 𝑥)𝑟 ≥ 1 + 𝑟𝑥. □

10.13 Popoviciu's Inequality
Theorem 34

Let 𝑓 : 𝐼 → ℝ. If 𝑓 is convex, then for any three p;oints 𝑥, 𝑦, 𝑧 in 𝐼:

𝑓(𝑥)+ 𝑓(𝑦)+ 𝑓(𝑧)⁄
3 + 𝑓(𝑥 + 𝑦 + 𝑧⁄

3 ) ≥ 2
⁄

3 [𝑓(
𝑥 + 𝑦⁄
2 )+ 𝑓(𝑦 + 𝑧⁄

2 )+ 𝑓(𝑧 + 𝑥⁄
2 )]

(10.16)

Proof

Without loss of generality, we can assume that 𝑥 ≤ 𝑦 ≤ 𝑧. If 𝑥 ≤ 𝑦 ≤ 𝑥+𝑦+𝑧⁄
3 , then

𝑥 + 𝑦 + 𝑧⁄
3 ≤ 𝑥 + 𝑧⁄

2 ≤ 𝑧 and 𝑥 + 𝑦 + 𝑧⁄
3 ≤ 𝑦 + 𝑧⁄

2 ≤ 𝑧.

Therefore, there exists 𝑠, 𝑡 ∈ [0,1] such that

𝑥 + 𝑧⁄
2 = (𝑥 + 𝑦 + 𝑧⁄

3 )𝑠 + 𝑧(1 − 𝑠)

𝑦 + 𝑧⁄
2 = (𝑥 + 𝑦 + 𝑧⁄

3 ) 𝑡 + 𝑧(1 − 𝑡)

Adding, we get

𝑥 + 𝑦 − 2𝑧⁄
2 = 𝑥 + 𝑦 − 2𝑧⁄

3 (𝑠 + 𝑡)⇒ 𝑠+ 𝑡 = 3
⁄

2 .

As 𝑓 is a convex function

𝑓(𝑥 + 𝑧⁄
2 ) ≤ 𝑠.𝑓(𝑥 + 𝑦 + 𝑧⁄

3 )+ (1 − 𝑠) .𝑓(𝑧)

𝑓(𝑦 + 𝑧⁄
2 ) ≤ 𝑡.𝑓(𝑥 + 𝑦 + 𝑧⁄

3 )+ (1 − 𝑡) .𝑓(𝑧)

and

𝑓(𝑥 + 𝑦⁄
2 ) ≤ 1
⁄

2 𝑓(𝑥)+
1
⁄

2 𝑓(𝑦) .
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Adding together last three inequalities we get the required inequality. The case when 𝑥+𝑦+𝑧⁄3 ≤

𝑦 is considered similarly, bearing in mind that 𝑥 ≤ 𝑥+𝑧⁄
2 ≤ 𝑥+𝑦+𝑧⁄

3 and 𝑥 ≤ 𝑦+𝑧
⁄

2 ≤ 𝑥+𝑦+𝑧⁄
3 .

When 𝑓 is a concave function, the inequality gets reversed. □

10.14 Majorization
Definition: Given two seuquences ⟨𝑎⟩ = (𝑎1, 𝑎2, … , 𝑎𝑛) and ⟨𝑏⟩ = (𝑏1, 𝑏2, … , 𝑏𝑛) where
𝑎𝑖, 𝑏𝑖 ∈ ℝ ∀𝑖 ∈ {1,2,… , 𝑛}. We say that the sequence ⟨𝑎⟩ majorizes the seuqnece ⟨𝑏⟩, and
write ⟨𝑎⟩ ≻ ⟨𝑏⟩, if the following conditions are fulfilled:

𝑎1 ≥ 𝑎2 ≥ ⋯ ≥ 𝑎𝑛;

𝑏1 ≥ 𝑏2 ≥ ⋯ ≥ 𝑏𝑛;

𝑎1 + 𝑎2 + ⋯+ 𝑎𝑛 = 𝑏1 + 𝑏2 + ⋯+ 𝑏𝑛;

𝑎1 + 𝑎2 + ⋯+ 𝑎𝑘 ≥ 𝑏1 + 𝑏2 + ⋯+ 𝑏𝑘 ∀𝑘 ∈ {1, 2, … , 𝑛 − 1} .

10.15 Karamata's Inequality
Theorem 35

Let 𝑓 : [𝑎,𝑏] → ℝ be a convex function. Suppose that (𝑥1, … , 𝑥𝑛) ≻ (𝑦1, … , 𝑦𝑛) where
𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛 ∈ [𝑎, 𝑏]. Then we have:

𝑛
∑
𝑖=1

𝑓(𝑥𝑖) ≥
𝑛
∑
𝑖=1

𝑓(𝑦𝑖) . (10.17)

Proof

If 𝑓(𝑥) is a convex function over the interval (𝑎, 𝑏), then ∀𝑎 ≤ 𝑥1 ≤ 𝑥2 ≤ 𝑏 and 𝑔(𝑥, 𝑦) =
𝑓(𝑦)−𝑓(𝑥)⁄

𝑦−𝑥 , 𝑓(𝑥1,𝑥) ≤ 𝑔(𝑥2, 𝑥). If 𝑥 < 𝑥1, then

𝑔(𝑥1, 𝑥) =
𝑓(𝑥1)− 𝑓(𝑥)⁄

𝑥1 − 𝑥 ≤ 𝑓(𝑥1)− 𝑓(𝑥)⁄
𝑥1 − 𝑥 = 𝑔(𝑥2 − 𝑥) .

We can argue similarly for other values of 𝑥.

We define a sequence ⟨𝐶 ⟩ such that 𝑐𝑖 = 𝑔(𝑎𝑖, 𝑏𝑖)

We also define sequences ⟨𝐴⟩ and ⟨𝐵⟩ such that

𝐴𝑖 =
𝑖
∑
𝑗=1

𝑎𝑗, 𝐴0 = 0 and 𝐵𝑖 =
𝑖
∑
𝑗=1

𝑏𝑗, 𝐵0 = 0

If we assume that 𝑎𝑖 ≥ 𝑎𝑖+1 and similarly 𝑏𝑖 ≥ 𝑏𝑖+1, then we get that 𝑐𝑖 ≥ 𝑐𝑖+1. Now, we
know that
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𝑛
∑
𝑖=1

𝑓(𝑎𝑖)−
𝑛
∑
𝑖=1

𝑓(𝑏𝐼 ) =
𝑛
∑
𝑖=1

𝑐𝑖(𝑎𝑖 − 𝑏𝑖) =
𝑛
∑
𝑖=1

𝑐𝑖(𝐴𝑖 − 𝐴𝑖−1 − 𝐵𝑖 + 𝐵𝑖+1)

=
𝑛
∑
𝑖=1

𝑐𝑖(𝐴𝑖 − 𝐵𝑖)−
𝑛−1
∑
𝑖=0

𝑐𝑖+1(𝐴𝑖 − 𝐵𝑖) =
𝑛
∑
𝑖=1

(𝑐𝑖 − 𝑐𝑖+1) (𝐴𝑖 − 𝐵𝑖) ≥ 0

Therefore,
𝑛
∑
𝑖=1

𝑓(𝑥𝑖) ≥
𝑛
∑
𝑖=1

𝑓(𝑦𝑖) .

10.16 Muirhead's Inequality
Theorem 36

If a sequence ⟨𝑎⟩ majorises a sequence ⟨𝑏⟩, and 𝑥1, 𝑥2, … , 𝑥𝑛 be a set of postiive real numbers
then

∑
𝑠𝑦𝑚

𝑥𝑎11 𝑥𝑎22 …𝑥𝑎𝑛𝑛 ≥ ∑
𝑠𝑦𝑚

𝑥𝑏11 𝑥
𝑏2
2 …𝑥𝑏𝑛𝑛 (10.18)

Proof

We define a sequence ⟨𝑐⟩ such that ∑𝑛
𝑖=1 𝑐𝑖 = 0, the we observe

∑
𝑠𝑦𝑚

𝑥𝑐11 𝑥
𝑐2
2 …𝑥𝑐𝑛𝑛 ≥ 𝑛!

for real 𝑥1, 𝑥2, …𝑥𝑛. By AM-GM we know that

∑
𝑠𝑦𝑚

𝑥𝑐11 𝑥
𝑐2
2 …𝑥𝑐𝑛𝑛⁄

𝑛! ≥ 𝑛!√

∏
𝑠𝑦𝑚

𝑥𝑐11 𝑥
𝑐2
2 …𝑥𝑐𝑛𝑛

⇒ 𝑛!√

∏
𝑠𝑦𝑚

𝑥𝑐11 𝑥
𝑐2
2 …𝑥𝑐𝑛𝑛 = 𝑛!√
𝑛
∏
𝑖=1

𝑥(𝑛−1)!(𝑐1+𝑐2+⋯𝑐𝑛)𝑖 = 1

⇒ ∑
𝑠𝑦𝑚

𝑥𝑐11 𝑥
𝑐2
2 …𝑥𝑐𝑛𝑛 ≥ 𝑛!

We defined out sequence ⟨𝑐⟩ such that 𝑐𝑖 = 𝑎𝑖 − 𝑏𝑖 which gives us ∑𝑐𝑖 = ∑𝑎𝑖 −∑𝑏𝑖 = 0

Thus, ∑𝑠𝑦𝑚 𝑥𝑐11 𝑥
𝑐2
2 …𝑥𝑐𝑛𝑛 − 𝑛! ≥ 0. Multiplying with ∑𝑠𝑦𝑚∏𝑛

𝑖=1 𝑥
𝑏𝑖
𝑖 , we get

(∑
𝑠𝑦𝑚

𝑛
∏
𝑖=1

𝑥𝑏𝑖𝑖 )(∑
𝑠𝑦𝑚

𝑥𝑐11 𝑥
𝑐2
2 …𝑥𝑐𝑛𝑛 − 1)

= ∑
𝑠𝑦𝑚

𝑛
∏
𝑖=1

𝑥𝑏𝑖+𝑐𝑖𝑖 −
𝑛
∏
𝑖=1

𝑥𝑏1𝑖 ≥ 0
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⇒ ∑
𝑠𝑦𝑚

𝑛
∏
𝑖=1

𝑥𝑎𝑖𝑖 −
𝑛
∏
𝑖=1

𝑥𝑏1𝑖 ≥ 0

Hence, it is proved. □

10.17 Schur's Inequality
Theorem 37

Let 𝑥, 𝑦, 𝑧 be non-negative real numbers. For any 𝑟 > 0, we have

∑
𝑐𝑦𝑐

𝑥𝑟(𝑥 − 𝑦) (𝑥 − 𝑧) ≥ 0 (10.19)

with equality if and only if 𝑥 = 𝑦 = 𝑧, or if two of 𝑥, 𝑦, 𝑧 are equal and the third is 0.

Proof

When 𝑟 = 1, the following case arises:

𝑥3 + 𝑦3 + 𝑧3 + 3𝑥𝑦𝑧 ≥ 𝑥𝑦(𝑥 + 𝑦)+ 𝑦𝑧(𝑦 + 𝑧)+ 𝑧𝑥(𝑧 + 𝑥) .

Because L.H.S. is cyclic in 𝑥, 𝑦, 𝑧 without loss of generality we can assume 𝑥 ≥ 𝑦 ≥ 𝑧.
Rewriting L.H.S., we have

(𝑥 − 𝑦) [𝑥𝑟(𝑥 − 𝑧)− 𝑦𝑟(𝑦 − 𝑧)]+ 𝑧𝑟(𝑧 − 𝑥) (𝑧 − 𝑦) .

We see that 𝑥𝑟 ≥ 𝑦𝑟 and 𝑥 − 𝑧 ≥ 𝑦 − 𝑧. Thus the expression inside brackets is non-negative.
(𝑥 − 𝑦) is also non-negative. 𝑧𝑟 and (𝑧 − 𝑥)(𝑧 − 𝑦) are also non-negtive. Thus entire
expression is non-negative and hence the inequality is proven. □

Velentin Vornicu has given a general form of Schur's inequality. Consider 𝑎, 𝑏, 𝑐, 𝑥, 𝑦, 𝑧 ∈ ℝ,
where 𝑎 ≥ 𝑏 ≥ 𝑐, and either 𝑧 ≥ 𝑦 ≥ 𝑧 or 𝑧 ≥ 𝑦 ≥ 𝑥. Let 𝑘 ∈ ℤ+, and let 𝑓 : ℝ → ℝ+0 be either
convex or monotonic, then

𝑓(𝑥) (𝑎 − 𝑏)𝑘 (𝑎 − 𝑐)𝑘 + 𝑓(𝑦) (𝑏 − 𝑎)𝑘 (𝑏 − 𝑐)𝑘 + 𝑓(𝑧) (𝑐 − 𝑎)𝑘 (𝑐 − 𝑏)𝑘 ≥ 0.
(10.20)

10.18 Symmetric Functions
Let 𝑎1, 𝑎2, … , 𝑎𝑛 be arbitrary real numbers. Considering the polynomial 𝑃 (𝑥) = (𝑥 +
𝑎1)(𝑥+𝑎2)⋯ (𝑥+𝑎𝑛) = 𝑐𝑜𝑥𝑛+ 𝑐1𝑥𝑛−1+⋯+𝑐𝑛−1𝑥+ 𝑐𝑛. The the coefficients 𝑐0, 𝑐1,… , 𝑐𝑛
can be expressed as functions of 𝑎1, 𝑎2, 𝑎𝑛 like 𝑐0 = 1, 𝑐1 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛, 𝑐2 = 𝑎1𝑎2 +
𝑎2𝑎3 + ⋯ , 𝑎𝑛−1𝑎𝑛, 𝑐3 = 𝑎1𝑎2𝑎3 + 𝑎2𝑎3𝑎4 + ⋯ + 𝑎𝑛−2𝑎𝑛−1𝑎𝑛, … , 𝑐𝑛 = 𝑎1𝑎2 …𝑎𝑛.

These are also called elementary symmetric sum and the first elementary symmetric sum of
𝑓(𝑥) is often written as ∑𝑠𝑦𝑚 𝑓(𝑥) while the 𝑛th can be written as ∑𝑛

𝑠𝑦𝑚 𝑓(𝑥).

The symmetric sum ∑𝑠𝑦𝑚 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) of a function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) of 𝑛 variables
is defined to be ∑𝜎 𝑓(𝑥𝜎(1), 𝑥𝜎(2), … , 𝑥𝜎(𝑛)), where 𝜎 ranges over over all permutations
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of (1, 2, … , 𝑛). More generally symmetric sum of 𝑛 variables is a sum that is unchanged by
any permutatoin of its variables. Any symmetric sum can be written as a polynomial of
elementary symmetric sums.

A symmetric function of 𝑛 variables is a function that does not change by any permutation
of its variables. Therefore,

∑
𝑠𝑦𝑚

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑛! 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)

We define symmetric average 𝑝𝑘 as 𝑐𝑘⁄
(𝑛𝑘)

.

10.19 Newton's Inequality
Theorem 38

For non-negative 𝑥1, 𝑥2, … , 𝑥𝑛 and 0 < 𝑘 < 𝑛m

𝑑2𝑘 ≥ 𝑑𝑘−1𝑑𝑘+1, (10.21)

equality holds when all 𝑥𝑖's are equal.

Proof

We will prove this by mathematical induction. A proof by calculus is also possible but we
will not prove by that method.

For 𝑛 = 2, the inequality becomes AM-GM inequaltiy. Let the inequality hold for 𝑛 = 𝑚− 1
for some positive integer 𝑚 ≥ 3.

Let 𝑑′𝑘 be the symmetric averages of 𝑥1, 𝑥2, … , 𝑥𝑚−1. Note that 𝑑𝑘 =
𝑛−𝑘⁄
𝑛 𝑑′𝑘 +

𝑘
⁄

𝑛 𝑑
′
𝑘−1𝑥𝑚.

𝑑𝑘−1𝑑𝑘+1 = (𝑛 − 𝑘 + 1⁄
𝑛 𝑑′𝑘−1 +

𝑘 − 1⁄
𝑛 𝑑′𝑘−2𝑥𝑚)(

𝑛 − 𝑘 − 1⁄
𝑛 𝑑′𝑘+1 +

𝑘 + 1⁄
𝑛 𝑑′𝑘𝑥𝑚)

= (𝑛 − 𝑘 + 1)(𝑛 − 𝑘 − 1)⁄
𝑛2

𝑑′𝑘−1𝑑′𝑘+1 +
(𝑘 − 1)(𝑛 − 𝑘 − 1)⁄

𝑛2
𝑑′𝑘−2𝑑′𝑘+1𝑥𝑚

+ (𝑛 − 𝑘 + 1)(𝑘 + 1)⁄
𝑛2

𝑑′𝑘−1𝑑′𝑘𝑥𝑚 + (𝑘 − 1)(𝑘 + 1)⁄
𝑛2

𝑑′𝑘−2𝑑′𝑘𝑥2𝑚

≤ (𝑛 − 𝑘 + 1)(𝑛 − 𝑘 − 1)⁄
𝑛2

𝑑2𝑘′ +
(𝑘 − 1)(𝑛 − 𝑘 − 1)⁄

𝑛2
𝑑′𝑘−2𝑑′𝑘+1𝑥𝑚

+ (𝑛 − 𝑘 + 1)(𝑘 + 1)⁄
𝑛2

𝑑′𝑘−1𝑑′𝑘𝑥𝑚 + (𝑘 − 1)(𝑘 + 1)⁄
𝑛2

𝑑2𝑘−1′𝑥
2
𝑚

≤ (𝑛 − 𝑘 + 1)(𝑛 − 𝑘 − 1)⁄
𝑛2

𝑑2𝑘′ +
(𝑘 − 1)(𝑛 − 𝑘 − 1)⁄

𝑛2
𝑑′𝑘−1𝑑′𝑘𝑥𝑚
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+ (𝑛 − 𝑘 + 1)(𝑘 + 1)⁄
𝑛2

𝑑′𝑘−1𝑑′𝑘𝑥𝑚 + (𝑘 − 1)(𝑘 + 1)⁄
𝑛2

𝑑2𝑘−1′𝑥
2
𝑚

= (𝑛 − 𝑘)2⁄
𝑛2

𝑑2𝑘′ +
2(𝑛 − 𝑘)𝑘⁄

𝑛2
𝑑′𝑘𝑑′𝑘−1𝑥𝑚 + 𝑘2⁄

𝑛2
𝑑2𝑘−1′𝑥

2
𝑚 − (𝑑𝑘⁄𝑛 − 𝑑𝑘−1𝑥𝑚⁄

𝑛 )
2

≤ (𝑛 − 𝑘⁄
𝑛 𝑑′𝑘 +

𝑘
⁄

𝑛𝑑
′
𝑘−1𝑥𝑚)

2
= 𝑑2𝑘

Hence, it is proven by induction. □

10.20 Maclaurin's Inequality
Theorem 39

For non-negative 𝑥1, 𝑥2, … , 𝑥𝑛 and 0 < 𝑘 < 𝑛m

𝑑1 ≥ 𝑑1/22 ≥ ⋯ ≥ 𝑑1/𝑛𝑛 , (10.22)

equality holds when all 𝑥𝑖's are equal.

Proof

Following Newton's inequality it is enough to show that 𝑑1/(𝑛−1)𝑛−1 ≥ 𝑑1/𝑛𝑛 .

Since this is a homogeneous inequaqlity, it can be normalized. Thus, 𝑑𝑛 = ∏𝑥𝑖 = 1 We then
transform the inequality to(by exponentiating both sides by 𝑛 − 1)

∑1/𝑥𝑖⁄
𝑛 ≥ 1(𝑛−1)/𝑛 = 1.

We know that the G.M. of 1⁄𝑥1,
1
⁄

𝑥2, ⋯ , 1⁄
𝑥𝑛 is 1 and hence the inequality is true by AM-GM. □

10.21 Aczel's Inequality
Theorem 40

If 𝑎21 > 𝑎22 + ⋯ + 𝑎2𝑛 or 𝑏21 > 𝑏22 + ⋯ + 𝑏2𝑛, then

(𝑎1𝑏1 − 𝑎2𝑏2 − ⋯ − 𝑎𝑛𝑏𝑛)2 ≥ (𝑎21 − 𝑎22 − ⋯ − 𝑎2𝑛) (𝑏21 − 𝑏22 − ⋯ − 𝑏2𝑛)
(10.23)

Proof

Consider the function

𝑓(𝑥) = (𝑎1𝑥 − 𝑏1)2 −
𝑛
∑
𝑖=2

(𝑎𝑖𝑥 − 𝑏𝑖)2
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= (𝑎21 − 𝑎22 − ⋯ − 𝑎2𝑛)𝑥2 − 2(𝑎1𝑏2 − 𝑎2𝑏2 − ⋯ − 𝑎𝑛𝑏𝑛)𝑥 + (𝑏21 − 𝑏22 − ⋯ − 𝑏2𝑛) .

We have 𝑓(𝑏1⁄𝑎1) = −∑𝑛
𝑖=2(𝑎𝑖

𝑏1
⁄

𝑎1 − 𝑏𝑖)
2
≤ 0, and from 𝑎21 > 𝑎22 +⋯+ 𝑎2𝑛 we get lim

𝑥→∞
𝑓(𝑥)→

∞. Therefore, 𝑓(𝑥) must have at least one root, ⇔ 𝐷 = (𝑎1𝑏1 − 𝑎2𝑏2 − ⋯ − 𝑎𝑛𝑏𝑛)2 −
(𝑎21 − 𝑎22 − ⋯ − 𝑎2𝑛)(𝑏21 − 𝑏22 − ⋯ − 𝑏2𝑛) ≥ 0. □

10.22 Carleman's Inequality
Theorem 41

Let 𝑎1, 𝑎2, … , 𝑎𝑛 be 𝑛 non-negative real numbers, where 𝑛 ≥ 1 then
∞
∑
𝑖=1

(𝑎1𝑎2 ⋯𝑎𝑖)1/𝑖 < 𝑒
∞
∑
𝑖=1

𝑎𝑖, (10.24)

unless all of 𝑎𝑖's are equal to zero.

Proof

Let us define 𝑐𝑛 = 𝑛(1 + 1
⁄

𝑛)
𝑛
= (𝑛+1)𝑛⁄

𝑛𝑛−1 . Then for all positive integers 𝑖,

(𝑐1 … 𝑐𝑖)1/𝑖 = 𝑖 + 1

⇒
∞
∑
𝑖=1

(𝑎1 …𝑎𝑖)1/𝑖 =
∞
∑
𝑖=1

(𝑐1𝑎1 … 𝑐𝑖𝑎𝑖)1/𝑖⁄
(𝑐1 … 𝑐𝑖)1/𝑖

=
∞
∑
𝑖=1

(𝑐1𝑎1 … 𝑐𝑖𝑎𝑖)1/𝑖⁄
𝑖 + 1 .

Using AM-GM inequality, we get

∞
∑
𝑖=1

(𝑐1𝑎1 … 𝑐𝑖𝑎𝑖)1/𝑖⁄
𝑖 + 1 ≤

∞
∑
𝑖=1

𝑖
∑
𝑗=1

𝑐𝑗𝑎𝑗⁄
𝑖(𝑖 + 1) =

∞
∑
𝑗=1

∞
∑
𝑖=𝑗

𝑐𝑗𝑎𝑗⁄
𝑖(𝑖 + 1) .

Using the partial fraction for 1⁄
𝑖(𝑖+1)

∞
∑
𝑖=𝑗

1⁄
𝑖(𝑖 + 1) =

∞
∑
𝑖=𝑗

(1⁄𝑖 −
1⁄

𝑖 + 1) = 1
⁄

𝑗 .

⇒
∞
∑
𝑗=1

∞
∑
𝑖=𝑗

𝑐𝑗𝑎𝑗⁄
𝑖(𝑖 + 1) =

∞
∑
𝑗=1

(1 + 1
⁄

𝑗)
𝑗
𝑎𝑖.

Since (1 + 1
⁄

𝑗)
𝑗
< 𝑒, ∀ 𝑗 ∈ 𝐼 the inequality holds. □

10.23 Sum of Squares(SOS Method)
Sum of sqaures or S.O.S. method revolves around the basic fact that sum of squares is
a non-negative quantity. As you can see it requires knowledge only of very basic inequalitites
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which makes it highly desirable. By using SOS method we rewrite inequalitites as sum
of squares to prove them as non-negative using only basic inequalities.

Proposition 1

Let 𝑎, 𝑏, 𝑐 ∈ ℝ. Then (𝑎 − 𝑐)2 ≤ 2(𝑎 − 𝑏)2 + 2(𝑏 − 𝑐)2.

Proof

We have

(𝑎 − 𝑐)2 ≤ 2(𝑎 − 𝑏)2 + 2(𝑏 − 𝑐)2

⇔ 𝑎2 − 2𝑎𝑐 + 𝑐2 ≤ 2(𝑎2 − 2𝑎𝑏 + 𝑏2)+ 2(𝑏2 − 2𝑏𝑐 + 𝑐2)

⇔ 𝑎2 + 4𝑏2 + 𝑐204𝑎𝑏 − 4𝑏𝑐 + 2𝑎𝑐 ≥ 0

⇔ (𝑎 + 𝑐 − 2𝑏)2 ≥ 0,

which clearly holds. □

Proposition 2

Let 𝑎 ≥ 𝑏 ≥ 𝑐. Then (𝑎 − 𝑐)2 ≥ (𝑎 − 𝑏)2 + (𝑏 − 𝑐)2.

Proof

We have

(𝑎 − 𝑐)2 ≥ (𝑎 − 𝑏)2 + (𝑏 − 𝑐)2

⇔ 𝑎2 − 2𝑎𝑐 + 𝑐2 ≥ (𝑎2 − 2𝑎𝑏 + 𝑏2)+ (𝑏2 − 2𝑏𝑐 + 𝑐2)

⇔ 𝑏2 + 𝑎𝑐 − 𝑎𝑏 − 𝑏 ≤ 0

⇔ (𝑏 − 𝑎) (𝑏 − 𝑐) ≤ 0,

which is true for 𝑎 ≥ 𝑏 ≥ 𝑐. □

Proposition 3

Let 𝑎 ≥ 𝑏 ≥ 𝑐. Then 𝑎−𝑐⁄𝑏−𝑐 ≥
𝑎
⁄

𝑏.

Proof

Given 𝑎−𝑐⁄𝑏−𝑐 ≥
𝑎
⁄

𝑏

⇔ 𝑏(𝑎 − 𝑐) ≥ 𝑎(𝑏 − 𝑐)⇔ 𝑎𝑐 ≥ 𝑏𝑐 ⇔ 𝑎 ≥ 𝑏.

Theorem 42

Consider the expression 𝑆 = 𝑆𝑎(𝑏 − 𝑐)2 + 𝑆𝑏(𝑐 − 𝑎)2 + 𝑆𝑐(𝑎 − 𝑏)2, where 𝑆𝑎, 𝑆𝑏, 𝑆𝑐 are
functions of 𝑎, 𝑏, 𝑐.
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1. If 𝑆𝑎, 𝑆𝑏, 𝑆𝑐 ≥ 0 then 𝑆 ≥ 0.

2. If 𝑎 ≥ 𝑏 ≥ 𝑐 or 𝑎 ≤ 𝑏 ≤ 𝑐 and 𝑆𝑏, 𝑆𝑏 + 𝑆𝑎, 𝑆𝑏 + 𝑆𝑐 ≥ 0 then 𝑆 ≥ 0.

3. If 𝑎 ≥ 𝑏 ≥ 𝑐 or 𝑎 ≤ 𝑏 ≤ 𝑐 and 𝑆𝑎, 𝑆𝑐, 𝑆𝑎 + 2𝑆𝑏, 𝑆𝑐 + 2𝑆𝑏 ≥ 0 then 𝑆 ≥ 0.

4. If 𝑎 ≥ 𝑏 ≥ 𝑐 and 𝑆𝑏, 𝑆𝑐, 𝑎2𝑆𝑏 + 𝑏2𝑆𝑎 ≥ 0 then 𝑆 ≥ 0.

5. If 𝑆𝑎+𝑆𝑏 ≥ 0 or 𝑆𝑏+𝑆𝑐 ≥ 0 or 𝑆𝑐+𝑆𝑎 ≥ 0 or 𝑆𝑎+𝑆𝑏+𝑆𝑐 ≥ 0 and 𝑆𝑎𝑆𝑏+𝑆𝑏𝑆𝑐+𝑆𝑐𝑆𝑎 ≥
0 then 𝑆 ≥ 0.

Proof

1. If 𝑆𝑎, 𝑆𝑏, 𝑆𝑐 ≥ 0 then clearly 𝑆 ≥ 0.

2. Let us assume that 𝑎 ≥ 𝑏 ≥ 𝑐 or 𝑎 ≤ 𝑏 ≤ 𝑐 and 𝑆𝑏, 𝑆𝑏 + 𝑆𝑎, 𝑆𝑏 + 𝑆𝑐 ≥ 0.

By Proposition (Preposition 2), it follows that (𝑎 − 𝑐)2 ≥ (𝑎 − 𝑏)2 + (𝑏 − 𝑐)2, so we
have

𝑆 = 𝑆𝑎(𝑏 − 𝑐)2 + 𝑆𝑏(𝑐 − 𝑎)2 + 𝑆𝑐(𝑎 − 𝑏)2

≥ 𝑆𝑎(𝑏 − 𝑐)2 + 𝑆𝑏[(𝑎 − 𝑏)2 + (𝑏 − 𝑐)2 ]+ 𝑆𝑐(𝑎 − 𝑏)2

= (𝑏 − 𝑐)2 (𝑆𝑎 + 𝑆𝑏)+ (𝑎 − 𝑏)2 (𝑆𝑏 + 𝑆𝑐) .

Thus, 𝑆 ≥ 0 because 𝑆𝑎 + 𝑆𝑏, 𝑆𝑏 + 𝑆𝑐 ≥ 0.

3. Let us assume that 𝑎 ≥ 𝑏 ≥ 𝑐 or 𝑎 ≤ 𝑏 ≤ 𝑐 and 𝑆𝑎, 𝑆𝑐, 𝑆𝑎 + 2𝑆𝑏, 𝑆𝑐 + 2𝑆𝑏 ≥ 0.

Then if 𝑆𝑏 ≥ 0 clearly 𝑆 ≥ 0.

For case when 𝑆𝑏 ≤ 0, by Proposition (Preposition 1), we have (𝑎 − 𝑐)2 ≤ 2(𝑎 − 𝑏)2 +
2(𝑏 − 𝑐)2. Therefore

𝑆 = 𝑆𝑏(𝑏 − 𝑐)2 + 𝑆𝑏(𝑎 − 𝑐)2 + 𝑆𝑐(𝑎 − 𝑏)2

≥ 𝑆𝑎(𝑏 − 𝑐)2 + 𝑆𝑏[2(𝑎 − 𝑏)2 + 2(𝑏 − 𝑐)2 ]+ 𝑆𝑐(𝑎 − 𝑏)2

= (𝑏 − 𝑐)2 (𝑆𝑎 + 2𝑆𝑏)+ (𝑎 − 𝑏)2 (𝑆𝑐 + 2𝑆𝑏)

which is true for the given conditions.

4. Given 𝑎 ≥ 𝑏 ≥ 𝑐 and 𝑆𝑏, 𝑆𝑐, 𝑎2𝑆𝑏 + 𝑏2𝑆𝑎 ≥ 0

By Proposition (Preposition 3), we have 𝑎−𝑐⁄𝑏−𝑐 ≥
𝑎
⁄

𝑏. Therefore

𝑆 = 𝑆𝑎(𝑏 − 𝑐)2 + 𝑆𝑏(𝑎 − 𝑐)2 + 𝑆𝑐(𝑎 − 𝑏)2 ≥ 𝑆𝑎(𝑏 − 𝑐)2 + 𝑆𝑏(𝑎 − 𝑐)2

= (𝑏 − 𝑐)2 [𝑆𝑎 + 𝑆𝑏(
𝑎 − 𝑐⁄
𝑏 − 𝑐)

2
] ≥ (𝑏 − 𝑐)2 [𝑆𝑎 + 𝑆𝑏(

𝑎⁄
𝑏)

2
]

= (𝑏 − 𝑐)2(𝑏
2𝑆𝑎 + 𝑎2𝑆𝑏⁄

𝑏2
) ,
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which is true for given conditions.

5. We assume that 𝑆𝑏 + 𝑆𝑐 ≥ 0. Then

𝑆 = 𝑆𝑎(𝑏 − 𝑐)2 + 𝑆𝑏(𝑎 − 𝑐)2 + 𝑆𝑐(𝑎 − 𝑏)2

= 𝑆𝑎(𝑏 − 𝑐)2 + 𝑆𝑏[(𝑐 − 𝑏)+ (𝑏 − 𝑎)]2 + 𝑆𝑐(𝑎 − 𝑏)2

= (𝑆𝑏 + 𝑆𝑐) (𝑎 − 𝑏)2 + 2𝑆𝑏(𝑐 − 𝑏) (𝑏 − 𝑎)+ (𝑆𝑎 + 𝑆𝑏) (𝑏 − 𝑐)2

= (𝑆𝑏 + 𝑆𝑐) (𝑏 − 𝑎 + 𝑆𝑏⁄
𝑆𝑏 + 𝑆𝑐

(𝑐 − 𝑏))
2
+ 𝑆𝑎𝑆𝑏 + 𝑆𝑏𝑆𝑐 + 𝑆𝑐𝑆𝑎⁄

𝑆𝑏 + 𝑆𝑐
(𝑐 − 𝑏)2 & ≥ 0.

Every difference ∑𝑐𝑦𝑐 𝑥
𝛼1
1 𝑥𝛼2

2 …𝑥𝛼𝑛
𝑛 −∑𝑐𝑦𝑐 𝑥

𝛽1
1 𝑥𝛽22 …𝑥𝛽𝑛𝑛 where 𝛼1 + 𝛼2 + ⋯+ 𝛼𝑛 = 𝛽1 +

𝛽2 + ⋯+ 𝛽𝑛 can be written in SOS form.

Some special cases are given below:

1. 𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑏𝑐 − 𝑐𝑎 = (𝑎−𝑏)2+(𝑏−𝑐)2+(𝑐−𝑎)2⁄
2

2. 𝑎3 + 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐 = 𝑎+𝑏+𝑐
⁄

2 [(𝑎 − 𝑏)2 + (𝑏 − 𝑐)2 + (𝑐 − 𝑎)2]

3. 𝑎𝑏 + 𝑏2𝑐 + 𝑐2𝑎 − 𝑎𝑏2 − 𝑏𝑐2 − 𝑐𝑎2 = (𝑎−𝑏)3+(𝑏−𝑐)3+(𝑐−𝑎)3⁄
3

4. 𝑎3 + 𝑏3 + 𝑐3 − 𝑎2𝑏 − 𝑏2𝑐 − 𝑐2𝑎 = (2𝑎+𝑏)(𝑎−𝑏)2+(2𝑏+𝑐)(𝑏−𝑐)2+(2𝑐+𝑎)(𝑐−𝑎)2⁄
3

5. 𝑎4+𝑏4+𝑐4−𝑎3𝑏−𝑏3𝑐−𝑐3𝑏 = (3𝑎2+2𝑎𝑏+𝑏2)(𝑎−𝑏)2+(3𝑏2+2𝑏𝑐+𝑐2)(𝑏−𝑐)2+(3𝑐2+2𝑐𝑎+𝑎2)(𝑐−𝑎)2⁄
4

6. 𝑎3𝑏 + 𝑏3𝑐 + 𝑐3𝑎 − 𝑎𝑏3 − 𝑏𝑐3 − 𝑐𝑎3 = 𝑎+𝑏+𝑐
⁄

3 [(𝑏 − 𝑎3)+ (𝑐 − 𝑏)3 + (𝑎 − 𝑐)3]

7. 𝑎4 + 𝑏4 + 𝑐4 − 𝑎2𝑏2 − 𝑏2𝑐2 − 𝑐2𝑎2 = (𝑎2−𝑏2)2+(𝑏2−𝑐2)2+(𝑐2−𝑎2)2⁄
2

Theorem 43

Consider two polynomials having the same degree and same number of variables 𝐴 and 𝐵.
The difference of these two polynomilas can be written in SOS form:

∑
𝑐𝑦𝑐

𝑎𝛼1
1 𝑎𝛼2

2 …𝑎𝛼𝑛
𝑛 −∑

𝑐𝑦𝑐
𝑎𝛽11 𝑎𝛽22 …𝑎𝛽𝑛𝑛 =∑𝑃𝑖𝑗(𝑎) (𝑎𝑖 − 𝑎𝑗)2 ,

where 𝛼1 + 𝛼2 + ⋯+ 𝛼𝑛 = 𝛽1 + 𝛽2 + ⋯+ 𝑏𝑒𝑡𝑎𝑛 = 𝑚 and 𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑛).

Proof

We need to prove the following lemma first.

Lemma 2

If 𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑛) and 𝛼1 + 𝛼2 + 𝛼𝑛 = 𝑚, then:

∑
𝑐𝑦𝑐

𝑎𝑛1 −∑
𝑐𝑦𝑐

𝑎𝛼1
1 𝑎𝛼2

2 …𝑎𝛼𝑛
𝑛 =∑𝑃𝑖𝑗(𝑎) (𝑎𝑖 − 𝑎𝑗)2
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We prove this lemma by induction over 𝑘, which will be the number of elements except 0
belonging to the set 𝛼1, 𝛼2, … , 𝛼𝑛.

If 𝑘 = 1, the theorem is obviously true.

If 𝑘 = 2, the expression becomes ∑𝑐𝑦𝑐 𝑎
𝑚
1 −∑𝑡

𝑎1 𝑎
𝑚−𝑡
2 = ∑𝑃𝑖𝑗(𝑎)(𝑎𝑖 − 𝑎𝑗)2

We observe that 𝑡𝑎𝑚 + (𝑚 − 𝑡)𝑏𝑚 − 𝑚𝑎𝑡𝑏𝑚−𝑡 = 𝑃 (𝑎, 𝑏)(𝑎 − 𝑏)2. We also observe that
𝑓(𝑥) = 𝑡𝑥𝑛+ (𝑚− 𝑡)−𝑚𝑥𝑡 = 0 has one repeated root which is 1 because 𝑓(1) = 𝑓′(1) = 0.
Therefore 𝑓(𝑥) can be written like 𝑄(𝑥)(𝑥 − 1)2 where degree of 𝑄 will be 𝑚− 2.

Let 𝑥 = 𝑎
⁄

𝑏, then we have: 𝑏𝑚𝑓(𝑎⁄𝑏) = 𝑡𝑎𝑚 + (𝑚− 𝑡)𝑏𝑚 −𝑚𝑎𝑡𝑏𝑚−1 = 𝑏𝑚−2𝑄(𝑎⁄𝑏)(𝑎 − 𝑏)2.

However, 𝑏𝑚−2 is a polynomial having 2 variables 𝑎, 𝑏 because 𝑄 is a 𝑚−2 degree polynomial.
If our proposition is already true with 𝑘, the number of elements except for 0 in the set of 𝛼,
with 𝑘 + 1 we can transform this into the case of 𝑘 as given below:

𝑎𝛼1
1 𝑎𝛼2

2 …𝑎𝛼𝑘+1
𝑘+1 = 𝛼1𝑎

𝛼1+𝛼2
1 +𝛼2𝑎

𝛼1+𝛼2
2 −(𝛼1+𝛼2)𝑎

𝛼1
1 𝑎𝛼2

2⁄
𝛼1+𝛼2

.𝑎𝛼3
3 …𝑎𝛼𝑘+1

𝑘+1
𝛼1⁄

𝛼1+𝛼2
𝑎𝛼1+𝛼2
1

𝑎𝛼3
3 …𝑎𝛼𝑘+1

𝑘+1 + 𝛼2⁄
𝛼1+𝛼2

𝑎𝛼1+𝛼3
2 𝑎𝛼3

3 …𝑎𝛼𝑘+1
𝑘+1

With 𝑘 = 2: 𝛼1𝑎
𝛼1+𝛼2
1 +𝛼2𝑎

𝛼1+𝛼2
2 −(𝛼1+𝛼2)𝑎

𝛼1
1 𝑎𝛼2

2⁄
𝛼1+𝛼2

= 𝐻12(𝑎)(𝑎1 − 𝑎2)2, we have:

𝑎𝛼1
1 𝑎𝛼2

2 …𝑎𝑘+1𝑘+1 = 𝑄12(𝑎)(𝑎1− 𝑎2)2+ 𝛼1⁄
𝛼1+𝛼2

𝑎𝛼1+𝛼2
1 𝑎𝛼3

3 …𝑎𝛼𝑘+1
𝑘+1 + 𝛼2⁄

𝛼1+𝛼2
𝑎𝛼1+𝛼3
2 𝑎𝛼3

3 …𝑎𝛼𝑘+1
𝑘+1

∴∑𝑐𝑦𝑐 𝑎
𝑚
1 −∑𝑐𝑦𝑐 𝑎

𝛼1
1 𝑎𝛼2

2 …𝑎𝛼𝑘+1
𝑘+1 = −∑𝑐𝑦𝑐 𝑄12(𝑎)(𝑎1 − 𝑎2)2 +∑𝑐𝑦𝑐 𝑎

𝑚
1 − 𝛼1⁄

𝛼1+𝛼2

∑𝑎𝛼1+𝛼2
1 𝑎𝛼3

3 …𝑎𝛼𝑘+1
𝑘+1 +∑ 𝛼2⁄

𝛼1+𝛼2
𝑎𝛼1+𝛼3
2 𝑎𝛼3

3 …𝑎𝛼𝑘+1
𝑘+1 ∑𝑚

𝑎1 −∑𝑐𝑦𝑐 𝑎
𝛼1
1 …𝑎𝛼𝑘+1

𝑘+1

= −∑𝑄12(𝑎)(𝑎1 − 𝑎2)2 + 𝛼1⁄
𝛼1+𝛼2

(∑𝑐𝑦𝑐 𝑎
𝑚
1 −∑𝑐𝑦𝑐 𝑎

𝛼1+𝛼2
1 𝑎𝛼3

3 …𝑎𝛼𝑘+1
𝑘+1 )+

𝛼2⁄
𝛼1+𝛼2

(∑𝑐𝑦𝑐 𝑎
𝑚
1 −∑𝑐𝑦𝑐 𝑎

𝛼1+𝛼2
2 𝑎𝛼3

3 …𝑎𝛼𝑘+1
𝑘+1 )

So we see that these can be written in SOS form recursively. Hence proved. □

10.24 Problems
Prove the following inequalities:

1. 𝑎2 + 𝑏2 ≥ 2𝑎𝑏.

2. √


𝑎𝑏 ≥ 2⁄
1⁄
𝑎+

1
⁄

𝑏
, where 𝑎 > 0, 𝑏 > 0.

3. √

𝑎2+𝑏2⁄

2 ≥ 𝑎+𝑏
⁄

2
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4. 𝑎+𝑏
⁄

2 ≥ 2⁄
1⁄
𝑎+

1
⁄

𝑏
, where 𝑎 > 0, 𝑏 > 0.

5. 𝑎 + 𝑏 > 1 + 𝑎𝑏, where 𝑏 < 1 < 𝑎.

6. 𝑎2 + 𝑏2 > 𝑐2 + (𝑎 + 𝑏 − 𝑐)2, where 𝑏 < 𝑐 < 𝑎.

7. 2 ≤ 𝑎
⁄

𝑏 +
𝑏
⁄

𝑎, where 𝑎𝑏 > 0.

8. 𝑎
⁄

𝑏 +
𝑏
⁄

𝑎 ≤ −2, where 𝑎𝑏 < 0.

9. 𝑥1 ≤ 𝑥1+⋯+𝑥𝑛⁄
𝑛 ≤ 𝑥𝑛, where 𝑥1 ≤ ⋯ ≤ 𝑥𝑛.

10. 𝑥1
⁄

𝑦1 ≤
𝑥1+⋯+𝑥𝑛⁄
𝑦1+⋯+𝑦𝑛 ≤ 𝑥𝑛, where 𝑥1⁄𝑦1 ≤ ⋯ ≤ 𝑥𝑛⁄

𝑦𝑛 and 𝑦𝑖 > 0, 𝑖 = 1, … , 𝑛.

11. 𝑥1 ≤ (𝑥1 …𝑥𝑛)
1⁄
𝑛 ≤ 𝑥𝑛, where 𝑛 ≥ 2, 0 ≤ 𝑥1 ≤ … ≤ 𝑥𝑛.

12. |𝑎1|+⋯+ |𝑎𝑛| ≥ |𝑎1 + 𝑎2 + ⋯+ 𝑎𝑛|.

13. 𝑎1+⋯+𝑎𝑛⁄
𝑛 ≥ 𝑛⁄

1⁄
𝑎1
+⋯+ 1⁄

𝑎𝑛

, where 𝑛 ≥ 2, 𝑎𝑖 > 0, 𝑖 = 1, … , 𝑛.

14. (𝑎 + 𝑏)√

𝑎+𝑏
⁄

2 ≥ 𝑎√

𝑏 + 𝑏√


𝑎, where 𝑎 > 0, 𝑏 > 0.

15. 1
⁄

2 (𝑎 + 𝑏)+ 1
⁄

4 ≥√

𝑎+𝑏
⁄

2 , where 𝑎 > 0, 𝑏 > 0.

16. 𝑎(𝑥 + 𝑦 − 𝑎) ≥ 𝑥𝑦, where 𝑥 ≤ 𝑎 ≤ 𝑦.

17. 1
⁄

𝑥−1 +
1
⁄

𝑥+1 >
2
⁄

𝑥, where 𝑥 > 1.

18. 1⁄
3𝑘+1 +

1⁄
3𝑘+2 +

1⁄
3𝑘+3 >

1⁄
2𝑘+1 +

1⁄
2𝑘+2, where 𝑘 ∈ ℕ.

19. 𝑎𝑏
⁄

(𝑎+𝑏)2 ≤
(1−𝑎)(1−𝑏)⁄

[(1−𝑎)+(1−𝑏)]2, where 0 < 𝑎 ≤ 1
⁄

2 , 0 < 𝑏 ≤ 1
⁄

2.

20. 1⁄
√

3𝑘+1 .

2𝑘+1⁄
2𝑘+2 <

1⁄
√

3𝑘+4, where 𝑘 ∈ ℕ.

21. 2𝑛−1 ≥ 𝑛, where 𝑛 ∈ ℕ.

22. 1
⁄

3 +
2
⁄

3 .
1
⁄

5 +
2
⁄

3 .
4
⁄

5 .
1
⁄

7 + ⋯ + 2
⁄

3 .
4
⁄

5 .
6
⁄

7⋯
100
⁄

101 .
1
⁄

103 < 1.

23. 1−𝑎⁄
1−𝑏 +

1−𝑏⁄
1−𝑎 ≤

𝑎
⁄

𝑏 +
𝑏
⁄

𝑎, where 0 < 𝑎, 𝑏 ≤ 1
⁄

2.

24.
𝑛
∑
𝑖=1

1⁄
1−𝑎𝑖

𝑚
∑
𝑖=1

(1 − 𝑎𝑖) ≤
𝑛
∑
𝑖=1

1⁄
𝑎𝑖

𝑛
∑
𝑖=1

𝑎𝑖, where 0 < 𝑎1, … , 𝑎𝑛 ≤ 1
⁄

2.

25. 1 + 1
⁄

23 + ⋯ + 1
⁄

𝑛3 <
5
⁄

4, where 𝑛 ∈ ℕ.
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26. 1⁄
1+𝑎+𝑏 ≤ 1 − 𝑎+𝑏
⁄

2 + 𝑎𝑏
⁄

3 , where 0 ≤ 𝑎 ≤ 1, 0 ≤ 𝑏 ≤ 1.

27. |𝑥 − 𝑦| < |1 − 𝑥𝑦|, where |𝑥| < 1, |𝑦| < 1.

28. 𝑎⁄
𝑏𝑐 +

𝑏
⁄

𝑐𝑎 +
𝑐
⁄

𝑎𝑏 ≥
2
⁄

𝑎 +
2
⁄

𝑏 −
2
⁄

𝑐, where 𝑎 > 0, 𝑏 > 0, 𝑐 > 0.

29. 1
⁄

𝑎 +
1
⁄

𝑏 −
1
⁄

𝑐 <
1⁄
𝑎𝑏𝑐, where 𝑎2 + 𝑏2 + 𝑐2 = 5
⁄

3 and 𝑎 > 0, 𝑏 > 0, 𝑐 > 0.

30. 3(1 + 𝑎2 + 𝑎4) ≥ (1 + 𝑎 + 𝑎2)2.x

31. (𝑎𝑐 + 𝑏𝑑)2 + (𝑎𝑑 − 𝑏𝑐)2 ≥ 144, where 𝑎 + 𝑏 = 4, 𝑐 + 𝑑 = 6.

32. 𝑥21 + 𝑥22 + ⋯ + 𝑥22𝑛 + 𝑛𝑎2 ≥ 𝑎√


2(𝑥1 + 𝑥2 + ⋯+ 𝑥2𝑛).

33. 1
⁄

𝑎+𝑏 +
1
⁄

𝑏+𝑐 +
1
⁄

𝑎+𝑐 ≤
√


𝑎+√


𝑏+√


𝑐⁄
2√

𝑎𝑏𝑐 , where 𝑎 > 0, 𝑏 > 0, 𝑐 > 0.

34. 𝑎3(𝑏2 − 𝑐2)+ 𝑏3(𝑐2 − 𝑎2)+ 𝑐3(𝑎2 − 𝑏2) < 0, where 0 < 𝑎 < 𝑏 < 𝑐.

35. 𝑎3𝑏 + 𝑏3𝑐 + 𝑐3𝑎 ≥ 𝑎2𝑏2 + 𝑏2𝑐2 + 𝑐2𝑎2 where 𝑎 ≥ 𝑏 ≥ 𝑐 > 0.

36. 𝑦
⁄

𝑥 +
𝑦
⁄

𝑧 +
𝑥+𝑧⁄
𝑦 ≤ (𝑥+𝑧)2⁄

𝑥𝑧 , where 0 < 𝑥 ≤ 𝑦 ≤ 𝑧.

37. √

1 +√


𝑎 +√

1 +√

𝑎 +√


𝑎2 + ⋯ +√

1 +√

𝑎 + ⋯+√


𝑎𝑛 < 𝑛𝑎, where 𝑛 ≥ 2, 𝑎 ≥
2, 𝑛 ∈ ℕ.

38. [5𝑥] ≥ [𝑥]+ [2𝑥]⁄
2 + [3𝑥]⁄

3 + [4𝑥]⁄
4 + [5𝑥]⁄

5 , where [𝑥] is the integer part of the real number 𝑥.

39. (𝑛!)2 ≥ 𝑛𝑛, where 𝑛 ∈ ℕ.

40. 𝑥6 + 𝑥5 + 4𝑥4 − 12𝑥3 + 4𝑥2 + 𝑥 + 1 ≥ 0.

41. log2 𝛼 ≥ log 𝛽 log 𝛾, where 𝛼 > 1, 𝛽 > 1, 𝛾 > 1, 𝛼2 ≥ 𝛽𝛾.

42. log4 5 + log5 6 + log6 7 + log7 8 > 4.4.

43. 1
⁄

3 +
2
⁄

3.5 + ⋯ + 𝑛⁄
3.5…(2𝑛+1) <

1
⁄

2, where 𝑛 ∈ ℕ.

44. 23+1⁄
23−1⋯

𝑛3+1⁄
𝑛3−1 <

3
⁄

2, where 𝑛 ≥ 2, 𝑛 ∈ ℕ.

45. 1.1! + 2.2! + ⋯ + 𝑛.𝑛! < (𝑛 + 1)!, where 𝑛 ∈ ℕ.

46. (1 + 1
⁄

22)(1 +
1
⁄

32)⋯(1 +
1
⁄

𝑛2) < 2, where 𝑛 ≥ 2, 𝑛 ∈ 𝔹.

47. (1 − 1
⁄

𝑝21
)(1 − 1
⁄

𝑝22
)⋯(1 − 1⁄

𝑝2𝑛
) > 1
⁄

2, where 1 < 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑛, 𝑝𝑖 ∈ ℕ, 𝑖 = 1, 2, …𝑛.

48. 1
⁄

2 −
1
⁄

3 +
1
⁄

4 −
1
⁄

5 + ⋯ − 1
⁄

999 +
1⁄

1000 <
2
⁄

5.
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49. 𝑎+𝑏⁄
1+𝑎+𝑏 ≤

𝑎⁄
1+𝑎 +

𝑏⁄
1+𝑏, where 𝑎 ≥ 0, 𝑏 ≥ 0.

50. 𝑎+𝑏⁄
2+𝑎+𝑏 ≥

1
⁄

2 (
𝑎⁄

1+𝑎 +
𝑏⁄

1+𝑏), where 𝑎 ≥ 0, 𝑏 ≥ 0.

51.
𝑛
∑
𝑖=1

𝑎1+2𝑎2+⋯+𝑖𝑎𝑖⁄
𝑖2 ≤ 2

𝑛
∑
𝑖=1

𝑎𝑖, where 𝑎𝑖 ≥ 0, 𝑖 = 1, 2, … , 𝑛.

52. 1
⁄

𝑎 +
1
⁄

𝑏 +
1
⁄

𝑐 ≤
41
⁄

42, where 1⁄𝑎 +
1
⁄

𝑏 +
1
⁄

𝑐 < 1, 𝑎, 𝑏, 𝑐 ∈ ℕ.

53. 4𝑥
⁄

𝑦+𝑧 +
𝑦⁄

𝑥+𝑧 +
𝑧
⁄

𝑥+𝑦 > 2, where 𝑥,𝑦,𝑧 > 0.

54. 1 < 𝑎⁄
𝑎+𝑏+𝑑 +

𝑏
⁄

𝑎+𝑏+𝑐 +
𝑐⁄

𝑏+𝑐+𝑑 +
𝑑⁄

𝑎+𝑐+𝑑 < 2, where 𝑎,𝑏,𝑐,𝑑 > 0.

55. 𝑎 + 𝑏 > 𝑐 + 𝑑, where 𝑎, 𝑏, 𝑐, 𝑑 ≥ 1
⁄

2 and 𝑎2 + 𝑏 > 𝑐2 + 𝑑, 𝑎 + 𝑏2 > 𝑐 + 𝑑2.

56. (𝑏 − 𝑎)(9− 𝑎2)+ (𝑐 − 𝑎)(9− 𝑏2)+ (𝑐 − 𝑏)(9− 𝑐2) ≤ 24√


2, where 0 ≤ 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 3.

57. If 0 < 𝑎, 𝑏, 𝑐 < 1, then one of the numbers (1 − 𝑎)𝑏, (1 − 𝑏)𝑐, (1 − 𝑐)𝑎 is not greater
than 1⁄4.

58. Let 𝑎 > 0, 𝑏 > 0, 𝑐 > 0, and 𝑎 + 𝑏 + 𝑐 = 1. Prove that √

𝑎 + 1
⁄

4 (𝑏 − 𝑐)2 +

√

𝑏 + 1
⁄

4 (𝑐 − 𝑎)2 +√

𝑐 + 1
⁄

4 (𝑏 − 𝑎)2 ≤ 2.

59. Let 𝑎 > 0, 𝑏 > 0, 𝑐 > 0, and 𝑎+ 𝑏+ 𝑐 = 1. Prove that √

𝑎 + 1
⁄

4 (𝑏 − 𝑐)2+√

𝑏 +√

𝑐 ≤ √


3.

60. Find the smallest possible value of the expression: 𝑎
4
⁄

𝑏4 +
𝑏4
⁄

𝑎4 −
𝑎2
⁄

𝑏2 −
𝑏2
⁄

𝑎2 +
𝑎
⁄

𝑏 +
𝑏
⁄

𝑎, where
𝑎, 𝑏 > 0.

61. (1−𝑥1)(1−𝑥2)…(1−𝑥𝑛)⁄
𝑥1𝑥2…𝑥𝑛 ≥ (𝑛 − 1)𝑛, where 𝑛 ≥ 2, 𝑥𝑖 > 0, 𝑖 = 1, 2, … , 𝑛 and 𝑥1 + 𝑥2 +

⋯+ 𝑥𝑛 = 1.

62. 1
⁄

1+𝑥1 +
1
⁄

1+𝑥2 + ⋯ + 1⁄
1+𝑥𝑛 ≥

𝑛⁄
1+𝑛√

𝑥1…𝑥𝑛

, where 𝑛 ≥ 2, 𝑥1 ≥ 1, 𝑥2 ≥ 1, … , 𝑥𝑛 ≥ 1.

63. 𝑎𝑏𝑐 + 𝑏𝑐𝑑 + 𝑐𝑑𝑎 + 𝑑𝑎𝑏 ≤ 1
⁄

27 +
176⁄
27 𝑎𝑏𝑐𝑑, where 𝑎, 𝑏, 𝑐, 𝑑 ≥ 0, and 𝑎 + 𝑏 + 𝑐 + 𝑑 = 1.

64. 0 ≤ 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 − 2𝑥𝑦𝑧 ≤ 7
⁄

27, where 𝑥, 𝑦, 𝑧 ≥ 0, and 𝑥 + 𝑦 + 𝑧 = 1.

65. Suppose that for numbers 𝑥1, 𝑥2, … , 𝑥1997, the following conditions holds: (a) − 1⁄
√


3 ≤

𝑥𝑖 ≤ √


3, 𝑖 = 1, 2, … , 1997, (b) 𝑥1 + 𝑥2 + ⋯ + 𝑥1997 = −318√


3. Find the greatest
possible value of the expression 𝑥121 + 𝑥122 + ⋯ + 𝑥121997.

66. Prove that cos 𝛼1 cos 𝛼2 ⋯ cos 𝛼𝑛(tan 𝛼1 + tan𝛼2 + ⋯+ tan𝛼𝑛) ≤ (𝑛−1)(𝑛−1)/2⁄
𝑛(𝑛−2)/2 , where

𝑛 ≥ 2 and 0 ≤ 𝛼𝑖 < 𝜋
⁄

2 , 𝑖 = 1, 2, … , 𝑛.
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67. Prove that 
𝑛
∑
𝑖=1

𝑥𝑘𝑖 (1 − 𝑥𝑖) ≤ 𝑎𝑘, where 𝑘 ≥ 2, 𝑘 ∈ ℕ, and 𝑎𝑘 = max[𝑥𝑘(1 − 𝑥)+ (1 −

𝑥)𝑘 𝑥], 𝑥𝑖 ≥ 0, 𝑖 = 1, 2, … , 𝑛, 𝑥1 + 𝑥2 + ⋯+ 𝑥)𝑛 = 1, 𝑛 ≥ 2.

68. 2(𝑛 − 1)(𝑥2𝑥3 + 𝑥1𝑥3 + ⋯ + 𝑥1𝑥𝑛 + 𝑥2𝑥3 + ⋯ + 𝑥2𝑥𝑛 + ⋯ + 𝑥𝑛−1𝑥𝑛) −
𝑛𝑛−1𝑥1𝑥2 …𝑥𝑛 ≤ 𝑛 − 2, where, 𝑛 ≥ 2, 𝑥1, 𝑥2, …𝑥𝑛 ≥ 0 and 𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛 = 1.

69. 𝑥1+𝑥2+⋯+𝑥𝑛⁄
𝑛 − 𝑛√

𝑥1𝑥2 …𝑥𝑛 ≤

(√

𝑥1−√

𝑥2)2+(√

𝑥1−√

𝑥3)2+⋯+(√

𝑥1−√

𝑥𝑛)2+⋯+(√

𝑥𝑛−1−√

𝑥𝑛)2⁄

𝑛 , where 𝑛 ≥ 2,𝑥1,𝑥2,… ,𝑥𝑛 ≥
0.

70. Turkevici's Inequality: (𝑛−1)(𝑥21+𝑥22+⋯+𝑥2𝑛)+
𝑛√

𝑥21𝑥22 …𝑥2𝑛 ≥ (𝑥1+𝑥2+⋯+𝑥𝑛)2,

where 𝑛 ≥ 2, 𝑥2, 𝑥2, … , 𝑥𝑛 ≥ 0.

71. (𝑎 + 𝑏)(𝑏 + 𝑐)(𝑐 + 𝑎) ≥ 8𝑎𝑏𝑐, where 𝑎 > 0, 𝑏 > 0, 𝑐 > 0.

72. (𝑎+𝑏+𝑐−𝑑)(𝑏+𝑐+𝑑−𝑎)(𝑐+𝑑+𝑎−𝑏)(𝑑+𝑎+𝑏−𝑐)≤ (𝑎+𝑏)(𝑏+𝑐)(𝑐+𝑑)(𝑑+𝑎),
where 𝑎 > 0, 𝑏 > 0, 𝑐 > 0, 𝑑 > 0.

73. (Schur's Inequality) 𝑎3 + 𝑏3 + 𝑐3 + 3𝑎𝑏𝑐 ≥ 𝑎2𝑏 + 𝑎𝑏2 + 𝑏2𝑐 + 𝑏𝑐2 + 𝑐𝑎2 + 𝑐2𝑎, where
𝑎 > 0, 𝑏 > 0, 𝑐 > 0.

74. (1 + 4𝑎
⁄

𝑏+𝑐)(1 +
4𝑏
⁄

𝑐+𝑎)(1 +
4𝑐
⁄

𝑎+𝑏) > 25, where 𝑎 > 0, 𝑏 > 0, 𝑐 > 0.

75. log(𝑎−1)⁄
log 𝑎 < log𝑎⁄

log(𝑎+1), where 𝑎 > 1.

76. (Schur's Inequality) 𝑎𝑏𝑐 ≥ (𝑎 + 𝑏 − 𝑐)(𝑐 + 𝑎− 𝑏)(𝑏 + 𝑐 − 𝑎), where 𝑎 > 0, 𝑏 > 0, 𝑐 > 0.

77. 𝑥8 + 𝑦8 ≥ 1
⁄

128, if 𝑥 + 𝑦 = 1.

78. (𝑎 + 1
⁄

𝑎)
2
+ (𝑏 + 1
⁄

𝑏)
2
≥ 12.5, if 𝑎 > 0, 𝑏 > 0 and 𝑎 + 𝑏 = 1.

79. (𝑥1+ 1
⁄

𝑥1)
2
+⋯+(𝑥𝑛+ 1
⁄

𝑥2)
2
≥ (𝑛2+1)2⁄

𝑛 , if 𝑛 ≥ 2,𝑥1 > 0,… ,𝑥𝑛 > 0 and 𝑥1+⋯+𝑥𝑛 = 1.

80. 𝑎4 + 𝑏4 + 𝑐4 ≥ 𝑎𝑏𝑐(𝑎 + 𝑏 + 𝑐).

81. 𝑥2 + 𝑦2 ≥ 2√


2(𝑥 − 𝑦), if 𝑥𝑦 = 1.

82. √

6𝑎1 + 1+√

6𝑎2 + 1+√

6𝑎3 + 1+√

6𝑎4 + 1+√

6𝑎5 + 1 ≤ √


55, if 𝑎1 > 0,… , 𝑎5 > 0

and 𝑎1 + ⋯+ 𝑎5 = 1.

83. 6𝑎 + 4𝑏 + 5𝑐 ≥ 5√


𝑎𝑏 + 3√

𝑏𝑐 + 7√

𝑐𝑎, where 𝑎 ≥ 0, 𝑏 ≥ 0, 𝑐 ≥ 0.

84. 2(𝑎4 + 𝑏4)+ 17 > 16𝑎𝑏.

85. (1+𝑛𝑏⁄𝑛+1 )𝑛+1 ≥ 𝑏𝑛, where 𝑛 ∈ ℕ, 𝑏 > 0.
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86. (1 + 1
⁄

𝑛)
𝑛
< (1 + 1
⁄

𝑛+1)
𝑛+1

, where 𝑛 ∈ ℕ.

87. (1 + 1
⁄

𝑛)
𝑛+1

< (1 + 1
⁄

𝑛+1)
𝑛+2

, where 𝑛 ∈ ℕ.

88. (1 + 𝑚
⁄

𝑛−1)
(𝑛−1)/𝑚

< (1 + 𝑚
⁄

𝑛 )
𝑛/𝑚

< (1 + 𝑚−1⁄
𝑛 )

𝑛/(𝑚−1)
, where 𝑚 > 1, 𝑛 > 1 and

𝑚,𝑛 ∈ ℕ.

89. 𝑛! < (𝑛+1⁄2 )
𝑛
, where 𝑛 = 2, 3, 4, ….

90. 𝑛(𝑛 + 1)1/𝑛 < 𝑛 + 𝑆𝑛, where 𝑆𝑛 = 1
⁄

1 +
1
⁄

2 + ⋯ + 1
⁄

𝑛, 𝑛 = 2, 3, 4, ….

91. 𝑛 − 𝑆𝑛 > (𝑛 − 1)1/(1−𝑛), where 𝑆𝑛 = 1
⁄

1 +
1
⁄

2 + ⋯ + 1
⁄

𝑛, 𝑛 = 3, 4, ….

92. (𝑞𝑛 − 1)(𝑞𝑛+1 + 1) ≥ 2𝑛𝑞𝑛(𝑞 − 1), where 𝑞 > 1, 𝑛 ∈ ℕ.

93. 𝑎2+ 𝑏2+ 𝑐2+ 𝑑2+ 𝑎𝑏 + 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑 + 𝑐𝑑 ≥ 10, where 𝑎, 𝑏, 𝑐, 𝑑 > 0, and 𝑎𝑏𝑐𝑑 = 1.

94. (𝑎 − 1 + 1
⁄

𝑏)(𝑏 − 1 + 1
⁄

𝑐)(𝑐 − 1 + 1
⁄

𝑎) ≤ (1+𝑎𝑏𝑐⁄2√𝑎𝑏𝑐)3, where 𝑎, 𝑏, 𝑐 > 0.

95. (𝑎 + 1
⁄

𝑏 − 𝑡)(𝑏 + 1
⁄

𝑐 − 𝑡)(𝑐 + 1
⁄

𝑎 − 𝑡) ≤ (𝑎 + 𝑏 + 𝑐)(1⁄𝑎 +
1
⁄

𝑏 +
1
⁄

𝑐)(1 − 𝑡)2 + 4 − 3𝑡, where
𝑎, 𝑏,𝑐, 𝑡 > 0 and 𝑎𝑏𝑐 = 1.

96. 𝑛𝑛√

𝑎1𝑎2 …𝑎𝑛− (𝑛−1)𝑛−1√



𝑎1𝑎2 …𝑎𝑛−1 ≤ 𝑎𝑛, where 𝑎𝑖 > 0, 𝑖 = 1, 2,… , 𝑛, 𝑛 = 3, 4,….

97. 𝑛√

𝑎1𝑎2 …𝑎𝑛 + 𝑛√



𝑏1𝑏2 … 𝑏𝑛 + ⋯+ 𝑛√


𝑘1𝑘2 …𝑘𝑛

≤ 𝑛√


(𝑎1 + 𝑏1 + ⋯+ 𝑘1)(𝑎2 + 𝑏2 + ⋯+ 𝑘2)⋯ (𝑎𝑛 + 𝑏𝑛 + ⋯+ 𝑘𝑛) where

𝑎1, 𝑎2,… , 𝑎𝑛, 𝑏1, 𝑏2, … , 𝑏𝑛, … , 𝑘1, 𝑘2, … , 𝑘𝑛 > 0.

98. 𝑎1 +√


𝑎1𝑎2 +⋯+ 𝑛√

𝑎1𝑎2 …𝑎𝑛 ≤ 𝑒(𝑎1 + 𝑎2+⋯+𝑎𝑛), where 𝑛 ≥ 2, 𝑎1, 𝑎2, … , 𝑎𝑛 ≥ 0.

99. 𝑛𝑎𝑘 − 𝑘𝑎𝑛 ≤ 𝑛 − 1, where 𝑛 > 𝑘, 𝑛, 𝑘 ∈ ℕ, 𝑎 > 0.

100. 𝑥21
⁄

𝑥2+
𝑥32
⁄

𝑥23
+⋯+𝑥𝑛+1

𝑛
⁄

𝑥𝑛1
≥ 𝑥1+𝑥2+⋯+𝑥𝑛, where 𝑛 ≥ 2,𝑛 ∈ ℕ,𝑥1 = min(𝑥1,𝑥2,… ,𝑥𝑛) > 0.

101. 𝑎𝑥1−𝑥2
⁄

𝑥1+𝑥2 +
𝑎𝑥2−𝑥3
⁄

𝑥2+𝑥3 + ⋯ + 𝑎𝑥𝑛−𝑥1
⁄

𝑥𝑛+𝑥1 ≥
𝑛2
⁄

2
𝑛
∑
𝑖=1

𝑥𝑖
, where 𝑎 > 0, 𝑥𝑖 > 0, 𝑖 = 1, 2, … , 𝑛.

102. 𝑝√


𝑥1 + 1 + 𝑝√


𝑥2 + 1 + ⋯ + 𝑝√


𝑥𝑛 + 1 ≤ 𝑛 + 1, where 𝑛 ≥ 2, 𝑥1, 𝑥2, 𝑥𝑛 > 0, 𝑥1 + 𝑥2 +
⋯+ 𝑥𝑛 = 𝑝, 𝑝 ∈ ℕ, 𝑝 ≥ 2.

103. 𝑥𝑘(1 − 𝑥𝑚) ≤ 𝑘𝑘/𝑚.𝑚
⁄

(𝑘+𝑚)1+𝑘/𝑚, where 0 ≤ 𝑥 ≤ 1, 𝑘, 𝑚 ∈ ℕ.

104. 𝑥
⁄

1−𝑥2 +
𝑦
⁄

1−𝑦2 +
𝑧
⁄

1−𝑧2 ≥
3√


3
⁄

2 , where 𝑥, 𝑦, 𝑧 > 0 and 𝑥2 + 𝑦2 + 𝑧2 = 1.



Inequalities 296

105. 1
⁄

1−𝑥 +
1
⁄

1−𝑦 +
1
⁄

1−𝑧 ≥
9+3√


3
⁄

2 , where 𝑥, 𝑦, 𝑧 > 0 and 𝑥2 + 𝑦2 + 𝑧2 = 1.

106. Find the minimum value of the funciton 𝑓(𝑥) = 1
⁄

𝑛√


1+𝑥
+ 1
⁄

𝑛√


1−𝑥
in [0, 1), where

𝑛 ∈ ℕ, 𝑛 > 1.

107. Find the minimum value of the funciton 𝑓(𝑥) = 𝑎𝑥𝑚 + 𝑏⁄
𝑥𝑛 in (0, ∞), where 𝑎, 𝑏 >

0, 𝑚, 𝑛 ∈ ℕ.

108. Find in [𝑎, 𝑏](0 < 𝑎 < 𝑏) a point 𝑥0 such that the function 𝑓(𝑥) = (𝑥 − 𝑎)2(𝑏2 − 𝑥2)
attains its maximum value in ⌊𝑎, 𝑏⌋ at 𝑥0.

109. Find the greatest possible value of the product 𝑥𝑦𝑧 given 𝑥, 𝑦, 𝑧 > 0, and 2𝑥 +√


3𝑦 +
𝜋𝑧 = 1.

110. Find the maximum and minimum values of the function 𝑦 = 𝑥
⁄

𝑎𝑥2+𝑏, where 𝑎, 𝑏 > 0.

111. Find the maximum value of the function 𝑦 = 5√


𝑥2+6𝑥+8+12
⁄

𝑥+3 .

112. Find the maximum value of the function 𝑦 =
3√


(𝑥2+1)2(𝑥2+3)
⁄

3𝑥3+4 .

113. Solve the system of equations: 𝑥 + 𝑦 = 2, 𝑥𝑦 − 𝑧2 = 1.

114. Solve the system of equations: 𝑥 + 𝑦 + 𝑧 = 3, 𝑥2 + 𝑦2 + 𝑧2 = 3.

115. Given 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 = 8, 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 + 𝑒2 = 16, find the greatest possible
value of 𝑒.

116. Find the minimum value of the expression 𝑥1⁄𝑥2 +
𝑥3
⁄

𝑥4 +
𝑥5
⁄

𝑥6 if 1 ≤ 𝑥1 ≤ 𝑥2 ≤ 𝑥3 ≤ 𝑥4 ≤
𝑥5 ≤ 𝑥6 ≤ 1000.

117. Solve the equation 𝑥4 + 𝑦4 + 2 = 4𝑥𝑦.

118. Find all integer solutions of the equation 𝑥𝑦⁄𝑧 + 𝑦𝑧
⁄

𝑥 + 𝑧𝑥
⁄

𝑦 = 3.

119. Prove that 𝑥𝛼1 +𝑥𝛼2 +⋯+𝑥𝛼𝑛 ≥ 𝑥𝛽1 +𝑥𝛽2 +⋯+𝑥𝛽𝑛, where 𝑛 ≥ 2, 𝑥1 > 0, 𝑥2 > 0,⋯ , 𝑥𝑛 >
0, 𝛼 > 𝛽 ≥ 0, and 𝑥1𝑥2 …𝑥𝑛 = 1.

120. Prove that 𝑥𝛼1 +𝑥𝛼2 +⋯+𝑥𝛼𝑛 ≥ 𝑥𝛽1 +𝑥𝛽2 +⋯+𝑥𝛽𝑛, where 𝑛 ≥ 2, 𝑥1 > 0, 𝑥2 > 0,⋯ , 𝑥𝑛 >
0, 𝛼 ≥ (𝑛 − 1) |𝛽|, and 𝑥1𝑥2 …𝑥𝑛 = 1.

121. Prove that 1+𝑎⁄1+𝑎𝑏 +
1+𝑏
⁄

1+𝑏𝑐 +
1+𝑐
⁄

1+𝑐𝑑 +
1+𝑑⁄
1+𝑑𝑎 ≥ 4, where 𝑎, 𝑏, 𝑐, 𝑑 > 0 and 𝑎𝑏𝑐𝑑 = 1.

122. Prove that 1+𝑎𝑏⁄1+𝑎 + 1+𝑏𝑐
⁄

1+𝑏 +
1+𝑐𝑑
⁄

1+𝑐 + 1+𝑑𝑎⁄
1+𝑑 ≥ 4, where 𝑎, 𝑏, 𝑐, 𝑑 > 0 and 𝑎𝑏𝑐𝑑 = 1.

123. Prove that 2𝑆𝑇 > √


3(𝑆 + 𝑇 )[𝑆(𝑏𝑑 + 𝑑𝑓 + 𝑓𝑏)+ 𝑇 (𝑎𝑐 + 𝑐𝑒 + 𝑒𝑎)], where 0 < 𝑎 <
𝑏 < 𝑐 < 𝑑 < 𝑒 < 𝑓 and 𝑎 + 𝑐 + 𝑒 = 𝑆, 𝑏 + 𝑑 + 𝑓 = 𝑇 .
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124. Prove that 𝑎+√


𝑎𝑏+3√

𝑎𝑏𝑐+4√


𝑎𝑏𝑐𝑑
⁄

4 ≤ 4√


𝑎. 𝑎+𝑏⁄2 . 𝑎+𝑏+𝑐⁄3 . 𝑎+𝑏+𝑐+𝑑⁄4 , where 𝑎 > 0, 𝑏 > 0, 𝑐 >
0, 𝑑 > 0.

125. Prove that 𝑎12 + (𝑎𝑏)6 + (𝑎𝑏𝑐)4 + (𝑎𝑏𝑐𝑑)3 ≤ 1.43(𝑎12 + 𝑏12 + 𝑐12 + 𝑑12).

126. 𝑎𝑏 ≤ 𝑎𝑝⁄
𝑝 + 𝑏𝑞⁄

1 , if 1⁄𝑝 +
1
⁄

𝑞 = 1, 𝑎, 𝑏, 𝑝, 𝑞 > 0, where 𝑝 and 𝑞 are rational numbers.

127. (1 + 1
⁄

𝑛)
𝑛
> 2, where 𝑛 ∈ ℕ.

128. (1+𝑎1)(1+𝑎2)⋯ (1+𝑎𝑛) ≤ 1+ 𝑆⁄
1!+⋯+𝑆𝑛
⁄

𝑛! , where 𝑛 ≥ 2, 𝑆 = 𝑎1+𝑎2+⋯+𝑎𝑛, 𝑎𝑖 >
0, 𝑖 = 1, 2, … , 𝑛.

129. (1 + 1
⁄

𝑎)(1 +
1
⁄

𝑏)(1 +
1
⁄

𝑐) ≥ 64, where 𝑎, 𝑏, 𝑐 > 0 and 𝑎 + 𝑏 + 𝑐 = 1.

130. 𝑛√


𝑎2𝑛−1 + 𝑛√


𝑎2𝑛+1 ≥ 3𝑎 − 1, where 𝑛 ≥ 2, 𝑎 > 0, 𝑛 > 𝑘, 𝑛,𝑘 ∈ ℕ.

131. 𝑎𝑛−1
⁄

𝑎𝑛(𝑎−1) ≥ 𝑛 + 1 − 𝑎
𝑛(𝑛+1)
⁄

2 , where 𝑎 > 0, 𝑎 ≠ 1.

132. 𝑛𝑎𝑛+1 + 1 ≥ (𝑛 + 1)𝑎𝑛, where 𝑎 > 0.

133. (√


𝑘+√


𝑘 + 1)(√


𝑘 + 1+√


𝑘 + 1)⋯ (√

𝑛+√


𝑛 + 1) ≥ (√

𝑛−√


𝑘)(√

𝑛+√


𝑘−1)+2,
where 𝑛 > 𝑘, 𝑛, 𝑘 ∈ ℕ.

134. 𝑎1
⁄

𝑎2 +
𝑎2
⁄

𝑎3 + ⋯ + 𝑎𝑛−1
⁄

𝑎𝑛 + 𝑎𝑛
⁄

𝑎1 ≥ 𝑛, where 𝑎𝑖 > 0, 𝑖 = 1, 2, … , 𝑛.

135. 𝑎𝑛+1 + 1
⁄

𝑎1(𝑎2−𝑎1)(𝑎3−𝑎2)⋯(𝑎𝑛+1−𝑎𝑛) ≥ 𝑛 + 1, where 0 < 𝑎𝑘 < 𝑎𝑘+1, 𝑘 = 1, 2, … , 𝑛.

136. 1 + 𝑥
⁄

2 ≤
1
⁄

√


1−𝑥, where 0 ≤ 𝑥 < 1.

137. 𝑎4
⁄

𝑏4 +
𝑏4
⁄

𝑐4 +
𝑑4
⁄

𝑒4 +
𝑒4
⁄

𝑎4 ≥
𝑎
⁄

𝑏 +
𝑏⁄
𝑐 +

𝑐⁄
𝑑 +

𝑑⁄
𝑒 +

𝑒
⁄

𝑎, where 𝑎𝑏𝑐𝑑𝑒 ≠ 0.

138. (𝑎⁄𝑏)
1999

+ (𝑏⁄𝑐)1999 + (𝑐⁄𝑑)1999 + (𝑑⁄𝑎)
1999

, where 𝑎, 𝑏, 𝑐, 𝑑 > 0.

139. Prove that √


𝑎1+𝑎2
⁄

𝑎3 +√


𝑎2+𝑎3
⁄

𝑎4 + ⋯ +√


𝑎𝑛−1+𝑎𝑛
⁄

𝑎1 +√


𝑎𝑛+𝑎1
⁄

𝑎2 ≥ 𝑛√


2, where 𝑛 > 2 and
𝑎1 > 0, 𝑎2 > 0, … , 𝑎𝑛 > 0.

140. Prove that 𝑥
⁄

1+𝑥2 +
𝑦
⁄

1+𝑦2 +
𝑧
⁄

1+𝑧2 ≤
3√


3
⁄

4 , where 𝑥2 + 𝑦2 + 𝑧2 = 1.

141. Prove that ( 1
⁄

𝑎21
− 1)( 1
⁄

𝑎22
− 1)⋯( 1
⁄

𝑎2𝑛
− 1) ≥ (𝑛2 − 1)𝑛, where 𝑛 ≥ 2, 𝑎1 > 0, 𝑎2 >

0, … , 𝑎𝑛 > 0 and 𝑎1 + 𝑎2 + ⋯+ 𝑎𝑛 = 1.

142. Find the maximum and minimum value of the expression (1 + 𝑢)(1 + 𝑣)(1 + 𝑤) if
0 < 𝑢 ≤ 7
⁄

16 , 0 < 𝑣 ≤ 7
⁄

16 , 0 < 𝑤 ≤ 7
⁄

16, and 𝑢 + 𝑣 + 𝑤 = 1.

143. Find the maximum value of the expression 𝑥𝑝𝑦𝑞 if 𝑥+ 𝑦 = 𝑎, 𝑥 > 0, 𝑦 > 0 and 𝑝, 𝑞 ∈ ℕ.
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144. Find the maximum value of the expression 𝑎 + 2𝑐 if for all 𝑥, one has 𝑎𝑥2 + 𝑏𝑥 + 𝑐 ≤
1
⁄

√


1−𝑥2
, where |𝑥| < 1.

145. Prove that (1 + 𝑎
⁄

𝑏)(1 +
𝑏⁄
𝑐)(1 +

𝑐
⁄

𝑎) ≥ 2(1 + 𝑎+𝑏+𝑐
⁄

3√

𝑎𝑏𝑐

), where 𝑎 > 0, 𝑏 > 0, 𝑐 > 0.

146. Prove that 1+𝑎1⁄1−𝑎1 .
1+𝑎2
⁄

1−𝑎2⋯
1+𝑎𝑛+1
⁄

1−𝑎𝑛+1
, where −1 < 𝑎1, 𝑎2, … , 𝑎𝑛+1 < 1 and 𝑎1 + 𝑎2 + ⋯ +

𝑎𝑛+1 ≥ 𝑛 − 1.

147. Prove that (𝑎 + 𝑏)3(𝑏 + 𝑐)3(𝑐 + 𝑑)3(𝑑 + 𝑎)3 ≥ 16𝑎2𝑏2𝑐2𝑑2(𝑎 + 𝑏 + 𝑐 + 𝑑)4, where
𝑎 > 0, 𝑏 > 0, 𝑐 > 0, 𝑑 > 0.

148. Prove that [(1 + 𝑎
⁄

𝑏)
2
+ (1 + 𝑏⁄

𝑐)
2
+ (1 + 𝑐
⁄

𝑎)
2
][(1 + 𝑏
⁄

𝑎)
2
+ (1 + 𝑐⁄

𝑏)
2
+ (1 + 𝑎
⁄

𝑐)
2
] ≥

4(𝑎+𝑏⁄𝑐 + 𝑏+𝑐
⁄

𝑎 + 𝑐+𝑎
⁄

𝑏 )
2
, where 𝑎 > 0, 𝑏 > 0, 𝑐 > 0.

149. Prove that (𝑎2 + 𝑏𝑐)3(𝑏2 + 𝑎𝑐)3(𝑐2 + 𝑎𝑏)3 ≥ 64(𝑎3 + 𝑏3)(𝑏3 + 𝑐3)(𝑐3 + 𝑎3), where
𝑎 > 0, 𝑏 > 0, 𝑐 > 0.

150. Prove that 𝑎 +√


𝑎𝑏 + 3√


𝑎𝑏𝑐 ≤ 4
⁄

3 (𝑎 + 𝑏 + 𝑐), where 𝑎 > 0, 𝑏 > 0, 𝑐 > 0.

151. Prove that 𝑎 +√


𝑎𝑏 + 3√


𝑎𝑏𝑐 ≤ 3. 3√


𝑎. 𝑎+𝑏⁄2 . 𝑎+𝑏+𝑐⁄3 , where 𝑎 > 0, 𝑏 > 0, 𝑐 > 0.

152. Prove that (𝑎𝑏)
5
⁄

4 + (𝑏𝑐)
5
⁄

4 + (𝑐𝑎)
5
⁄

4 ≤ √


3⁄
9 , where 𝑎 > 0, 𝑏 > 0, 𝑐 > 0 and 𝑎 + 𝑏 + 𝑐 = 1.

153. Prove that 𝑎2 + 𝑏2 + 𝑐2 ≥ 14 if 𝑎 + 2𝑏 + 3𝑐 ≥ 14.

154. Prove that 𝑎𝑏 +√


(1 − 𝑎2)(1 − 𝑏2) ≤ 1 if |𝑎| ≤ 1, |𝑏| ≤ 1.

155. Prove that √


𝑐(𝑎 − 𝑐)+√


𝑐(𝑏 − 𝑐) ≤ √


𝑎𝑏 if 𝑎 > 𝑐, 𝑏 > 𝑐, 𝑐 > 0.

156. Prove that 𝑎√


𝑎2 + 𝑐2 + 𝑏√


𝑏2 + 𝑐2 ≤ 𝑎2 + 𝑏2 + 𝑐2.

157. Prove that 1
⁄

√


𝑎𝑏 +
1
⁄

√


𝑏𝑐 +
1⁄

√

𝑐𝑎 ≤

1
⁄

𝑎 +
1
⁄

𝑏 +
1
⁄

𝑐, where 𝑎 > 0, 𝑏 > 0, 𝑐 > 0.

158. Prove that √


𝑎(𝑎 + 𝑐 − 𝑏) + √

𝑏(𝑎 + 𝑏 − 𝑐) + √

𝑐(𝑏 + 𝑐 − 𝑎) ≤

√


(𝑎2 + 𝑏2 + 𝑐2)(𝑎 + 𝑏 + 𝑐), where 𝑎, 𝑏, 𝑐 are lengths of sides of a triangle.

159. Prove that (𝑎1+𝑎2+⋯+𝑎𝑛)( 1
⁄

𝑎1+
1
⁄

𝑎2+⋯+ 1
⁄

𝑎𝑛) ≥ 𝑛2, where 𝑎1 > 0, 𝑎2 > 0,… , 𝑎𝑛 > 0.

160. Prove that 𝑎
2
1+𝑎22+⋯+𝑎2𝑛
⁄

𝑛 ≥ (𝑎1+𝑎2+⋯+𝑎𝑛⁄

𝑛 )
2
.

161. Prove that 𝑎1𝑎2 + 𝑎2𝑎3 + ⋯ + 𝑎9𝑎10 + 𝑎10𝑎1 ≥ −1 if 𝑎21 + 𝑎22 + ⋯ + 𝑎210 = 1.

162. Prove that 𝑥4 + 𝑦4 ≥ 𝑥3𝑦 + 𝑥𝑦3.
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163. Prove that (|𝑎1|3 + |𝑎2|3 + ⋯ + |𝑎𝑛|3)
2 ≤ (𝑎21 + 𝑎22 + ⋯ + 𝑎2𝑛)

3.

164. Prove that 3(𝑎2 + 𝑏2 + 𝑐2 + 𝑥2 + 𝑦2 + 𝑧2)+ 6√


(𝑎2 + 𝑏2 + 𝑐2)(𝑥2 + 𝑦2 + 𝑧2) ≥

(𝑎 + 𝑏 + 𝑐 + 𝑥 + 𝑦 + 𝑧)2.

165. Prove that 𝑎2 + 𝑏2 + 𝑐2 ≥ 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎.

166. Prove that (𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛)(𝑎71 + 𝑎72 + ⋯ + 𝑎7𝑛) ≥ (𝑎31 + 𝑎32 + ⋯ + 𝑎3𝑛)(𝑎51 + 𝑎52 +
⋯ + 𝑎5𝑛), where 𝑎1 > 0, 𝑎2 > 0, … , 𝑎𝑛 > 0.

167. Prove that √


𝑎 + 1 +√


2𝑎 − 3 +√


50 − 3𝑎 ≤ 12, where 3⁄2 ≤ 𝑎 ≤ 50
⁄

3 .

168. Prove that 𝑎 + 𝑏 + 𝑐 ≤ 𝑎𝑏𝑐 + 2, where 𝑎2 + 𝑏2 + 𝑐2 = 2.

169. Prove that 2(𝑎 + 𝑏 + 𝑐)− 𝑎𝑏𝑐 ≤ 10, where 𝑎2 + 𝑏2 + 𝑐2 = 9.

170. Prove that 1 + 𝑎𝑏𝑐 ≥ 3.𝑚𝑖𝑛(𝑎, 𝑏, 𝑐), where 𝑎2 + 𝑏2 + 𝑐2 = 9.

171. Prove that (
𝑛
∑
𝑖=1

𝑎𝑘+1𝑖 )(
𝑛
∑
𝑖=1

𝑎−1𝑖 ) ≥ 𝑛(
𝑛
∑
𝑖=1

𝑎𝑘𝑖 ), where 𝑘, 𝑛 ∈ ℕ and 𝑎1 > 0, 𝑎2 >

0, … , 𝑎𝑛 > 0.

172. Prove that 𝑎+𝑏+𝑐⁄3 ≥ 3√


𝑎𝑏𝑐, where 𝑎 > 0, 𝑏 > 0, 𝑐 > 0.

173. Prove that 𝑎
𝑘
1+𝑎𝑘2+⋯+𝑎𝑘𝑛
⁄

𝑛 ≥ (𝑎1+𝑎2+⋯+𝑎𝑛⁄

𝑛 )
𝑘
, where 𝑘, 𝑛 ∈ ℕ and 𝑎1 > 0, 𝑎2 > 0,… , 𝑎𝑛 >

0.

174. Prove that (1 + 1
⁄

sin𝛼)(1 +
1
⁄

cos𝛼) > 5, where 0 < 𝛼 < 𝜋
⁄

2.

175. Find the smallest possible value of the expression (𝑢 − 𝑣)2 + (√


2 − 𝑢2 − 9⁄
𝑣)

2
if

0 < 𝑢 < √


2, 𝑣 > 0.

176. Prove that 𝑥21+(
𝑥1+𝑥2⁄

2 )
2
+⋯+(𝑥1+𝑥2+⋯+𝑥𝑛⁄𝑛 )

2
≤ 4(𝑥1+𝑥2+⋯+𝑥𝑛)2. This inequality

is a particular case of Hardy's inequality
𝑛
∑
𝑘=1

(𝑎1+𝑎2+⋯+𝑎𝑘⁄

𝑘 )
𝑝
≤ ( 𝑝
⁄

𝑝−1)
𝑝
.

𝑛
∑
𝑘=1

𝑎𝑝𝑘, where

𝑝 > 1, 𝑎𝑖 ≥ 0, 𝑖 = 1, 2, … , 𝑛.

177. Prove that 1⁄𝑎1 +
2
⁄

𝑎1+𝑎2 + ⋯ + 𝑛
⁄

𝑎1+𝑎2+⋯+𝑎𝑛 < 2( 1
⁄

𝑎1 +
1
⁄

𝑎2 + ⋯ + 1
⁄

𝑎𝑛), where 𝑎1 > 0, 𝑎2 >
0, … , 𝑎𝑛 > 0.

178. Prove that (sin 𝛼1 + sin 𝛼2 + ⋯+ sin 𝛼𝑛)2 + (cos 𝛼1 + cos 𝛼2 + ⋯+ cos 𝛼𝑛)2 ≤ 𝑛2.

179. Prove that 𝑎1+𝑎2+⋯+𝑎𝑛⁄

𝑛 ≥ 𝑛√

𝑎1𝑎2 …𝑎𝑛, where 𝑛 ≥ 2, 𝑎1 > 0, 𝑎2 > 0, … , 𝑎𝑛 > 0.

180. Prove that √


𝑎1𝑏1 +√


𝑎2𝑏2 + ⋯ + √


𝑎𝑛𝑏𝑛 ≤ √


𝑎1 + 𝑎2 + ⋯+ 𝑎𝑛.√


𝑏1 + 𝑏2 + ⋯ + 𝑏𝑛,
where 𝑎𝑖 ≥ 0, 𝑏𝑖 ≥ 0, 𝑖 = 1, 2, … , 𝑛.
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181. Prove that (𝑥1𝑦2 − 𝑥2𝑦1)2 + (𝑥2𝑦3 − 𝑥3𝑦2)2 + (𝑥1𝑦3 − 𝑥3𝑦1)2 ≤ (𝑥21 + 𝑥22 + 𝑥23)(𝑦21 +
𝑦22 + 𝑦23 ).

182. Prove that (
𝑛
∑
𝑖=1

√


𝑎𝑖𝑏𝑖)
2

≤ (
𝑛
∑
𝑖=1

𝑎𝑖𝑥𝑖)(
𝑛
∑
𝑖=1

𝑏𝑖⁄
𝑥𝑖
), where 𝑥𝑖 > 0, 𝑎𝑖 > 0, 𝑏𝑖 > 0, 𝑖 =

1, 2, …𝑛.

183. Prove that (
𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖)(
𝑛
∑
𝑖=1

𝑥𝑖⁄
𝑦𝑖
) ≥ (

𝑛
∑
𝑖=1

𝑥𝑖)
2

, where 𝑥𝑖 > 0, 𝑦𝑖 > 0, 𝑖 = 1, 2, … , 𝑛.

184. Prove that 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 +√


(𝑎2 + 𝑏2 + 𝑐2)(𝑥2 + 𝑦2 + 𝑧2) ≥ 2
⁄

3 (𝑎 + 𝑏 + 𝑐)(𝑥 + 𝑦 + 𝑧).

185. Prove that (𝑝1𝑞1 − 𝑝2𝑞2 − ⋯ − 𝑝𝑛𝑞𝑛)2 ≥ (𝑝21 − 𝑝22 − ⋯ − 𝑝2𝑛)(𝑞21 − 𝑞22 − ⋯ − 𝑞2𝑛), if
𝑝21 ≥ 𝑝22 + ⋯ + 𝑝2𝑛, 𝑞21 ≥ 𝑞22 + ⋯ + 𝑞2𝑛.

186. Prove that √


𝑥2 + 𝑥𝑦 + 𝑦2√


𝑦2 + 𝑦𝑧 + 𝑧2 +√


𝑦2 + 𝑦𝑧 + 𝑧2√


𝑧2 + 𝑧𝑥 + 𝑥2+

√


𝑧2 + 𝑧𝑥 + 𝑥2√


𝑥2 + 𝑥𝑦 + 𝑦2 ≥ (𝑥 + 𝑦 + 𝑧)2.

187. Prove that 𝑎1(𝑏1+𝑎2)+𝑎2(𝑏2+𝑎3)+⋯+𝑎𝑛(𝑏𝑛+𝑎1)< 1, where 𝑛 ≥ 3,𝑎1,𝑎2,… ,𝑎𝑛 >
0 and 𝑎1 + 𝑎2 + ⋯+ 𝑎𝑛 = 1, 𝑏21 + 𝑏22 + ⋯ + 𝑏2𝑛 = 1.

188. Prove that √


1 − (𝑥+𝑦⁄2 )
2
+√


1 − (𝑦+𝑧⁄2 )
2
+√


1 − (𝑧+𝑥⁄
2 )

2
≥ √


6, where 𝑥, 𝑦, 𝑧 ≥ 0, 𝑥2+
𝑦2 + 𝑧2 = 1.

189. Prove that √


𝑎
⁄

𝑏+𝑐 +√


𝑏
⁄

𝑐+𝑎 +√

𝑐
⁄

𝑎+𝑏 ≥ 2√


1 + 𝑎𝑏𝑐
⁄

(𝑎+𝑏)(𝑏+𝑐)(𝑐+𝑎), where 𝑎, 𝑏, 𝑐 > 0.

190. Prove that √


𝑎 + (𝑏 − 𝑐)2 +√


𝑏 + (𝑐 − 𝑎)2 +√


𝑐 + (𝑎 − 𝑏)2 ≥ √


3, where 𝑎, 𝑏, 𝑐 ≥ 0
and 𝑎 + 𝑏 + 𝑐 = 1.

191. Prove that √


𝑎+𝑏
⁄

2 − 𝑎𝑏+√


𝑏+𝑐
⁄

2 − 𝑏𝑐+√


𝑐+𝑎
⁄

2 − 𝑐𝑎 ≥√


2, where 𝑎,𝑏, 𝑐 ≥ 0 and 𝑎+𝑏+𝑐 =
2.

192. Prove that √


1 − 𝑥𝑦√


1 − 𝑦𝑧 + √


1 − 𝑦𝑧√


1 − 𝑧𝑥 + √


1 − 𝑧𝑥√


1 − 𝑥𝑦 ≥ 2, where
𝑥, 𝑦, 𝑧 ≥ 0 and 𝑥2 + 𝑦2 + 𝑧2 = 1.

193. Prove that 𝑥√


1 − 𝑦𝑧+𝑦√


1 − 𝑧𝑥+𝑧√


1 − 𝑥𝑦 ≥ 2√


2
⁄

3 , where 𝑥,𝑦,𝑧 ≥ 0 and 𝑥+𝑦+𝑧 = 1.

194. Prove the following identity (𝑎1𝑐1 + 𝑎2𝑐2 + ⋯ + 𝑎𝑛𝑐𝑛) − (𝑎1𝑑1 + 𝑎2𝑑2 + ⋯ +
𝑎𝑛𝑑𝑛) (𝑏1𝑐1 + 𝑏2𝑐2 + ⋯ + 𝑏𝑛𝑐𝑛) = ∑

1≤𝑖<𝑘≤𝑛
(𝑎𝑖𝑏𝑘 − 𝑎𝑘𝑏𝑖) (𝑐𝑖𝑑𝑘 − 𝑐𝑘𝑑𝑖).

195. Prove that (𝑎1𝑐1+𝑎2𝑐2+⋯+𝑎𝑛𝑐𝑛)− (𝑎1𝑑1+𝑎2𝑑2+⋯+𝑎𝑛𝑑𝑛) ≥ (𝑎1𝑑1+𝑎2𝑑2+⋯+
𝑎𝑛𝑑𝑛)(𝑏1𝑐1+𝑏2𝑐2+⋯+𝑏𝑛𝑐𝑛), where 𝑏𝑖𝑑1 ≥ 0(𝑖 = 1,2,… ,𝑛) or 𝑏𝑖𝑑1 < 0(𝑖 = 1,2,… ,𝑛)
and 𝑎1⁄𝑏1 ≤

𝑎2
⁄

𝑏2 ≤ … ≤ 𝑎𝑛
⁄

𝑏𝑛 ,
𝑐1
⁄

𝑑1 ≤
𝑐2
⁄

𝑑2 ≤ … ≤ 𝑐𝑛
⁄

𝑑𝑛.
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196. Find the maximum and minimum value of the expression √


𝑥2+𝑦2+√


(𝑥−2)2+(𝑦−1)2
⁄

√


𝑥2+(𝑦−1)2+√


(𝑥−2)2+𝑦2
.

197. Find the minimum value of the expression ( 1⁄
𝑥𝑛+

1
⁄

𝑎𝑛−1)( 1
⁄

𝑦𝑛+
1⁄
𝑏𝑛−1), where 𝑥, 𝑦, 𝑎, 𝑏 >

0, 𝑥 + 𝑦 = 1, 𝑎 + 𝑏 = 1.

198. Prove that 4 ≤ 𝑎2 + 𝑏2 + 𝑎𝑏 +√


4 − 𝑎2√


9 − 𝑏2 ≤ 19, where 0 ≤ 𝑎 ≤ 2 and 0 ≤ 𝑏 ≤ 3.

199. Prove that 𝑛√


𝑚− 1 +𝑚√


𝑛 − 1 ≤ 𝑚𝑛, where 𝑚 ≥ 1, 𝑛 ≥ 1.

200. Prove that √


𝑚2 − 𝑛2 +√


2𝑚𝑛 − 𝑛2 ≥ 𝑚, where 𝑚 > 𝑛 > 0.

201. Prove that 𝑥 > √


𝑥 − 1 +√


𝑥(√


𝑥 − 1), where 𝑥 ≥ 1.

202. Prove that 1 + 1⁄
√


2 + ⋯ + 1
⁄

√

𝑛 ≥ 𝑛√


2
⁄

𝑛+1, where 𝑛 ∈ ℕ.

203. Prove that among seven arbitrary numbers one can find two numbers 𝑥 and 𝑦 such
that 0 ≤ 𝑥−𝑦⁄

1+𝑥𝑦 <
√


3⁄
3 .

204. Prove that |𝑎−𝑏|
⁄

√


1+𝑎2√


1+𝑏2
≤ |𝑎−𝑐|
⁄

√


1+𝑎2√


1+𝑐2
≤ |𝑏−𝑐|
⁄

√


1+𝑏2√


1+𝑐2
.

205. Huygen's inequality: 𝑛√


(𝑎1 + 𝑏1)(𝑎2 + 𝑏2)⋯ (𝑎𝑛 + 𝑏𝑛) ≥ 𝑛√

𝑎1𝑎2 …𝑎𝑛 𝑛√



𝑏1𝑏2 … 𝑏𝑛,
where 𝑎𝑖 > 0, 𝑏𝑖 > 0, 𝑖 = 1, 2, … , 𝑛.

206. Milne's inequality: 𝑎1𝑏1⁄
𝑎1+𝑏1 +

𝑎2𝑏2⁄
𝑎2+𝑏2 + ⋯ + 𝑎𝑛𝑏𝑛

⁄

𝑎𝑛+𝑏𝑛 ≤

(𝑎1+𝑎2+⋯+𝑎𝑛)(𝑏1+𝑏2+⋯+𝑏𝑛)
⁄

(𝑎1+𝑎2+⋯+𝑎𝑛)+(𝑏1+𝑏2+⋯+𝑏𝑛), where 𝑎𝑖 > 0, 𝑏𝑖 > 0, 𝑖 = 1, 2, … , 𝑛.

207. Prove that 8
⁄

(𝑥1+𝑥2)(𝑦1+𝑦2)−(𝑧1+𝑧2)2
≤ 1
⁄

𝑥1𝑦1−𝑧21
+ 1
⁄

𝑥2𝑦2−𝑧22
, where 𝑥1 > 0, 𝑥2 > 0 and

𝑥1𝑦1 − 𝑧21 > 0, 𝑥2𝑦2 − 𝑧22 > 0.

208. Prove that √


𝑎 − 1 +√


𝑏 − 1 +√


𝑐 − 1 ≤ 2
⁄

3√


𝑎𝑏𝑐, where 𝑎 ≥ 1, 𝑏 ≥ 1, 𝑐 ≥ 1.

209. Prove that √


𝑎 − 1 +√


𝑏 − 1 +√


𝑐 − 1 +√


𝑑 − 𝑎 ≤ 3√


3
⁄

4 √


𝑎𝑏𝑐𝑑, where 𝑎 ≥ 1, 𝑏 ≥ 1, 𝑐 ≥
1, 𝑑 ≥ 1.

210. Prove that (𝑎
2−𝑏2⁄
2 )

2
≥√

𝑎2+𝑏2⁄

2 − 𝑎+𝑏
⁄

2 , where 𝑎, 𝑏 ≥ 1
⁄

2.

211. Prove that 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛 ≤ 𝑛
⁄

3, where 𝑥31 + 𝑥32 + ⋯ + 𝑥3𝑛 = 0 and 𝑥𝑖 ∈ [−1, 1], 𝑖 =
1, 2, … , 𝑛.

212. Prove that |𝑥31 + 𝑥32 +⋯+ 𝑥3𝑛| ≤ 2𝑛, where 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 = 0 and 𝑥𝑖 ∈ [−2, 2], 𝑖 =
1, 2, … , 𝑛.

213. Prove that 1 < 𝑎
⁄

√


𝑎2+𝑏2
+ 𝑏
⁄

√


𝑏2+𝑐2
+ 𝑐
⁄

√


𝑐2+𝑎2
≤ 3√


2
⁄

4 , where 𝑎, 𝑏, 𝑐 > 0.
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214. Prove that √


1 − 𝑎+√


1 − 𝑏+√


1 − 𝑐+√


1 − 𝑑 ≥√


𝑎+√

𝑏+√

𝑐+√


𝑑, where 𝑎, 𝑏, 𝑐, 𝑑 >
0, 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 = 1.

215. Prove that 𝑎+𝑏+𝑐⁄3 − 3√


𝑎𝑏𝑐 ≤ max[(√


𝑎 − √

𝑏)2, (√

𝑏 − √

𝑐)2, (√

𝑐 − √


𝑎)2], where
𝑎 > 0, 𝑏 > 0, 𝑐 > 0.

216. Given that 𝑎2 + 𝑏2 = 1. Prove that (i) |𝑎 + 𝑏| ≤ √


2, (ii) |𝑎 − 𝑏| ≤ √


2, (iii) |𝑎𝑏| ≤ 1
⁄

2,

and (iv) |𝑎𝑏2 + 𝑎2𝑏| ≤ 1⁄
√


2.

217. Prove that |𝑥𝑦 −√


(1 − 𝑥2)(1 − 𝑦2) | ≤ 1, where |𝑥| ≤ 1, |𝑦| ≤ 1.

218. Prove that √


1 − 𝑥2 +√


1 − 𝑦2 ≤ 2√


1 − (𝑥+𝑦⁄2 )
2
, where |𝑥| ≤ 1, |𝑦| ≤ 1.

219. Prove that 𝑎1
⁄

1−𝑎1 +
𝑎2
⁄

1−𝑎2 + ⋯ + 𝑎𝑛
⁄

1−𝑎𝑛 ≥
𝑛(𝑎1+𝑎2+⋯+𝑎𝑛)
⁄

𝑛−(𝑎1+𝑎2+⋯+𝑎𝑛), where 0 ≤ 𝑎1 < 1, 0 ≤ 𝑎2 <
1, … , 0 ≤ 𝑎𝑛 < 1.

220. Prove that 1
⁄

√


1+𝑎2
+ 1
⁄

√


1+𝑏2
+ 1
⁄

√


1+𝑐2
≤ 3
⁄

2, where 𝑎, 𝑏, 𝑐 > 0 and 𝑎 + 𝑏 + 𝑐 = 𝑎𝑏𝑐.

221. Prove that |𝑥−𝑦|
⁄

1+𝑎|𝑥−𝑦|+
|𝑦−𝑧|
⁄

1+𝑎|𝑦−𝑧| ≥
|𝑥−𝑧|
⁄

1+𝑎|𝑥−𝑧|, where 𝑎 > 0.

222. Prove that 2𝑥(1−𝑥
2)

⁄

(1+𝑥2)2 + 2𝑦(1−𝑦2)
⁄

(1+𝑦2)2 + 2𝑧(1−𝑧2)
⁄

(1+𝑧2)2 ≤ 𝑥
⁄

1+𝑥2 +
𝑦
⁄

1+𝑦2 +
𝑧
⁄

1+𝑧2, where 𝑥 > 0, 𝑦 >
0, 𝑧 > 0 and 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 = 1.

223. Prove that √


𝑎1 + 𝑎2 + ⋯+ 𝑎𝑛 ≤√


1(√


𝑎1−√


𝑎2)+√


2(√


𝑎2−√


𝑎3)+⋯+√

𝑛(√


𝑎𝑛−
√


𝑎𝑛+1), where 𝑎1 ≥ 𝑎2 ≥ … ≥ 𝑎𝑛+1 = 0.

224. Prove that 1
⁄

1
⁄

1+𝑎1
+ 1
⁄

1+𝑎2
+⋯+ 1
⁄

1+𝑎𝑛

− 1
⁄

1⁄
𝑎1
+ 1⁄

𝑎2
+⋯+ 1⁄

𝑎𝑛

≥ 1
⁄

𝑛, where 𝑎1 > 0, 𝑎2 > 0, … , 𝑎𝑛 > 0.

225. Prove that 𝑎+𝑏+𝑐−2√


𝑎𝑏𝑐 ≥ 𝑎𝑏+𝑏𝑐+𝑐𝑎−2𝑎𝑏𝑐, where 0 ≤ 𝑎 ≤ 1,0 ≤ 𝑏 ≤ 1,0 ≤ 𝑐 ≤ 1.

226. Prove that √


𝑎(1 − 𝑏)(1 − 𝑐) +√


𝑏(1 − 𝑐)(1 − 𝑎) +√


𝑐(1 − 𝑎)(1 − 𝑏) ≤ 1 +√


𝑎𝑏𝑐,
where 0 ≤ 𝑎 ≤ 1, 0 ≤ 𝑏 ≤ 1, 0 ≤ 𝑐 ≤ 1.

227. Prove that [(𝑥 + 𝑦)(𝑦 + 𝑧)(𝑧 + 𝑥)]2 ≥ 𝑥𝑦𝑧(2𝑥 + 𝑦 + 𝑧)(2𝑦 + 𝑧 + 𝑥)(2𝑧 + 𝑥 + 𝑦),
where 𝑥, 𝑦, 𝑧 ≥ 0.

228. Prove that 𝑎𝑏(1−𝑎)(1−𝑏)⁄

(1−𝑎𝑏)2 < 1
⁄

4, where 0 < 𝑎 < 1, 0 < 𝑏 < 1.

229. Prove that max(𝑎1,𝑎2,… ,𝑎𝑛)≥ 2, where 𝑛 > 3,𝑎1+𝑎2+⋯+𝑎𝑛 ≥ 𝑛,𝑎21+𝑎22+⋯+𝑎2𝑛 ≥
𝑛2.

230. Prove that √


𝑎1 + (𝑎𝑛−𝑎𝑛−1)2
⁄

4(𝑛−2) + ⋯ + √


𝑎𝑛−2 + (𝑎𝑛−𝑎𝑛−1)2
⁄

4(𝑛−2) + √


𝑎𝑛−1 + √


𝑎𝑛 ≤ √

𝑛,

where 𝑛 ≥ 3, 𝑎1, 𝑎2, … , 𝑎𝑛 ≥ 0 and 𝑎1 + 𝑎2 + ⋯+ 𝑎𝑛 = 1.

231. Prove that 2√


(𝑥2 − 1)(𝑦2 − 1) ≤ 2(𝑥 − 1)(𝑦 − 1)+ 1, where 0 ≤ 𝑥, 𝑦 ≤ 1.
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232. Prove that 𝑎3 + 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐 ≤√


(𝑎2 + 𝑏2 + 𝑐2)3.

233. Pprove that 1
⁄

𝑛−1+𝑥1 +
1
⁄

𝑛−1+𝑥2 + ⋯ + 1
⁄

𝑛−1+𝑥𝑛 ≤ 1, where 𝑥1, 𝑥2, … , 𝑥𝑛 > 0 and
𝑥1.𝑥2.… .𝑥𝑛 = 1.

234. Prove that 𝑥
⁄

√


1−𝑥 +
1
⁄

√


1−𝑦 ≥
𝑥+𝑦
⁄

√


1−𝑥+𝑦
⁄

2

, where 0 ≤ 𝑥, 𝑦 < 1.

235. Prove that 𝑥1
⁄

√


1−𝑥1
+ 𝑥2
⁄

√


1−𝑥2
+ ⋯ + 𝑥𝑛
⁄

√


1−𝑥𝑛
≥ √

𝑥1+√

𝑥2+⋯+√

𝑥𝑛

⁄

√


𝑛−1 , where 𝑛 ≥ 2, 𝑛 ∈
ℕ, 𝑥1, 𝑥2, … , 𝑥𝑛 > 0 and 𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛 = 1.

236. Prove that 𝑥
⁄

√


4𝑦2+1
+ 𝑦
⁄

√


4𝑥2+1
≤ 1⁄

√


2, where 0 ≤ 𝑥,𝑦 ≤ 1
⁄

2.

237. Prove that 0 ≤ 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 − 𝑎𝑏𝑐 ≤ 2, where 𝑎, 𝑏, 𝑐 > 0 and 𝑎2 + 𝑏2 + 𝑐2 + 𝑎𝑏𝑐 = 4.

238. Prove that 𝑎 + 𝑏 + 𝑐 ≤ 3, whhere 𝑎, 𝑏, 𝑐 > 0 and 𝑎2 + 𝑏2 + 𝑐2 + 𝑎𝑏𝑐 = 4.

239. Prove that (𝑥 − 1)(𝑦 − 𝑧)(𝑧 − 1) ≤ 6√


3 − 10, where 𝑥, 𝑦, 𝑧 > 0 and 𝑥 + 𝑦 + 𝑧 = 𝑥𝑦𝑧.

240. Prove that 3√


𝑥+𝑦
⁄

2𝑧 + 3√


𝑦+𝑧
⁄

2𝑥 + 3√


𝑧+𝑥⁄
2𝑦 ≤ 5(𝑥+𝑦+𝑧)+9
⁄

8 , where 𝑥, 𝑦, 𝑧 > 0 and 𝑥𝑦𝑧 = 1.

241. Prove that among four arbitrary numbers there are two numbers 𝑎 and 𝑏 such that
1+𝑎𝑏
⁄

√


1+𝑎2√


1+𝑏2
> 1
⁄

2.

242. Given that 𝑥+ 𝑦 + 𝑧 = 0 and 𝑥2+ 𝑦2+ 𝑧2 = 6, find all possible values of the expression
𝑥2𝑦 + 𝑦2𝑧 + 𝑧2𝑥.

243. Let (ℎ𝑛) be a sequence such that ℎ1 = 1
⁄

2 and ℎ𝑛+1 =√


1−√


1−ℎ2
𝑛

⁄

2 , 𝑛 = 1, 2, …. Prove
that ℎ1 + ℎ2 + ⋯+ ℎ𝑛 ≤ 1.03.

244. Prove that 𝑎𝑏𝑐 ≥ (𝑎 + 𝑏 − 𝑐)(𝑏 + 𝑐 − 𝑎)(𝑐 + 𝑎 − 𝑏), where 𝑎, 𝑏, 𝑐 > 0.

245. Prove that (𝑎1𝑏1 + 𝑎2𝑏2 + ⋯ + 𝑎𝑛𝑏𝑛)2 ≤ (𝑎21 + 𝑎22 + ⋯ + 𝑎2𝑛)(𝑏21 + 𝑏22 + ⋯ + 𝑏2𝑛).

246. Prove that (𝑎 + 𝑏)2(𝑎2 + 𝑏2)2 ⋯ (𝑎𝑛 + 𝑏𝑛)2 ≥ (𝑎𝑛+1 + 𝑏𝑛+1)𝑛, where 𝑎, 𝑏 > 0.

247. Prove that (𝑎𝛼1 +𝑎𝛼2 +⋯+𝑎𝛼𝑛)𝛽 ≤ (𝑎𝛽1 +𝑎𝛽2 +⋯+𝑎𝛽𝑛)𝛼, where 0 < 𝛽 < 𝛼, 𝑎1 > 0, 𝑎2 >
0, … , 𝑎𝑛 > 0.

248. Nesbitt's inequality: 𝑎
⁄

𝑏+𝑐 +
𝑏
⁄

𝑐+𝑎 +
𝑐
⁄

𝑎+𝑏 ≥
3
⁄

2, where 𝑎, 𝑏, 𝑐 > 0.

249. Prove that √


𝑎⁄
𝑏+𝑐+𝑑 +√


𝑏⁄
𝑎+𝑐+𝑑 +√


𝑐⁄
𝑎+𝑏+𝑑 +√


𝑑
⁄

𝑎+𝑏+𝑐 > 2, where 𝑎, 𝑏, 𝑐, 𝑑 > 0.

250. Prove that 3√


𝑎𝑏𝑐+𝑎𝑏𝑑+𝑎𝑐𝑑+𝑏𝑐𝑑
⁄

4 ≤√


𝑎𝑏+𝑎𝑐+𝑎𝑑+𝑏𝑐+𝑏𝑑+𝑐𝑑
⁄

6 , where 𝑎, 𝑏, 𝑐, 𝑑 > 0.

251. Prove that 2√


𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 ≤ 3 3√


(𝑏 + 𝑐)(𝑐 + 𝑎)(𝑎 + 𝑏), where 𝑎, 𝑏, 𝑐 > 0.
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252. Prove that 8(𝑥3 + 𝑦3 + 𝑧3)2 ≥ 9(𝑥2 + 𝑦𝑧)(𝑦2 + 𝑥𝑧)(𝑧2 + 𝑥𝑦), where 𝑥, 𝑦, 𝑧 > 0.

253. Prove that 4𝑎3 + 4𝑏3 + 4𝑐3 + 15𝑎𝑏𝑐 ≥ 1, where 𝑎, 𝑏, 𝑐 ≥ 0 and 𝑎 + 𝑏 + 𝑐 = 1.

254. Prove that 𝑎3 + 𝑏3 + 𝑐3 + 𝑎𝑏𝑐𝑑 ≥ 𝑚𝑖𝑛(1⁄4 ,
1
⁄

9 +
𝑑
⁄

27), where 𝑎, 𝑏, 𝑐 ≥ 0 and 𝑎 + 𝑏 + 𝑐 = 1.

255. Prove that 𝑎1+𝑎2+⋯+𝑎𝑛⁄

𝑛 ≥ 1
⁄

𝑛√


𝑎21+𝑎22+⋯+𝑎2𝑛
⁄

𝑛 + (1 − 1
⁄

𝑛)
𝑛√

𝑎1𝑎2 …𝑎𝑛, where 𝑛 ≥ 2, 𝑎𝑖 >

0, 𝑖 = 1, 2, … , 𝑛.

256. Turkevici's Inequality: 𝑎4 + 𝑏4 + 𝑐4 + 𝑑4 + 2𝑎𝑏𝑐𝑑 ≥ 𝑎2𝑏2 + 𝑎2𝑐2 + 𝑎2𝑑2 + 𝑏2𝑐2 + 𝑏2𝑑2 +
𝑐2𝑑2, where 𝑎, 𝑏, 𝑐, 𝑑 ≥ 0.

257. Prove that 𝑎
3
1
⁄

𝑏1+
𝑎32
⁄

𝑏2+⋯+𝑎3𝑛
⁄

𝑏𝑛 ≥ 1, where 𝑎𝑖, 𝑏𝑖 > 0, 𝑖 = 1,2,… ,𝑛, and (𝑎21+𝑎22+⋯+𝑎2𝑛)3 =
𝑏21 + 𝑏22 + ⋯ + 𝑏2𝑛.

258. Prove that 𝑎⁄𝑏 +
𝑏⁄
𝑐 +

𝑐
⁄

𝑎 ≥
𝑎+𝑐
⁄

𝑏+𝑐 +
𝑏+𝑎
⁄

𝑐+𝑎 +
𝑐+𝑏
⁄

𝑎+𝑏, where 𝑎, 𝑏, 𝑐 > 0.

259. Prove that √


𝑎𝑛1
⁄

𝑎𝑛1+𝜆𝑎1𝑎2…𝑎𝑛 +√


𝑎𝑛2
⁄

𝑎𝑛2+𝜆𝑎1𝑎2…𝑎𝑛 + ⋯ +√


𝑎𝑛𝑛
⁄

𝑎𝑛𝑛+𝜆𝑎1𝑎2…𝑎𝑛 ≥ 𝑛
⁄

√


1+𝜆, where

𝑛 ≥ 2, 𝑎1, 22, … , 𝑎𝑛 > 0 and 𝜆 ≥ 𝑛2 − 1.

260. Prove that ( 𝑘√


2− 1)(𝑎1+ 𝑎2+⋯+𝑎𝑛) < 𝑘√


2𝑎𝑘1 + 22𝑎𝑘2 + ⋯ + 2𝑛𝑎𝑘𝑛, where 𝑘 ∈ ℕ, 𝑘 ≥
2, 𝑎1, 𝑎2, … , 𝑎𝑛 > 0.

261. Prove that 3(𝑥2𝑦 + 𝑦2𝑧 + 𝑧2𝑥)(𝑥𝑦2+ 𝑦𝑧2+ 𝑧𝑥2) ≥ 𝑥𝑦𝑧(𝑥+ 𝑦 + 𝑧)3, where 𝑥, 𝑦, 𝑧 > 0.

262. Prove that (𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛 + 𝑦1 + 𝑦2 + ⋯ + 𝑦𝑛)2 ≥ 4𝑛(𝑥1𝑦1 + 𝑥2𝑦2 + ⋯ + 𝑥𝑛𝑦𝑛),
where 𝑥1 ≤ 𝑥2 ≤ … ≤ 𝑥𝑛 ≤ 𝑦1 ≤ 𝑦2 ≤ … ≤ 𝑦𝑛.

263. Prove that ln 𝑧−ln𝑦⁄𝑧−𝑦 < ln𝑧−ln𝑥
⁄

𝑧−𝑥 < ln𝑦−ln𝑥
⁄

𝑦−𝑥 , where 0 < 𝑥 < 𝑦 < 𝑧.

264. Prove that 𝑎𝑏𝑏𝑐𝑐𝑑𝑑𝑎 ≥ 𝑏𝑎𝑐𝑏𝑑𝑐𝑎𝑑, where 0 ≤ 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑.

265. Prove that 𝑥1
⁄

𝑆−𝑥1 +
𝑥2
⁄

𝑆−𝑥2 + ⋯ + 𝑥𝑛
⁄

𝑆−𝑥𝑛 ≥ 𝑛
⁄

𝑛+1, where 𝑛 ≥ 2, 𝑆 = 𝑥1 + 𝑥2 + ⋯ +
𝑥𝑛, 𝑥1, 𝑥2, … , 𝑥𝑛 > 0.

266. Prove that 𝑎3 + 𝑏3 + 𝑐3 + 6𝑎𝑏𝑐 ≥ 1
⁄

4 (𝑎 + 𝑏 + 𝑐)3, where 𝑎, 𝑏, 𝑐 ≥ 0.

267. Prove that 𝑎2(2𝑏 + 2𝑐 − 𝑎)+ 𝑏2(2𝑐 + 2𝑎 − 𝑏)+ 𝑐2(2𝑎 + 2𝑏 − 𝑐) ≥ 9𝑎𝑏𝑐, where 𝑎, 𝑏, 𝑐
are side lengths of a triangle.

268. Prove that 𝑛√

𝑎1𝑎2 …𝑎𝑛+ 𝑛√



𝑏1𝑏2 … 𝑏𝑛 ≤ 𝑛√


(𝑎1 + 𝑏1)(𝑎2 + 𝑏2)… (𝑎𝑛 + 𝑏𝑛), where 𝑛 ≥
2, 𝑎𝑖 > 0, 𝑏𝑖 > 0, 𝑖 = 1, 2, … , 𝑛.

269. Prove that 𝑛√


(𝑛 + 1)! − 𝑛√


𝑛! ≥ 1, where 𝑛 ≥ 2, 𝑛 ∈ ℕ.

270. Prove that 𝑛√


𝐹𝑛+1 > 1 + ‵
⁄

𝑛√


𝐹𝑛
, where 𝑛 ≥ 2, 𝐹1 = 1, 𝐹2 = 2, 𝐹𝑘+2 = 𝐹𝑘+1 + 𝐹𝑘, 𝑘 =

1, 2, ….
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271. Prove that 𝑛√


𝐶𝑛
𝑛+1 > 2(1 + 1

⁄

𝑛√


𝑛+1
), where 𝑛 = 2, 3, ….

272. Prove that (1 + 𝑎1)(2 + 𝑎2)⋯ (𝑛 + 𝑎𝑛) ≥ 𝑛
𝑛
⁄

2, where 𝑛 ≥ 2, 𝑛 ∈ ℕ, 𝑎1, 𝑎2, … , 𝑎𝑛 > 0
and 𝑎1𝑎2 …𝑎𝑛 = 1.

273. Prove that 𝑛√


(𝑎1+𝑏1)(𝑎2+𝑏2)…(𝑎𝑛+𝑏𝑛)
⁄

(𝑎1−𝑐1)(𝑎2−𝑐2)…(𝑎𝑛−𝑐𝑛) ≥
𝑛√


𝑎1𝑎2…𝑎𝑛+𝑛√


𝑏1𝑏2…𝑏𝑛
⁄

𝑛√


𝑎1𝑎2…𝑎𝑛−𝑛√


𝑐1𝑐2…𝑐𝑛
, where 𝑛 ≥ 2, 𝑛 ∈ ℕ, 𝑏𝑖 >

0, 𝑎𝑖 > 𝑐𝑖 > 0, 𝑖 = 1, 2, … , 𝑛.

274. Prove that 3√


𝑎𝑏 + 3√


𝑐𝑑 ≤ 3√


(𝑎 + 𝑐 + 𝑑)(𝑎 + 𝑏 + 𝑐), where 𝑎, 𝑏, ,𝑐, 𝑑 ≥ 0.

275. Prove that 𝑥(𝑥2 − 1)2 + 𝑦2(𝑦2 − 1)2 ≥ (𝑥2 − 1)(𝑦2 − 1)(𝑥2 + 𝑦2 − 1).

276. Prove that (𝑥1−𝑥2)(𝑥1−𝑥3)(𝑥1−𝑥4)(𝑥1−𝑥5)+ (𝑥2−𝑥1)(𝑥2−𝑥3)(𝑥2−𝑥4)(𝑥2−
𝑥5)+⋯+ (𝑥5 − 𝑥1)(𝑥5 − 𝑥2)(𝑥5 − 𝑥3)(𝑥5 − 𝑥4) ≥ 0.

277. Prove that 0 ≤ 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 − 𝑎𝑏𝑐 ≤ 2, where 𝑎, 𝑏, 𝑐 ≥ 0 and 𝑎2 + 𝑏2 + 𝑐2 + 𝑎𝑏𝑐 = 4.

278. Prove that 𝑥𝜆(𝑥 − 𝑦)(𝑥 − 𝑧) + 𝑦𝜆(𝑦 − 𝑧)(𝑦 − 𝑥) + 𝑧𝜆(𝑧 − 𝑦)(𝑧 − 𝑥) ≥ 0, where
𝑥, 𝑦, 𝑧 > 0.

279. Prove that 3√


( 𝑎
⁄

𝑏+𝑐)
2
+ 3√


( 𝑏
⁄

𝑎+𝑐)
2
+ 3√


( 𝑐
⁄

𝑎+𝑏)
2
≥ 3⁄

3√


4
, where 𝑎, 𝑏, 𝑐 > 0.

280. Prove that (𝑎5 − 𝑎2 + 3)(𝑏5 − 𝑏2 + 3)(𝑐5 − 𝑐2 + 3) ≥ (𝑎 + 𝑏 + 𝑐)3, where 𝑎, 𝑏, 𝑐 > 0.

281. Prove that 𝑎𝑏𝑐 + 𝑎𝑏𝑑 + 𝑏𝑐𝑑 + 𝑎𝑐𝑑 − 𝑎𝑏𝑐𝑑 ≤ 3, where 𝑎, 𝑏, 𝑐, 𝑑 > 0 and 𝑎3 + 𝑏3 + 𝑐3 +
𝑑3 + 𝑎𝑏𝑐𝑑 = 5.

282. Prove that 0 ≤ 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 − 𝑎𝑏𝑐 ≤ 2, where 𝑎, 𝑏, 𝑐 ≥ 0 and 𝑎2 + 𝑏2 + 𝑐2 + 𝑎𝑏𝑐 = 4.

283. Prove that 𝑎2 + 𝑏2 + 𝑐2 + 2𝑎𝑏𝑐 + 1 ≥ (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎), where 𝑎, 𝑏, 𝑐 ≥ 0.

284. Prove that 𝑥+𝑦+𝑧
⁄

𝑥𝑦+𝑦𝑧+𝑧𝑥 ≤ 1 + 1
⁄

48 [(𝑥 − 𝑦)2 + (𝑦 − 𝑧)2 + (𝑧 − 𝑥)2 ], where 𝑥, 𝑦, 𝑧 > 0 and
𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 + 𝑥𝑦𝑧 = 4.

285. Let 𝑎1, 𝑎2, … , 𝑎𝑛+1 be 𝑛+ 1 positive real numbers such that 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛 = 𝑎𝑛+1.

Prove that 
𝑛
∑
𝑖=1

√


𝑎𝑖(𝑎𝑛+1)− 𝑎𝑖 ≤√
𝑛
∑
𝑖=1

𝑎𝑛+1(𝑎𝑛+1 − 𝑎𝑖).

286. Prove that 𝑎
⁄

𝑏+2𝑐 +
𝑏
⁄

𝑐+2𝑎 +
𝑐
⁄

𝑎+2𝑏 ≥ 1, where 𝑎, 𝑏, 𝑐 > 0 and 𝑎, 𝑏, 𝑐 ∈ ℝ.

287. Prove that 𝑎2 + 𝑏2 + 𝑐2 ≥ √


3𝑎𝑏𝑐, where 𝑎, 𝑏, 𝑐 > 0 and 𝑎, 𝑏, 𝑐 ∈ ℝ such that 𝑎𝑏𝑐 ≤
𝑎 + 𝑏 + 𝑐.

288. For any positive real numbers 𝑎, 𝑏, 𝑐 prove that 2
⁄

𝑏(𝑎+𝑏)+
2
⁄

𝑐(𝑏+𝑐)+
2
⁄

𝑎(𝑐+𝑎) ≥
27
⁄

(𝑎+𝑏+𝑐)2.

289. Let 𝑎, 𝑏, 𝑐 be three sides of a triangle such that 𝑎 + 𝑏 + 𝑐 = 2. Prove that 1 ≤
𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 − 𝑎𝑏𝑐 ≤ 1 + 1
⁄

27.
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290. If 𝑎, 𝑏, 𝑐 be positive real numbers such that 𝑎 + 𝑏 + 𝑐 = 1. Prove that √


𝑎𝑏 + 𝑐 +
√


𝑏𝑐 + 𝑎 +√


𝑐𝑎 + 𝑏 ≥ 1 +√


𝑎𝑏 +√


𝑏𝑐 +√

𝑐𝑎.

291. If 𝑎, 𝑏, 𝑐, 𝑑 are positive real numbers, prove that √


𝑎2+𝑏2+𝑐2+𝑑2
⁄

4 ≥

4√


𝑎𝑏𝑐+𝑏𝑐𝑑+𝑐𝑑𝑎+𝑎𝑏𝑑
⁄

4 .

292. Let 𝑎, 𝑏, 𝑐 be the sides of a triangle such that 𝑎 + 𝑏 + 𝑐 = 2. Prove that 𝑎2 + 𝑏2 + 𝑐2 +
2𝑎𝑏𝑐 < 2.

293. If 𝑎, 𝑏, 𝑐 are positive real numbers such that 𝑎2 + 𝑏2 + 𝑐2 = 1, prove that (1⁄𝑎 +
1
⁄

𝑏 +
1
⁄

𝑐)+
𝑎 + 𝑏 + 𝑐 ≥ 4√


3.

294. Find all triples (𝑎, 𝑏, 𝑐) of real numbers which satisfy the system of equations:

𝑎 + 𝑏 + 𝑐 = 6,

1⁄
𝑎 +

1
⁄

𝑏 +
1
⁄

𝑐 = 2 − 4
⁄

𝑎𝑏𝑐 .

295. Let 𝑎,𝑏, 𝑐 be real numbers such that 𝑎2+𝑏2+𝑐2 = 1. Prove that 𝑎2
⁄

1+2𝑏𝑐+
𝑏2
⁄

1+2𝑐𝑎+
𝑐2
⁄

1+2𝑎𝑏 ≥
3
⁄

5.

296. Let 𝑎, 𝑏, 𝑐 and 𝛼, 𝛽, 𝛾 be positive real numbers such that 𝛼 + 𝛽 + 𝛾 = 1. Prove that
𝑏𝛼 + 𝑏𝛽 + 𝑐𝛾 + 2√



(𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼)(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) ≤ 𝑎 + 𝑏 + 𝑐.

297. Prove that for all real numbers 𝑎 and 𝑏, 𝑎2 + 𝑏2 + 1 > 𝑎√


𝑏2 + 1 + 𝑏√


𝑎2 + 1.

298. For a fixed positive integer 𝑛, compute the minimum value of the sum 𝑥1 +
𝑥22
⁄

2 + 𝑥33
⁄

3 +

⋯ + 𝑥𝑛𝑛⁄
𝑛 , where 𝑥1, 𝑥2, … , 𝑥𝑛 are positive real numbers such that 1⁄𝑥1 +

1
⁄

𝑥2 + ⋯ + 1⁄
𝑥𝑛 = 𝑛.

299. Let 𝑎, 𝑏, 𝑐, 𝑑 be positive real numbers such that 𝑎 + 𝑏 + 𝑐 + 𝑑 ≤ 1. Prove that
𝑎
⁄

𝑏 +
𝑏⁄
𝑐 +

𝑐⁄
𝑑 +

𝑑
⁄

𝑎 ≤
1
⁄

64𝑎𝑏𝑐𝑑.

300. Let 𝑎, 𝑏, 𝑐 be positive real numbers, all less than 1, such that 𝑎 + 𝑏 + 𝑐 = 2. Prove that
𝑎𝑏𝑐 ≥ 8(1 − 𝑎)(1 − 𝑏)(1 − 𝑐).

301. Prove that (2𝑎+𝑏+𝑐)
2

⁄

2𝑎2+(𝑏+𝑐)2 +
(2𝑏+𝑐+𝑎)2
⁄

2𝑏2+(𝑐+𝑎)2 +
(2𝑐+𝑎+𝑏)2
⁄

2𝑐2+(𝑎+𝑏)2 ≤ 8, where 𝑎, 𝑏, 𝑐 are positive real
numbers.

302. Prove that 𝑎𝑏𝑐 ≤ 1, where 𝑎, 𝑏, 𝑐 are real numbers such that (1+ 𝑎)(1+ 𝑏)(1+ 𝑐) = 8.

303. Prove that 
𝑛
∑
𝑖=1

𝑎𝑖⁄
2−𝑎𝑖

]𝑔𝑒𝑞 𝑛
⁄

2𝑛−1, where 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ ℝ, 𝑛 ≥ 2 such that 
𝑛
∑
𝑖=1

𝑎𝑖 = 1.

304. Prove that 
𝑛
∑
𝑖=1

𝑎2𝑖
⁄

𝑎𝑖+𝑎𝑖+1
≥ 1
⁄

2, where 𝑎1, 𝑎2,… ,𝑎𝑛 are positive numbers such that 
𝑛
∑
𝑖=1

𝑎𝑖 = 1

and 𝑎1 = 𝑎𝑛+1.
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305. Prove that 1⁄𝑎 +
4
⁄

𝑏 +
9
⁄

𝑐 +
16
⁄

𝑑 ≥ 100⁄
𝑎+𝑏+𝑐+𝑑, where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ.

306. Prove that 
𝑛
∑
𝑖=1

𝑎2𝑖
⁄

1−2𝑎𝑖
≥ 1
⁄

𝑛−2, where 𝑛 > 2, 0 < 𝑎1, 𝑎2, … , 𝑎𝑛 < 1
⁄

2 such that 
𝑛
∑
𝑖=1

𝑎𝑖 = 1.

307. Prove that 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛 ≤ 𝑥1
⁄

𝑦1 +
𝑥2
⁄

𝑦2 + ⋯ + 𝑥𝑛⁄
𝑦𝑛, where 𝑛 ≥ 2, 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛 ≥

𝑥1𝑦1 + 𝑥2𝑦2 + ⋯ + 𝑥𝑛𝑦𝑛 and 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦1, 𝑦2, … , 𝑦𝑛 are positive real numbers.

308. If 𝑥1, 𝑥2, … , 𝑥𝑛 are 𝑛 positive real numbers, prove that 𝑥1
⁄

1+𝑥21
+ 𝑥2
⁄

1+𝑥21+𝑥22
+ ⋯+

𝑥𝑛
⁄

1+𝑥21+𝑥22+⋯+𝑥2𝑛
< √


2.

309. If 𝑎, 𝑏, 𝑐 are poositive real numbers, prove that 3(𝑎2𝑏 + 𝑏2𝑐 + 𝑐2𝑎)(𝑎𝑏2 + 𝑏𝑐2 + 𝑐𝑎2) ≥
𝑎𝑏𝑐(𝑎 + 𝑏 + 𝑐)3.

310. Let 𝑃 (𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 be a quadratic polynomial with non-negative coefficients and
let 𝛼 be a positive real number. Prove that 𝑃 (𝛼)𝑃 (1/𝛼) ≥ 𝑃 (1)2.

311. If 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are positive, real numbers, prove that ∑ 𝑎
⁄

𝑏+𝑐 ≥
5
⁄

2 where sum is taken
cyclically over 𝑎, 𝑏, 𝑐, 𝑑, 𝑒.

312. Let 𝑎, 𝑏, 𝑐 be non-negative real numbers such that 1
⁄

𝑎2+1 +
1
⁄

𝑏2+1 +
1
⁄

𝑐2+1 = 2. Prove that

𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 ≤ 3
⁄

2.

313. Suppose 𝑎, 𝑏, 𝑐 are positive real numbers. Prove that 3(𝑎+𝑏+𝑐) ≥ 8 3√


𝑎𝑏𝑐+ 3√


𝑎3+𝑏3+𝑐3
⁄

3 .
When does equality hold?

314. Let 𝑐1, 𝑐2, … , 𝑐𝑛 be 𝑛 real numbers such that either 0 ≤ 𝑐𝑖 ≤ 1 for all 𝑖 or 𝑐𝑖 ≥ 1 for

all 𝑖. Prove that the inequality 
𝑛
∏
𝑖=1

(1 − 𝑝 + 𝑝𝑐𝑖) ≤ 1− 𝑝 + 𝑝
𝑛
∏
𝑖=1

𝑐𝑖 holds, for any real 𝑝

with 0 ≤ 𝑝 ≤ 1.

315. Let 𝑥1, 𝑥2, 𝑥3, 𝑥4 be real numbers in the interval (0, 1/2]. Prove that

𝑥1𝑥2𝑥3𝑥4
⁄

(1−𝑥1)(1−𝑥2)(1−𝑥3)(1−𝑥4) ≤
𝑥41+𝑥42+𝑥43+𝑥44

⁄

(1−𝑥1)4+(1−𝑥2)4+(1−𝑥3)4+(1−𝑥4)4
.

316. If 𝑥1, 𝑥2, … , 𝑥𝑛 be 𝑛 real numbers such that 𝑥𝑖 ∈ (0, 1/2]. Prove that ∏𝑛
𝑖=1 𝑥𝑖
⁄

(∑𝑛
𝑖=1 𝑥𝑖)

𝑛 ≤
∏𝑛

𝑖=1(1−𝑥𝑖)
⁄

(∑𝑛
𝑖=1(1−𝑥𝑖))

𝑛.

317. Consider a sequence ⟨𝑎𝑖⟩ of real numbers satisfying 𝑎𝑖+𝑗 ≤ 𝑎𝑖 + 𝑎𝑗. Prove that
𝑎1 + 𝑎2
⁄

2 + ⋯ + 𝑎𝑛
⁄

𝑛 ≥ 𝑎𝑛, ∀𝑛.

318. For positive real numbers 𝑥, 𝑦, 𝑧, prove that ∑ 𝑥
⁄

𝑥+√


(𝑥+𝑦)(𝑥+𝑧)
≤ 1, where the sum is

taken cyclically over 𝑥, 𝑦, 𝑧.
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319. Let 𝑥,𝑦 be non-negative real numbers such that 𝑥+𝑦 = 2. Prove that 𝑥3𝑦3(𝑥3+𝑦3)≤ 2.

320. Let ⟨𝑎𝑖⟩ and ⟨𝑏𝑖⟩ be two sequences such that 0 < ℎ ≤ 𝑎𝑖 ≤ 𝐻 and 0 < 𝑚 ≤ 𝑏𝑖 ≤ 𝑀 for

real ℎ, 𝐻, 𝑚, 𝑀 . Prove that 1 ≤ (∑𝑎2𝑖 )(∑𝑏2𝑖 )
⁄

(∑𝑎𝑖𝑏𝑖)2
≤ 1
⁄

4(√


𝐻𝑀
⁄

ℎ𝑚 +√


ℎ𝑚
⁄

𝐻𝑀)
2
.

321. Let 𝑓 : [0, 𝑎]→ ℝ be a convex function. Consider 𝑛 points 𝑥1, 𝑥2, … , 𝑥𝑛 in [0, 𝑎] such

that ∑𝑛
𝑖=1 𝑥𝑖 is also in [0, 𝑎]. Prove that 

𝑛
∑
𝑖=1

𝑓(𝑥𝑖) ≤ 𝑓(
𝑛
∑
𝑖=1

𝑥𝑖)+ (𝑛 − 1)𝑓(0).

322. For any real number 𝑛, prove that (2𝑛𝑛 )√


3𝑛 < 4𝑛.

323. Let 𝑎, 𝑏, 𝑐 be positive real numbers and let 𝑥 be a non-negative real number. Prove
that 𝑎𝑥+2 + 𝑏𝑥+2 + 𝑐𝑥+2 ≥ 𝑎𝑥𝑏𝑐 + 𝑎𝑏𝑥𝑐 + 𝑎𝑏𝑐𝑥.

324. Let (𝑎1, 𝑎2, … , 𝑎𝑛), (𝑏1, 𝑏2, … , 𝑏𝑛) and (𝑐1, 𝑐2, … , 𝑐𝑛) be three seuqnences of positive

real numbers. Prove that 
𝑛
∑
𝑖=1

𝑎𝑖𝑏𝑖𝑐𝑖 ≤
3√
𝑛
∑
𝑖=1

𝑎3𝑖
3√
𝑛
∑
𝑖=1

𝑏3𝑖
3√
𝑛
∑
𝑖=1

𝑐3𝑖 .

325. Prove for any three real numbers 𝑎, 𝑏, 𝑐, the inequality 3(𝑎2 − 𝑎 − 1)(𝑏2 − 𝑏 − 1)(𝑐2 −
𝑐 − 1) ≥ (𝑎𝑏𝑐)2 − 𝑎𝑏𝑐 + 1.

326. Consider a polynomial of the form 𝑃 (𝑥) = 𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 1, where
𝑎𝑖 ≥ 0 ∀1 ≤ 𝑖 ≤ 𝑛 − 1. Suppose 𝑃 (𝑥) = 0 has 𝑛 real roots. Prove that 𝑃 (2) ≥ 3𝑛.

327. Let 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛 be 𝑛 positive integers. Prove that (𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛)2 ≤
𝑎31 + 𝑎32 + ⋯ + 𝑎3𝑛.

328. Consider a sequence 𝑎1, 𝑎2, … , 𝑎𝑛 of positive real numbers which add up to 1, where
𝑛 ≥ 2 is an integer. Prove that for any positive real numbers 𝑥1, 𝑥2, … , 𝑥𝑛 with
𝑛
∑
𝑖=1

𝑥𝑖 = 1, the inequality 2∑
𝑖<𝑗

𝑥𝑖𝑥𝑗 ≤
𝑛−2
⁄

𝑛+1 +
𝑛
∑
𝑖=1

𝑎𝑖𝑥2𝑖⁄
1−𝑎𝑖

, holds.

329. Let 𝑥1, 𝑥2, 𝑥3, 𝑥4 be four consecutive positive real numbers such that 𝑥1𝑥2𝑥3𝑥4 = 1.
Prove that 𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 ≥ min(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4,

1
⁄

𝑥1 +
1
⁄

𝑥2 +
1
⁄

𝑥3 +
1
⁄

𝑥4).

330. Let {𝑥} denote the fractional part of 𝑥 i.e. {𝑥} = 𝑥 − ⌈𝑥⌉. Prove for any positive

integer 𝑛,
𝑛
∑
𝑖=1

{√

𝑖} ≤ 𝑛2−1⁄

2 .

331. If 𝑎, 𝑏, 𝑐 are positive real numbers, prove that 𝑎2⁄
(𝑎+𝑏)(𝑎+𝑐)+

𝑏2⁄
(𝑏+𝑐)(𝑏+𝑎)+

𝑐2⁄
(𝑐+𝑎)(𝑐+𝑏) ≥

3
⁄

4.

332. Let 𝑎, 𝑏, 𝑐 be positive real numbers such that 𝑎𝑏𝑐 > 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎. Prove that 𝑎𝑏𝑐 ≥
3(𝑎 + 𝑏 + 𝑐).

333. Let 𝑎1, 𝑎2, … , 𝑎𝑛 be 𝑛 non-negative real numbers and let 𝑎 denote the sum of these

numbers. Prove that 
𝑛−1
∑
𝑖=1

𝑎𝑖𝑎𝑖+1 ≤
𝑎2
⁄

4 .
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334. Let 𝑎, 𝑏, 𝑐, 𝑑 be complex numbers such that 𝑎𝑐 ≠ 0. Prove that max(|𝑎𝑐|, |𝑎𝑑+𝑏𝑐|, |𝑏𝑑|)⁄
max(|𝑎|, |𝑏|)(|𝑐|, |𝑑|) ≥

−1+√


5⁄
2 .

335. Let 𝑥1, 𝑥2, 𝑥3, 𝑥4 be non-negative real numbers such that 
𝑛
∑
𝑖=1

1⁄
1+𝑥𝑖

≤ 1. Prove that

𝑥1𝑥2 ⋯𝑥𝑛 ≥ (𝑛 − 1)𝑛.

336. Prove that 1⁄
𝑚+𝑛−1 −

1⁄
(𝑚+1)(𝑛+1) ≤

4
⁄

45 for any two natural numbers 𝑚 and 𝑛.

337. If 𝑎, 𝑏 are two positive real numbers, prove that 𝑎𝑏 + 𝑏𝑎 > 1.

338. Let 𝑎, 𝑏 be positive real numbers such that 𝑎 + 𝑏 = 1 and let 𝑝 be a positive real. Prove
that (𝑎 + 1
⁄

𝑎)
𝑝
+ (𝑏 + 1
⁄

𝑏)
𝑝
≥ 5𝑝⁄

2𝑝−1.

339. Let 𝑎, 𝑏, 𝑐 be positive real numbers such that 𝑎𝑏𝑐 = 1. Prove that (𝑎−1+1
⁄

𝑏)(𝑏−1+1
⁄

𝑐)

(𝑐 − 1 + 1
⁄

𝑎) ≤ 1.

340. Let 𝑥, 𝑦, 𝑧 be real numbers in the interval [−1, 2] such that 𝑥 + 𝑦 + 𝑧 = 0. Prove that
(2−𝑥)(2−𝑦)⁄
(2+𝑥)(2+𝑦)+√

(2−𝑦)(2−𝑧)⁄
(2+𝑦)(2+𝑧)+√

(2−𝑧)(2−𝑥)⁄
(2+𝑧)(2+𝑥) ≥ 3.

341. Let ⟨𝑎𝑛⟩ be a sequence of distinct positive integers. Prove that ∑
𝑖=1

𝑎𝑖⁄
𝑖2 ≥

𝑛
∑
𝑖=1

1
⁄

𝑖, for every

positive integer 𝑛.

342. Let 𝑥, 𝑦, 𝑧 be non-negative real numbers such that 𝑥 + 𝑦 + 𝑧 = 1. Prove that 0 ≤
𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 − 2𝑥𝑦𝑧 ≤ 7
⁄

27.

343. Let 𝑥1, 𝑥2, … , 𝑥𝑛 be 𝑛 positive real numbers. Prove that 
𝑛
∑
𝑖=1

𝑥3𝑖⁄
𝑥2𝑖+𝑥𝑖𝑥𝑖+1+𝑥2𝑖+1

≥ 1
⁄

3

𝑛
∑
𝑖=1

𝑥𝑖,

where 𝑥1 = 𝑥𝑛+1.

344. Suppose 𝑥, 𝑦, 𝑧 are non-negative real numbers. Prove that 𝑥(𝑥 − 𝑧)2 + 𝑦(𝑦 − 𝑧)2 ≥
(𝑥 − 𝑧)(𝑦 − 𝑧)(𝑥 + 𝑦 − 𝑧).

345. Prove that 𝑎⁄𝑏 +
𝑏⁄
𝑐 +

𝑐
⁄

𝑎 ≥
𝑐+𝑎
⁄

𝑐+𝑏 +
𝑎+𝑏
⁄

𝑎+𝑐 +
𝑏+𝑐
⁄

𝑏+𝑎, where 𝑎, 𝑏, 𝑐 are positive real numbers.

346. If 𝑎, 𝑏 are real numbers, prove that 𝑎2 + 𝑎𝑏 + 𝑏2 ≥ 3(𝑎 + 𝑏 − 1).

347. Define a sequence ⟨𝑥𝑛⟩ by 𝑥1 = 2, 𝑥𝑛+1 = 𝑥4𝑛+9⁄
10𝑥𝑛 . Prove that 4⁄5 < 𝑥𝑛 ≤ 5
⁄

4 ∀ 𝑛 > 1.

348. Let 𝑎, 𝑏, 𝑐 be positive real numbers such that 𝑎2 − 𝑎𝑏 + 𝑏2 = 𝑐2. Prove that (𝑎− 𝑐)(𝑏 −
𝑐) ≤ 0.

349. Let 𝑎, 𝑏, 𝑐 be positive real numbers. Prove that √

𝑎2 − 𝑎𝑏 + 𝑏2 +√

𝑏2 − 𝑏𝑐 + 𝑐2 ≥

√

𝑎2 + 𝑎𝑐 + 𝑐2.
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350. For all real numbers 𝑎, show that (𝑎3 − 𝑎 + 2)2 ≥ 4𝑎2(𝑎2 + 1)(𝑎 − 2).

351. Let 𝑎, 𝑏, 𝑐 be distinct real numbers. Prove that (2𝑎−𝑏⁄𝑎−𝑏 )
2
+ (2𝑏−𝑐⁄𝑏−𝑐 )+ (2𝑐−𝑎⁄𝑐−𝑎 )

2
≥ 5.

352. Let 𝛼, 𝛽, 𝑥1, 𝑥2, … , 𝑥𝑛 be positive reals such that 𝛼+𝛽 = 1, and 𝑥1+ 𝑥2+⋯+𝑥𝑛 = 1.

Prove that 
𝑛
∑
𝑖=1

𝑥2𝑚+1
𝑖⁄

𝛼𝑥𝑖+𝛽𝑥𝑖+1
≥ 1⁄

𝑛2𝑚−1 for every positive integer 𝑚, where 𝑥𝑛+1 = 𝑥1.

353. Given positive reals 𝑎, 𝑏, 𝑐, 𝑑, prove that √

(𝑎 + 𝑐)2 + (𝑏 + 𝑑)2 ≤ √

𝑎2 + 𝑏2 +

√

𝑐2 + 𝑑2 ≤√

(𝑎 + 𝑐)2 + (𝑏 + 𝑑)2 + 2|𝑎𝑑−𝑏𝑐|⁄

√

(𝑎+𝑐)2+(𝑏+𝑑)2

.

354. With every natural number 𝑛, associate a real number 𝑎𝑛 by 𝑎𝑛 = 1
⁄

𝑝1 +
1
⁄

𝑝2 + ⋯ + 1⁄
𝑝𝑘,

where {𝑝1, 𝑝2, … , 𝑝𝑘} is the set of all prime divisors of 𝑛. Show that for any natural

number 𝑁 ≥ 2,
𝑁
∑
𝑖=2

𝑎1𝑎2 …𝑎𝑛 < 1.

355. Let 𝑛 be a fixed integer, with 𝑛 ≥ 2. Determine the least constant 𝐶 such that

the inequality ∑
1≤𝑖<𝑗≤𝑛

𝑥𝑖𝑥𝑗(𝑥2𝑖 + 𝑥2𝑗 ) ≤ 𝐶( ∑
1≤𝑖≤𝑛

𝑥𝑖)
4

holds for all real numbers

𝑥1, 𝑥2, … , 𝑥𝑛. Determine when the equality holds.

356. Let 𝑎, 𝑏, 𝑐, 𝑑 be real numbers such that (𝑎2 + 𝑏2 − 1)(𝑐2 + 𝑑2 − 1) > (𝑎𝑐 + 𝑏𝑑 − 1)2.
Prove that 𝑎2 + 𝑏2 − 1 > 0 and 𝑐2 − 𝑑2 − 1 > 0.

357. Let 𝑥1, 𝑥2, … , 𝑥100 be 100 positive integers such that 1⁄
√

𝑥1
+ 1⁄

√

𝑥2
+ ⋯ + 1⁄

√

𝑥100

= 20.
Prove that at least two of the 𝑥𝑖's are equal.

358. Let 𝑓(𝑥) be a polynomial with integer coefficients and of degree 𝑛 > 1. Suppose
𝑓(𝑥) = 0 has 𝑛 real roots in the interval (0, 1), not all equal. If 𝑎 is the leading
coefficient of 𝑓(𝑥), prove that |𝑎| ≥ 2𝑛 + 1.

359. Show that the equation 𝑥⁄𝑦 +
𝑦
⁄

𝑧 +
𝑧⁄
𝑤 + 𝑤⁄

𝑥 = 𝑚, has no solutions in positive reals for
𝑚 = 2, 3.

360. Solve the system of equations: 𝑥 = 4𝑧2⁄
1+4𝑧2 , 𝑦 = 𝑧 = 4𝑥2⁄

1+4𝑥2, for real numbers 𝑥, 𝑦, 𝑧.

361. Suppose 𝑎, 𝑏 are non-zero real numbers and that all the roots of the real polynomial
𝑎𝑥𝑛− 𝑎𝑥𝑛−1 + 𝑎𝑛−1𝑥𝑛−2 +⋯+ 𝑎2𝑥2 − 𝑛2𝑏𝑥 + 𝑏 = 0 are real and positive. Prove that
all the roots are in fact equal.

362. Find all triples (𝑎, 𝑏, 𝑐) of positive integers such that product of any two leaves a
remainder 1 when divided by the third number.

363. Find all positive solutions of the system: 𝑥1 + 1
⁄

𝑥2 = 4, 𝑥2 + 1
⁄

𝑥3 = 1, ⋯ , 𝑥1999 + 1⁄
𝑥2000 =

4, 𝑥2000 + 1
⁄

𝑥1 = 1.
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364. Find all positive solutions of the system: 𝑥+ 𝑦 + 𝑧 = 1, 𝑥3 + 𝑦3 + 𝑧3 + 𝑥𝑦𝑧 = 𝑥4 + 𝑦4 +
𝑧4 + 1.

365. Let 𝑎, 𝑏 be positive integers such that each equation (𝑎+𝑏−𝑥)2 = 𝑎−𝑏, (𝑎𝑏+1−𝑥)2 =
𝑎𝑏 − 1 has two distinct real roots. Suppose the bigger of these roots are the same.
Show that the smaller roots are also the same.

366. Suppose the polynomial 𝑃 (𝑥) = 𝑥𝑛 + 𝑛𝑥𝑛−1 + 𝑎2𝑥𝑛−2 + ⋯ + 𝑎𝑛 has real roots
𝛼1, 𝛼2, … , 𝛼𝑛. If 𝛼161 + 𝛼162 + ⋯ + 𝛼16𝑛 = 𝑛. Find 𝛼1,𝛼2, … , 𝛼𝑛.

367. Find all the solutions of the following system of inequalities:

(𝑥21 − 𝑥3𝑥5) (𝑥22 − 𝑥3𝑥5) ≤ 0,

(𝑥22 − 𝑥4𝑥1) (𝑥23 − 𝑥4𝑥1) ≤ 0,

(𝑥23 − 𝑥5𝑥2) (𝑥24 − 𝑥5𝑥2) ≤ 0,

(𝑥24 − 𝑥1𝑥3) (𝑥25 − 𝑥1𝑥3) ≤ 0,

(𝑥25 − 𝑥2𝑥4) (𝑥21 − 𝑥2𝑥4) ≤ 0.

368. Solve the following system of equations, when 𝑎 is a real number such that |𝑎| > 1:

𝑥21 = 𝑎𝑥2 + 1,
𝑥22 & = 𝑎𝑥3 + 1,

⋮ ł ⋮
𝑥2999 = 𝑎𝑥1000 + 1,
𝑥21000 = 𝑎𝑥1 + 1.

369. Let 𝑎1, 𝑎2, … , 𝑎𝑛 be 𝑛 positive integers such that 
𝑛
∑
𝑖=1

𝑎𝑖 =
𝑛
∏
𝑖=1

𝑎𝑖. Let 𝐾𝑛 denote this

common value. Show that 𝐾𝑛 ≥ 𝑛 + 𝑠, where 𝑠 is the least positive integer such that
2𝑠 − 𝑠 ≥ 𝑛.

370. Let 𝑧1, 𝑧2, 𝑧3, … , 𝑧𝑛 be 𝑛 complex numbers such that 𝑛𝑖=1|𝑧𝑖| = 1. Prove that there

exists a subset 𝑆 of the set {𝑧1, 𝑧2, … , 𝑧𝑛} such that ∣∑
𝑧∈𝑆

𝑧∣ ≥ 1
⁄

4.

371. Let ⟨𝑎𝑛⟩ and ⟨𝑏𝑛⟩ be two sequences of real numbers which are not proportional. Let

⟨𝑥𝑛⟩ such that 
𝑛
∑
𝑖=1

𝑎𝑖𝑥𝑖 = 0,
𝑛
∑
𝑖=1

𝑏𝑖𝑥𝑖 = 1. Prove that 
𝑛
∑
𝑖=1

𝑥2𝑖 ≥

∑𝑛
𝑖=1 𝑎2𝑖⁄

(∑𝑛
𝑖=1 𝑎2𝑖 )(∑

𝑛
𝑖=1 𝑏2𝑖 )−(∑

𝑛
𝑖=1 𝑎𝑖𝑏𝑖)

2. When does equality hold?

372. Let 𝑥1, 𝑥2, … , 𝑥𝑛 be 𝑛 positive real numbers. Prove that 
𝑛
∑
𝑖=1

𝑥𝑖⁄
2𝑥𝑖+𝑥𝑖+1+⋯+𝑥𝑖+𝑛−2

≤ 𝑛,

where 𝑥𝑛+𝑖 = 𝑥𝑖.
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373. Let 𝑥1, 𝑥2, … , 𝑥𝑛 be 𝑛 ≥ 2 positive real numbers and 𝑘 be a fixed integer such that
1 ≤ 𝑘 ≤ 𝑛. Show that ∑

cyclic

𝑥1+2𝑥2+⋯+2𝑥𝑘−1+𝑥𝑘⁄
𝑥𝑘+𝑥𝑘+1+⋯+𝑥𝑛

≥ 2𝑛(𝑘−1)⁄
𝑛−𝑘+1 .

374. If 𝑧1 and 𝑧2 be two complex numbers such that |𝑧1| ≤ 𝑟, |𝑧2| ≤ 𝑟 and 𝑧1 ≠ 𝑧2. Prove
that for any natural number 𝑛∣𝑧

𝑛
1 −𝑧𝑛2⁄
𝑧1−𝑧2 ∣ ≤

1
⁄

2 𝑛(𝑛 − 1)𝑟𝑛−2|𝑧1 − 𝑧2|.

375. A sequence ⟨𝑎𝑛⟩ is said to be convex if 𝑎𝑛 − 2𝑎𝑛+1 + 𝑎𝑛+2 ≥ 0 for all 𝑛 ≥ 1. Let
𝑎1, 𝑎2, … , 𝑎2𝑛+1 be a convex sequence. Show that 𝑎1+𝑎3+⋯+𝑎2𝑛+1⁄

𝑛+1 ≥ 𝑎2+𝑎4+⋯+𝑎2𝑛⁄
𝑛 , and

equality holds if and only if 𝑎1, 𝑎2, … , 𝑎2𝑛+1 is an arithmetic progression.

376. Suppose 𝑎1, 𝑎2,… , 𝑎𝑛 are 𝑛 positive real numbers. For each 𝑘, define 𝑥𝑖 = 𝑎𝑖+1+𝑎𝑖+2+
⋯ + 𝑎𝑖+𝑛−1 − (𝑛 − 2)𝑎𝑖, where 𝑎𝑖 = 𝑎𝑖−𝑛 for 𝑖 > 𝑛. Suppose 𝑥𝑘 ≥ 0 for 1 ≤ 𝑖 ≤ 𝑛.

Prove that 
𝑛
∏
𝑖=1

𝑎𝑖 ≥
𝑛
∏
𝑖=1

𝑥𝑖. Show that for 𝑛 = 3 the inequality is still true without the

non-negativity of 𝑥𝑖's, but for 𝑛 > 3 these conditions are essential.

377. Let 𝑎, 𝑐 be positive reals and 𝑏 be a complex number such that 𝑓(𝑧) = 𝑎|𝑧|2+2𝑅𝑒(𝑏𝑧)+
𝑐 ≥ 0, for all complex numbers 𝑧, where 𝑅𝑒(𝑧) denoted the real part of 𝑧. Prove that
|𝑏|2 ≤ 𝑎𝑐, and 𝑓(𝑧) ≤ (𝑎 + 𝑐)(1 + |𝑧|2). Show that |𝑏|2 = 𝑎𝑐 only if 𝑓(𝑧) = 0 for some
𝑧 ∈ ℂ.

378. Suppose 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛 be 𝑛 real numbers. Show that (
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

|𝑥𝑖 − 𝑥𝑗|)
2

≤

2(𝑛2−1)⁄
3

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

(𝑥𝑖 − 𝑥𝑘)2. Prove also that equality holds if and only if the sequence

⟨𝑥𝑖⟩ is in A.P.

379. Suppose ⟨𝑎𝑛⟩ is an infinite sequence of real numbers with the properties

1. there is some real constant 𝑐 such that 0 ≤ 𝑎𝑛 ≤ 𝑐, for all 𝑛 ≥ 1, and

2. |𝑎𝑖 − 𝑎𝑗| ≥ 1⁄
𝑖+𝑗 ∀𝑖 ≠ 𝑗.

Prove that 𝑐 ≥ 1.

380. Let 𝑎, 𝑏, 𝑐 be positive reals such that 𝑎 + 𝑏 + 𝑐 = 1. Prove that 𝑎(1 + 𝑏 − 𝑐)1/3 +
𝑏(1 + 𝑐 − 𝑎)1/3 + 𝑐(1 + 𝑎 − 𝑏)1/3 ≤ 1.

381. let 𝑥1, 𝑥2, … , 𝑥𝑛 be 𝑛 positive reals which add up to 1. Find the minimum value of
𝑛
∑
𝑖=1

𝑥𝑖⁄
1+∑𝑗≠𝑖 𝑥𝑗

.

382. If 𝑎, 𝑏, 𝑐, 𝑑 are positive reals then find all possible values of 𝑎⁄
𝑎+𝑏+𝑑 +

𝑏
⁄

𝑎+𝑏+𝑐 +
𝑐⁄

𝑏+𝑐+𝑑 +
𝑑⁄

𝑎+𝑐+𝑑.
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383. Let ⟨𝐹𝑛⟩ be the Fibonacci sequence defined by 𝐹1 = 𝐹2 = 1, 𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛, for

𝑛 ≥ 1. Prove that 
𝑛
∑
𝑖=1

𝐹𝑖⁄
2𝑖 < 2 for all 𝑛 ≥ 1.

384. Let 𝑃 (𝑥) = 𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯+ 𝑎0 be a polynomial with real coefficients such that
|𝑃 (0)| = 𝑃 (1). Suppose all the roots of 𝑃 (𝑥) = 0 are real and lie in the interval (0, 1).
Prove that the product of the roots does not exceed 1⁄2𝑛.

385. If 𝑥, 𝑦 are real numbers such that 2𝑥 + 𝑦 +√

8𝑥2 + 4𝑥𝑦 + 32𝑦2 = 3 + 3√


2, prove that
𝑥2𝑦 ≤ 1.

386. Determine the maximum value of ∑
𝑖<𝑗

𝑥𝑖𝑥𝑗(𝑥𝑖 + 𝑥𝑗), over all 𝑛-tuples (𝑥1, 𝑥2, … , 𝑥𝑛)

of reals such that 𝑥𝑖 ≥ 0 for 1 ≤ 𝑖 ≤ 𝑛.

387. Let 𝑥1, 𝑥2, … , 𝑥𝑛 be positive real numbers. Prove that ∑𝑛
𝑖=1(𝑥1𝑥2 ⋯𝑥𝑖)1/𝑖 <

3(
𝑛
∑
𝑖=1

𝑥𝑖).

388. Let 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑛 be 𝑛 real numbers with the property 𝑛𝑖=1𝑎𝑖 = 0. Prove that

𝑛𝑎1𝑎𝑛
𝑛
∑
𝑖=1

𝑎2𝑖 ≤ 0.

389. Let 𝑎, 𝑏, 𝑐 be positive real numbers. Prove that 1
⁄

𝑎(1+𝑏)+
1⁄

𝑏(1+𝑐)+
1⁄

𝑐(1+𝑎) ≥
3⁄

1+𝑎𝑏𝑐.

390. Let 𝑥, 𝑦, 𝑧 be positive real numbers such that 𝑥2 + 𝑦2 + 𝑧2 = 2. Prove that 𝑥 + 𝑦 + 𝑧 ≤
2 + 𝑥𝑦𝑧. Find the conditions under which equality holds.

391. Let 0 ≤ 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛 be such that 
𝑛
∑
𝑖=1

𝑥𝑖 = 1, where 𝑛 ≥ 2 is an integer. If 𝑥𝑛 ≤ 2
⁄

3,

prove that there exists a 𝑗 such that 1 ≤ 𝑗 ≤ 𝑛 and 1⁄3 ≤
𝑗
∑
𝑖=1

𝑥𝑖 ≤
2
⁄

3.

392. Let 𝑥, 𝑦, 𝑧 be non-negative real numbers such that 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 + 𝑥𝑦𝑧 = 4. Prove that
𝑥 + 𝑦 + 𝑧 ≥ 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥.

393. Let 𝑥, 𝑦, 𝑧 be non-negative real numbers such that 𝑥 + 𝑦 + 𝑧 = 1. Prove that 𝑥𝑦 + 𝑦𝑧 +
𝑧𝑥 ≤ 4
⁄

27.

394. Let 𝑥, 𝑦, 𝑧 be real numbers and let 𝑝, 𝑞, 𝑟 be real numbers in the interval (0, 1⁄2) such that
𝑝 + 𝑞 + 𝑟 = 1. Prove that 𝑝𝑞𝑟(𝑥+ 𝑦 + 𝑧)2 ≥ 𝑥𝑦𝑟(1 − 2𝑟)+ 𝑦𝑧𝑝(1 − 2𝑝)+ 𝑧𝑥𝑞(1 − 2𝑞).
When does equality hold?

395. Let 𝑥1, 𝑥2, … , 𝑥𝑛 be 𝑛 real numbers in the interval [0, 1]. Prove that (
𝑛
∑
𝑖=1

𝑥𝑖) −

(
𝑛
∑
𝑖=1

𝑥𝑖𝑥𝑖+1) ≤ [𝑛⁄2], where 𝑥𝑛+1 = 𝑥1.
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396. Suppose 𝑥, 𝑦, 𝑧 are positive real numbers such that 𝑥𝑦𝑧 ≥ 1. Prove that 𝑥5−𝑥2⁄
𝑥5+𝑦2+𝑧2 +

𝑦5−𝑦2⁄
𝑦5+𝑧2+𝑥2 +

𝑧5−𝑧2⁄
𝑧5+𝑥2+𝑦2 ≥ 0.

397. Consider two sequences of positive real numbers, 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑛 and 𝑏1 ≤ 𝑏2 ≤ ⋯ ≤

𝑏𝑛, such that 
𝑛
∑
𝑖=1

𝑎𝑖 ≥
𝑛
∑
𝑖=1

𝑏𝑖. Suppose there exists a 𝑗, 1 ≤ 𝑗 ≤ 𝑛, such that 𝑏𝑖 ≤ 𝑎𝑖 for

1 ≤ 𝑖 ≤ 𝑗 and 𝑏𝑖 ≥ 𝑎𝑖 for 𝑖 > 𝑗. Prove that 
𝑛
∏
𝑖=1

𝑎𝑖 ≥
𝑛
∏
𝑖=1

𝑏𝑖.

398. Let 𝑎, 𝑏, 𝑐 be positive real numbers such that 𝑎𝑏𝑐 = 1. Prove that 1⁄
1+𝑎+𝑏 +

1⁄
1+𝑏+𝑐 +

1⁄
1+𝑐+𝑎 ≤

1⁄
2+𝑎 +

1⁄
2+𝑏 +

1⁄
2+𝑐.

399. Let 𝑛 ≥ 4 and let 𝑎1, 𝑎2, … , 𝑎𝑛 be real numbers such that 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 ≥
𝑛, 𝑎21 + 𝑎22 + ⋯ + 𝑎2𝑛 ≥ 𝑛2. Prove that max{𝑎1, 𝑎2, … , 𝑎𝑛} ≥ 2.

400. Let 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛+1 be 𝑛 + 1 positive integers. Prove that 
𝑛+1
∑
𝑖=1

√

𝑥𝑖+1−𝑥𝑖⁄
𝑥𝑖+1

<
𝑛2

∑
𝑖=1

1
⁄

𝑗.

401. Let 𝑎, 𝑏, 𝑐 be three positive real numebrs which satisfy 𝑎𝑏𝑐 = 1 and 𝑎3 > 36. Prove
that 2⁄3 𝑎

2 < 𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑏𝑐 − 𝑐𝑎.

402. Let 𝑧1, 𝑧2, … , 𝑧𝑛 be 𝑛 complex numbers and consider 𝑛 positive real numbers

𝜆1, 𝜆2, … , 𝜆𝑛 which have the property that ∑1/𝜆𝑖 = 1. Prove that ∣
𝑛
∑
𝑖=1

𝑧𝑖 ∣
2

≤
𝑛
∑
𝑖=1

𝜆1|𝑧𝑖|2.

403. Let 𝑎, 𝑏, 𝑐 be three distinct real numbers. Prove that 2min{𝑎, 𝑏, 𝑐} < ∑𝑎−

(∑𝑎2−∑𝑎𝑏)1/2 < ∑𝑎+ (∑𝑎2−∑𝑎𝑏)1/2 < 3max{𝑎, 𝑏, 𝑐}, where the sum is cyclic
over 𝑎, 𝑏, 𝑐.

404. Show that for all complex numbers 𝑧 with ℜ(𝑧) > 1, prove that |𝑧𝑛+1 − 1| > |𝑧𝑛||𝑧 −
1|, ∀ 𝑛 ≥ 1.

405. Suppose 𝑎, 𝑏, 𝑐 are positive real numbers such that 𝑥 = 𝑎 + 𝑏 − 𝑐, 𝑦 = 𝑏 + 𝑐 − 𝑎, 𝑧 =
𝑐 + 𝑎 − 𝑏. Prove that 𝑎𝑏𝑐(𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥) ≥ 𝑥𝑦𝑧(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎).

406. Let 𝑎, 𝑏, 𝑐 be positive real numbers. Prove that ∑ 𝑎3⁄
𝑏2−𝑏𝑐+𝑐2 ≥

3∑𝑎𝑏⁄
∑𝑎 , where all sums

are cyclic.

407. Let 𝑎1, 𝑎2, … , 𝑎𝑛 < 1 be non-negative real numbers satisfying 𝑎 =√


𝑎21+𝑎22+⋯+𝑎2𝑛
⁄

𝑛 ≥ 1⁄
√


3.

Prove that 𝑎1
⁄

1−𝑎21
+ 𝑎2
⁄

1−𝑎22
+ ⋯ + 𝑎𝑛
⁄

1−𝑎2𝑛
≥ 𝑛𝑎
⁄

1−𝑎2.
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408. Suppose 𝑥, 𝑦, 𝑧 are non-negative real numbers such that 𝑥2 + 𝑦2 + 𝑧2 = 1. Prove that

1. 1 ≤ ∑ 𝑥⁄
1−𝑦𝑧 ≤

3√


3
⁄

2 , and

2. 1 ≤ ∑ 𝑥⁄
1+𝑦𝑧 ≤ √


2.

The sums are cyclic over 𝑥, 𝑦 and 𝑧.

409. Let 𝑥, 𝑦, 𝑧 be non-negative real numbers satisfying 𝑥 + 𝑦 + 𝑧 = 1. Prove that 𝑥𝑦2 +
𝑦𝑧2 + 𝑧𝑥2 ≥ 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 − 2

⁄

9.

410. Let 𝑎, 𝑏, 𝑐, 𝑑 be positive real numbers such that 𝑎 + 𝑏 + 𝑐 + 𝑑 = 2. Prove that
∑
𝑐𝑦𝑐𝑙𝑖𝑐

𝑎2⁄
(𝑎21)2

≤ 16
⁄

25.

411. Prove that 𝑎⁄
√

𝑎2+8𝑏𝑐

+ 𝑏⁄
√

𝑏2+8𝑐𝑎

+ 𝑐⁄
√

𝑐2+8𝑎𝑏

≥ 1 for all positive real numbers 𝑎, 𝑏 and 𝑐.

412. If 𝑥, 𝑦 are real numbers such that 𝑥3 + 𝑦4 ≤ 𝑥2 + 𝑦3, prove that 𝑥3 + 𝑦3 ≤ 2.

413. Let 𝑎, 𝑏, 𝑐 be three positive real numbers. Prove that ∑ 𝑎𝑏⁄
𝑐(𝑐+𝑎) ≥ ∑ 𝑎
⁄

𝑐+𝑎, where the
sum is cyclic over 𝑎, 𝑏 and 𝑐.

414. Let 𝑥, 𝑦 be two real numbers, where 𝑦 is non-negative and 𝑦(𝑦 + 1) ≤ (𝑥 + 1)2. Prove
that 𝑦(𝑦 − 1) ≤ 𝑥2.

415. Let 𝑥, 𝑦, 𝑧 be positive real numbers. Prove that (𝑥𝑦+𝑦𝑧+𝑧𝑥⁄

3 )
1/2

≤

((𝑥+𝑦)(𝑦+𝑧)(𝑧+𝑥)⁄8 )
1/3

.

416. Let 𝑎, 𝑏, 𝑐 be positive real numbers such that 𝑎𝑏𝑐 = 1. Show that ∑ 𝑎9+𝑏9⁄
𝑎6+𝑎3𝑏3+𝑏6 ≥ 2,

where the sum is cyclical.

417. Let 𝑎1, 𝑎2, … , 𝑎𝑛(𝑛 > 2) be positive real numbers and let 𝑠 be their sum. Let 0 < 𝛽 ≤ 1

be a real number. Prove that 
𝑛
∑
𝑖=1

(𝑠−𝑎𝑖⁄𝑎𝑖 )𝛽 ≥ (𝑛− 1)2𝛽
𝑛
∑
𝑖=1

( 𝑎𝑖⁄
𝑠−𝑎𝑖

)
𝛽
. When does equality

hold?

418. For 𝑛 ≥ 4, let 𝑎1, 𝑎2, … , 𝑎𝑛 be 𝑛 positive real numbers such that 𝑛𝑖=1𝑎
2
𝑖 = 1. Show that

𝑎1
⁄

𝑎22+1
+ 𝑎2
⁄

𝑎23+1
+ ⋯ + 𝑎𝑛
⁄

𝑎21+1
≥ 4
⁄

5 (𝑎1√


𝑎1 + 𝑎2√


𝑎2 + ⋯+ 𝑎𝑛√


𝑎𝑛)2.

419. Does there exist an infinite sequence ⟨𝑥𝑛⟩ of positive real numbers such that 𝑥𝑛+2 =
√

𝑥𝑛+1 −√

𝑥𝑛, ∀ 𝑛 ≥ 2.

420. Let 𝑎1, 𝑎2, … , 𝑎𝑛 be 𝑛 positive real numbers and consider a permutation of 𝑏1, 𝑏2, … , 𝑏𝑛

of it. Prove that 
𝑛
∑
𝑖=1

𝑎2𝑖
⁄

𝑏𝑖
≥

𝑛
∑
𝑖=1

𝑎𝑖.
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421. Let 𝑎1, 𝑎2, … , 𝑎𝑛 and 𝑏1, 𝑏2, … , 𝑏𝑛 be two sequences of positive real numbers such that
𝑛
∑
𝑖=1

𝑎𝑖 =
𝑛
∑
𝑖=1

𝑏𝑖 = 1. Prove that 
𝑛
∑
𝑖=1

𝑎2𝑖⁄
𝑎𝑖+𝑏𝑖

≥ 1
⁄

2.

422. Let 𝑥, 𝑦, 𝑧 be positive real numbers. Prove that 𝑦
2−𝑥2⁄
𝑧+𝑥 + 𝑧2−𝑦2⁄

𝑥+𝑦 + 𝑥2−𝑧2⁄
𝑦+𝑧 ≥ 0.

423. Find the greatest value of 𝑘 such that for every triple (𝑎, 𝑏, 𝑐) of positive real numbers,
the inequality (𝑎2 − 𝑏𝑐)2 > 𝑘(𝑏2 − 𝑐𝑎)(𝑐2 − 𝑎𝑏) holds.

424. Let 𝑎, 𝑏, 𝑐, 𝑑 be positive real numbers. Prove that ∑
cyclic

𝑎⁄
𝑏+2𝑐+𝑑 ≥ 1.

425. Let 𝑎, 𝑏, 𝑐 be positive real numbers such that (𝑎 + 𝑏)(𝑏 + 𝑐)(𝑐 + 𝑎) = 1. Prove that
𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 ≤ 3
⁄

4.

426. Let 𝑥, 𝑦, 𝑧 be non-negative real numbers such that 𝑥 + 𝑦 + 𝑧 = 1. Prove that 𝑥2 + 𝑦2 +
𝑧2 + 18𝑥𝑦𝑧 ≤ 1.

427. Let 𝑎, 𝑏, 𝑐 be three positive real numbers such that 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 = 1. Prove that

(1⁄𝑎 + 6𝑏)
1/3

+ (1⁄𝑏 + 6𝑐)
1/3

+ (1⁄𝑐 + 6𝑎)
1/3

≤ 1⁄
𝑎𝑏𝑐.

428. Let 𝑎1, 𝑎2, … , 𝑎𝑛 be 𝑛 > 1 positive real numbers. For each 𝑘, 1 ≤ 𝑘 ≤ 𝑛, let 𝐴𝑘 =
(𝑎1 + 𝑎2 + ⋯ + 𝑎𝑘)/𝑘. Let 𝑔𝑛 = (𝑎1𝑎2 ⋯𝑎𝑛)1/𝑛 and 𝐺𝑛 = (𝐴1𝐴2 ⋯𝐴𝑛)1/𝑛. Prove
that 𝑛(𝐺𝑛⁄

𝐴𝑛
)
1/𝑛

+ 𝑔𝑛⁄
𝐺𝑛

≤ 𝑛 + 1. Find the cases of equality.

429. Let 𝑥, 𝑦, 𝑧 be real numbers in the interval [0, 1]. Prove that 3(𝑥2𝑦2 + 𝑦2𝑧2 + 𝑧2𝑥2)−
2𝑥𝑦𝑧(𝑥 + 𝑦 + 𝑧) ≤ 3.

430. Let 𝑥, 𝑦, 𝑧 be non-negative real numbers such that 𝑥 + 𝑦 + 𝑧 = 1. Prove that 7(𝑥𝑦 +
𝑦𝑧 + 𝑧𝑥) ≤ 2 + 9𝑥𝑦𝑧.

431. Let 𝑥, 𝑦, 𝑧 be real numbers in the interval [0, 1]. Prove that 𝑥⁄
𝑦𝑧+1 +

𝑦⁄
𝑧𝑥+1 +

𝑧⁄
𝑥𝑦+1 ≤ 2.

432. Let 𝑎, 𝑏, 𝑐, 𝑑 be positive real such that 𝑎3 + 𝑏3 + 3𝑎𝑏 = 𝑐 + 𝑑 = 1. Prove that (𝑎 +
1
⁄

𝑎)
3
+ (𝑏 + 1
⁄

𝑏)
3
+ (𝑐 + 1
⁄

𝑐)
3
+ (𝑑 + 1⁄

𝑑)
3
≥ 40.

433. Let 𝑥, 𝑦, 𝑧 be positive real numbers such that 𝑥 + 𝑦 + 𝑧 = 𝑥𝑦𝑧. Prove that 1
⁄

√


1+𝑥2
+

1⁄
√

1+𝑦2

+ 1⁄
√

1+𝑧2

≤ 3
⁄

2.

434. Let 𝑥, 𝑦, 𝑧 be non-negative real numbers. Prove that 𝑥3 + 𝑦3 + 𝑧3 ≥ 𝑥2√

𝑦𝑧 + 𝑦2√

𝑧𝑥 +

𝑧2√

𝑥𝑦.

435. For all positive real numbers show that 4(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)− 1 ≥ 𝑎2 + 𝑏2 + 𝑐2 ≥ 3(𝑎3 +
𝑏3 + 𝑐3).
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436. Let 𝑎, 𝑏, 𝑐 be positive real numbers such that 𝑎𝑏𝑐 = 1. Prove that 𝑎⁄
(𝑎+1)(𝑏+1) +

𝑏⁄
(𝑏+1)(𝑐+1)+

𝑐⁄
(𝑐+1)(𝑎+1) ≥

3
⁄

4.

437. Suppose 𝑎, 𝑏, 𝑐 are positive real numbers such that 𝑎2 + 𝑏2 + 𝑐2 = 1. Prove that
1
⁄

𝑎2 +
1
⁄

𝑏2 +
1
⁄

𝑐2 ≥ 3 + 2(𝑎3+𝑏3+𝑐3)⁄
𝑎𝑏𝑐 .

438. Let 𝑥, 𝑦, 𝑧 be positive real numbers such that 𝑥𝑦𝑧 = 1. Prove that 𝑥3⁄
(1+𝑦)(1+𝑧) +

𝑦3⁄
(1+𝑧)(1+𝑧)+

𝑧3⁄
(1+𝑥)(1+𝑦) ≥

3
⁄

4.

439. Let 𝑎, 𝑏, 𝑐, 𝑑 be non-negative real numbers such that 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑑 + 𝑑𝑎 = 1. Show that
𝑎3⁄

𝑏+𝑐+𝑑 +
𝑏3⁄

𝑐+𝑑+𝑎 +
𝑐3⁄

𝑑+𝑎+𝑏 +
𝑑3
⁄

𝑎+𝑏+𝑐 ≥
1
⁄

3.

440. Find all real 𝑘 for which the inequality 𝑥21 + 𝑥22 + 𝑥23 ≥ 𝑘(𝑥1𝑥2 + 𝑥2𝑥3) holds for all
real numbers 𝑥1, 𝑥2, 𝑥3.

441. Let 𝑎, 𝑏, 𝑐 be positive real numbers such that 𝑎𝑏𝑐 = 1. Prove that 𝑎⁄𝑏 +
𝑏⁄
𝑐 +

𝑐
⁄

𝑎 ≥
1
⁄

𝑎 +
1
⁄

𝑏 +
1
⁄

𝑐.

442. Let 𝑎, 𝑏, 𝑐 be non-negative reals such that 𝑎 + 𝑏 ≤ 1 + 𝑐, 𝑏 + 𝑐 ≤ 1 + 𝑎, 𝑐 + 𝑎 ≤ 1 + 𝑏.
Prove that 𝑎2 + 𝑏2 + 𝑐2 ≤ 2𝑎𝑏𝑐 + 1.

443. If 𝑎, 𝑏, 𝑐 are non-negative real numbers such that 𝑎 + 𝑏 + 𝑐 = 1, then show that
𝑎
⁄

1+𝑏𝑐 +
𝑏
⁄

1+𝑐𝑎 +
𝑐
⁄

1+𝑎𝑏 ≥
9
⁄

10.

444. Let 𝑎, 𝑏, 𝑐 be three positive real numbers such that 𝑎 + 𝑏 + 𝑐 = 1. Prove that among
the three numbers 𝑎 − 𝑎𝑏, 𝑏 − 𝑏𝑐, 𝑐 − 𝑐𝑎 there is one which is at most 1/4 and there is
one which is at least 2/9.

445. Let 𝑥 and 𝑦 be positive real numbers such that 𝑦3 + 𝑦 ≤ 𝑥 − 𝑥3. Prove that (a)
𝑦 < 𝑥 < 1, and (b) 𝑥2 + 𝑦2 < 1.

446. Let 𝑎, 𝑏, 𝑐 be three positive real numbers such that 𝑎 + 𝑏 + 𝑐 = 1. Let 𝑘 = min{𝑎3 +
𝑎2𝑏𝑐, 𝑏3 + 𝑎𝑏2𝑐, 𝑐3 + 𝑎𝑏𝑐2}. Prove that the roots of the equation 𝑥2 + 𝑥 + 4𝑘 = 0 are
real.

447. If 𝑎, 𝑏, 𝑐 are three positive real numbers, prove that 𝑎
2+1
⁄

𝑏+𝑐 + 𝑏2+1
⁄

𝑐+𝑎 + 𝑐2+1
⁄

𝑎+𝑏 ≥ 3.

448. If 𝑑 is tghe largest among the positive numbers 𝑎, 𝑏, 𝑐, 𝑑, prove that 𝑎(𝑑 − 𝑏) +
𝑏(𝑑 − 𝑐)+ 𝑐(𝑑 − 𝑎) ≤ 𝑑2.

449. If 𝑥, 𝑦, 𝑧 are positive real numbers, prove that (𝑥 + 𝑦 + 𝑧)2(𝑦𝑧 + 𝑧𝑥 + 𝑥𝑦)2 ≤ 3(𝑦2 +
𝑦𝑧 + 𝑧2)(𝑧2 + 𝑧𝑥 + 𝑥2)(𝑥2 + 𝑥𝑦 + 𝑦2).

450. Suppose 𝑎, 𝑏, 𝑐 are positive real bumbers. Prove that 𝑎𝑎𝑏𝑏𝑐𝑐 ≥ (𝑎𝑏𝑐)(𝑎+𝑏+𝑐)/3.

451. Find all real 𝑝 and 𝑞 for which the equation 𝑥4 − 8𝑝2⁄
𝑞 𝑥3 + 4𝑞𝑥3 − 3𝑝𝑥 + 𝑝2 = 0 has

four positive roots.
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452. Let 𝑎1, 𝑎2, 𝑎3 be real numbers, each greater than 1. Let 𝑆 = 𝑎1 + 𝑎2 + 𝑎3 and suppose
𝑆 < 𝑎2𝑖⁄

𝑎𝑖−1 for 𝑖 = 1, 2, 3. Prove that 1
⁄

𝑎1+𝑎2 +
1
⁄

𝑎2+𝑎3 +
1
⁄

𝑎3+𝑎1 > 1.

453. Let 𝑎, 𝑏, 𝑐 be positive real numbers such that 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 = 1
⁄

3. Prove that 𝑎⁄
𝑎2−𝑏𝑐+1 +

𝑏⁄
𝑏2−𝑐𝑎+1 +

𝑐⁄
𝑐2−𝑎𝑏+1 ≥

1
⁄

𝑎+𝑏+𝑐.

454. Suppose 𝑎, 𝑏, 𝑐 are positive real numbers. Prove that 𝑎
2𝑏(𝑏−𝑐)⁄
𝑎+𝑏 + 𝑏2𝑐(𝑐−𝑎)⁄

𝑏+𝑐 + 𝑐2𝑎(𝑎−𝑏)⁄
𝑐+𝑎 ≥ 0.

455. Let 𝑎1, 𝑎2, … , 𝑎𝑛 be 𝑛 > 2 positive real numbers such that 𝑎1 + 𝑎2+⋯+ 𝑎𝑛 = 1. Prove

that 
𝑛
∑
𝑖=1

𝑎1𝑎2⋯𝑎𝑖−1𝑎𝑖+1⋯𝑎𝑛⁄
𝑎𝑖+𝑛−1

≤ 1⁄
(𝑛−1)2.

456. Determine the largest value of 𝑘 such that the inequality (𝑘 + 𝑎
⁄

𝑏)(𝑘 +
𝑏⁄
𝑐)(𝑘 +

𝑐
⁄

𝑏𝑎) ≥

(𝑏⁄𝑎 +
𝑐⁄
𝑏 +

𝑎
⁄

𝑐) holds for positive real numbers 𝑎, 𝑏, 𝑐.

457. Let 𝑥1, 𝑥2, … , 𝑥𝑛 be 𝑛 ≥ 3 positive real numbers. Prove that 𝑥+1𝑥3⁄
𝑥1𝑥3+𝑥2𝑥4 +

𝑥2𝑥4⁄
𝑥2𝑥4+𝑥3𝑥5 +

⋯ + 𝑥𝑛−1𝑥1⁄
𝑥𝑛−1𝑥1+𝑥𝑛𝑥2 +

𝑥𝑛𝑥2⁄
𝑥𝑛𝑥2+𝑥1𝑥3 ≤ 𝑛 − 1.

458. Let 𝑎1, 𝑎2, … , 𝑎2017 be positive real numbers. Prove that 
2017
∑
𝑖=1

𝑎𝑖⁄
𝑎𝑖+1+𝑎𝑖+2+⋯+𝑎𝑖+1008

≥

2017⁄
1008, where indices are taken modulo 2017.

459. Let 𝑎, 𝑏, 𝑐 be three positive real numbers such that 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 = 1. Prove that
√

𝑎 + 1
⁄

𝑎 +√

𝑏 + 1
⁄

𝑏 +√

𝑐 + 1
⁄

𝑐 ≥ 2(√


𝑎 +√

𝑏 +√

𝑐).

460. Let 𝑎, 𝑏, 𝑐 be positive real numbers such that 𝑎 + 𝑏 + 𝑐 = 3. Prove that 𝑎
3+2
⁄

𝑏+2 + 𝑏3+2
⁄

𝑐+2 +
𝑐3+2
⁄

𝑎+3 ≥ 3.

461. Let 𝑎, 𝑏, 𝑐, 𝑑 be real numbers such that 𝑎2+𝑏2+𝑐2+𝑑2 = 4. Prove that (2+𝑎)(2+𝑏) ≥
𝑐𝑑.

462. Find all real 𝑘 such that 𝑎+𝑏⁄2 ≥ 𝑘√


𝑎𝑏 + (1 − 𝑘)√

𝑎2+𝑏2⁄

2 holds for all positive real
numbers 𝑎, 𝑏.

463. Let 𝑎, 𝑏, 𝑐, 𝑑 be real numbers having absolute value greater than 1 such that 𝑎𝑏𝑐 +
𝑎𝑏𝑑 + 𝑎𝑐𝑑 + 𝑏𝑐𝑑 + 𝑎 + 𝑏 + 𝑐 + 𝑑 = 0. Probvve that 1⁄

𝑎−1 +
1⁄

𝑏−1 +
1⁄

𝑐−1 +
1⁄

𝑑−1 > 0.

464. For all positive, real 𝑥, 𝑦 show that 1
⁄

𝑥+𝑦−1 −
1⁄

(𝑥+1)(𝑦+1) <
1
⁄

11.

465. Let 𝑎, 𝑏, 𝑐 be three positive real numbers such that 𝑎𝑏𝑐 = 1. Prove that 1
⁄

𝑏(𝑎+𝑏) +
1
⁄

𝑐(𝑏+𝑐)+
1
⁄

𝑎(𝑐+𝑎) ≥
3
⁄

2.
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466. Let 𝑎, 𝑏, 𝑐 be positive real numbers such that 𝑎 + 𝑏 + 𝑐 = 1. Prove that 𝑎2
⁄

(𝑏+𝑐)3 +
𝑏2⁄

(𝑐+𝑎)3+ 𝑐2⁄
(𝑎+𝑏)3

≥ 9
⁄

8.

467. Suppose 𝑎, 𝑏, 𝑐 are positive real numbers such that 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 ≥ 𝑎 + 𝑏 + 𝑐. Prove
that (𝑎 + 𝑏 + 𝑐)(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)+ 3𝑎𝑏𝑐 ≥ 4(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎).

468. Let 𝑎, 𝑏, 𝑐, 𝑑 be four real nubers such that 𝑎 + 𝑏 + 𝑐 + 𝑑 = 0. Prove that (𝑎𝑏 + 𝑎𝑐 +
𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑 + 𝑐𝑑)2 + 12 ≥ 6(𝑎𝑏𝑐 + 𝑎𝑏𝑑 + 𝑎𝑐𝑑 + 𝑏𝑐𝑑).

469. Consider the expression 𝑃 = 𝑥3𝑦4𝑧3⁄
(𝑥4+𝑦4)(𝑥𝑦+𝑧2)3 +

𝑦3𝑧4𝑥3⁄
(𝑦4+𝑧4)(𝑦𝑧+𝑥2)3 +

𝑧3𝑥4𝑦3⁄
(𝑧4+𝑥4)(𝑧𝑥+𝑦2)3.

Find the maximum value of 𝑃 when 𝑥, 𝑦, 𝑧 vary over the set of all positive real
numbers.

470. Let 𝑥1, 𝑥2, … , 𝑥𝑛 be positive real numbers such that 𝑥1𝑥2 …𝑥𝑛 = 1. Let 𝑆 = 𝑥31 + 𝑥32 +
⋯ + 𝑥3𝑛. Prove that 𝑥1⁄

𝑆−𝑥31+𝑥21
+ 𝑥2⁄

𝑆−𝑥32+𝑥22
+ ⋯ + 𝑥𝑛⁄

𝑆−𝑥3𝑛+𝑥2𝑛
≤ 1.

471. Let 𝑎1, 𝑎2,… , 𝑎𝑛 be 𝑛 > 1 positive real numbers whose sum is 1. Define 𝑏𝑖 =
𝑎2𝑖⁄

∑𝑛
𝑗=1 𝑎2𝑗

, 1 ≤

𝑖 < 2. Prove that 
𝑛
∑
𝑖=1

𝑎𝑖⁄
1−𝑎𝑖

≤
𝑛
∑
𝑖=1

𝑏𝑖⁄
1−𝑏𝑖

.

472. Suppose 𝑎, 𝑏, 𝑐, 𝑑 are posotive real numbers. Prove that ∑
cyclic

𝑎4⁄
𝑎3+𝑎2𝑏+𝑎𝑏2+𝑏3 ≥

𝑎+𝑏+𝑐+𝑑⁄
4 .

473. Let 𝑎, 𝑏, 𝑐 be non-negative real numberssatisfying 𝑎2 + 𝑏2 + 𝑐2 = 1. Prove that
√

𝑎 + 𝑏 +√


𝑏 + 𝑐 +√


𝑐 + 𝑎 ≥ 5𝑎𝑏𝑐 + 2.

474. Let 𝑥, 𝑦, 𝑧 be positive real numbers such that 𝑥2 + 𝑦2 + 𝑧2 ≤ 𝑥 + 𝑦 + 𝑧. Prove that
𝑥2+3
⁄

𝑥3+1 +
𝑦2+3
⁄

𝑦3+1 +
𝑧2+3
⁄

𝑧3+1 ≥ 6.

475. For any three positive real numbers 𝑎, 𝑏, 𝑐 prove that 𝑎2
⁄

𝑎+𝑏 +
𝑏2
⁄

𝑏+𝑐 ≥
3𝑎+2𝑏−𝑐⁄

4 .

476. Suppose 𝑎, 𝑏, 𝑐 are non-negative real numbers such that 𝑎3 + 𝑏3 + 𝑐3 + 𝑎𝑏𝑐 = 4. Prove
that 𝑎3𝑏 + 𝑏3𝑐 + 𝑐3𝑎 ≤ 3.

477. Let 𝑎, 𝑏, 𝑐 be positive real numbers such that 𝑎𝑏𝑐 = 1. Prove that (𝑎 + 1
⁄

𝑏)
2
+ (𝑏 +

1
⁄

𝑐)
2
+ (𝑐 + 1
⁄

𝑎)
2
≥ 3(𝑎 + 𝑏 + 𝑐 + 1).

478. Let 𝑎,𝑏,𝑐 be positive reall numbers with 𝑎𝑏𝑐 = 1. Prove that 𝑎⁄
𝑐(𝑎+1)+

𝑏
⁄

𝑎(𝑏+1)+
𝑐⁄

𝑏(𝑐+1)≥
3
⁄

2.

479. Let 𝑎, 𝑏, 𝑐 be positive real numbers such that 𝑎𝑏𝑐 = 1. Prove that 1⁄
1+𝑎2014 +

1⁄
1+𝑏2014 +

1⁄
1+𝑐2014 > 1.

480. For positive real numbers 𝑎, 𝑏, 𝑐, prove the inequality
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(1⁄𝑎 +
1
⁄

𝑏 +
1
⁄

𝑐)(
1⁄

1+𝑎 +
1⁄

1+𝑏 +
1⁄

1+𝑐) ≥
9⁄

1+𝑎𝑏𝑐.

481. Let 𝑥, 𝑦, 𝑧 be positive real numbers such that 𝑥+𝑦+𝑧 = 3. Prove that √


𝑥+√

𝑦+√

𝑧 ≥

𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥.

482. Let 𝑎, 𝑏, 𝑐 be positive real numbers. Prove that 9𝑎𝑏𝑐⁄
2(𝑎+𝑏+𝑐) ≤

𝑎𝑏2
⁄

𝑎+𝑏+
𝑏𝑐2
⁄

𝑏+𝑐+
𝑐𝑎2
⁄

𝑐+𝑎 ≤
𝑎2+𝑏2+𝑐2
⁄

2 .

483. For positive real numbers 𝑎, 𝑏, 𝑐, prove that 𝑎𝑏𝑐⁄
(1+𝑎)(𝑎+𝑏)(𝑏+𝑐)(𝑐+16) ≤

1
⁄

81.

484. Let 𝑎, 𝑏, 𝑐, 𝑑 be positive real numbers such that 𝑎 + 𝑏 + 𝑐 + 𝑑 = 4. Prove that
1
⁄

𝑎2+1 +
1
⁄

𝑏2+1 +
1
⁄

𝑐2+1 +
1⁄

𝑑2+1 ≥ 2.

485. Let 𝑎, 𝑏, 𝑐 be positive real numbers. Prove that 1+𝑎𝑏⁄𝑐 + 1+𝑏𝑐
⁄

𝑎 + 1+𝑐𝑎
⁄

𝑏 ≥ √


𝑎2 + 2 +
√


𝑏2 + 2 +√

𝑐2 + 2.

486. Let 𝑎, 𝑏, 𝑐 be positive real numbers such that 𝑎 + 𝑏 + 𝑐 = 1. Prove that 𝑎2⁄
𝑏3+𝑐4+1 +

𝑏2⁄
𝑐3+𝑎4+1 +

𝑐2⁄
𝑎3+𝑏4+1 >

1
⁄

5.

487. Janous Inequality: Let 𝑎, 𝑏, 𝑐 and 𝑥, 𝑦, 𝑧 be two sets of positive real numbers. Prove
that 𝑥(𝑏+𝑐)⁄𝑦+𝑧 + 𝑦(𝑐+𝑎)⁄

𝑧+𝑥 + 𝑧(𝑎+𝑏)⁄
𝑥+𝑦 ≥√

3(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎).

488. Let 𝑥, 𝑦, 𝑧 be positive real numbers such that 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 = 1. Prove that 𝑥
⁄

𝑥2+1 +
𝑦
⁄

𝑦2+1 +
𝑧
⁄

𝑧2+1 ≤
3√


3
⁄

4 .

489. Let 𝑥, 𝑦, 𝑧 be positive real numbers such that 𝑥 + 𝑦 + 𝑧 = 1. Prove that 1⁄
1−𝑥𝑦 +

1⁄
1−𝑦𝑧 +

1⁄
1−𝑧𝑥 ≤

27
⁄

8 .

490. Let 𝑥, 𝑦, 𝑧 be positive real numbers such that 𝑥 + 𝑦 + 𝑧 = 1. Show that 𝑧−𝑥𝑦⁄
𝑥2+𝑥𝑦+𝑦2+

𝑥−𝑦𝑧⁄
𝑦2+𝑦𝑧+𝑧2 +

𝑦−𝑧𝑥⁄
𝑧2+𝑧𝑥+𝑥2 ≥ 2.

491. Let 𝑎, 𝑏, 𝑐 be positive real numbers. Define 𝑢 = 𝑎+ 𝑏+ 𝑐, 𝑢
2−𝑏2⁄
3 = 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎, 𝑤 = 𝑎𝑏𝑐,

where 𝑣 ≥ 0. Then (𝑢+𝑣)
2(𝑢−2𝑣)⁄
27 ≤ 𝑤 ≤ (𝑢−𝑣)2(𝑢+2𝑣)⁄

27 .

492. Let 𝑎, 𝑏, 𝑐 be positive real numbers. Prove that 𝑎4 + 𝑏4 + 𝑐4 ≥ 𝑎𝑏𝑐(𝑎 + 𝑏 + 𝑐).

493. Let 𝑎, 𝑏, 𝑐 be real numbers such that 𝑎2+𝑏2+𝑐2 = 9. Prove that 2(𝑎+𝑏+𝑐)−𝑎𝑏𝑐 ≤ 10.

494. Let 𝑎, 𝑏, 𝑐 be positive real numbers such that 𝑎 + 𝑏 + 𝑐 = 1. Prove that 𝑎2 + 𝑏2 + 𝑐2 +
3𝑎𝑏𝑐 ≥ 9
⁄

4.

495. Determine the maximum value of 𝑘 such that 𝑎 + 𝑏 + 𝑐 ≥ 𝑘 for all positive reals 𝑎, 𝑏, 𝑐
with 𝑎√


𝑏𝑐 + 𝑏√

𝑐𝑎 + 𝑐√


𝑎𝑏 ≥ 1.
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496. If 𝑎, 𝑏, 𝑐 are real numbers such that 𝑎 + 𝑏 + 𝑐 = 1, prove that 10(𝑎3 + 𝑏3 + 𝑐3) −
9(𝑎5 + 𝑏5 + 𝑐5) ≥ 1.

497. Let 𝑎, 𝑏, 𝑐 be positive real numbers. Prove that 24𝑎𝑏𝑐 ≤ |𝑎3 + 𝑏3 + 𝑐3 − (𝑎 + 𝑏 + 𝑐)3 | ≤
8
⁄

9 (𝑎 + 𝑏 + 𝑐)3. Also show that equality holds in both the inequalities if and only if
𝑎 = 𝑏 = 𝑐.

498. Find all 𝑘 > 0 such that the inequality √

𝑎2 + 𝑘𝑏2 +√

𝑏2 + 𝑘𝑎2 ≥ 𝑎 + 𝑏 + (𝑘 − 1)√



𝑎𝑏
holds positive real numbers 𝑎 and 𝑏.

499. Let 𝑎, 𝑏, 𝑐 be positive real numbers such that 𝑎𝑏𝑐 = 1. Prove that 𝑎 + 𝑏 + 𝑐 ≥
√

1
⁄

3 (𝑎 + 2)(𝑏 + 2)(𝑐 + 2).

500. Let 𝑥1, 𝑥2, … , 𝑥𝑛 be 𝑛 ≥ 3 positive real numbers such that 𝑥1𝑥2 ⋯𝑥𝑛 = 1. Prove that
𝑛
∑
𝑖=1

𝑥8𝑖⁄
𝑥𝑖+1(𝑥4𝑖+𝑥4𝑖+1)

≥ 𝑛
⁄

2, where 𝑥1 = 𝑥𝑛+1.

501. Let 𝑎, 𝑏, 𝑐 be positive real numbers such that 1
⁄

𝑎𝑏 +
1⁄
𝑏𝑐 +

1
⁄

𝑐𝑎 = 1. Prove that
𝑎2+𝑏2+𝑐2+𝑎𝑏+𝑏𝑐+𝑐𝑎−3⁄

5 ≥ 𝑎
⁄

𝑏 +
𝑏⁄
𝑐 +

𝑐
⁄

𝑎.

502. For positive, real 𝑥, 𝑦, 𝑧 show that 𝑥(2𝑥−𝑦)⁄𝑦(2𝑧+𝑥) + 𝑦(2𝑦−𝑧)⁄
𝑧(2𝑥+𝑦)+

𝑧(2𝑧−𝑥)⁄
𝑥(2𝑦+𝑧) ≥ 1.

503. Suppose 𝑧(𝑧𝑥+𝑦𝑧+𝑦)⁄𝑥𝑦2+𝑧2+1 ≤ 𝑘, for alll real numbers 𝑥,𝑦, 𝑧 ∈ (−2,2) with 𝑥2+𝑦2+𝑧2+𝑥𝑦𝑧 =
4. Find the smallest value of 𝑘.

504. Suppose 𝑎, 𝑏, 𝑐 are positive real numbers such that 𝑎3 + 𝑏3 + 𝑐3 = 𝑎4 + 𝑏4 + 𝑐4. Prove
that 𝑎
⁄

𝑎2+𝑏3+𝑐3 +
𝑏
⁄

𝑏2+𝑐3+𝑎3 +
𝑐⁄

𝑐2+𝑐3+𝑎3 ≥ 1.

505. Let 𝑎, 𝑏, 𝑐 be positive real numbers such that 𝑎 + 𝑏 + 𝑐 = 1. Prove that 𝑎
4+5𝑔4⁄

𝑎(𝑎+2𝑏) +
𝑏4+5𝑐4⁄
𝑏(𝑏+2𝑐)+

𝑐4+5𝑎4⁄
𝑐(𝑐+2𝑎) ≥ 1 − (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎).

506. Let 𝑥, 𝑦, 𝑧 be positive real numbers. Prove that (𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥)( 1⁄
(𝑥+𝑦)2 +

1⁄
(𝑦+𝑧)2 +

1⁄
(𝑧+𝑥)2) ≥

9
⁄

4.

507. Suppose 𝑎, 𝑏, 𝑐 are positive real numbers such that 𝑎𝑏𝑐 = 1. Prove that ∑
cyclic

𝑎2+𝑏𝑐⁄
𝑎2(𝑏+𝑐) ≥

𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎.

508. Let 𝑎, 𝑏, 𝑐 be non-negative real numbers. Prove that 4(𝑎3 + 𝑏3 + 𝑐3) + 15𝑎𝑏𝑐 ≥
(𝑎 + 𝑏 + 𝑐)3.

509. Let 𝑎, 𝑏, 𝑐 be positive real numbers such that 𝑎 + 𝑏 + 𝑐 = 1. Prove that 1⁄
𝑎4+𝑏+𝑐 +

1⁄
𝑏4+𝑐+𝑎 +

1⁄
𝑐4+𝑎+𝑏 ≤

3
⁄

𝑎+𝑏+𝑐.
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510. Let 𝑎, 𝑏, 𝑐 be positive reals. Prove that 𝑎4(𝑏+𝑐)+𝑏4(𝑐+𝑎)+𝑐4(𝑎+𝑏) ≤ 1
⁄

12 (𝑎+𝑏+𝑐)5.

511. Let 𝑎, 𝑏, 𝑐 be positive reals such that 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 = 1. Prove that 1
⁄

𝑎+𝑏 +
1
⁄

𝑏+𝑐 +
1
⁄

𝑐+𝑎 −
1
⁄

𝑎+𝑏+𝑐 ≥ 2.

512. Let 𝑎, 𝑏, 𝑐 be positive reals such that 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 = 1. Prove that 1+𝑎
2𝑏2⁄

(𝑎+𝑏)2 +
1+𝑏2𝑐2⁄
(𝑏+𝑐)2 +

1+𝑐2𝑎2⁄
(𝑐+𝑎)2 ≥

5
⁄

2.

513. Let 𝑎, 𝑏, 𝑐 be positive real numbers. Prove that 3 + 𝑎 + 𝑏 + 𝑐 + 1
⁄

𝑎 +
1
⁄

𝑏 +
1
⁄

𝑐 +
𝑎
⁄

𝑏 +
𝑏⁄
𝑐 +

𝑐
⁄

𝑎 ≥

3[(𝑎+1)(𝑏+1)(𝑐+1)⁄1+𝑎𝑏𝑐 ].

514. Let 𝑎, 𝑏, 𝑐 be distinct positive real numbers such that 𝑎𝑏𝑐 = 1. Prove that
∑
cyclic

𝑎6⁄
(𝑎−𝑏)(𝑎−𝑐) > 15.

515. Let 𝑎, 𝑏, 𝑐 be real numbers such that 𝑎2+ 𝑏2+ 𝑐2 = 1. Prove that 𝑎+ 𝑏+ 𝑐 ≤ 2𝑎𝑏𝑐 +√


2.

516. Let 𝑎, 𝑏, 𝑐 be positive real numbers. Prove that (𝑏+𝑐−𝑎)
2⁄

𝑎2+(𝑏+𝑐)2 +
(𝑐+𝑎−𝑏)2⁄
𝑏2+(𝑐+𝑎)2 +

(𝑎+𝑏−𝑐)2⁄
𝑐2+(𝑎+𝑏)2 ≥

3
⁄

5.

517. Let 𝑎, 𝑏, 𝑐 be positive real numbers such that 𝑎+𝑏+𝑐 = 1. Prove that √

1
⁄

𝑎 − 1√

1
⁄

𝑏 − 1+

√

1
⁄

𝑏 − 1√

1
⁄

𝑐 − 1 +√

1
⁄

𝑐 − 1√

1
⁄

𝑎 − 1 ≥ 6.
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Answers of Chapter 1
Logarithm

1. log√8 𝑥 =
10
⁄

3 ⇒ log
2
3⁄
2
𝑥 = 10
⁄

3 ⇒ 2
⁄

3 log2 𝑥 =
10
⁄

3

⇒ log2 𝑥 = 5 ⇒ 𝑥 = 25 = 32.

2. L.H.S. = log𝑏 𝑎. log𝑐 𝑏 log𝑎 𝑐 =
log𝑎
⁄

log 𝑏 .
log 𝑏
⁄

log 𝑐 .
log 𝑐
⁄

log 𝑎 = 1 = R.H.S.

3. L.H.S. = log3 log2 log√5(√


5)8 = log3 log2 8 = log3 3 = 1 = R.H.S.

4. Given 𝑎2 + 𝑏2 = 23𝑎𝑏 ⇒ (𝑎 + 𝑏)2 = 25𝑎𝑏 ⇒ 𝑎+𝑏
⁄

5 = √


𝑎𝑏

Taking log of both sides, we get

log 𝑎+𝑏
⁄

5 = 1
⁄

2 (log 𝑎 + log 𝑏).

5. L.H.S. = 7 log 16
⁄

15 + 5 log 25
⁄

24 + 3 log 81
⁄

80 = log 2

= 7[log 24 − log 3.5]+ 5[log 52 − log 23.3]+ 3[log 34 − log 24.5]

= 7[4 log 2 − log 3 − log 5]+ 5[2 log 5 − 3 log 2 − log 3]+ 3[4 log 3 − 4 log 2 − log 5]

= log 2 = R.H.S.

6. L.H.S. = log tan 1∘ + log tan 2∘ + …+ log tan 89∘

= (log tan 1∘ + log tan 89∘)+ (log tan 2∘ + log tan 88∘)+⋯+ log tan 45∘

= (log tan 1∘ cot 1∘)+ (log tan 2∘ cot 2∘)+⋯+ log tan 45∘[∵ tan(90∘ − 𝜃) = cot 𝜃]

= log 1 + log 1 + ⋯+ log 1 = 0[∵ tan 𝜃 cot 𝜃 = 1]

7. Given log9 tan 𝜋
⁄

6 = log9 1⁄
√


3 = − log9√


3 = − log9 91/4 = −1
⁄

4.

8. Given log𝑎2 𝑏⁄log√𝑎 𝑏2 =
1
⁄

2log𝑎 𝑏⁄
2.2 log𝑎 𝑏 =

1
⁄

8.

9. Given log√5 .008 = 2 log5 8⁄
1000 = 2[log5 8 − log5 1000] = 2[log5 8 − log 8.125]

= 2[log5 8 − log6 8 − log5 125] = −2. log5 53 = −6.

10. Given log2√3 144 = log2√3(2√


3)4 = 4.

11. L.H.S. = log3 log2 log√3 81 = log3 log2 log√3(√


3)8 = log3 log2 8 = log3 3 = 1 = R.H.S.
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12. L.H.S. = log𝑎 𝑥 log𝑏 𝑦 =
log𝑥
⁄

log 𝑎 .
log 𝑦
⁄

log 𝑏 =
log𝑥
⁄

log 𝑏 .
log 𝑦
⁄

log 𝑎

= log𝑏 𝑥 log𝑎 𝑦 = R.H.S.

13. L.H.S. = log2 log2 log2 16 = log2 log2 log2 24 = log2 log2 4 = log2 2 = 1 = R.H.S.

14. R.H.S. = log𝑏 𝑥 log𝑐 𝑏… log𝑛 𝑚 log𝑎 𝑛 = log𝑥
⁄

log 𝑏 .
log 𝑏
⁄

log 𝑐⋯
log𝑚⁄
log𝑛 .

log𝑛⁄
log 𝑎

= log𝑥
⁄

log 𝑎 = log𝑎 𝑥 = L.H.S.

15. Let 10𝑥 log10 𝑎 = 𝑧.

Taking log of both sides, we get

𝑥 log10 𝑎 = log 𝑧 ⇒ log10 𝑎𝑥 = log 𝑧 ⇒ 𝑧 = 𝑎𝑥.

16. Given 𝑎2 + 𝑏2 = 7𝑎𝑏 ⇒ 𝑎2 + 𝑏2 + 2𝑎𝑏 = (𝑎 + 𝑏)2 = 9𝑎𝑏

⇒ (𝑎+𝑏⁄3 )
2
= 𝑎𝑏 ⇒ 𝑎+𝑏
⁄

3 = √


𝑎𝑏 = (𝑎𝑏)1/2

Taking log of both sides,

log 𝑎+𝑏
⁄

3 = 1
⁄

2 (log 𝑎 + log 𝑏).

17. L.H.S. = log𝑎 log𝑏 𝑎⁄
log𝑏 log𝑎 𝑏

Let log𝑏 𝑎 = 𝑧, then L.H.S. = log𝑎 𝑧⁄
log𝑏

1
⁄

𝑧
= − log𝑎 𝑧⁄

log𝑏 𝑧 = − log 𝑧
⁄

log 𝑎 .
log 𝑧
⁄

log 𝑏

= − log 𝑏
⁄

log 𝑎 = − log𝑎 𝑏 = R.H.S.

18. L.H.S. = log(1 + 2 + 3) = log 6 = log(1.2.3) = log 1 + log 2 + log 3 = R.H.S.

19. L.H.S. = 2 log(1 + 2 + 4 + 7 + 14) = 2 log 28 = log 784

= log(1.2.4.7.14) = log 1 + log 2 + log 4 + log 7 + log 14 = R.H.S.

20. L.H.S. = log 2 + 16 log 16
⁄

15 + 12 log 25
⁄

24 + 7 log 81
⁄

80

= log 2+16[log 24− log 3− log 5]+12[log 52− log 23− log 3]+7[log 34− log 24− log 5]

= log 2 + 16[4 log 2 − log 3 − log 5]+ 12[2 log 5 − 3 log 2 − log 3]+ 7[4 log 3 − 4 log 2 −
log 5]

= log 2[1 + 64 − 36 − 28]+ log 3[28 − 16 − 112]+ log 5[24 − 7 − 15]

= log 2 + log 5 = log 10 = 1 [∵ default base of log is 10.]

21. Given log9 11⁄log5 13 ÷
log3 11⁄
log√5 13

= log32 11⁄
log5 13 .

log

5

1⁄
2
11⁄

log3 11
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=
1
⁄

2log3 11⁄
log5 13 . 2 log5 13⁄log3 11 = 1.

22. Given, 3√


log3 2 − 2√


log2 3

Taking log with base 10,

√

log3 2 log 3 −√

log2 3 log 2 =√

log 2⁄
log 2 (log 3)

2 −√

log 3⁄
log 2 (log 2)

2

=√

log 2 log 3 −√

log 3 log 2 = 0.

23. Given log10 343 = 2.5353 ⇒ log10 73 = 2.5353 ⇒ log10 7 = 𝑜.8451

For 7𝑛 > 105 ⇒ 𝑛 log10 7 > 5 ⇒ 𝑛 > 5⁄
0.8451

Thus, least such integer is 6.

24. Since 𝑎, 𝑏, 𝑐 are in G.P., we can write 𝑏2 = 𝑎𝑐

Taking log of both sides, we get

2 log 𝑏 = log 𝑎 + log 𝑐 ⇒ log 𝑎, log 𝑏, log 𝑐 are in A.P.

i.e. 1
⁄

log 𝑎 ,
1
⁄

log 𝑏 ,
1
⁄

log 𝑐 are in H.P.

Multiplying each term with log 𝑥,

log𝑥
⁄

log 𝑎 ,
log𝑥
⁄

log 𝑏 ,
log𝑥
⁄

log 𝑐 are in H.P.

log𝑎 𝑥, log𝑏 𝑥, log𝑐 𝑥 are in H.P.

25. R.H.S. = 3 log 2 + log sin 𝑥 + log cos 𝑥 + log cos 2𝑥 + log cos 4𝑥

= 2 log 2 + (log 2. sin 𝑥 cos 𝑥)+ log cos 2𝑥 + log cos 4𝑥

= 2 log 2+ log sin 2𝑥+ log cos 2𝑥+ log cos 4𝑥 = log 2+ (log 2. sin 2𝑥 cos 2𝑥)+ log cos 4𝑥

= log 2 + log sin 4𝑥 + cos 4𝑥 = log 2. sin 4𝑥 cos 4𝑥

= log sin 8𝑥 = L.H.S.

26. We have to prove that 𝑥𝑦𝑧 + 1 = 2𝑦𝑧 ⇒ 𝑥 + 1
⁄

𝑦𝑧 = 2

L.H.S. = 𝑥 + 1
⁄

𝑦𝑧, substituting the values of 𝑥, 𝑦 and 𝑧,

log2𝑎 𝑎 + 1⁄
log3𝑎 2𝑎 log4𝑎 3𝑎 =

log𝑎⁄
log 2𝑎 +

log 3𝑎. log 4𝑎⁄
log 2𝑎. log 3𝑎

= log𝑎+log 4𝑎⁄
log 2𝑎 = log(2𝑎)2⁄

log 2𝑎 = 2 = R.H.S.
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27. We have to prove that log𝑐+𝑏 𝑎 + log𝑐−𝑏 𝑎 = 2 log𝑐+𝑎 𝑎 log𝑐−𝑏 𝑎

Dividing both sides by log𝑐+𝑏 𝑎 log𝑐−𝑏 𝑎,

1⁄
log𝑐−𝑏 𝑎 +

1⁄
log𝑐+𝑏 log𝑎 = 2

⇒ log𝑎(𝑐 − 𝑏)+ log𝑎(𝑐 + 𝑏) = 2

⇒ log𝑎(𝑐2 − 𝑏2) = 2 ⇒ 𝑐2 = 𝑎2 + 𝑏2

which is true because 𝑐 is hypotenuse and 𝑎 and 𝑏 are sides of a right-angle triangle.

28. Let log𝑥⁄𝑦−𝑧 =
log𝑦
⁄

𝑧−𝑥 =
log 𝑧
⁄

𝑥−𝑦 = 𝑘

log 𝑥 = 𝑘(𝑦 − 𝑧), log 𝑦 = 𝑘(𝑧 − 𝑥), log 𝑧 = 𝑘(𝑥 − 𝑦)

⇒ 𝑥 log 𝑥 + 𝑦 log 𝑦 + 𝑧 log 𝑧 = 𝑘(𝑥𝑦 − 𝑧𝑥 + 𝑦𝑧 − 𝑥𝑦 + 𝑧𝑥 − 𝑦𝑧) = 0

⇒ log 𝑥𝑥 + log 𝑦𝑦 + log 𝑧𝑧 = log 𝑥𝑥𝑦𝑦𝑧𝑧 = 0

⇒ 𝑥𝑥𝑦𝑦𝑧𝑧 = 1.

29. Given 𝑦𝑧 log(𝑦𝑧)⁄𝑦+𝑧 = 𝑧𝑥 log(𝑧𝑥)
⁄

𝑧+𝑥 = 𝑥𝑦 log(𝑥𝑦)
⁄

𝑥+𝑦

Dividing by 𝑥𝑦𝑧, log(𝑦𝑧)⁄𝑥(𝑦+𝑧) = log(𝑧𝑥)⁄
𝑦(𝑧+𝑥) =

log(𝑥𝑦)⁄
𝑧(𝑥+𝑦) = 𝑘 (let)

log 𝑦 + log 𝑧 = 𝑘(𝑥𝑦 + 𝑦𝑧), log 𝑧 + log 𝑥 = 𝑘(𝑦𝑧 + 𝑥𝑦), log 𝑥 + log 𝑦 = 𝑘(𝑦𝑧 + 𝑧𝑥)

⇒ 𝑥 log 𝑥 = 𝑘𝑦𝑧 ⇒ 𝑥 log 𝑥 = 𝑘𝑥𝑦𝑧 = 𝑦 log 𝑦 = 𝑧 log 𝑧

⇒ 𝑥𝑥 = 𝑦𝑦 = 𝑧𝑧.

30. We have to prove that (𝑦𝑧)log 𝑦−log 𝑧(𝑧𝑥)log 𝑧−log𝑥(𝑥𝑦)log𝑥−log 𝑦 = 1

Taking log of both sides,

⇒ (log 𝑦 − log 𝑧)(log 𝑦 + log 𝑧)+ (log 𝑧 − log 𝑥)(log 𝑧 + log 𝑥)+ (log 𝑥− log 𝑦)(log 𝑥+
log 𝑦) = 0

⇒ (log 𝑦)2 − (log 𝑧)2 + (log 𝑧)2 − (log 𝑥)2 + (log 𝑥)2 − (log 𝑦)2 = 0

⇒ 0 = 0.

31. L.H.S = log𝑁 2 + log𝑛 3 + ⋯+ log𝑛 1988

= log𝑁(2.3.4.… 1988) = log𝑁 1988! = 1
⁄

log1988! 𝑁 = R.H.S.

32. L.H.S. = log(1 + 𝑥)+ log(1 + 𝑥2)+ log(1 + 𝑥4)… to ∞

= log(1 + 𝑥 + 𝑥2 +… to ∞)

= log 1
⁄

1−𝑥 [∵ 0 < 𝑥 < 1] (from the formula for the sum of an infinite G.P.)

= − log(1 − 𝑥) = R.H.S.
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33. Let 𝑆𝑛 = 1
⁄

log2 𝑎 +
1
⁄

log4 𝑎 + ⋯ up to 𝑛 terms

𝑆𝑛 = log𝑎 2 + log𝑎 4 + log𝑎 8 + ⋯ up to 𝑛 terms

𝑆𝑛 = (1 + 2 + 3 + ⋯+ 𝑛) log𝑎 2 = 𝑛(𝑛+1)
⁄

2 log𝑎 2.

34. L.H.S. = 1
⁄

𝑥+1 +
1
⁄

𝑦+1 +
1
⁄

𝑧+1

= 1⁄
log4 10+log4 4 +

1⁄
log2 20+log2 20 +

1⁄
log5 8+log5 5

= 1
⁄

log4 40 +
1
⁄

log2 40 +
1
⁄

log5 40

= log40 4 + log40 2 + log40 5 = log40(4.2.5) = log40 40 = 1 = R.H.S.

35. L.H.S. = 1⁄
log𝑎 𝑏𝑐+1 +

1⁄
log𝑏 𝑐𝑎+1 +

1⁄
log𝑐 𝑎𝑏+1

= 1⁄
log𝑎 𝑏𝑐+log𝑎 𝑎 +

1⁄
log𝑏 𝑐𝑎+log𝑏 𝑏 +

1⁄
log𝑐 𝑎𝑏+log𝑐 𝑐

= 1⁄
log𝑎 𝑎𝑏𝑐 +

1⁄
log𝑏 𝑎𝑏𝑐 +

1⁄
log𝑐 𝑎𝑏𝑐

= log𝑎𝑏𝑐 𝑎 + log𝑎𝑏𝑐 𝑏 + log𝑎𝑏𝑐 𝑐 = log𝑎𝑏𝑐 𝑎𝑏𝑐 = 1 = R.H.S.

36. Given, 1
⁄

1+log𝑏 𝑎+log𝑏 𝑐 +
1
⁄

1+log𝑐 𝑎+log𝑐 𝑏 +
1
⁄

1+log𝑎 𝑏+log𝑎 𝑐 = 1

L.H.S. = 1⁄
log𝑏 𝑎+log𝑏 𝑎+log𝑏 𝑐 +

1⁄
𝑙𝑜𝑔𝑐𝑐+log𝑐 𝑎+log𝑐 𝑏 +

1⁄
log𝑎 𝑎+log𝑎 𝑏+log𝑎 𝑐

= 1⁄
log𝑏 𝑎𝑏𝑐 +

1⁄
log𝑐 𝑎𝑏𝑐 +

1⁄
log𝑎 𝑎𝑏𝑐

Like previous problem the above expression will evaluate to 1.

37. We have to prove that 𝑥log 𝑦−log 𝑧𝑦log 𝑧−log𝑥𝑧log𝑥−log 𝑦 = 1

Taking log of both sides,

(log 𝑦 − log 𝑧) log 𝑥 + (log 𝑧 − log 𝑥) log 𝑦 + (log 𝑥 − log 𝑦) log 𝑧 = 0

⇒ log 𝑦 log 𝑧 − log 𝑧 log 𝑥 + log 𝑧 log 𝑦 − log 𝑥 log 𝑦 + log 𝑥 log 𝑧 − log 𝑦 log 𝑧 = 0

⇒ 0 = 0.

38. Let log 𝑎⁄𝑦−𝑧 =
log 𝑏
⁄

𝑧−𝑥 =
log 𝑐
⁄

𝑥−𝑦 = 𝑘

⇒ 𝑥 log 𝑎 = 𝑘(𝑥𝑦 − 𝑧𝑥), 𝑦 log 𝑏 = 𝑘(𝑦𝑧 − 𝑥𝑦), 𝑧 log 𝑐 = 𝑘(𝑧𝑥 − 𝑦𝑧)

Adding all,

𝑥 log 𝑎 + 𝑦 log 𝑏 + 𝑧 log 𝑐 = 𝑘(𝑥𝑦 − 𝑧𝑥 + 𝑦𝑧 − 𝑥𝑦 + 𝑧𝑥 − 𝑦𝑧) = 0

log 𝑎𝑥𝑏𝑦𝑥𝑧 = 0 ⇒ 𝑎𝑥𝑏𝑦𝑐𝑧 = 1
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39. Let 𝑥(𝑦+𝑧−𝑥)⁄log𝑥 = 𝑦(𝑧+𝑥−𝑦)
⁄

log 𝑦 = 𝑧(𝑥+𝑦−𝑧)
⁄

log 𝑧 = 1
⁄

𝑘

⇒ log 𝑥 = 𝑘𝑥(𝑦 + 𝑧 − 𝑥), log 𝑦 = 𝑘𝑦(𝑧 + 𝑥 − 𝑦), log 𝑧 = 𝑘𝑧(𝑥 + 𝑦 − 𝑧)

Let 𝑦𝑧𝑧𝑦 = 𝑧𝑥𝑧𝑧 = 𝑥𝑦𝑦𝑥

Taking log, we have

𝑧 log 𝑦 + 𝑦 log 𝑧 = 𝑥 log 𝑧 + 𝑧 log 𝑥 = 𝑦 log 𝑥 + 𝑥 log 𝑦

⇒ 𝑧𝑘𝑦(𝑧+𝑥−𝑦)+𝑦𝑘𝑧(𝑥+𝑦−𝑧)= 𝑥𝑘𝑧(𝑥+𝑦−𝑧)+𝑧𝑘𝑥(𝑦+𝑧−𝑥)= 𝑦𝑘𝑥(𝑦+𝑧−𝑥)+
𝑥𝑘𝑦(𝑥 + 𝑧 − 𝑦)

⇒ 𝑦𝑧2 + 𝑥𝑦𝑧 − 𝑦2𝑧 + 𝑥𝑦𝑧 + 𝑦2 − 𝑧2𝑦 = 𝑥2𝑧 + 𝑥𝑦𝑧 − 𝑥𝑧2 + 𝑥𝑦𝑧 + 𝑥𝑧2 − 𝑥2𝑧 = 𝑥𝑦2 +
𝑥𝑦𝑧 − 𝑥2𝑦 + 𝑥2𝑦 + 𝑥𝑦𝑧 − 𝑥𝑦2

⇒ 2𝑥𝑦𝑧 = 2𝑥𝑦𝑧 = 2𝑥𝑦𝑧.

40. Let log 𝑎⁄𝑏−𝑐 =
log 𝑏
⁄

𝑐−𝑎 =
log 𝑐
⁄

𝑎−𝑏 = 𝑘

⇒ log 𝑎 = 𝑘(𝑏 − 𝑐), log 𝑏 = 𝑘(𝑐 − 𝑎), log 𝑐 = 𝑘(𝑎 − 𝑏)

⇒ (𝑏 + 𝑐) log 𝑎 = 𝑘(𝑏2 − 𝑐2), (𝑐 + 𝑎) log 𝑏 = 𝑘(𝑐2 − 𝑎2), (𝑎 + 𝑏) log 𝑐 = 𝑘(𝑎2 − 𝑏2)

Adding all, log 𝑎𝑏+𝑐 + log 𝑏𝑐+𝑎 + log 𝑐𝑎+𝑏 = 0

⇒ 𝑎𝑏+𝑐𝑏𝑐+𝑎𝑐𝑎+𝑏 = 1.

41. Let log𝑥⁄𝑞−𝑟 =
log𝑦
⁄

𝑟−𝑝 =
log 𝑧
⁄

𝑝−𝑞 = 𝑘

⇒ log 𝑥 = 𝑘(𝑞 − 𝑟), log 𝑦 = 𝑘(𝑟 − 𝑝), log 𝑧 = 𝑘(𝑝 − 𝑞)

⇒ (𝑞 + 𝑟) log 𝑥 = 𝑘(𝑞2 − 𝑟2), (𝑟 + 𝑝) log 𝑦 = 𝑘(𝑟2 − 𝑝2), (𝑝 + 𝑞) log 𝑧 = 𝑘(𝑝2 − 𝑞2)

Adding all log 𝑥𝑞+𝑟 + log 𝑦𝑟+𝑝 + log 𝑧𝑝+𝑞 = 0

⇒ 𝑥𝑞+𝑟𝑦𝑟+𝑝𝑧𝑝+𝑞 = 1.

Similarly, 𝑝 log 𝑥 = 𝑘𝑝(𝑞 − 𝑟), 𝑞 log 𝑦 = 𝑘𝑞(𝑟 − 𝑝), 𝑟 log 𝑧 = 𝑘𝑟(𝑝 − 𝑞)

Adding all, log 𝑥𝑝 + log 𝑦𝑞 + log 𝑧𝑟 = 0 ⇒ 𝑥𝑝𝑦𝑞𝑧𝑟 = 1.

42. Given 𝑦 = 𝑎
1⁄

1−log𝑎 𝑥 and 𝑧 = 𝑎
1⁄

1−log𝑎 𝑦

∴ 𝑧 = 𝑎

1⁄
1−log𝑎 𝑎

( 1⁄
1−log𝑎 𝑥

)

= 𝑎

1⁄
1− 1⁄

1−log𝑎 𝑥

Taking log of both sides with base 𝑎,

log𝑎 𝑧 = 1⁄
1− 1⁄

1−log𝑎 𝑥
= 1−log𝑎 𝑥⁄

− log𝑎 𝑥 = 1 − 1⁄
log𝑎 𝑥

⇒ 𝑥 = 𝑎
1⁄

1−log𝑎 𝑧.
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43. Given 𝑓(𝑦) = 𝑒𝑓(𝑧) and 𝑧 = 𝑒𝑓(𝑥), where 𝑓(𝑥) = 1
⁄

1−log𝑒 𝑥

𝑓(𝑦) = 𝑒
1⁄

1−log𝑒 𝑧 = 𝑒

1⁄
1−log𝑒 𝑒

1⁄
1−log𝑒 𝑥 = 𝑒

1⁄
1− 1⁄

1−log𝑒 𝑥

Following like above exercie 𝑥 = 𝑒𝑓(𝑦).

44. L.H.S. = 1
⁄

log2 𝑛 +
1
⁄

log3 𝑛 +
1
⁄

log4 𝑛 + ⋯ + 1
⁄

log43 𝑛

= log𝑛 2 + log𝑛 3 + log𝑛 4 + ⋯+ log𝑛 43 = log𝑛(2.3.4…43)

= log𝑛 43! = 1
⁄

log43! 𝑛 = R.H.S.

45. L.H.S. = (1 + 2 + 3 + ⋯+ 𝑛) .2 log 𝑎 = 𝑛(𝑛+1)
⁄

2 .2 log 𝑎 = 𝑛(𝑛 + 1) log 𝑎 = R.H.S.

46. We will use of the fact that positive characteristics of 𝑛 of a logarithmm means that
there 𝑛 + 1 digits in the number.

Let log 𝑦 = 12 log 12 = 12 log(2.2.3) = 12[2 × 0.301 + 0.477] = 12.96.

Thus, number of digits is 13.

47. We can use the fact that the number of positive integers having base 𝑏 and characteristics
𝑛 is 𝑏𝑛+1 − 𝑏𝑛.

Thus, number of integer with base 3 and characteristics 2 is 33 − 32 = 18.

48. L.H.S. = log𝑎 𝑥 log𝑏 𝑦 =
log𝑥
⁄

log 𝑎 .
log 𝑦
⁄

log 𝑏 =
log𝑥
⁄

log 𝑏 .
log 𝑦
⁄

log𝑥

= log𝑏 𝑥 log𝑎 𝑦 = R.H.S.

49. Given 𝑎, 𝑏, 𝑐 are in G.P. ⇒ 𝑏
⁄

𝑎 =
𝑐⁄
𝑏. Taking log𝑥 of these

log𝑥 𝑏 − log𝑥 𝑎 = log𝑥 𝑐 − log𝑥 𝑏 ⇒ 2 log𝑥 𝑏 = log𝑥 𝑎+ log𝑥 𝑎. Thus, log𝑥 𝑎, log𝑥 𝑏, log𝑥 𝑐
are in A.P., and hence,

log𝑎 𝑥, log𝑏 𝑥, log𝑐 𝑥 are in H.P.

50. Let 𝑦 = (0.0504)10 ⇒ log10 𝑦 = 10 log10(0.504) = 10 log10(504 × 10−4)

= −10 log10[−4 + log(23.32.7)] = −12.98.

Thus, characteristics is −13. Therefore, number of zeros after decimal and first
significant digit is 12.

51. Let 𝑥 = 7215 ∴ log10 𝑥 = 15 log10 72 = 15 log10(23 × 32) = 15[3 log10 2 + 2 log10 3]

𝑖 = 15[3 × 0.301 + 2 × 0.477] = 15[0.903 + 0.954] = 15 × 1.857 = 27.855

So the characteristics is 27 and hence the number of digits will be 28.
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52. Given 𝑏 = 5, 𝑛 = 2, therefore the number of integers will be 53 − 52 − 100.

53. Let 𝑥 = 315 × 210 ∴ log10 𝑥 = 15 log10 3 + 10 log10 2

= 15 × 0.477 + 10 × 0.301 = 10.165.

So no. of digits will be 11.

54. Let 𝑥 = 620 ∴ log10 𝑥 = 20 log10(2 × 3) = 20[log10 2 + log10 3]

= 20[0.301 + 0.477] = 15.56.

So no. of digits will be 16.

55. Let 𝑥 = 525 ∴ log10 𝑥 = 25 log10 10⁄2 = 25[1 − log10 2]

= 25 × 0.699 = 17.475

So no. of digits will be 18.

56. Given log𝑎[1 + log𝑏{1 + log𝑐(1 + log𝑝 𝑥)}] = 0

⇒ 1 + log𝑏{1 + log𝑐(1 + log𝑝 𝑥)} = 1

⇒ log𝑏{1 + log𝑐(1 + log𝑝 𝑥)} = 0

⇒ 1 + log𝑐(1 + log𝑝 𝑥) = 1

⇒ log𝑐(1 + log𝑝 𝑥) = 0

⇒ 1 + log𝑝 𝑥 = 1

⇒ log𝑝 𝑥 = 0 ⇒ 𝑥 = 1

57. Given log7 log5(√


𝑥 + 5 +√


𝑥) = 0 ⇒ log5(√


𝑥 + 5 +√


𝑥) = 1

⇒ √


𝑥 + 5 +√


𝑥 = 5 ⇒ √


𝑥 + 5 = 5 −√


𝑥

Squaring both sides,

𝑥 + 5 = 25 + 𝑥 − 10√


𝑥 ⇒ √


𝑥 = 2 ⇒ 𝑥 = 4.

58. log2 𝑥 + log4(𝑥 + 2) = 2 ⇒ log2 𝑥 + 1
⁄

2 log2(𝑥 + 2) = 2

⇒ 2 log2 𝑥 + log2(𝑥 + 2) = 4 ⇒ log2 𝑥2(𝑥 + 3) = 4

⇒ 𝑥2(𝑥 + 2) = 16 ⇒ 𝑥 = 2

59. log(𝑥+2) 𝑥 + log𝑥(𝑥 + 2) = 5
⁄

2 ⇒
1⁄

log𝑥(𝑥+2)+ log𝑥(𝑥 + 2) = 5
⁄

2

Let 𝑧 = log𝑥(𝑥 + 2)⇒ 1
⁄

𝑧 + 𝑧 = 5
⁄

2

2𝑧2 + 2 − 5𝑧 = 0 ⇒ 𝑧 = 2, 1⁄2
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⇒ log𝑥(𝑥 + 2) = 2, 1⁄2

⇒ 𝑥 + 2 = 22, 𝑥 + 2 = √


𝑥

𝑥 = 2, 𝑥2 − 4𝑥 + 4 = 0 ⇒ 𝑥 = 3±√

−7⁄

2

However, 𝑥 cannot be a complex number. ∴ 𝑥 = 2.

60. log(𝑥+1)⁄
log𝑥 = 2 ⇒ log𝑥(𝑥 + 1) = 2 ⇒ 𝑥 + 1 = 𝑥2

⇒ 𝑥 = 1±√


5⁄
2

∵ 𝑥 > 0, 𝑥 = 1+√


5⁄
2 .

61. 2 log𝑥 𝑎 + log𝑎𝑥 𝑎 + 3 log𝑎2𝑥 𝑎 = 0 ⇒ 2⁄
log𝑎 𝑥 +

1⁄
log𝑎 𝑎𝑥 +

1⁄
log𝑎 𝑎2𝑥

= 0

⇒ 2⁄
log𝑎 𝑥 +

1⁄
log𝑎 𝑎+log𝑎 𝑥 +

1⁄
log𝑎 𝑎2+log𝑎 𝑥

= 0

⇒ 2⁄
log𝑎 𝑥 +

1⁄
1+log𝑎 𝑥 +

1⁄
2+log𝑎 𝑥 = 0

Substituting log𝑎 𝑥 = 𝑧, 2⁄𝑧 +
1
⁄

1+𝑧 +
1
⁄

2+𝑧 = 0

⇒ 6𝑧2 + 11𝑧 + 4 = 0 ⇒ 𝑧 = −1
⁄

2 , −
4
⁄

3

∴ 𝑥 = 𝑎
−1⁄2, 𝑎

−4⁄3.

62. 𝑥 + log10(1 + 22) = 𝑥 log10 5 + log10 6

⇒ log10 10𝑥 + log10(1 + 2𝑥) = log10 5𝑥 + log10 6

⇒ log10 10𝑥(1 + 𝑥𝑥) = log10(5𝑥.6)

⇒ 2𝑥(1 + 2𝑥) = 2.3 ⇒ 2𝑥 = 2, 1 + 2𝑥 = 3 ⇒ 𝑥 = 1.

63. 𝑥
3
⁄

4(log2 𝑥)
2+log2 𝑥−

5
⁄

4 = √


2

Taking log2 of both sides,

[3⁄4 (log2 𝑥)
2 + log2 𝑥 − 5
⁄

4] log2 𝑥 =
1
⁄

2 log2 2

[3⁄4 (log2 𝑥)
2 + log2 𝑥 − 5
⁄

4] log2 𝑥 =
1
⁄

2

Let log2 𝑥 = 𝑧, ⇒ (3⁄4 𝑧
2 + 𝑧 − 5
⁄

4)𝑧 =
1
⁄

2

Solving this qubic equation yields 𝑥 = 2, 1⁄4 ,
1⁄
3√


2
.
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64. Given (𝑥2 + 6)log3 𝑥 = (5𝑥)log3 𝑥

log3 𝑥 has a possible value of 0, in that case 𝑥 = 1

If log3 𝑥 ≠ 0, ⇒ 𝑥2 + 6 = 5𝑥 ⇒ 𝑥 = 2, 3.

65. Given, (3 + 2√


2)𝑥
2−6𝑥+9 + (3 − 2√


2)𝑥
2−6𝑥+9 = 6

We observe that 3 + 2√


2 = 1
⁄

3−2√


2, thus, given equation becomes

(3 + 2√


2)𝑥
2−6𝑥+9 + (3 + 2√


2)−(𝑥
2−6𝑥+9) = 6

Let 𝑧 = (3 + 2√


2)𝑥
2−6𝑥+9 ⇒ 𝑧 + 1
⁄

𝑧 = 6 ⇒ 𝑧 = 3 ± 2√


2

Thus, 𝑥2 − 6𝑥 + 9 = ±1 ⇒ 𝑥 = 2, 4 because other roots are irrational.

66. Given, log8( 8
⁄

𝑥2)÷ (log8 𝑥)2 = 3

⇒ log8 8 − log8 𝑥2 = 3(log8 𝑥)2 ⇒ 1 − 2 log8 𝑥 = 3(log8 𝑥)2

Let 𝑧 = log8 𝑥 ⇒ 1 − 2𝑧 = 3𝑧2 ⇒ 𝑧 = −1, 1⁄3 ⇒ 𝑥 = 2, 1⁄8.

67. Given, √


log2(𝑥)4 + 4 log4√


2
⁄

𝑥 = 2

⇒√


log2(𝑥)4 + 2 log2√


2
⁄

𝑥 = 2

⇒√

4 log2 𝑥 + log2 2
⁄

𝑥 = 2

⇒√

4 log2 𝑥 + 1 − log2 𝑥 = 2 ⇒√

4 log2 𝑥 = 1 + log2 𝑥

Squaring, 4 log2 𝑥 = 1 + 2 log2 𝑥 + (log2 𝑥)2 ⇒ (log2 𝑥 − 1)2 = 0

⇒ log2 𝑥 = 1 ⇒ 𝑥 = 2.

68. Given, 2 log10 𝑥 − log𝑥 0.01 = 5 ⇒ 2 log10 𝑥 − log𝑥(10)−2 = 5

⇒ 2 log10 𝑥 − log𝑥(10)−2 = 5 ⇒ 2 log10 𝑥 + 2 log𝑥 10 = 5

⇒ 2 log10 𝑥 + 2⁄
log10 𝑥 = 5

Let 𝑧 = log10 𝑥 ⇒ 2𝑧 + 2
⁄

𝑧 = 5 ⇒ 𝑧 = 2, 1⁄2

⇒ 𝑥 = 100,√

10.

69. Given, logsin𝑥 2 logcos𝑥 2 + logsin𝑥 2 + logcos𝑥 2 = 0

⇒ logsin𝑥 2(logcos𝑥 2 + 1)+ logcos𝑥 2 = 0

⇒ ln2⁄
ln sin𝑥 (

ln 2⁄
ln cos𝑥 + 1)+ ln2⁄

ln cos𝑥 = 0
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⇒ 1⁄
ln sin𝑥 (

ln 2⁄
ln cos𝑥 + 1)+ 1⁄

ln cos𝑥 = 0

⇒ 1⁄
ln sin𝑥 (

ln 2⁄
ln cos𝑥 + 1) = − 1⁄

ln cos𝑥

⇒ 1⁄
ln sin𝑥 (ln 2 + ln cos 𝑥) = −1

⇒ ln(sin 2𝑥) = 0 ⇒ 𝑥 = 2𝑘𝜋 + 𝜋
⁄

4 , 𝑘 ∈ 𝕀.

70. Given, 2𝑥+3 + 2𝑥+2 + 2𝑥+1 = 7𝑥 + 7𝑥−1

⇒ 2𝑥+1(22 + 2 + 1) = 7𝑥−1(7 + 1)⇒ 2𝑥−2 = 7𝑥−2

Taking log of both sides

(𝑥 − 1) log 2 = (𝑥 − 2)(log 7), ∵ 2 ≠ 7 ⇒ 𝑥 = 2.

71. Given, log√2 sin𝑥(1 + cos 𝑥) = 2

⇒ 1 + cos 𝑥 = (√


2 sin 𝑥)2 = 2 sin2 𝑥 = 2 − 2 cos2 𝑥

⇒ 2 cos2 𝑥 + cos 𝑥 − 1 = 0 ⇒ cos 𝑥 = −1, 1⁄2

⇒ 𝑥 = 2𝑛𝜋, 2𝑛𝜋 + 𝜋
⁄

3 , 𝑛 ∈ 𝐼

72. Given, log10[98 +√

𝑥2 − 12𝑥 + 36] = 2

⇒ 98 +√

𝑥2 − 12𝑥 + 36 = 102 = 100

⇒ 𝑥2 − 12𝑥 + 36 = 4 ⇒ 𝑥2 − 12𝑥 + 32 = 0

⇒ 𝑥 = 4, 8.

73. Given, 2𝑥32𝑥 − 100 = 0 ⇒ 𝑥 log10 2 + 2𝑥 log10 3 = log10 100 = 2

Substituting values for log10 2 and log10 3, we get

0.30103𝑥 + 0.95424𝑥 = 2 ⇒ 𝑥 = 1.593.

74. Given, log𝑥 3 log𝑥⁄
3
3 + log 𝑥⁄

81
3 = 0

⇒ 1⁄
log3 𝑥 .

1⁄
log𝑥

𝑥⁄
3
+ 1⁄

log3
𝑥⁄
81

= 0

⇒ 1⁄
log3 𝑥 .

1⁄
log3 𝑥−log3 3 +

1⁄
log3 𝑥−log3 81 = 0

Let 𝑧 = log3 𝑥, ⇒ 1
⁄

𝑧 .
1
⁄

𝑧−1 +
1
⁄

𝑧−4 = 0

⇒ 𝑧 − 4 + 𝑧2 − 𝑧 = 0 ⇒ 𝑧2 − 4 = 0 ⇒ 𝑧 = ±2

⇒ 𝑥 = 9, 1⁄9.
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75. Given, log(2𝑥+3)(6𝑥2 + 23𝑥 + 21) = 4 − log(3𝑥+7)(4𝑥2 + 12𝑥 + 9)

⇒ log(2𝑥+3)(2𝑥 + 3)(3𝑥 + 7) = 4 − log(3𝑥+7)(2𝑥 + 3)2

⇒ 1 + log(2𝑥+3)(3𝑥 + 7) = 4 − 2 log(3𝑥𝑥+7)(2𝑥 + 3)

Let 𝑧 = log(2𝑥+3)(3𝑥 + 7),

⇒ 1+ 𝑧 = 4 − 2
⁄

𝑧 ⇒ 𝑧 = 1, 2 ⇒ 𝑥 = −4, −3, − 1
⁄

4.

For logarithm to be defined, 2𝑥 + 3 > 0, 2𝑥 + 3 ≠ 1 and 3𝑥 + 7 > 0, 3𝑥 + 7 ≠ 1.

Thus, 𝑥 = −1
⁄

4 is the only valid solution.

76. Given, log2(𝑥2 − 1) = log1
⁄

2
(𝑥 − 1)

⇒ log2(𝑥2 − 1) = log2−1(𝑥 − 1) = − log2(𝑥 − 1) = log2 1
⁄

𝑥−1

⇒ 𝑥2 − 1 = 1
⁄

𝑥−1 ⇒ 𝑥 = 0, 𝑥2 − 𝑥 − 1 = 0

⇒ 𝑥 = 0, 1±√


5⁄
2

For logarithm to be defined 𝑥2 − 1 > 0 and 𝑥 − 1 > 0

Thus, 𝑥 = 1+√


5⁄
2 is the only acceptable solution.

77. Given, log5(5
1⁄
𝑥+125) = log5 6 + 1 + 1
⁄

2𝑥

⇒ log5(5
1⁄
𝑥+125)− log5 6 = 1 + 1
⁄

2𝑥

⇒ log5(
5
1⁄
𝑥+125⁄
6 ) = 1 + 1
⁄

2𝑥

⇒ 5
1⁄
𝑥+125 = 30.5

1⁄
2𝑥

Let 𝑧 = 5
1⁄
2𝑥

⇒ 𝑧2 − 30𝑧 + 125 = 0 ⇒ 𝑧 = 5, 25 ⇒ 𝑥 = 1
⁄

2 ,
1
⁄

4.

78. For log100 |𝑥 + 𝑦| = 1
⁄

2 ⇒ (𝑥 + 𝑦)2 = 100

And for log10 𝑦 − log10 |𝑥| = log100 4 ⇒ log10 𝑦⁄
|𝑥| = log10 2



Answers of Logarithm 336

⇒ 𝑦 = 2|𝑥|⇒ 𝑦2 = 4𝑥2 ⇒ 5𝑥2 + 4𝑥|𝑥| = 100

When 𝑥 > 0, 𝑥 = 10
⁄

3 and when 𝑥 < 0, 𝑥 = −10

⇒ 𝑦 = 20
⁄

3 , 20.

79. Given, 2 log2 log2 𝑥 + log1
⁄

2
log2(2√


2𝑥) = 1

⇒ log2(log2 𝑥)2 − log2 log2(2√


2𝑥) = 1

⇒ log2( (log2)2⁄
log2(2√


2𝑥)) = 1

⇒ (log2 𝑥)2⁄
log2(2√


2𝑥) = 2

⇒ (log2 𝑥)2 = log2(2√


2𝑥)2

⇒ (log2 𝑥)2 − 3 − 2 log2 𝑥 = 0

Let 𝑧 = log2 𝑥, then 𝑧2 − 2𝑧 − 3 = 0 ⇒ 𝑧 = −1, 3

⇒ 𝑥 = 1
⁄

2 , 8

For logarithm to be defined 𝑥 > 0, 2√


2𝑥 > 0, log2 𝑥 > 0, log2(2√


2𝑥) > 0.

Thus, 𝑥 = 8 is only acceptable solution.

80. Given log3
⁄

4
log8(𝑥2 + 7)+ log1
⁄

2
log1
⁄

4
(𝑥2 + 7)−1 = −2

⇒ log3
⁄

4
log23(𝑥

2 + 7)+ log1
⁄

2
log2−2(𝑥

2 + 7)− 1 = −2

⇒ log3
⁄

4
[1⁄3 log2(𝑥

2 + 7)]+ log1
⁄

2
[1⁄2 log2(𝑥

2 + 7)] = −2

Let 𝑦 = log2(𝑥2 + 7),

⇒ log3
⁄

4
(𝑦⁄3)+ log1
⁄

2

1
⁄

2 + log1
⁄

2
𝑦 = −2

⇒ − log3
⁄

4
3 + log2 𝑦. log3
⁄

4
2 − log2 𝑦 = −3

⇒ log2 𝑦(log3
⁄

4
2 − 1) = −3 + log3
⁄

4
3

⇒ log2 𝑦(log3
⁄

4
2 − log3
⁄

4

3
⁄

4) = log3
⁄

4
(3⁄4)

−3
+ log3
⁄

4
3
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⇒ log2 𝑦. log3
⁄

4

8
⁄

3 = log3
⁄

4

64
⁄

9 = 2 log3
⁄

4

8
⁄

3

⇒ log2 𝑦 = 2 ⇒ 𝑦 = 3 ⇒ 𝑥 = ±3, both of which are valid for the given equation.

81. Given, log10 𝑥 + log10 𝑥
1
⁄

2 + log10 𝑥
1
⁄

4 + ⋯ to ∞ = 𝑦

⇒ [1 + 1
⁄

2 +
1
⁄

4 + ⋯ to ∞] log10 𝑥 = 𝑦

⇒ 1⁄
1−1
⁄

2
log10 𝑥 = 𝑦 ⇒ log10 𝑥 = 𝑦
⁄

2

Also given that 1+3+5+⋯+(2𝑦−1)⁄4+7+10+⋯+(3𝑦+1) = 20
⁄

7 log10 𝑥

⇒
𝑦
⁄

2[2+(𝑦−1)2]⁄
𝑦
⁄

2[8+(𝑦−1)3]
= 20
⁄

7 log10 𝑥

⇒ 2𝑦⁄
3𝑦+5 =

20
⁄

7 log10 𝑥 =
20×2⁄
7𝑦 ⇒ 7𝑦2 − 60𝑦 − 100 = 0

𝑦 = 10, − 10
⁄

7 . Since number of terms cannot be fraction, therefore 𝑦 = 10 and 𝑥 = 105.

82. Given, 184𝑥−3 = (54√


2)3𝑥−4

Taking log on both sides,

⇒ (4𝑥 − 3) log 18 = (3𝑥 − 4) log(18 × 3√


2) = 3
⁄

2 (3𝑥 − 4) log 18

⇒ 4𝑥 − 3 = 3
⁄

2 (3𝑥 − 4)⇒ 𝑥 = 6

83. Given, 4log9 3 + 9log2 4 = 10log𝑥 83

⇒ 4log32 3 + 9log2 2
2
= 10log𝑥 83

⇒ 4
1
⁄

2log3 3 + 92 log2 2 = 10log𝑥 83

⇒ 4
1
⁄

2 + 92 = 83 = 10log𝑥 83 ⇒ 𝑥 = 10

84. Given, 34 log9(𝑥+1) = 22 log2(𝑥+3)

⇒ 32 log3(𝑥+1) = 𝑥2 + 3[∵ 𝑎log𝑎 𝑁 = 𝑁 ]

⇒ 3log3(𝑥+1)
2
= 𝑥2 + 2𝑥 + 1 = 𝑥2 + 3 ⇒ 𝑥 = 1

85. 6
⁄

5 𝑎
log𝑎 𝑥 log10 𝑎 log𝑎 5 − 3

log10
𝑥⁄
10 = 9log100 𝑥+log4 2

⇒ 6
⁄

5 𝑎
log10 𝑥 log𝑎 5 − 3log10 𝑥−1 = 9

1
⁄

2log10 𝑥+
1
⁄

2log2 2
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⇒ 6
⁄

5 (5
log𝑎 5)log10 𝑥 − 3log10 𝑥−1 = 3log10 𝑥+1

⇒ 6
⁄

5 5
log10 𝑥 = 6.5log10 𝑥−1 = 3log10 𝑥−1(1 + 33)

⇒ (5⁄3)
log10 𝑥−1 = 10
⁄

6

⇒ log10 𝑥 − 1 = 1 ⇒ 𝑥 = 100

86. Given, 2
3𝑥+1⁄2 + 2

𝑥+1⁄2 = 2log2 6

⇒ 23𝑥√


2 + 2𝑥√


2 = 6

⇒ (2𝑥)3 + 22 = 3√


2 ⇒ 2𝑥 = √


2, −√


2±√

−10⁄

2

Ignoring complex roots we have 𝑥 = 1
⁄

2.

87. (5 + 2√


6)𝑥
2−3 + (5 − 2√


6)𝑥
2−3 = 10

⇒ (5 + 2√


6)𝑥
2−3 + (5 + 2√


6)−(𝑥
2−3) = 10

Let 𝑧 = (5 + 2√


6)𝑥
2−3, then

⇒ 𝑧 + 1
⁄

𝑧 = 10 ⇒ 𝑧 = 5 ± 2√


6

∴ 𝑥 = ±2, ±√


2

88. 2 log10𝑥 𝑥 − log𝑥 .01 ≥ 4

⇒ 2 log10 𝑥 − log𝑥 10−2 ≥ 4

⇒ 2 log10 𝑥 + 2 log𝑥 10 ⇒ 2 log10 𝑥 + 2⁄
log10 𝑥 ≥ 4

= 2(log10 𝑥 + 1⁄
log10 𝑥) ≥ 4

Let 𝑧 = log10 𝑥, then 2(𝑧 + 1
⁄

𝑧) ≥ 4

⇒ 2[(√

𝑧 − 1⁄

√

𝑧)

2
+ 2] ≥ 4

which is true.

89. Let 𝐸 = log𝑏 𝑎 + log𝑎 𝑏 = log𝑏 𝑎 +
1⁄

log𝑏 𝑎

Let 𝑧 = log𝑏 𝑎, then 𝐸 = 𝑧 + 1
⁄

𝑧

Clearly, 𝑧 ≠ 0, or the problem will be undefined.
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When 𝑧 > 0, 𝐸 = 𝑧 + 1
⁄

𝑧 = (√

𝑧 − 1⁄

√

𝑧)

2
+ 2 > 2

When 𝑧 < 0, 𝑧 = −𝑦 (let), then

𝐸 = ∣−𝑦 − 1
⁄

𝑦∣ = 𝑦 + 1
⁄

𝑦 > 2.

90. Given, log0.3(𝑥2 + 8) > log0.3 9𝑥

⇒ 𝑥2 + 8 < 9𝑥 ⇒ 1 < 𝑥 < 8.

91. log𝑥−2(2𝑥 − 3) > log𝑥−2(24 − 6𝑥)

Case I: When 0 < 𝑥 − 2 < 1 ⇒ 2 < 𝑥 < 3

Given inequality becomes 2𝑥 − 3 < 24 − 6𝑥 ⇒ 𝑥 < 27
⁄

8

But 𝑥 < 3 so 3 si still limiting value of 𝑥.

Case II: When 𝑥 − 2 > 1 ⇒ 𝑥 > 3

Given inequality becomes 2𝑥 − 3 > 24 − 6𝑥 ⇒ 𝑥 > 27
⁄

3

However, for logarithm to be defined 2𝑥 − 3 > 0 and 24 − 6𝑥 > 0 and also 𝑥 − 2 > 0.

Combining all these we get 2 < 𝑥 < 3.

92. Given, log0.3(𝑥 − 1) < log0.09(𝑥 − 1)

⇒ (𝑥 − 1)2 > (𝑥 − 1)⇒ 𝑥2 − 3𝑥 + 2 > 0

⇒ 𝑥 < 1, 𝑥 > 2. For logarithm function to be defined 𝑥 > 1, thus the interval for 𝑥 will
be (2,∞].

93. Given, log1
⁄

2
𝑥 ≥ log1
⁄

3
𝑥

⇒ log1
⁄

2
𝑥 ≥ log1
⁄

2
𝑥 log1
⁄

3

1
⁄

2

⇒ log1
⁄

2
𝑥[1 − log1
⁄

3

1
⁄

2] ≥ 0

⇒ log1
⁄

2
𝑥[1 − log3 2] ≥ 0

log1
⁄

2
𝑥 ≥ 0 ⇒ 𝑥 ≤ 1

For logarithm function to be defined 𝑥 > 0, thus range of 𝑥 will be (0, 1].

94. Given, log1
⁄

3
log4(𝑥2 − 5) > 0
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⇒ log4(𝑥2 − 5) < 1 ⇒ 𝑥2 − 5 < 4 ⇒ −3 < 𝑥 < 3

For logarithm to be defined 𝑥2 − 5 > 0 and log4(𝑥2 − 5) > 0

⇒ 𝑥 < −√


5, 𝑥 > √


5 and 𝑥2 − 5 > 1 ⇒ 𝑥 < −√


6, 𝑥 > √


6

Combining all these conditions we get two ranges for 𝑥, (−3, −√


6) and (√


6, 3).

95. Given, log(𝑥2 − 2𝑥 − 2) ≤ 0 ⇒ 𝑥2 − 2𝑥 − 2 ≤ 1

⇒ −1 ≤ 𝑥 ≤ 3

For logarithm to be defined 𝑥2 − 2𝑥 − 2 > 0

⇒ 𝑥 < 1 −√


3, 𝑥 > 1 +√


3

Combining all these ranges gives us the range as [−1, 1 −√


3) ∪ (1 +√


3, 3].

96. Given, log22(𝑥 − 1)2 − log0.5(𝑥 − 1) > 5

⇒ (2 log2 |𝑥 − 1|)2 − log0.5(𝑥 − 1) > 5

⇒ 4[log2(𝑥 − 1)]2 + log2(𝑥 − 1) > 5

Let 𝑧 = log2(𝑥 − 1), ⇒ 4𝑥2 + 𝑧 − 5 > 0

⇒ 2 < −5
⁄

4 , 𝑥 > 1 ⇒ 𝑥 < 1 + 1
⁄

24√


2

For log to be defined 𝑥 − 1 > 0 ⇒ 𝑥 > 1

When 𝑧 > 1, 𝑥 > 3

Thus, the range of 𝑥 is (1, 1 + 1
⁄

24√


2
) ∪ (3, ∞).

97. We have to prove that log2 17 log1
⁄

5
2 log3 1⁄5 > 2

⇒ log2 17 log3 2 > 2 ⇒ log3 17 > 2

∵ 17 > 32 ∴ log3 17 > 2

98. We have to prove that 1⁄3 < log20 3 < 1
⁄

2

1
⁄

3 < log20 3 ⇒ 1 < log20 33 ⇒ 1 < log20 27

which is true as the base is greater than 1 and the number is greater than the base.

log20 3 < 1
⁄

2 ⇒ log20 32 < 1 ⇒ log20 9 < 1

which is true as the base is greater than 1 and the number is less than the base.
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99. We have to prove that 1⁄4 < log10 2 < 1
⁄

2

1
⁄

4 < log10 2 ⇒ 1 < log10 24 = log10 16

which is true because base is greater than 1 and the number is greater than the base.

log10 2 < 1
⁄

2 ⇒ log10 22 < 1 ⇒ log10 4 < 1

which is true as the base is greater than 1 and the number is less than the base.

100. Given log0.1(4𝑥2 − 1) > log0.1 3𝑥

⇒ 4𝑥2 − 3𝑥 − 1 < 0 ⇒ (4𝑥 + 1)(𝑥 − 1) < 0

Thus, [−∞, −1
⁄

4) ∪ (1, ∞] is the initial solution.

Now, 𝑥 > 0 is another restriction from R.H.S.

From L.H.S> 4𝑥2 − 1 > 0 ⇒ 𝑥 < −1
⁄

2 , 𝑥 >
1
⁄

2

Combining all these we get, 1⁄2 < 𝑥 < 1.

101. Given, log2(𝑥2 − 24) > log2 5𝑥

⇒ 𝑥2 − 24 > 5𝑥 ⇒ 𝑥 < −3, 𝑥 > 8

But 𝑥2 − 24 > 0 and also 𝑥 > 0 for loarithm function to be defined.

∴ 𝑥 > 8.

102. We have to prove that 1
⁄

log3 𝜋 +
1
⁄

log4 𝜋 > 2

⇒ log𝜋 3 + log𝜋 4 > 2

⇒ log𝜋 12 > 2 ⇒ 12 > 𝜋2 which is true.

103. Given (0.01)
1
⁄

3 and (0.001)
1
⁄

5

Taking log of both with base 10,

1
⁄

3 log01 0.01 and 1⁄5 log10 0.001

− 2
⁄

3 and −3
⁄

5 out of which −3
⁄

5 is greater, therefore (0.001)
1
⁄

5 is greater.

104. log3 11 > log3 9 = log3(32) = 2 and log2 3 < log2 4 = 2.

Thus, log3 11 is geater.
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105. Given, log3(𝑥2 + 10) > log3 7𝑥

⇒ 𝑥2 + 10 > 7𝑥 ⇒ 𝑥 < 2, 𝑥 > 5

However, 𝑥2 + 10 > 0 and 𝑥 > 0 for logarithm to be defined.

Thus, intervals are 0 < 𝑥 < 2 and 𝑥 > 5.

106. We have, 𝑥log10 𝑥 > 10

⇒ log10 𝑥 log10 𝑥 > 1 ⇒ log10 𝑥 > ±1

Thus range of values of 𝑥 would be (0, 0.1) ∪ (10, ∞].

107. We have, log2 𝑥 log2𝑥 2 log2 4𝑥 > 1

⇒ 1⁄
log𝑥 2 [

1⁄
log2 2𝑥 log2 2

2𝑥] > 1

⇒ 1⁄
log𝑥 2 [

1⁄
1+log2 𝑥][2 +

1⁄
log𝑥 2] > 1

Let 𝑧 = log𝑥 2, then

⇒ 1
⁄

𝑧
𝑧
⁄

1+𝑧 [2 +
1
⁄

𝑧] > 1

Solving this inequality and applying rules for definition of logarithm we have following
range for 𝑥

(2−√


2, 1⁄2) ∪ (1, 2
√


2)

108. Given, log2 𝑥 log3 2𝑥 + log3 𝑥 log2 4𝑥 > 0

Exchanging base, we have log3 𝑥 log2 2𝑥 + log3 𝑥 log2 4𝑥 > 0

⇒ log3 𝑥(log2 2 + log2 𝑥 + log2 4 + log2 𝑥) > 0

⇒ log3 𝑥(3 + 2 log2 𝑥) > 0

For 𝑙𝑜𝑔3𝑥 > 0, 𝑥 > 1 and for, 3 + 2 log2 𝑥2 > 0 ⇒ log2 𝑥2 > −3.

Also for log3 𝑥 < 0, 0 < 𝑥 < 1 and for 3 + log2 𝑥2 < 0 ⇒ log2 𝑥2 < −3

109. log12 60 = log2 60
⁄

log2 12 =
log2(22×3×5)⁄
log2(22×3)

= 2+log2 3+log2 5⁄
2+log2 3

Let log2 3 = 𝑥 and log2 5 = 𝑦, then log12 60 = 2+𝑥+𝑦
⁄

2+𝑥

Given 𝑎 = log6 30 = log2 30
⁄

log2 6 = log2(2×3×5)⁄
log2 2×3

= 1+log2 3+log2 5⁄
1+log2 3 = 1+𝑥+𝑦
⁄

1+𝑥
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Also given, 𝑏 = log15 24, proceeding similarly 𝑏 = 3+𝑥
⁄

𝑥+𝑦

From these two, we can write 𝑥 and 𝑦 in terms of 𝑥 and 𝑦,

𝑥 = 𝑏+3−𝑎𝑏⁄
𝑎𝑏−3 , 𝑦 = 2𝑎−𝑏−2+𝑎𝑏⁄

𝑎𝑏−1

Substituting these values for log12 60, we get

log12 60 = 2𝑎𝑏+2𝑎−1⁄
𝑎𝑏+𝑏+1

110. log𝑎 𝑥, log𝑏 𝑥 and log𝑐 𝑥 are in A.P.

∴ 2 log𝑥 𝑏 = 1⁄
log𝑥 𝑎 +

1⁄
log𝑥 𝑐

⇒ 2⁄
log𝑥 𝑏 =

log𝑥 𝑎𝑐⁄
log𝑥 𝑎 log𝑥 𝑐

⇒ 2 log𝑥 𝑐 = log𝑥 𝑎𝑐 log𝑥 𝑏⁄log𝑥 𝑎 ⇒ log𝑥 𝑐2 = log𝑥 𝑎𝑐 log𝑎 𝑏

⇒ 𝑐2 = 𝑎𝑐log𝑎 𝑏.

111. 𝑎 = log1
⁄

2
√


0.125 > 0 because both base and number are less than 1.

𝑏 = log3( 1
⁄

√


24−√


17) = log3(
√


24+√


17
⁄

3 ) > 0

because both base and number are greater than 1.

112. Given 𝑒
−𝜋⁄2 < 𝜃 < 𝜋
⁄

2

Taking log natural of both sides

log𝑒 𝑒
−𝜋⁄2 < log𝑒 𝜃 < log𝑒 𝜋⁄2

⇒ −𝜋
⁄

2 < log𝑒 𝜃 < 1 < 𝜋
⁄

2 [∵ log𝑒
𝜋
⁄

2 < log𝑒 𝑒]

⇒ −𝜋
⁄

2 < log𝑒 𝜃 < 𝜋
⁄

2

⇒ cos(log𝑒 𝜃) > 0

Again, 𝑒
−𝜋⁄2 < 𝜃 < 𝜋
⁄

2

⇒ 0 < 𝜃 < 𝜋
⁄

2 [∵ 𝑒
−𝜋⁄2 > 0]

⇒ 0 < cos 𝜃 < 1 ⇒ log𝑒 cos 𝜃 < 0

⇒ cos(log𝑒 𝜃) > log𝑒(cos 𝜃)
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113. Given, log2 𝑥 + log2 𝑦 ≥ 6 ⇒ log2 𝑥𝑦 ≥ 6 ⇒ 𝑥𝑦 ≥ 64

This means 𝑥 and 𝑦 are positive as negative values will not be valid for logarithm
function.

A.M ≥ G.M ⇒ 𝑥+𝑦
⁄

2 ≥ 𝑥𝑦 ⇒ 𝑥 + 𝑦 ≥ 16.

114. Given, log𝑏 𝑎 log𝑐 𝑎 − log𝑎 𝑎 + log𝑎 𝑏 log𝑐 𝑏 − log𝑏 𝑏 + log𝑎 𝑐 log𝑏 𝑐 − log𝑐 𝑐 = 0

⇒ (log 𝑎)2⁄
log 𝑏 log 𝑐 − 1 + (log 𝑏)2⁄

log 𝑎 log 𝑐 − 1 + (log 𝑐)2⁄
log 𝑎 log 𝑏 − 1 = 0

Let 𝑥 = log 𝑎, 𝑦 = log 𝑏, 𝑧 = log 𝑐, then

𝑥2
⁄

𝑦𝑧 +
𝑦2
⁄

𝑧𝑥 +
𝑧2
⁄

𝑥𝑦 − 3 = 0

⇒ 𝑥3+𝑦3+𝑧3−3𝑥𝑦𝑧⁄
𝑥𝑦𝑧 = 0

⇒ (𝑥 + 𝑦 + 𝑧)(𝑥2 + 𝑦2 + 𝑧2 − 𝑥𝑦 − 𝑦𝑧 − 𝑧𝑥) = 0

⇒ 1
⁄

2 (𝑥 + 𝑦 + 𝑧)[(𝑥 − 𝑦)2 + (𝑦 − 𝑧)2 + (𝑧 − 𝑥)2 ] = 0

∵𝑥, 𝑦, 𝑧 are different the term inside brackets will be always positive. Thus.

𝑥 + 𝑦 + 𝑧 = 0, now substituting the original values,

log 𝑎𝑏𝑐 = 0 ⇒ 𝑎𝑏𝑐 = 1.

115. Given, 𝑦 = 10
1
⁄

1−log𝑥 ⇒ log 𝑦 = 1⁄
1−log𝑥, and similarly, log 𝑧 = 1⁄

1−log 𝑦

⇒ 𝑧 = 1⁄
1− 1
⁄

1−log𝑥
= 1−log𝑥⁄

− log𝑥 = − 1
⁄

log𝑥 + 1 ⇒ 𝑥 = 10
1
⁄

1−log𝑧.

116. Since 𝑛 is a natural number and 𝑝1, 𝑝2,… , 𝑝𝑘 are distinct primes, therefore 𝑎1, 𝑎2,… , 𝑎𝑘
are also natural numbers.

Now 𝑛 = 𝑝𝑎11 𝑝𝑎22 … 𝑝𝑎𝐾𝑘

⇒ log 𝑛 = 𝑎1 log 𝑝1 + 𝑎2 log 𝑝2 + ⋯ + 𝑎𝑘 log 𝑝𝑘

log 𝑛 ≥ log 2 + log 2 + ⋯+ log 2 [since bases are primes so minimum value is is 2 and
pwoers are natural numbers so they are greater than 1]

log 𝑛 ≥ 𝑘 log 2

117. Let 𝑑 be the common difference of the A.P., then

3 log𝑦 𝑥 = 3 + 𝑑 ⇒ log𝑦 𝑥3 = 3 + 𝑑 ⇒ 𝑥3 = 𝑦(3+𝑑)

3 log𝑧 𝑦 = 3 + 2𝑑 ⇒ 𝑦3 = 𝑧(3+2𝑑)

7 log𝑥 𝑧 = 3 + 3𝑑 ⇒ 𝑧7 = 𝑥(3+3𝑑)
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𝑦3 = 𝑧(3+2𝑑) ⇒ 𝑦 = 𝑧
3+2𝑑⁄
3

𝑥3 = 𝑦(3+𝑑) ⇒ 𝑥 = 𝑦
3+𝑑⁄
3 = 𝑧

(3+𝑑)(3+2𝑑)⁄
9

𝑧7 = 𝑥(3+3𝑑) ⇒ 𝑥 = 𝑧
7⁄

3+3𝑑

∴ (3+𝑑)(3+2𝑑)⁄9 = 7⁄
3+3𝑑 ⇒ 𝑑 = 1
⁄

2

Thus, 𝑥18 = 𝑦21 = 𝑧28.

118. We have, log4 18 = log22(2 × 32) = 1
⁄

2 + log2 3

Thus, it will be enough to prove tha log2 3 is an irrational number.

Let log2 3 = 𝑝
⁄

𝑞, where 𝑝, 𝑞 ∈ 𝕀

⇒ 2
𝑝⁄
𝑞 = 3 ⇒ 2𝑝 = 3𝑞

However, 2𝑝 is an even number and 3𝑞 is an odd number, and hence the equality will
never be achieved. Therefore, log2 3 is an irrational number.

119. Given, 𝑥, 𝑦, 𝑧 are in G.P. ∴ 𝑦⁄𝑥 =
𝑧
⁄

𝑦

⇒ ln 𝑦
⁄

𝑥 = ln 𝑧
⁄

𝑦 ⇒ ln 𝑦 − ln 𝑥 = ln 𝑧 − ln 𝑦

⇒ ln 𝑥, ln 𝑦, ln 𝑧 are in A.P.

⇒ 1+ ln 𝑥, 1 + ln 𝑦, 1 + ln 𝑧 are in A.P.

⇒ 1
⁄

1+ln𝑥,
1
⁄

1+ln𝑦 ,
1
⁄

1+ln 𝑧 are in H.P.

120. log30 8 = log30 23 = 3 log30 2 = 3 log30 30⁄15

= 3 − 3(log30 3 + log30 5) = 3(1 − 𝑎 − 𝑏).

121. Given log7 12 = 𝑎 and log12 24 = 𝑏

Multiplying 𝑎𝑏 = log7 24

Adding 1 on both sides

𝑎𝑏 + 1 = log7 24 + log7 7 = log7 168

Similarly, 8𝑎 = log7 128 and 5𝑎𝑏 = log7 1685

𝑎𝑏+1
⁄

8𝑎−5𝑎𝑏
log7 168
⁄

log7 128−log7 1685

Upon simplification we find that log54 168 =
𝑎𝑏+1
⁄

8𝑎−5𝑎𝑏
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122. Case I: When 𝑥 > 1, 𝑥 > 𝑎2 + 1. Also, 𝑎2 + 1 < 1 ∴𝑥 > 1

Case II: When 𝑥 < 1, 𝑥 < 𝑎2 + 1. Also, 𝑎2 > 0 ∴𝑥 < 1.

In both the cases 𝑥 > 0.

123. Given, log12 18 = 𝑎 and log24 54 = 𝑏

∴ 𝑎𝑏 + 5(𝑎 − 𝑏) = log18 log 54
⁄

log 12 log 24 + 5(log 18⁄log 12 −
log 54
⁄

log 24)

= log18 log 54+5(log 18 log 24−log 54 log 12)
⁄

log 12 log 24

log 18 = log 2 + 2 log 3, log 12 = 2 log 2 + log 3

log 24 = 3 log 2 + log 3, log 54 = log 2 + 3 log 3

Now it is only a matter of substitution and simplification.

124. Given, 𝑎, 𝑏, 𝑐 are in G.P. so we can write 𝑏2 = 𝑎𝑐

Taking 𝑙𝑜𝑔 with base 𝑥,

2 log𝑥 𝑏 = log𝑥 𝑎 + log𝑥 𝑐 ⇒ 2
⁄

log𝑏 𝑥 =
1⁄

log𝑎 𝑥 +
1
⁄

log𝑏 𝑥

Thus, log𝑎 𝑥, log𝑏 𝑥, log𝑐 𝑥 are in H.P.

125. Let 𝑟 be the common ratio of the G.P. and 𝑑 be the common difference of the A.P.

log 𝑎𝑛 − 𝑏𝑛 = log 𝑎 + 𝑛 log 𝑟 − (𝑏 + 𝑛𝑑) = log 𝑎 − 𝑏

⇒ 𝑛 log 𝑟 − 𝑛𝑑 = 0 ⇒ log 𝑟 = 𝑑 ⇒ 𝑏 = 𝑟
1
⁄

𝑑.

126. Given log3 2, log3(2𝑥 − 5) and log3(2𝑥 − 7
⁄

2) are in A.P.

⇒ 2 log3(2𝑥 − 5) = log3(2𝑥 − 7
⁄

2)+ log3 2

⇒ (2𝑥 − 5)2 = 2(2𝑥 − 7
⁄

2)

Let 𝑧 = 2𝑥, then

𝑧2 − 10𝑥 + 25 = 2𝑧 − 7 ⇒ 𝑧2 − 12𝑧 + 32 =⇒ 𝑧 = 4, 8

⇒ 𝑥 = 2, 3, however, if 𝑥 = 2 then 2𝑥 − 5 < 0 so only acceptable value of 𝑥 is 3.

127. Let log2 7 is a rational number i.e. log2 7 = 𝑝
⁄

𝑞, where 𝑝, 𝑞 ∈ 𝕀

⇒ 7 = 2
𝑝⁄
𝑞 ⇒ 7𝑞 = 2𝑞

However, integral power of 7 is an odd number while that of 2 is an even number.
Thus, by contradiction log2 7 is irrational number.

128. Given, log0.5(𝑥 − 2) < log0.25(𝑥 − 2)

⇒ (𝑥 − 2)2 > 𝑥 − 2 ⇒ (𝑥 − 2)(𝑥 − 3) > 0

Thus, 𝑥 > 3 for logarithm function to be defined.
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Answers of Chapter 2
Progressions

1. Given 𝑡𝑛 = 2𝑛2 + 1 ⇒ 𝑡𝑛−1 = 2(𝑛 − 1)2 + 1

∴ 𝑑 = 𝑡𝑛 − 𝑡𝑛−1 = 4𝑛 − 2, which is not constant. Hence, the sequence is not in A.P.

2. Given, 𝑡1 = 1, 𝑡2 = 2 and 𝑡𝑛+2 = 𝑡𝑛 + 𝑡𝑛+1

∴ 𝑡3 = 𝑡1 + 𝑡2 = 3, 𝑡4 = 𝑡2 + 𝑡3 = 5, 𝑡5 = 𝑡3 + 𝑡4 = 8.

3. Given 𝑡𝑛 = 3𝑛 + 5 ⇒ 𝑡1 = 3 × 1 + 5 = 8, 𝑡2 = 3 × 2 + 5 = 11, 𝑡3 = 3 × 3 + 5 = 14. So
the seuquence is 8, 11, 14, … , 3𝑛 + 5.

4. Given 𝑡𝑛 = 2𝑛2 + 3 ⇒ 𝑡1 = 2 × 12 + 3 = 5, 𝑡2 = 2 × 22 + 3 = 11, 𝑡3 = 2 × 32 + 5 = 23.
So the sequence is 5, 11, 23, … , 2𝑛2 + 3.

5. Given, 𝑡𝑛 = 3𝑛
⁄

2𝑛+4 ⇒ 𝑡1 = 3×1
⁄

2×1+4 =
3
⁄

6 =
1
⁄

2, 𝑡2 =
3×2
⁄

2×2+4 =
6
⁄

8 =
3
⁄

4, 𝑡3 =
3×3
⁄

2×3+4 =
9
⁄

10. So the

sequence is 1⁄2 ,
3
⁄

4 ,
9
⁄

10 , ⋯ , 3𝑛
⁄

2𝑛+4.

6. Given, 𝑡1 = 2, 𝑡𝑛+1 = 2𝑡𝑛+1
⁄

𝑡𝑛+3 ⇒ 𝑡2 = 2𝑡1+1
⁄

𝑡1+3 = 2×1+1
⁄

1+3 = 3
⁄

4 , 𝑡3 =
2𝑡2+1
⁄

𝑡2+3 =
2×3⁄4+1
⁄

3
⁄

4+3
= 10
⁄

15 =
2
⁄

3.

So the sequence is 2, 3⁄4 ,
2
⁄

3 , ⋯.

7. Given, 𝑡𝑛 = 4𝑛2 + 1 ⇒ 𝑡𝑛−14(𝑛 − 1)2 + 1

∴ 𝑑 = 𝑡𝑛 − 𝑡𝑛−1 = 8𝑛 − 4, which is not constant. Hence the sequence is not in A.P.

8. Given 𝑡𝑛 = 2𝑎𝑛 + 𝑏 ⇒ 𝑡𝑛−1 = 2𝑎(𝑛 − 1)+ 𝑏

∴ 𝑑 = 𝑡𝑛 − 𝑡𝑛−1 = 2𝑎. which is a constant. Hence the sequence will be an A.P.

9. Given, 𝑡1 = 3, 𝑡2 = 3, 𝑡3 = 6 and 𝑡𝑛+2 = 𝑡𝑛 + 𝑡𝑛+1

∴ 𝑡4 = 𝑡2 + 𝑡3 = 3 + 6 = 9 and 𝑡5 = 𝑡3 + 𝑡4 = 6 + 9 = 15.

10. 𝑡1 = 1 = 𝑎 + 𝑏 + 𝑐, 𝑡2 = 5 = 4𝑎 + 2𝑏 + 𝑐 and 𝑡3 = 11 = 9𝑎 + 3𝑏 + 𝑐

∴ 𝑡2 − 𝑡1 = 4 = 3𝑎 + 𝑏 and 𝑡3 − 𝑡2 = 6 = 5𝑎 + 𝑏

⇒ 2𝑎 = 2 ⇒ 𝑎 = 1 ⇒ 𝑏 = 1 ⇒ 𝑐 = −1

⇒ 𝑡10 = 1 × 102 + 1 × 10 − 1 = 109.

11. Difference between successive terms i.e. commond difference, 𝑑 = 12 − 9 = 15 − 12 =
18 − 15 = 3 which is a constant, hence, the given sequence is an A.P.

Here first term 𝑡1 = 9 and 𝑑 = 3 ∴ 𝑡16 = 9 + (16 − 1)3 = 54 and 𝑡𝑛 = 9 + (𝑛 − 1)3 =
3(𝑛 + 2).
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12. 𝑡1 = log 𝑎, 𝑡2 = log(𝑎𝑏) = log 𝑎 + log 𝑏, 𝑡3 = log(𝑎𝑏2) = log 𝑎 + 2 log 𝑏

𝑡2 − 𝑡1 = 𝑡3 − 𝑡2 = log 𝑏. Clearly, 𝑡1 = log 𝑎, 𝑑 = log 𝑏 which is constant so the sequence
is an A.P.

∴ 𝑡𝑛 = log 𝑎 + (𝑛 − 1) log 𝑏 = log(𝑎𝑏𝑛−1).

13. Given, 𝑡𝑛 = 5 − 6𝑛 ⇒ 𝑡1 = 5 − 6 = −1

𝑆𝑛 = 𝑛
⁄

2 [𝑡1 + 𝑡𝑛 ] = 𝑛(2 − 3𝑛).

14. 𝑑 = 7 − 3 = 11 − 7 = 4, 𝑡𝑛 = 407 = 3 + (𝑛 − 1)𝑑 ⇒ 𝑛 = 404
⁄

4 + 1 = 102.

15. Since 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are in A.P. ∴ 𝑎 + 𝑒 = 𝑏 + 𝑑 = 2𝑐 = 𝑘(say)

∴ 𝑎 − 4𝑏 + 6𝑐 − 4𝑑 + 𝑒 = (𝑎 + 𝑒)− 4(𝑏 + 𝑑)+ 3.2𝑐 = 𝑘 − 4𝑘 + 3𝑘 = 0.

16. Let 𝑎 be the first term and 𝑑 be the common difference of the given A.P.

Given, 5𝑡5 = 8𝑡8 ⇒ 5𝑎 + 20𝑑 = 8𝑎 + 56𝑑 ⇒ 3𝑎 = −36𝑑 ⇒ 𝑎 = −12𝑑

⇒ 𝑡13 = 𝑎 + 12𝑑 = 0.

17. Let 𝑛th term be the smallest positive number. From the sequence we obtain that
𝑡1 = 25 and 𝑑 = −2 1⁄4 = −9
⁄

4.

Then 𝑡𝑛 > 0 ⇒ 25 − (𝑛 − 1) 9⁄4 > 0 ⇒ 𝑛 < 25×4⁄
9 + 1 ⇒ 𝑛 = 12.

18. The given pay scale represents an A.P. with 𝑡1 = 700, 𝑑 = 40 and 𝑡𝑛 = 1500.

∴ 𝑡𝑛 = 𝑡1 + (𝑛 − 1)𝑑 ⇒ 𝑛 = 𝑡𝑛−𝑡1
⁄

𝑑 + 1 = 1500−700
⁄

40 + 1 = 21.

Thus, the person will reach maximum payment in 21 years.

19. Let 𝑎 be the first term and 𝑑 be the common difference of the A.P. According to the
question,

𝑡7 = 𝑎 + 6𝑑 = 34 and 𝑡13 = 𝑎 + 12𝑑 = 64

Subtracting 6𝑑 = 30 ⇒ 𝑑 = 5 ⇒ 𝑎 = 4. So the A.P. is 4, 9, 14, ….

20. If 55 is the 𝑛th term then 𝑛 will have to be an integer. From the given sequence
𝑎 = 1, 𝑑 = 3 − 1 = 5 − 3 = 2.

55 = 1 + (𝑛 − 1)2 ⇒ 𝑛 = 28, which is an integer and hence, 55 will be 28th term of
the A.P.

21. From the given sequence 𝑎 = 2000, 𝑑 = 1995 − 2000 = 1990 − 1995 = −5.

Let 𝑛th term be first negative term, then, 𝑎 + (𝑛 − 1)𝑑 < 0 ⇒ 2000 − (𝑛 − 1)5 < 0

⇒𝑛 > 401 ⇒ 𝑛 = 402 ⇒ 𝑡402 = 2000 − (402 − 1)5 = −5.
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22. Common different of the sequence 2, 4, 6, 8, … is 2 and common difference of the
seqquence 3, 6, 9, … is 3.

Thus, common terms will have a common different which is L.C.M. of these two
commond differences i.e. 6.

Last term of first sequence is 200 and last term of second sequence is 240. Clearly,
last identical(common) number will be less than 200. We also observe that 6 is the first
identical term. Let there be 𝑛 such terms. Then

6 + (𝑛 − 1)6 ≤ 200 ⇒ 𝑛 ≤ 194
⁄

6 + 1 ⇒ 𝑛 = 33. Thus there will be 33 identical terms in
the two given A.P.

23. Clearly the first number of three digits divisible by 5 is 100; while the last such number
is 995. Since these numbers are all divisible by 5 they will form an A.P. with common
difference 5.

Clearly, 𝑡1 = 100, 𝑡𝑛 = 995, 𝑑 = 5 and we have to find 𝑛.

𝑡𝑛 = 995 = 100 + (𝑛 − 1)5 ⇒ 𝑛 = 180.

24. Given sequence is 4, 9, 14, …. So 𝑎 = 4, 𝑑 = 9 − 4 = 14 − 9 = 5. Let 105 be 𝑛th term of
this A.P. then 𝑛 has to be an integer for this assumption to be true.

105 = 4 + (𝑛 − 1)5 ⇒ 𝑛 = 106
⁄

5 which is not an integer and therefore 105 is not a term
in the given A.P.

25. This problem is same as problem 21 and has been left as an exercise.

26. This problem is same as problem 22 and has been left as an exercise.

27. Let 𝑎 be the first term and 𝑑 be the common difference of the A.P. Given,

𝑚𝑡𝑚 = 𝑛𝑡𝑛 ⇒ 𝑚𝑎+ (𝑚−1)𝑚𝑑 = 𝑛𝑎+ (𝑛−1)𝑛𝑑 ⇒ (𝑚−𝑛)𝑎 = (𝑛2−𝑛−𝑚2+𝑚)𝑑

⇒ 𝑎 = −(𝑚+ 𝑛− 1)𝑑 ∴ 𝑡𝑚+𝑛 = 𝑎 + (𝑚+ 𝑛− 1)𝑑 = 0.

28. Let 𝑥 be the first term and 𝑦 be the common difference of the A.P. Then,

𝑎 = 𝑥 + (𝑝 − 1)𝑦, 𝑏 = 𝑥 + (𝑞 − 1)𝑦, 𝑐 = 𝑥 + (𝑟 − 1)𝑦

We have to prove that 𝑎(𝑞 − 𝑟)+ 𝑏(𝑟 − 𝑝)+ 𝑐(𝑝 − 𝑞) = 0.

Substituting the values of 𝑎, 𝑏 and 𝑐 in the above equation

L.H.S. = [𝑥 + (𝑝 − 1)𝑦](𝑞 − 𝑟)+ [𝑥 + (𝑞 − 1)𝑦](𝑟 − 𝑝)+ [𝑥 + (𝑟 − 1)𝑦](𝑝 − 𝑞)

= 𝑥(𝑞 − 𝑟 + 𝑟 − 𝑝 + 𝑝 − 𝑞)+ 𝑦[(𝑝 − 1)(𝑞 − 𝑟)+ (𝑞 − 1)(𝑟 − 𝑝)+ (𝑟 − 1)(𝑝 − 𝑞)]

= 0 = R.H.S.

29. First number after 100 which is divisible by 7 is 105. The last number divisible by 7
before 1000 is 994.
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Let 𝑛 be the numbers divisible by 7 between 100 and 1000. Then 994 = 105+ (𝑛− 1)7

⇒ 𝑛 = 128. Then no. of numbers not divisible by 7 is 1000 − 100 − 128 = 772.

30. Let 𝑥 be the first term and 𝑦 be the common difference of the A.P. Then,

𝑎 = 𝑥 + (𝑝 − 1)𝑦, 𝑏 = 𝑥 + (𝑞 − 1)𝑦, 𝑐 = 𝑥 + (𝑟 − 1)𝑦

We have to prove that (𝑎 − 𝑏)𝑟 + (𝑏 − 𝑐)𝑝 + (𝑐 − 𝑎)𝑞 = 0

Substituting the values of 𝑎, 𝑏 and 𝑐 in the above equation

L.H.S. = (𝑝 − 𝑞)𝑦𝑟 + (𝑞 − 𝑟)𝑦𝑝 + (𝑟 − 𝑝)𝑦𝑞 = 0 = R.H.S.

31. Let the numbers in A.P. be 𝑎 − 𝑑, 𝑎 and 𝑎 + 𝑑. Given their sum is 27 and sum of
squares is 293.

∴ 𝑎 − 𝑑 + 𝑎 + 𝑎 + 𝑑 = 27 ⇒ 𝑎 = 9

∴ (𝑎 − 𝑑)2 + 𝑎2 + (𝑎 + 𝑑)2 = 293 ⇒ 3𝑎2 + 2𝑑2 = 293 ⇒ 3 × 81 + 2𝑑2 = 293

⇒ 2𝑑2 = 50 ⇒ 𝑑 = ±5

So the numbers are 4, 9, 14 or 14, 9, 4.

32. Let the numbers in A.P. be 𝑎 − 3𝑑, 𝑎 − 𝑑, 𝑎 + 𝑑, 𝑎 + 3𝑑. Given their sum is 24 and
product is 945.

∴ 𝑎 − 3𝑑 + 𝑎 − 𝑑 + 𝑎 + 𝑑 + 𝑎 + 3𝑑 = 24 ⇒ 4𝑎 = 24 ⇒ 𝑎 = 6

Also, (𝑎 − 3𝑑)(𝑎 − 𝑑)(𝑎 + 𝑑)(𝑎 + 3𝑑) = 945 ⇒ (𝑎2 − 9𝑑2)(𝑎2 − 𝑑2) = 945

⇒ 𝑎4 − 10𝑎2𝑑2 + 9𝑑4 = 945 ⇒ 9𝑑4 − 360𝑑2 + 1296 − 945 = 0

⇒ 9𝑑4 − 360𝑑2 + 351 = 0 ⇒ 𝑑4 − 40𝑑2 + 39 = 0

⇒ (𝑑2 − 1)(𝑑2 − 39) = 0. Since the numbers are integers ⇒ 𝑑2 ≠ 39.

⇒ 𝑑 = ±1. So the numbers are 3, 5, 7, 9 or 9, 7, 5, 3.

33. Let 𝑎 be the first term and 𝑑 be the common ratio of the A.P. Given,

𝑡𝑝 = 𝑎 + (𝑝 − 1)𝑑 = 𝑞 and 𝑡𝑞 = 𝑎 + (𝑞 − 1)𝑑 = 𝑝

⇒ (𝑝 − 𝑞)𝑑 = 𝑞 − 𝑝 ⇒ 𝑑 = −1 ⇒ 𝑎 = 𝑝 + 𝑞 − 1

⇒ 𝑡𝑝+𝑞 = 𝑎 + (𝑝 + 𝑞 − 1)𝑑 = 𝑝 + 𝑞 − 1 − (𝑝 + 𝑞 − 1) = 0.

34. Let 𝑎 be the first term and 𝑑 be the common ratio of the A.P.

⇒ 𝑡𝑚 = 𝑎 + (𝑚− 1)𝑑, 𝑡2𝑛+𝑚 = 𝑎 + (2𝑛 +𝑚− 1)𝑑

⇒ 𝑡𝑚 + 𝑡2𝑛+𝑚 = 2𝑎 + (2𝑚 + 2𝑛 − 2)𝑑 = 2[𝑎 + (𝑚+ 𝑛− 1)𝑑] = 2𝑡𝑚+𝑛
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35. Let the three numbers be 𝑎 − 𝑑, 𝑎, 𝑎 + 𝑑. Given that their sum is 15 and sum of their
square is 83.

⇒ 𝑎− 𝑑 + 𝑎 + 𝑎 + 𝑑 = 15 ⇒ 3𝑎 = 15 ⇒ 𝑎 = 5

⇒ (𝑎 − 𝑑)2 + 𝑎2 + (𝑎 + 𝑑)2 = 83 ⇒ 3𝑎2 + 2𝑑2 = 83 ⇒ 3 × 52 + 2𝑑2 = 832

⇒ 𝑑 = ±2. So the numbers are 3, 5, 7 or 7, 5, 3.

36. This problem is similar to previous problem and has been left as an exercise.

37. Let the three numbers be 𝑎 − 𝑑, 𝑎, 𝑎 + 𝑑. Given their sum as 12 and sum of cubes as
408.

∴ 𝑎 − 𝑑 + 𝑎 + 𝑎 + 𝑑 = 12 ⇒ 3𝑎 = 12 ⇒ 𝑎 = 4

∴ (𝑎 − 𝑑)3 + 𝑎3 + (𝑎 + 𝑑)3 = 3𝑎3 + 6𝑎𝑑2 = 408 ⇒ 24𝑑2 = 216 ⇒ 𝑑 = ±3

Hence, the numbers are 1, 4, 7 or 7, 4, 1.

38. Let the numbers in A.P. be 𝑎 − 3𝑑, 𝑎 − 𝑑, 𝑎 + 𝑑, 𝑎 + 3𝑑. Given their sum is 24 and
product of first and fourth to product of second and third is 2 : 3.

∴ 𝑎 − 3𝑑 + 𝑎 − 𝑑 + 𝑎 + 𝑑 + 𝑎 + 3𝑑 = 20 ⇒ 4𝑎 = 20 ⇒ 𝑎 = 5

∴ (𝑎−3𝑑)(𝑎+3𝑑)⁄(𝑎−𝑑)(𝑎+𝑑) = 2
⁄

3

⇒ 3𝑎2 − 27𝑑2 = 2𝑎2 − 2𝑑2 ⇒ 𝑎2 = 25𝑑2 ⇒ 𝑑 = ±1.

Therefore numbers are 2, 4, 6, 8 or 8, 6, 4, 2.

39. Let the three numbers be 𝑎 − 𝑑, 𝑎, 𝑎 + 𝑑. Given their sum is −3 and product is 8.

∴ 𝑎 − 𝑑 + 𝑎 + 𝑎 + 𝑑 = −3 ⇒ 3𝑎 = −3 ⇒ 𝑎 = −1

∴ (𝑎 − 𝑑) .𝑎.(𝑎 + 𝑑) = 8 ⇒ 𝑎2 − 𝑑2 = −8 ⇒ 𝑑 = ±3

Hence the numbers are −4, −1, 2 or 2, −1, −4.

40. This problem is similar to problem 38 and has been left as an exercise.

41. Given 𝑏+𝑐−𝑎⁄𝑎 , 𝑐+𝑎−𝑏⁄𝑏 , 𝑎+𝑏−𝑐⁄𝑐 are in A.P.

Adding 2 to each term will give us another A.P. [refer properties of A.P.]

∴ 𝑎+𝑏+𝑐⁄𝑎 , 𝑎+𝑏+𝑐⁄𝑏 , 𝑎+𝑏+𝑐⁄𝑐 will be in A.P.

Dividing each term with 𝑎 + 𝑏 + 𝑐 will yield another A.P.

∴ 1⁄𝑎,
1
⁄

𝑏 ,
1
⁄

𝑐 will be in A.P.
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42. Given 𝑎, 𝑏, 𝑐 are in A.P.

Dividing each term by 𝑎𝑏𝑐 will yield another A.P.

∴ 1⁄
𝑏𝑐 ,

1
⁄

𝑐𝑎 ,
1
⁄

𝑎𝑏 will be in A.P.

Multiplying each term with 𝑎𝑏𝑐 + 1 will yield another A.P.

∴ 𝑎 + 1⁄
𝑏𝑐 , 𝑏 +

1
⁄

𝑐𝑎 , 𝑐 +
1
⁄

𝑎𝑏 will be in A.P.

43. Given 𝑎, 𝑏, 𝑐 are in A.P. ∴ 𝑏 − 𝑎 = 𝑐 − 𝑏

⇒ 1
⁄

𝑏−𝑎 =
1
⁄

𝑐−𝑏 ⇒
𝑎𝑏+𝑏𝑐+𝑐𝑎
⁄

𝑏−𝑎 = 𝑎𝑏+𝑏𝑐+𝑐𝑎
⁄

𝑐−𝑏

⇒ 𝑎𝑏(𝑏 − 𝑎)+ 𝑐(𝑏2 − 𝑎2) = 𝑏𝑐(𝑐 − 𝑎)+ 𝑎(𝑐2 − 𝑏2)

⇒ 𝑏2𝑎+𝑏2𝑐 −𝑎2𝑏−𝑎2𝑐 = 𝑐2𝑎+ 𝑐2𝑏− 𝑏2𝑐 − 𝑏2𝑎 ⇒ 𝑏2(𝑎+𝑐)−𝑎2(𝑏+ 𝑐) = 𝑐2(𝑎+ 𝑏)−
𝑏2(𝑐 + 𝑎)

∴ 𝑎2(𝑏 + 𝑐), 𝑏2(𝑐 + 𝑎), 𝑐2(𝑎 + 𝑏) are in A.P.

44. We will prove this in reverse. We assume that 1
⁄

√


𝑏+√


𝑐 ,
1
⁄

√


𝑐+√


𝑎,
1
⁄

√


𝑎+√


𝑏 are in A.P.

⇒ 1
⁄

√


𝑐+√


𝑎 −
1
⁄

√


𝑏+√


𝑐 =
1
⁄

√


𝑎+√


𝑏 +
1
⁄

√


𝑐+√


𝑎

⇒ 2
⁄

√


𝑐+√


𝑎 =
1
⁄

√


𝑏+√


𝑐 +
1
⁄

√


𝑎+√


𝑏

⇒ 2
⁄

√


𝑐+√


𝑎 =
√


𝑎+√


𝑏+√


𝑏+√


𝑐
⁄

(√


𝑏+√


𝑐)(√


𝑎+√


𝑏)

⇒ 2(√

𝑏 +√

𝑐)(√


𝑎 +√

𝑏) = (√

𝑐 +√


𝑎)(√


𝑎 + 2√

𝑏 +√

𝑐)

⇒ 2(√


𝑎𝑏 + 𝑏 +√

𝑎𝑐 +√


𝑏𝑐) = √

𝑎𝑐 + 2√


𝑏𝑐 + 𝑐 + 𝑎 + 2√


𝑎𝑏 +√

𝑎𝑐

⇒ 2𝑏 = 𝑎 + 𝑐, which implies that 𝑎, 𝑏, 𝑐 are in A.P. So the reverse is also true.

45. Given 𝑎, 𝑏, 𝑐 are in A.P.

Dividing each term by 𝑎𝑏𝑐 will yield another A.P.

⇒ 1⁄
𝑏𝑐 ,

1
⁄

𝑐𝑎 ,
1
⁄

𝑎𝑏 will be in A.P.

Multiplying each term with 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 will yield another A.P.

⇒ 𝑎𝑏+𝑐𝑎
⁄

𝑏𝑐 + 1, 𝑎𝑏+𝑏𝑐⁄𝑐𝑎 + 1, 𝑏𝑐+𝑐𝑎⁄𝑎𝑏 + 1 will be in A.P.

Subtracting 1 from each term yields desired terms in A.P.

46. We have to prove that 1
⁄

𝑏−𝑐 ,
1
⁄

𝑐−𝑎,
1
⁄

𝑎−𝑏 are in A.P.
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i.e. 1
⁄

𝑐−𝑎 −
1
⁄

𝑏−𝑐 =
1
⁄

𝑎−𝑏 −
1
⁄

𝑐−𝑎

⇒ 𝑏−2𝑐+𝑎⁄
(𝑐−𝑎)(𝑏−𝑐) =

𝑐−2𝑎+𝑏⁄
(𝑎−𝑏)(𝑐−𝑎)

⇒ (𝑎 + 𝑏 − 2𝑐)(𝑎 − 𝑏) = (𝑏 + 𝑐 − 2𝑎)(𝑏 − 𝑐)

Now, given that (𝑏 − 𝑐)2, (𝑐 − 𝑎)2, (𝑎 − 𝑏)2 are in A.P.

⇒ (𝑐 − 𝑎)2 − (𝑏 − 𝑐)2 = (𝑎 − 𝑏)2 − (𝑐 − 𝑎)2

⇒ (𝑏 − 𝑎)(2𝑐 − 𝑎 − 𝑏) = (𝑐 − 𝑏)(2𝑎 − 𝑏 − 𝑐)

Thus, we have proven the desierd result.

47. Given 𝑎, 𝑏, 𝑐 are in A.P.

Subtracting 𝑎, 𝑏, 𝑐 from each term will yield another A.P.

⇒ −(𝑏 + 𝑐), −(𝑐 + 𝑎), −(𝑎 + 𝑏) will be in A.P.

Multiplying each term with −1 will yield the desired A.P.

48. We have to prove that 1
⁄

𝑏+𝑐 ,
1
⁄

𝑐+𝑎,
1
⁄

𝑎+𝑏 are in A.P.

i.e. 1
⁄

𝑐+𝑎 −
1
⁄

𝑏+𝑐 =
1
⁄

𝑎+𝑏 −
1
⁄

𝑐+𝑎

⇒ 𝑏−𝑎
⁄

(𝑏+𝑐) =
𝑐−𝑏
⁄

(𝑎+𝑏)

⇒ 𝑏2 − 𝑎2 = 𝑐2 − 𝑏2 ⇒ 𝑎2, 𝑏2, 𝑐2 are in A.P.

Thus, we have proven the desired result in reverse.

49. Given that 𝑎, 𝑏, 𝑐 are in A.P. ⇒ 𝑏 − 𝑎 = 𝑐 − 𝑏 = 𝑘 (say)

⇒ 𝑐 − 𝑎 = 2𝑘 ⇒ 2(𝑎 − 𝑏) = 𝑎 − 𝑐 = 2(𝑏 − 𝑐) = −2𝑘.

50. Given that 𝑎, 𝑏, 𝑐 are in A.P. Let 𝑏 = 𝑎 + 𝑑 ⇒ 𝑐 = 𝑎 + 2𝑑

Now, (𝑎 − 𝑐)2 = 4𝑑2, 4(𝑏2 − 𝑎𝑐) = 4[(𝑎 + 𝑑)2 − 𝑎(𝑎 + 2𝑑)] = 4𝑑2

⇒ (𝑎 − 𝑐)2 = 4(𝑏2 − 𝑎𝑐)

51. Let 𝑛 = 2𝑚+ 1 where 𝑚 ∈ 𝑁. ⇒ 𝑆1 = 𝑛
⁄

2 [𝑡1 + 𝑡𝑛 ] where 𝑑 is the commond difference.

For 𝑆2 the no. of terms will be 𝑚. ⇒ 𝑆2 = 𝑚
⁄

2 [𝑡2 + 𝑡𝑛−1 ]

We know that 𝑡1 + 𝑡𝑛 = 𝑡2 + 𝑡𝑛−1

∴ 𝑆1
⁄

𝑆2
= 𝑛
⁄

𝑚 = 𝑛
⁄

𝑛−1
⁄

2
= 2𝑛
⁄

𝑛−1.
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52. The degree is the highest power of 𝑥 which will be 1 + 6 + 11 + ⋯+ 101.

Clearly, the above sequence is an A.P. having first term 1, common difference 5 and
last term as 101.

𝑛 = 𝑡𝑛−𝑡1
⁄

𝑑 + 1 = 101−1
⁄

5 + 1 = 21.

⇒ 𝑆 = 21
⁄

2 [𝑡1 + 𝑡𝑛 ] = 21
⁄

2 [1 + 101] = 21 × 51 = 1071

Therefore, the degree of the polynomial will be 1071.

53. Consider an A.P. with first term as 𝑎, commond difference as 𝑑 and no. of terms as 𝑛.
Then sum is given by

𝑆 = 𝑛
⁄

2 [2𝑎 + (𝑛 − 1)]𝑑 = 𝑛2𝑑2
⁄

2 + (2𝑎−𝑑)𝑛
⁄

2

which is of the form 𝐴𝑛2 + 𝐵𝑛 where 𝐴 = 𝑑2
⁄

2 and 𝐵 = 2𝑎−𝑑⁄
2 .

54. Let the common difference of the A.P. be 𝑑.

L.H.S. = 𝑎21 − 𝑎22 + 𝑎23 − 𝑎)42 + ⋯ + 𝑎22𝑛−1 − 𝑎22𝑛

= (𝑎1 − 𝑎2)(𝑎1 + 𝑎2)+ (𝑎3 − 𝑎4)(𝑎3 + 𝑎4)+⋯+ (𝑎2𝑛−1 − 𝑎2𝑛)(𝑎2𝑛−1 + 𝑎2𝑛)

= −𝑑(𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + ⋯+ 𝑎2𝑛−1 + 𝑎2𝑛)

= −2𝑛𝑑
⁄

2 [𝑎1 + 𝑎2𝑛 ]

= 𝑛
⁄

2𝑛−1 (𝑎
2
1 − 𝑎22𝑛)[∵ 𝑑 =

𝑎2𝑛−𝑎1
⁄

2𝑛−1 ]

55. We know that sum of equidistant terms from start and end of an A.P. is equal.

∴ 𝑎1 + 𝑎24 = 𝑎5 + 𝑎20 = 𝑎10 + 𝑎15 = 𝑘 (say)

∴ 𝑎1 + 𝑎5 + 𝑎10 + 𝑎15 + 𝑎24 = 3𝑘 = 225 ⇒ 𝑘 = 75

Sum of first 24 terms 𝑆 = 𝑎1 + 𝑎2 + ⋯+ 𝑎24 =
24
⁄

2 [𝑎1 + 𝑎24 ] = 12 × 75 = 600.

56. Let 𝑎 be the first term and 𝑑 be the common difference. Also let 𝑆1 denote the sum of
first 3𝑛 terms and 𝑆2 denote the sum of next 𝑛 terms.

𝑆1 = 3𝑛⁄
2 [2𝑎 + (3𝑛 − 1)𝑑], 𝑆2 = 𝑛
⁄

2 [2𝑎 + 6𝑛𝑑 + (𝑛 − 1)𝑑] [∵ 𝑡3𝑛+1 = 𝑎 + 3𝑛𝑑]

Given, 𝑆1 = 𝑆2 ⇒ 3𝑛⁄
2 [2𝑎 + (3𝑛 − 1)𝑑] = 𝑛
⁄

2 [2𝑎 + 6𝑛𝑑 + (𝑛 − 1)𝑑]

⇒ 6𝑎 + (9𝑛 − 3)𝑑 = 2𝑎 + (7𝑛 − 1)𝑑 ⇒ 2𝑎 + (𝑛 − 2)𝑑 = 0

Let 𝑆3 be sum of first 2𝑛 terms and 𝑆4 be sum of next 2𝑛 terms, then
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𝑆3
⁄

𝑆4
=

2𝑛
⁄

2 [2𝑎+(2𝑛−1)𝑑]
⁄

2𝑛
⁄

2 [2𝑎+4𝑛𝑑+(2𝑛−1)]𝑑

⇒= 𝑛𝑑
⁄

5𝑛𝑑 =
1
⁄

5 [∵ 2𝑎 + (𝑛 − 1)𝑑 = 0𝑥𝑠]

57. Given 𝑆𝑛 = 5𝑛2 + 3𝑛 ⇒ 𝑡𝑛 = 𝑆𝑛 − 𝑆𝑛−1 = 5𝑛2 + 3𝑛 − 5(𝑛 − 1)2 − 3(𝑛 − 1)

= 10𝑛 − 5 + 3 = 10𝑛 − 2 ⇒ 𝑑 = 𝑡𝑛 − 𝑡𝑛−1 = 10𝑛 − 2 − 10(𝑛 − 1)+ 2 = 10,

Since common difference is a constant the series is in A.P.

58. Common difference of the series 𝑑 = (𝑎2+𝑏2)− (𝑎+𝑏)2 = (𝑎−𝑏)2− (𝑎2+𝑏2) = −2𝑎𝑏

𝑆 = 𝑛
⁄

2 [2(𝑎 + 𝑏)2 − (𝑛 − 1)2𝑎𝑏] = 𝑛
⁄

2 [2𝑎
2 + 2𝑏2 − 2(𝑛 + 1)𝑎𝑏]

= 𝑛[𝑎2 + 𝑏62 − (𝑛 + 1)𝑎𝑏].

59. There will be two cases. First 𝑛 being odd and second 𝑛 being even.

Case I: When 𝑛 is odd i.e. 𝑛 = 2𝑚+ 1, where 𝑚 = 0, 1, 2, …

𝑆 = 1 + 5 + 9 + ⋯ up to 𝑚+ 1 terms −3 − 7 − 11 up to 𝑚 terms

= 𝑚+1⁄
2 [2 + 4𝑚]−𝑚
⁄

2 [6 + 4𝑚− 4] = (𝑚+ 1)(1 + 2𝑚)−𝑚(2𝑚 + 1)

= 2𝑚2 + 3𝑚+ 1 − 2𝑚2 −𝑚 = 2𝑚+ 1 = 𝑛.

Case II: When 𝑛 is even i.e. 𝑛 = 2𝑚, where 𝑚 = 1, 2, 3, …

𝑆 = 1 + 5 + 9 + ⋯ up to 𝑚 terms −3 − 7 − 11 up to 𝑚 terms

= 𝑚
⁄

2 [2 + 4𝑚− 4]−𝑚
⁄

2 [6 + 4𝑚− 4] = −2𝑚 = −𝑛.

60. Let there be 𝑛 sides of the polygon. From geometry, we know that sum of angles of the
polygon = (𝑛 − 2)180∘

From the formula for sum of an A.P. 𝑆 = 𝑛
⁄

2 [2 × 120∘ + (𝑛 − 1)5∘ ] = (𝑛 − 2)180∘

𝑛
⁄

[ 240
∘ + (𝑛 − 1)5∘ ] = (𝑛 − 2)360∘ ⇒ 𝑛[48∘ + (𝑛 − 1)] = (𝑛 − 2)72𝑐𝑖𝑟𝑐

⇒ 𝑛2 − 25𝑛 + 144 = 0 ⇒ 𝑛 = 9, 16

61. To water first tree the gardener will have to travel 10 m. To water second tree he will
have tp travel back 10 m to well and then 15 m to the tree i.e. 25 m. Similarly, for
third tree he will have to travel 15 m to well and 20 m i.e a total of 35 m.

Thus, total distance travelled will be 10 + 25 + 35 + ⋯

Clearly, 25 will be the first term of the A.P. and there will be 24 such terms because
distance travelled for first tree is noty part of the A.P. Note that common difference
would be 10.
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Total distance travelled = 10 + 24
⁄

2 [2 × 25 + (24 − 1)10] = 10 + 3360 = 3370 m.

62. Let 𝑑 be the common difference. Given 𝑆𝑝 = 0 ⇒ 𝑝
⁄

2 [2𝑎 + (𝑝 − 1)𝑑] = 0

⇒ 2𝑎 + (𝑝 − 1)𝑑 = 0 ⇒ 𝑑 = 2𝑎
⁄

1−𝑝

𝑝 + 1th term 𝑡𝑝+1 = 𝑎 + 𝑝𝑑, so the sum of next 𝑞 terms 𝑆 = 𝑞
⁄

2 [2𝑎 + 2𝑝𝑑 + (𝑞 − 1)𝑑]

= 𝑞
⁄

2 [2𝑎 + (2𝑝 + 𝑞 − 1)𝑑] = 𝑞
⁄

2 [2𝑎 + (2𝑝 + 𝑞 − 1) . 2𝑎
⁄

1−𝑝]

= 𝑞
⁄

2 [
2𝑎.(𝑝+𝑞)
⁄

1−𝑝 ] = −𝑎(𝑝+𝑞)
⁄

𝑝−1 𝑞.

63. Sum of first 𝑝 terms, 𝑆𝑝 = 𝑝
⁄

2 [2𝑎+ (𝑝− 1)𝑑]; sum of first 𝑞 terms 𝑆𝑞 = 𝑞
⁄

2 [2𝑎+ (𝑞 − 1)𝑑]

2𝑎𝑝 + (𝑝2 − 𝑝)𝑑 = 2𝑎𝑞 + (𝑞2 − 𝑞)𝑑 ⇒ 2𝑎(𝑝 − 𝑞) = (𝑞2 − 𝑝2 + 𝑝 − 𝑞)𝑑

2𝑎 = (1 − 𝑝 − 𝑞)𝑑

Sum of (𝑝 + 𝑞) terms, 𝑆𝑝+𝑞 = 𝑝+𝑞
⁄

2 [2𝑎 + (𝑝 + 𝑞 − 1)𝑑] = 𝑝+𝑞
⁄

2 [(1 − 𝑝 − 𝑞)𝑑 + (𝑝 + 𝑞 −
1)𝑑] = 0.

64. Sum of latter half of 2𝑛 terms means 𝑛 + 1th term to 2𝑛th term. 𝑡𝑛+1 = 𝑎 + 𝑛𝑑
and 𝑡2𝑛 = 𝑎 + (2𝑛 − 1)𝑑 where 𝑎 and 𝑑 are the first term and common difference
respectively.

Sum of latter half of terms, 𝑆 = 𝑛
⁄

2 [𝑡𝑛+1 + 𝑡2𝑛 ] = 𝑛
⁄

2 [2𝑎 + (3𝑛 − 1)𝑑]

Sum of first 3𝑛 terms, 𝑆3𝑛 = 3𝑛⁄
2 [2𝑎 + (3𝑛 − 1)𝑑]

Clearly, 𝑆/𝑆3𝑛 = 1 : 3.

65. Let 𝑆𝑟 be the 𝑟th A.P. whose first term is 𝑟 and common difference is also 𝑟.

𝑆𝑟 = 𝑛
⁄

2 [2𝑟 + (𝑛 − 1)𝑟] = 𝑛
⁄

2 [(𝑛 + 1)𝑟] = 𝑛(𝑛+1)𝑟
⁄

2

𝑆1 + 𝑆2 + 𝑆3 + ⋯+ 𝑆𝑝 =
𝑝
∑
𝑟=1

𝑆𝑟

= 𝑛(𝑛+1)
⁄

2

𝑝
∑
𝑟=1

𝑟 = 𝑛𝑝
⁄

4 (𝑛 + 1) (𝑝 + 1) [∵
𝑛
∑
𝑖=1

𝑖 = 𝑛(𝑛+1)
⁄

2 ].

66. Let 𝑥 be the first term and 𝑦 be the common difference of the A.P.

Then, according to the question 𝑎 = 𝑝
⁄

2 [2𝑥 + (𝑝 − 1)𝑦], 𝑏 = 𝑞
⁄

2 [2𝑥 + (𝑞 − 1)𝑦], 𝑐 =
𝑟
⁄

2 [2𝑥 + (𝑟 − 1)𝑦]
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We have to prove that 𝑎⁄𝑝 (𝑞 − 𝑟)+ 𝑏
⁄

𝑞 (𝑟 − 𝑝)+ 𝑐
⁄

𝑟 (𝑝 − 𝑞) = 0

L.H.S. = 𝑥(𝑞 − 𝑟+𝑟− 𝑝+ 𝑝−𝑞)+𝑦
⁄

2 [(𝑝−1)(𝑞 − 𝑟)+ (𝑞 −1)(𝑟− 𝑝)+ (𝑟−1)(𝑝− 𝑞)]

= 0.

67. Let 𝑎 be the first term and 𝑑 be the common difference of the A.P.

Given, 𝑆𝑚 = 1
⁄

2 𝑆𝑚+𝑛 ⇒ 𝑚
⁄

2 [2𝑎 + (𝑚− 1)𝑑] = 1
⁄

2 .
𝑚+𝑛
⁄

2 [2𝑎 + (𝑚+ 𝑛− 1)𝑑]

Let 2𝑎 + (𝑚− 1)𝑑 = 𝑥, then the above equation can be written as

𝑚𝑥 = 𝑚+𝑛
⁄

2 [𝑥 + 𝑛𝑑]⇒ 2𝑚𝑥 = (𝑚+ 𝑛)[𝑥 + 𝑛𝑑]⇒𝑚𝑥 = 𝑛(𝑥 + 𝑛𝑑)+𝑚𝑛𝑑

⇒ (𝑚− 𝑛)𝑥 = (𝑚+ 𝑛)𝑛𝑑

Similarly, (𝑚− 𝑝)𝑥 = (𝑚+ 𝑝)𝑝𝑑

Dividing, we get

(𝑚− 𝑛)(𝑚+ 𝑝)𝑝 = (𝑚+ 𝑛)(𝑚− 𝑝)𝑛

Dividing both sides with 𝑚𝑛𝑝 we arrive at the desired result.

68. Let 𝑎 be the first term and 𝑑 be the common difference of the A.P. For odd terms, the
no. of terms will be 𝑛 + 1, first term will be 𝑎 and common difference will be 2𝑑.

∴𝑆𝑜𝑑𝑑 =
𝑛+1
⁄

2 [2𝑎 + 2𝑛𝑑]

For even terms, the no. of terms will be 𝑛, first term will be 𝑎 + 𝑑 and common
difference will be 2𝑑.

∴𝑆𝑒𝑣𝑒𝑛 = 𝑛
⁄

2 [2𝑎 + 2𝑑 + 2(𝑛 − 1)𝑑] = 𝑛
⁄

2 [2𝑎 + 2𝑛𝑑]

∴ 𝑆𝑜𝑑𝑑
⁄

𝑆𝑒𝑣𝑒𝑛
= 𝑛+1
⁄

𝑛 .

69. Let 𝑎1 and 𝑎2 be the first terms and 𝑑1 and 𝑑2 be the common differences of the two
series in A.P.

Given, 
𝑛⁄
2 [2𝑎1+(𝑛−1)𝑑1 ]
⁄

𝑛⁄
2 [2𝑎2+(𝑛−1)𝑑2 ]

= 3𝑛−12
⁄

5𝑛+21

⇒ 2𝑎1+(𝑛−1)𝑑1
⁄

2𝑎2+(𝑛−1)𝑑2 =
3𝑛−13
⁄

5𝑛+21

We need to find ratio of the 24th terms i.e. 𝑎1+23𝑑1⁄𝑎2+23𝑑2 =
2𝑎1+46𝑑1
⁄

2𝑎2+46𝑑2

Putting 𝑛 = 47 in the ratio of sums, we have

2𝑎1+46𝑑1
⁄

2𝑎2+46𝑑2 =
3×47−13
⁄

5×47+21 =
1
⁄

2
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70. Let 𝑎 be the first term and 𝑑 be the common difference of the A.P.

Given, 𝑡𝑚 = 𝑎 + (𝑚− 1)𝑑 = 1
⁄

𝑛 , 𝑡𝑛 = 𝑎 + (𝑛 − 1)𝑑 = 1
⁄

𝑚

Subtracting, we get (𝑚− 𝑛)𝑑 = 𝑚−𝑛
⁄

𝑚𝑛 ⇒ 𝑑 = 1
⁄

𝑚𝑛 ⇒ 𝑎 = 1
⁄

𝑚𝑛

∴𝑆𝑚𝑛 = 𝑚𝑛
⁄

2 [ 2
⁄

𝑚𝑛 +
𝑚𝑛−1
⁄

𝑚𝑛 ] = 𝑚𝑛+1
⁄

2 .

71. Let 𝑎 be the first term and 𝑑 be the common difference of the A.P.

Given, 𝑆𝑚 = 𝑛 = 𝑚
⁄

2 [2𝑎 + (𝑚− 1)𝑑]⇒ 2𝑎 + (𝑚− 1)𝑑 = 2𝑛⁄
𝑚

and 𝑆𝑛 = 𝑚 = 𝑛
⁄

2 [2𝑎 + (𝑛 − 1)𝑑]⇒ 2𝑎 + (𝑛 − 1)𝑑 = 2𝑚
⁄

𝑛

⇒ 𝑑 = −2(𝑚+𝑛)
⁄

𝑚𝑛 ⇒ 𝑎 = 𝑚2+𝑛2+𝑚𝑛−𝑚−𝑛
⁄

𝑚𝑛

⇒ 𝑆𝑚+𝑛 = 𝑚+𝑛
⁄

2 [2𝑎 + (𝑚+ 𝑛− 1)𝑑] = −(𝑚+ 𝑛).

72. Let 𝑎 be the first term and 𝑑 be the common difference of the A.P.

∴𝑆 = 2𝑛+1
⁄

2 [2𝑎 + 2𝑛𝑑]

For 𝑆1 first term would be 𝑎, common difference would be 2𝑑 and no. of terms would
be 𝑛 + 1.

∴𝑆1 = 𝑛+1
⁄

2 [2𝑎 + 2𝑛𝑑]

∴ 𝑆
⁄

𝑆1
= 2𝑛+1
⁄

𝑛+1 .

73. Let 𝑑 be the common difference, then 𝑏 = 𝑎 + 2𝑑 ⇒ 𝑑 = 𝑏−𝑎
⁄

2

𝑐 = 𝑎 + (𝑛 − 1)𝑑 ⇒ 𝑛 − 1 = 𝑐−𝑎
⁄

𝑑 = 2(𝑐−𝑎)⁄
𝑏−𝑎

⇒ 𝑛 = 2(𝑐−𝑎)⁄
𝑏−𝑎 + 1

∴𝑆 = 𝑛
⁄

2 [2𝑎 + (𝑛 − 1)𝑑] = 1
⁄

2 [
2(𝑐−𝑎)⁄
𝑏−𝑎 + 1][2𝑎 + 2(𝑐−𝑎)⁄

𝑏−𝑎 . 𝑏−𝑎⁄2 ]

= 𝑐+𝑎
⁄

2 + 𝑐2−𝑎2
⁄

𝑏−𝑎 .

74. Let 𝑎1, 𝑎2 be the first terms and 𝑑1, 𝑑2 be the common differences of the two series in
A.P.

According to the question 2𝑎1+(𝑛−1)𝑎1⁄

2𝑎2+(𝑛−1)𝑑2 =
3𝑛+8
⁄

7𝑛+15.

We have to find ratio of 12th terms i.e. 𝑎1+11𝑑1⁄𝑎2+11𝑑2 =
2𝑎1+22𝑑1
⁄

2𝑎2+22𝑑2
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Putting 𝑛 = 23 in previous equation, we get

2𝑎1+22𝑑1
⁄

2𝑎2+22𝑑2 =
77⁄
176 =

7
⁄

16.

75. Let 𝑎 be the first term and 𝑑 be the common difference of the A.P.

Given, 𝑆𝑚
⁄

𝑆𝑛
=

𝑚
⁄

2 [2𝑎+(𝑚−1)𝑑]
⁄

𝑛⁄
2 [2𝑎+(𝑛−1)𝑑]

= 𝑚2
⁄

𝑛2

⇒ 2𝑎+(𝑚−1)𝑑
⁄

2𝑎+(𝑛−1)𝑑 = 𝑚
⁄

𝑛

⇒ 2𝑎(𝑛 −𝑚)+ [(𝑚− 1)𝑛 − (𝑛 − 1)𝑚]𝑑 = 0 ⇒ 𝑎 = 𝑑⁄
2

We have to find 𝑡𝑚⁄𝑡𝑛 = 𝑎+(𝑚−1)𝑑
⁄

𝑎+(𝑛−1)𝑑 = 2𝑚−1
⁄

2𝑛−1

76. Let 𝑛 be the no. of terms. Clearly, common ratio 𝑟 = 20
⁄

5 = 80
⁄

20 = 4

Then 𝑡𝑛 = 5120 = 5.𝑟𝑛−1 ⇒ 4𝑛−1 = 1024 = 45 ⇒ 𝑛 = 6.

77. Let 𝑛 be the no. of terms. Clearly, common ratio 𝑟 = 0.06
⁄

0.03 =
0.12
⁄

0.06 = 2

Then 𝑡𝑛 = 3.84 = 0.03𝑟𝑛−1 ⇒ 2𝑛−1 = 128 ⇒ 𝑛 = 8.

78. From the question we deduce that it is a G.P. with 𝑎 = 1, 𝑟 = 2, 𝑛 = 20. We have to
find 𝑡20.

𝑡20 = 1.220−1 = 524288.

79. This is a G.P. with 𝑎 = 20000, 𝑟 = 1.02, 𝑛 = 11. We have to find 𝑡11.

𝑡11 = 20000 × (1.02)11−1 = 24380.

80. Given, 𝑆𝑛 = 2𝑛 − 1 ⇒ 𝑡𝑛 = 𝑆𝑛 − 𝑆𝑛−1 = 2𝑛 − 1 − (2𝑛−1 − 1) = 2𝑛−1

𝑟 = 𝑡𝑛
⁄

𝑡𝑛−1
= 2𝑛−1
⁄

2𝑛−2 = 2, which is a constant and hence the sequence is in G.P.

81. Let the first term of the G.P. be 𝑎 and common ratio is 𝑟.

Then 𝑡2 = 𝑎𝑟 = 24 and 𝑡5 = 𝑎𝑟4 = 81, Dividing, we have 𝑟3 = 81
⁄

24 =
27
⁄

8

⇒ 𝑟 = 3
⁄

2 ⇒ 𝑎 = 16.

Hence the G.P. is 16, 24, 36, 54, 81, ….

82. Let the first term of the G.P. be 𝑎 and common ratio is 𝑟.

Given 𝑡7 = 8𝑡4 ⇒ 𝑎𝑟6 = 8𝑎𝑟3 ⇒ 𝑟 = 2. Also given, 𝑡5 = 48 ⇒ 𝑎𝑟4 = 48

⇒ 𝑎 = 3. Hence, the G.P. is 3, 6, 12, 24, ….
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83. Let the first term of the G.P. be 𝑎 and common ratio is 𝑟.

Given, 𝑡5 = 𝑎𝑟4 = 48 and 𝑡8 = 𝑎𝑟7 = 384 ⇒ 𝑟3 = 8 ⇒ 𝑟 = 2

⇒ 𝑎 = 3. Hence, the G.P. is 3, 6, 12, 24, ….

84. Let the first term of the G.P. be 𝑎 and common ratio is 𝑟.

Given 𝑡6 = 𝑎𝑟5 = 1
⁄

16 and 𝑡10 = 𝑎𝑟9 = 1
⁄

256 ⇒ 𝑟 = ±1
⁄

2

⇒ 𝑎 = ±2. Hence the G.P. is 2, 1, 1⁄2 , … or −2, 1, − 1
⁄

2 , ….

85. Let the first term of the G.P. be 𝑥 and common ratio is 𝑦. Then

𝑎 = 𝑥𝑦𝑝−1, 𝑏 = 𝑥𝑦𝑞−1, 𝑐 = 𝑥𝑦𝑟−1

Taking log of both sides for these three terms

log 𝑎 = log 𝑥 + (𝑝 − 1) log 𝑦, log 𝑏 = log 𝑥 + (𝑞 − 1) log 𝑦, log 𝑐 = log 𝑥 + (𝑟 − 1) log 𝑦

Clearly, (𝑞 − 𝑟) log 𝑎 + (𝑟 − 𝑝) log 𝑏 + (𝑝 − 𝑞) log 𝑟 = 0.

86. Let the first term of the G.P. be 𝑥 and common ratio is 𝑟.

Given, 𝑡𝑝+𝑞 = 𝑎 = 𝑥𝑟𝑝+𝑞−1 and 𝑡𝑝−𝑞 = 𝑏 = 𝑥𝑟𝑝−𝑞−1

Multiplying the two terms, we have

𝑥2𝑟2𝑝−2 = (𝑥𝑟𝑝−1)2 = 𝑡2𝑝 = 𝑎𝑏 ⇒ 𝑡𝑝 = √


𝑎𝑏.

87. Let 𝑎 be the first term and 𝑏 be the common ratio. Then,

𝑥 = 𝑎𝑏𝑝−1, 𝑦 = 𝑎𝑏𝑞−1, 𝑧 = 𝑎𝑏𝑟−1

We have to prove that 𝑥𝑞−𝑟.𝑦𝑟−𝑝.𝑧𝑝−𝑞 = 1

L.H.S. = (𝑎𝑏𝑝−1)𝑞−𝑟 .(𝑎𝑏𝑞−1)𝑟−𝑝 .(𝑎𝑏𝑟−1)𝑝−𝑞

= 𝑎(𝑞−𝑟+𝑟−𝑝+𝑝−𝑞)𝑏[(𝑝−1)(𝑞−𝑟)+(𝑞−1)(𝑟−𝑝)+(𝑟−1)(𝑝−𝑞)]

= 𝑎0𝑏0 = 1 = R.H.S.

88. Let 𝑟 be the common ratio and first term is given as 1.

𝑡3 + 𝑡5 = 90 ⇒ 𝑟4 + 𝑟2 = 90 ⇒ 𝑟2 = 9 ⇒ 𝑟 = 𝑝𝑚3.

𝑟2 cannot be −10 as that would mean that it is an imaginary number.

89. Let 𝑎 be the first term and 𝑟 be the common ratio of the G.P.

Gibem 𝑡5 = 𝑎𝑟4 = 2 and we have to find the product of the first nine terms. Let the
required product be 𝑆.

𝑆 = 𝑎.𝑎𝑟.𝑎𝑟2.… .𝑎𝑟8 = 𝑎9𝑟1+2+⋯+8 = 𝑎9𝑟
8.9
⁄

2 = 𝑎9𝑟36 = (𝑎𝑟4)9 = 29 = 512.
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90. Let 𝑎 be the first term, 𝑟 be the common ratio and 𝑛 be the number of terms.

Given, 𝑡4 = 𝑎𝑟3 = 10, 𝑡7 = 𝑎𝑟6 = 80, 𝑡𝑛 = 𝑎𝑟𝑛−1 = 2560

∴ 𝑡7⁄𝑡4 = 𝑟3 = 8 ⇒ 𝑟 = 2 ⇒ 𝑎 = 10
⁄

8

⇒ 10
⁄

8 2
𝑛−1 = 2560 ⇒ 2𝑛−1 = 2048 ⇒ 𝑛 = 12.

91. Let the three numbers in G.P. be 𝑎, 𝑎𝑟, 𝑎𝑟2. According to question, on doubling 𝑎𝑟 the
numbers form an A.P.

⇒ 2𝑎𝑟 − 𝑎 = 𝑎𝑟2 − 2𝑎𝑟 ⇒ 𝑟2 − 4𝑟 + 1 = 0 ⇒ 𝑟 = 4±√


12
⁄

2 = 2 ±√


3.

92. Given, 𝑝, 𝑞, 𝑟 are in A.P. i.e. 𝑞 − 𝑝 = 𝑟 − 𝑞.

Let 𝑥 be the first term and 𝑦 be the common ratio of the G.P. We have to prove that
𝑡𝑝, 𝑡𝑞, 𝑡𝑟 are in G.P.

⇒ 𝑡𝑞
⁄

𝑡𝑝 =
𝑡𝑟
⁄

𝑡𝑞 ⇒
𝑥𝑦𝑞−1
⁄

𝑥𝑦𝑝−1 =
𝑥𝑦𝑟−1
⁄

𝑥𝑦𝑞−1

⇒ 𝑦𝑞−𝑝 = 𝑦𝑟−𝑞 which is true from the condition for A.P.

93. Let 𝑟 be the common ratio of the G.P. Then, 𝑏 = 𝑎𝑟, 𝑐 = 𝑎𝑟2, 𝑑 = 𝑎𝑟3

L.H.S. = (𝑎.𝑎𝑟 + 𝑎𝑟.𝑎𝑟2 + 𝑎𝑟2.𝑎𝑟3)2 = 𝑎4𝑟2(1 + 𝑟2 + 𝑟4)2

R.H.S. = (𝑎2+ 𝑎2𝑟2+ 𝑎2𝑟4)(𝑎2𝑟2+ 𝑎2𝑟4+ 𝑎2𝑟6) = 𝑎2(1+ 𝑟2+ 𝑟4) .𝑎2𝑟2(1+ 𝑟2+ 𝑟4)

= 𝑎2𝑟4(1 + 𝑟2 + 𝑟4)2 = L.H.S.

94. Given 𝑎, 𝑏, 𝑐 are in A.P. ⇒ 2𝑏 = 𝑎 + 𝑐

If we increase 𝑎 by 1 then they are in G.P. ⇒ 𝑏2 = (𝑎 + 1)𝑐 ⇒ 𝑏2 = (𝑎 + 1)(2𝑏 − 𝑎)

⇒ 𝑏2 = 2𝑎𝑏 − 𝑎2 + 2𝑏 − 𝑎 ⇒ (𝑎 − 𝑏)2 = 2𝑏 − 𝑎

If we increase 𝑐 by 2 then again they are in G. P ⇒ 𝑏2 = 𝑎(𝑐 + 2) = 𝑎(2𝑏 − 𝑎 + 2)

⇒ 𝑏2 = 2𝑎𝑏 − 𝑎2 + 2𝑎 ⇒ (𝑎 − 𝑏)2 = 2𝑎 ⇒ 2𝑏 − 𝑎 = 2𝑎 ⇒ 2𝑏 = 3𝑎

⇒ (𝑎 − 3𝑎⁄
2 )

2
= 2𝑎 ⇒ 𝑎 = 8 ⇒ 𝑏 = 12 ⇒ 𝑐 = 16.

95. Let the three numbers in G.P. be 𝑎⁄𝑟 , 𝑎, 𝑎𝑟. Then,

𝑎
⁄

𝑟 + 𝑎 + 𝑎𝑟 = 70 and 10𝑎 = 4𝑎⁄
𝑟 + 4𝑎𝑟 ⇒ 10𝑎
⁄

4 = 𝑎
⁄

𝑟 + 𝑎𝑟

⇒ 10𝑎
⁄

4 + 𝑎 = 70 ⇒ 𝑎 = 20

⇒ 20
⁄

𝑟 + 20𝑟 = 50 ⇒ 𝑟 = 2, 1⁄2

So the numbers are 10, 20, 40 or 40, 20, 10.
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96. Let the three numbers in G.P. be 𝑎⁄𝑟 , 𝑎, 𝑎𝑟. Given that product of these numbers is 216.

⇒ 𝑎
⁄

𝑟 .𝑎.𝑎𝑟 = 216 ⇒ 𝑎3 = 216 ⇒ 𝑎 = 6

Also, given that their sum is 19 ⇒ 6
⁄

𝑟 + 6 + 6𝑟 = 19

⇒ 6𝑟2 − 13𝑟 + 6 = 0 ⇒ 𝑟 = 2
⁄

3 ,
3
⁄

2.

So the numbers are 9, 6, 4 or 4, 6, 9.

97. Let the number be 100𝑎 + 10𝑎𝑟 + 𝑎𝑟2.

According to question 𝑎 + 𝑎𝑟2 = 2𝑎𝑟 + 1 and 𝑎 + 𝑎𝑟 = 2
⁄

3 (𝑎𝑟 + 𝑎𝑟2)

⇒ 𝑎(𝑟 − 1)2 = 1 and 3 + 3𝑟 = 2𝑟 + 2𝑟2 ⇒ 𝑟 = −1, 3⁄2

If 𝑟 = −1, 𝑎 = 1
⁄

4, but 𝑎 cannot be a fraction.

If 𝑟 = 3
⁄

2 ⇒ 𝑎 = 4 and the number is 469.

98. Given that three of four numbers are in A.P. and so we choose them as 𝑎 − 𝑑, 𝑎, 𝑎 + 𝑑.
Also, since first number is same as first so the numbers are 𝑎 + 𝑑, 𝑎 − 𝑑, 𝑎, 𝑎 + 𝑑. The
first three are in G.P. Given 𝑑 = 6

∴ (𝑎 − 𝑑)2 = 𝑎(𝑎 + 𝑑)⇒ (𝑎 − 6)2 = 𝑎(𝑎 + 6)⇒ 18𝑎 = 36 ⇒ 𝑎 = 2.

So the numbers are 8, −4, 2, 8.

99. Let the three numbers are 𝑎, 𝑎𝑟, 𝑎𝑟2. The sum is given as 21 ⇒ 𝑎 + 𝑎𝑟 + 𝑎𝑟2 = 21.

Also, sum of squares is given as 189 ⇒ 𝑎2 + 𝑎2𝑟2 + 𝑎2𝑟4 = 189

⇒ 441(1+𝑟2+𝑟4)
⁄

(1+𝑟+𝑟2)2 = 189

⇒ 7(1 + 2𝑟2 + 𝑟4 − 𝑟2) = 3(𝑟 + 𝑟 + 𝑟2)2 ⇒ 7(1 − 𝑟 + 𝑟2)− 3(1 + 𝑟 + 𝑟2)

⇒ 2𝑟2 − 5𝑟 + 2 = 0 ⇒ 𝑟 = 2, 1⁄2

When 𝑟 = 2, 𝑎 = 3 and so the numbers are 3, 6, 12.

When 𝑟 = 1
⁄

2 , 𝑎 = 12 and so the numbers are 12, 6, 3.

100. Let the terms in G.P. be 𝑎⁄𝑟 , 𝑎, 𝑎𝑟. Given that the product of these is −64.

∴ 𝑎⁄𝑟 .𝑎.𝑎𝑟 = −64 ⇒ 𝑎3 = −64 ⇒ 𝑎 = −4.

Also given that the first term is four times the third. ⇒ 𝑎
⁄

𝑟 = 4.𝑎𝑟 ⇒ 𝑟2 = 1
⁄

4 ⇒ 𝑟 = ±1
⁄

2.
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If 𝑟 = 1
⁄

2 , the terms will be −8, −4, −2. If 𝑟 = −1
⁄

2, the terms will be 8, −4, 2.

101. Let the numbers be 𝑎 − 𝑑, 𝑎, 𝑎 + 𝑑. Given that sum is 15. ⇒ 𝑎 − 𝑑 + 𝑎 + 𝑎 + 𝑑 = 15 ⇒
𝑎 = 5.

Also given that if 1, 4, 19 are added to them then they are in G.P.

⇒ (5 + 4)2 = (5 − 𝑑 + 1)(5 + 𝑑 + 19)⇒ 81 = (6 − 𝑑)(24 + 𝑑)

⇒ 𝑑2 + 18𝑑 − 63 = 0 ⇒ 𝑑 = −21, 3.

If 𝑑 = −15, the numbers will be 26, 5, −16 and if 𝑑 = 3 the numbers will be 2, 5, 8.

102. Let the two sets of three numbers in G.P. are 𝑎1, 𝑎1𝑟1, 𝑎1𝑟21 and 𝑎2, 𝑎2𝑟2, 𝑎2𝑟22.

Given that the difference is also in G.P.

⇒ (𝑎1𝑟1 − 𝑎2𝑟2)2 = (𝑎1𝑟21 − 𝑎2𝑟22)(𝑎1 − 𝑎2)

⇒ 𝑎21𝑟21 + 𝑎22𝑟22 − 2𝑎1𝑎2𝑟1𝑟2 = 𝑎21𝑟21 − 𝑎1𝑎2𝑟22 − 𝑎1𝑎2𝑟21 + 𝑎22𝑟22

⇒ 2𝑎1𝑎2𝑟1𝑟2 = 𝑎1𝑎2𝑟22 + 𝑎1𝑎2𝑟21 ⇒ 2𝑟1𝑟2 = 𝑟21 + 𝑟22 ⇒ (𝑟1 − 𝑟2)2 = 0

⇒ 𝑟1 = 𝑟2 which implies that they have same common ratio.

103. Let 𝑟 be the common ratio. Then 𝑏 = 𝑎𝑟, 𝑐 = 𝑎𝑟2, 𝑑 = 𝑎𝑟3

L.H.S. = (𝑏 − 𝑐)2 + (𝑐 − 𝑎)2 + (𝑑 − 𝑏)2 = (𝑎𝑟 − 𝑎𝑟2)2 + (𝑎𝑟2 − 𝑎)2 + (𝑎𝑟3 − 𝑎𝑟)2

= 𝑎2(𝑟 − 𝑟2)2 + 𝑎2(𝑟2 − 1)2 + 𝑎2(𝑟3 − 𝑟)2 = 𝑎2(𝑟2 + 𝑟4 − 2𝑟3 + 𝑟4 + 1 − 2𝑟2 + 𝑟6 +
𝑟2 − 2𝑟4)

= 𝑎2(𝑟6 − 2𝑟3 + 1) = (𝑎𝑟3 − 𝑎)2 = (𝑑 − 𝑎)2 = R.H.S.

104. This problem can be solved like previous problem.

105. Given that 𝑥, 𝑦, 𝑧 are in G.P. Let 𝑝 be the first term and 𝑟 be the common ratio of
this G.P.

Also given, 𝑎𝑥 = 𝑏𝑦 = 𝑐𝑧 ⇒ 𝑥 log 𝑎 = 𝑦 log 𝑏 = 𝑧 log 𝑐

⇒ log𝑎
⁄

log 𝑏 =
𝑦
⁄

𝑥 and log 𝑏⁄log 𝑐 =
𝑧
⁄

𝑦. Clearly, 𝑦⁄𝑥 =
𝑧
⁄

𝑦 = 𝑟 ⇒ log𝑏 𝑎 = log𝑐 𝑏.

106. Let 𝑎⁄𝑟 , 𝑎, 𝑎𝑟 be the terms in G.P. Given that continued product is 216 i.e.

𝑎
⁄

𝑟 .𝑎.𝑎𝑟 = 216 ⇒ 𝑎3 = 216 ⇒ 𝑎 = 6

Sum of products when taken in pair is given as 156.

⇒ 𝑎
⁄

𝑟 .𝑎 + 𝑎.𝑎𝑟 + 𝑎
⁄

𝑟 .𝑎𝑟 = 156 ⇒ 1
⁄

𝑟 + 𝑟 + 1 = 26
⁄

6

⇒ 6𝑟2 − 20𝑟 + 6 = 0 ⇒ 𝑟 = 1
⁄

3 , 3

So the numbers are 18, 6, 2 or 2, 6, 18.
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107. Let 𝑟 be the common ratio. Then, (𝑏+𝑐)
2
⁄

(𝑎+𝑏)2 =
(𝑎𝑟+𝑎𝑟2)2
⁄

(𝑎+𝑎𝑟)2 = 𝑟2.

Similarly, (𝑐+𝑑)
2
⁄

(𝑏+𝑐)2 = 𝑟2 = (𝑏+𝑐)2
⁄

(𝑎+𝑏)2.

Thus, (𝑎 + 𝑏)2, (𝑏 + 𝑐)2, (𝑐 + 𝑑)2 are also in G.P.

108. This problem can be solved like previous problem.

109. This problem can be solved like previous problem.

110. This problem can be solved like previous problem.

111. Let 𝑟 be the common ratio. Then, 𝑎(𝑏 − 𝑐)3 = 𝑎(𝑎𝑟 − 𝑎𝑟2)3 = 𝑎4𝑟3(1 − 𝑟)3 and
𝑑(𝑎 − 𝑏)3 = 𝑎𝑟3(𝑎 − 𝑎𝑟)3 = 𝑎4𝑟3(1 − 𝑟)3.

Thus, 𝑎(𝑏 − 𝑐)3 = 𝑑(𝑎 − 𝑏)3.

112. We have to prove that (𝑎+ 𝑏+ 𝑐+𝑑)2 = (𝑎+ 𝑏)2+ (𝑐 + 𝑑)2+ 2(𝑏 + 𝑐)2 where 𝑎, 𝑏, 𝑐, 𝑑
are in G.P.

Now, (𝑎 + 𝑏 + 𝑐 + 𝑑)2 = (𝑎 + 𝑏)2 + (𝑐 + 𝑑)2 + 2(𝑎 + 𝑏)(𝑐 + 𝑑) so it is enough to prove
that (𝑎 + 𝑏)(𝑐 + 𝑑) = (𝑏 + 𝑐)2.

(𝑎 + 𝑏)(𝑐 + 𝑑) = (𝑎 + 𝑎𝑟)(𝑎𝑟2 + 𝑎𝑟3) = 𝑎2𝑟2(1 + 𝑟)2 and (𝑏 + 𝑐)2 = (𝑎𝑟 + 𝑎𝑟2)2 =
𝑎2𝑟2(1 + 𝑟)2 which proves the required equality.

113. Let 𝑟 be the common ratio. L.H.S. = 𝑎2𝑏2𝑐2( 1
⁄

𝑎3 +
1
⁄

𝑏3 +
1
⁄

𝑐3) =
𝑏2𝑐2
⁄

𝑎 + 𝑎2𝑐2
⁄

𝑏 + 𝑎2𝑏2⁄
𝑐

= 𝑎3𝑟6 + 𝑎3𝑟3 + 𝑎3 = 𝑎3 + 𝑏3 + 𝑐3 = R.H.S.

114. Let 𝑟 be the common ratio. L.H.S. = (𝑎2 − 𝑏2)(𝑏2 + 𝑐2) = (𝑎2 − 𝑎𝑟2)(𝑎2𝑟2 + 𝑎2𝑟4) =
𝑟2(𝑎2 − 𝑎2𝑟2)(𝑎2 + 𝑎2𝑟2) = (𝑎2𝑟2 − 𝑎2𝑟4)(𝑎2 + 𝑎2𝑟2) = (𝑏2 − 𝑐2)(𝑎2 + 𝑏2) = R.H.S.

115. Let 𝑟 be the common ratio. Given 𝑎, 𝑏, 𝑐 are in G.P. i.e. 𝑎, 𝑎𝑟, 𝑎𝑟2 are in G.P.

Taking log of 𝑎, 𝑏, 𝑐, we have

log 𝑎, log 𝑎 + log 𝑟, log 𝑎 + 2 log 𝑟 are in A.P. with log 𝑎 being the first term and log 𝑟
be the common difference.

116. Given series is 1 + 1
⁄

2 +
1
⁄

4 +
1
⁄

8 + ⋯ to 𝑛 terms. Let 𝑆 be the sum, 𝑎 = 1, 𝑟 = 1
⁄

2, then

𝑆 = 𝑎(1−𝑟𝑛)
⁄

1−𝑟 = 2(2
𝑛−1⁄
2𝑛 )

117. Given series is 1 + 2 + 4 + 8 + ⋯ to 12 terms. First term 𝑎 = 1, common ratio 𝑟 = 2
and no. of terms 𝑛 = 12. Let 𝑆 be the sum of the series. Then,

𝑆 = 𝑎(𝑟𝑛−1)
⁄

𝑟−1 = 1(212−1)
⁄

2−1 = 4095.
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118. Given series is 1 − 3 + 9 − 27 +⋯ to 9 terms. First terms 𝑎 = 1, common ratio 𝑟 = −3
and no. of terms 𝑛 = 9. Let 𝑆 be the sum of the series. Then,

𝑆 = 𝑎(1−𝑟𝑛)
⁄

1−𝑟 = 1−(−3)9
⁄

1−(−3) = 4921

119. This problem is similar to 115, and has been left as an exercise.

120. Given series is (𝑎 + 𝑏) + (𝑎2 + 2𝑏) + (𝑎3 + 3𝑏) + ⋯ to 𝑛 terms. We can rewrite the
series as 𝑎 + 𝑎2 + 𝑎3 + ⋯ to 𝑛 terms + 𝑏 + 2𝑏 + 3𝑏 + ⋯ to 𝑛 terms.

We know that 𝑎+𝑎2+𝑎3+⋯ to 𝑛 terms = 𝑎(𝑎𝑛−1)
⁄

𝑎−1 and for the second series applying the

A.P. formula, 𝑏 + 2𝑏+ 3𝑏+⋯ to 𝑛 terms = 𝑛
⁄

2 [2𝑏 + (𝑛−1)𝑏] = 𝑛
⁄

2 [(𝑛+1)𝑏] = 𝑛(𝑛+1)𝑏
⁄

2 .

121. Clearly the given situation forms a G.P. with 𝑎 = 1, common ratio 𝑟 = 2 and 𝑛 = 120.
Let 𝑆 be the sum which he gets at the end of 120 days. Then,

𝑆 = 𝑎(𝑟𝑛−1)
⁄

𝑟−1 = 2120 − 1 = 1329227995784915872903807060280344575.

122. Given series is 𝑆 = 8 + 88 + 888 + ⋯ = 8
⁄

9 [9 + 99 + 999 + ⋯]

= 8
⁄

9 [(10 − 1)+ (100 − 1)+ (1000 − 1)+⋯]

= 8
⁄

9 [
10(10𝑛−1)
⁄

10−1 − 𝑛] = 8
⁄

81 [10
𝑛+1 − 10 − 9𝑛].

123. This problem can be solved like previous problem.

124. This problem can be solved like previous problem.

125. This problem can be solved like previous problem.

126. Let 𝑆 = 1 − 1
⁄

2 +
1
⁄

4 −
1
⁄

8 + ⋯ to 𝑛 terms. Clearly, 𝑎 = 1 and 𝑟 = −1
⁄

2.

⇒ 𝑆 = 𝑎(1−𝑟𝑛)
⁄

1−𝑟 =
1−(−1)𝑛 1⁄

2𝑛
⁄

1−(−)1⁄2
= 2
⁄

3 .
2𝑛−(−1)𝑛
⁄

2𝑛 .

127. When we make 1000 per day for 31 days total amount received will be 31,000.

When we receive 1 for the first day and doubling every day then that would be a G.P.
with 𝑎 = 1, 𝑟 = 2, 𝑛 = 31 ⇒ 𝑆 = 𝑎(𝑟𝑛−1)

⁄

𝑟−1 = 231 − 1 = 2,147,483,647 which is clearly
way more than we make in the first case so we will happily take the second option.

128. We assume that 𝑛 terms of the series 1 + 3 + 32 + ⋯ make for 3280. Then

𝑆 = 1(3𝑛−1)
⁄

3−1 ⇒ 3𝑛 = 6561 ⇒ 𝑛 = 8.

129. Let 𝑆 = 1 + 3 + 32 + ⋯+ 3𝑛−1 ⇒ 𝑆 = 3𝑛−1⁄
3−1 > 1000 ⇒ 3𝑛 > 2001 ⇒ 𝑛 = 7.
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130. Let the sum be 𝑆. Clearly it is a G.P. with 𝑎 = 1, 𝑟 = 1
⁄

2. We know that when |𝑟| < 1

the sum of an infinite G.P. is given by 𝑆 = 𝑎
⁄

1−𝑟. Thus, 𝑆 = 1⁄
1−1
⁄

2
= 2.

131. Clearly, it is a G.P. with 𝑎 = 1, 𝑟 = 3 and 𝑛 = 20. Thus sum is given by 𝑆 = 320−1
⁄

3−1 =
1,743,392,200.

132. We can represent the given series as three series like (𝑥2 + 𝑥4 + 𝑥6 + ⋯) to 𝑛 terms
+( 1
⁄

𝑥2 +
1
⁄

𝑥4 +
1
⁄

𝑥6 + ⋯) to 𝑛 terms +2 + 5 + 8 + ⋯ to 𝑛 terms. Let the sum be 𝑆.

𝑆 = 𝑥2 (𝑥
2)𝑛−1
⁄

𝑥2−1 + 1
⁄

𝑥2 .
1
⁄

(𝑥2)𝑛−1
⁄

1
⁄

𝑥2
−1

+ 𝑛
⁄

2 [3𝑛 + 1].

133. Let 𝑛 be the no. of terms required to make the sum of given G.P. with 𝑎 = 1, 𝑟 = 2
equal to 511.

511 = 2𝑛−1⁄
2−1 ⇒ 2𝑛 = 512 ⇒ 𝑛 = 9.

134. Let the sum be 𝑆.𝑆 = 1 + 2 + 22 + ⋯+ 2𝑛−1 = 2𝑛−1⁄
2−1 ≥ 300 ⇒ 2𝑛 ≥ 301 ⇒ 𝑛 = 9.

135. Let 𝑟 be the common ratio. 𝑎𝑛 = 𝑎𝑟𝑛−1 = 96.𝑆 = 𝑎1(𝑟𝑛−1)
⁄

𝑟−1 = 𝑎𝑛𝑟−𝑎1
⁄

𝑟−1 = 96𝑟−3
⁄

𝑟−1 = 189 ⇒
32𝑟 − 1 = 63𝑟 − 63 ⇒ 𝑟 = 2 ⇒ 𝑛 = 6.

136. 0.4 ̇2 ̇3 = 0.4232323… to ∞ = 4
⁄

10 +
23⁄
1000 +

23
⁄

100000 + ⋯ to ∞

= 4
⁄

10 +
23
⁄

100 [1 +
1
⁄

100 +
1
⁄

10000 + ⋯ to ∞] = 4
⁄

10 +
23
⁄

100
1
⁄

1− 1
⁄

100
= 419
⁄

990.

137. Given series can be written as 𝑆 = 1
⁄

5 +
1
⁄

52 + ⋯ to ∞+ 1
⁄

7 +
1
⁄

72 + ⋯ to ∞

= 1
⁄

5 .
1⁄

1−1
⁄

5
+ 1
⁄

7 .
1⁄

1−1
⁄

7
= 1
⁄

4 +
1
⁄

6 =
5
⁄

12.

138. Let the sum be 𝑆, then 𝑆 = (10 + 1)+ (100 + 3)+ (1000 + 5)+⋯ to 𝑛 terms

= 10(10𝑛−1)
⁄

10−1 + 𝑛
⁄

2 [2 + (𝑛 − 1)2] = 10
⁄

9 (10
𝑛 − 1)+ 𝑛2.

139. The general term of the series is 𝑡𝑛 = (𝑥𝑛 + 1⁄
𝑥𝑛)

2
= 𝑥2𝑛 + 1
⁄

𝑥2𝑛 + 2 so we can write it as
three series and solve like problem 132.

140. Let 𝑎 be the first term and 𝑟 be the common ratio of the G.P. Then,

𝑆 = 𝑎(𝑟𝑛−1)
⁄

𝑟−1 , 𝑃 = 𝑎.𝑎𝑟.𝑎𝑟2 …𝑎𝑟𝑛−1 = 𝑎𝑛𝑟
𝑛(𝑛−1)
⁄

2 , 𝑅 = 1
⁄

𝑎
1− 1
⁄

𝑟𝑛
⁄

1−1
⁄

𝑟
= 1
⁄

𝑎
𝑟𝑛−1
⁄

𝑟−1 . 1
⁄

𝑟𝑛−1

𝑃2 = 𝑎2𝑛𝑟𝑛(𝑛−1), 𝑆⁄𝑅 = 𝑎2.𝑟𝑛−1 ∴ (𝑆⁄𝑅)
𝑛
= 𝑃2.
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141. Clearly, the given series is a G.P. with 𝑎 = 1, 𝑟 = 𝑥
⁄

1+𝑥 ⇒ 𝑆 = 1
⁄

1− 𝑥
⁄

1+𝑥
= 1 + 𝑥.

142. We consider the 𝑛-th term. 𝑡𝑛 = 𝑎𝑟𝑛−1, where 𝑎 is the first term. Sum of all succeeding
terms 𝑆 = 𝑎𝑟𝑛
⁄

1−𝑟 ∴ 𝑡𝑛⁄𝑆 = 1−𝑟
⁄

𝑟 . Hence proven.

143. 𝑆1 = 1⁄
1−1
⁄

2
= 2, 𝑆2 = 2⁄

1−1
⁄

3
= 3, 𝑆3 = 3⁄

1−1
⁄

4
, … , 𝑆𝑝 = 𝑝
⁄

1− 1
⁄

𝑝+1
= 𝑝 + 1.

Clearly, 𝑆1, 𝑆2, … , 𝑆𝑝 forms an A.P. with 2 as first term and 1 as c.d.

𝑆1 + 𝑆2 + ⋯+ 𝑆𝑝 = 𝑝
⁄

2 [2.2 + (𝑝 − 1)] = 𝑝(𝑝+3)
⁄

2 .

144. 𝑥 = 1⁄
1−𝑎 ⇒ 𝑎 = 1 − 1
⁄

𝑥 =
𝑥−1
⁄

𝑥 and similarly 𝑏 = 𝑦−1
⁄

𝑦 .

1 + 𝑎𝑏 + 𝑎2𝑏2 + ⋯ to ∞ = 1
⁄

1−𝑎𝑏 =
1
⁄

1−𝑥−1
⁄

𝑥 .𝑦−1⁄𝑦
= 𝑥𝑦
⁄

𝑥+𝑦−1.

145. Let 𝑆 be the sum, then 𝑆 = 1
⁄

1−𝑟 +
𝑎
⁄

1−𝑟 +
𝑎2
⁄

1−𝑟 + ⋯ to ∞

⇒ 𝑆 = 𝑎
⁄

1−𝑟 .
1⁄

1−𝑎 =
𝑎
⁄

(1−𝑟)(1−𝑎).

146. When the ball is dropped it will first travel 120 mts. Then it will bounce back 120. 4⁄5 = 96

m and fall 96 m as well. It will then bounce back 96. 4⁄5 m and fall the same distance as
well.

Thus, total distance travelled 120 + 120 × 2 × 4
⁄

5 + 120 × 2 × 42
⁄

52 + ⋯ to ∞

= 120 + 192[1 + 4
⁄

5 +
42
⁄

52 + ⋯] to ∞ = 120 + 192. 1⁄
1−4
⁄

5
= 120 + 960 = 1080 meters.

147. Let 𝑟 be the common ratio. Then 𝑏 = 𝑎𝑟𝑛−1 ⇒ (𝑎𝑏)𝑛 = 𝑎2𝑛𝑟𝑛(𝑛−1)

𝑝 = 𝑎.𝑎𝑟.𝑎𝑟2.𝑎𝑟3.…𝑎𝑟𝑛−1 = 𝑎𝑛𝑟1+2+3+⋯+(𝑛−1) = 𝑎𝑛𝑟
𝑛(𝑛−1)
⁄

2

⇒ 𝑝2 = (𝑎𝑏)𝑛.

148. Let the first terms are 𝑎 and 𝑏; and the common ratio is 𝑟. Ratio of sums would be
𝑎 : 𝑏 which is equal to 𝑎𝑟𝑛−1 : 𝑏𝑟𝑛−1 i.e. ratio of 𝑛th terms.

149. Let 𝑎 be the first term. Then, 𝑆1 = 𝑎(𝑟𝑛−1)
⁄

𝑟−1 , 𝑆2 = 𝑎(𝑟2𝑛−1)
⁄

𝑟−1 and 𝑆3 = 𝑎(𝑟3𝑛−1)
⁄

𝑟−1 .

𝑆2 − 𝑆1 = 𝑎(𝑟2𝑛−𝑟𝑛)
⁄

𝑟−1 = 𝑎𝑟𝑛(𝑟𝑛−1)
⁄

𝑟−1

𝑆1(𝑆3 − 𝑆2) = 𝑎(𝑟𝑛−1)
⁄

𝑟−1 (𝑎𝑟
2𝑛(𝑟𝑛−1)
⁄

𝑟−1 ) = 𝑎2𝑟2𝑛(𝑟𝑛−1)2
⁄

(𝑟−1)2

⇒ 𝑆1(𝑆3 − 𝑆2) = (𝑆2 − 𝑆1)2.
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150. 𝑆1 = 𝑎, 𝑆2 = 𝑎(𝑟2−1)
⁄

𝑟−1 , 𝑆2 = 𝑎(𝑟3−1)
⁄

𝑟−1 , ⋯ , 𝑆2𝑛−1 = 𝑎(𝑟2𝑛−1−1)
⁄

𝑟−1

𝑆1+𝑆2+𝑆3+⋯+𝑆2𝑛−1 = 𝑎
⁄

𝑟−1 [𝑟+𝑟2+𝑟3+⋯+𝑟2𝑛−1−(1+1+⋯+to 2𝑛−1terms)]

= 𝑎
⁄

𝑟−1 [
𝑟(𝑟2𝑛−1−1)
⁄

𝑟−1 − (2𝑛 − 1)].

151. Given, 𝑆𝑛 = 𝑎.2𝑛 − 𝑏; 𝑡𝑛 = 𝑆𝑛 − 𝑆𝑛−1 = 𝑎.2𝑛 − 𝑏 − 𝑎.2𝑛−1 + 𝑏 = 𝑎.2𝑛−1; 𝑟 = 𝑡𝑛
⁄

𝑡𝑛−1
= 2

which is a constant independent of 𝑛 hence the given series is in G.P.

152. Given 𝑥 ≥ 0 ∴ 2𝑥
⁄

1+𝑥2 < 1 therefore we can apply the sum formula of a G.P. for infinite
terms.

Let 𝑆 be the required sum, then 𝑆 = 1
⁄

1+𝑥2 .
1
⁄

1− 2𝑥
⁄

1+𝑥2
= 1
⁄

(1−𝑥)2.

153. Let 𝑎 be the first term and 𝑟 be the common ratio. Then given, 𝑎 + 𝑎𝑟 = 24 and
𝑆∞ = 𝑎
⁄

1−𝑟 = 32

𝑎 = 24
⁄

1+𝑟 and 𝑎 = 32(1 − 𝑟)⇒ 1− 𝑟2 = 24
⁄

32 =
3
⁄

4 ⇒ 𝑟 = ±1
⁄

2

If 𝑟 = 1
⁄

2 then series is 16, 8, 4, …. If 𝑟 = −1
⁄

2 then series is 48, −24, 12, −6, ….

154. Let 𝑎 be the first term and 𝑟 be the common ratio. Sum of this G.P. 𝑎
⁄

1−𝑟 = 4 and sum

of squares of terms 𝑎2
⁄

1−𝑟2 =
16
⁄

3 .

⇒ 16(1−𝑟)2
⁄

1−𝑟2 = 16
⁄

3 ⇒ 1−𝑟
⁄

1+𝑟 =
1
⁄

3 ⇒ 𝑟 = 1
⁄

2 ⇒ 𝑎 = 2. So the G.P. is 2, 1, 1⁄2 ,
1
⁄

4 , ….

155. 𝑝(𝑥) =
𝑥2𝑛−1
⁄

𝑥2−1⁄
𝑥𝑛−1
⁄

𝑥−1
= 𝑥𝑛+1⁄

𝑥+1 so clearly 𝑛 is an odd number for 𝑝(𝑥) to be a polynomial in 𝑥.

156. 𝑥 = 𝑎 + 𝑎
⁄

𝑟 +
𝑎
⁄

𝑟2 + ⋯ to ∞ = 𝑎⁄
1−1
⁄

𝑟
= 𝑎𝑟
⁄

𝑟−1. Similarly 𝑦 = 𝑏𝑟
⁄

𝑟+1 and 𝑧 = 𝑐𝑟2
⁄

𝑟2−1 , ∴
𝑥𝑦
⁄

𝑧 = 𝑎𝑏
⁄

𝑐 .

157. Let 𝑎 be the first term, 𝑟 be the common ratio and 2𝑛 be the no. of terms. Then sum
of all terms 𝑆 = 𝑎(𝑟2𝑛−1)

⁄

𝑟−1 and sum of odd terms 𝑆odd =
𝑎(𝑟2𝑛−1)
⁄

𝑟2−1 .

Given, 𝑆 = 5𝑆odd ⇒ 𝑟 = 4.

158. 𝑆𝑛 = 3 − 3𝑛+1
⁄

42𝑛 ⇒ 𝑡𝑛 = 𝑆𝑛 − 𝑆𝑛−1 = 3𝑛
⁄

42(𝑛−1)−
3𝑛+1
⁄

42𝑛 = 16.3𝑛−3𝑛+1
⁄

42𝑛 = 3𝑛.13
⁄

42𝑛 .

⇒ 𝑟 = 𝑡𝑛
⁄

𝑡𝑛−1
= 3
⁄

16.

159. Let 𝑎 be the first term and 𝑟 be the common ratio; then 𝑡𝑛 = 𝑎𝑟𝑛−1. Let the sum of
all terms succeeding 𝑡𝑛 be 𝑆. Then 𝑆 = 𝑎𝑟𝑛

⁄

1−𝑟.



Answers of Progressions 369

𝑡𝑟
⁄

𝑆 = 1−𝑟
⁄

𝑟 . If 1−𝑟⁄𝑟 > 1 then 𝑟 < 1
⁄

2, if 
1−𝑟
⁄

𝑟 = 1 then 𝑟 = 1
⁄

2 and 1−𝑟⁄𝑟 < 1 then 𝑟 > 1
⁄

2.

160. 666…𝑛 digits = 6
⁄

9 (10
𝑛 − 1) = 2
⁄

3 (10
𝑛 − 1).

888…𝑛 digits = 8
⁄

9 (10
𝑛−1). ⇒ L.H.S. = 4
⁄

9 (10
2𝑛−2.10𝑛+1−2.10𝑛−2) = 4

⁄

9 (10
2𝑛−1)

R.H.S. = 444…2𝑛 digits = 4
⁄

9 (10
2𝑛 − 1) = L.H.S.

161. Let 𝑆 = (𝑥 + 𝑦)+ (𝑥2 + 𝑥𝑦 + 𝑦2)+ (𝑥3 + 𝑥2𝑦 + 𝑥𝑦2 + 𝑦3)+⋯ to 𝑛 terms

𝑆 = 1
⁄

𝑥−𝑦 [(𝑥
2 − 𝑦2)+ (𝑥3 − 𝑦3)+ (𝑥4 + 𝑦4)+⋯] to 𝑛 terms

= 1
⁄

𝑥−𝑦 [
𝑥2(𝑥𝑛−1)
⁄

𝑥−1 − 𝑦2(𝑦𝑛−1)
⁄

𝑦−1 ].

162. 𝑆 = 1
⁄

1−𝑟 ⇒ 𝑟 = 𝑆−1
⁄

𝑆 . Let 𝑆′ =
∞
∑
𝑛=0

𝑟2𝑛 then 𝑆′ = 1
⁄

1−𝑟2 =
𝑆2
⁄

2𝑆−1.

163. Let 𝑎 be the first term and 𝑟 be the common ratio. Then 𝑡𝑚 = 𝑎𝑟𝑚−1 = 1
⁄

𝑛2 and

𝑡𝑛 = 𝑎𝑟𝑛−1 = 1
⁄

𝑚2 ⇒
𝑡𝑚
⁄

𝑡𝑛 = 𝑟𝑚−𝑛 = 𝑚2
⁄

𝑛2 ⇒ 𝑟 = 𝑚−𝑛√


𝑚2
⁄

𝑛2 .

𝑎𝑟𝑚−1 = 1
⁄

𝑛2 ⇒ 𝑎 = 1
⁄

𝑛2(
𝑛2
⁄

𝑚2)
𝑚−1
⁄

𝑚−𝑛

⇒ 𝑡𝑚+𝑛
⁄

2
= 𝑎𝑟

𝑚+𝑛−2
⁄

2 = 1
⁄

𝑛2(
𝑛2
⁄

𝑚2)
𝑚−1
⁄

𝑚−𝑛 .(𝑚
2
⁄

𝑛2)
𝑚+𝑛−2
⁄

2(𝑚−𝑛) = 1
⁄

𝑚𝑛.

This can be alternatively computed with G.M. formula i.e. 𝑡𝑚+𝑛
⁄

2
= √


𝑡𝑚𝑡𝑛 = 1
⁄

𝑚𝑛.

164. Given condition is 𝑐 > 4𝑏 − 3𝑎 ⇒ 𝑐 − 4𝑏 + 3𝑎 > 0 ⇒ 𝑟2 − 4𝑟 + 3 < 0 [∵ 𝑎 < 0]⇒ 𝑟 > 3
or 𝑟 < 1.

165. Given, (1 − 𝑘)(1 + 2𝑥 + 4𝑥2 + 8𝑥3 + 16𝑥4 + 32𝑥5) = 1 − 𝑘6 ⇒ (1 − 𝑘) 64𝑥
6−1
⁄

𝑥−1 =

1 − 𝑘6 ⇒ 𝑘 = 2𝑥 ⇒ 𝑘
⁄

𝑥 = 2.

166. Given, (𝑎2 + 𝑏2 + 𝑐2)(𝑏2 + 𝑐2 + 𝑑2) ≤ (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑑)2 ⇒ (𝑏2 − 𝑎𝑐)2 + (𝑐2 − 𝑎𝑑)2 +
(𝑎𝑑 − 𝑏𝑐)2 ≤ 0

Since 𝑎, 𝑏, 𝑐, 𝑑 are non-zero real numbers therefore the above conditiion leads to equality
if and only if 𝑏2 = 𝑎𝑐, 𝑐2 = 𝑎𝑑, 𝑎𝑑 = 𝑏𝑐 i.e. 𝑎, 𝑏, 𝑐, 𝑑 are in G.P.

167. This problem is generalization of previous problem and can be solved similarly.

168. Let 𝑟 be the common ratio, then 𝛽 = 𝛼𝑟, 𝛾 = 𝛼𝑟2, 𝛿 = 𝛼𝑟3.

From roots of quadratic equaiton 𝛼 + 𝛽 = 3, 𝛼𝛽 = 𝑎, 𝛾 + 𝛿 = 12, 𝛾𝛿 = 𝑏
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𝛾+𝛿
⁄

𝛼+𝛽 = 𝑟2 = 4 ⇒ 𝑟 = 2 because G.P. is increasing so we discard the negative root.

⇒ 𝛼 = 1 ⇒ 𝑎 = 2, ⇒ 𝑏 = 32.

169. Let 𝑎 be the first term of the A.P. Then 𝑡2𝑛+1 = 𝑎 + 4𝑛. So the first term of the G.P.
is 𝑎 + 4𝑛.

Middle term of A.P. 𝑡𝑛+1 = 𝑎 + 2𝑛 and middle term of G.P. = 𝑎+4𝑛
⁄

2𝑛

Given, 𝑎 + 2𝑛 = 𝑎+4𝑛
⁄

2𝑛 thus, 𝑎 can found and hence 𝑎 + 4𝑛 which is the mid term can
be deduced.

170. 𝑓(𝑥) = 2𝑥 + 1, 𝑓(2𝑥) = 4𝑥 + 1, 𝑓(4𝑥) = 8𝑥 + 1. Given that 𝑓(𝑥), 𝑓(2𝑥), 𝑓(4𝑥) are in
G.P.

⇒ 𝑓(2𝑥)
⁄

𝑓(𝑥) =
𝑓(4𝑥)
⁄

𝑓(2𝑥) ⇒ (4𝑥 + 1)2 = (2𝑥 + 1)(8𝑥 + 1)⇒ 8𝑥 + 1 = 10𝑥 + 1 ⇒ 𝑥 = 0.

171. Let 𝑟 be the common ratio then 𝑎 + 𝑏 + 𝑐 = 𝑥𝑏 ⇒ 1 + 𝑟 + 𝑟2 = 𝑥𝑟 ⇒ 𝑥 = 1+𝑟+𝑟2
⁄

𝑟 =
1
⁄

𝑟 + 1+ 𝑟. We know that if 𝑟 > 0, 𝑟 + 1
⁄

𝑟 > 2 ⇒ 𝑥 > 3 and if 𝑟 < 0, 𝑟 + 1
⁄

𝑟 < −2 ⇒ 𝑥 < −1.

172. 𝑥 = 1⁄
1−𝑎, 𝑦 =

1⁄
1−𝑏 , 𝑧 =

1⁄
1−𝑐 ⇒

1
⁄

𝑥 = 1 − 𝑎, 1⁄𝑦 = 1 − 𝑏, 1⁄𝑧 = 1 − 𝑐

Thus, ∵ 𝑎, 𝑏, 𝑐 are in A.P. where |𝑎|, |𝑏|, |𝑐| < 1 ∴𝑥, 𝑦, 𝑧 are also in A.P.

173. 𝑝 = 1
⁄

1+tan2 𝑥 = cos2 𝑥; 𝑞 = 1
⁄

1+cot2 𝑦 = sin2 𝑦

∞
∑
𝑘=0

tan2𝑘 𝑥 cot2𝑘 𝑦 = 1
⁄

1−tan2 𝑥 cot2 𝑦

1
⁄

1
⁄

𝑝+
1
⁄

𝑞−
1
⁄

𝑝𝑞
= cos2 𝑥 sin2 𝑦
⁄

cos2 𝑥+sin2 𝑦−1

Dividing numerator and denominator with cos2 𝑥 sin2 𝑦, we get

= 1
⁄

csc2 𝑦+sec2 𝑥−csc2 𝑦 sec2 𝑥 = 1
⁄

tan2 𝑥+cot2 𝑦+2−1−tan2 𝑥−𝑐𝑜𝑡2𝑦−tan2 𝑥𝑐𝑜𝑡2𝑦 =
∞
∑
𝑘=0

tan2𝑘 𝑥 cot2𝑘 𝑦.

174. We know that area of an equilateral triangle is √


3⁄
4 𝑎2, where 𝑎 is one of the sides. In

this case Δ = 3
⁄

4.

Now the area of sides joining mid-point will have side 𝑎⁄2 and terefore area will be 1⁄4th of

the original triangle. This ratio of 1⁄4 will continue and areas of all triangles will form a

G.P. with common ratio of 1⁄4. Thus sum of areas of all these triangles =
3
⁄

4
⁄

1−1⁄4
= 1.
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175. 1 + | cos 𝑥|+ | cos2 𝑥|+ | cos3 𝑥|+⋯ to ∞ = 1
⁄

1−| cos𝑥| = 𝑝(let).

⇒ 𝑒𝑝. log𝑒 4 = 4𝑝. Now given equation is 𝑡2 − 20𝑡 + 64 = 0 ⇒ 𝑡 = 4, 16 ⇒ 𝑝 = 1, 2 ⇒
| cos 𝑥| = 0, 1/2 ⇒ 𝑥 = 𝜋/2, 𝜋/3, 2𝜋/3.

176. 1 + | cos 𝑥|+ | cos2 𝑥|+ | cos3 𝑥|+⋯ to ∞ = 1
⁄

1−| cos𝑥| ⇒
1
⁄

1−| cos𝑥| = 2 ⇒ | cos 𝑥| = 1
⁄

2 ⇒

cos 𝑥 = ±1
⁄

2 ⇒ 𝑆 = {𝜋⁄3 ,
2𝜋⁄
3 }.

177. sin2 𝑥 + sin4 𝑥 + ⋯ to ∞ = sin2 𝑥
⁄

1−sin2 𝑥 = tan2 𝑥

Roots of 𝑥2 − 9𝑥 + 8 = 0 are 1, 8 i.e. 20, 23 ⇒ tan 𝑥 = 0, √


3 (rejecting −√


3 as for
0 < 𝑥 < 𝜋
⁄

2 , tan 𝑥 cannot be negative.)

cos𝑥
⁄

cos𝑥+sin𝑥 =
1
⁄

1+tan𝑥 = 1, 1⁄
1+√


3.

178. 𝑆𝜆 =
𝜆
⁄

𝜆−1 [Hint: It is a G.P.] 
𝑛
∑
𝜆=1

(𝜆 − 1)𝑆𝜆 =
𝑛
∑
𝜆=1

𝜆 = 𝑛(𝑛+1)
⁄

2 .

179. Let 2𝑎𝑥+1, 2𝑏𝑥+1, 2𝑐𝑥+1 are in G.P. ⇒ 2𝑏𝑥+1
⁄

2𝑎𝑥+1 =
2𝑐𝑥+1
⁄

2𝑏𝑥+1 ⇒ (𝑏 − 𝑎)𝑥 = (𝑐 − 𝑏)𝑥 ⇒ 𝑏− 𝑎 =
𝑐 − 𝑏

which implies that 𝑎, 𝑏, 𝑐 are in A.P. which is a given and hence we have proven
required condition in reverse.

180. Given 𝑎+𝑏𝑒
𝑥
⁄

𝑎−𝑏𝑒𝑥 =
𝑏+𝑐𝑒𝑥
⁄

𝑏−𝑐𝑒𝑥 ⇒ 𝑎𝑏−𝑎𝑐𝑒𝑥+𝑏2𝑒𝑥−𝑏𝑐𝑒2𝑥 = 𝑎𝑏+𝑎𝑐𝑒𝑥−𝑏2𝑒𝑥−𝑏𝑐𝑒2𝑥 ⇒ 2𝑎𝑐𝑒𝑥 =
𝑏2𝑒𝑥 ⇒ 2𝑎𝑐 = 𝑏2, which implies 𝑎, 𝑏, 𝑐 are in G.P. Similarly it can be proven that 𝑏, 𝑐, 𝑑
are in G.P. making 𝑎, 𝑏, 𝑐, 𝑑 are in G.P.

181. Given, 2 tan−1 𝑦 = tan−1 𝑥 + tan−1 𝑧 ⇒ 2𝑦
⁄

1−𝑦2 =
𝑥+𝑧⁄
1−𝑧𝑥

But we are also given that 𝑦2 = 𝑧𝑥 ⇒ 2𝑦 = 𝑥 + 𝑧 ⇒ 𝑥, 𝑦, 𝑧 are in A.P. Now 4𝑦2 =
(𝑥 + 𝑧)2 = 2(𝑥 + 𝑧)⇒ 𝑥 = 𝑧 = 𝑦 but the common values are not necessarily 0.

182. Given, 𝑏 − 𝑐 = 𝑎− 𝑏 [∵ 𝑎, 𝑏, 𝑐 are in A.P.]. From second condition (𝑐 − 𝑏)2 = (𝑏 −𝑎)𝑎 ⇒
(𝑎 − 𝑏)2 = (𝑎 − 𝑏)𝑎 ⇒ 2𝑎 = 𝑏 ⇒ 3𝑎 = 𝑐 ⇒ 𝑎 : 𝑏 : 𝑐 = 1 : 2 : 3.

183. Since 𝑎, 𝑏, 𝑐 are in G.P. ⇒ 𝑏2 = 𝑎𝑐. From second condition, 2(log 2𝑏 − log 3𝑐) =
log 3𝑐 − log 2𝑏 ⇒ 3 log 2𝑏 = 3 log 3𝑐 ⇒ 2𝑏 = 3𝑐 ⇒ 𝑏 = 2𝑎⁄

3 , 𝑐 =
4𝑎⁄
9 . Clearly, 𝑎 is the

greatest side. Using cos rule,

cos𝐴 = 𝑏2+𝑐2−𝑎2
⁄

2𝑏𝑐 = −1
⁄

2 and thus 𝐴 > 90∘ making the triangle obtuse-angled triangle.

184. Let 𝛼, 𝛽, 𝛾 are the roots. Then 𝛼 + 𝛽 + 𝛾 = − 𝑏⁄
𝑐 , 𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼 = 𝑐
⁄

𝑎, 𝛼𝛽𝛾 = −𝑑
⁄

𝑎. Let 𝑟
be the common ratio of the G.P. then 𝛽 = 𝛼𝑟, 𝛾 = 𝛼𝑟2. Also let 𝛼 = 𝑥.
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𝑐3
⁄

𝑏3 =
𝑐3
⁄

𝑎3 .
𝑎3
⁄

𝑏3 = − (𝛼𝛽+𝛽𝛾+𝛾𝛼)3
⁄

(𝛼+𝛽+𝛾)3 = −(𝑥
2𝑟+𝑥2𝑟3+𝑥2𝑟2
⁄

𝑥+𝑥𝑟+𝑥𝑟2 )
3
= −𝑥3𝑟3 = −𝛼𝛽𝛾 = 𝑑
⁄

𝑎 ⇒ 𝑐3𝑎 =
𝑏3𝑑.

185. Clearly 𝑡𝑛 = 1
⁄

2𝑛−1 ⇒ 𝑡100 = 1
⁄

199.

186. The corresponding 𝑝th and 𝑞th term in the A.P.would be 1⁄𝑞𝑟 and 1⁄𝑟𝑝. Let 𝑎 be the

first term and 𝑑 be the commond difference of this A.P. Then, 𝑎 + (𝑝 − 1)𝑑 = 1
⁄

𝑞𝑟 and

𝑎 + (𝑞 − 1)𝑑 = 1
⁄

𝑟𝑝. Subtracting (𝑝 − 𝑞)𝑑 = 𝑝−𝑞
⁄

𝑝𝑞𝑟 ⇒ 𝑑 = 1
⁄

𝑝𝑞𝑟.

⇒ 𝑎 = 1
⁄

𝑞𝑟 −
𝑝−1
⁄

𝑝𝑞𝑟 =
1
⁄

𝑝𝑞𝑟 . ⇒ 𝑡𝑟 = 1
⁄

𝑝𝑞𝑟 +
𝑟−1
⁄

𝑝𝑞𝑟 =
1
⁄

𝑝𝑞. Therefore 𝑟th term in H.P. would be 𝑝𝑞.

187. Corrsponding 𝑝th, 𝑞th and 𝑟th term of the A.P. would be 1⁄𝑎,
1
⁄

𝑏 and 1⁄𝑐. Let 𝑥 be the first
term and 𝑦 be the c.d. of this A.P. Then,

𝑥 + (𝑝 − 1)𝑦 = 1
⁄

𝑎, 𝑥 + (𝑞 − 1)𝑦 = 1
⁄

𝑏 , 𝑥 + (𝑟 − 1)𝑦 = 1
⁄

𝑐

(𝑝 − 𝑞)𝑦 = 𝑏−𝑎
⁄

𝑎𝑏 ⇒ (𝑝 − 𝑞)𝑎𝑏 = 𝑏−𝑎
⁄

𝑦 . Similarly, (𝑞 − 𝑟)𝑏𝑐 = 𝑐−𝑏
⁄

𝑦 and (𝑟 − 𝑝)𝑐𝑎 = 𝑐−𝑎
⁄

𝑦 .
Clearly, (𝑞 − 𝑟)𝑏𝑐 + (𝑟 − 𝑝)𝑐𝑎 + (𝑝 − 𝑞)𝑎𝑏 = 0.

188. We have to prove that 𝑎−𝑏⁄𝑏−𝑐 =
𝑎
⁄

𝑐 ⇒ 𝑎𝑐 − 𝑏𝑐 = 𝑎𝑏 − 𝑎𝑐 ⇒ 2𝑎𝑐 = 𝑎𝑏 + 𝑏𝑐 which prove that
𝑎, 𝑏, 𝑐 are in H.P. Thus required equality is proven in reverse.

189. Given 1⁄𝑎,
1
⁄

𝑏 ,
1
⁄

𝑐 ,
1⁄
𝑑 are in A.P. Let 𝑝 be the c.d. of this A.P. ⇒ 1

⁄

𝑏 −
1
⁄

𝑎 = 𝑝 ⇒ 𝑎𝑏 = 𝑎−𝑏
⁄

𝑝 .

Similarly, 𝑏𝑐 = 𝑏−𝑐
⁄

𝑝 , 𝑐𝑑 = 𝑐−𝑑⁄
𝑝 . Adding these we have 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑑 = 𝑎−𝑑⁄

𝑝 . Now
1⁄
𝑑 −

1
⁄

𝑎 = 3𝑝 ⇒ 3𝑎𝑑 = 𝑎−𝑑⁄
𝑝 . Thus, 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑑 = 3𝑎𝑑.

190. Let 𝑑 be the common difference of the corresponding 𝐴.𝑃. Then, 1⁄𝑥𝑛− 1
⁄

𝑥1 = (𝑛− 1)𝑑 ⇒
𝑥1−𝑥𝑛
⁄

𝑑 = (𝑛 − 1)𝑥1𝑥𝑛 = R.H.S.

Now, 1⁄𝑥1 −
1
⁄

𝑥2 = 𝑑 ⇒ 𝑥1−𝑥2⁄
𝑑 = 𝑥1𝑥2. Similarly, 𝑥2−𝑥3⁄𝑑 = 𝑥2𝑥3 and so on till 𝑥𝑛−1−𝑥𝑛

⁄

𝑑 =
𝑥𝑛−1𝑥𝑛. Adding these and comparing with R.H.S. we get the required equality.

191. 1
⁄

𝑎,
1
⁄

𝑏 ,
1
⁄

𝑐 are in A.P.

⇒ 𝑎+𝑏+𝑐
⁄

𝑎 , 𝑎+𝑏+𝑐⁄𝑏 , 𝑎+𝑏+𝑐⁄𝑐 are in A.P.

⇒ 𝑎+𝑏+𝑐
⁄

𝑎 − 1, 𝑎+𝑏+𝑐⁄𝑏 − 1, 𝑎+𝑏+𝑐⁄𝑐 − 1 are in A.P.

⇒ 𝑎
⁄

𝑏+𝑐 ,
𝑏
⁄

𝑐+𝑎,
𝑐
⁄

𝑎+𝑏 are in H.P.

192. 𝑎2, 𝑏2, 𝑐2 are in A.P. ⇒ 𝑎2 + 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎, 𝑏2 + 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎, 𝑐2 + 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 are in
A.P.
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⇒ (𝑎 + 𝑏)(𝑐 + 𝑎), (𝑏 + 𝑐)(𝑎 + 𝑏), (𝑐 + 𝑎)(𝑏 + 𝑐) are in A.P.

Dividing each term by (𝑎 + 𝑏)(𝑏 + 𝑐)(𝑐 + 𝑎), we have

1
⁄

𝑏+𝑐 ,
1
⁄

𝑐+𝑎,
1
⁄

𝑎+𝑏 are in A.P.

⇒ 𝑏 + 𝑐, 𝑐 + 𝑎, 𝑎 + 𝑏 are in H.P.

193. If 𝑡𝑛 = 1
⁄

3𝑛−2 then the sequence is 1, 1⁄4 ,
1
⁄

7 ,
1
⁄

10 , ⋯

Let us assume that it is in H.P. then corresponding 𝑛th term in A.P. is 3𝑛 − 2. Thus,
c.d. = 3𝑛 − 2 − (3𝑛 − 1)− 2 = 3 which is a constant so the sequence is in A.P. Thus
our assumption is correct and given sequence is in H.P.

194. Let 𝑎 be the first term and 𝑑 be the c.d. of the corresponding A.P. Then,

𝑎+ (𝑚−1)𝑑 = 1
⁄

𝑛 and 𝑎+ (𝑛− 1)𝑑 = 1
⁄

𝑚. Subtracting, (𝑚−𝑛)𝑑 = 𝑚−𝑛
⁄

𝑚𝑛 ⇒ 𝑑 = 1
⁄

𝑚𝑛 ⇒

𝑎 = 1
⁄

𝑛 −
𝑚−1⁄
𝑚𝑛 = 1
⁄

𝑚𝑛.

Then 𝑡𝑚+𝑛 = 1
⁄

𝑚𝑛 + (𝑚+ 𝑛− 1) 1
⁄

𝑚𝑛 =
𝑚+𝑛
⁄

𝑚𝑛 thus corrsponding term in H.P. would be
𝑚𝑛
⁄

𝑚+𝑛. Also, 𝑡𝑚𝑛 = 1
⁄

𝑚𝑛 +
𝑚𝑛−1
⁄

𝑚𝑛 = 1 and hence corresponding term in H.P. is 1.

195. Let the three numbers in H.P. are 𝑎, 𝑏, 𝑐 then 1⁄𝑎,
1
⁄

𝑏 ,
1
⁄

𝑐 will be in A.P. Given, 𝑎 + 𝑏 + 𝑐 =

37, 1⁄𝑎 +
1
⁄

𝑏 +
1
⁄

𝑐 =
1
⁄

4. Let 𝑑 be the c.d. of the A.P. then 3⁄𝑏 =
1
⁄

4 ⇒ 𝑏 = 12

⇒ 12
⁄

1−12𝑑 + 12 + 12
⁄

1+12𝑑 = 37 ⇒ 𝑑 = 1
⁄

60. So the numbers are 15, 12, 10.

196. ∵ 𝑎, 𝑏, 𝑐 are in H.P. ∴ 𝑏 = 2𝑎𝑐
⁄

𝑎+𝑐.

L.H.S. = 1
⁄

𝑏−𝑎 +
1
⁄

𝑏−𝑐 =
𝑎+𝑐
⁄

𝑎𝑐−𝑎2 +
𝑎+𝑐
⁄

𝑎𝑐−𝑐2 =
𝑎+𝑐
⁄

𝑎𝑐 = 1
⁄

𝑎 +
1
⁄

𝑐 = R.H.S.

197. ∵ 𝑎, 𝑏, 𝑐 are in H.P. ∴ 𝑏 = 2𝑎𝑐
⁄

𝑎+𝑐.

L.H.S. = 𝑏+𝑎
⁄

𝑏−𝑎 +
𝑏+𝑐
⁄

𝑏−𝑐 =
𝑎2+3𝑎𝑐
⁄

𝑎𝑐−𝑎2 +
𝑐2+3𝑎𝑐
⁄

𝑎𝑐−𝑐2 = 3𝑎𝑐2+𝑎2𝑐−3𝑎2𝑐−𝑎𝑐2
⁄

𝑎𝑐(𝑐−𝑎) = 2𝑎𝑐2−2𝑎2𝑐
⁄

𝑎𝑐(𝑐−𝑎) = 2 = R.H.S.

198. Let 𝑑 be the c.d. of corresponding A.P., then 1⁄𝑥2−
1
⁄

𝑥1 = 𝑑 ⇒ 𝑥1𝑥2 = 𝑥1−𝑥2⁄
𝑑 and similarly,

𝑥2𝑥3 = 𝑥2−𝑥3⁄
𝑑 , 𝑥3𝑥4 =

𝑥3−𝑥4⁄
𝑑 , 𝑥4𝑥5 =

𝑥4−𝑥5⁄
𝑑 .

Adding toegther, 𝑥1−𝑥5⁄𝑑 = 𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥3𝑥4 + 𝑥4𝑥5 =
𝑥1𝑥5
⁄

𝑑 [ 1⁄𝑥1 −
1
⁄

𝑥5] = 4𝑥1𝑥5. Hence
proved.

199. Like previous problem 𝑥1 − 𝑥3 = 2𝑥1𝑥3𝑑 and 𝑥2 − 𝑥4 = 2𝑥2𝑥4𝑑 so L.H.S. =
4𝑥1𝑥2𝑥3𝑥4𝑑2

And 𝑥1 − 𝑥2 = 𝑥1𝑥2𝑑 and 𝑥3 − 𝑥4 = 𝑥3𝑥4𝑑 so R.H.S. = 4𝑥1𝑥2𝑥3𝑥4𝑑2 and thus L.H.S.
= R.H.S.
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200. Given 1
⁄

𝑏+𝑐 ,
1
⁄

𝑐+𝑎,
1
⁄

𝑎+𝑏 are in A.P.

Multiplying with 𝑎 + 𝑏 + 𝑐 and then subtracting 1 from each term we get required
condition.

201. Given 1
⁄

𝑏+𝑐 ,
1
⁄

𝑐+𝑎,
1
⁄

𝑎+𝑏 are in A.P.

Multiplying each term with 𝑎 + 𝑏 + 𝑐 and then subtracting 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 from each
term we get the required condition.

202. Given that 𝑎, 𝑏, 𝑐 are in A.P. Dividing each term by 𝑎𝑏𝑐, we get that 1⁄𝑏𝑐 , 1
⁄

𝑐𝑎 ,
1
⁄

𝑎𝑏 are in
A.P. Multiplying each term with 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 and then subtracting 1 from each term
we get the desired condition.

203. Given that 1⁄𝑎,
1
⁄

𝑏,
1
⁄

𝑐 are in A.P. Multiplying each term with 𝑎+𝑏+𝑐 and then subtracting 2
from each term we get the desired condition.

204. Given that 1⁄𝑎,
1
⁄

𝑏,
1
⁄

𝑐 are in A.P. Multiplying each term with 𝑎+𝑏+𝑐 and then subtracting 1
from each term we get the desired condition.

205. Let 𝑑 be the c.d. of the A.P. and 𝑟 be the common ratio of the G.P.

⇒ 𝑏 − 𝑐 = −𝑑, 𝑐 − 𝑎 = 2𝑑, 𝑎 − 𝑏 = −𝑑 and 𝑦 = 𝑥𝑟, 𝑧 = 𝑥𝑟2.

L.H.S. = 𝑥𝑏−𝑐𝑦𝑐−𝑎𝑧𝑎−𝑏 = 𝑥−𝑑(𝑥𝑟)2𝑑(𝑥𝑟2)−𝑑 = 𝑥0𝑦0 = 1.

206. Let 𝑎 be the first term and 𝑑 be the c.d. of the A.P. Then,

𝑎+(𝑞−1)𝑑
⁄

𝑎+(𝑝−1)𝑑 =
𝑎+(𝑟−1)𝑑
⁄

𝑎+(𝑞−1)𝑑 =
𝑎+(𝑠−1)𝑑
⁄

𝑎+(𝑟−1)𝑑

⇒ [𝑎+(𝑞−1)𝑑]−[𝑎+(𝑟−1)𝑑]
⁄

[𝑎+(𝑝−1)𝑑]−[𝑎+(𝑞−1)𝑑] =
[𝑎+(𝑟−1)𝑑]−[𝑎+(𝑠−1)𝑑]
⁄

[𝑎+(𝑞−1)𝑑]−[𝑎+(𝑟−1)𝑑]

⇒ 𝑞−𝑟
⁄

𝑝−𝑞 =
𝑟−𝑠
⁄

𝑞−𝑟 which proves the required condition.

207. Let 𝑥 be the first term and 𝑑 be the c.d. of the A.P. Then 𝑎 = 𝑥 + (𝑝 − 1)𝑑, 𝑏 =
𝑥 + (𝑞 − 1)𝑑, 𝑐 = 𝑥 + (𝑟 − 1)𝑑

⇒ 𝑏 − 𝑐 = (𝑞 − 𝑟)𝑑, 𝑐 − 𝑎 = (𝑟 − 𝑝)𝑑 and 𝑎 − 𝑏 = (𝑝 − 𝑞)𝑑

Also let 𝑚 be the first term and 𝑛 be the common ratio of the G.P. Then 𝑎 =
𝑚𝑛𝑝−1, 𝑏 = 𝑚𝑛𝑞−1, 𝑐 = 𝑚𝑛𝑟−1

L.H.S. = 𝑎𝑏−𝑐𝑏𝑐−𝑎𝑐𝑎−𝑏 = (𝑚𝑛𝑝−1)(𝑞−𝑟)𝑑(𝑚𝑛𝑞−1)(𝑟−𝑝)𝑑(𝑚𝑛𝑟−1)(𝑝−𝑞)𝑑 = 𝑚0𝑛0 =
1 = R.H.S.

208. Given, 𝑎, 𝑏, 𝑐 are in A.P. ⇒ 2𝑏 = 𝑎 + 𝑐 and 𝑏, 𝑐, 𝑑 are in H.P. ⇒ 𝑐 = 2𝑏𝑑
⁄

𝑏+𝑑

⇒ 𝑏𝑐 = 𝑎+𝑐
⁄

2
2𝑏𝑑
⁄

𝑏+𝑑 =
(𝑎+𝑐)𝑏𝑑
⁄

𝑏+𝑑 ⇒ 𝑏2𝑐 + 𝑏𝑐𝑑 = 𝑎𝑏𝑏𝑑 + 𝑏𝑐𝑑 ⇒ 𝑏𝑐 = 𝑎𝑑.
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209. Given 𝑎𝑥 = 𝑏𝑦 = 𝑐𝑧 = 𝑝(let) ⇒ 𝑎 = 𝑝
1⁄
𝑥, 𝑏 = 𝑝

1
⁄

𝑦, 𝑐 = 𝑝
1
⁄

𝑧.

Also given, 𝑎, 𝑏, 𝑐 are in G.P. ⇒ 𝑏
⁄

𝑎 =
𝑐⁄
𝑏 ⇒ 𝑝

1
⁄

𝑦−
1⁄
𝑥 = 𝑝

1
⁄

𝑧−
1
⁄

𝑦 ⇒ 1
⁄

𝑦 −
1
⁄

𝑥 =
1
⁄

𝑧 −
1
⁄

𝑦

∴ 1
⁄

𝑥,
1
⁄

𝑦 ,
1
⁄

𝑧 are in H.P.

210. ∵ 𝑥+𝑦⁄2 , 𝑦, 𝑦+𝑧⁄2 are in H.P. ∴ 𝑦 =
2(𝑥+𝑦⁄2 )(𝑦+𝑧⁄2 )
⁄

𝑥+𝑦
⁄

2 +𝑦+𝑧⁄2

⇒ 𝑥𝑦 + 2𝑦2 + 𝑦𝑧 = 𝑥𝑦 + 𝑦2 + 𝑧𝑥 + 𝑦𝑧 ⇒ 𝑦2 = 𝑧𝑥 ⇒ 𝑎, 𝑏, 𝑐 are in G.P.

211. ∵ 𝑥, 𝑦, 𝑧 are in G.P. ∴ 𝑦2 = 𝑧𝑥. Also, 𝑥 + 𝑎, 𝑦 + 𝑎, 𝑧 + 𝑎 are in H.P. ⇒ 𝑦 + 𝑎 =
2(𝑥+𝑎)(𝑧+𝑎)
⁄

𝑥+𝑎+𝑧+𝑎 ⇒ 𝑥𝑦 + 𝑦𝑧 + 2𝑎𝑦 + 𝑎𝑥+ 𝑎𝑧 + 2𝑎2 = 2(𝑧𝑥 + 𝑎𝑧 + 𝑎𝑥+ 𝑎2)⇒ (𝑦 − 𝑎)(𝑥+
𝑧 − 2𝑦)

But 𝑥 + 𝑧 − 2𝑦 ≠ 0 else 𝑥 + 𝑧 = 2𝑦 i.e. 𝑥, 𝑦, 𝑧 are in A.P. ⇒ 𝑥 = 𝑦 = 𝑧 ∴ 𝑦 = 𝑎.

212. ∵ 𝑎, 𝑏, 𝑐 are in A.P., G.P. and H.P. ∴ 2𝑏 = 𝑎 + 𝑐, 𝑏2 = 𝑎𝑐, 𝑏 = 2𝑎𝑐
⁄

𝑎+𝑐 ⇒ (𝑎+𝑐⁄2 )
2
= 𝑎𝑐 ⇒

(𝑎 + 𝑐)2 = 4𝑎𝑐 ⇒ 𝑎 = 𝑐 = 𝑏.

213. ∵ 𝑎, 𝑏, 𝑐 are in A.P. ⇒ 2𝑏 = 𝑎 + 𝑐. ∵ 𝑏, 𝑐, 𝑑 are in G.P. ∴ 𝑐2 = 𝑏𝑑. ∵ 𝑐, 𝑑, 𝑒 are in H.P.
∴ 𝑑 = 2𝑐𝑒
⁄

𝑐+𝑒.

𝑐2 = 𝑏𝑑 = 𝑎+𝑐
⁄

2 . 2𝑐𝑒⁄𝑐+𝑒 ⇒ 𝑐(𝑐 + 𝑒) = (𝑎 + 𝑐)𝑒 ⇒ 𝑐2 = 𝑎𝑒 ⇒ 𝑎, 𝑐, 𝑒 are in G.P.

214. ∵ 𝑎, 𝑏, 𝑐 are in A.P. ∴ 2𝑏 = 𝑎 + 𝑐. ∵ 𝑎2, 𝑏2, 𝑐2 are in H.P. ∴ 𝑏2 = 2𝑎2𝑐2
⁄

𝑎2+𝑐2

⇒ (𝑎+𝑐⁄2 )
2
= 2𝑎2𝑐2
⁄

𝑎2+𝑐2 ⇒ (𝑎2 + 𝑐2)(𝑎 + 𝑐)2 = 8𝑎2𝑐2 ⇒ (𝑎 − 𝑐)2 [(𝑎 + 𝑐)2 + 2𝑎𝑐] = 0

If (𝑎 − 𝑐)2 = 0 ⇒ 𝑎 = 𝑐 ⇒ 𝑎 = 𝑏 = 𝑐 else (𝑎 + 𝑐)2 + 2𝑎𝑐 = 0 ⇒ 𝑎𝑐 = −2𝑏2 ⇒ 𝑏2 =
−𝑎
⁄

2 .𝑐 ⇒ −𝑎
⁄

2 , 𝑏, 𝑐 are in G.P.

215. 𝑎𝑏𝑏𝑐𝑐𝑎 = 𝑎𝑐𝑏𝑎𝑐𝑏 ⇒ 𝑎𝑏−𝑐𝑏𝑐−𝑎𝑐𝑎−𝑏 = 1 which has been proved previously.

216. Let 𝑎 be the first terms of both the A.P. and G.P. 𝑑 be c.d. of the A.P. and 𝑟 be the
common ratio of the G.P. Given,

𝑎 + 𝑎 = 1 ⇒ 𝑎 = 1
⁄

2 , 𝑎 + 𝑑 + 𝑎𝑟 = 1
⁄

2 ⇒ 𝑑 = −𝑎𝑟 ⇒ 2𝑑 = −𝑟 and 𝑎 + 2𝑑 + 𝑎𝑟2 = 2 ⇒

−𝑟 + 𝑟2
⁄

2 = 3
⁄

2 ⇒ 𝑟2 − 2𝑟 + 3 = 0. Now 𝑟 and sum of fourth term can be easily found.

217. ∵ 𝑝, 𝑞, 𝑟 are in A.P. ∴ 2𝑞 = 𝑝 + 𝑟. Also, let 𝑎−𝑥⁄𝑝𝑥 = 𝑎−𝑦
⁄

𝑞𝑦 = 𝑎−𝑧
⁄

𝑟𝑧 = 𝑓

∴ 𝑝 = 𝑎
⁄

𝑓𝑥 −
1⁄
𝑓 , 𝑞 =

𝑎
⁄

𝑓𝑦 −
1⁄
𝑓 , 𝑟 =

𝑎
⁄

𝑓𝑧 −
1⁄
𝑓. Substituting these in 2𝑞 = 𝑝 + 𝑟
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2𝑎
⁄

𝑓𝑦 −
2⁄
𝑓 =

𝑎
⁄

𝑓𝑥 −
1⁄
𝑓 +

𝑎
⁄

𝑓𝑦 −
1⁄
𝑓 ⇒

2
⁄

𝑦 =
1
⁄

𝑥 +
1
⁄

𝑧 ⇒ 𝑥, 𝑦, 𝑧 are in H.P.

218. Let 𝑑 be c.d. of the A.P. and 𝑑′ be the c.d. of the A.P. corrsponding to H.P. then,

𝑏 = 𝑎 + (𝑛 − 1)𝑑 and 1⁄𝑏 =
1
⁄

𝑎 + (𝑛 − 1)𝑑′ ⇒ 𝑑 = 𝑏−𝑎
⁄

𝑛−1, 𝑑
′ = 𝑎−𝑏
⁄

𝑎𝑏(𝑛−1)

Product of the 𝑟th term of the A.P. and (𝑛 − 𝑟 + 1) th term of the H.P. = [𝑎 + (𝑟 −
1) 𝑏−𝑎⁄𝑛−1] .

1
⁄

1⁄
𝑎+(𝑛−𝑟) .

𝑎−𝑏
⁄

𝑎𝑏(𝑛−1)
= 𝑎𝑏.

219. Let 𝑎, 𝑏, 𝑐 be three consecutive terms of an H.P. then 𝑏 = 2𝑎𝑐
⁄

𝑎+𝑐.

Terms after subtraction will be 𝑎 − 𝑏
⁄

2 ,
𝑏
⁄

2 , 𝑐 −
𝑏
⁄

2. The condition for these to be in G.P. is

𝑏2 = (2𝑎 − 𝑏)(2𝑐 − 𝑏) = 4𝑎𝑐 − 2𝑏(𝑎 + 𝑐)+ 𝑏2 ⇒ 𝑏 = 2𝑎𝑐
⁄

𝑎+𝑐 which is a given.

220. ∵ 𝑦 − 𝑥, 2(𝑦 − 𝑎), 𝑦 − 𝑧 are in H.P. ∴ 1
⁄

2(𝑦−𝑧)−
1
⁄

𝑦−𝑥 =
1
⁄

𝑦−𝑧 −
1
⁄

2(𝑦−𝑎) =
2𝑎−𝑦−𝑧
⁄

(𝑦−𝑥) = 𝑦+𝑧−2𝑎
⁄

𝑦−𝑧

= (𝑥−𝑎)+(𝑦−𝑎)
⁄

(𝑥−𝑎)−(𝑦−𝑎) =
(𝑦−𝑎)+(𝑧−𝑎)
⁄

(𝑦−𝑎)−(𝑧−𝑎) =
𝑥−𝑎
⁄

𝑦−𝑎 =
𝑦−𝑎
⁄

𝑧−𝑎 Hence, 𝑥 − 𝑎, 𝑦 − 𝑎, 𝑧 − 𝑎 are in G.P.

221. From given conditions we have 2𝑏 = 𝑎 + 𝑐, 𝑞 = 2𝑝𝑟
⁄

𝑝+𝑟 and 𝑏2𝑞2 = 𝑎𝑐𝑝𝑟. Substituting the
values of 𝑏 and 𝑞 in third equations, we arrive at

[(𝑎+𝑐⁄2 )
2
( 2𝑝𝑟⁄𝑝+𝑟)

2
] = 𝑎𝑐𝑝𝑟 = (𝑎+𝑐)2
⁄

(𝑟+𝑝)2 .𝑝
2𝑟2 ⇒ 𝑝𝑟
⁄

(𝑟+𝑝)2 =
𝑎𝑐
⁄

(𝑎+𝑐)2

⇒ (𝑟+𝑝)2
⁄

𝑝𝑟 = (𝑎+𝑐)2
⁄

𝑎𝑐 ⇒ 𝑝
⁄

𝑟 +
𝑟
⁄

𝑝 =
𝑎
⁄

𝑐 +
𝑐
⁄

𝑎.

222. From given conditions we have, 2𝑏 = 𝑎 + 𝑥, 𝑏2 = 𝑎𝑦 and 2⁄𝑏 =
1
⁄

𝑎 +
1
⁄

𝑥 ⇒ 𝑥 = 2𝑏 − 𝑎, 𝑦 = 𝑏2
⁄

𝑎

and 𝑧 = 𝑎𝑏
⁄

2𝑎−𝑏

Now we can substitute in the required result and prove the equality.

223. From given equations 2 = 𝑥+𝑧 and 4 = 𝑧𝑥, we have to prove that 4 = 2𝑧𝑥⁄
𝑥+𝑧. Substituting

the values from given conditions to required equality we find that equality holds.

224. Given that 𝑡𝑛 = 12𝑛2 − 6𝑛 + 5 then 𝑆𝑛 = 12
𝑛
∑
𝑖=1

𝑖2 − 6
𝑛
∑
𝑖=1

𝑖 + 5
𝑛
∑
𝑖=1

1

= 12. 𝑛(𝑛+1)(2𝑛+1)⁄
6 −6 𝑛(𝑛+1)⁄2 +5𝑛 = 𝑛[4𝑛2+6𝑛+2−3𝑛−3+5] = 𝑛(4𝑛2+3𝑛+4).

225. Clearly 𝑡𝑛 = (2𝑛 − 1)2 = 4𝑛2 − 4𝑛 + 1 ⇒ 𝑆𝑛 = 4
𝑛
∑
𝑖=1

𝑖2 − 4
𝑛
∑
𝑖=1

𝑖 +
𝑛
∑
𝑖=1

1

= 4𝑛(𝑛+1)(2𝑛+1)⁄
6 − 4 𝑛(𝑛+1)⁄2 + 𝑛 = 𝑛[4𝑛

2+6𝑛+2−6𝑛−6+3
⁄

3 ] = 𝑛(4𝑛2−1)
⁄

3 .
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226. Clearly, 𝑡𝑛 = 𝑛(𝑛 + 1)(𝑛 + 2) = 𝑛3 + 3𝑛2 + 2𝑛 ⇒ 𝑆𝑛 =
𝑛
∑
𝑖=1

𝑖3 + 3
𝑛
∑
𝑖=1

𝑖2 +
𝑛
∑
𝑖=1

𝑖

= [𝑛(𝑛+1)⁄2 ]
2
+ 3. 𝑛(𝑛+1)(2𝑛+1)⁄

6 + 𝑛(𝑛+1)
⁄

2 = 𝑛(𝑛+1)
⁄

2 [𝑛(𝑛+1)⁄2 + 2𝑛 + 1 + 1] =
𝑛(𝑛+1)
⁄

2 . 𝑛
2+5𝑛+4
⁄

2 = 𝑛(𝑛+1)2(𝑛+4)
⁄

4 .

227. 𝑟th term of the series, 𝑡𝑟 = 𝑟(𝑛 − 𝑟 + 1)⇒ 𝑆𝑛 = 𝑛
𝑛
∑
𝑟=1

𝑟 −
𝑛
∑
𝑟=1

𝑟2 +
𝑛
∑
𝑟=1

𝑟

= 𝑛.𝑛(𝑛+1)
⁄

2 − 𝑛(𝑛+1)(2𝑛+1)⁄
6 + 𝑛(𝑛+1)
⁄

2 = 𝑛(𝑛+1)
⁄

2 [𝑛 − 2𝑛+1
⁄

3 + 1] =
𝑛(𝑛+1)
⁄

2 [3𝑛−2𝑛−1+3⁄3 ] = 𝑛(𝑛+1)(𝑛+2)⁄
6 .

228. If you see carefully this series is same as previous problem hence sum will be same.

𝑡𝑛 = 1 + 2 + 3 + ⋯+ 𝑛 = 𝑛2+𝑛)
⁄

2 ⇒ 𝑡𝑛 =
1
⁄

2[
𝑛
∑
𝑖=1

𝑖2 +
𝑛
∑
𝑖=1

𝑖]

= 1
⁄

2 [
𝑛(𝑛+1)(2𝑛+1)⁄

6 + 𝑛(𝑛+1)
⁄

2 ] = 𝑛(𝑛+1)
⁄

4 [2𝑛+1⁄3 + 1] = 𝑛(𝑛+1)(𝑛+2)⁄
6 .

229. First term contains 1 integer, second term contains 2 and so on. So before 𝑡𝑛 we will
have 1 + 2 + ⋯+ (𝑛 − 1) integers i.e. 𝑛(𝑛−1)⁄2 integers. So 𝑡𝑛 will start with 𝑛(𝑛−1)+2⁄2

and will have 𝑛 integers. So 𝑡𝑛 = 𝑛2−𝑛+2⁄
2 and now it is trivial to find the sum, which

will be 𝑆𝑛 = 1
⁄

2

𝑛
∑
𝑖=1

𝑖2 − 1
⁄

2

𝑛
∑
𝑖=1

𝑖 +
𝑛
∑
𝑖=1

1 = 𝑛(𝑛+1)(2𝑛+1)⁄
12 − 𝑛(𝑛+1)
⁄

2 + 𝑛 simplification is

left to you.

230. Let 𝑛𝑡𝑛 represent numerator and 𝑑𝑡𝑛 be the denominator of the 𝑛th term 𝑡𝑛. Then
𝑛𝑡𝑛 = [𝑛(𝑛+1)⁄2 ]

3
and 𝑑𝑡𝑛 = 𝑛
⁄

2 [2 + (𝑛 − 1)2] = 𝑛2

⇒ 𝑡𝑛 = (𝑛+1⁄2 )
2
= 𝑛2+2𝑛+1
⁄

2 ⇒ 𝑆𝑛 =
1
⁄

2

𝑛
∑
𝑖=1

𝑖2+
𝑛
∑
𝑖=1

𝑖+1
⁄

2

𝑛
∑
𝑖=1

1 = 𝑛(𝑛+1)(2𝑛+1)⁄
12 +𝑛(𝑛+1)
⁄

2 +

𝑛
⁄

2. Simplify and put 𝑛 = 16 to arrive at the answer.

231. 𝑡𝑛 = [(2𝑛 + 1)3 − (2𝑛)3 ] = 12𝑛2 + 6𝑛 + 1 ⇒ 𝑆𝑛 = 12
𝑛
∑
𝑖=1

𝑖3 + 6
𝑛
∑
𝑖=1

𝑖 +
𝑛
∑
𝑖=1

1 =

12 𝑛(𝑛+1)(2𝑛+1)⁄
6 + 6 𝑛(𝑛+1)⁄2 + 𝑛 = 2𝑛(𝑛 + 1) (2𝑛 + 1)+ 3𝑛(𝑛 + 1)+ 𝑛. Simplify and

put 𝑛 = 10 to get the answer.

232. 𝑡1 = 1
⁄

1 −
1
⁄

2 , 𝑡2 =
1
⁄

2 −
1
⁄

3⋯ 𝑡𝑛 = 1
⁄

𝑛 −
1
⁄

𝑛+1. Adding 𝑆𝑛 = 1
⁄

1 −
1
⁄

𝑛+1 =
𝑛
⁄

𝑛+1.

233. 𝑡𝑛 = 1⁄
𝑛(𝑛+1)(𝑛+2) =

1
⁄

2 [
1
⁄

𝑛(𝑛+1)−
1
⁄

(𝑛+1)(𝑛+2)] =
1
⁄

2 [
1
⁄

𝑛 −
2
⁄

𝑛+1 +
1
⁄

𝑛+2]

Then, 𝑡1 = 1
⁄

2.1 −
1
⁄

2+
1
⁄

2.3, 𝑡2 =
1
⁄

2.2 −
1
⁄

3+
1
⁄

2.4, 𝑡3 =
1
⁄

2.3 −
1
⁄

4+
1
⁄

2.5, … , 𝑡𝑛−2 = 1⁄
2(𝑛−1)−

1
⁄

𝑛−1+
1⁄
2𝑛, 𝑡𝑛−1 =

1⁄
2(𝑛−1)−

1
⁄

𝑛 +
1⁄

2(𝑛+1) , 𝑡𝑛 =
1
⁄

2.𝑛 −
1
⁄

𝑛+1 +
1⁄

2(𝑛+2)
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⇒ 𝑆𝑛 = 1
⁄

2.1 −
1
⁄

2 +
1
⁄

2.2 +
1⁄

2(𝑛+1)−
1
⁄

𝑛+1 +
1⁄

2(𝑛+2) =
1
⁄

4 −
1⁄

2(𝑛+1)+
1⁄

2(𝑛+2) ⇒ 𝑆∞ = 1
⁄

4

234.
𝑆𝑛 = 1 + 5 + 11 + 19 + ⋯+ 𝑡𝑛−1 + 𝑡𝑛
𝑆𝑛 = 1 + 5 + 11 + ⋯+ 𝑡𝑛−1 + 𝑡𝑛

Subtracting, we get 𝑡𝑛 = 1 = [4 + 6 + 8 + ⋯ to (𝑛 − 1) terms ] = 1 + 𝑛−1
⁄

2 [2.4 +

(𝑛 − 2)2] = 𝑛2 + 𝑛− 1 ⇒ 𝑆𝑛 =
𝑛
∑
𝑖=1

𝑖2 +
𝑛
∑
𝑖=1

𝑖 −
𝑛
∑
𝑖=1

1 = 𝑛(𝑛+1)(2𝑛+1)⁄
6 + 𝑛(𝑛+1)
⁄

2 − 𝑛 =

𝑛(𝑛2+3𝑛−1)
⁄

3 .

235. First person gets 1 repee, second person gets 1 + 1 = 2 rupee, third person gets
2 + 2 = 4 rupee, fourth person gets 4 + 3 = 7 rupee and so on.

𝑆𝑛 = 1 + 2 + 4 + 7 + ⋯+ 𝑡𝑛
𝑆𝑛 = 1 + 2 + 4 + ⋯+ 𝑡𝑛−1 + 𝑡𝑛

Subtracting, we get 𝑡𝑛 = 1+ [1+2+3+⋯ to (𝑛−1) terms]= 1+𝑛−1
⁄

2 [2.1+(𝑛−2)]=
𝑛2−𝑛+2⁄

2 = 67 ⇒ 𝑛2 − 𝑛 − 132 = 0 ⇒ 𝑛 = 12.

236. First term contains 1 integer, second term contains 2 and so on. So before 𝑡𝑛 we will
have 1 + 2 + ⋯+ (𝑛 − 1) integers i.e. 𝑛(𝑛−1)⁄2 integers. So 𝑡𝑛 will start with 𝑛(𝑛−1)+2⁄2

and will have 𝑛 integers. So 𝑡𝑛 = 𝑛2−𝑛+2⁄
2 . This will be the first number in 𝑛th group.

So sum of 𝑛th group = 𝑛
⁄

2 [𝑛
2 − 𝑛 + 2 + 𝑛 − 1] = 𝑛(𝑛2+1)
⁄

2 .

237.
𝑆𝑛 = 1 + 3 + 7 + 15 + ⋯+ 𝑡𝑛
𝑆𝑛 = 1 + 3 + 7 + ⋯+ 𝑡𝑛−1 + 𝑡𝑛

Subtracting, we have 𝑡𝑛 = 1 + [2 + 4 + 8 + ⋯ to (𝑛 − 1) terms] = 1 + 2(2𝑛−1−1)
⁄

2−1 =

2𝑛−1⇒ 𝑆𝑛 = (2−1)+(22−1)+(23−1)+⋯+(2𝑛−1)= 2(2𝑛−1)
⁄

2−1 −𝑛 = 2𝑛+1−2−𝑛.

238.
𝑆𝑛 = 1 + 2𝑥 + 3𝑥2 + ⋯+ 𝑡𝑛
𝑥𝑆𝑛 = 1.𝑥 + 2𝑥2 + ⋯+ 𝑡𝑛−1 + 𝑡𝑛

Subtracting we get (1−𝑥)𝑆𝑛 = 1+𝑥+𝑥2+⋯ to 𝑛 terms−𝑥𝑡𝑛 = 1−𝑥𝑛⁄
1−𝑥 −𝑥.𝑛𝑥𝑛−1 ⇒

𝑆𝑛 = 1−𝑥𝑛
⁄

(1−𝑥)2 −
𝑛𝑥𝑛
⁄

1−𝑥.

239. Given 
𝑆100 = 1 + 2.2 + 3.22 + 4.33 + ⋯ + 100.299

2.𝑆100 = 1.2 + 2.22 + 3.23 + ⋯ + 99.299 + 100.2100

Subtracting, we get −𝑆𝑛 = 1 + [2 + 22 + 23 + ⋯ to 99 terms]− 100.2100

𝑆𝑛 = 100.2100 − 2100−1
⁄

2−1 = 99.2100 + 1.
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240. Clearly 
𝑆 = 1 + 22𝑥 + 32𝑥2 + 42𝑥3 + ⋯ to ∞
𝑥𝑆 = 𝑥 + 22𝑥2 + 32𝑥3 + ⋯ to ∞

Subtracting, we get 
(1 − 𝑥)𝑆 = 1 + 3𝑥 + 5𝑥2 + 7𝑥3 + ⋯ to ∞
𝑥(1 − 𝑥)𝑆 = 𝑥 + 3𝑥2 + 5𝑥3 + ⋯ to ∞

Again subtracting, (1 − 𝑥)2 𝑆 = 1 + 2𝑥 + 2𝑥2 + 2𝑥3 + ⋯ to ∞ = 1 + 2𝑥
⁄

1−𝑥 =
1+𝑥
⁄

1−𝑥 ⇒

𝑆 = 1+𝑥
⁄

(1−𝑥)2.

241. 𝑆𝑛 = 2𝑛2 + 4, 𝑡𝑛 = 𝑆𝑛− 𝑆𝑛−1 = 2𝑛2 + 4− 2(𝑛− 1)2 − 4 = 4𝑛− 2 ⇒ 𝑑 = 𝑡𝑛 − 𝑡𝑛−1 =
4𝑛 − 2 − 4(𝑛 − 1)+ 2 = 4 which is constant therefore the given sequence is in A.P.

Hint: Any sequence which is of the for which sum is of the form 𝑎𝑛2 + 𝑏𝑛 + 𝑐 will lead
to an A.P.

242. Given 𝑡𝑛 = 𝑛(𝑛 − 1)(𝑛 + 1) = 𝑛3 − 𝑛 ⇒ 𝑆𝑛 =
𝑛
∑
𝑖=1

𝑖3 −
𝑛
∑
𝑖=1

𝑖 = [𝑛(𝑛+1)⁄2 ]
2
− 𝑛(𝑛+1)
⁄

2 =

𝑛(𝑛+1)(𝑛2+𝑛−2)
⁄

4 .

243. Clearly, 𝑡𝑛 = (2𝑛 − 1)3 = 8𝑛3 − 12𝑛2 + 6𝑛 − 1 ⇒ 𝑆𝑛 = 8
𝑛
∑
𝑖=1

𝑖3 − 12
𝑛
∑
𝑖=1

𝑖2 + 6
𝑛
∑
𝑖=1

𝑖 −
𝑛
∑
𝑖=1

1 = 2𝑛2(𝑛+ 1)2 − 2𝑛(𝑛+ 1) (2𝑛+ 1)+3𝑛(𝑛+ 1)−𝑛; simplification is left to you.

244. Clearly, 𝑡𝑛 = (3𝑛 − 2)2 = 9𝑛2 − 12𝑛 + 4 ⇒ 𝑆𝑛 = 9
𝑛
∑
𝑖=1

𝑖2 − 12
𝑛
∑
𝑖=1

𝑖 + 4
𝑛
∑
𝑖=1

1 =

3𝑛(𝑛+1)(2𝑛+1)⁄
2 − 6𝑛(𝑛 + 1)+ 4𝑛; simplification is left to you.

245. Given series is 12 + 32 + 52 + ⋯ to 𝑛 terms + 2 + 4 + 6 + ⋯ to 𝑛 terms.

⇒ 𝑡𝑛 = (2𝑛 − 1)2 + 𝑛
⁄

2 [2.2 + (𝑛 − 1)2] = 4𝑛2 − 4𝑛 + 1 + 𝑛2 + 𝑛 = 5𝑛2 − 3𝑛 + 1

⇒ 𝑆𝑛 = 5∑𝑛
𝑖=1 𝑖

2− 3∑𝑛
𝑖=1 𝑖+∑𝑛

𝑖=1 1 =
5𝑛(𝑛+1)(2𝑛+1)⁄

6 − 3𝑛(𝑛+1)⁄
2 +𝑛; simplification

is left to you.

246. Case I: When 𝑛 is even. Let 𝑛 = 2𝑚 then 𝑆 = 12 + 32 + 52 + ⋯ to 𝑚 terms −
[22 + 42 + 62 + ⋯ to 𝑚 terms]

=∑𝑚
𝑖=1(2𝑖−1)2−∑𝑚

𝑖=1(2𝑖)
2 = −4∑𝑚

𝑖=1 𝑖+∑𝑚
𝑖=1 1 = −2𝑚(𝑚+1)+4𝑚 = −2𝑚2+

2𝑚 and then we substitute 𝑚 = 𝑛
⁄

2.

Case II: When 𝑛 is odd. Let 𝑛 = 2𝑚+1, then 𝑆 = 12+32+52+⋯ to (𝑚+1) terms−
[22 + 42 + 62 + ⋯ to 𝑚 terms]



Answers of Progressions 380

=
𝑚+1
∑
𝑖=1

(2𝑖 − 1)2 −
𝑚
∑
𝑖=1

(2𝑖)2 = 4(𝑚+1)(𝑚+2)(2𝑚+3)
⁄

6 − 2(𝑚+ 1) (𝑚+ 2) + (𝑚+ 1) −

2𝑚(𝑚+1)(2𝑚+1)
⁄

3 ; put 𝑚 = 𝑛−1
⁄

2 and simplify.

247. Clearly, 𝑡𝑛 = (2𝑛−1)(2𝑛+1) = 4𝑛2−1 ⇒ 𝑆𝑛 = 4
𝑛
∑
𝑖=1

𝑖2−
𝑛
∑
𝑖=1

1 = 2𝑛(𝑛+1)(2𝑛+1)⁄
3 −𝑛;

simplification is left to you.

248. Clearly, 𝑡𝑛 = 𝑛(𝑛 + 1)⇒ 𝑆𝑛 =
𝑛
∑
𝑖=1

𝑖2 +
𝑛
∑
𝑖=1

𝑖 = 𝑛(𝑛+1)(2𝑛+1)⁄
6 + 𝑛(𝑛+1)
⁄

2 ; simplification

is left to you.

249. Clearly, 𝑡𝑛 = 𝑛(𝑛+ 1)2 = 𝑛3+ 2𝑛2+ 𝑛 ⇒ 𝑆𝑛 =
𝑛
∑
𝑖=1

𝑖3 + 2
𝑛
∑
𝑖=1

𝑖2 +
𝑛
∑
𝑖=1

𝑖 = [𝑛(𝑛+1)⁄2 ]
2
+

𝑛(𝑛+1)(2𝑛+1)⁄
3 + 𝑛(𝑛+1)
⁄

2 ; simplification is left to you.

250. Clearly, 𝑡𝑛 = (𝑛 + 1)𝑛2 = 𝑛3 + 𝑛2 ⇒ 𝑆𝑛 = [𝑛(𝑛+1)⁄2 ]
2
+ 𝑛(𝑛+1)(2𝑛+1)⁄

6 ; simplification
is left to you.

251. 𝑡𝑛 = 1 + 3 + 5 + ⋯ upto 𝑛 terms = 𝑛
⁄

2 [2.1 + (𝑛 − 1)2] = 𝑛2 ⇒ 𝑆𝑛 =
𝑛
∑
𝑖=1

𝑖2 =

𝑛(𝑛+1)(2𝑛+1)⁄
6 .

252. 𝑡𝑛 = 12 + 22 + 32 + ⋯ upto 𝑛 terms =
𝑛
∑
𝑖=1

𝑖2 = 𝑛(𝑛+1)(2𝑛+1)⁄
6 = 𝑛3+3𝑛2+𝑛
⁄

6 .

𝑆𝑛 = 1
⁄

6 [∑
𝑛
𝑖=1 𝑖

3 + 3∑𝑛
𝑖=1 𝑖

2 +∑𝑛
𝑖=1 𝑖] =

1
⁄

6 [
𝑛2(𝑛+1)2
⁄

4 + 𝑛(𝑛+1)(2𝑛+1)⁄
2 + 𝑛(𝑛+1)
⁄

2 ]; sim
plification is left to you.

253. 𝑡𝑛 = 𝑛(𝑛+1)(2𝑛+ 1) = 2𝑛3+ 3𝑛2+𝑛 ⇒ 𝑆𝑛 = 2
𝑛
∑
𝑖=1

𝑖3+ 3
𝑛
∑
𝑖=1

𝑖2+
𝑛
∑
𝑖=1

𝑖 = 𝑛2(𝑛+1)2
⁄

2 +

𝑛(𝑛+1)(2𝑛+1)⁄
2 + 𝑛(𝑛+1)
⁄

2 ; simplification is left to you.

254. 𝑡𝑛 = 𝑛(𝑛+ 1)(𝑛+ 2) = 𝑛3 + 3𝑛2 + 2𝑛 ⇒ 𝑆𝑛 =
𝑛
∑
𝑖=1

𝑖3 + 3
𝑛
∑
𝑖=1

𝑖2 + 2
𝑛
∑
𝑖=1

𝑖 = 𝑛2(𝑛+1)2
⁄

4 +

𝑛(𝑛+1)(2𝑛+1)⁄
2 + 𝑛(𝑛 + 1); simplification is left to you.

255. 𝑡𝑛 = 𝑛(2𝑛 + 1)2 = 4𝑛3 + 4𝑛2 + 𝑛 ⇒ 𝑆𝑛 = 4
𝑛
∑
𝑖=1

𝑖3 + 4
𝑛
∑
𝑖=1

𝑖2 +
𝑛
∑
𝑖=1

𝑖 = 𝑛2(𝑛 + 1)2 +

2𝑛(𝑛+1)(2𝑛+1)⁄
3 + 𝑛(𝑛+1)
⁄

2 ; put 𝑛 = 20 and simplify.

256. 𝑡𝑟 = 𝑟(𝑛2 − 𝑟2) = 𝑛2𝑟 − 𝑟3 ⇒ 𝑆 = 𝑛2∑𝑛
𝑖=1 𝑖 −∑𝑛

𝑖=1 𝑖
3 = 𝑛3(𝑛+1)
⁄

2 − 𝑛2(𝑛+1)2
⁄

4 ; simpli
fication is left to you.
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257. 𝑡𝑛 = (2𝑛 + 1)3 − (2𝑛)3 = 12𝑛2 + 6𝑛 + 1 ⇒ 𝑆𝑛 = 12
𝑛
∑
𝑖=1

𝑖2 + 6
𝑛
∑
𝑖=1

𝑖 +
𝑛
∑
𝑖=1

1 = 2𝑛(𝑛 +

1) (2𝑛 + 1)+ 3𝑛(𝑛 + 1)+ 𝑛; put 𝑛 = 10 to get the answer.

258. 𝑡𝑛 = 1
⁄

1+2+3+⋯ to 𝑛 terms =
2
⁄

𝑛(𝑛+1) = 2[1⁄𝑛 −
1
⁄

𝑛+1]

𝑡1 = 2[1 − 1
⁄

2], 𝑡2 = 2[1⁄2 −
1
⁄

3], 𝑡3 = 2[1⁄3 −
1
⁄

4], … , 𝑡𝑛 = 2[1⁄𝑛 −
1
⁄

𝑛+1].

Adding, 𝑆 = 2[1 − 1
⁄

𝑛+1] =
2𝑛
⁄

𝑛+1.

259. 𝑆 = 1
⁄

2.4 +
1
⁄

4.6 +
1
⁄

6.8 +
1
⁄

8.10 + … = 2[1⁄2 −
1
⁄

4 +
1
⁄

4 −
1
⁄

6 +
1
⁄

6 −
1
⁄

8 + ⋯ to ∞] = 1.

260.
𝑆 = 2 + 6 + 12 + 20 + ⋯+ 𝑡𝑛
𝑆 = 2 + 6 + 12 + ⋯+ 𝑡𝑛−1 + 𝑡𝑛

Subtracting, 𝑡𝑛 = 2 + 4 + 6 + 8 + ⋯ to 𝑛 terms = 𝑛
⁄

2 [2.2 + (𝑛 − 1)2] = 𝑛(𝑛 + 1) =

𝑛2 + 𝑛 ⇒ 𝑆 =
𝑛
∑
𝑖=1

𝑖2 +
𝑛
∑
𝑖=1

𝑖 = 𝑛(𝑛+1)(2𝑛+1)⁄
6 + 𝑛(𝑛+1)
⁄

2 ; simplification is left to you.

261.
𝑆 = 3 + 6 + 11 + 18 + ⋯+ 𝑡𝑛
𝑆 = 3 + 6 + 11 + 18 + ⋯+ 𝑡𝑛−1 + 𝑡𝑛

Subtracting, 𝑡𝑛 = 3 + [3 + 5 + 7 + ⋯ to (𝑛 − 1) terms] = 3 + 𝑛−1
⁄

2 [2.3 + (𝑛 − 2)2] =
3 + 𝑛2 − 1 = 𝑛2 + 2

𝑆 = 𝑛(𝑛+1)(2𝑛+1)⁄
6 + 2𝑛; simplification is left to you.

262.
𝑆 = 1 + 9 + 24 + 46 + 75 + ⋯+ 𝑡𝑛
𝑆 = 1 + 9 + 24 + 46 + ⋯+ 𝑡𝑛−1 + 𝑡𝑛

Subtracting 𝑡𝑛 = 1 + 8 + 15 + 22 + 29 + ⋯ to 𝑛terms = 𝑛
⁄

2 [2 + (𝑛 − 1)7] = 7𝑛2−5𝑛
⁄

2 .

⇒ 𝑆 = 7𝑛(𝑛+1)(2𝑛1)
⁄

12 − 5𝑛(𝑛+1)⁄
4 .

263.
𝑆 = 2 + 4 + 7 + 11 + 16 + ⋯+ 𝑡𝑛
𝑆 = 2 + 4 + 7 + 11 + ⋯+ 𝑡𝑛−1 + 𝑡𝑛

Subtracting, 𝑡𝑛 = 2 + [2 + 3 + 4 + 5 +⋯ to (𝑛 − 1) terms] = 2 + 𝑛−1
⁄

2 [2.2 + 𝑛 − 1] =

2 + 𝑛2+2𝑛−3
⁄

2 = 𝑛2−2𝑛+1
⁄

2 .

264.
𝑆 = 1 + 3 + 6 + 10 + ⋯+ 𝑡𝑛
𝑆 = 1 + 3 + 6 + ⋯+ 𝑡𝑛−1 + 𝑡𝑛

Subtracting, 𝑡𝑛 = 1 + 2 + 3 + 4 + ⋯ to 𝑛terms = 𝑛(𝑛+1)
⁄

2 = 𝑛2+𝑛
⁄

2
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⇒ 𝑆 = 𝑛(𝑛+1)(2𝑛+1)⁄
12 + 𝑛(𝑛+1)
⁄

4 . Put 𝑛 = 10 to get the answer.

265. First group contains 2 odd numbers, second group contains 4 odd numbers, third
group contains 6 odd numbers so (𝑛 − 1)th group will contain 2𝑛 − 2 odd numbers.

Total no. of odd numbers till (𝑛− 1)th group will be 𝑛(𝑛− 1). So last no. in (𝑛− 1)th
group will be 1 + (𝑛2 − 𝑛 − 1)2 = 2𝑛2 − 2𝑛 − 1 and hence first number in 𝑛th group
will be 2𝑛2 − 2𝑛 + 1 and there will be 2𝑛 odd numbers. So sum of 2𝑛 odd numbers
starting from 2𝑛2 − 2𝑛 + 1 is given by 2𝑛⁄2 [4𝑛2 − 4𝑛 + 2 + (2𝑛 − 1)2] = 4𝑛3.

266. Groups contain 1, 3, 5, … number of terms so 𝑛th group will contain 2𝑛 − 1 numbers
starting from 𝑛. So sum will be 2𝑛−1⁄2 [2𝑛 + 2𝑛 − 2] = (2𝑛 − 1)2 which is square of odd
positive integer.

267.
𝑆 = 2 + 5 + 14 + 41 + ⋯+ 𝑡𝑛
𝑆 = 2 + 5 + 14 + ⋯+ 𝑡𝑛−1 + 𝑡𝑛

Subtracting 𝑡𝑛 = 2 + [3 + 32 + ⋯ to (𝑛 − 1)terms] = 2 + 3(3𝑛−1−1)
⁄

3−1 = 3𝑛+1⁄
2 .

⇒ 𝑆 = 1
⁄

2 [
3(3𝑛−1)
⁄

2 + 𝑛].

268.
𝑆 = 1.1 + 2.3 + 4.5 + 8.7 + ⋯ + 𝑡𝑛
2𝑆 = 2.1 + 4.3 + 8.5 + ⋯ + 𝑡𝑛−1 + 2𝑛(2𝑛 − 1)

Subtracting, −𝑆 = 1.1 + [2.2 + 4.2 + 8.2 + ⋯ to (𝑛 − 1) terms]− 2𝑛(2𝑛 − 1)

𝑆 = 2𝑛(2𝑛 − 1)− 1 − 4(2𝑛−1 − 1).

269. Clearly, 𝑎2𝑛 − 𝑎1 = (2𝑛 − 1)𝑑 ⇒ 𝑑 = 𝑎2𝑛−𝑎1
⁄

2𝑛−1

Now, 𝑎21−𝑎22+𝑎23−𝑎24+⋯+𝑎22𝑛−1−𝑎22𝑛 = (𝑎1−𝑎2)(𝑎1+𝑎2)+ (𝑎3−𝑎4)(𝑎3+𝑎4)+
⋯+ (𝑎2𝑛−1 − 𝑎2𝑛)(𝑎2𝑛−1 + 𝑎2𝑛)

= −𝑑(𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + ⋯ + 𝑎2𝑛−1 + 𝑎2𝑛) = −𝑎2𝑛−𝑎1
⁄

2𝑛−1 . 2𝑛⁄2 [𝑎1 + 𝑎2𝑛 ] = 𝑛
⁄

2𝑛−1 (𝑎
2
1 −

𝑎22𝑛).

270. 𝑑 = 𝛼2 − 𝛼1 = 𝛼3 − 𝛼2 = ⋯ = 𝛼𝑛 − 𝛼𝑛−1

sin 𝑑 sec 𝛼1 sec 𝛼2 = sin(𝛼2−𝛼1)
⁄

cos𝛼1 cos𝛼2
= tan𝛼2 − tan𝛼1. Similarly, sin 𝑑 sec 𝛼2 sec 𝛼3 =

tan𝛼3 − tan𝛼2 and so on. sin 𝑑 sec 𝛼𝑛−1 sec 𝛼𝑛 = tan𝛼𝑛 − tan𝛼𝑛−1

Adding we get L.H.S. = R.H.S.

271. L.H.S. = 1
⁄

𝑎1+𝑎𝑛 [
𝑎1+𝑎𝑛
⁄

𝑎1𝑎𝑛 + 𝑎1+𝑎𝑛
⁄

𝑎2𝑎𝑛−1
+⋯+ 𝑎1+𝑎𝑛
⁄

𝑎𝑛𝑎1 ] =
1
⁄

𝑎1+𝑎𝑛 [
𝑎1+𝑎𝑛
⁄

𝑎1𝑎𝑛 + 𝑎2+𝑎𝑛−1
⁄

𝑎2𝑎𝑛−1
+⋯+ 𝑎1+𝑎𝑛
⁄

𝑎𝑛𝑎1 ]

= 1
⁄

𝑎1+𝑎𝑛 [
1
⁄

𝑎1 +
1
⁄

𝑎𝑛 +
1
⁄

𝑎2 +
1
⁄

𝑎𝑛−1
+ ⋯ + 1
⁄

𝑎𝑛 +
1
⁄

𝑎1] =
2
⁄

𝑎1+𝑎𝑛 (
1
⁄

𝑎1 +
1
⁄

𝑎2 + ⋯ + 1
⁄

𝑎𝑛).



Answers of Progressions 383

272. 1
⁄

𝑎1 −
1
⁄

𝑎2 =
𝑎2−𝑎1
⁄

𝑎1𝑎2 = 𝑑
⁄

𝑎1𝑎2 ⇒
1
⁄

𝑎1𝑎2 =
1⁄
𝑑 (

1
⁄

𝑎1 −
1
⁄

𝑎2). Similarly 1
⁄

𝑎2𝑎3 =
1⁄
𝑑 (

1
⁄

𝑎2 −
1
⁄

𝑎3) and so on.

∴𝑆 = 1⁄
𝑑 (

1
⁄

𝑎1 −
1
⁄

𝑎𝑛+1
) = 𝑛
⁄

𝑎1𝑎𝑛1

273. ∵ 𝑎1 = 0 then 𝑎2 = 𝑑, 𝑎3 = 2𝑑, … , 𝑎𝑛 = (𝑛 − 1)𝑑 where 𝑑 is the c.d. of the A.P.

L.H.S. = 2
⁄

1 +
3
⁄

2 +
4
⁄

3 + ⋯ + 𝑛−1
⁄

𝑛−2 − (1 + 1
⁄

2 +
1
⁄

3 + ⋯ + 1
⁄

𝑛−3)

= (1 + 1)+ (1 + 1
⁄

2)+⋯+(1 + 1
⁄

𝑛−2)− (1 + 1
⁄

2 +
1
⁄

3 + ⋯ + 1
⁄

𝑛−3)

= 𝑛 − 2 + [(1 + 1
⁄

2 +
1
⁄

3 + ⋯ + 1
⁄

𝑛−2)− (1 + 1
⁄

2 + ⋯ + 1
⁄

𝑛−3)]

= 𝑛 − 2 + 1
⁄

𝑛−2 =
𝑎𝑛−1
⁄

𝑎2 + 𝑎2
⁄

𝑎𝑛−1
= R.H.S.

274. L.H.S. =
𝑛
∑
𝑘=1

𝑎𝑘𝑎𝑘+1𝑎𝑘+2
⁄

(𝑎𝑘+1−𝑑)+(𝑎𝑘+1+𝑑)
= 1
⁄

2

𝑛
∑
𝑘=1

𝑎𝑘𝑎𝑘+2 =
1
⁄

2

𝑘
∑
𝑖=1

(𝑎2𝑘+1 − 𝑑2) = 1
⁄

2

𝑛
∑
𝑘=1

[(𝑎1 +

𝑘𝑑)2 − 𝑑2 ] = 1
⁄

2

𝑛
∑
𝑘=1

[𝑎21 + 2𝑎1𝑑𝑘 + (𝑘2 − 1)𝑑2 ]

= 1
⁄

2[
𝑛
∑
𝑘=1

𝑎21 + 2𝑎1𝑑
𝑛
∑
𝑘=1

𝑘 + 𝑑2
𝑛
∑
𝑘=1

𝑘2 −
𝑛
∑
𝑘=1

𝑑2] = 1
⁄

2 [𝑛𝑎
2
1 + 2𝑎1𝑑

𝑛(𝑛+1)
⁄

2 +

𝑑2 𝑛(𝑛+1)(2𝑛+1)⁄
6 − 𝑛𝑑2]

= 𝑛
⁄

2 [𝑎
2
1 + (𝑛 + 1)𝑎1𝑑 + (𝑛−1)(2𝑛+5)
⁄

6 𝑑2] = R.H.S.

275. Given, 𝑥18 = 𝑦21 ⇒ 18 log 𝑥 = 21 log 𝑦 ⇒ log𝑦 𝑥 = 7
⁄

6

Similarly 𝑦12 = 𝑧28 ⇒ log𝑧 𝑦 = 4
⁄

3 and 𝑥18 = 𝑦28 ⇒ log𝑥 𝑧 = 9
⁄

14

Now it is trivial to prove that 3, 3 log𝑦 𝑥, log𝑧 𝑥, 7 log𝑥 𝑧 are in A.P.

276. Given, 𝐼𝑛 = ∫
𝜋
⁄

2

0

sin2 𝑛𝑥
⁄

sin2 𝑥 𝑑𝑥. Since we have to prove that 𝐼1, 𝐼2, 𝐼3, … are in A.P. we can

simply prove that 𝐼𝑛, 𝐼𝑛+1, 𝐼𝑛+2 are in A.P. which will be enough to prove the entire
sequence. So it is enough to prove that 𝐼𝑛 + 𝐼𝑛+2 − 2𝐼𝑛+1 = 0

L.H.S. = sin
𝜋
⁄

2
0
sin2(𝑛+2)𝑥+sin2 𝑛𝑥−sin2(𝑛+1)𝑥
⁄

sin2 𝑥 𝑑𝑥

= ∫
𝜋
⁄

2

𝑖=0

1−cos(2𝑛+4)𝑥+1−cos 2𝑛𝑥−2+2cos(2𝑛+2)𝑥
⁄

2 sin2 𝑥 𝑑𝑥

= ∫
𝜋
⁄

2

𝑖=0

2 cos(2𝑛+2)𝑥−2cos(2𝑛+2)𝑥cos 2𝑥
⁄

2 sin2 𝑥 𝑑𝑥
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= ∫
𝜋
⁄

2

𝑖=0

2 cos(2𝑛+2)𝑥.2 sin2 𝑥
⁄

2 sin2 𝑥 𝑑𝑥 = ∫
𝜋
⁄

2

𝑖=0
2 cos(2𝑛 + 2)𝑑𝑥 = [sin(2𝑛+2)𝑥⁄𝑛+1 ] = 0.

277. Let 𝑎1, 𝑎2, 𝑎3, … be an A.P. which are distinct primes. Clearly 𝑎1 ≥ 1. 𝑑 = 𝑎2 − 𝑎1 ≥ 1.
Now (𝑎1 + 1) 𝑡ℎ term = 𝑎1 + 𝑎1𝑑 = 𝑎1(1 + 𝑑) which is a composite number. Thus,
there cannot be such an A.P.

278. Let the four distinct integers in A.P. be 𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, 𝑎 + 3𝑑 where 𝑑 > 0. Obviously,
the term which is sum of squares of remaining terms will be 𝑎 + 3𝑑.

Let 𝑎+3𝑑 = 𝑎2+(𝑎+𝑑)2+(𝑎+2𝑑)2 = 3𝑎2+6𝑎𝑑+5𝑑2 ⇒ 5𝑑2+𝑎(6𝑑−1)+5𝑑2−3𝑑 =
0

⇒ 9(2𝑎 − 1)2 − 20(3𝑎2 − 𝑎) ≥ 0 [∵ 𝑑 is real ]⇒ −24𝑎2 − 16𝑎 + 9 ≥ 0

Corresponding roots are −4±√


70
⁄

12 ⇒ −4−√


70
⁄

12 ≤ 𝑎 ≤ −4+√


70
⁄

12 ∴ 𝑎 = −1, 0[∵ 𝑎 is an
integer ].

⇒ 𝑎 = 1 other roots are not acceptable. Numbers are −1, 0, 1, 2.

279. Given, 𝑡𝑛 = 𝑝 + 𝑞 and 𝑡𝑛+1 = 𝑝 − 𝑞 ⇒ 𝑑 = −2𝑞. We also know that

𝑡1 + 𝑡2𝑛 = 𝑡2 + 𝑡2𝑛−1 = ⋯ = 𝑡𝑛 + 𝑡𝑛+1 = 2𝑝

𝑡31 + 𝑡32𝑛 = (𝑡1 + 𝑡2𝑛)3 − 3𝑡1𝑡2𝑛(𝑡1 + 𝑡2𝑛) = 8𝑝3 − 6𝑝𝑡1𝑡2𝑛 = 8𝑝3 + 6𝑝
⁄

4 [(𝑡1 + 𝑡2𝑛)2 −

(𝑡1 − 𝑡2𝑛)] = 8𝑝3 − 3𝑝
⁄

2 [4𝑝
2 − (2𝑛 − 1)2 𝑑2 ] = 2𝑝3 + 6𝑝𝑞2(2𝑛 − 1)2

𝑆 = 2𝑛𝑝3 + 6𝑝𝑞2[12 + 32 +⋯+ (2𝑛 − 1)2 ] (we have found 
𝑛
∑
𝑖=1

(2𝑖 − 1)2 so we will use

that result)

= 2𝑛𝑝3 + 2𝑝𝑞2.𝑛(2𝑛 + 1)(2𝑛 − 1) = 2𝑛𝑝[𝑝2 + (4𝑛2 − 1)𝑞2 ].

280. Let 𝑎 be the first term and 𝑑 be the c.d. of the A.P. Then,

𝑆 = 𝑛
⁄

2 [2𝑎 + (𝑛 − 1)𝑑]

𝑆𝑛 = 𝑎3 + (𝑎 + 𝑑)3 + (𝑎 + 2𝑑)3 + ⋯ + [𝑎 + (𝑛 − 1)𝑑]3

= 𝑛𝑎3 + 3𝑎2𝑑[1 + 2 + 3 + ⋯ + (𝑛 − 1)] + 3𝑎𝑑2[12 + 22 + 32 + ⋯ + (𝑛 − 1)2 ] +
𝑑3[13 + 23 + 33 + ⋯+ (𝑛 − 1)3 ]

= 𝑛𝑎3 + 3𝑎2𝑑 𝑛(𝑛−1)
⁄

2 + 3𝑎𝑑2 𝑛(𝑛−1)(2𝑛−1)⁄
6 + 𝑑3 𝑛

2(𝑛−1)2
⁄

4

= 𝑛
⁄

2 [2𝑎 + (𝑛 − 1)𝑑] [𝑎2 + (𝑛 − 1)𝑎𝑑 + 𝑛(𝑛−1)
⁄

2 𝑑2 ] = 𝑆[𝑎2 + (𝑛 − 1)𝑎𝑑 + 𝑛(𝑛−1)
⁄

2 𝑑2 ].

Hence, 𝑆 is a factor of 𝑆𝑛.
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281. Let 𝑟 be a positive integer greater than 1. If possible, let 𝑚𝑟 = (2𝑘 + 1)+ (2𝑘 + 3)+
⋯+ (2𝑘 + 2𝑚− 1) = 𝑚
⁄

2 [2𝑘 + 1 + 2𝑘 + 2𝑚− 1] = 2𝑘 +𝑚 ⇒ 𝑘 = 𝑚𝑟−1−𝑚
⁄

2

Clealry for 𝑟 > 1, 𝑚𝑟−1 and 𝑚 are both odd or both even. ∴𝑚𝑟−1 − 𝑚 is an even
number. Thus such an integer 𝑘 exists.

Also, the first odd inetger = 2𝑘 + 1 = 𝑚𝑟−1 −𝑚+ 1.

282. Let 𝑥 be the first term and 𝑑 be the c.d. of the A.P. Then,

𝑥 + (𝑥 + 𝑑)+ (𝑥 + 2𝑑)+⋯+ [𝑥 + (𝑛 − 1)𝑑] = 𝑎

𝑎 = 𝑛𝑥 + 𝑑𝑛(𝑛 − 1)
⁄

2 ] (2.1)

Also, 𝑥2 + (𝑥 + 𝑑)2 + (𝑥 + 2𝑑)2 + ⋯ + [𝑥 + (𝑛 − 1)𝑑]2 = 𝑏2

= 𝑛𝑥2 + 2𝑥𝑑[1 + 2 + 3 + ⋯+ (𝑛 − 1)]+ 𝑑2[12 + 22 + ⋯+ (𝑛 − 1)2 ]

𝑏2 = 𝑛𝑥2 + 𝑥𝑑𝑛(𝑛 − 1)+ 𝑑2 (𝑛 − 1)𝑛(2𝑛 − 1)
⁄

6 (2.2)

Sqauring Eq. 2.1, we have

𝑎2 = 𝑛2𝑥2 + 𝑛2𝑥𝑑(𝑛 − 1)+ 𝑛2𝑑2(𝑛−1)2
⁄

4 = 𝑎2

𝑛𝑥2 + 𝑛𝑥𝑑(𝑛 − 1)+ 𝑛𝑑2(𝑛 − 1)2
⁄

4 = 𝑎2 (2.3)

Eq. 2.2 - Eq. 2.3

⇒ 𝑑2𝑛(𝑛−1)(𝑛+1)⁄
12 = 𝑛𝑏2−𝑎2
⁄

𝑛 ⇒ 𝑑 = ±2√


3(𝑛𝑏2−𝑎2)
⁄

𝑛√


𝑛2−1

Now you can find 𝑥 trivially.

283. 𝑑 = 𝑎2 − 𝑎1 = 𝑎3 − 𝑎2 = ⋯ = 𝑎𝑛 − 𝑎𝑛−1. We have to find

sin 𝑑[csc 𝑎1 csc 𝑎2 + csc 𝑎2 csc 𝑎3 + ⋯ + csc 𝑎𝑛−1 csc 𝑎𝑛 ]

= sin 𝑑[ 1
⁄

sin𝑎1 sin𝑎2 +
1
⁄

sin 𝑎2 sin 𝑎3 + ⋯ + 1
⁄

sin𝑎𝑛−1 sin𝑎𝑛]

= sin(𝑎2−𝑎1)
⁄

sin𝑎1 sin𝑎2 +
sin(𝑎3−𝑎2)
⁄

sin𝑎2 sin𝑎3 + ⋯ + sin(𝑎𝑛−𝑎𝑛−1)
⁄

sin𝑎𝑛−1 sin𝑎𝑛

= sin𝑎2 cos𝑎1−sin𝑎1 cos𝑎2
⁄

sin𝑎1 sin𝑎2 + sin𝑎3 cos𝑎2−sin𝑎2 cos𝑎3
⁄

sin𝑎2 sin𝑎3 + sin𝑎𝑛 cos𝑎𝑛−1−sin𝑎𝑛−1 cos𝑎𝑛
⁄

sin𝑎𝑛−1 sin𝑎𝑛

= cot 𝑎1 − cot 𝑎2 + cot 𝑎2 − cot 𝑎3 + ⋯ + cot 𝑎𝑛−1 − cot 𝑎𝑛 = cot 𝑎1 − cot 𝑎𝑛.

284. Let 𝑑 be common difference of the A.P.

L.H.S. = 1
⁄

√


𝑎1+√


𝑎2
+ 1
⁄

√


𝑎2+√


𝑎3
+ ⋯ + 1
⁄

√


𝑎𝑛−1+√


𝑎𝑛
= 𝑛−1
⁄

√


𝑎1+√


𝑎𝑛
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= √


𝑎1−√


𝑎2
⁄

𝑎1−𝑎2 + √


𝑎2−√


𝑎3
⁄

𝑎2−𝑎3 + ⋯ + √


𝑎𝑛−1−√


𝑎𝑛
⁄

𝑎𝑛−1−𝑎𝑛

= − 1⁄
𝑑 [√


𝑎1 −√


𝑎𝑛] [∵ 𝑑 = 𝑎2 − 𝑎1 = 𝑎3 − 𝑎2 = ⋯ = 𝑎𝑛 − 𝑎𝑛−1 ]

= − 𝑛−1
⁄

(𝑛−1)𝑑
𝑎1−𝑎𝑛
⁄

√


𝑎𝑛−1+√


𝑎𝑛
= 𝑛−1
⁄

√


𝑎1+√


𝑎𝑛
[∵ 𝑎𝑛 = 𝑎1 + (𝑛 − 1)𝑑].

285. Let 𝑑 be the common difference of the A.P., then

L.H.S. =
𝑛
∑
2
tan−1 𝑑
⁄

1+𝑎𝑛−1𝑎𝑛
=

𝑛
∑
2
tan−1 𝑎𝑛−𝑎𝑛−1
⁄

1+𝑎𝑛−1𝑎𝑛
=

𝑛
∑
2
tan−1 𝑎𝑛 −

tan−1 𝑎𝑛−1 [∵ tan−1 𝑥 − tan−1 𝑦 = tan−1 𝑥−𝑦⁄
1+𝑥𝑦]

= tan−1 𝑎2−tan−1 𝑎1+tan−1 𝑎3−tan−1 𝑎2+⋯+tan−1 𝑎𝑛−tan−1 𝑎𝑛−1 = tan−1 𝑎𝑛−
tan−1 𝑎1 = tan−1 𝑎𝑛−𝑎1
⁄

1+𝑎1𝑎𝑛 = R.H.S.

286. Given, 𝑆𝑛 = 1
⁄

𝑎1𝑎2 +
1
⁄

𝑎2𝑎3 − ⋯ + 1
⁄

𝑎𝑛−1𝑎𝑛

= 1⁄
𝑑 [

𝑎2−𝑎1
⁄

𝑎1𝑎2 + 𝑎3−𝑎2
⁄

𝑎2𝑎3 + ⋯ + 𝑎𝑛−𝑎𝑛−1
⁄

𝑎𝑛−1𝑎𝑛 ] [∵ 𝑑 = 𝑎2 − 𝑎1 = 𝑎3 − 𝑎2 = ⋯ = 𝑎𝑛 − 𝑎𝑛−1 ]

= 1⁄
𝑑 [

1
⁄

𝑎1 −
1
⁄

𝑎2 +
1
⁄

𝑎2 −
1
⁄

𝑎3 + ⋯ + 1
⁄

𝑎𝑛−1− 1⁄
𝑎𝑛

]

= 1⁄
𝑑 [

1
⁄

𝑎1 −
1
⁄

𝑎𝑛] =
𝑎𝑛−𝑎1
⁄

𝑑𝑎1𝑎𝑛 = (𝑛−1)𝑑
⁄

𝑑𝑎1𝑎𝑛 [∵ 𝑎𝑛 = 𝑎1 + (𝑛 − 1)𝑑]

⇒ 𝑎𝑎𝑛𝑆𝑛 = 𝑛 − 1, which does not depend on 𝑎 or 𝑑.

287. We know that 𝑆 = 𝑛
⁄

2 [𝑡1 + 𝑡𝑛 ] so

𝑆1 = 𝑛
⁄

2 [𝑎1 + 𝑎𝑛 ] = 𝑛
⁄

2 [2𝑎 + (𝑛 − 1)𝑑]

𝑆2 = 𝑛
⁄

2 [𝑎𝑛+1 + 𝑎2𝑛 ] = 𝑛
⁄

2 [2𝑎 + (3𝑛 − 1)𝑑]

𝑆3 = 𝑛
⁄

2 [𝑎2𝑛+1 + 𝑎3𝑛 ] = 𝑛
⁄

2 [2𝑎 + (5𝑛 − 1)𝑑]

……

𝑆𝑟 = 𝑛
⁄

2 [2𝑎 + {(2𝑟 − 1)𝑛 − 1}𝑑]

Clearly, 𝑆2 − 𝑆1 = 𝑆3 − 𝑆2 = ⋯ = 𝑆𝑟+1 − 𝑆𝑟 = 𝑛2𝑑 which is an A.P.

288. Let 𝑑 be the c.d. of the A.P. then 𝑏−𝑐⁄𝑎−𝑏 =
−𝑑
⁄

−𝑑 = 1 which is a rational number.

289. tan 70∘ = tan(50∘ + 20∘) = tan70∘+tan20∘
⁄

1−tan50∘ tan20∘

⇒ tan 70∘ − tan 70∘ tan 50∘ tan 20∘ = tan 50∘ + tan 20∘
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⇒ tan 70∘ − cot(90∘ − 70∘) tan 50∘ tan 20∘ = tan 50∘ + tan 20∘

⇒ tan 70∘ − tan 50∘ = tan 50∘ + tan 20∘ ⇒ tan 80∘ = 2 tan 50∘ + tan 20∘

Adding tan 20∘ to both sides, we have

tan 70∘ + tan 20∘ = 2(tan 50∘ + tan 20∘) and thus required condition is proved.

290. Given log𝑙 𝑥, log𝑚 𝑥, log𝑛 𝑥 are in A.P. Therefore 2 log𝑚 𝑥 = log𝑙 𝑥 + log𝑛 𝑥

⇒ 2 log𝑥
⁄

log𝑚 = log𝑥
⁄

log 𝑙 +
log𝑥⁄
log𝑛 ⇒

2⁄
log𝑚 = log 𝑙𝑛
⁄

log 𝑙 log𝑛

⇒ 2 log 𝑛 = log 𝑙𝑛 log𝑚
⁄

log 𝑙 (multiplying with log𝑚 log 𝑛 on both sides)

⇒ log 𝑛2 = log𝑙 𝑚 log 𝑙𝑛 = log 𝑙𝑛log𝑙 𝑚 ⇒ 𝑛2 = (𝑙𝑛)log𝑙 𝑚; hence proved.

291. Let 𝑏, 𝑝, ℎ be base, perpendicular, hypotenuse of the triangle. Let 𝑏 be smallest then
2𝑝 = ℎ + 𝑏 ⇒ ℎ = 2𝑝 − 𝑏

We know that for a right angle triangle ℎ2 = 𝑏2 + 𝑝2. Substituting for ℎ,

4𝑝2 − 4𝑏𝑝 + 𝑏2 = 𝑏2 + 𝑝2 ⇒ 3𝑝2 = 4𝑏𝑝 ⇒ 3𝑝 = 4𝑏 ⇒ ℎ2 = 16𝑏2
⁄

9 + 𝑏2 ⇒ ℎ = 5𝑏⁄
3

⇒ 𝑏 : 𝑝 : ℎ = 3 : 4 : 5.

292. Let 5𝑥 = 𝑡 then for condition for A.P. gives us 𝑎 = 5𝑡 + 5
⁄

𝑡 + 𝑡2 + 1
⁄

𝑡2

We know that 𝑥 + 1
⁄

𝑥 ≥ 2 ∴ 𝑎 ≥ 12.

293. Given log 2, log(2𝑥 − 1), log(2𝑥 + 3) are in G.P. Therefore, 2 log(2𝑥 − 1) = log 2 +
log(2𝑥 + 3)

⇒ (2𝑥 − 1)2 = 2.22 + 6 ⇒ 22𝑥 − 4.2𝑥 − 5 = 0 ⇒ 2𝑥 = 5, −1 however, 2𝑥 ≠ −1 so
2𝑥 = 5 ⇒ 𝑥 = log2 5.

294. Let 𝑑 be the c.d. of the A.P. ∴ log𝑦 𝑥 = 1 + 𝑑 ⇒ 𝑥 = 𝑦1+𝑑, log𝑧 𝑦 = 1 + 2𝑑 ⇒ 𝑦 =

𝑧1+2𝑑, −15 log𝑥 𝑧 = 1 + 3𝑑 ⇒ 𝑧 = 𝑥
−1+3𝑑⁄15

∵ 𝑥 = 𝑦1+𝑑 = 𝑧(1+2𝑑)(1+𝑑) = 𝑥
−(1+𝑑)(1+2𝑑)(1+3𝑑)⁄

15 ⇒ (1 + 𝑑)(1 + 2𝑑)(1 + 3𝑑) =
−15 ⇒ (𝑑 + 2)(6𝑑2 − 𝑑 + 8) = 0

Discriminant of 6𝑑2 − 𝑑 + 8 is less than 0 and thus 𝑑 = −2.

⇒ 𝑥 = 𝑧3, 𝑦 = 𝑧−3.

295. Let √


2,√


3,√


5 be 𝑝th, 𝑞th and 𝑟th term of an A.P. whose c.d. is 𝑑.

√


3 −√


2 = (𝑞 − 𝑝)𝑑 and √


5 −√


3 = (𝑟 − 𝑞)𝑑. Dividing, we get

√


3−√


2⁄
√


5−√


3 =
𝑞−𝑝
⁄

𝑟−𝑞 = 𝑥, which will be a rational number as 𝑝, 𝑞, 𝑟 are integers.
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Sqauring 5− 2√


6 = 𝑥2(8− 2√

15)⇒ √


15𝑥2−√


6 = (8𝑥2− 5)/2 = 𝑦 (which will again
be a rational number)

Squaring again 15𝑘4 + 6 − 2√

90𝑘2 = 𝑦2 ⇒ 15𝑘4 + 6 − 𝑦2 = 2√


90𝑘2

L.H.S. is a rational number while R.H.S. is irrational thus our assumption is wrong.

296. Area of 𝑟th circle 𝐴𝑟 = 𝜋𝑟2 and area of (𝑟 + 1)th circle is 𝐴𝑟+1 = 𝜋(𝑟 + 1)2 so the
difference is 𝐷𝑟 = 𝜋(2𝑟 + 1) therefore c.d. = 𝐷𝑟+1 −𝐷𝑟 = 2𝜋 which is a constant and
hence the successive areas of each color is in A.P.

297. ∵ 𝑥, 𝑦, 𝑧 are in A.P. ∴ 2𝑦 = 𝑥 + 𝑧. Similarly, 2 tan−1 𝑦 = tan−1 𝑥 + tan−1 𝑧

⇒ 2𝑦
⁄

1−𝑦2 =
𝑥+𝑧⁄
1−𝑥𝑧 ⇒

𝑥+𝑧
⁄

1−(𝑥+𝑧)2
⁄

4

=⇒ 1 − 𝑧𝑥 = 1 − (𝑥+𝑧)2⁄
4 ⇒ (𝑧 − 𝑥)2 = 0 ⇒ 𝑥 = 𝑧 = 𝑦.

298. From given conditiion cos
4 𝜃
⁄

cos2 𝛼 +
sin4 𝜃
⁄

sin2 𝛼 = 1 = cos2 𝜃 + sin2 𝜃

⇒ cos4 𝜃
⁄

cos2 𝛼 (cos
2 𝜃 − cos2 𝛼) = sin2 𝜃
⁄

sin2 𝛼 (𝑠𝑖𝑛
2𝛼 − sin2 𝜃) = sin2 𝜃
⁄

sin2 𝛼 (𝑠𝑖𝑛
2𝜃 − sin2 𝛼)

⇒ cos2 𝜃
⁄

cos2 𝛼 = sin2 𝜃
⁄

sin2 𝛼 and thus we prove the required condition because cos
2𝑛+2 𝜃
⁄

cos2𝑛𝛼 = cos2 𝜃.

299. 𝑎𝑛+1 − 𝑎𝑛 = ∫
𝜋

0

sin(2𝑛+2)𝑥−sin 2𝑛𝑥
⁄

sin𝑥 𝑑𝑥 = ∫
𝜋

0

2cos(2𝑛+1)𝑥 sin𝑥
⁄

sin𝑥 𝑑𝑥

= [2 sin(2𝑛+1)𝑥⁄

2𝑛+1 ]
𝜋
0 = 0

Hence, c.d. is 0 making all terms equal and in A.P.

300. 𝑙𝑛 + 𝑙𝑛+2 = ∫
𝜋
⁄

4

0
(tan𝑛 𝑥 + tan𝑛+2 𝑥𝑑𝑥) = [tan

𝑛+1 𝑥
⁄

𝑛+1 ]
𝜋
⁄

4
0
= 1
⁄

𝑛+1.

Thus, 1
⁄

𝑙2+𝑙4 = 3, 1
⁄

𝑙3+𝑙5 = 4, 1
⁄

𝑙4+𝑙5 = 5, ⋯, which is an A.P. with a c.d. of 1.

301. 𝐼𝑛+1 − 𝐼𝑛 = ∫
𝜋

0

cos 2𝑛𝑥−cos(2𝑛+2)𝑥
⁄

sin2 𝑥 𝑑𝑥 = 2∫
𝜋

0

sin𝑥 sin(2𝑛+1)𝑥
⁄

sin2 𝑥 𝑑𝑥

𝐷𝑛 = 2∫
𝜋

0

sin(2𝑛+1)𝑥
⁄

sin𝑥 𝑑𝑥

𝐷𝑛+1 − 𝐷𝑛 = 2∫
𝜋

0

sin(2𝑛+3)𝑥−𝑠𝑖𝑛(2𝑛+1)𝑥
⁄

sin𝑥 𝑑𝑥 = 4∫
𝜋

0

sin𝑥 cos(2𝑛+2)𝑥
⁄

sin𝑥 𝑑𝑥 =

2[sin 2(𝑛+1)𝑥⁄𝑛+1 ]
𝜋

0
= 0

⇒ 𝐷1 = 𝜋 ⇒ 𝐼𝑛+1 − 𝐼𝑛 = 𝜋 which is a constant and hence 𝐼1, 𝐼2, 𝐼3, … are in A.P.

302. ∵𝛼, 𝛽, 𝛾 are in A.P. ∴ 2𝛽 = 𝛾 + 𝛼

2 sin(𝛼 + 𝛾) = sin(𝛽 + 𝛾)+ sin(𝛼 + 𝛽)⇒ 2sin 2𝛽 = 2 sin(𝛼+𝛽+2𝛽⁄2 ) . cos 𝛾−𝛼⁄2
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⇒ cos 𝛾−𝛼⁄2 = 1 = cos 0 ⇒ 𝛾 = 𝛼 = 𝛽 and hence tan 𝛼 = tan 𝛽 = tan 𝛾.

303. Let 𝑑 be the c.d then we have 2𝑏 = 𝑎 + 𝑐 and 𝑎𝑏𝑐 = 4 ⇒ 𝑎𝑐(𝑎 + 𝑐) = 4. We know that
A.M. ≥ G.M ⇒ 𝑎+𝑐
⁄

2 ≥ √

𝑎𝑐 ⇒ (𝑎+𝑐)2
⁄

4 (𝑎 + 𝑐) ≥ 4 ⇒ 𝑏3 ≥ 4 and hence proved.

304. Let 𝑆 = log 𝑎 + log 𝑎3
⁄

𝑏 + log 𝑎5
⁄

𝑏2 + log 𝑎7
⁄

𝑏3 + ⋯

= (log 𝑎 + 3 log 𝑎 + 5 log 𝑎 + ⋯)− (log 𝑏 + 2 log 𝑏 + ⋯) = 𝑛
⁄

2 [2 log 𝑎 + (𝑛 − 1)2 log 𝑎]−
𝑛−1
⁄

2 [2 log 𝑏 + (𝑛 − 2) log 𝑏] = 𝑛
⁄

2 [2𝑛 log 𝑎]−
𝑛−1
⁄

2 [2𝑛 log 𝑏]

= log 𝑎𝑛
2
− log 𝑏𝑛(𝑛−1) = log 𝑎𝑛2

⁄

𝑏(𝑛(𝑛−1)).

305. 𝑏 = 𝑎 + 𝑑 ⇒ 𝑑 = 𝑏 − 𝑎 and 𝑛 = 𝑐−𝑎
⁄

𝑏−𝑎 + 1 = 𝑏+𝑐−2𝑎
⁄

𝑏−𝑎

𝑆𝑛 = 𝑛
⁄

2 [𝑎 + 𝑐] = (𝑏+𝑐−2𝑎)(𝑎+𝑐)
⁄

2(𝑏−𝑎) .

306. Let 𝑎 be the first term and 𝑑 be the c.d. of the A.P.

𝑆𝑛+3 = 𝑛+3
⁄

2 [2𝑎+ (𝑛+2)𝑑] and 3(𝑆𝑛+2−𝑆𝑛+1)+𝑆𝑛 = 3𝑡𝑛+2+𝑛
⁄

2 [2𝑎+ (𝑛−1)𝑑] =

3[𝑎 + (𝑛 + 1)𝑑]+ 𝑛
⁄

2 [2𝑎 + (𝑛 − 1)𝑑]

= 1
⁄

2 [2𝑎𝑛 + 𝑛(𝑛 − 1)𝑑 + 6𝑎 + 6(𝑛 + 1)𝑑] = 1
⁄

2 [2𝑎(𝑛 + 3)+ (𝑛2 + 5𝑛 + 6)𝑑] = 𝑆𝑛+3.

307. Observe that 2𝑎𝑏 = (𝑎+𝑏)2− (𝑎2+𝑏2), 2(𝑎𝑏+𝑏𝑐+𝑐𝑎) = (𝑎+𝑏+𝑐)2− (𝑎2+𝑏2+𝑐2).

Similarly it can be observed that 2∑
𝑟<𝑠

𝑎𝑟𝑎𝑠 = (
𝑛
∑
𝑖=1

𝑎𝑖)
2

−
𝑛
∑
𝑖=1

𝑎2𝑖

Now, (∑𝑛
𝑖=1 𝑎𝑖)

2 = [𝑛⁄2 (2𝑎1 + (𝑛 − 1)𝑑)]
2

(
𝑛
∑
𝑖=1

𝑎𝑖)
2

= 𝑛
⁄

2 [4𝑎
2
1 + 4𝑎1(𝑛 − 1)𝑑 + (𝑛 − 1)2 𝑑2 ] (2.4)

and ∑𝑛
𝑖=1 𝑎

2
𝑖 = 𝑎21 + (𝑎1 + 𝑑)2 + (𝑎1 + 2𝑑)2 + ⋯ + [𝑎1 + (𝑛 − 1)𝑑]2

𝑛
∑
𝑖=1

𝑎2𝑖 = 𝑛𝑎21 + 𝑎1𝑑𝑛(𝑛 − 1)+ 𝑑2(𝑛 − 1)𝑛(2𝑛 − 1)
⁄

6 (2.5)

Adding Eq. 2.4 and Eq. 2.5, we get the desired answer.

308. Let there be 𝑛 rows in the equilateral triangle. Then 𝑆 = 𝑛(𝑛+1)
⁄

2 . Now according to

given facts, 𝑛(𝑛+1)⁄2 + 669 = (𝑛 − 8)2 ⇒ 𝑛 = 55 ⇒ 𝑆 = 1540.

309. Required sum = (1+2+3+⋯+𝑛)2−(12+22+32+⋯+𝑛2)
⁄

2
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=
𝑛2(𝑛+1)2
⁄

4 −𝑛(𝑛+1)(2𝑛+1)⁄

6
⁄

2 =
𝑛(𝑛+1)
⁄

2 (𝑛(𝑛+1)⁄2 −2𝑛+1⁄3 )
⁄

2 = 1
⁄

24 𝑛(𝑛
2 − 1)(3𝑛 + 2).

310. Let 𝑎 be the first term and 𝑑 be the c.d. for the given A.P. Let 𝑆, 𝑆′ represent the sum
for first 24 days and last 18 days. Then,

𝑆 = 24
⁄

2 [2𝑎 + 23𝑑], 𝑆′ = 18
⁄

2 [2(𝑎 + 24𝑑)+ 17𝑑] and

24
⁄

2 [2𝑎+23𝑑]+18
⁄

2 [2𝑎+65𝑑] = 42
⁄

2 [2𝑎+41𝑑] and 𝑆 = 𝑆′ ⇒ 24
⁄

2 [2𝑎+23𝑑] = 18
⁄

2 [2𝑎+65𝑑]

Solving these two equations yield the answer as 12096.

311. Let 𝑎 be the first term and 𝑑 be the c.d. for the given A.P. Then,

𝑆𝑛 = 𝑛
⁄

2 [2𝑎 + (𝑛 − 1)𝑑] = 𝑛2𝑝 and 𝑆𝑚 = 𝑚
⁄

2 [2𝑎 + (𝑚− 1)𝑑] = 𝑚2𝑝

⇒ 2𝑎+ (𝑛−1)𝑑 = 2𝑛𝑝 and 2𝑎+ (𝑚−1)𝑑 = 2𝑚𝑝 ⇒ (𝑛−𝑚)𝑑 = 2𝑝(𝑛−𝑚)⇒ 𝑑 = 2𝑝

Substituting this in equation for 𝑆𝑛, 2𝑎 + 2(𝑛 − 1)𝑝 = 2𝑛𝑝 ⇒ 𝑎 = 𝑝

⇒ 𝑆𝑝 = 𝑝
⁄

2 [2𝑝 + 2(𝑝 − 1)𝑝] = 𝑝3.

312. Let 𝑆1, 𝑆2, … , 𝑆𝑛 denote the sum of A.P. with c.d. 1, 2, … , 𝑛. Then,

𝑡𝑟 = 1 + (𝑛 − 1)𝑟

𝑆1 + 𝑆2 + ⋯+ 𝑆𝑛 =
𝑛
∑
𝑟=1

𝑡𝑟 = 𝑛 + (𝑛 − 1) 𝑛(𝑛+1)⁄2 = 𝑛
⁄

2 (𝑛
2 + 1).

313. 𝑆𝑟 = 𝑛
⁄

2 [2𝑟 + (𝑛 − 1)(2𝑟 − 1)] = 𝑛
⁄

2 [2𝑟 + 2𝑟𝑛 − 2𝑟 − 𝑛 + 1] = 𝑛
⁄

2 [2𝑟𝑛 − 𝑛 + 1]

𝑆1+𝑆2+⋯+𝑆𝑚 =
𝑚
∑
𝑟=1

𝑆𝑟 =
𝑛2𝑚(𝑚+1)
⁄

2 − 𝑛(𝑛−1)𝑚⁄
2 = 1
⁄

2 [𝑚
2𝑛2+𝑚𝑛2−𝑚𝑛2+𝑚𝑛] =

𝑚𝑛
⁄

2 (𝑚𝑛+ 1).

314. Given below is the diagram for the problem:

𝐴(−1, −1) 𝐵(1, −1)

𝐶(1, 1)𝐷(−1, 1)

𝑁1 2

Let the inclines straight line pass
ing through origin cuts 𝐴𝐵 at 𝑁
such that 𝐴𝑁 : 𝑁𝐵 = 1 : 2. Let
the coordinates of 𝐴, 𝐵, 𝐶, 𝐷 are
(−1, −1), (1, −1), (1, 1), (−1, 1). Then
𝑁 = (−1/3, −1). Thus equation of line
would be 𝑦 = 3𝑥. Let (𝑥1, 𝑦1) be the
point from where we have drawn perpen
diculars to the sides. Then length of ⊥ to
𝐴𝐵 = 3𝑥1+1⁄

2 , length of ⊥ to 𝐴𝐷 = 𝑥1+1,
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length of ⊥ to 𝐵𝐶 = 3𝑥1−1⁄
2 and length

of ⊥ to 𝐶𝐷 = 𝑥1 − 1. It is now trivial to observe that these lengths are in A.P.

315. Let 𝑝, 𝑏, ℎ be the perpedicular, base, hypotenuse of the right angle triangle such
that 𝑏 < 𝑝 < ℎ and 𝑟 be the common ratio of the G.P. such that 𝑟 > 1. Clearly
ℎ2 = 𝑝2 + 𝑏2 ⇒ 𝑏2𝑟4 = 𝑏2𝑟2 + 𝑏2 ⇒ 𝑟2 = 1+√



5⁄
2 .

Clearly, the greater acute angle will be
opposite to 𝑝 which we let as 𝜃, then

cos 𝜃 = 𝑏⁄
ℎ =

1
⁄

𝑟2 =
1⁄

1+√


5.

316. Let 27, 8, 12 be the 𝑝th, 𝑞th, 𝑘th terms
respectively of a G.P. whose first term
is 𝑎 and common ratio is 𝑟 then 27 =
𝑎𝑟𝑝−1, 8 = 𝑎𝑟𝑞−1, 12 = 𝑎𝑟𝑘−1.

⇒ 27
⁄

8 = 𝑟𝑝−𝑞 = (3⁄2)
3
, 12⁄8 = 𝑟 & 𝑘 − 𝑞 =

3
⁄

2 ⇒ 𝑟𝑝−𝑞 = 𝑟3(𝑘−𝑞) ⇒ 𝑝 + 2𝑞 − 3𝑘 = 0.

The system of solutions of this equation
is 𝑝 = 4𝑡, 𝑞 = 𝑡, 𝑘 = 2𝑡 where 𝑡 ∈ ℙ.

317. Let 10, 11, 12 be the 𝑝th, 𝑞th, 𝑘th terms
respectively of a G.P. whose first term
is 𝑎 and common ratio is 𝑟 then 10 =
𝑎𝑟𝑝−1, 11 = 𝑎𝑟𝑞−1, 12 = 𝑎𝑟𝑘−1.

⇒ 11
⁄

10 = 𝑟𝑞−𝑝 and 12
⁄

11 = 𝑟𝑘−𝑞 ⇒

(11⁄10)
𝑘−𝑞

= 𝑟(𝑞−𝑝)(𝑘−𝑞) and (12⁄11)
𝑞−𝑝

==
𝑟(𝑘−𝑞)(𝑞−𝑝)

⇒ (11⁄10)
𝑘−𝑞

= (12⁄11)
𝑞−𝑝

⇒ (11)𝑘−𝑞+𝑞−𝑝 =
10𝑘−𝑞12𝑞−𝑝 = 5𝑘−𝑞𝑤𝑘+𝑞−2𝑝3𝑞−𝑝

This is possible only if 𝑘 − 𝑝 = 0, 𝑘 −
𝑞 = 0, 𝑘 + 𝑞 − 2𝑝 = 0 and 𝑞 − 𝑝 = 0 i.e.
𝑝 = 𝑞 = 𝑘 = 0 which is not possible as
they are distinct.
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318. We have 𝐼𝑛 =∫
𝜋
⁄

2

0
cos𝑛 𝑥 cos(𝑛𝑥)𝑑𝑥,𝐼𝑛+1 =

∫
𝜋
⁄

2

0
cos𝑛+1 𝑥 cos[(𝑛 + 1)𝑥]𝑑𝑥

𝐼𝑛+1 = ∫
𝜋
⁄

2

0
cos𝑛 𝑥[cos 𝑥 cos[(𝑛 + 1)𝑥]𝑑𝑥

cos 𝑛𝑥 = cos[(𝑛 + 1)𝑥 − 𝑥] = cos(𝑛 + 1)𝑥 cos 𝑥 + sin(𝑛 + 1)𝑥 sin 𝑥 ⇒ cos(𝑛 +
1)𝑥 cos 𝑥 = cos 𝑛𝑥 − sin(𝑛 + 1)𝑥 sin 𝑥

𝐼𝑛+1 = ∫
𝜋
⁄

2

0
cos𝑛 𝑥[cos 𝑛𝑥 − sin(𝑛+ 1)𝑥 sin 𝑥]𝑑𝑥 = 𝐼𝑛 −∫

𝜋
⁄

2

0
cos𝑛 𝑥 sin 𝑥 sin(𝑛+ 1)𝑥𝑑𝑥

= 𝐼𝑛 + [cos
𝑛+1 𝑥 sin(𝑛+1)𝑥⁄

𝑛+1 ]
𝜋
⁄

2
0
−∫

𝜋
⁄

2

0
cos𝑛+1 𝑥 cos(𝑛 + 1)𝑥𝑑𝑥 [we take 𝑢 = sin(𝑛 + 1)𝑥

and 𝑣 = cos𝑛 𝑥 sin 𝑥]

= 𝐼𝑛 + 0 − 0 − 𝐼𝑛+1 ⇒ 𝐼𝑛+1⁄
𝐼𝑛 = 2 and thus, 𝐼1, 𝐼2, 𝐼3, … are in G.P.

319. 𝐼1, 𝐼2, 𝐼3, … will be both in A.P. and G.P.if and only if 𝐼1 = 𝐼2 = 𝐼3 = ⋯ = 𝐼𝑛

𝐼𝑛+1 − 𝐼𝑛 = ∫
𝜋

0

sin(2𝑛+1)𝑥
⁄

sin𝑥 𝑑𝑥 −∫
𝜋

0

sin(2𝑛−1)𝑥
⁄

sin𝑥 𝑑𝑥 = ∫
𝜋

0

sin(2𝑛+1)𝑥−sin(2𝑛−1)𝑥⁄
sin𝑥 𝑑𝑥

= ∫
𝜋

0

2cos 2𝑛𝑥 sin𝑥⁄
sin𝑥 𝑑𝑥 = 2∫

𝜋

0
cos 2𝑛𝑥𝑑𝑥 = 2⁄

2𝑛 [sin 2𝑛𝑥]
𝜋
0 = 0

So 𝐼𝑛+1 = 𝐼𝑛 also, 𝐼1 = ∫
𝜋

0

sin𝑥⁄
sin𝑥 𝑑𝑥 = 𝜋. Hence, 𝐼1 = 𝐼2 = 𝐼3 = ⋯ = 𝐼𝑛 = 𝜋 which

proves that the terms are both in A.P. and G.P.

320. Let 𝑎, 𝑎𝑟, 𝑎𝑟2 be the sides of the triangle. If 𝑟 > 1 then from the properrties of the
triangle we have 𝑎𝑟2 < 𝑎 + 𝑎𝑟 ⇒ 𝑟2 − 𝑟 − 1 < 0 ⇒ 𝑟 < 1+√



5⁄
2 . If 𝑟 < 1 the the triangle

will be formed if 𝑎𝑟 + 𝑎𝑟2 < 𝑎 ⇒ 𝑟2+ 𝑟 − 1 > 0 ⇒ 𝑟 > −1+𝑥𝑠5⁄
2 . Hence we have required

inequality.

321. 111…1(91 digits) = 1090 + 1089 + ⋯ + 10 + 1 = 1091−1⁄
10−1 .

Since 91 = 13 × 7 we use 7 to multiply and divide with 107 − 1 which gives us

1091−1⁄
107−1 .

107−1⁄
10−1 = (1084 + 1083 + ⋯ + 10 + 1)(106 + 105 + ⋯ + 10 + 1), which is a

composite number.

322. 𝑓(𝑎 + 𝑘) = 𝑓(𝑎)+ 𝑓(𝑘) ∵ 𝑓(𝑥 + 𝑦) = 𝑓(𝑥)𝑓(𝑦) ∀ 𝑥, 𝑦 ∈ ℕ

⇒
𝑛
∑
𝑘=1

𝑓(𝑎 + 𝑘) =
𝑛
∑
𝑘=1

𝑓(𝑎)𝑓(𝑘) = 𝑓(𝑎) [𝑓(1)+ 𝑓(2)+⋯+ 𝑓(𝑛)]



Answers of Progressions 393

Given, 𝑓(1) = 2, 𝑓(2) = 𝑓(1) + 𝑓(1) = 𝑓(1)𝑓(1) = 22, 𝑓(3) = 𝑓(1) + 𝑓(2) =
𝑓(1)𝑓(2) = 23, ⋯ , 𝑓(𝑛) = 2𝑛 and 𝑓(𝑎) = 2𝑎

⇒
𝑛
∑
𝑘=1

𝑓(𝑎 + 𝑘) = 16[2𝑛 − 1]⇒ 2𝑎[2 + 22 + ⋯ + 2𝑛 ] = 2𝑎2(2𝑛 − 1) = 16(2𝑛 − 1)⇒

𝑎 = 3.

323. Number of students giving wrong answers to at least 𝑖 questions = 2𝑛−𝑖.

Number of students giving wrong answers to at least 𝑖 + 1 questions = 2𝑛−𝑖−1.

∴ Number of students giving wrong answers to exactly 𝑖 questions = 2𝑛−𝑖 − 2𝑛−𝑖−1.
Also, total no. of students giving wrng answers to exactly 𝑛 questions = 2𝑛−𝑛 = 1

∴ Total no. of wrong answers = 1(2𝑛−1−2𝑛−2)+2.(2𝑛−2−2𝑛−3)+⋯+ (𝑛−1)(21−
20)+ 𝑛(20) = 2𝑛−1 + 2𝑛−2 + ⋯+ 20 = 2𝑛 − 1 = 2047 ⇒ 𝑛 = 11.

324. 𝑆1 = 1
⁄

1−1⁄2
= 2, 𝑆2 = 2
⁄

1−1⁄3
= 3, 𝑆3 = 3
⁄

1−1⁄4
= 4, ⋯ and so on.

We have 𝑆21+𝑆22+⋯+𝑆22𝑛−1 = 22+32+⋯+(2𝑛−1)2 = 12+22+32+⋯+(2𝑛)2−1 =
2𝑛(2𝑛+1)(4𝑛+1)⁄

6 − 1 = 𝑛(𝑛+1)(6𝑛+1)⁄
3 − 1.

325.

𝐴

𝐵 𝐶

𝐷

Let 𝐴𝐵𝐶𝐷 be the first square and length of sides are 𝑎. Clearly,
sides of second square = √


𝑎2
⁄

4 + 𝑎2
⁄

4 = 𝑎⁄
√


2 ∴. Area of second square

= 𝑎2
⁄

2 . Area of third square = 𝑎2
⁄

4 and so on.

Total area of innser squares = 
𝑎2⁄
2⁄

1−1
⁄

2
= 𝑎2 = Sum of first square.

326. Let 𝑦 = 7+2𝑥 log 25−5𝑥−1−52−𝑥⇒ 𝑑𝑦⁄
𝑑𝑥 = 4 log 5−5𝑥−1 log 5+52−𝑥 log 5 = log 5⁄

5𝑥+1 (5
𝑥−

25)(5𝑥 + 5)

Now 𝑦′ > 0 if 𝑥 > 2 and 𝑦′ < 0 if 𝑥 < 2. Since 𝑦 has only one local maxima at 𝑥 = 2
and has no local minima, therefore 𝑦 has greatest value at 𝑥 = 2 ⇒ 𝑎 = 2 which is first
term of G.P.

𝑟 = lim
𝑥→0

∫
𝑥

0

𝑡2
⁄

𝑥2 tan(𝜋+𝑥) 𝑑𝑡 = lim
𝑥→0

∫𝑥
0 𝑡2𝑑𝑡⁄

𝑥2 tan𝑥

= lim𝑥→0
𝑥3⁄

3𝑥2 tan𝑥 =
1
⁄

3 ∴ lim
𝑛→∞

𝑛
∑
𝑛=1

𝑎𝑟𝑛−1 = 2
⁄

1−1⁄3

= 3.

327. Let 𝑥 be the first term and 𝑦 be the common ratio of the G.P. Then 𝑎 = 𝑥𝑦𝑝−1, 𝑏 =
𝑥𝑦𝑞−1, 𝑐 = 𝑥𝑦𝑟−1
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(log 𝑎) . ⃗𝚤 + (log 𝑏) ⃗𝚥 + (log 𝑐) �⃗� = (log 𝑥− 1) .( ⃗𝚤 + ⃗𝚥 + �⃗�)+ 𝑝 log 𝑦. ⃗𝚤 + 𝑞 log 𝑦. ⃗𝚥 + 𝑟 log 𝑦.�⃗�

Dot products of given vectors = (log 𝑥 − 1)(𝑞 − 𝑟 + 𝑟 − 𝑝 + 𝑝 − 𝑞)+ log 𝑦[𝑝(𝑞 − 𝑟)+
𝑞(𝑟 − 𝑝)+ 𝑟(𝑝 − 𝑞)] = 0

And therefore the vectors are perpendicular to each other.

328. Pollution after first day = 20(1 − .8) = 4% and after second day = 4(1 − .8) = .8. Let
us say that it takes 𝑛 days then 20(1 − .8)𝑛 < .01 ⇒ 1⁄

5𝑛 <
1⁄

2000 ⇒ 5𝑛 > 2000 ⇒ 𝑛 = 5

329. Let the sides of the triangle are 𝑎, 𝑎𝑟, 𝑎𝑟2 where 𝑎 > 0, 𝑟 > 1 then from properties of
the triangle

𝑎𝑟2 < 𝑎𝑟 + 𝑎 ⇒ 𝑟2 − 𝑟 − 1 < 0 ⇒ 𝑟 = 1±√


5⁄
2 ⇒ 𝑟 > −1+√


5⁄
2

Given that largest angle is twice the smallest one. ⇒ 𝑎⁄
sin 𝜃 =

𝑎𝑟2⁄
sin 2𝜃

⇒ 2 cos 𝜃 = 𝑟2 ⇒ 𝑟 < √


2 so the range is (1,√


2).

330. Let 𝑟 be the common ratio then 𝑏 = 𝑎𝑟, 𝑐 = 𝑎𝑟2,𝑑 = 𝑎𝑟3 then 𝑎𝑥
3+𝑎𝑟𝑥2+𝑎𝑟2𝑥+𝑎𝑟3⁄

𝑎𝑥2+𝑎𝑟2 = 𝑥+𝑟
leaving no remainder thus given condition is satisfied.

331. Given, (𝑎2 + 𝑏2 + 𝑐2)𝑝2 − 2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑑)𝑝 + (𝑏2 + 𝑐2 + 𝑑2) ≤ 0 ⇒ (𝑎𝑝 − 𝑏)2 +
(𝑏𝑝 − 𝑐)2 + (𝑐𝑝 − 𝑑)2 ≤ 0

However, sum of squares cannot be less than zero. ⇒ 𝑝 = 𝑏
⁄

𝑎 =
𝑐⁄
𝑏 ==

𝑑⁄
𝑐 thus 𝑎, 𝑏, 𝑐, 𝑑 are

in G.P. with common ratio 𝑝.

332. ∵ log𝑦 𝑥, log𝑧 𝑦, log𝑥 𝑧 are in G.P. ∴ (log 𝑦⁄log 𝑧)
2
= log𝑥
⁄

log 𝑦 .
log 𝑧
⁄

log𝑥 =
log 𝑧
⁄

log 𝑦 ⇒ log 𝑦 = log 𝑧 ⇒ 𝑦 = 𝑧

2𝑥4 = 2𝑦4 ⇒ 𝑥 = 𝑦 and 𝑥𝑦𝑧 = 8 ⇒ 𝑥3 = 8 ⇒ 𝑥 = 2 ⇒ 𝑥 = 𝑦 = 𝑧 = 2.

333. If 𝑎, 𝑏, 𝑐, 𝑑 are both in A.P. and G.P. then 𝑎 = 𝑏 = 𝑐 = 𝑑 ∵ 𝑏 = 2 ∴ number of such
sequences is 1.

334. We have log𝑥 𝑎, 𝑎𝑥/2, log𝑏 𝑥 are in G.P. ∴ 𝑎𝑥 = log𝑥 𝑎 log𝑏 𝑥 =
log𝑎 log𝑥⁄
log𝑥 log 𝑏 = log𝑏 𝑎

Taking log of both sides with base 𝑎, we get 𝑥 = log𝑎(log𝑏 𝑎).

335. Let 𝑎 be the first term and 𝑟 be the common ratio of the G.P. then

𝑡𝑚+𝑛 = 𝑎𝑟𝑚+𝑛−1 = 𝑝 and 𝑡𝑚−𝑛 = 𝑎𝑟𝑚−𝑛−1 = 𝑞

Dividing 𝑟2𝑛 = 𝑝
⁄

𝑞 ⇒ 𝑟 = (𝑝⁄𝑞)
1
⁄

2𝑛

⇒ 𝑎 = 𝑝.𝑟1−𝑚−𝑛 = 𝑝.(𝑝⁄𝑞)
1−𝑚−𝑛
⁄

2𝑛
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𝑡𝑚 = 𝑎𝑟𝑚−1 = 𝑝.(𝑝⁄𝑞)
1−𝑚−𝑛
⁄

2𝑛 .(𝑝⁄𝑞)
𝑚−1⁄
2𝑛 = 𝑝.(𝑝⁄𝑞)

−𝑛⁄
2𝑛 =√


𝑝𝑞.

𝑡𝑛 = 𝑎𝑟𝑛−1 = 𝑝.(𝑝⁄𝑞)
1−𝑚−𝑛
⁄

2𝑛 .(𝑝⁄𝑞)
𝑛−1
⁄

2𝑛 = 𝑝.(𝑞⁄𝑝)
𝑚
⁄

2𝑛.

336. Let 𝑎 be the first term and 𝑑 be the c.d. of the A.P. then terms are 𝑎 + (𝑝 − 1)𝑑, 𝑎 +
(𝑞 − 1)𝑑, 𝑎 + (𝑟 − 1)𝑑, which are in G.P. Let 𝑎 + (𝑝 − 1)𝑑 = 𝑥, 𝑎 + (𝑞 − 1)𝑑 =
𝑥𝑦, 𝑎 + (𝑟 − 1)𝑑 = 𝑥𝑦2 where 𝑥 is the first term and 𝑦 is the c.r. of the G.P.

(𝑝 − 𝑞)𝑑 = 𝑥(1 − 𝑟) and (𝑞 − 𝑟) = 𝑥𝑟(1 − 𝑟). Dividing 𝑟 = 𝑞−𝑟
⁄

𝑝−𝑞.

337. Let 𝑎 be the first term and 𝑟 be the c.r. of the G.P. Then,

𝑆1 = 𝑎+𝑎𝑟2+𝑎𝑟4+⋯+𝑎𝑟2𝑛−2 = 𝑎(𝑟2𝑛−1)
⁄

𝑟2−1 , 𝑆2 = 𝑎𝑟+𝑎𝑟3+⋯+𝑎𝑟2𝑛−1 = 𝑎𝑟(𝑎𝑟2𝑛−1)⁄
𝑟2−1

Dividing 𝑆2/𝑆2 = 𝑟, which is c.r. of the G.P.

338. 𝑆𝑛 = 𝑎(𝑟𝑛−1)
⁄

𝑟−1 ⇒ 𝑟𝑆𝑛 = 𝑎𝑟(𝑟𝑛−1)⁄
𝑟−1

𝑛
∑
𝑛=1

𝑆𝑛 = 𝑆1 + 𝑆2 + ⋯+ 𝑆𝑛 =
𝑎(𝑟−1)⁄
𝑟−1 + 𝑎(𝑟2−1)
⁄

𝑟−1 + ⋯ + 𝑎(𝑟𝑛−1−1)⁄
𝑟−1

(1 − 𝑟)
𝑛
∑
𝑛=1

𝑆𝑛 = 𝑎(1 − 𝑟)+ 𝑎(1 − 𝑟2)+⋯+ 𝑎(1 − 𝑟𝑛−1) = 𝑛𝑎 + 𝑎𝑟(1−𝑟𝑛)
⁄

1−𝑟

⇒ 𝑟𝑆𝑛 + (1 − 𝑟)∑𝑛
𝑛=1 𝑆𝑛 = 𝑛𝑎.

339. The series is 1+𝑥+𝑥𝑦+𝑥2𝑦+𝑥2𝑦2+⋯ = [1+𝑥𝑦+𝑥2𝑦2+⋯]+𝑥[1+𝑥𝑦+𝑥2𝑦2+⋯]

= (𝑥𝑛𝑦𝑛−1)⁄
𝑥𝑦−1 + 𝑥(𝑥𝑛𝑦𝑛−1)⁄

𝑥𝑦−1 = (𝑥𝑛𝑦𝑛−1)(1+𝑥)⁄
𝑥𝑦−1 .

340. 49 = (4 × 10)+ 9, 4489 = (4 × 103 + 4 × 102)+ (8 × 10)+ 9 and so on.

𝑡𝑘 = 4 10
𝑘−1⁄
9 .10𝑘 + 8. 10

𝑘−1⁄
9 + 1 = 4 10

𝑘−1⁄
9 10𝑘 − 4 10

𝑘−1⁄
9 + 12 10

𝑘−1⁄
9 + 1

= 36 10
2𝑘−2.10𝑘+1⁄

81 + 12 10
𝑘−1⁄
9 + 1 = (6 10

𝑘−1⁄
9 + 1)

2
.

341. 𝑆𝑚 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ⋯ + 𝑎𝑟𝑚−1 = 𝑎(𝑟𝑚−1)⁄
𝑟−1 . Let 𝑆 be required sum then

𝑆 = (∑𝑎𝑖)2−∑𝑎2𝑖⁄
2 =

(𝑎(𝑟
𝑚−1)⁄
𝑟−1 )

2
−[𝑎2+𝑎2𝑟2+⋯+𝑎2𝑟2(𝑚−1) ]⁄

2

2𝑆 = 𝑎2(𝑟𝑚−1)⁄
𝑟−1 [𝑟

𝑚−1⁄
𝑟−1 − 𝑟𝑚+1⁄

𝑟+1 ] =
𝑟
⁄

𝑟+1 .
𝑎(𝑟𝑚−1)⁄

𝑟−1 . 𝑎(𝑟
𝑚−1−1)⁄
𝑟−1 = 𝑟
⁄

𝑟+1 𝑆𝑚𝑆𝑚−1.

342. 𝑦 = log10 𝑥 + log10(𝑥)
1
⁄

2 + log10(𝑥)
1
⁄

4 + ⋯ = log10 𝑥 + 1
⁄

2 log10 𝑥 +
1
⁄

4 log10 𝑥 + ⋯



Answers of Progressions 396

𝑦 = log10 𝑥⁄
1−1
⁄

2
= 2 log10 𝑥

1+3+5+(2𝑦−1)⁄
4+7+10+⋯+3𝑦+1 =

20
⁄

7 log10 𝑥 ⇒
𝑦2⁄

𝑦
⁄

2[8+(𝑦−1) .3]
= 40⁄

7𝑦

⇒ 𝑦 = 10, 𝑥 = 105.

343. Let 𝑎 = 𝑎1 be the first term and 𝑟 to be the common ratio of the G.P., then

𝑆 = 𝑎(𝑟𝑛−1)
⁄

𝑟−1 , 𝑃 = 𝑎𝑛𝑟1+2+⋯+(𝑛−1) = 𝑎𝑛𝑟
𝑛(𝑛−1)
⁄

2 , 𝑇 = 1
⁄

𝑎 .
1− 1⁄

𝑟𝑛
⁄

1−1⁄𝑟
= 1
⁄

𝑎 .
𝑟𝑛−1
⁄

𝑟−1 . 1
⁄

𝑟𝑛−1

Clearly, 𝑃2 = (𝑆⁄𝑇 )
𝑛
.

344. Let 𝑥 be the first term and 𝑦 be the c.r. of the G.P. Then 𝑎 = 𝑥𝑦𝑛−1. The next 𝑛
terms will start from 𝑥𝑦𝑛 ⇒ 𝑏 = 𝑥𝑦𝑛.𝑦𝑛−1 and similarlry 𝑐 = 𝑥𝑦2𝑛𝑦𝑛−1

It is clear that 𝑏2 = 𝑎𝑐 i.e. 𝑎, 𝑏, 𝑐 are in G.P.

345. 𝑆1 = 𝑎 = 𝑎(1−𝑟)⁄
1−𝑟 , 𝑆2 = 𝑎(1−𝑟2)⁄

1−𝑟 , ⋯ , 𝑆𝑛 = 𝑎(1−𝑟𝑛)
⁄

1−𝑟

𝑆1 + 𝑆2 + ⋯+ 𝑆𝑛 = 𝑎
⁄

1−𝑟 [1 + 1 + ⋯+ to 𝑛 terms]− 𝑎𝑟
⁄

1−𝑟 [1 + 𝑟 + 𝑟2 + ⋯+ 𝑟𝑛−1 ]

= 𝑛𝑎
⁄

1−𝑟 −
𝑎𝑟(1−𝑟𝑛)
⁄

(1−𝑟)2 .

346. 𝑆1 = 𝑎 = 𝑎(1−𝑟)⁄
1−𝑟 , 𝑆3 = 𝑎(1−𝑟3)⁄

1−𝑟 , ⋯ , 𝑆2𝑛−1 = 𝑎(1−𝑟2𝑛−1⁄
1−𝑟

𝑆1+𝑆3+⋯+𝑆2𝑛−1 = 𝑎
⁄

1−𝑟 [1+1+⋯+ to 𝑛 terms]− 𝑎𝑟
⁄

1−𝑟2 [1+𝑟2+𝑟4+⋯+𝑟2(𝑛−1)]

= 𝑛𝑎
⁄

1−𝑟 −
𝑎𝑟(1−𝑟2𝑛)
⁄

(1−𝑟)2(1+𝑟).

347. Let 𝑎 be the first term and 𝑟 be the common ratio. Then,

𝑠 = 𝑎
⁄

1−𝑟 , 𝜎 = 𝑎2
⁄

1−𝑟2 , 𝑆𝑛 =
𝑎(1−𝑟𝑛)
⁄

1−𝑟

𝑠[1 − (𝑠
2−𝜎2
⁄

𝑠2+𝜎2)
𝑛
] = 𝑎
⁄

1−𝑟 [1 −(
𝑎2⁄

(1−𝑟)2
− 𝑎2⁄
1−𝑟2⁄

𝑎2⁄
(1−𝑟)2

+ 𝑎2⁄
1−𝑟2)

𝑛

] =
𝑎
⁄

1−𝑟 [1 −(
1⁄

1−𝑟−
1⁄

1+𝑟⁄
1⁄

1−𝑟+
1⁄

1+𝑟)
𝑛

].
= 𝑎(1−𝑟𝑛)
⁄

1−𝑟 = 𝑆𝑛.

348. ∑𝑖<𝑗 𝑎𝑖𝑎𝑗 =
1
⁄

2 [(𝑎1 + 𝑎2 +…+ 𝑎𝑛)2 − (𝑎21 + 𝑎22 + …+ 𝑎2𝑛)]

= 1
⁄

2 [(𝑎 + 𝑎𝑟 +…+ 𝑎𝑟𝑛−1)2 − (𝑎2 + 𝑎2𝑟2 + …+ 𝑎2𝑟2(𝑛−1))]
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= 1
⁄

2[
𝑎2(1−𝑟𝑛)2⁄

(1−𝑟)2−𝑎2(1−𝑟2𝑛)⁄
1−𝑟2

] = 1
⁄

2 [
𝑎2(1−2𝑟𝑛+𝑟2𝑛)⁄

(1−𝑟)2 − 𝑎2(1−𝑟2𝑛)⁄
1−𝑟2 ] = 𝑎2𝑟(1−𝑟𝑛−1)(1−𝑟𝑛)
⁄

(1−𝑟)2(1+𝑟)

349. Let 𝑎 be the first term and 𝑟 be the common ratio. Then,

L.H.S. = 1⁄
𝑎2−𝑎2𝑟2 +

1⁄
𝑎2𝑟2−𝑎2𝑟4 +

1⁄
𝑎2𝑟4−𝑎2𝑟6 + …+ 1⁄

𝑎2𝑟2(𝑛−2)−𝑎2𝑟2(𝑛−1)

= 1⁄
𝑎2(1−𝑟2) [1 +

1
⁄

𝑟2 +
1
⁄

𝑟4 +…+ 1⁄
𝑟2(𝑛−2)] =

1⁄
𝑎2(1−𝑟2) .

1− 1⁄
𝑟2(𝑛−1)⁄
1− 1⁄

𝑟2
= 1⁄

𝑎2(1−𝑟2) .
1−𝑟2𝑛−2⁄
1−𝑟2 . 𝑟2⁄

𝑟2𝑛−2.

350. Let 𝑎 be the first term and 𝑟 be the common ratio. Then,

L.H.S. = 1⁄
𝑎𝑚+𝑎𝑚𝑟𝑚 + 1⁄

𝑎𝑚𝑟𝑚+𝑎𝑚𝑟2𝑚 +…+ 1⁄
𝑎𝑚𝑟𝑚(𝑛−2)+𝑎𝑚𝑟𝑚(𝑛−1)

= 1⁄
𝑎𝑚(1+𝑟𝑚) [1 + 1⁄

𝑟𝑚 + 1⁄
𝑟2𝑚 + … + 1⁄

𝑟𝑚(𝑛−2)] = 1⁄
𝑎𝑚(1+𝑟𝑚) .

1− 1⁄
𝑟𝑚(𝑛−1)⁄
1− 1⁄

𝑟𝑚
=

𝑟𝑚𝑛−𝑚−1
⁄

𝑎𝑚(1+𝑟𝑚)(𝑟𝑚𝑛−𝑚−𝑟𝑚𝑛−2𝑚).

351. Let 𝑎 be the first term and 𝑟 be the common ratio. Then,

L.H.S. =√

𝑎2𝑟+√

𝑎2𝑟5+√

𝑎2𝑟9+…+√

𝑎2𝑟4𝑛−3 = 𝑎√

𝑟(1+𝑟2+𝑟4+…+𝑟2(𝑛−1))=

𝑎√

𝑟 . (𝑟

2𝑛−1)⁄
𝑟2−1

√

𝑎1 + 𝑎3 +…+ 𝑎2𝑛−1 =√


𝑎(1 + 𝑟2 + …+ 𝑟2𝑛−2) =√


𝑎. 𝑟

2𝑛−1⁄
𝑟2−1

√

𝑎2 + 𝑎4 +…+ 𝑎2𝑛 =√

𝑎𝑟(1 + 𝑟2 + …+ 𝑟2𝑛−2) =√


𝑎√

𝑟 . 𝑟

2𝑛−1⁄
𝑟2−1

∴√


𝑎1𝑎2+√


𝑎3𝑎4+√


𝑎5𝑎6+…+√


𝑎2𝑛−1𝑎2𝑛 =√

𝑎1 + 𝑎3 +…+ 𝑎2𝑛−1√

𝑎2 + 𝑎4 +…+ 𝑎2𝑛.

352. Given 1 + 𝑥 + 𝑥2 +…+ 𝑥23 = 0, 1 + 𝑥 + 𝑥2 +…+ 𝑥19 = 0

𝑥24−1⁄
𝑥−1 = 0, 𝑥

20−1⁄
𝑥−1 = 0 ⇒ 𝑥24 − 1 = 0, 𝑥20 − 1 = 0 ∴𝑥20.𝑥4 − 1 = 0 ⇒ 𝑥4 − 1 = 0

Thus, roots are −1, ±𝑖.

353. $𝑎 will become 𝑎 + 𝑟.(𝑎) = 𝑎(1 + 𝑟) at the end of second year, 𝑎 + 𝑎𝑟 + 𝑟(𝑎 + 𝑎𝑟) =
𝑎+ 2𝑎𝑟 + 𝑎𝑟2 = 𝑎(1 + 𝑟)2 at the end of third year, 𝑎+ 2𝑎𝑟 + 𝑎𝑟2 + 𝑟(𝑎+ 2𝑎𝑟 + 𝑎𝑟2) =
𝑎 + 3𝑎𝑟 + 3𝑎𝑟2 + 𝑎𝑟3 = 𝑎(1 + 𝑟)3 and so on. So amount received for $𝑎 will be
𝑎(1 + 𝑟)𝑛+1

Similarly, amount receoved for $2𝑎 will be 2𝑎(1 + 𝑟)𝑛 and so on.

Thus, total amount received will be 𝑆 = 𝑎(1 + 𝑟)𝑛+1 + 2𝑎(1 + 𝑟)𝑛 + 3𝑎(1 + 𝑟)𝑛−1 +
…+ 𝑛𝑎(1 + 𝑟)

𝑆
⁄

1+𝑟 = 𝑎(1 + 𝑟)𝑛 + 2𝑎(1 + 𝑟)𝑛−1 + …+ (𝑛 − 1)(1 + 𝑟)+ 𝑛𝑎
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Writing first term of second sum against second term of first sum, second term
of second sum against third term of first sum and so on and subtracting, we get
𝑟𝑆
⁄

1+𝑟 = 𝑎(1 + 𝑟)𝑛+1 + 𝑎(1 + 𝑟)𝑛 + 𝑎(1 + 𝑟)𝑛−1 + …+ 𝑎(1 + 𝑟)− 𝑛𝑎

𝑟𝑆
⁄

1+𝑟 = 𝑎(1 + 𝑟)[(1 + 𝑟)𝑛 + (1 + 𝑟)𝑛−1 + …+ 1])− 𝑛𝑎

𝑆 = 𝑎(1+𝑟)2[(1+𝑟)𝑛−1]⁄
𝑟2 − 𝑛𝑎(1+𝑟)⁄

𝑟 .

354. (1⁄3+
1
⁄

32+
1
⁄

33+…∞) =
1
⁄

3⁄
1−1
⁄

3
= 1
⁄

2 ⇒ (0.16)log2.5(
1
⁄

3+
1
⁄

32
+ 1
⁄

33
+…∞) = ( 4
⁄

25)
log5⁄

2

1
⁄

2

= (1⁄2)
log5⁄

2

4
⁄

25

=

(1⁄2)
−2

= 4.

355. 𝐴 = 1 + 𝑟𝑎 + 𝑟2𝑎 + … to ∞ = 1⁄
1−𝑟𝑎 ⇒ 𝑟 = (𝐴−1
⁄

𝐴 )
1⁄
𝑎

𝐵 = 1 + 𝑟𝑏 + 𝑟2𝑏 + … to ∞ = 1⁄
1−𝑟𝑏 ⇒ 𝑟 = (𝐵−1
⁄

𝐵 )
1
⁄

𝑏.

356. 𝑠1 = 1⁄
1−1
⁄

2
= 2, 𝑠2 = 2⁄

1−1
⁄

3
= 3,… , 𝑠𝑛 = 𝑛⁄

1− 1⁄
𝑛+1

= 𝑛 + 1

𝑠1 + 𝑠2 + …+ 𝑠𝑛 = 2 + 3 +…+ (𝑛 + 1) = 1
⁄

2 𝑛(𝑛 + 3).

357. 𝑆1 = 1⁄
1−1
⁄

2
= 2, 𝑆2 = 2⁄

1−1
⁄

3
= 3,…𝑆𝑛 = 𝑛⁄

1− 1⁄
𝑛+1

= 𝑛 + 1

General term of numerator 𝑡𝑖 = 𝑆𝑖𝑆𝑛−𝑖+1 = (𝑖+1)(𝑛−𝑖+2)= (𝑛+1)𝑖−𝑖2+(𝑛+1)

∴Sum for numerator =
𝑛
∑
𝑖=1

𝑡𝑖 =
𝑛
∑
𝑖=1

[(𝑛 + 1) 𝑖 − 𝑖2 + (𝑛 + 1)] = 𝑛(𝑛+1)2
⁄

2 −

𝑛(𝑛+1)(2𝑛+1)⁄
6 + 𝑛(𝑛 + 1)

Sum for denominator = 12 + 22 +…+ (𝑛 + 1)2 − 1 = (𝑛+1)(𝑛+2)(2𝑛+3)⁄
6 − 1

Upon simplification lim
𝑛→∞

𝑆1𝑆𝑛+𝑆2𝑆𝑛−1+…+𝑆𝑛𝑆1⁄
𝑆2
1+𝑆2

2+…+𝑆2
𝑛

= 1
⁄

2.

358. 𝑓′(𝑥) = 3𝑥2 + 3 which yields imaginary roots implying that there is no local maxima.
However, 3𝑥2 + 3 is positive for all values of 𝑥 which means that 𝑓(𝑥) is monotonically
increasing in [−5, 3] implying that maximum value will be at 𝑥 = 3

𝑓(3) = 27, also let 𝑎 to be the first term and 𝑟 to be the common ratio then given,
𝑎 − 𝑎𝑟 = 𝑓′(0) = 3. The sum is given as 𝑎

⁄

1−𝑟 = 27 solving these yields 𝑟 = 2
⁄

3 , −
4
⁄

3 but

the series is decreasing so 𝑟 = 2
⁄

3.

359. Let 𝑆 = 5
⁄

13 +
55
⁄

132 +
555
⁄

133 + …∞
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= 5
⁄

9 [
10−1⁄
13 + 100−1
⁄

132 + 1000−1⁄
133 +…∞] = 5
⁄

9 [
10
⁄

13 +
102
⁄

132 +
103
⁄

133 +…∞− 1
⁄

13 −
1
⁄

132 −
1
⁄

133 −…∞]

= 5
⁄

9 [
10
⁄

13⁄
1−10
⁄

13
−

1
⁄

13⁄
1− 1
⁄

13
] = 5
⁄

9 [
10
⁄

13 .
13
⁄

3 − 1
⁄

13 .
13
⁄

12] =
65
⁄

36

360. 𝑆 = cos 𝑥 + 2
⁄

3 cos 𝑥 sin
2 𝑥 + 4
⁄

9 cos 𝑥 sin
4 𝑥 +…

= cos𝑥⁄
1−2
⁄

3sin2 𝑥
= 3cos𝑥⁄

3−2 sin2 𝑥 =
3cos𝑥⁄

2+cos 2𝑥

The term 3 cos𝑥⁄
2+cos 2𝑥 is finite for all 𝑥 ∈ (−𝜋

⁄

2 ,
𝜋
⁄

2)

361. Let 𝑎 be the first term, 𝑏 be the last term and 𝑛 be the number of terms of A.P. and
G.P.

Then c.d. of A.P. = 𝑏−𝑎
⁄

𝑛−1 and c.r. of the G.P. = (𝑏⁄𝑎)
𝑛−1

. Let 𝑆 be the sum of 𝑛 terms

of A.P. and 𝑆′ the sum of 𝑛 terms of G.P. then 𝑆 = 𝑛
⁄

2 (𝑎 + 𝑏)

𝑆′ = 𝑎(1 + 𝑟 + 𝑟2 + …+ 𝑟𝑛−1), 𝑆′ = 𝑎(𝑟𝑛−1 + 𝑟𝑛−2 + …+ 1)

∴𝑆′ = 𝑎
⁄

2 [(1 + 𝑟𝑛−1)+ (𝑟 + 𝑟𝑛−2)+ (𝑟𝑘 + 𝑟𝑛−𝑘−1)+…+ (𝑟𝑛−1 + 1)]

Now, (𝑟𝑘 + 𝑟𝑛−𝑘−1)− (𝑟𝑛−1 + 1) = (𝑟𝑘 − 1)+ 𝑟𝑛−1(𝑟−𝑘 − 1)

= (𝑟𝑘 − 1)(1 − 𝑟𝑛−1
⁄

𝑟𝑘 ) = (𝑟𝑘 − 1)(1 − 𝑟𝑛−𝑘−1) ≤ 0

∴𝑆′ ≤ 𝑎𝑛⁄
2 (1 + 𝑟𝑛−1) = 𝑎𝑛⁄

2 (1 +
𝑏
⁄

𝑎) = (𝑎+𝑏⁄2 )𝑛 = 𝑆

∴𝑆 ≥ 𝑆′.

362. Given 𝑎, 𝑎1, 𝑎2, 𝑎3, … are in G.P. so log 𝑎, log 𝑎1, log 𝑎2, … are in A.P. Let the common
difference of this A.P. be 𝑑1. Now log 𝑎𝑛 = log 𝑎 + 𝑛𝑑1. Further if 𝑑 be the common
difference of the A.P. 𝑏, 𝑏1, 𝑏2, … then 𝑏𝑛 = 𝑏 + 𝑛𝑑

∴ log𝑎𝑛−log𝑎⁄𝑏𝑛−𝑏 = 𝑛𝑑1⁄
𝑛𝑑 = 𝑑1
⁄

𝑑

Let log 𝑥 = 𝑑1
⁄

𝑑 for a fixed positive real number 𝑥.

⇒ log𝑎𝑛−log𝑎⁄
𝑏𝑛−𝑏 = log 𝑥 ⇒ 𝑏𝑛 − 𝑏 = log𝑥(𝑎𝑛⁄𝑎 )⇒ log𝑥 𝑎𝑛 − log𝑥 𝑎 = 𝑏𝑛 − 𝑏 ⇒ log𝑥 𝑎𝑛 −

𝑏𝑛 = log𝑥 𝑎 − 𝑏

363. Given 𝑎 +𝑚𝑑, 𝑎 + 𝑛𝑑, 𝑎 + 𝑟𝑑 are in G.P., where 𝑎 is the first term and 𝑑 is the c.d. of
A.P.

⇒ (𝑎 + 𝑛𝑑)2 = (𝑎 + 𝑚𝑑)(𝑎 + 𝑟𝑑) ⇒ 𝑑(𝑛2𝑑 + 2𝑎𝑛) = 𝑑(𝑎𝑚 + 𝑎𝑟 + 𝑚𝑟𝑑) ⇒ (𝑛2 −
𝑚𝑟)𝑑 = 𝑎(𝑚+ 𝑟 − 𝑟𝑛)

𝑑
⁄

𝑎 =
𝑚+𝑟−2𝑛⁄
𝑛2−𝑚𝑟
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Given, 𝑚, 𝑛, 𝑟 are in H.P. ∴𝑛 = 2𝑚𝑟⁄
𝑚+𝑟 ⇒ 𝑚+ 𝑟 = 2𝑚𝑟⁄

𝑛

∴ 𝑑⁄𝑎 =
2𝑚𝑟⁄
𝑛 −2𝑛⁄
𝑛2−𝑚𝑟 = − 2
⁄

𝑛 ∴ 𝑎
⁄

𝑑 = −𝑛
⁄

2

364. Let 𝑟 be the common ratio of the G.P., then 𝑏 = 𝑎𝑟, 𝑐 = 𝑎𝑟2. Given, 𝑎 − 𝑏, 𝑐 − 𝑎, 𝑏 − 𝑐
are in H.P.

∴ 𝑐 − 𝑎 = 2(𝑎−𝑏)(𝑏−𝑐)⁄
𝑎−𝑏+𝑏−𝑐

(𝑐 − 𝑎)2 = 2(𝑎 − 𝑏)(𝑏 − 𝑐)⇒ (𝑎𝑟2 − 𝑎)2 = 2(𝑎 − 𝑎𝑟)(𝑎𝑟 − 𝑎𝑟2)

𝑎2(𝑟2 − 1)2 = −2𝑎2(1 − 𝑟)𝑟(1 − 𝑟)⇒ (𝑟 + 1)2 = −2𝑟 ⇒ 1 + 4𝑟 + 𝑟2 = 0

⇒ 𝑎 + 4𝑎𝑟 + 𝑎𝑟2 = 0 ⇒ 𝑎 + 4𝑏 + 𝑐 = 0.

365. Let 𝑑1, 𝑑2, 𝑑3 be the common differences of the A.P.'s.

⇒ 𝑆1 = 𝑛
⁄

2 [2 + (𝑛 − 1)𝑑1 ]⇒ 𝑑 = 2(𝑆1−𝑛)⁄
𝑛(𝑛−1)

Similalrly 𝑑2 = 2(𝑆2−𝑛)⁄
𝑛(𝑛−1) , 𝑑3 =

2(𝑆3−𝑛)⁄
𝑛(𝑛−1)

∵ 𝑑1, 𝑑2, 𝑑3 are in H.P. ∴ 1
⁄

𝑑2 −
1
⁄

𝑑1 =
1
⁄

𝑑3 −
1
⁄

𝑑2

⇒ 𝑛(𝑛−1)⁄
2(𝑆2−𝑛)−

𝑛(𝑛−1)⁄
2(𝑆1−𝑛) =

𝑛(𝑛−1)⁄
2(𝑆3−𝑛)−

𝑛(𝑛−1)⁄
2(𝑆2−𝑛)

⇒ 1⁄
𝑆2−𝑛 −

1⁄
𝑆1−𝑛 =

1⁄
𝑆3−𝑛 −

1⁄
𝑆2−𝑛 ⇒

𝑆1−𝑆2⁄
(𝑆1−𝑛)(𝑆2−𝑛) =

𝑆2−𝑆3⁄
(𝑆3−𝑛)(𝑆2−𝑛)

⇒ 𝑛 = 2𝑆3𝑆1−𝑆1𝑆2−𝑆2𝑆3
⁄

𝑆1−2𝑆2+𝑆3
.

366. Let the digits at hundreds, tens and units places be 𝑎, 𝑎𝑟 and 𝑎𝑟2 and the required
number be 𝑥, then 𝑥 = 100𝑎 + 10𝑎 + 𝑎𝑟2

Let 𝑦 = 𝑥−400 ⇒ 𝑦 = 100(𝑎−4)+1−𝑎𝑟+𝑎𝑟2 In the number 𝑦, the digit at hundreds
place is 𝑎 − 4. Clearly

1 ≤ 𝑎 − 4 ≤ 5 [∵ 1 ≤ 𝑎 ≤ 9 and 𝑎 − 4 ≥ 1]⇒ 5 ≤ 𝑎 ≤ 9

According to question 𝑎 − 4, 𝑎𝑟, 𝑎𝑟2 are in A.P. ∴ 2𝑎𝑟 = 𝑎 − 4 + 𝑎𝑟2 ⇒ 𝑎(𝑟 − 1)2 =
4 ⇒ 𝑟 − 1 = ± 2⁄

√


𝑎

∵ 𝑎 and 𝑎𝑟 are integers. ∴ 𝑟 is a rational number. Thus, 𝑎 must be a perfect square.
∴ 𝑎 = 9

Thus, 𝑟 = 5
⁄

3 ,
1
⁄

3 but 𝑟 ≠ 5
⁄

3 othereise 𝑎𝑟 = 15 ∴ 𝑟 = 1
⁄

3 ∴ 𝑎𝑟 = 3, 𝑎𝑟2 = 1

Hence required number is 931.
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367. Given 𝑎, 𝑏, 𝑐 are in G.P. Let 𝑟 be the common ratio of this G.P. then 𝑏 = 𝑎𝑟 and
𝑐 = 𝑎𝑟2.

Given, log𝑐 𝑎, log𝑏 𝑐, log𝑎 𝑏 are in A.P.

⇒ log𝑎
⁄

log 𝑐 ,
log 𝑐
⁄

log 𝑏 ,
log 𝑏
⁄

log 𝑎 are in A.P.

⇒ log𝑎⁄
log 𝑎+2 log 𝑟 ,

log𝑎+2 log 𝑟⁄
log 𝑎+log 𝑟 ,

log𝑎+log 𝑟⁄
log 𝑎 are in A.P.

1⁄
1+2𝑥,

1+2𝑥⁄
1+𝑥 , 1 + 𝑥 are in A.P. where log 𝑟

⁄

log 𝑎 = 𝑥

2(1+2𝑥⁄1+𝑥 = 1⁄
1+2𝑥 + 1 + 𝑥)⇒ 𝑥(2𝑥2 − 3𝑥 − 3) = 0

2𝑥2−3𝑥−3 = 0[∵ 𝑥 ≠ 0, else log 𝑟 = 0⇒ 𝑟 = 1 which is not possible as 𝑎,𝑏,𝑐 are distinct]

2𝑑 = 1 + 𝑥 − 1⁄
1+2𝑥 =

2𝑥2+3𝑥⁄
1+2𝑥 = 3𝑥+3+3𝑥⁄

1+2𝑥 = 3 ⇒ 𝑑 = 3
⁄

2.

368. Let the two numbers be 𝑎 and 𝑏. Since 𝑛 A.M.'s have been inserted between 𝑎 and 𝑏 ∴
common difference of A.P., 𝑑 = 𝑏−𝑎

⁄

𝑛+1

Now 𝑝 = first A.M. = 2nd term of A.P. = 𝑎 + 𝑑 = 𝑎𝑛+𝑏
⁄

𝑛+1

Similarly for harmonic series 𝑞 = 𝑎𝑏(𝑛+1)
⁄

𝑏𝑛+𝑎

We know that 𝑥 will not lie between 𝛼 and 𝛽 if (𝑥 − 𝛼)(𝑥 − 𝛽) > 0

𝑞 − 𝑝 = − 𝑛(𝑎−𝑏)2⁄
(𝑏𝑛+𝑎)(𝑛+1)

𝑞 − (𝑛+1⁄𝑛−1)
2
𝑝 = − (𝑛+1)(𝑎+𝑏)2𝑛⁄

(𝑛−1)2(𝑏𝑛+𝑎)

⇒ (𝑞 − 𝑝)[𝑞 − (𝑛+1⁄𝑛−1)
2
𝑝] = 𝑛2(𝑎−𝑏)2(𝑎+𝑏)2⁄

(𝑛−1)2(𝑏𝑛+𝑎)2 > 0.

369. Common difference of A.P. = 𝑞 − 𝑝 and common ratio of G.P. = 𝑞
⁄

𝑝 < 1

𝑠 = 𝑝⁄
1−𝑞
⁄

𝑝
= 𝑝2
⁄

𝑝−𝑞. Let 𝑆𝑛 be the sum of 𝑛 terms of A.P., then

𝑆𝑛 = 𝑛
⁄

2 [2𝑝 + (𝑛 − 1)𝑑] = 𝑛𝑝 + 𝑛(𝑛−1)𝑑⁄
2 = 𝑛𝑝 + 𝑛(𝑛−1)(𝑞−𝑝)𝑝2⁄

2𝑝2 = 𝑛𝑝 − 𝑛(𝑛−1)
⁄

2 . 𝑝
2
⁄

𝑠 .

370. ∵ log𝑥 𝑦, log𝑧 𝑥, log𝑦 𝑧 are in G.P.

⇒ (log𝑧 𝑥)2 = log𝑥 𝑦. log𝑦 𝑧 ⇒ (log𝑥⁄log 𝑧)
2
= log𝑦
⁄

log𝑥 .
𝑙𝑜𝑔𝑧
⁄

log 𝑦

⇒ (log 𝑥)3 = (log 𝑧)3 ⇒ 𝑥 = 𝑧 ⇒ 𝑥 = 𝑦 = 𝑧 = 4 ∵𝑥𝑦𝑧 = 64 and 2𝑦3 = 𝑥3 + 𝑧3.
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371. 2(𝑥 + 2𝑦) = 𝑥 + 2𝑥 + 𝑦 ⇒ 3𝑦 = 𝑥, (𝑥𝑦 + 5)2 = (𝑦 + 1)2(𝑥 + 1)2 ⇒ (3𝑦2 + 5) =
±(𝑦 + 1)(3𝑦 + 1)

⇒ 𝑦 = 1, −1±2√


2𝑖⁄
3 , 𝑥 = 3, −1 ± 2√


2𝑖.

372. Let 𝑎 = 3 be the first term and 𝑑 be the common difference of the G.P. then, given

(𝑎 + 9𝑑)2 = (𝑎 + 𝑑)(𝑎 + 33𝑑)⇒ 𝑎2 + 18𝑎𝑑 + 81𝑑2 = 𝑎2 + 34𝑎𝑑 ++33𝑑2 ⇒ 𝑑 = 𝑎
⁄

3 = 1

So the A.P. is 3, 4, 5, ….

373. Given, √


𝑎𝑏 = √


𝑐𝑑, 𝑎
2+𝑏2⁄
2 = 𝑐2+𝑑2⁄

2 ⇒ 𝑎𝑏 = 𝑐𝑑, 𝑎2 + 𝑏2 = 𝑐2 + 𝑑2

⇒ (𝑎 − 𝑏)2 = (𝑐 − 𝑑)2, (𝑎 + 𝑏)2 = (𝑐 + 𝑑)2 ⇒ 𝑎 = 𝑐, 𝑏 = 𝑑

Thus, arithmetic mean of 𝑎𝑛 and 𝑏𝑛 is equal to the arithmetic mean of 𝑐𝑛 and 𝑑𝑛 for
every integral value of 𝑛.

374. Let 𝑎 be the first term and 𝑑 be the common difference of A.P. and thus 𝑑 will be the
first term and 𝑎 be the common ratio of the G.P. Given,

155 = 10
⁄

2 [2𝑎 + (10 − 1)𝑑]⇒ 2𝑎 + 9𝑑 = 31

𝑑 + 𝑎𝑑 = 9 ⇒ 𝑎 = 25
⁄

2 , 2 ⇒ 𝑑 = 2
⁄

3 , 3

Thus, A.P. is 2, 5, 8, … or 25⁄2 ,
79
⁄

6 ,
83
⁄

6 , … and the G.P. is 3, 6, 12, … or 2⁄3 ,
25
⁄

3 ,
625
⁄

6 , ….

375. Since 𝑎, 𝑏, 𝑐 are in H.P. therefore 1⁄𝑎,
1
⁄

𝑏 ,
1
⁄

𝑐 are in A.P.

⇒ 2
⁄

𝑏 =
1
⁄

𝑎 +
1
⁄

𝑐 ⇒ 𝑏 = 2𝑎𝑐
⁄

𝑎+𝑐 ⇒
3
⁄

𝑏 −
2
⁄

𝑐 =
1
⁄

𝑎 +
1
⁄

𝑏 −
1
⁄

𝑐 and 3
⁄

𝑏 −
2
⁄

𝑎 =
1
⁄

𝑏 +
1
⁄

𝑐 −
1
⁄

𝑎

(1⁄𝑎 +
1
⁄

𝑏 −
1
⁄

𝑐)(
1
⁄

𝑏 +
1
⁄

𝑐 −
1
⁄

𝑎) = (3⁄𝑏 −
2
⁄

𝑐)(
3
⁄

𝑏 −
2
⁄

𝑎)

= 9𝑎𝑐−6𝑎𝑏−6𝑏𝑐+4𝑏2⁄
𝑎𝑐𝑏2 = 4
⁄

𝑎𝑐 +
9
⁄

𝑏2 −
6𝑏(𝑎+𝑐)⁄
𝑎𝑐𝑏2

= 4
⁄

𝑎𝑐 +
9
⁄

𝑏2 −
6𝑏⁄
𝑎𝑐𝑏2 .

2
⁄

𝑏 =
4
⁄

𝑎𝑐 −
3
⁄

𝑏2.

376. Because 𝑎, 𝑏, 𝑐 are in H.P. therefore 2⁄𝑏 =
1
⁄

𝑎 +
1
⁄

𝑐

𝑎+𝑏
⁄

2𝑎−𝑏 +
𝑏+𝑐
⁄

2𝑐−𝑏 =
1
⁄

𝑏+
1⁄
𝑎⁄

2
⁄

𝑏−
1⁄
𝑎
+

1
⁄

𝑏+
1
⁄

𝑐⁄
2
⁄

𝑏−
1
⁄

𝑐
= 𝑐
⁄

𝑎 +
𝑐⁄
𝑏 +

𝑎
⁄

𝑏 +
𝑎
⁄

𝑐 =
𝑐2+𝑎2
⁄

𝑎𝑐 + 𝑎+𝑐
⁄

𝑏

= 𝑐2+𝑎2
⁄

𝑎𝑐 + (𝑎+𝑐)2
⁄

2𝑎𝑐 = 𝑐2+𝑎2
⁄

𝑎𝑐 − 2 + (𝑎+𝑐)2
⁄

2𝑎𝑐 − 2 + 4 = (𝑐−𝑎)2
⁄

𝑎𝑐 + (𝑎−𝑐)2
⁄

2𝑎𝑐 + 4 ≥ 4.

377. 𝑏 − 𝑎+𝑏
⁄

1−𝑎𝑏 =
𝑏+𝑐
⁄

1−𝑏𝑐 − 𝑏 ⇒ 𝑏−𝑎𝑏2−𝑎−𝑏⁄
1−𝑎𝑏 = 𝑏+𝑐−𝑏+𝑏2𝑐⁄

1−𝑏𝑐
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⇒ −𝑎(1+𝑏2)⁄
1−𝑎𝑏 = 𝑐(1+𝑏2)⁄

1−𝑏𝑐 ⇒ −𝑎(1 − 𝑏𝑐) = 𝑐(1 − 𝑎𝑏)⇒ 𝑎+ 𝑐 = 2𝑎𝑏𝑐 ⇒ 2𝑏 = 𝑎+𝑐
⁄

𝑎𝑐

∴ 𝑎, 𝑏−1, 𝑐 are in H.P.

378. 𝑥 = 1⁄
1−𝑎, 𝑦 =

1⁄
1−𝑏 , 𝑧 =

1⁄
1−𝑐

𝑎, 𝑏, 𝑐 are in A.P. ⇒ 1− 𝑎, 1 − 𝑏, 1 − 𝑐 are in A.P.

⇒ 1⁄
1−𝑎,

1⁄
1−𝑏 ,

1⁄
1−𝑐 are in H.P. ⇒ 𝑥, 𝑦, 𝑧 are in H.P.

379. Let 𝑎
1
⁄

𝑥 = 𝑏
1
⁄

𝑦 = 𝑐
1
⁄

𝑧 = 𝑘 ⇒ 𝑎 = 𝑘𝑥, 𝑏 = 𝑘𝑦, 𝑐 = 𝑘𝑧

∵ 𝑎, 𝑏, 𝑐 are in G.P. ⇒ 𝑏2 = 𝑎𝑐 ⇒ 𝑘2𝑦 = 𝑘𝑥+𝑧 ⇒ 2𝑦 = 𝑥 + 𝑧

∴𝑥, 𝑦, 𝑧 are in A.P.

380. 2𝑏 = 𝑎 + 𝑐, 𝑚 = 2𝑙𝑛⁄
𝑙+𝑛, 𝑏

2𝑚2 = 𝑎𝑐𝑙𝑛 ⇒ (𝑎+𝑐⁄2 . 2𝑙𝑛⁄𝑙+𝑛)2 = 𝑎𝑐𝑙𝑛

⇒ 𝑙𝑛⁄
(𝑙+𝑛)2 =

𝑎𝑐
⁄

(𝑎+𝑐)2 ⇒
(𝑎+𝑐)2
⁄

𝑎𝑐 = (𝑙+𝑛)2⁄
𝑙𝑛

⇒ 𝑎
⁄

𝑐 +
𝑐
⁄

𝑎 =
𝑙
⁄

𝑛 +
𝑛
⁄

𝑙 ⇒ 𝑎 : 𝑐 = 1
⁄

𝑛 :
1
⁄

𝑙

Now it can be proven that 𝑎 : 𝑏 : 𝑐 = 1
⁄

𝑛 :
1
⁄

𝑚 : 1⁄𝑙.

381. The common difference of A.P. = 𝑏 − 𝑎, common ratio of G.P. is 𝑏/𝑎 and common
difference for corresponding A.P. of H.P. is (𝑎 − 𝑏)/𝑎𝑏

𝑛 + 2th term of A.P. = 𝑎 + (𝑛 + 1)(𝑏 − 𝑎) = (𝑛 + 1)𝑏 − 𝑛𝑎

𝑛 + 2th term of G.P. = 𝑎𝑟𝑛+1 = 𝑏𝑛+1⁄
𝑎𝑛

𝑛 + 2th term of H.P. = 1⁄
1⁄
𝑎+

(𝑛+1)(𝑎−𝑏)⁄
𝑎𝑏

= 𝑎𝑏⁄
(𝑛+1)𝑎−𝑛𝑏

These will be in G.P. if
[(𝑛+1)𝑏−𝑛𝑎]𝑎𝑏⁄
(𝑛+1)𝑎−𝑛𝑏 = 𝑏2𝑛+2⁄

𝑎2𝑛 ⇒ (𝑛 + 1)𝑎2𝑛+1𝑏2 − 𝑛𝑎2𝑛+2𝑏 = (𝑛 + 1)𝑎𝑏2𝑛+2 − 𝑛𝑏.𝑏2𝑛+2

⇒ (𝑛 + 1)𝑎𝑏2[𝑎2𝑛 − 𝑏2𝑛 ] = 𝑛𝑏[𝑎2𝑛+2 − 𝑏2𝑛+2 ]⇒ 𝑏2𝑛+2−𝑎2𝑛+2
⁄

𝑎𝑏(𝑏2𝑛−𝑎2𝑛) =
𝑛+1
⁄

𝑛 .

382. 𝑎𝑟𝑛 − 𝑎 − 𝑛𝑑 = 𝑎(1 + 𝑑
⁄

𝑎)
𝑛
− 𝑎 − 𝑛𝑑[∵ 𝑟 = 𝑎+𝑑⁄

𝑎 ]

= 𝑎[1 +𝑛 𝐶1(𝑑⁄𝑎)+
𝑛 𝐶2(𝑑⁄𝑎)

2
+ …+𝑛 𝐶𝑛(𝑑⁄𝑎)

𝑛
]− 𝑎 − 𝑛𝑑

= 𝑎[𝑛𝐶2
𝑑2
⁄

𝑎2 +
𝑛 𝐶3

𝑑3
⁄

𝑎3 + …+𝑛 𝐶𝑛
𝑑𝑛
⁄

𝑎𝑛] > 0(∵ 𝑑⁄𝑎 > 0).
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383. 𝐴 = 𝑎+𝑏
⁄

2 , 𝐻 = 2𝑎𝑏
⁄

𝑎+𝑏, 𝐺 = √


𝑎𝑏 ⇒ 𝐴 = 𝑘𝐻 ⇒ (𝑎 + 𝑏)2 = 4𝑘𝑎𝑏 ⇒ 𝐴 = 𝑘𝐺2

Let 𝑏 = 𝑚𝑎 ⇒ 𝑎2(1 + 𝑚2) = 4𝑘𝑚𝑎2 ⇒ 1 + 𝑚2 = 4𝑘𝑚 ⇒ 𝑚 = 4𝑘±√

16𝑘2−4⁄
2 = 2𝑘 ±

√

4𝑘2 − 1

Also, (𝑎 + 𝑏)2 = 4𝑘𝑎𝑏 ⇒ (𝑎 − 𝑏)2 = 4𝑘𝑎𝑏 − 4𝑎𝑏 ∵ (𝑎 − 𝑏)2 ≥ 0 ∴ 𝑘 ≥ 1.

384. Since 𝑛 means are inserted therefore total no. of terms will be 𝑛 + 2. Let 𝑑 be the c.d.
of A.P. and 𝑑′ be the c.d of H.P.

⇒ 𝑑 = 𝑏−𝑎
⁄

𝑛+1, 𝑑
′ = 𝑎−𝑏⁄

(𝑛+1)𝑎𝑏 ⇒ 𝑝 = 𝑎 + 𝑟𝑑 = (𝑛+1)𝑎+𝑟(𝑏−𝑎)⁄
𝑛+1 , 1⁄𝑞 =

1
⁄

𝑎 + 𝑟 𝑎−𝑏⁄
(𝑛+1)𝑎𝑏 ⇒ 𝑞 =

(𝑛+1)𝑎𝑏⁄
𝑟(𝑎−𝑏)+(𝑛+1)𝑏

𝑝
⁄

𝑎 +
𝑏
⁄

𝑞 =
(𝑛+1)𝑎+𝑟(𝑏−𝑎)⁄

𝑎(𝑛+1) + 𝑟(𝑎−𝑏)+(𝑛+1)𝑏⁄
(𝑛+1)𝑎 = 𝑎+𝑏
⁄

𝑎 which is independent of 𝑛 and 𝑟.

385. Let 𝑠 be the distance between 𝑃 and 𝑄.

Time taken by train 𝐴 = 𝑠
⁄

2𝑥 +
𝑠⁄
2𝑦 =

𝑠(𝑥+𝑦)⁄
2𝑥𝑦 = 𝑠⁄

H.M of 𝑥 and 𝑦

Time taken by train 𝐵 = 2𝑠
⁄

𝑥+𝑦 =
𝑠⁄

A.M of 𝑥 and 𝑦

So, second train wil reach earlier as A.M. ≥ H.M.

386. Let 𝑑 be the common difference of corresponding A.P. Also, let 𝐻1 and 𝐻𝑛 be first and
last H.M.

⇒ 𝑑 =
1
⁄

𝑐−
1⁄
𝑎
⁄

𝑛+1 =
𝑎𝑐⁄

𝑎𝑐(𝑛+1)

1
⁄

𝐻1
= 1
⁄

𝑎 +
𝑎−𝑐⁄

𝑎𝑐(𝑛+1) ⇒ 𝐻1 = 𝑎𝑐(𝑛+1)⁄
𝑛𝑐+𝑎

1
⁄

𝐻𝑛
= 1
⁄

𝑎 +
𝑛(𝑎−𝑛)⁄
𝑎𝑐(𝑛+1) ⇒ 𝐻𝑛 = 𝑎𝑐(𝑛+1)⁄

𝑛𝑎+𝑐

𝐻1 −𝐻𝑛 = 𝑎𝑐(𝑛+1)⁄
𝑛𝑐+𝑎 − 𝑎𝑐(𝑛+1)⁄

𝑛𝑎+𝑐 = 𝑎𝑐(𝑛2−1)(𝑎−𝑐)⁄
(𝑛1+1)𝑎𝑐+𝑛(𝑎2+𝑐2)

Also, given that 𝑛 is a root of equation 𝑥2(1 − 𝑎𝑐)− 𝑥(𝑎2 + 𝑐2)− (1 + 𝑎𝑐) = 0

∴𝑛2(1−𝑎𝑐)−𝑛(𝑎2+𝑐2)−1−𝑎𝑐 = 0 ⇒ 𝑛2−1 = (𝑛2+1)𝑎𝑐+𝑛(𝑎2+𝑐2) ∴𝐻1−𝐻𝑛 =
𝑎𝑐(𝑎 − 𝑐).

387. Let 𝑑 be the common difference for A.P. and 𝑑′ be the common difference for H.P.,
then

𝑑 = 𝑏−𝑎
⁄

𝑛+1, 𝑑
′ =

1
⁄

𝑏−
1⁄
𝑎
⁄

𝑛+1 =
𝑎−𝑏⁄

(𝑛+1)𝑎𝑏

𝐴𝑟 = 𝑎 + 𝑟𝑑 = 𝑎 + 𝑟(𝑏−𝑎)⁄
𝑛+1 = (𝑛−𝑟+1)𝑎+𝑟𝑏⁄

𝑛+1

1⁄
𝐻𝑛−𝑟+1

= 1
⁄

𝑎 +
(𝑛−𝑟+1)(𝑎−𝑏)⁄

(𝑛+1)𝑎𝑏 = (𝑛−𝑟+1)𝑎+𝑟𝑏⁄
(𝑛+1)𝑎𝑏
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⇒ 𝐻𝑛−𝑟+1 = (𝑛+1)𝑎𝑏⁄
(𝑛−𝑟+1)𝑎+𝑟𝑏 ⇒ 𝐴𝑟𝐻𝑛−𝑟+1 = 𝑎𝑏.

388. Consider the equation (𝑥−1)(𝑥−2)(𝑥−3)… (𝑥−100) = 0. Its roots are 1, 2, 3,… ,100

So the equation is a polynomial of 𝑥 of degree 100. Coefficient of 𝑥100 = 1

Now sum of roots of equation taken one at a time

1 + 2 + 3 +…+ 100 = (−1)1 coeff. of 𝑥99⁄
coeff. of 𝑥100 = −coeff. of 𝑥99

∴ coeff. of 𝑥99 = −(1 + 2 + 3 +…+ 100) = −5050

Sum of products of roots taken two at a time = coeff. of 𝑥98 = 1
⁄

2 [(1 + 2 + 3 +…+
100)2 − (12 + 22 + …+ 1002)]

= 1
⁄

2 [5050
2 − 100×101×102⁄

6 ] = 12582075.

389. 𝑡1 = 12, 40, 90, 168, 280, 432, … Δ𝑡1 = 28, 50, 78, 112, 152, … , Δ2𝑡1 =
22, 28, 34, 40, … , Δ3𝑡1 = 6, 6, 6, …

𝑡𝑛 = 12 + 28𝑛−1𝐶1 + 22.𝑛−1𝐶2 + 6.𝑛−1𝐶3

𝑆𝑛 =
𝑛
∑
𝑛=1

(12 + 28𝑛−1𝐶1 + 22.𝑛−1𝐶2 + 6.𝑛−1𝐶3)

𝑆𝑛 = 12𝑛 + 28.𝑛𝐶2 + 22.𝑛𝐶3 + 6.𝑛𝐶4

= 12𝑛 + 28. 𝑛(𝑛−1)⁄2! + 22. 𝑛(𝑛−1)(𝑛−2)⁄
3! + 6. 𝑛(𝑛−1)(𝑛−2)(𝑛−3)⁄

4!

= 𝑛
⁄

12 (𝑛 + 1)(3𝑛2 + 23𝑛 + 46).

390. The series and the successive order differences are:

10, 23, 60, 169, 494, …

13, 37, 109, 325, …

24, 72, 216, …

Here second order differences are in G.P. whose common ratio is 3. Let 𝑡𝑛 = 𝑎 + 𝑏𝑛 +
𝑐.3𝑛−1

∴ 𝑎 + 𝑏 + 𝑐 = 𝑡1 = 10, 𝑎 + 2𝑏 + 3𝑐 = 𝑡2 = 23, 𝑎 + 3𝑏 + 9𝑐 = 𝑡3 = 60

⇒ 𝑎 = 3, 𝑏 = 1, 𝑐 = 6 ⇒ 𝑡𝑛 = 3 + 𝑛 + 6.3𝑛−1

𝑆𝑛 =
𝑛
∑
𝑛=1

𝑡𝑛 =
1
⁄

2 (𝑛
2 + 7𝑛 − 6)+ 3𝑛+1.
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391. Here one factor of the terms is in G.P. i.e. 𝑥.

Now the series of the coeff. of terms together with successive order differences are
3, 5, 9, 15, 23, 33, …

2, 4, 6, 8, 10, …

2, 2, 2, ,2, …

0, 0, 0, …

Hence third order differences are constant. Now,

𝑆 = 3 + 5𝑥 + 9𝑥2 + 15𝑥3 + 23𝑥4 + 33𝑥5 + …∞

−3𝑥𝑆 = −9𝑥 − 15𝑥2 − 27𝑥3 − 45𝑥4 − 69𝑥5 − …

3𝑥2𝑆 = 9𝑥2 + 15𝑥3 + 27𝑥4 + 45𝑥5 + …

−𝑥3𝑆 = −3𝑥3 − 5𝑥4 − 9𝑥5 − …

Adding, we get (1 − 𝑥)3 𝑆 = 3 − 4𝑥 + 3𝑥2

∴𝑆 = 3−4𝑥+3𝑥2⁄
(1−𝑥)3 .

392. Let 𝑡𝑟 denote the 𝑟th term of the series 1
⁄

𝑛(𝑛−1)+
2
⁄

(𝑛−1)(𝑛−2)+…+ 𝑛−2
⁄

2.3 , then

𝑡1 = 1
⁄

𝑛(𝑛−1) =
1
⁄

𝑛−1 −
1
⁄

𝑛, 𝑡2 = 2
⁄

𝑛−2 −
2
⁄

𝑛−1 = 2
⁄

𝑛−2 −
1
⁄

𝑛−1 −
1
⁄

𝑛−1, 𝑡3 = 3
⁄

𝑛−3 −
3
⁄

𝑛−2 =
3
⁄

𝑛−3 −
2
⁄

𝑛−2 −
1
⁄

𝑛−2, … , 𝑡𝑛−2 = 𝑛−2
⁄

2 − 𝑛−2
⁄

3 = 𝑛−2
⁄

2 − 𝑛−3
⁄

3 − 1
⁄

3

𝑡1 + 𝑡2 + … 𝑡𝑛 = 𝑛−2
⁄

2 (− 1
⁄

𝑛 −
1
⁄

𝑛−1 −
1
⁄

𝑛−2 − …− 1
⁄

3)

= 𝑛+1
⁄

2 − (1 + 1
⁄

2 +
1
⁄

3 + …+ 1
⁄

𝑛)

∴𝐻′𝑛 = 𝑛+1
⁄

2 − (𝑡1 + 𝑡2 + …+ 𝑡𝑛) = 1 + 1
⁄

2 + …+ 1
⁄

𝑛 = 𝐻𝑛.

393. tan−1( 𝑥
⁄

1+1.2𝑥2) = tan−1( 2𝑥−𝑥⁄
1+𝑥.2𝑥) = tan−1 2𝑥 − tan−1 𝑥

tan−1( 𝑥
⁄

1+2.3𝑥2) = tan−1( 3𝑥−2𝑥⁄
1+2𝑥.3𝑥) = tan−1 3𝑥 − tan−1 2𝑥

…

tan−1( 𝑥
⁄

1+𝑛(𝑛+1)𝑥2) = tan−1( (𝑛+1)𝑥−𝑛𝑥⁄
1+𝑛𝑥.(𝑛+1)𝑥) = tan−1(𝑛 + 1)𝑥 − tan−1 𝑛𝑥

Adding, we get

𝐿.𝐻.𝑆. = tan−1(𝑛 + 1)𝑥 − tan−1 𝑥 = tan−1( 𝑛𝑥
⁄

1+(𝑛+1)𝑥2) = 𝑅.𝐻.𝑆.
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394. The 𝑛th term of the given series is 𝑡𝑛 = 𝑛⁄
1+𝑛2+𝑛4 =

𝑛⁄
(1+𝑛2)2−𝑛2 =

1
⁄

2(
1⁄

1+𝑛2−𝑛−
1⁄

1+𝑛2+𝑛)

∴ 𝑡1 = 1
⁄

2 (1 −
1
⁄

3), 𝑡2 =
1
⁄

2 (
1
⁄

3 −
1
⁄

7), 𝑡3 =
1
⁄

2 (
1
⁄

7 −
1
⁄

13), … ,𝑡𝑛 = 1
⁄

2(
1⁄

1+𝑛2−𝑛 −
1⁄

1+𝑛2+𝑛)

Adding, we get

𝑆 = 1
⁄

2(1 −
1⁄

1+𝑛2+𝑛) =
𝑛(𝑛+1)⁄

2(1+𝑛+𝑛2).

395. 𝑡𝑛 = tan−1 2𝑛⁄
2+𝑛2+𝑛4 = tan−1 2𝑛⁄

1+1+𝑛2+𝑛4 = tan−1 2𝑛⁄
1+1+(𝑛2+1)2−𝑛2 =

tan−1 2𝑛⁄
1+(𝑛2+𝑛+1)(𝑛2−𝑛+1) = tan−1 (𝑛2+𝑛+1)−(𝑛2−𝑛+1)⁄

1+(𝑛2+𝑛+1)(𝑛2−𝑛+1) = tan−1(𝑛2 + 𝑛 + 1) −
tan−1(𝑛2 − 𝑛 + 1)

∴ 𝑡1 = tan−1 3 − tan−1 1, 𝑡2 = tan−1 7 − tan−1 3,… ,𝑡𝑛−1 = tan−1(𝑛2 − 𝑛 + 1) −
tan−1[(𝑛 − 1)2 − (𝑛 − 1)+ 1]

𝑡𝑛 = tan−1(𝑛2 + 𝑛 + 1)− tan−1(𝑛2 − 𝑛 + 1)

Adding, we get 𝑆𝑛 = tan−1(𝑛2 + 𝑛 + 1)− tan−1 1 = tan−1 𝑛2+𝑛⁄
𝑛2+𝑛+2.

396. 𝑡𝑛 = 𝑛4⁄
4𝑛2−1 =

1
⁄

16 [
16𝑛4⁄
4𝑛2−1] =

1
⁄

16 [
16𝑛4−1+1⁄
4𝑛2−1 ] = 1
⁄

16 [4𝑛
2 + 1 + 1
⁄

(2𝑛−1)(2𝑛+1)]

= 1
⁄

16 [4𝑛
2 + 1 + 1
⁄

2 (
1
⁄

2𝑛−1 −
1
⁄

2𝑛+1)]

𝑆𝑛 = ∑𝑡𝑛 = 1
⁄

4∑𝑛2 + 1
⁄

16∑1 + 1
⁄

32∑( 1
⁄

2𝑛−1 −
1
⁄

2𝑛+1) = 1
⁄

4 [
𝑛(𝑛+1)(2𝑛+1)⁄

6 ] + 𝑛
⁄

16 +
1
⁄

32(1 −
1
⁄

2𝑛+1)

= 𝑛
⁄

48 (4𝑛
2 + 6𝑛 + 5)+ 1
⁄

16
𝑛
⁄

2𝑛+1 =
𝑛(4𝑛2+6𝑛+5)
⁄

48 + 𝑛⁄
16(2𝑛+1).

397. 𝑡𝑘 = 𝑎𝑘𝑎𝑘+1 …𝑎𝑘+𝑟−1, 𝑡𝑘+1 = 𝑎𝑘+1𝑎𝑘+2 …𝑎𝑘+𝑟 ∴ 𝑎𝑘+𝑟𝑡𝑘 = 𝑎𝑘𝑡𝑘+1

[𝑎1+(𝑘+𝑟−1)𝑑]𝑡𝑘 = [𝑎1+(𝑘−1)𝑑]𝑡𝑘+1 ⇒ [𝑎1+(𝑘−2)𝑑]𝑡𝑘− [𝑎1+(𝑘−1)𝑑]𝑡𝑘+1 =
−(1 + 𝑟)𝑑𝑡𝑘

Thus,

(𝑎 − 𝑑) 𝑡1 − (𝑎1 + 0𝑑) 𝑡2 = −(1 + 𝑟)𝑑𝑡1

(𝑎 + 0𝑑) 𝑡2 − (𝑎1 + 𝑑) 𝑡3 = −(1 + 𝑟)𝑑𝑡2

…

[𝑎1 + (𝑛 − 2)𝑑] 𝑡𝑛 − [𝑎1 + (𝑛 − 1)𝑑] 𝑡𝑛+1 = −(1 + 𝑟)𝑑𝑡𝑛

(𝑎 − 𝑑) 𝑡1 − [𝑎1 + (𝑛 − 1)𝑑] 𝑡𝑛+1 = −(1 + 𝑟)𝑑[𝑡1 + 𝑡2 + …+ 𝑡𝑛 ]

∴ 𝑡1 + 𝑡2 + …+ 𝑡𝑛 = 𝑎𝑛𝑎𝑛+1…𝑎𝑛+𝑟−𝑎0𝑎1…𝑎𝑟⁄
(𝑟+1)𝑑 .
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398. Let 𝑎 be the first term and 𝑑 be the common difference of A.P. Let 𝑡𝑘 be the 𝑘th term
of the given sequence. Then,

𝑡𝑘 =
1⁄

𝑎𝑘𝑎𝑘+1…𝑎𝑘+𝑟−1 , 𝑡𝑘+1 =
1⁄

𝑎𝑘+1𝑎𝑘+2…𝑎𝑘+𝑟 ⇒ 𝑎𝑘𝑡𝑘 = 𝑎𝑘+𝑟𝑡𝑘+1

[𝑎+ (𝑘− 1)𝑑]𝑡𝑘− (𝑎+𝑘𝑑)𝑡𝑘+1 = 𝑑(𝑟 − 1)𝑡𝑘+1 ∴ (𝑎+ 0𝑑)𝑡1− (𝑎+𝑑)𝑡2 = 𝑑(𝑟 − 1)𝑡2
(𝑎 + 𝑑) 𝑡2 − (𝑎 + 2𝑑) 𝑡3 = 𝑑(𝑟 − 1) 𝑡3

…

[𝑎 + (𝑛 − 2)𝑑] 𝑡𝑛−1 − [𝑎 + (𝑛 − 1)𝑑] 𝑡𝑛 = 𝑑(𝑟 − 1) 𝑡𝑛

Adding, we get

𝑎𝑡1 − [𝑎 + (𝑛 − 1)𝑑] 𝑡𝑛 = 𝑑(𝑟 − 1)[𝑡2 + 𝑡3 + …+ 𝑡𝑛 ]

[𝑎 + (𝑟 − 𝑑)𝑑] 𝑡1 − [𝑎 + (𝑛 − 1)𝑑] 𝑡𝑛 = 𝑑(𝑟 − 1)𝑆[𝑡1 + 𝑡2 + …+ 𝑡𝑛 ]

𝑡1 + 𝑡2 + …+ 𝑡𝑛 = 1⁄
(𝑟−1)𝑑 (

𝑎𝑟⁄
𝑎1𝑎2…𝑎𝑟 −

𝑎𝑛⁄
𝑎𝑛𝑎𝑛+1…𝑎𝑛+𝑟−1

)

𝑆𝑛 = 1⁄
(𝑟−1)(𝑎2−𝑎1) (

1⁄
𝑎1𝑎2…𝑎𝑟−1 −

1⁄
𝑎𝑛+1𝑎𝑛+2…𝑎𝑛+𝑟−1

).

399. Let 𝑡𝑖 be the 𝑖th term of the series, then

𝑡𝑖 = 1⁄
𝑖(𝑖+1)(𝑖+2)(𝑖+3) , 𝑡𝑖+1 =

1⁄
(𝑖+1)(𝑖+2)(𝑖+3)(𝑖+4)

⇒ 𝑖𝑡𝑖 = (𝑖 + 4) 𝑡𝑖+1 ⇒ 𝑖𝑡𝑖 − (𝑖 + 1) 𝑡𝑖+1 = 3𝑡𝑖+1

∴ 1.𝑡1 − 2𝑡2 = 3𝑡2, 2.𝑡2 − 3.𝑡3 = 3𝑡3, … ,(𝑛 − 1) .𝑡𝑖 − 𝑛𝑡𝑛 = 3𝑡𝑛

Adding, we get

𝑡1 − 𝑛𝑡𝑛 = 3(𝑡1 + 𝑡2 + …+ 𝑡𝑛)⇒ 4𝑡1 − 𝑛𝑡𝑛 = 3[𝑡1 + 𝑡2 + …+ 𝑡𝑛 ]

𝑡1 + 𝑡2 + …+ 𝑡𝑛 = 1
⁄

18 −
1⁄

3(𝑛+1)(𝑛+2)(𝑛+3).

400. 𝑡𝑛 = 𝑛+2⁄
𝑛(𝑛+1)(𝑛+3) =

(𝑛+2)2⁄
𝑛(𝑛+1)(𝑛+2)(𝑛+3)

= 𝑛2+4𝑛+4⁄
𝑛(𝑛+1)(𝑛+2)(𝑛+3) =

𝑛(𝑛+4)⁄
𝑛(𝑛+1)(𝑛+2)(𝑛+3)+

4⁄
𝑛(𝑛+1)(𝑛+2)(𝑛+3)

= 𝑛(𝑛+1)+3𝑛⁄
𝑛(𝑛+1)(𝑛+2)(𝑛+3) + 4⁄

𝑛(𝑛+1)(𝑛+2)(𝑛+3) = 1
⁄

(𝑛+2)(𝑛+3) + 3⁄
(𝑛+1)(𝑛+2)(𝑛+3) +

4⁄
𝑛(𝑛+1)(𝑛+2)(𝑛+3)

Now that we have found 𝑡𝑛 we can find 𝑆𝑛 like previous problem.

𝑆𝑛 = 29
⁄

36 −
1
⁄

𝑛+3 −
3
⁄

2(𝑛+2)(𝑛+3)−
4⁄

3(𝑛+1)(𝑛+2)(𝑛+3).

401. 𝑡𝑛 = 𝑛⁄
1.3.5.7…(2𝑛−1)(2𝑛+1) =

1
⁄

2 [
1⁄

1.3.5.7…(2𝑛−1)−
1⁄

1.3.5.7…(2𝑛+1)]
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∴ 𝑡1 = 1
⁄

2 (1 −
1
⁄

1.3) ,𝑡2 =
1
⁄

2 (
1
⁄

1.3 −
1
⁄

1.3.5) ,… ,𝑡𝑛 = 1
⁄

2 (
1⁄

1.3.5.7…(2𝑛−1)−
1⁄

1.3.5.7…(2𝑛+1))

𝑆𝑛 = 1
⁄

2 [1 −
1⁄

1.3.5.7…(2𝑛+1)].

402. 𝑡𝑛 = 𝑛+1
⁄

(2𝑛−1)(2𝑛+1) .
1⁄
3𝑛 =

1
⁄

4 [
3
⁄

2𝑛−1 −
1
⁄

2𝑛+1] .
1⁄
3𝑛 =

1
⁄

4 [
1
⁄

2𝑛−1 .
1
⁄

3𝑛−1 −
1
⁄

2𝑛+1 .
1⁄
3𝑛]

∴ 𝑡1 = 1
⁄

4 (
1
⁄

1.1 −
1
⁄

3 .
1
⁄

3), 𝑡2 =
1
⁄

4(
1
⁄

3.3 −
1
⁄

5 .
1
⁄

32), 𝑡3 =
1
⁄

4(
1
⁄

5 .
1
⁄

32 −
1
⁄

7 .
1
⁄

33) ,… ,𝑡𝑛 = 1
⁄

4(
1
⁄

2𝑛−1 .
1
⁄

3𝑛−1 −
1
⁄

2𝑛+1 .
1⁄
3𝑛)

𝑆𝑛 = 1
⁄

4 [1 −
1
⁄

2𝑛+1 .
1⁄
3𝑛].

403. 𝑡𝑛 = 2𝑛−1⁄
3.7.11…(4𝑛−1) =

1
⁄

2 [
1⁄

3.7.11…(4𝑛−5)−
1⁄

3.7.11…(4𝑛+1)]

𝑡2 = 1
⁄

2 (
1
⁄

3 −
1
⁄

3.7), 𝑡3 =
1
⁄

2 (
1
⁄

3.7 −
1⁄

3.7.11) ,… ,𝑡𝑛 = 1
⁄

2(
1⁄

3.7.11…(4𝑛−5)− 1⁄
3.7.11…(4𝑛−1)

)

𝑡1 + 𝑡2 + … 𝑡𝑛 = 1
⁄

3 +
1
⁄

2 [
1
⁄

3 −
1⁄

3.7.11…(4𝑛−1)]

𝑆𝑛 = 1
⁄

2 −
1
⁄

2 .
1⁄

3.7.11…(4𝑛−1).

404. 𝑡𝑛 = 𝑛(1 − 𝑎)(1 − 2𝑎)… [𝑎 − (𝑛− 1)𝑎], 𝑡𝑛 = − 1
⁄

𝑎 (1 − 𝑛𝑎 − 1)(1 − 𝑎)(1 − 2𝑎)… [𝑎 −

(𝑛 − 1)𝑎] = − 1
⁄

𝑎 [(1 − 𝑎)(1 − 2𝑎)… (1 − 𝑛𝑎)− (1 − 𝑎)(1 − 2𝑎)… {𝑎 + (𝑛 − 1)𝑎}]

∴ 𝑡1 = − 1
⁄

𝑎 [(1 − 𝑎)− 1], 𝑡2 = − 1
⁄

𝑞𝑎 [(1 − 𝑎)(1 − 2𝑎)− (1 − 𝑎)], …

Adding, we get

𝑆𝑛 = 1
⁄

𝑎 [1 − (1 − 𝑎)(1 − 2𝑎)… (1 − 𝑛𝑎)].

405. 𝑡1 = 1, 𝑡2 = 𝑥
⁄

𝑏1 = (𝑥+𝑏1)−𝑏1⁄
𝑏1 = 𝑥+𝑏1⁄

𝑏1 − 1, 𝑡3 = 𝑥(𝑥+𝑏1)⁄
𝑏1𝑏2 = [(𝑥+𝑏2)−𝑏2 ](𝑥+𝑏1)⁄

𝑏1𝑏2 =
(𝑥+𝑏1)(𝑥+𝑏2)⁄

𝑏1𝑏2 − 𝑥+𝑏1⁄
𝑏1

…

𝑡𝑛+1 = (𝑥+𝑏1)…(𝑥+𝑏𝑛)⁄
𝑏1𝑏2…𝑏𝑛 − (𝑥+𝑏1)…(𝑥+𝑏𝑛−1)⁄

𝑏1𝑏2…𝑏𝑛−1

∴ 𝑆𝑛 = (𝑥+𝑏1)…(𝑥+𝑏𝑛)⁄
𝑏1𝑏2…𝑏𝑛 .

406. 𝑛𝑆𝑘(𝑛) = 𝑛[1𝑘+ 2𝑘+…+𝑛𝑘] = 1𝑘+ (1𝑘+ 2.2𝑘)+ (1𝑘+ 2𝑘+ 3.3𝑘)+…+ (1𝑘+ 2𝑘+
…+ 𝑛.𝑛𝑘)

= 1𝑘+1 + [𝑆𝑘(1) + 2𝑘+1 ] + [𝑆𝑘(2) + 3𝑘+1 ] + … + [𝑆𝑘(𝑛 − 1) + 𝑛𝑘+1 ] = 𝑆𝑘(1) +
𝑆𝑘(2)+…+ 𝑆𝑘(𝑛 − 1)+ 𝑆𝑘+1(𝑛).
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407. 𝑛3 > 100 ⇒ 𝑛 > 4, 𝑛3 < 100000 ⇒ 𝑛 < 22

So 𝑆 = 53 + 63 + …+ 213, 𝑆′ = 13 + 23 + 33 + 43

𝑆′ + 𝑆 − 𝑆′ = 13 + 22 + …+ 213 − (13 + 23 + …+ 43) = 53261.

408. 𝑆 = 𝑎 + (𝑎 + 1)+…+ (𝑎 + 𝑛 − 1), = 𝑛𝑎 + 𝑛(𝑛−1)
⁄

2

𝑆2 = 𝑛2𝑎2 + 𝑛2(𝑛 − 1)𝑎 + 𝑛2(𝑛−1)2
⁄

4

𝑡 = 𝑎2 + (𝑎 + 1)2 + …+ (𝑎 + 𝑛 − 1)2 ⇒ 𝑛𝑡 = 𝑛2𝑎2 + 𝑛2(𝑛 − 1)𝑎 + 𝑛
𝑛−1
∑
𝑖=1

𝑖2

Clearly, 𝑛𝑡 − 𝑆2 is independent of 𝑎.

409.
𝑛+5
∑
𝑥=5

4(𝑥−3) =
𝑛+5
∑
𝑥=1

4(𝑥−3)−
4
∑
𝑥=1

4(𝑥−3) = 4(𝑛+5)(𝑛+6)
⁄

2 −12(𝑛+5)−4.4.5
⁄

2 +12.4 =

2𝑛2 + 10𝑛 + 8

∴𝑃 + 𝑄 = 12.

410. Let 𝑆 be the sum of series, then

𝑆 = 53 + 73 + 93 + … to 𝑛 terms + 25(33 + 43 + 53 + … to 𝑛 terms)

= 13+33+53+… to (𝑛+2) terms −13−33+25(13+33+53+… to 𝑛+1 terms)−25

=
𝑛+2
∑
𝑖=1

(2𝑖 − 1)3 − 28 + 25
𝑛+1
∑
𝑖=1

(2𝑖 − 1)3 − 32 = 𝑛(10𝑛3 + 96𝑛2 + 243𝑛 + 540).

411. Let 𝑆 be the sum of the series and 𝑥 = 2𝑛+1
⁄

2𝑛−1 , then

𝑆 = 𝑥 + 3𝑥2 + 5𝑥3 + …

𝑥𝑆 = 𝑥2 + 3𝑥3 + …+ (2𝑛 − 1)𝑥𝑛+1

(1 − 𝑥)𝑆 = 𝑥 + 2𝑥2 + 2𝑥3 + … = 𝑥 + 2𝑥2(1 + 𝑥 + 𝑥2 + … to 𝑛 − 1 terms) − (2𝑛 −
1)𝑥𝑛+1 = 𝑥 + 2𝑥2(1−𝑥𝑛−1)⁄

1−𝑥 − (2𝑛 − 1)𝑥𝑛+1 𝑆 = 𝑥
⁄

1−𝑥 +
2𝑥2(1−𝑥𝑛−1)⁄

(1−𝑥)2 − (2𝑛−1)𝑥𝑛+1⁄
1−𝑥 =

𝑥2−𝑥+2𝑥𝑛+1−2𝑥2+(𝑥−1) .(2𝑛−1)𝑥𝑛+1⁄
(𝑥−1)2 = 𝑛(2𝑛 + 1).

412. Let 𝑆 be the sum to 𝑛 terms and 𝑥 = 4𝑛+1
⁄

4𝑛−3 , then

𝑆 = 1 + 5𝑥 + 9𝑥2 + 13𝑥3 + …

𝑥𝑆 = 𝑥 + 5𝑥2 + 9𝑥3 + …+ (4𝑛 + 1)𝑥𝑛

(1 − 𝑥)𝑆 = 1 + 4𝑥 + 4𝑥2 + 4𝑥3 + …+ 4𝑥𝑛−1 − (4𝑛 + 1)𝑥𝑛

𝑆 = 1
⁄

𝑥−1 +
4𝑥(𝑥𝑛−1−1)⁄
(𝑥−1)2 − (4𝑛+1)𝑥𝑛⁄

(𝑥−1) = 4𝑛2 − 3𝑛.
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413. 𝑡𝑛 = 1.102𝑛 + 2.102𝑛−1 + 3.10𝑛−2 + … + 𝑛.10𝑛+1 + (𝑛 + 1)10𝑛 + 𝑛.10𝑛 + (𝑛 −
1)10𝑛−2 + …+ 3.102 + 2.10 + 1

= 102𝑛[1 + 2. 1⁄10 + 3. 1
⁄

102 + … + 𝑛. 1⁄
10𝑛−1] + (1 + 2.10 + 3.102 + … + 𝑛.10𝑛−1 + (𝑛 +

1)10𝑛) = 102𝑛𝑆1 + 𝑆2 𝑆1 = 1 + 2. 1⁄10 + 3. 1
⁄

102 + …+ 𝑛. 1⁄
10𝑛−1

𝑆1
⁄

10 =
1
⁄

10 + 2 1
⁄

102 + …+ (𝑛 − 1) 1⁄
10𝑛−1 + 𝑛. 1⁄

10𝑛

𝑆1 = 100
⁄

81 (1 −
1⁄

10𝑛)−
90𝑛⁄

81.10𝑛

𝑆2 = 1 + 2.10 + 3.102 + …+ (𝑛 + 1)10𝑛

10𝑆2 = 10 + 2.102 + …+ 𝑛.10𝑛 + (𝑛 + 1)10𝑛+1

𝑆2 = 1−10𝑛+1⁄
81 + (𝑛+1)10𝑛+1⁄

9

Substituting 𝑆1 and 𝑆2 we obtain 𝑡𝑛 as

𝑡𝑛 = (10
𝑛+1−1⁄
9 )

2
. Thus, the numbers in the sequence will be square of odd positive

integer.

414. 𝑡𝑛 = 2𝑛+1⁄
12+22+…+𝑛2 =

2𝑛+1⁄
𝑛(𝑛+1)(2𝑛+1)⁄

6
= 6
⁄

𝑛(𝑛+1)

∴ 𝑡1 = 6
⁄

1.2 = 6(1 − 1
⁄

2), 𝑡2 =
6
⁄

2.3 = 6(1⁄2 −
1
⁄

3), … , 𝑡𝑛 = 6
⁄

𝑛(𝑛+1) = 6.(1⁄𝑛 −
1
⁄

𝑛+1)

Adding, we get

𝑆 = 6𝑛
⁄

𝑛+1.

415. 𝑡𝑛 = 1⁄
(1+𝑛𝑥)[1+(𝑛+1)𝑥] =

1
⁄

𝑥 (
1⁄

1+𝑛𝑥 −
1⁄

1+(𝑛+1)𝑥)

𝑡1 = 1
⁄

𝑥 (
1
⁄

1+𝑥 −
1⁄

1+2𝑥), 𝑡2 =
1
⁄

𝑥 (
1⁄

1+2𝑥 −
1⁄

1+3𝑥), …

Adding, we get

𝑆𝑛 = 1
⁄

𝑥 (
1
⁄

1+𝑥 −
1⁄

1+(𝑛+1)𝑥) =
𝑛⁄

(1+𝑥)[1+(𝑛+1)𝑥].

416. 𝑡𝑛 = 𝑎𝑛−1⁄
(1+𝑎𝑛−1𝑥)(1+𝑎𝑛𝑥) =

1⁄
(𝑎−1)𝑥(

1⁄
1+𝑎𝑛−1𝑥 −

1⁄
1+𝑎𝑛𝑥)

𝑡1 = 1⁄
(𝑎−1)𝑥 (

1
⁄

1+𝑥 −
1⁄

1+𝑎𝑥), 𝑡2 =
1⁄

(𝑎−1)𝑥(
1⁄

1+𝑎𝑥 −
1⁄

1+𝑎2𝑥), …

Adding, we get

𝑆 = 1⁄
(𝑎−1)𝑥 (

1
⁄

1+𝑥 −
1⁄

1+𝑎𝑛𝑥).
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417. 𝑡𝑛 = 1⁄
√

2𝑛−1+√


2𝑛+1 =

√

2𝑛+1−√


2𝑛−1⁄

2

∴ 𝑡1 =
√


3⁄
2 − 1
⁄

2 , 𝑡2 =
√


5⁄
2 − √


3⁄
2 , …

Adding, we get

𝑆 = √

2𝑛+1−1⁄

2 .

418. 𝑡𝑘 = 𝑎𝑘𝑎𝑘+1, 𝑡𝑘+1 = 𝑎𝑘+1𝑎𝑘+2

𝑎𝑘+2𝑡𝑘 = 𝑎𝑘𝑡𝑘+1

[𝑎1 + (𝑘 + 1)𝑑] 𝑡𝑘 − [𝑎1 + (𝑘 − 1)𝑑] 𝑡𝑘+1 = 0

[𝑎1 + (𝑘 − 2)𝑑] 𝑡𝑘 − [𝑎1 + (𝑘 − 1)𝑑] 𝑡𝑘+1 = −3𝑑𝑡𝑘

∴ (𝑎1 − 𝑑) 𝑡1 − (𝑎1 + 0𝑑) 𝑡2 = −3𝑑𝑡1

(𝑎1 + 0𝑑) 𝑡2 − (𝑎1 + 𝑑) 𝑡3 = −3𝑑𝑡2

…

[𝑎1 + (𝑛 − 2)𝑑] 𝑡𝑛 − [𝑎1 + (𝑛 − 1)] 𝑡𝑛+1 = −3𝑑𝑡𝑛

Adding, we get

−3𝑑(𝑡1 + 𝑡2 + …+ 𝑡𝑛) = (𝑎1 − 𝑑) 𝑡1‵ − [𝑎1 + (𝑛 − 1)] 𝑡𝑛+1

𝑆 = [𝑎+(𝑛−1)𝑑](𝑎+𝑛𝑑)[𝑎+(𝑛+1)𝑑]−(𝑎−𝑑)𝑎(𝑎+𝑑)⁄
3𝑑 = 𝑛
⁄

3 [3𝑎
2 + 3𝑛𝑎𝑑 + (𝑛2 − 1)𝑑2 ].

419. 𝑡𝑘 = 𝑎𝑘𝑎𝑘+1𝑎𝑘+2, 𝑡𝑘+1 = 𝑎𝑘+1𝑎𝑘+2𝑎𝑘+3

𝑎𝑘+3𝑡𝑘 = 𝑎𝑘𝑡𝑘+1

[𝑎1 + (𝑘 + 2)𝑑] 𝑡𝑘 = [𝑎1 + (𝑘 − 1)𝑑] 𝑡𝑘+1

[𝑎1 + (𝑘 − 2)𝑑] 𝑡𝑘 − [𝑎1 + (𝑘 − 1)𝑑] 𝑡𝑘+1 = −4𝑑𝑡𝑘

(𝑎1 − 𝑑) 𝑡1 − (𝑎1 + 0𝑑) 𝑡2 = −4𝑑𝑡1

(𝑎1 + 0𝑑) 𝑡2 − (𝑎1 + 𝑑) 𝑡3 = −4𝑑𝑡2

…

[𝑎1 + (𝑛 − 2)𝑑] 𝑡𝑛 − [𝑎1 + (𝑛 − 1)] 𝑡𝑛+1 = −4𝑑𝑡𝑛

Adding, we get

−4𝑑(𝑡1 + 𝑡2 + …+ 𝑡𝑛) = (𝑎1 − 𝑑) 𝑡1 − [𝑎1 + (𝑛 − 1)] 𝑡𝑛+1

𝑆 = [𝑎+(𝑛−1)𝑑](𝑎+𝑛𝑑)[𝑎+(𝑛+1)𝑑][𝑎+(𝑛+2)𝑑]−(𝑎−𝑑)𝑎(𝑎+𝑑)(𝑎+2𝑑)⁄
4𝑑

= 𝑛
⁄

4 [4𝑎
3 + 6(𝑛 + 1)𝑎2𝑑 + 2(2𝑛2 + 3𝑛 − 1)𝑎𝑑2 + (𝑛3 − 2𝑛2 − 𝑛 − 2)𝑑3 ].
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420. 𝑡𝑛 = 2𝑛+1
⁄

𝑛2.(𝑛+1)2 =
1
⁄

𝑛2 −
1⁄

(𝑛+1)2

𝑡1 = 1
⁄

1 −
1
⁄

22 , 𝑡2 =
1
⁄

22 −
1
⁄

32 , …

Adding, we get

𝑆 = 1 − 1⁄
(𝑛+1)2 =

𝑛(𝑛+2)
⁄

(𝑛+1)2 .

421. 𝑡𝑛 = 𝑛(𝑛 + 1), 𝑆𝑛 = ∑(𝑛2 + 𝑛) = 𝑛(𝑛+1)(2𝑛+1)⁄
6 + 𝑛(𝑛+1)
⁄

2

⇒ 𝑆𝑛 = 𝑛(𝑛+1)(𝑛+2)⁄
3

We have proved in earlier that 𝜎𝑛 = 1
⁄

18 −
1⁄

3(𝑛+1)(𝑛+2)(𝑛+3)

∴ 𝜎𝑛−1 = 1
⁄

18 −
1⁄

3𝑛(𝑛+1)(𝑛+2)

Now it is trivial to prove that 18𝑆𝑛𝜎𝑛−1 − 𝑆𝑛 = −2.

422. 𝑡𝑛 = 2𝑛+3
⁄

𝑛(𝑛+1) .
1⁄
3𝑛 = (3⁄𝑛 −

1
⁄

𝑛+1) .
1⁄
3𝑛

∴ 𝑡1 = (3 − 1
⁄

2) .
1
⁄

3 , 𝑡2 = (3⁄2 −
1
⁄

3) .
1
⁄

32 , 𝑡3 = (3⁄3 −
1
⁄

4) .
1
⁄

33 , …

Adding, we get

𝑆𝑛 = 1 − 1
⁄

𝑛+1 .
1⁄
3𝑛.

423. 𝑆 = 1
⁄

12 +
1
⁄

22 +
1
⁄

32 +
1
⁄

42 +…∞, 𝑆′ = 1
⁄

22 +
1
⁄

42 +
1
⁄

62 +…∞⇒ 4𝑆′ = 1
⁄

12 +
1
⁄

22 +
1
⁄

32 +
1
⁄

42 +…∞

4𝑆′ = 𝑆 ⇒ 𝑆′ = 𝑆⁄
4 ∴ 1
⁄

12 +
1
⁄

32 +
1
⁄

52 + …∞⇒ 𝑆 − 𝑆′ = 3
⁄

4 𝑆 = 𝜋2⁄
8 .

424. In previous problem we have proved that 1⁄22 +
1
⁄

42 +
1
⁄

62 + …∞ = 𝜋2⁄
24 and 1⁄12 +

1
⁄

33 +
1
⁄

52 +

…∞ = 𝜋2⁄
8

∴ 1 − 1
⁄

22 +
1
⁄

32 −
1
⁄

42 + …∞ = 𝜋2⁄
8 − 𝜋2⁄

24 =
𝜋2⁄
12.

425. 𝐻𝑛 = 1 + 1
⁄

2 +
1
⁄

3 + …+ 1
⁄

𝑛, = 𝑛 − 𝑛 + 1 + 1
⁄

2 +
1
⁄

3 + …+ 1
⁄

𝑛

= 𝑛 − (1 − 1)− (1 − 1
⁄

2)− (1 − 1
⁄

3)+…+ (1 − 1
⁄

𝑛)

= 𝑛 − (1⁄2 +
2
⁄

3 +
3
⁄

4 + …+ 𝑛−1
⁄

𝑛 ).

426. We can rewrite the question like 1
⁄

𝑥+1 −
1
⁄

𝑥+1 −
2
⁄

𝑥2+1 −
4
⁄

𝑥4+1 − …− 2𝑛⁄
𝑥2𝑛+1 =

2𝑛+1⁄
𝑥2𝑛+1−1

L.H.S. = ( 1
⁄

𝑥−1 −
1
⁄

𝑥+1)−
2
⁄

𝑥2+1 −
4
⁄

𝑥4+1 − …− 2𝑛⁄
𝑥2𝑛+1
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= ( 2
⁄

𝑥2−1 −
2
⁄

𝑥2+1)−
4
⁄

𝑥4+1 − …− 2𝑛⁄
𝑥2𝑛+1

= ( 4
⁄

𝑥4−1 −
4
⁄

𝑥4+1)−…− 2𝑛⁄
𝑥2𝑛+1. Progreessing similarly we obtain R.H.S.

427. Multiplying and dividing by 1 − 1
⁄

3 , we get L.H.S. =
(1−1
⁄

3)⁄
(1−1
⁄

3)
(1 + 1
⁄

3)(1 +
1
⁄

32)(1 +

1
⁄

34)…(1 + 1⁄
32𝑛)

= 1⁄
(1−1
⁄

3)
(1 − 1
⁄

32)(1 +
1
⁄

32)(1 +
1
⁄

34)…(1 + 1⁄
32𝑛)

= 1⁄
(1−1
⁄

3)
(1 − 1
⁄

34)(1 +
1
⁄

34)…(1 + 1⁄
32𝑛)

Proceeding similarly we obtain the R.H.S.

428. Since A.M ≥ G.M.

∴ 𝑥+𝑦⁄2 ≥√

𝑥𝑦, 𝑦+𝑧⁄2 ≥√

𝑦𝑧, 𝑥+𝑧⁄

2 ≥ √

𝑧𝑥

(𝑥+𝑦)(𝑦+𝑧)(𝑧+𝑥)⁄
8 ≥ 𝑥𝑦𝑧 ⇒ (1 − 𝑥)(1 − 𝑦)(1 − 𝑧) ≥ 8𝑥𝑦𝑧.

429. Since A.M ≥ H.M.

∴ 𝑎+𝑏+𝑐⁄3 ≥ 3⁄
1⁄
𝑎+

1
⁄

𝑏+
1
⁄

𝑐
⇒ (𝑎 + 𝑏 + 𝑐)(1⁄𝑎 +

1
⁄

𝑏 +
1
⁄

𝑐) ≥ 9.

430. Taking A.M. and G.M of 7 numbers 𝑎⁄2 ,
𝑎
⁄

2 ,
𝑏
⁄

3 ,
𝑏
⁄

3 ,
𝑏
⁄

3 ,
𝑐
⁄

2 ,
𝑐
⁄

2 , we get

2.𝑎⁄2+3.𝑏⁄3+2.𝑐⁄2⁄
7 ≥ [(𝑎⁄2)

2
(𝑏⁄3)

3
(𝑐⁄2)

2
]
1
⁄

7 ⇒ 3
⁄

7 ≥ (𝑎
2𝑏3𝑐2⁄

223322)
1
⁄

7 ⇒ 37
⁄

77 ≥
𝑎2𝑏3𝑐2⁄
223322 ⇒ 𝑎2𝑏3𝑐2 ≤ 31024⁄

77 .

431.
𝑛
∑
𝑖=1

𝑎𝑖𝑏𝑖 =
𝑛
∑
𝑖=1

𝑎𝑖(1 − 𝑎𝑖) =
𝑛
∑
𝑖=1

𝑎𝑖 −
𝑛
∑
𝑖=1

𝑎2𝑖 = 𝑛𝑎 −
𝑛
∑
𝑖=1

(𝑎𝑖 − 𝑎 + 𝑎)2

= 𝑛𝑎 −
𝑛
∑
𝑖=1

[(𝑎𝑖 − 𝑎)2 + 𝑎2 + 2𝑎(𝑎𝑖 − 𝑎)] = 𝑛𝑎−
𝑛
∑
𝑖=1

(𝑎𝑖 − 𝑎)2 − 𝑛𝑎2 + 2𝑎
𝑛
∑
𝑖=1

(𝑎𝑖 − 𝑛𝑎)

= 𝑛𝑎(1−𝑎)−
𝑛
∑
𝑖=1

(𝑎𝑖−𝑎)2 = 𝑛𝑎𝑏−
𝑛
∑
𝑖=1

(𝑎𝑖−𝑎)2, ∵ 𝑛𝑎+𝑛𝑏 =
𝑛
∑
𝑖=1

(𝑎𝑖+𝑏𝑖) = 𝑛∴𝑎+𝑏 =

1.

432. Let 𝑎𝑛+1 be a number such that |𝑎𝑛+1| = |𝑎𝑛 + 1|

Squaring all the numbers, we get

𝑎21 = 0, 𝑎22 = 𝑎21 + 2𝑎1 + 1, 𝑎23 = 𝑎22 + 2𝑎2 + 1,… , 𝑎2𝑛 = 𝑎2𝑛−1 + 2𝑎𝑛−1 + 1, 𝑎2𝑛+1 =
𝑎2𝑛 + 2𝑎𝑛 + 1



Answers of Progressions 415

Adding, we get

𝑎21 + 𝑎22 + …+ 𝑎2𝑛 + 𝑎2𝑛+1 = 𝑎21 + 𝑎22 + …+ 𝑎2𝑛 + 2(𝑎1 + 𝑎2 +…+ 𝑎𝑛)+ 𝑛

⇒ 2(𝑎1 + 𝑎2 +…+ 𝑎𝑛) = −𝑛 + 𝑎2𝑛+1 ≥ −𝑛 ⇒ (𝑎1 + 𝑎2 +…+ 𝑎𝑛)/𝑛 ≥ −1/2.

433. We know that A.M. ≥ G.M.

⇒ 𝑎+𝑏
⁄

2 ≥ √


𝑎𝑏, 𝑏+𝑐⁄2 ≥ √


𝑏𝑐, 𝑎+𝑐⁄2 ≥ √

𝑎𝑐

Multiplying, we get (𝑎 + 𝑏)(𝑏 + 𝑐)(𝑐 + 𝑎) ≥ 8𝑎𝑏𝑐.

434. We know that A.M ≥ H.M.

⇒ 𝑥+𝑦+𝑧⁄
3 ≥ 3⁄

1
⁄

𝑥+
1
⁄

𝑦+
1
⁄

𝑧
⇒ 1
⁄

𝑥 +
1
⁄

𝑦 +
1
⁄

𝑧 ≥
9
⁄

𝑎.

435. We know that A.M ≥ G.M. ⇒ 1+3+5+…+(2𝑛−1)⁄
𝑛 ≥ (1.3.5.… (2𝑛 − 1))

1
⁄

𝑛

⇒ 𝑛2
⁄

𝑛 ≥ (1.3.5.… (2𝑛 − 1))
1
⁄

𝑛 ⇒ 𝑛𝑛 ≥ 1.3.5… (2𝑛 − 1).

436. We consider seven numbers five of which are 2 + 𝑥 and remaining four are 7 − 𝑥. Now,
we know that A.M ≥ G.M.

⇒
4.7−𝑥⁄4 +5.2+𝑥⁄5⁄

9 ≥ [(7−𝑥⁄4 )
4
(2+𝑥⁄5 )

5
]
1
⁄

9 ⇒ 9
⁄

9 ≥ [(7−𝑥⁄4 )
4
(2+𝑥⁄5 )

5
]
1
⁄

9

⇒ (7 − 𝑥)4(2 + 𝑥)5 ≤ 44.55. So the greatest value would be 44.55.

437. We know that A.M ≥ H.M.

⇒ 𝑎+𝑏
⁄

2 ≥ 2𝑎𝑏
⁄

𝑎+𝑏,
𝑏+𝑐
⁄

2 ≥ 2𝑏𝑐
⁄

𝑏+𝑐 ,
𝑐+𝑎
⁄

2 ≥ 2𝑐𝑎
⁄

𝑐+𝑎

⇒ 𝑎+𝑏+𝑐
⁄

2 ≥ 𝑏𝑐
⁄

𝑏+𝑐 +
𝑐𝑎
⁄

𝑐+𝑎 +
𝑎𝑏
⁄

𝑎+𝑏.

438. (𝑎 − 𝑏)2 ≥ 0, (𝑏 − 𝑐)2 ≥ 0, (𝑐 − 𝑎)2 ≥ 0

⇒ (𝑎−𝑏)2
⁄

𝑎𝑏 ≥ 0, (𝑏−𝑐)
2
⁄

𝑏𝑐 ≥ 0, (𝑐−𝑎)
2
⁄

𝑎𝑐 ≥ 0 ⇒ 𝑎2+𝑏2⁄
𝑎𝑏 ≥ 2, 𝑏

2+𝑐2⁄
𝑏𝑐 ≥ 2, 𝑐

2+𝑎2
⁄

𝑐𝑎 ≥ 2

⇒ 𝑎
⁄

𝑏 +
𝑏
⁄

𝑎 +
𝑏⁄
𝑐 +

𝑐⁄
𝑏 +

𝑐
⁄

𝑎 +
𝑎
⁄

𝑐 ≥ 6 ⇒ 𝑏+𝑐
⁄

𝑎 + 𝑐+𝑎
⁄

𝑏 + 𝑎+𝑏
⁄

𝑐 ≥ 6.

439. We know that A.M. ≥ H.M. 𝑥1+𝑥2+…+𝑥𝑛⁄
𝑛 ≥ 𝑛⁄

( 1
⁄

𝑥1
+ 1
⁄

𝑥2
+…+ 1⁄

𝑥𝑛)

⇒ (𝑥1 + 𝑥2 +…+ 𝑥𝑛)( 1
⁄

𝑥1 +
1
⁄

𝑥2 + …+ 1⁄
𝑥𝑛) ≥ 𝑛2

440. We know that A.M ≥ G.M.Considering 1 and 𝑥2𝑛 ⇒ 1+𝑥2𝑛⁄
2 ≥√

1.𝑥2𝑛 = 𝑥𝑛 Considering

1 and 𝑦2𝑚 ⇒ 1+𝑦2𝑚⁄
2 ≥√

1.𝑦2𝑚 = 𝑦𝑚
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Myltiplying. we get

(1 + 𝑥2𝑛)(1 + 𝑦2𝑚) ≥ 4𝑥𝑛𝑦𝑚 ⇒ 𝑥𝑛𝑦𝑚⁄
(1+𝑥2𝑛)(1+𝑦2𝑚) ≤

1
⁄

4.

441. Let 𝑏 − 𝑐 = 𝑥, 𝑐 − 𝑎 = 𝑦 and 𝑎 − 𝑏 = 𝑧, ⇒ 𝑥 + 𝑦 + 𝑧 = 0. This also implies that
𝑎 + 𝑏 − 2𝑐 = 𝑥 − 𝑦, 𝑏 + 𝑐 − 2𝑎 = 𝑦 − 𝑧, 𝑐 + 𝑎 − 2𝑏 = 𝑧 − 𝑥

Clearly, 𝑥 + 𝑦 + 𝑧 = 0

Given, (𝑥−𝑦)
2+(𝑦−𝑧)2+(𝑧−𝑥)2⁄

3 = 𝑥2+𝑦2+𝑧2⁄
3 ⇒ 𝑥2 + 𝑦2 + 𝑧2 − 2𝑥𝑦 − 2𝑦𝑧 − 2𝑧𝑥 = 0

⇒ (𝑥+𝑦+𝑧)2 = 4(𝑥𝑦+𝑦𝑧+𝑧𝑥)⇒𝑥𝑦+𝑦𝑧+𝑧𝑥 = 0⇒ (𝑐−𝑎)(𝑎−𝑏)+(𝑎−𝑏)(𝑏−𝑐)+
(𝑐 − 𝑎)(𝑏 − 𝑐) = 0

⇒ 𝑐𝑎− 𝑏𝑐 − 𝑎2 + 𝑎𝑏 + 𝑎𝑏 − 𝑐𝑎 − 𝑏2 + 𝑏𝑐 + 𝑏𝑐 − 𝑐2 − 𝑎𝑏 + 𝑐𝑎 = 0 ⇒ 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 − 𝑎2 −
𝑏2 − 𝑐2 = 0 ⇒ (𝑎 − 𝑏)2 + (𝑏 − 𝑐)2 + (𝑐 − 𝑎)2 = 0 ⇒ 𝑎 = 𝑏 = 𝑐
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Answers of Chapter 3
Complex Numbers

1. Let 𝑧 = 7 + 8𝑖, and √

𝑧 = √

7 + 8𝑖 = 𝑥 + 𝑖𝑦. Squaring 7 + 8𝑖 = (𝑥2 − 𝑦2) + 2𝑖𝑥𝑦

Comparing real and imaginary parts 𝑥2 − 𝑦2 = 7, 𝑥𝑦 = 4 ⇒ 𝑥2 + 𝑦2 = √

113. We

discaard −√

113 as that will make 𝑥, 𝑦 complex.

⇒ 𝑥 = √

7+√

113⁄

2 , 𝑦 = √

√

113−7⁄
2 .

2. Let √

𝑎2 − 𝑏2 + 2𝑎𝑏𝑖 = 𝑥 + 𝑖𝑦, then on squaring and comparison of real and imaginary

parts, we have 𝑥2 − 𝑦2 = 𝑎2 − 𝑏2, 𝑥𝑦 = 𝑎𝑏 ⇒ 𝑥2 + 𝑦2 = 𝑎2 + 𝑏2 ⇒ 𝑥 = 𝑎, 𝑦 = 𝑏.

3. 4√

81𝑖2 = √

±9𝑖 and now we can solve it like previous problems.

4. Let 𝑧 = 𝑥2
⁄

𝑦2 +
𝑦2
⁄

𝑥2 +
1⁄
2𝑖 (

𝑥
⁄

𝑦 +
𝑦
⁄

𝑥)+
31
⁄

16 = (𝑥⁄𝑦 +
𝑦
⁄

𝑥)
2
− 2 𝑖
⁄

4 (
𝑥
⁄

𝑦 +
𝑦
⁄

𝑥)+
𝑖2⁄
4 = (𝑥⁄𝑦 +

𝑦
⁄

𝑥 −
𝑖
⁄

4)
2

∴ square root = ±(𝑥⁄𝑦 +
𝑦
⁄

𝑥 −
𝑖
⁄

4).

5. We know that 𝑖4 = 1. Let 𝑧 = 𝑖𝑛+80 + 𝑖𝑛+50 = 𝑖𝑛+4.20 + 𝑖𝑛+12.4+2 = 𝑖𝑛 + 𝑖𝑛+2 =
𝑖𝑛 − 𝑖𝑛 = 0.

6. Let 𝑧 = (𝑖17 + 1⁄
𝑖15)

3
= (𝑖4.4+1 + 1⁄

𝑖4.4−1)
3
= (𝑖 + 𝑖)3 = 8𝑖3 = −8𝑖.

7. Let 𝑧 = (1+𝑖)2⁄
2+3𝑖 = 2𝑖⁄

2+3𝑖 .
2−3𝑖⁄
2−3𝑖 =

−6+4𝑖⁄
13 .

8. Let 𝑧 = ( 1⁄
1+𝑖 +

1⁄
1−𝑖)

7+8𝑖⁄
7−8𝑖 =

2⁄
1−𝑖2

(7+8𝑖)(7+8𝑖)⁄
(7−8𝑖)(7+8𝑖) =

2
⁄

2
−15+112𝑖⁄
49+64 = −15+112𝑖⁄

113 .

9. Let 𝑧 = (1+𝑖)4𝑛+7⁄
(1−𝑖)4𝑛−1 =

(1+𝑖)4(𝑛+2)−1⁄
(1−𝑖)4𝑛−1 = 1−𝑖⁄

1+𝑖 =
(1−𝑖)2⁄
1−𝑖2 = 1−2𝑖+𝑖2⁄

2 = −𝑖.

10. Let 𝑧 = 1⁄
1−cos 𝜃+2𝑖 sin 𝜃 =

1−cos 𝜃−2𝑖 sin 𝜃⁄
(1−cos 𝜃)2+4 sin2 𝜃 =

1−cos 𝜃−2𝑖 sin 𝜃⁄
1−2cos 𝜃+1+3 sin2 𝜃 =

1−cos 𝜃−2𝑖 sin 𝜃⁄
2−2cos 𝜃+3 sin2 𝜃.

11. Let 𝑧 = (cos𝑥+𝑖 sin𝑥)(cos 𝑦+𝑖 sin 𝑦)⁄
(cot𝑢+𝑖)(𝑖+tan𝑣) . Using Euler's formula, we have 𝑧 = 𝑒𝑖𝑥.𝑒𝑖𝑦⁄

𝑒𝑖𝑢⁄
sin𝑢.

𝑒𝑖𝑣⁄
cos𝑣

=

sin 𝑢 cos 𝑣.𝑒𝑖(𝑥+𝑦−𝑢−𝑣) = sin 𝑢 cos 𝑣 cos(𝑥+𝑦−𝑢−𝑣)+𝑖 sin 𝑢 cos 𝑣 sin(𝑥+𝑦−𝑢−𝑣).

12. 𝑖5 = 𝑖4+1 = 𝑖.

13. 𝑖67 = 𝑖64+3 = 𝑖3 = −𝑖[∵ 𝑖2 = −1].

14. 𝑖−59 = 1⁄
𝑖15.4−1 = 𝑖.

15. 𝑖2014 = 𝑖4.503+2 = 𝑖2 = −1.

16. |𝑎| = −𝑎 ⇒ √


𝑎𝑏 =√

|𝑎|𝑏 𝑖.
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17. Let 𝑧 = 𝑖𝑛 + 𝑖𝑛+1 + 𝑖𝑛+2 + 𝑖𝑛+3 = 𝑖𝑛 + 𝑖.𝑖𝑛 − 𝑖𝑛 − 𝑖.𝑖𝑛 = 0.

18.
13
∑
𝑛=1

(𝑖𝑛+ 𝑖𝑛+1) =
13
∑
𝑖=1

𝑖𝑛+
13
∑
𝑖=1

𝑖𝑛+1 = (𝑖+ 𝑖2+ 𝑖3+⋯+𝑖13)+ (𝑖2+ 𝑖3+ 𝑖4+⋯+𝑖14) =

𝑖 − 1.

19. 2𝑛⁄
(1+𝑖)2𝑛 +

(1+𝑖)2𝑛⁄
2𝑛 = 2𝑛⁄

(1+𝑖2+2𝑖)𝑛 +
(1+𝑖2+2𝑖)𝑛⁄

2𝑛 = 1⁄
𝑖𝑛 + 𝑖𝑛 = 𝑖𝑛⁄

𝑖2𝑛 + 𝑖𝑛 = 𝑖𝑛( 1⁄
(−1)𝑛 + 1) =

𝑖𝑛[(−1)𝑛 + 1].

20. Let 𝑧 = 𝑖𝑛 + 1⁄
𝑖𝑛 =

𝑖2𝑛+1⁄
𝑖𝑛 . Substituting 𝑛 = 1, 2, 3, 4, 𝑧 = 0, ±2 i.e. there exists three

different solutions.

21. 4𝑥 + (3𝑥 − 𝑦) 𝑖 = 3 − 6𝑖. Comparing real and imaginary parts, 4𝑥 = 3, 3𝑥 − 𝑦 = −6 ⇒
𝑥 = 3
⁄

4 ⇒
9
⁄

4 − 𝑦 = −6 ⇒ 𝑦 = 33
⁄

4 .

22. (1⁄3 + 𝑖 7⁄3)+ (4 + 𝑖 1⁄3)− (−4
⁄

3 + 𝑖) = (1⁄3 + 4 + 4
⁄

3)+ 𝑖(7⁄3 +
1
⁄

3 − 1) = 17
⁄

3 + 𝑖 5⁄3.

23. (1+𝑖)𝑥−2𝑖⁄
3+𝑖 + (2−3𝑖)𝑦+𝑖⁄

3−𝑖 = 𝑖 ⇒ [(1 + 𝑖)𝑥 − 2𝑖](3 − 𝑖)+ [(2 − 3𝑖)𝑦 + 𝑖](3 + 𝑖) = 𝑖(3 +
𝑖)(3 − 𝑖)⇒ (4𝑥 + 9𝑦 − 3)+ 𝑖(2𝑥 − 7𝑦 − 3) = 10𝑖. Equating real and imaginary parts,
4𝑥 + 9𝑦 = 3, 2𝑥 − 7𝑦 = 13 ⇒ 𝑥 = 3, 𝑦 = −1.

24. The multiplicative inverse is 1⁄𝑧 =
1⁄

4−3𝑖 =
1⁄

4−3𝑖 .
4+3𝑖⁄
4+3𝑖 =

4+3𝑖⁄
25 .

25. Let 𝑥1 = 2, 𝑦1 = 3, 𝑥2 = 1 and 𝑦2 = 12. ∴ 𝑧!⁄
𝑧2 =

[(𝑥1𝑥2+𝑦1𝑦2)+𝑖(𝑥2𝑦1−𝑥1𝑦2)]⁄
𝑥22+𝑦22

= 8−𝑖⁄
5 .

26. 𝑧1 = 𝑧2 ⇒ 9𝑦2 − 4 − 10𝑥𝑖 = 8𝑦2 − 20𝑖. Equating real and imaginary parts, 9𝑦2 − 4 =
8𝑦2 ⇒ 𝑦 = ±2 and −10𝑥 = −20 ⇒ 𝑥 = −2 ⇒ 𝑧 = 𝑥 + 𝑖𝑦 = −2 ± 2𝑖.

27. Let 𝑧 = 𝑥 + 𝑖𝑦 then |𝑥 + 𝑖𝑦 + 1| = 𝑥 + 𝑖𝑦 + 2(1 + 𝑖) ⇒ √

(𝑥 + 1)2 + 𝑦2 = (𝑥 + 2) +

𝑖(𝑦 + 2). Equating real and imaginary parts, 𝑦 + 2 = 0 ⇒ 𝑦 = −2 and (𝑥 + 1)2 + 𝑦2 =
(𝑥 + 2)2 ⇒ 𝑥2 + 2𝑥 + 5 = 4 = 𝑥2 + 4𝑥 + 4 ⇒ 𝑥 = 1

⁄

2 ⇒ 𝑧 = 1−4𝑖⁄
2 .

28. Let 𝑧 = 1+2𝑖⁄
1−3𝑖 =

(1+2𝑖)(1+3𝑖)⁄
1−(3𝑖)2 = 1+3𝑖+2𝑖+6𝑖2⁄

1+9 = −5+5𝑖⁄
10 = −1
⁄

2 +
1
⁄

2 𝑖

⇒ |𝑧| =√

(−1
⁄

2)
2
+ 1
⁄

22 =
1⁄
√


2

tan 𝜃 =
1
⁄

2⁄
−1
⁄

2
⇒ 𝜃 = tan−1 − 1 = 3𝜋⁄

4 .

29. Given, 𝑥−3⁄3+𝑖 +
𝑦−3
⁄

3−𝑖 = 𝑖(3 − 𝑖)(3 + 𝑖) ⇒ (𝑥 − 3)(3 − 𝑖) + (𝑦 − 3)(3 + 𝑖) = 10𝑖 ⇒
3𝑥 − 9 + 𝑖(3 − 𝑥)+ (3𝑦 − 9)+ 𝑖(𝑦 − 3) = 10𝑖

Comparing real and imaginary parts, we get 3𝑥 + 3𝑦 − 18 = 0 and 𝑦 − 𝑥 = 10 ⇒ 𝑥 =
−2, 𝑦 = 8.
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30. (1 + 𝑖)2 = 1+ 2𝑖 − 𝑖 = 2𝑖 ⇒ (1 + 𝑖)50 = (2𝑖)25 = 225𝑖4.6+1 = 225𝑖 Thus, real part will
be 0.

31. Let 𝑧 = 𝑥 + 𝑖𝑦 then 𝑥 + 𝑖𝑦 +√

𝑥2 + 𝑦2 = 2 + 8𝑖, Comparing real and imaginary parts,

we get 𝑦 = 8 and 𝑥 +√

𝑥2 + 𝑦2 = 2 ⇒√

𝑥2 + 𝑦2 = 2 − 𝑥

⇒ 𝑥2 + 64 = 4 − 4𝑥 + 𝑥2 ⇒ 𝑥 = −15 ⇒ 𝑧 = −15 + 8𝑖.

32. 𝑆 = 𝑖 + 2𝑖2 + 3𝑖3 + …+ 100𝑖100 ⇒ 𝑖𝑆 = 𝑖2 + 2𝑖3 + …+ 99𝑖100 + 100𝑖101

⇒ 𝑆(1 − 𝑖) = 𝑖 + 𝑖2 + …+ 𝑖100 − 100𝑖101 = 𝑖(1−𝑖101)⁄
1−𝑖 − 100𝑖101

𝑆 = 𝑖(1−𝑖101)⁄
(1−𝑖)2 − 100𝑖101⁄

1−𝑖 .

33. Consider 𝑡1 = 1⁄
1+𝑖 +

1⁄
1−𝑖 +

1⁄
−1+𝑖 +

1⁄
−1−𝑖 =

1+𝑖+1−𝑖⁄
12−𝑖2 + −1+𝑖−1−𝑖⁄

(−1)2−𝑖2 = 2
⁄

2 +
−2⁄
2 = 0

𝑡2 = 2( 1⁄
1+𝑖 +

1⁄
1−𝑖 +

1⁄
−1+𝑖 +

1⁄
−1−𝑖) = 0

Similarly all other terms and sum will be zero.

34. Given, 𝑧2 − 𝑧 − 5 + 5𝑖 = 0 ⇒ 𝐷 = (−1)2 − 4.1.(−5 + 5𝑖) = 21 − 20𝑖 and we will need
√

𝐷

√

𝐷 =√

𝑏2 − 4𝑎𝑐 = √

21 − 20𝑖 = ±[√

𝑥2+𝑦2+𝑥⁄

2 − 𝑖√

𝑥2+𝑦2−𝑥⁄

2 ] = ±(5 − 2𝑖)

𝑧 = 1+5−2𝑖⁄
2 or 𝑧 = 1−5+2𝑖⁄

2 ⇒ 𝑧 = 3 − 𝑖, 𝑖 − 2

Thus, product of real parts = −2 × 3 = −6

35. Given, 𝑧3 = −𝑧 ⇒ |𝑧|3 = |𝑧|⇒ |𝑧|(|𝑧|−1)(|𝑧|+1) = 0 ⇒ |𝑧| = 0, |𝑧| = 1[∵ |𝑧|+1 > 0]

If |𝑧| = 0, then 𝑧 = 0. If |𝑧| = 1 ⇒ |𝑧|2 = 1 ⇒ 𝑧𝑧 = 1 ⇒ 𝑧3+ 1
⁄

𝑧 = 0 ⇒ 𝑧4+ 1 = 0, which
has four distinct roots. Thus, given equation has five roots.

36. Since we have to find real roots, let 𝑧 = 𝑥, a real value. The given equation becomes
𝑥3 + 𝑖𝑥 − 1 = 0 ⇒ 𝑥3 = 1, 𝑥 = 0 which is not possible. So there are no real solutions.

37. Let 𝑧 = 𝑥 + 𝑖𝑦, then √

𝑥2 + 𝑦2 > 1, because point 𝐴 is outside circle.

1
⁄

𝑧 =
𝑥−𝑖𝑦⁄

√


𝑥2+𝑦2
so 𝑥⁄

√


𝑥2+𝑦2
, −𝑦⁄
𝑥2+𝑦2 < 1

This leads to the fact that point 𝐸 is reciprocal of point 𝐴.

38. 𝑧 = (3𝑝 − 7𝑞)+ 𝑖(3𝑞 + 7𝑝) , which is purely imaginary, ⇒ 3𝑝 − 7𝑞 = 0

⇒ 𝑝
⁄

𝑞 =
7
⁄

3 ⇒
𝑝
⁄

𝑞 + 𝑖 = 7
⁄

3 + 𝑖 ⇒ 𝑝+𝑖𝑞⁄
𝑞 = 7+3𝑖⁄

3

⇒ 𝑝 + 𝑖𝑞 = 7 + 3𝑖 ⇒ 𝑧 = 21 + 9𝑖 + 49𝑖 − 21 = 58𝑖 ⇒ |𝑧|2 = 3364.
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39. Given, 𝛼 = (𝑎−𝑖𝑏⁄𝑎+𝑖𝑏)2 + (𝑎+𝑖𝑏⁄𝑎−𝑖𝑏)2 = (𝑎−𝑖𝑏)4+(𝑎+𝑖𝑏)4⁄
(𝑎−𝑖𝑏)2(𝑎+(𝑖𝑏)2)

= 𝑎4−4𝑎3.𝑖𝑏+6𝑎2𝑖2𝑏2−4𝑎𝑖3𝑏3+𝑏4+𝑎4+4𝑎3𝑖𝑏+6𝑎2𝑖2𝑏2+4𝑎𝑖3𝑏3+𝑏4⁄
(𝑎2+𝑏2)2 = 2𝑎4−12𝑎2𝑏2+2𝑏4⁄

(𝑎2+𝑏2)2 , which is
purely real.

40. Let 𝑧 = 𝑥 + 𝑖𝑦 then given |𝑧| = 1 ⇒ 𝑥2 + 𝑦2 = 1

Let 𝛽 = 𝑧−1
⁄

𝑧+1 =
(𝑥−1)+𝑖𝑦⁄
(𝑥+1)+𝑖𝑦 =

(𝑥−1)+𝑖𝑦⁄
(𝑥+1)+𝑖𝑦 .

(𝑥+1)−𝑖𝑦⁄
(𝑥+1)−𝑖𝑦

= 𝑥2−1+𝑦2+𝑖𝑦(𝑥+1−𝑥+1)⁄
(𝑥+1)2+𝑦2 = 2𝑖𝑦⁄

(𝑥+1)2+𝑦2 which is purely imaginary.

41. Let 𝑧 = 𝑥 + 𝑖𝑦 ⇒ 𝑥2 + (𝑦 − 3)2 = 9 ⇒ 𝑥 = 3 cos 𝜃, 𝑦 = 3 sin 𝜃 + 3

𝑧 = 3[cos 𝜃 + 𝑖(sin 𝜃 + 1)] = 3[sin(𝜋⁄2 − 𝜃)+ 𝑖(1 + cos(𝜋⁄2 − 𝜃))]

= 3[2 sin(𝜋⁄4 −
𝜃
⁄

2) cos(
𝜋
⁄

4 −
𝜃
⁄

2)+ 𝑖2 cos2(𝜋⁄4 −
𝜃
⁄

2)]

= 6 cos(𝜋⁄4 −
𝜃
⁄

2)[sin(
𝜋
⁄

4 −
𝜃
⁄

2)+ 𝑖 cos(𝜋⁄4 −
𝜃
⁄

2)] = 6 cos(𝜋⁄4 −
𝜃
⁄

2)𝑒
𝑖(𝜋⁄4−

𝜃
⁄

2)

cot(arg(𝑧)) = cot(𝜋⁄4 +
𝜃
⁄

2) = tan(𝜋⁄4 −
𝜃
⁄

2)

6
⁄

𝑧 = sec(𝜋⁄4 −
𝜃
⁄

2)𝑒
−𝑖(𝜋⁄4+

𝜃
⁄

2) = sec(𝜋⁄4 −
𝜃
⁄

2)[sin(
𝜋
⁄

4 −
𝜃
⁄

2 − 𝑖 cos(𝜋⁄4 −
𝜃
⁄

2))]

= tan(𝜋⁄4 −
𝐴⁄
2 )− 𝑖 ⇒ cot(arg(𝑧))− 6
⁄

𝑧 = 𝑖.

42. Let 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) = −16⁄
1+√


3 =
−16⁄

1+𝑖√


3 .
1−𝑖√


3⁄
1−𝑖√


3 =
−16(1−𝑖√


3)⁄
1+3

= −4 + 𝑖4√


3 then 𝑟 cos 𝜃 = 4, 𝑟 sin 𝜃 = 4√


3 ⇒ 𝑟2 = 64 ⇒ 𝑟 = 4, cos 𝜃 = −1⁄
2 , sin 𝜃 =

√


3⁄
2 ⇒ 𝜃 = 2𝜋⁄

3

⇒ 𝑧 = 8(cos 2𝜋⁄3 + 𝑖 sin 2𝜋⁄
3 ).

43. Let 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) then because arg(𝑧)+ arg(𝑤) = 𝜋 ⇒ arg(𝑤) = 𝜋 − 𝜃

⇒ 𝑤 = 𝑟(−cos 𝜃 + 𝑖 sin 𝜃) = −𝑟(cos 𝜃 − 𝑖 sin 𝜃) ∴ 𝑟 = −𝑤.

44. 𝑥 − 𝑖𝑦 = √

𝑎−𝑖𝑏⁄
𝑐−𝑖𝑑 ⇒ 𝑥2 − 𝑦2 − 2𝑖𝑥𝑦 = 𝑎−𝑖𝑏⁄

𝑐−𝑖𝑑 = (𝑎−𝑖𝑏)(𝑐+𝑖𝑑)⁄
𝑐2+𝑑2 ⇒ 𝑥2 − 𝑦2 − 2𝑖𝑥𝑦 =

(𝑎𝑐+𝑏𝑑)−𝑖(𝑏𝑐−𝑎𝑑)⁄
𝑐2+𝑑2

Comparing real and imaginary parts, we get 𝑥2 − 𝑦2 = 𝑎𝑐+𝑏𝑑⁄
𝑐2+𝑑2 , 2𝑥𝑦 =

𝑏𝑐−𝑎𝑑⁄
𝑐2+𝑑2

⇒ (𝑥2 + 𝑦2)2 = (𝑥2 − 𝑦2)2 + 4𝑥2𝑦2 = (𝑎𝑐+𝑏𝑑)2+(𝑏𝑐−𝑎𝑑)2⁄
(𝑐2+𝑑2) = 𝑎2𝑐2+𝑏2𝑑2+𝑏2𝑐2+𝑎2𝑑2⁄

(𝑐2+𝑑2)2 =
𝑎2+𝑏2⁄
𝑐2+𝑑2.
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45. We know that for two complex numbers 𝑧1 and 𝑧2, |𝑧1|+ |𝑧2| ≥ |𝑧1 − 𝑧2|

|𝑧|+ |𝑧 − 2| ≥ |𝑧 − (𝑧 − 2) | = |2| = 2. Therefore, minimum value is 2.

46. |𝑧1 + 𝑧2 + 𝑧3| = |(𝑧1 − 1)+ (𝑧2 − 2)+ (𝑧3 − 3)+ 6 ≤ |𝑧1 − 1|+ |𝑧2 − 2|+ |𝑧3 − 3|+ 6

< 1 + 2 + 3 + 6 = 12. Thus, maximum value of |𝑧1 + 𝑧2 + 𝑧3| is 12.

47. |𝛼 + 𝛽|2 = (𝛼 + 𝛽)(𝛼 + 𝛽) = (𝛼 + 𝛽)(𝛼 + 𝛽) = 𝛼𝛼 + 𝛼𝛽 + 𝛼𝛽 + 𝛽𝛽 = |𝛼|2 + |𝛽|2 +
𝛼𝛽 + 𝛼𝛽

Similarly, |𝛼 − 𝛽|2 = |𝛼|2 + |𝛽|2 − 𝛼𝛽 − 𝛼𝛽

Thus, |𝛼|2 + |𝛽|2 = 1
⁄

2 (|𝛼 + 𝛽|2 + |𝛼 − 𝛽|2)

48. If |𝑧| = 0 then √

𝑥2 + 𝑦2 = 0 ⇒ 𝑥2 + 𝑦2 = 0

Above is possible if and only if 𝑥 = 0 and 𝑦 = 0 ⇒ 𝑧 = 0.

49. 𝑧1𝑧2⁄
𝑧1 = (1−𝑖)(2+7𝑖)⁄

1+𝑖 = 2+7−2𝑖+7𝑖⁄
1+𝑖 = 9+5𝑖⁄

1+𝑖 =
9+5𝑖⁄
1+𝑖 .

1−𝑖⁄
1−𝑖 =

9+5+5𝑖−9𝑖⁄
2 = 7−2𝑖 ∴ 𝐼𝑚(𝑧1𝑧2⁄𝑧1 ) =

−2.

50. |𝑧 + 12 − 6𝑖| ≤ |𝑧 − 𝑖|+ |12 − 5𝑖| < 1 + 13 = 14.

51. Given, |𝑧 + 6| = |2𝑧 + 3|, let 𝑧 = 𝑥 + 𝑖𝑦 ⇒ (𝑥 + 6)2 + 𝑦2 = (2𝑥 + 3)2 + 4𝑦2 ⇒
𝑥2 + 12𝑥 + 36 + 𝑦2 = 4𝑥2 + 12𝑥 + 9 + 4𝑦2

⇒ 3𝑥2 + 2𝑦2 = 27 ⇒ 𝑥2 + 𝑦2 = 9 ⇒ |𝑧| = 3.

52. Given √

𝑎 − 𝑖𝑏 = 𝑥 − 𝑖𝑦, squaring we get 𝑎 − 𝑖𝑏 = 𝑥2 − 𝑦2 − 2𝑖𝑥𝑦. Comparing real

and imaginary parts, we get 𝑎 = 𝑥2 − 𝑦2, 𝑏 = 2𝑥𝑦 ⇒ 𝑎 + 𝑖𝑏 = 𝑥2 − 𝑦2 + 2𝑖𝑥𝑦 =
𝑥2 + 𝑖2𝑦2 + 2𝑖𝑥𝑦 ⇒ √

𝑎 + 𝑖𝑏 = 𝑥 + 𝑖𝑦.

53. 𝑥1𝑥2𝑥3 …∞ = (cos 𝜋⁄2 + 𝑖 sin 𝜋
⁄

2)(cos
𝜋
⁄

22+ 𝑖 sin 𝜋
⁄

22)…∞= cos(𝜋⁄2 +
𝜋
⁄

22+…∞)+𝑖 sin(𝜋⁄2 +
𝜋
⁄

22 + …∞)

= cos 𝜋⁄2 .
1⁄

1−1
⁄

2
+ 𝑖 sin 𝜋
⁄

2 .
1⁄

1−1
⁄

2
= cos 𝜋 + 𝑖 sin 𝜋 = −1.

54. Given, (cos 𝜃+𝑖 sin 𝜃)
4⁄

(sin 𝜃+𝑖 cos 𝜃)5 =
(cos 𝜃+𝑖 sin 𝜃)4⁄
𝑖5(1⁄𝑖sin 𝜃+cos 𝜃)

5

= (cos 𝜃+𝑖 sin 𝜃)4⁄
𝑖(cos 𝜃−𝑖 sin 𝜃)5 =

(cos 𝜃+𝑖 sin 𝜃)4⁄
𝑖(cos 𝜃+𝑖 sin 𝜃)−5 =

1
⁄

𝑖 (cos 𝜃 + 𝑖 sin 𝜃)9 = sin 9𝜃 − 𝑖 cos 9𝜃.

55. 𝑧 = [cos 𝜋⁄6 + 𝑖 sin 𝜋
⁄

6]
5
+ [cos 𝜋⁄6 − 𝑖 sin 𝜋
⁄

6]
5

= cos 5𝜋⁄6 + 𝑖 sin 5𝜋⁄
6 + cos 5𝜋⁄6 − 𝑖 sin 5𝜋⁄

6 = 2 cos 5𝜋⁄6 ∴ 𝐼𝑚(𝑧) = 0.
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56. 𝑧 = (cos 𝜋⁄3 + 𝑖 sin 𝜋
⁄

3)
3
⁄

4 = (cos 𝜋 + 𝑖 sin 𝜋)
1
⁄

4 , thus general root is cos 2𝑛𝜋+𝜋⁄
4 + 𝑖 sin 2𝑛𝜋+𝜋⁄

4

Thus, substituting 𝑛 = 0, 1, 2, 3 we find four roots and the product is

(cos 𝜋⁄4 + 𝑖 sin 𝜋
⁄

4)(cos
3𝜋⁄
4 + 𝑖 sin 3𝜋⁄

4 )(cos
5𝜋⁄
4 + 𝑖 sin 5𝜋⁄

4 )(cos
7𝜋⁄
4 + 𝑖 sin 7𝜋⁄

4 )

= ( 1⁄
√


2 +
𝑖⁄
√


2)(
−1⁄
√


2 +
𝑖⁄
√


2)(
−1⁄
√


2 −
𝑖⁄
√


2)(
1⁄
√


2 −
𝑖⁄
√


2)

= (−1
⁄

2 −
1
⁄

2)(
−1⁄
2 − 1
⁄

2) = −1. − 1 = 1.

57. Let 𝑧1 = 𝑟1(cos 𝑥 + 𝑖 sin 𝑥) and 𝑧2 = 𝑟2(cos 𝑦 + 𝑖 sin 𝑦) Then (𝑟1 cos 𝑥 + 𝑟2 cos 𝑦)2 +
(𝑟1 sin 𝑥 + 𝑟2 sin 𝑦)2 = 𝑟21 + 𝑟22 + 2𝑟2𝑟2

⇒ 2𝑟1𝑟2(cos 𝑥 cos 𝑦 + sin 𝑥 sin 𝑦) = 2𝑟2𝑟2 ⇒ cos(𝑥 − 𝑦) = 1 ⇒ 𝑥− 𝑦 = 0 ⇒ arg(𝑧1)−
arg(𝑧2) = 0.

58. Let 𝑧 = 1 − sin 𝛼 + 𝑖 cos 𝛼 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) , then 𝑟 = √

(1 − sin 𝛼)2 + cos2 𝛼 =

√

2 − 2 sin 𝛼

tan 𝜃 = cos𝛼⁄
1−sin𝛼 =

1−tan2𝛼⁄2⁄
1+tan2𝛼⁄2−2 tan𝛼⁄

2
=

1+tan𝛼⁄
2⁄

1−tan𝛼⁄
2
= tan(𝜋⁄4 −

𝛼⁄
2)⇒ 𝜃 = 𝜋
⁄

4 −
𝛼⁄
2.

59. Let 𝑧 = [
1+sin𝜋
⁄

8+𝑖 cos
𝜋
⁄

8⁄
1+sin𝜋
⁄

8−𝑖 cos
𝜋
⁄

8
] = [

1+sin𝜋
⁄

8+𝑖 cos
𝜋
⁄

8⁄
1+sin𝜋
⁄

8−𝑖 cos
𝜋
⁄

8
] .[

1+sin𝜋
⁄

8+𝑖 cos
𝜋
⁄

8⁄
1+sin𝜋
⁄

8+𝑖 cos
𝜋
⁄

8
]

=
(1+sin𝜋
⁄

8)
2
−cos2𝜋⁄8+2𝑖(1+sin

𝜋
⁄

8) cos
𝜋
⁄

8⁄
(1+sin𝜋
⁄

8)
2
+cos2𝜋⁄8

=
2 sin𝜋
⁄

8+2 sin2
𝜋
⁄

8+2𝑖(1+sin
𝜋
⁄

8) cos
𝜋
⁄

8⁄
2+2 sin𝜋
⁄

8

= sin 𝜋
⁄

8 + 𝑖 cos 𝜋⁄8 = 𝑖(cos 𝜋⁄8 − 𝑖 sin 𝜋
⁄

8)⇒ 𝑧8 = 𝑖8(cos 𝜋 − 𝑖 sin 𝜋) = −1.

60. 𝑧1𝑧2𝑧3𝑧4𝑧5 = cos(2𝜋⁄5 + 4𝜋⁄
5 + 6𝜋⁄

5 + 8𝜋⁄
5 + 10𝜋⁄

5 )+ 𝑖 sin(2𝜋⁄5 + 4𝜋⁄
5 + 6𝜋⁄

5 + 8𝜋⁄
5 + 10𝜋⁄

5 )

= cos 30𝜋⁄5 + 𝑖 sin 30𝜋⁄
5 = cos 6𝜋 + 𝑖 sin 6𝜋 = 1.

61. 𝑧𝑛 = cos( 1
⁄

2𝑛+1 −
1
⁄

2𝑛+3) .
𝜋
⁄

2 + 𝑖 sin( 1
⁄

2𝑛+1 −
1
⁄

2𝑛+3) .
𝜋
⁄

2

∴ 𝑧1𝑧2𝑧3 …∞ = cos(1⁄3 −
1
⁄

5 +
1
⁄

5 −
1
⁄

7 +
1
⁄

7 −
1
⁄

9…∞) . 𝜋⁄2 + 𝑖 sin(1⁄3 −
1
⁄

5 +
1
⁄

5 −
1
⁄

7 +
1
⁄

7 −
1
⁄

9…∞) . 𝜋⁄2

= cos 𝜋⁄6 + 𝑖 sin 𝜋
⁄

6.

62. Let 𝑧1 = 𝑥1 + 𝑖𝑦1 and 𝑧2 = 𝑥2 + 𝑖𝑦2 ⇒ |𝑎𝑧1 − 𝑏𝑧2|2 + |𝑏𝑧1 + 𝑎𝑧2|2 = (𝑎𝑥1 − 𝑏𝑥2)2 +
(𝑎𝑦1 − 𝑏𝑦2)2 + (𝑏𝑥1 + 𝑎𝑥2)2 + (𝑏𝑦1 + 𝑎𝑦2)2

= 𝑎2𝑥21 + 𝑏2𝑥22 − 2𝑎𝑏𝑥1𝑥2 + 𝑎2𝑦21 + 𝑏2𝑦22 − 2𝑎𝑏𝑦1𝑦2 + 𝑏2𝑥21 + 𝑎2𝑥22 + 2𝑎𝑏𝑥1𝑥2 + 𝑏2𝑦21 +
𝑎2𝑦22 + 2𝑎𝑏𝑦1𝑦2 = (𝑎2 + 𝑏2)(𝑥21 + 𝑦21 + 𝑥22 + 𝑦22 ) = (𝑎2 + 𝑏2)(|𝑧1|2 + |𝑧2|2).
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63. Let 𝑥 = 𝑦+𝑖𝑧, then given expression becomes 𝐴2⁄
𝑦+𝑖𝑧−𝑎+

𝐵2⁄
𝑦+𝑖𝑧−𝑏+…+ 𝐻2⁄

𝑦+𝑖𝑧−ℎ = 𝑦+𝑖𝑧+𝑙

𝐴2(𝑦−𝑎−𝑖𝑧)⁄
(𝑦−𝑎)2+𝑧2 + 𝐵(𝑦−𝑏−𝑖𝑧)⁄

(𝑦−𝑏)2+𝑧2 + …+𝐻2(𝑦−𝑖𝑧−ℎ)⁄
(𝑦−ℎ)2+𝑧2 = 𝑦 + 𝑖𝑧 + 𝑙. Comparing imaginary parts,

we have −𝑖𝑧[ 𝐴2⁄
(𝑦−𝑎)2+𝑧2 +

𝐵2⁄
(𝑦−𝑎)2+𝑧2 + … + 𝐻2⁄

(𝑦−𝑎)2+𝑧2] = 𝑖𝑧 ⇒ 𝑖𝑧[1 + 𝐴2⁄
(𝑦−𝑎)2+𝑧2 +

𝐵2⁄
(𝑦−𝑎)2+𝑧2 + …+ 𝐻2⁄

(𝑦−𝑎)2+𝑧2] = 0

Clearly the term inside brackets is non-zero. So 𝑧 = 0.

64. Let 2−𝑥 = 𝑝, then |1 + 4𝑖 − 𝑝| ≤ 5 ⇒ (1 − 𝑝)2 + 16 ≤ 25

1 − 𝑝 ≤ ±3 ⇒ 𝑝 ≥ 4, −2 ⇒ 𝑥 ≥ −2 ∵ 𝑝 ≮ 0 ⇒ 𝑝 ∈ [−2, ∞].

65. A unimodular number has a modulus of 1. cos 𝜃 + 𝑖 sin 𝜃 = 𝑐+𝑖⁄
𝑐−𝑖 =

𝑐+𝑖⁄
𝑐−𝑖 .

𝑐+𝑖⁄
𝑐−𝑖 =

𝑐2−1+2𝑖𝑐⁄
𝑐2+1

Comparing real and imaginary parts, cos 𝜃 = 𝑐2−1
⁄

𝑐2+1 ⇒ 𝑐 = ±cot 𝜃⁄2

and sin 𝜃 = 2𝑐
⁄

𝑐2+1 ⇒ 𝑐 = cot 𝜃⁄2 , tan
𝜃
⁄

2. So the common value is 𝑐 = cot 𝜃⁄2.

66. (𝑧3 + 3)2 = −16 = 16𝑖2 ⇒ 𝑧3 = −3 ± 4𝑖 ⇒ |𝑧3| = 5 ⇒ |𝑧| = 51/3.

67. 𝑧 =
sin𝑥
⁄

2+cos
𝑥
⁄

2−𝑖 tan𝑥⁄
1+2𝑖 sin𝑥
⁄

2
=

sin𝑥
⁄

2+cos
𝑥
⁄

2−𝑖 tan𝑥⁄
1+2𝑖 sin𝑥
⁄

2
.
1−2𝑖 sin𝑥
⁄

2⁄
1−2𝑖 sin𝑥
⁄

2

Since it is real so imaginary part of this will be 0. ⇒ −tan 𝑥−2 sin𝑥⁄2 cos
𝑐
⁄

2−2 sin𝑥⁄2 cos
𝑥
⁄

2 =
0

2 sin 𝑥
⁄

2 (sin
𝑥
⁄

2 + cos 𝑥⁄2)+
2sin𝑥
⁄

2cos
𝑥
⁄

2⁄
cos𝑥 = 0 ⇒ sin 𝑥
⁄

2 = 0 ⇒ 𝑥 = 2𝑛𝜋 where 𝑛 = 0,1,2,3…

or (sin 𝑥
⁄

2 + cos 𝑥⁄2) cos 𝑥 + cos 𝑥⁄2 = 0 ⇒ tan3 𝑥⁄2 − tan 𝑥
⁄

2 − 2 = 0

If 𝛼 is a solution of above then the set of possible values are 𝑥 = 2𝑛𝜋 + 2𝛼. Solving the
cubic equation is left to you.

68. Let 𝑧1 = 𝑥1 + 𝑖𝑦1 and 𝑧2 = 𝑥2 + 𝑖𝑦2 then |𝑧1 + 𝑧2|2 + |𝑧1 − 𝑧2|2 = (𝑥1 + 𝑥2)2 +
(𝑦1 + 𝑦2)2 + (𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

= 2(𝑥21 + 𝑦21 + 𝑥22 + 𝑦22 ) = 2(|𝑧1|2 + |𝑧2|2).

69. Given, 𝑥2 − 𝑥 + 1 = 0 ⇒ 𝑥 = −𝜔, −𝜔2

5
∑
𝑛=1

(𝑥𝑛 + 1⁄
𝑥𝑛)

2
=

5
∑
𝑛=1

(𝑥2𝑛 + 1
⁄

𝑥2𝑛 + 2)

= (𝑥2 + 1
⁄

𝑥2 + 2)+ (𝑥4 + 1
⁄

𝑥4 + 2)+ (𝑥6 + 1
⁄

𝑥6 + 2)+ (𝑥8 + 1
⁄

𝑥8 + 2)+ (𝑥10 + 1⁄
𝑥10 + 2)

= (𝑥2 + 𝑥4 + 𝑥6 + 𝑥8 + 𝑥10)+ ( 1
⁄

𝑥2 +
1
⁄

𝑥4 +
1
⁄

𝑥6 +
1
⁄

𝑥8 +
1⁄
𝑥10)+ 10
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= (𝜔2 + 𝜔4 + 𝜔6 + 𝜔8 + 𝜔10)+ ( 1⁄
𝜔2 +

1⁄
𝜔4 +

1⁄
𝜔6 +

1⁄
𝜔8 +

1⁄
𝜔10)+ 10

= −1 − 1 + 10 = 8.

70. 349(𝑥 + 𝑖𝑦) = [𝑖√


3(1−𝑖√


3⁄
2 )]

100
= 𝑖100350(−𝜔)100 ⇒ 349(𝑥 + 𝑖𝑦) = 350.𝜔

𝑥 + 𝑖𝑦 = −3
⁄

2 +
3√


3
⁄

2 𝑖 ⇒ 𝑥 = −3
⁄

2 , 𝑦 =
3√


3
⁄

2 .

71. |𝑧1 + 𝑧2|2 = 𝑥21 + 𝑥22 + 𝑦21 + 𝑦22 + 2𝑥1𝑥2 + 2𝑦1𝑦2 = |𝑧1|2 + |𝑧2|2 + 2(𝑥1𝑥2 + 𝑦1𝑦2)

Now, 2𝑅𝑒(𝑧1𝑧2) = 2𝑅𝑒[(𝑥1 + 𝑖𝑦1)(𝑥2 − 𝑖𝑦2)] = 2ℜ[𝑥1𝑥2 + 𝑦1𝑦2 − 𝑖(𝑥1𝑦2 + 𝑥2𝑦1)] =
2(𝑥1𝑥2 + 𝑦1𝑦2)

Similalry, 2ℜ(𝑧1𝑧2) = 2(𝑥1𝑥2 + 𝑦1𝑦2).

72. R.H.S. = ∣ 1⁄𝑧1 + 1⁄
𝑧2∣ = ∣𝑧2+𝑧1⁄𝑧1𝑧2 ∣

Since |𝑧1| = |𝑧2| = 1∴ |𝑧1𝑧2| = 1 and thus |𝑧1 + 𝑧2| = ∣ 1⁄𝑧1 + 1⁄
𝑧2∣.

73. Let 𝑧 = 𝑥 + 𝑖𝑦, then 𝑥2 − 4𝑥 + 4 + 𝑦2 = 4𝑥2 − 8𝑥 + 4 + 4𝑦2 ⇒ 3𝑥2 + 3𝑦2 = 4𝑥

⇒ 3|𝑧|2 = 4𝑅𝑒(𝑧)⇒ |𝑧|2 = 4
⁄

3𝑅𝑒(𝑧).

74. Given 3√

𝑎 + 𝑖𝑏 = 𝑥 + 𝑖𝑦 ⇒ 𝑎 + 𝑖𝑏 = (𝑥 + 𝑖𝑦)3 = 𝑥3 − 3𝑥𝑦2 + 𝑖(3𝑥2𝑦 − 𝑦3)

Comparing real and imaginary parts, we have 𝑎 = 𝑥3 − 3𝑥𝑦2, 𝑏 = 3𝑥2𝑦 − 𝑦3 ⇒ 𝑎
⁄

𝑥 =

𝑥2 − 3𝑦2, 𝑏⁄𝑦 = 3𝑥2 − 𝑦2

∴ 𝑎⁄𝑥 +
𝑏
⁄

𝑦 = 4(𝑥2 − 𝑦2).

75. 𝑥 + 𝑖𝑦 =√

𝑎+𝑖𝑏⁄
𝑐+𝑖𝑑 ⇒ (𝑥 + 𝑖𝑦)2 = 𝑎+𝑖𝑏⁄

𝑐+𝑖𝑑 ⇒ |(𝑥 + 𝑖𝑦)2 | = ∣𝑎+𝑖𝑏⁄𝑐+𝑖𝑑∣ = |𝑎+𝑖𝑏|⁄
|𝑐+𝑖𝑑| ⇒ (𝑥2 + 𝑦2)2 =

𝑎2+𝑏2⁄
𝑐+𝑑2 .

76. Let 𝑧 = 1 = cos 0∘ + 𝑖 sin 0∘ = 𝑒𝑖2𝑟𝜋 ∀𝑖 ∈ 𝑁 ⇒ 𝑛√

𝑧 = 𝑒

𝑖.2𝑟𝜋⁄
𝑛 . Clearly, |𝑧𝑘| = |𝑧𝑘+1| = 1.

77. 𝑧𝑛 = (𝑧 + 1)𝑛 ⇒ 𝑧
⁄

𝑧+1 = 11/𝑛

This means 𝑧
⁄

𝑧+1 is 𝑛th root of unity. ⇒ ∣ 𝑧
⁄

𝑧+1∣ = 1

⇒ |𝑧| = |𝑧 + 1|⇒ 𝑥2 + 𝑦2 = 𝑥2 + 2𝑥 + 1 + 𝑦2 ⇒ 𝑥 = −1
⁄

2 ⇒ 𝑅𝑒(𝑧) < 0.

78. Roots of 1 + 𝑥 + 𝑥2 = 0 are 𝜔 and 𝜔2. Let 𝑓(𝑥) = 𝑥3𝑚 + 𝑥3𝑛−1 + 𝑥3𝑟−2

𝑓(𝑥) = 𝑥3𝑚 + 𝑥3𝑛
⁄

𝑥 + 𝑥3𝑟⁄
𝑥2 ⇒ 𝑓(𝜔) = 1 + 1⁄

𝜔 +
1⁄
𝜔2 =

1+𝜔+𝜔2⁄
𝜔2 = 0
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Similarly 𝑓(𝜔2) = 0. Thus, we see that 𝑓(𝑥) has same roots as 1 + 𝑥 + 𝑥2 = 0. Hence,
𝑓(𝑥) will be divisible by 1 + 𝑥 + 𝑥2.

79. √


3 + 𝑖 = 2(√


3⁄
2 + 𝑖 1⁄2) = 2(cos 𝜋⁄6 + 𝑖 sin 𝜋
⁄

6) = 2𝑒𝑖
𝜋
⁄

6

Similarly, √


3 − 𝑖 = 2𝑒−𝑖
𝜋
⁄

6

Since imaginary part is what prevents equality we need to get rid of it and the least
value for which it will happen is when argument is 𝜋. Thus, we need to raise to the
power by 6 making 𝑛 = 6.

80. √


3 − 𝑖 = 2.(cos 𝜋⁄6 − 𝑖 sin 𝜋
⁄

6)

Thus, (√


3 − 𝑖)𝑛 = 2𝑛 ⇒ 2𝑛(cos 𝑛𝜋⁄6 − 𝑖 sin 𝜋
⁄

6) = 2𝑛

⇒ cos 𝑛𝜋⁄6 − 𝑖 sin 𝑛𝜋⁄
6 = 1 ⇒ 𝑛𝜋⁄

6 = 2𝑘𝜋 ∀𝑘 ∈ 𝐼 ⇒ 𝑛 = 12𝑘

Thus, 𝑛 is a multiple of 12.

81. Given, 𝑧4 + 𝑧3 + 2𝑧2 + 𝑧 + 1 = 0 ⇒ 𝑧2(𝑧2 + 𝑧 + 1)+ 𝑧2 + 𝑧 + 1 = 0

⇒ (𝑧2 + 1)(𝑧2 + 𝑧 + 1) = 0. If 𝑧2 + 1 = 0 ⇒ 𝑧 = 𝑖 ⇒ |𝑧| = 1

If 𝑧2 + 𝑧 + 1 = 0 ⇒ 𝑧 = 𝜔, 𝜔2 ⇒ |𝑧| = 1.

82. ∵ 𝑧 = 7√

−1 ⇒ 𝑧7 = −1 ⇒ 𝑧86 + 𝑧175 + 𝑧289 = (𝑧7)14 .𝑧2 + (𝑧7)25 + (𝑧7)41 𝑧2 =

𝑧2 − 1 − 𝑧2 = −1

83. Given, 𝑧3+ 2𝑧2+ 3𝑧 +2 = 0 ⇒ 𝑧3+ 𝑧2+2𝑧 + 𝑧2+ 𝑧 +2 = 0 ⇒ (𝑧 + 1)(𝑧2+ 𝑧 +2) = 0

If 𝑧 + 1 = 0 ⇒ 𝑧 = −1, which is real and is of no interest for us.

If 𝑧2 + 𝑧 + 2 = 0 ⇒ 𝑧 = −1+𝑖√

7⁄

2 which are complex roots of the given equation.

84. 𝑧 = 5√


1 ⇒ 𝑧5 = 1

2|1+𝑧+𝑧
2+𝑧−2−𝑧−1| = 2|1+𝑧+𝑧

2+𝑧3−𝑧4|[∵ 𝑧4 = 1 ⇒ 𝑧−1 = 𝑧5⁄
𝑧 = 𝑧4 ]

= 2|1+𝑧+𝑧
2+𝑧3+𝑧4−2𝑧4| = 2∣

1−𝑧5⁄
1−𝑧 −2𝑧

4 ∣ = 2|2𝑧
4| = 22 = 4[∵ |𝑧| = 1].

85. Let 𝑆 = 1 + 3𝑧 + 5𝑧2 + …+ (2𝑛 − 1)𝑧𝑛−1

⇒ 𝑧𝑆 = 𝑧 + 3𝑧2 + 5𝑧3 + …+ (2𝑛 − 3)𝑧𝑛−1 + (2𝑛 − 1)𝑧𝑛

⇒ (1 − 𝑧)𝑆 = 1 + 2𝑧 + 2𝑧2 + 2𝑧3 + …+ 2𝑧𝑛−1 + (2𝑛 − 1)𝑧𝑛

⇒ (1 − 𝑧)𝑆 = 1 + 2𝑛 − 1 + 2[𝑧 + 𝑧2 + …𝑧𝑛−1 ] [∵ 𝑧𝑛 = 1]

= 2𝑛 + 2. − 1[∵ 1 + 𝑧 + 𝑧2 + …+ 𝑧𝑛−1 = 0]⇒ 𝑆 = 2(𝑛−1)⁄
1−𝑧 .
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86. Let 𝑧 =√

−1 −√

−1 −√

−1 −∞⇒ 𝑧 = √

−1 − 𝑧

⇒ 𝑧2 = −1 − 𝑧 ⇒ 𝑧2 + 𝑧 + 1 = 0 ⇒ 𝑧 = −1±𝑖√


3⁄
2 ⇒ 𝑧 = 𝜔, 𝜔2.

87. Given, 𝑧 = 𝑒
𝑖2𝜋⁄
𝑛 , which is nth root of unity.

∴ 𝑥𝑛 − 1 = (𝑥 − 1)(𝑥 − 𝑧)(𝑥 − 𝑧2(𝑥 − 𝑧3)…(𝑥 − 𝑧𝑛−1)

Putting 𝑥 = 11, (11 − 𝑧)(11 − 𝑧2)… (11 − 𝑧𝑛−1) = 11𝑛−1⁄
10 .

88. Given, 3⁄
2+cos 𝜃+𝑖 sin 𝜃 = 𝑎 + 𝑖𝑏 ⇒ 𝑎 + 𝑖𝑏 3(2+cos 𝜃−𝑖 sin 𝜃)⁄

5+4cos 𝜃

Comparing real and imaginary parts, we get 𝑎 = 6+3cos 𝜃⁄
5+4cos 𝜃 , 𝑏 =

−3sin 𝜃⁄
5+4cos 𝜃 ⇒ 𝑎2 + 𝑏2 =

36+36 cos 𝜃+9cos2 𝜃+9 sin2 𝜃⁄
(5+4cos 𝜃)2

= 45+36 cos 𝜃⁄
(5+cos 𝜃)2 = 9(5+4cos 𝜃)⁄

(5+4cos 𝜃)2 =
9⁄

5+4cos 𝜃 , 4𝑎 − 3 = 24+12cos 𝜃−15−12 cos 𝜃⁄
5+4cos 𝜃 = 9⁄

5+4cos 𝜃 ⇒
𝑎2 + 𝑏2 = 4𝑎 − 3.

89. Let 𝑧 = 𝑥 + 𝑖𝑦, ⇒ |(2𝑥 − 1)+ 2𝑖𝑦| = |(𝑥 − 2)+ 𝑖𝑦|⇒ 4𝑥2 − 4𝑥 + 1 + 4𝑦2 = 𝑥2 − 4𝑥 +
4 + 𝑦2 ⇒ 3𝑥2 + 3𝑦2 = 3 ⇒ 𝑥2 + 𝑦2 = 1 ⇒ |𝑧| = 1.

90. Given, 1−𝑖𝑥⁄1+𝑖𝑥 = 𝑚+ 𝑖𝑛 ⇒ 𝑚+ 𝑖𝑛 = 1−𝑖𝑥⁄
1+𝑖𝑥 .

1−𝑖𝑥⁄
1−𝑖𝑥

𝑚 + 𝑖𝑛 = 1−𝑥2−2𝑖𝑥⁄
1+𝑥2 , Comparing real and imaginary parts, 𝑚 = 1−𝑥2

⁄

1+𝑥2 , 𝑛 = −2𝑥
⁄

1+𝑥2

⇒ 𝑚2 + 𝑛2 = (1−𝑥2)2+4𝑥2⁄
(1+𝑥2)2 = 1.

91. We know that the equation of a straight line is given by [
𝑧 𝑧 1
𝑧1 𝑧1 1
𝑧2 𝑧2 1] = 0

⇒ 𝑧(𝑧1 − 𝑧2)− 𝑧(𝑧1 − 𝑧2)+ 𝑧1𝑧2 − 𝑧1𝑧2 = 0

⇒ 𝑧(1 + 𝑖 − 1 − 𝑖)− 𝑧(1 + 𝑖 − 1 + 𝑖)+ (1 + 𝑖)2 − (1 − 𝑖)2 = 0 ⇒ 𝑧 + 𝑧 − 2 = 0.

92. Given, 5𝑧1 − 13𝑧2 + 8𝑧3 = 0 ⇒ 𝑧2 = 5𝑧1+8𝑧3⁄
5+8

This means 𝑧1 divides the line segment joining 𝑧1 and 𝑧2 in the ratio of 5 : 8 which also

implies that these three points are collinear. Thus, [
𝑧1 𝑧1 1
𝑧2 𝑧2 1
𝑧3 𝑧3 1] = 0

93. We know that length of perpendicular from 𝑧1 to 𝑎𝑧+𝑎𝑧+𝑏 = 0 is given by |𝑎𝑧1+𝑎𝑧1+𝑏|⁄2|𝑎| .

Thus desired length = |(2−3𝑖)(3+4𝑖)+(2+3𝑖)(3−4𝑖)+9|⁄
2|3−4𝑖| = 45
⁄

10 =
9
⁄

2.

94.
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𝑧1

𝑧2

𝑧1+𝑧2
2

𝑏𝑧 + 𝑏𝑧 = 𝑐

Since mid-point lies on the given line, therefore 𝑏(𝑧1+𝑧2⁄2 ) +

𝑏(𝑧1+𝑧2⁄2 ) = 𝑐

Since line segment joining 𝑧1 and 𝑧2 is perpedicular to the given
line therefore, Slope of 𝑧1𝑧2 + Slope of line = 0

⇒ 𝑧2−𝑧1⁄
𝑧2−𝑧1 −

𝑏⁄
𝑏 = 0

Solving these two equations, we get 𝑏𝑧2 + 𝑏𝑧1 = 𝑐.

95. Let 𝑧 = 2− 𝑖 then after rotation new point would be 𝑧.𝑒𝑖𝜋/2 = (2− 𝑖)(cos 𝜋⁄2 + 𝑖 sin 𝜋
⁄

2) =
(2 − 𝑖) 𝑖 = 1 + 2𝑖.

96. Coordinate of 𝑧0 after moving 5 points horizontally and 3 points vertically away from
starting pont would be 6 + 5𝑖.

It then moves in the direction of vecor ̂𝚤 + ̂𝚥 for √


2 units. This vector makes angle 𝜋/4
with 𝑥-axis. So new coordinate would be 6 +√



2 cos 𝜋/4 + 5 +√


2 sin 𝜋/4 = 7 + 6𝑖.

It then rotates by angle 𝜋/2 so new coordinate would be (7 + 6𝑖)𝑒𝑖𝜋/2 = (7 + 6𝑖) 𝑖 =
−6 + 7𝑖.

97. North-East direction makes angle of 𝜋/4 with 𝑥-axis. So coordinates of point 3 units
from origin in North-East direction = 3.𝑒𝑖𝜋/4 = 3(cos 𝜋⁄4 + 𝑖 sin 𝜋

⁄

4) =
3⁄
√


2 + 𝑖 3⁄
√


2.

North-West direction makes angle of 3𝜋/4 with 𝑥-axis. A disaplacement of 4 units
in this direction will mean a shift in coordinates by 4.𝑒𝑖3𝜋/4 = 4(cos 3𝜋⁄4 + 𝑖 sin 3𝜋⁄

4 ) =

− 4⁄
√


2 + 𝑖 sin 4⁄
√


2.

Thus, final coordiate would be sum of the above two i.e. − 1⁄
√


2 + 𝑖 7⁄
√


2.

98. Given, 𝑧1−𝑧3⁄𝑧2−𝑧3 = 1−𝑖√


3⁄
2 = 1−𝑖√


3⁄
2 . 1+𝑖√


3⁄
2

= 1+3⁄
2(1+𝑖√


3) =
2⁄

1+𝑖√


3

⇒ 𝑧2−𝑧3⁄
𝑧1−𝑧3 =

1+𝑖√


3⁄
2 = cos 𝜋⁄3 + 𝑖 sin 𝜋
⁄

3

⇒ ∣𝑧2−𝑧3⁄𝑧1−𝑧3∣ = 1 and arg(𝑧2−𝑧3⁄𝑧1−𝑧3) = 𝜋
⁄

3

Hence, the triangle is equilateral.

99. Since sides of an equilateral triangle make an angle of 60∘ with each other, therefore
𝑧3−𝑧1⁄
𝑧2−𝑧1 = cos 60∘ ± sin 60∘ = 1±𝑖√



3⁄
2

⇒ 2𝑧3 − 2𝑧1 + 𝑧1 − 𝑧2 = ±𝑖(𝑧2 − 𝑧1)√


3 ⇒ (2𝑧3 − 𝑧1 − 𝑧2)2 = 3(𝑧2 − 𝑧1)2 ⇒ 𝑧21 +
𝑧22 + 𝑧23 = 𝑧1𝑧2 + 𝑧2𝑧3 + 𝑧3𝑧1
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⇒ 𝑧1𝑧2 + 𝑧2𝑧3 + 𝑧3𝑧1 − 𝑧2𝑧 − 𝑧22 − 𝑧23 + 𝑧1𝑧2 − 𝑧1𝑧2 + 𝑧2𝑧3 − 𝑧2𝑧3 + 𝑧1𝑧3 − 𝑧1𝑧3 = 0

⇒ (𝑧1− 𝑧2)(𝑧2− 𝑧3)+ (𝑧2− 𝑧3)(𝑧3− 𝑧1)+ (𝑧3− 𝑧1)(𝑧1− 𝑧2) = 0 ⇒ 1⁄
𝑧1−𝑧2+

1⁄
𝑧2−𝑧3+

1⁄
𝑧3−𝑧1 = 0.

100. Since it is an equilateral triangle, therefore centroid and circumcenters would be
identical. ∴ 𝑧0 = 𝑧1+𝑧2+𝑧3⁄

3

Since it is an equilateral triangle, we have just proven that 𝑧21 + 𝑧22 + 𝑧23 = 𝑧1𝑧2 +
𝑧2𝑧3 + 𝑧3𝑧1

From first equation, we have ⇒ 9𝑧20 = 𝑧21 + 𝑧22 + 𝑧23 + 2(𝑧1𝑧2 + 𝑧2𝑧3 + 𝑧3𝑧1)

⇒ 9𝑧20 = 𝑧21 + 𝑧22 + 𝑧23 + 2(𝑧21 + 𝑧22 + 𝑧23 )⇒ 3𝑧20 = 𝑧21 + 𝑧22 + 𝑧23.

101. Since right angle is at 𝑧3, therefore 𝑧2−𝑧3⁄𝑧1−𝑧3 = 𝑒𝑖𝜋/2 = 𝑖 ⇒ (𝑧2 − 𝑧3)2 = −(𝑧1 − 𝑧3)2 ⇒
𝑧22 + 𝑧23 − 2𝑧2𝑧3 = −𝑧21 − 𝑧23 + 2𝑧1𝑧3

⇒ 𝑧21+𝑧22−2𝑧1𝑧2 = −2𝑧23+2𝑧2𝑧3+2𝑧1𝑧3−2𝑧1𝑧2 ⇒ (𝑧1−𝑧2)2 = 2(𝑧1−𝑧3)(𝑧3−𝑧2).

102. Clearly, |𝑧 − 𝑧0|2 = 𝑟2 ⇒ (𝑧 − 𝑧0)(𝑧 − 𝑧0) = 𝑟2 ⇒ (𝑧 − 𝑧0)(𝑧 − 𝑧0) = 𝑟2

⇒ 𝑧𝑧 − 𝑧𝑧0 − 𝑧𝑧0 + 𝑧0𝑧0 = 𝑟2.

103. Given, 𝑧 = 1 − 𝑡 + 𝑖√

𝑡2 + 𝑡 + 2; comparing real and imaginary parts, we get 𝑥 =

1 − 𝑡, 𝑦 =√

𝑡2 + 𝑡 + 1 ⇒ 𝑦2 = 𝑡2 + 𝑡 + 2

⇒ 𝑦2 = (1 − 𝑥)2 + (1 − 𝑥)+ 2 = (𝑥 − 3
⁄

2)
2
+ 7
⁄

4, which is equation of a hyperparabola.

104. Given, 𝑧 = 𝑎 + 𝑟2
⁄

𝑧−𝑎 ⇒ (𝑧 − 𝑎)(𝑧 − 𝑎) = 𝑟2, which is equation of a circle with center
at 𝑎 and radius 𝑟.

105. Since 𝑧1 and 𝑧2 are ends of diameter ⇒ |𝑧 − 𝑧1|2 + |𝑧 − 𝑧2|2 = |𝑧1 − 𝑧2|2 ⇒ 𝑘 =
|𝑧1 − 𝑧2|2 = |2 + 3𝑖 − 4 − 3𝑖|2 = 4.

106. 𝑧 = 𝑥 + 𝑖𝑦, then |(𝑥 + 1)+ 𝑖𝑦| = √


2 |(𝑥 − 1)+ 𝑖𝑦|

Squaring both sides, we get (𝑥 + 1)2 + 𝑦2 = 2[(𝑥 − 1)2 + 𝑦2 ]⇒ 𝑥2 + 𝑦2 − 6𝑥 + 1 = 0,
which is equation of a circle.

107. Given, ∣𝑧−1⁄𝑧−𝑖 ∣ = 1 ⇒ |𝑧 − 1| = |𝑧 − 𝑖|

Let 𝑧 = 𝑥 + 𝑖𝑦, then we have |(𝑥 − 1)+ 𝑖𝑦| = |𝑥 + 𝑖(𝑦 − 1) |

Squaring both sides, we get ⇒ (𝑥 − 1)2 + 𝑦2 = 𝑥2 + (𝑦 − 1)2 ⇒ 2𝑥 = 2𝑦 ⇒ 𝑥 = 𝑦,
which is equation of a straight line.

108.
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𝐴(𝑧1) 𝐵(𝑧2)

𝐶(𝑧3)𝐷(𝑧)
∠𝑧1 = arg(𝑧1−𝑧2⁄𝑧1−𝑧4) , ∠𝑧2 = arg(𝑧3−𝑧2⁄𝑧1−𝑧2) , ∠𝑧3 = arg(𝑧3−𝑧4⁄𝑧3−𝑧2) ,
and ∠𝑧4 = arg(𝑧1−𝑧4⁄𝑧3−𝑧4)
∠𝑧1 + ∠𝑧3 = 𝜋 ⇒ arg 𝑧1−𝑧2⁄

𝑧1−𝑧4 + arg(𝑧3−𝑧4⁄𝑧3−𝑧2) = 𝜋

⇒ arg((𝑧1−𝑧2)(𝑧3−𝑧4)⁄(𝑧1−𝑧4)(𝑧3−𝑧2))= 𝜋⇒ (𝑧1−𝑧2)(𝑧3−𝑧4)⁄
(𝑧1−𝑧4)(𝑧3−𝑧2) is real number.

109. Given, 2⁄𝑧1 = 1⁄
𝑧2 +

1⁄
𝑧3 ⇒

𝑧2−𝑧1⁄
𝑧3−𝑧1 = −𝑧2⁄

𝑧3 ⇒ arg(𝑧2−𝑧1⁄𝑧3−𝑧1) = 𝜋 − arg 𝑧3⁄
𝑧2

⇒ arg(𝑧2−𝑧1⁄𝑧3−𝑧1)+ 𝑎𝑟𝑔(𝑧3−0⁄𝑧2−0) = 𝜋 Thus, the given points and the origin are concyclic.

110. From the equation of circle, 𝑟2 = |𝜔 − 𝜔2|2 ⇒ 𝑟2 = |𝑖√


3 |2 = 3 ⇒ 𝑟 = √


3.

111. Let 𝑧 = 𝑥+ 𝑖𝑦 ⇒ (𝑥− 4)2 + 𝑦2 < (𝑥− 2)2 + 𝑦2 ⇒ 𝑥2− 8𝑥+ 16 < 𝑥2− 4𝑥+ 4 ⇒ 4𝑥 >
12 ⇒ 𝑥 > 3.

112. Given, 2𝑧1 − 3𝑧2 + 𝑧3 = 0 ⇒ 𝑧2 = 2𝑧1+𝑧3⁄
3 = 2𝑧1+𝑧3⁄

2+1

Thus, 𝑧1 divides the line segement 𝑧1𝑧3 in the ratio of 2 : 1 i.e. all three points are
collinear.

113. Given, |𝑧 + 1| = |𝑧 − 1|⇒ (𝑥 + 1)2 + 𝑦2 = (𝑥 − 1)2 + 𝑦2 ⇒ 𝑥 = 0

Also, given that arg𝑧−1⁄𝑧+1 =
𝜋
⁄

4 ⇒ 𝑧−1 = (𝑧+1)𝑒𝑖𝜋/4 ⇒ −1+𝑖𝑦 = (1+𝑖𝑦)(cos𝜋⁄4+𝑖 sin𝜋⁄4)

⇒ −1 + 𝑖𝑦 = (1 + 𝑖𝑦)( 1⁄
√


2 + 𝑖 1⁄
√


2)⇒ 𝑦 = √


2 + 1.

114. Given, |𝑧|8 = |𝑧 − 1|8 ⇒ |𝑧| = |𝑧 − 1|,⇒ 𝑥2+ 𝑦2 = (𝑥− 1)2 + 𝑦2 ⇒ 𝑥 = 1
⁄

2, 𝑦 ∈ (∞,∞),
which is equation of straight line parallel to 𝑦-axis at 𝑥 = 1/2.

115. Given, 𝑧𝑧 + 𝑎𝑧 + 𝑎𝑧 + 𝑏 = 0 ⇒ 𝑧𝑧 + 𝑎𝑧 + 𝑎𝑧 + 𝑎𝑎 = 𝑎𝑎 − 𝑏

(𝑧 + 𝑎)(𝑧 + 𝑎) = |𝑎|2 − 𝑏, which is equation of a circle if |𝑎|2 − 𝑏 > 0 ⇒ |𝑎|2 > 𝑏.

116. Let 𝑧 = 𝑥 + 𝑖𝑦, comparing real and imaginary part gives us 𝑥 = 𝜆 + 3, 𝑦 =√

3 − 𝜆2 ⇒

𝑦2 = 3 − 𝜆2

⇒ (𝑥 − 3)2 + 𝑦2 = 3, which is equation of a circle with center (3, 0) and radius √


3.

117. Let 𝑧 = 𝑥 + 𝑖𝑦, then |𝑅𝑒(𝑧) | + |𝐼𝑚(𝑧) | = 𝑘 will give us four equations. 𝑥 + 𝑦 =
𝑘, 𝑥 − 𝑦 = 𝑘, −𝑥 + 𝑦 = 𝑘 and −𝑥 − 𝑦 = 𝑘

These lines will intersect at (𝑘, 0), (0, 𝑘), (−𝑘, 0), (0 − 𝑘) giving us a square as locus
of 𝑧.

118. 𝑧2 = 𝑧21 + 𝑖 = 𝑖, 𝑧3 = 𝑧22 + 𝑖 = 𝑖 − 1, 𝑧4 = 𝑧23 + 𝑖 = (𝑖 − 1)2 + 𝑖 = −𝑖, 𝑧5 = 𝑧24 + 𝑖 =
𝑖 − 1, 𝑧6 = 𝑧25 + 𝑖 = −𝑖
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Thus, we see that it is a cycle between −𝑖 and 𝑖 − 1 starting at 𝑧3. ⇒ 𝑧111 = 𝑧3 =
𝑖 − 1 ⇒ |𝑧111| = √


2

119. Given, 𝑧𝑧3 + 𝑧3𝑧 = 350 ⇒ 𝑧𝑧(𝑧2 + 𝑧2) = 350

Let 𝑧 = 𝑥 + 𝑖𝑦, then given equation becomes 2(𝑥2 + 𝑦2)(𝑥2 − 𝑦2) = 350 ⇒ (𝑥2 +
𝑦2)(𝑥2 − 𝑦2) = 175

Prime factors of 175 are 5, 5, 7 so the only solution which yields integers for 𝑥 and 𝑦
are 𝑥2 + 𝑦2 = 25, 𝑥2 − 𝑦2 = 7

⇒ 𝑥 = ±4, 𝑦 = ±3 which gives a rectangle with four points and digonal with a length
of 10 units.

120. We know that 𝑧1 + 𝑧2 and 𝑧1 − 𝑧2 are the diagonals of a quadrilateral. Now diagonals
of a parallelogram does not intersect at angle 𝜋/2 and diagonals of a square and
rectangle are equal. Only rhombus satisfies the given criteria of diagonals meeting
at right angle and having different lengths. Thus, the given conditions represent a
rhombus but not a square.

121. Let arg(𝑧1) = 𝜃, arg(𝑧2) = 𝜃 + 𝛼 ⇒ 𝑎𝑧1⁄
𝑏𝑧2 =

𝑎|𝑧1|𝑒𝑖𝜃⁄
𝑏|𝑧2|𝑒𝑖(𝜃+𝛼)

= 𝑒−𝑖𝛼

⇒ 𝑏𝑧2⁄
𝑎𝑧1 = 𝑒𝑖𝛼 ⇒ 𝑎𝑧1⁄

𝑏𝑧2 +
𝑏𝑧2⁄
𝑎𝑧1 = 𝑒𝑖𝛼 + 𝑒−𝑖𝛼 = 2 cos 𝛼

Thus, it will lie on the line segment [−2, 2] of the real axis.

122. Since 𝑧1, 𝑧2, 𝑧3 are roots of the equation 𝑧3 + 3𝛼𝑧2 + 3𝛽𝑧 + 𝛾 = 0 ⇒ 𝑧1 + 𝑧2 + 𝑧3 =
−3𝛼, 𝑧1𝑧2 + 𝑧2𝑧3 + 𝑧3𝑧1 = 3𝛽, 𝑧1𝑧2𝑧3 = 𝛾

We know that for a triangle to be equilateral 𝑧21 + 𝑧22 + 𝑧23 = 𝑧1𝑧2 + 𝑧2𝑧3 + 𝑧3𝑧1

⇒ (𝑧1 + 𝑧2 + 𝑧3)2 = 3(𝑧1𝑧2 + 𝑧2𝑧3 + 𝑧3𝑧1)⇒ 9𝛼2 = 3.3𝛽 ⇒ 𝛼2 = 𝛽.

123. Given, 𝑧21 + 𝑧22 + 2𝑧1𝑧2 cos 𝜃 = 0 Dividing both sides with 𝑧22, we get (𝑧1⁄𝑧2)2 + 1 +

2 𝑧1⁄𝑧2 cos 𝜃 = 0

The above equation is a quadratic equation in 𝑧1⁄𝑧2 , ∴ 𝑧1⁄𝑧2 = −2cos 𝜃±√

4 cos2 𝜃−1⁄

2

⇒ 𝑧1⁄
𝑧2 = −cos 𝜃 ± 𝑖 sin 𝜃 ⇒ ∣𝑧1⁄𝑧2∣ = 1 ⇒ |𝑧1| = |𝑧2|⇒ |𝑧1 − 0| = |𝑧2 − 0|

Thus, 𝑧1, 𝑧1 and the origin form an isosceles triangle.

124. Since origin is circumcenter ⇒ |𝑧1| = |𝑧2| = |𝑧3| = |𝑧| ⇒ 𝑧1𝑧1 = 𝑧2𝑧2 = 𝑧3𝑧3 = 𝑧𝑧

∵ 𝐴𝑃 ⊥ 𝐵𝐶 ∴ 𝑧−𝑧1⁄
𝑧−𝑧1 +

𝑧2−𝑧3⁄
𝑧2−𝑧3 = 0 ⇒ 𝑧−𝑧1⁄

𝑧𝑧1⁄
𝑧 −𝑧1

+ 𝑧2−𝑧3⁄
𝑧3𝑧3⁄
𝑧 −𝑧3

= 0

⇒ 𝑧(𝑧−𝑧1)⁄
𝑧1𝑧1−𝑧𝑧1 +

𝑧2(𝑧2−𝑧3)⁄
𝑧3𝑧3−𝑧2𝑧3 = 0 ⇒ −𝑧(𝑧1−𝑧)⁄

𝑧1(𝑧1−𝑧) −
𝑧2(𝑧3−𝑧2)⁄
𝑧3(𝑧3−𝑧2) = 0 ⇒ −𝑧⁄

𝑧1 −
𝑧2⁄
𝑧3 = 0 ⇒ 𝑧 = −𝑧1𝑧2⁄

𝑧3 .
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125. Given 𝑂𝐴 = 𝑂𝐵, ⇒ |𝑧1| = |𝑧2| = 𝑙 (let). Also given, arg(𝑧1) = 𝛼 + arg(𝑧2)⇒ 𝑧1 =
𝑙𝑒𝑖(𝛼+arg(𝑧2)) = 𝑙𝑒𝑖 arg(𝑧2).𝑒𝑖𝛼 = 𝑧2𝑒𝑖𝛼

Now, 𝑧1𝑧2 = 𝑞 ⇒ 𝑧22𝑒𝑖𝛼 = 𝑞 and 𝑧1+ 𝑧2 = −𝑝 ⇒ 𝑧2(1+ 𝑒𝑖𝛼) = −𝑝 ⇒ 2𝑧2 cos 𝛼⁄2 .𝑒𝑖𝛼/2 =
−𝑝 ⇒ 𝑝2 = 4𝑧22 cos2

𝛼⁄
2 .𝑒

𝑖𝛼 ⇒ 𝑝2 = 4𝑞 cos2 𝛼⁄2.
126. Let 𝑧 + 𝑖𝑦, then ℜ( 𝑧+4⁄

2𝑥−𝑖) = ℜ( 𝑥+4+𝑖𝑦⁄
2𝑥+𝑖(2𝑦−1)) ⇒ ℜ([(𝑥+4)+𝑖𝑦][(2𝑥−𝑖(2𝑦−1))]⁄

4𝑥2+(2𝑦−1)2 ) = 1
⁄

2

⇒ 2𝑥(𝑥+4)+𝑦(2𝑦−1)⁄
4𝑥2+(2𝑦−1)2 = 1
⁄

2 ⇒ 16𝑥 + 2𝑦 − 1 = 0, which is equation of a straight line.

127. Since the circle is inscribed in |𝑧| = 2 so center is origin. Also, since 𝑧1, 𝑧2 and 𝑧3 are
in clockwise direction 𝑧2 = 𝑧1𝑒−𝑖120

∘
, 𝑧3 = 𝑧2𝑒−𝑖120

∘

⇒ 𝑧2 = (1 +√


3𝑖)[(cos . − 120∘ + 𝑖. sin − 120∘)] = 1 −√


3𝑖 ⇒ 𝑧3 = −2.

128. Given 𝑧1 = 𝑎⁄
1−𝑖 ⇒ 𝑧1 = 𝑎+𝑖𝑎⁄

2 , 𝑧2 = 𝑏⁄
2+𝑖 =

2𝑏−𝑖𝑏⁄
5 Also given, 𝑧1 − 𝑧2 = 1 ⇒ 5𝑎 + 𝑖5𝑎 −

4𝑏 + 𝑖2𝑏 = 10

Comparing real and imaginary parts, we get 5𝑎− 4𝑏 = 10, 5𝑎+ 2𝑏 = 0 ⇒ 𝑎 = 2
⁄

3, 𝑏 = −5
⁄

3

Cnetroid is 𝑧1+𝑧2+𝑧3⁄3 = 1
⁄

3 (1 + 7𝑖).

129. From the quadratic equation we have 𝑧1 + 𝑧2 = −1 and 𝑧1𝑧2 = 𝜆⁄
2. Since 0, 𝑧1, 𝑧2 form

an equilateral triangle, ⇒ 𝑧1𝑧2 + 𝑧2.0 + 𝑧1.0 = 𝑧21 + 𝑧22 + 02

⇒ (𝑧1 + 𝑧2)2 = 3𝑧1𝑧2 ⇒ (−1)2 = 3. 𝜆⁄2 ⇒ 𝜆 = 2
⁄

3.

130. Let 𝐴,𝐵, 𝐶 represent 𝑎,𝑏,𝑐 and 𝑈, 𝑉,𝑊 represent 𝑢, 𝑣, 𝑤. ⇒ 𝐴𝐵 = 𝑏− 𝑐, 𝐵𝐶 = 𝑐 − 𝑏 =
(𝑎 − 𝑏)(1 − 𝑟), 𝐶𝐴 = 𝑎 − 𝑐 = 𝑟(𝑎 − 𝑏)

⇒ 𝑈𝑉 = 𝑣 − 𝑢, 𝑉𝑊 = 𝑤 − 𝑣 = (𝑢 − 𝑣)(1 − 𝑟), 𝑊𝑈 = 𝑢 − 𝑤 = 𝑟(𝑢 − 𝑣) ⇒ 𝐴𝐵⁄
𝑈𝑉 =

𝐵𝐶⁄
𝑉𝑊 = 𝐶𝐴⁄

𝑊𝑈 Thus, the triangles are similar.

131. Let 𝑧1 and 𝑧2 be points on real axis which circle cuts with. Since these are on real axis
and if 𝑧 represents this points then 𝑧 = 𝑧[∵ 𝑧 = 𝑥 + 𝑖.0]

Substituting 𝑧 = 𝑧 in the equation of the circle, we get 𝑧2 + (𝛼 + 𝛼)𝑧 + 𝑟 = 0 Since
𝑧1, 𝑧2 are the roots ∴ 𝑧1 + 𝑧2 = −𝛼, 𝑧1𝑧2 = 𝑟

Length of intercept = |𝑧1 − 𝑧2| = √

(𝑧1 − 𝑧2)2 = √

(𝑧1 + 𝑧2)2 − 4𝑧1𝑧2 =

√

(𝛼 + 𝛼)2 − 4𝑟.

132. Clearly, 𝑎 = 𝑒𝑖𝛼, 𝑏 = 𝑒𝑖𝛽, 𝑐 = 𝑒𝑖𝛾. Also given, 𝑎⁄𝑏 +
𝑏⁄
𝑐 +

𝑐
⁄

𝑎 = 1 ⇒ 𝑒𝑖(𝛼−𝛽) + 𝑒𝑖(𝛽−𝛾) +
𝑒𝑖(𝛾−𝛼) = 1.

Comparing real parts, we get cos(𝛼 − 𝛽)+ cos(𝛽 − 𝛾)+ cos(𝛾 − 𝛼) = 1.



Answers of Complex Numbers 432

133. Let 𝐴(𝑧1), 𝐵(𝑧2) be the centers of given circles and 𝑃 be the center of the variable
circle which touches given circles externally, then

|𝐴𝑃 | = 𝑎 + 𝑟 and |𝐵𝑃 | = 𝑏 + 𝑟 where 𝑟 is the radius of the variable circle. Clearly,
|𝐴𝑃 |− |𝐵𝑃 | = 𝑎 − 𝑏 ⇒ ||𝐴𝑃 |− |𝐵𝑃 || = |𝑎 − 𝑏| =a constant.

Hence, locus of 𝑃 is a right bisector if 𝑎 = 𝑏, a hyperbola if |𝑎 − 𝑏| < |𝐴𝐵| an empty
set of |𝑎 − 𝑏| > |𝐴𝐵|, set of all points on line 𝐴𝐵 except those which lie between 𝐴
and 𝐵 if |𝑎 − 𝑏| = |𝐴𝐵| ≠ 0.

134. Let 𝑎+ 𝑖𝑏 = 𝑟𝑒𝑖𝜃, 𝑟2 = 𝑎2+ 𝑏2 ⇒ 𝑎− 𝑖𝑏 = 𝑒−𝑖𝜃, tan 𝜃 = 𝑏
⁄

𝑎
𝑎−𝑖𝑏⁄
𝑎+𝑖𝑏 = 𝑒−2𝑖𝜃 ⇒ 𝑖 log(𝑎−𝑖𝑏⁄𝑎+𝑖𝑏) =

𝑖 log 𝑒−2𝑖𝜃 = 2𝜃

⇒ tan[𝑖 log(𝑎−𝑖𝑏⁄𝑎+𝑖𝑏)] = tan 2𝜃 = 2tan𝜃⁄
1−tan2 𝜃 =

2𝑏/𝑎⁄
1−𝑏2/𝑎2 =

2𝑎𝑏⁄
𝑎2−𝑏2.

135. Given, |𝑧1| = |𝑧2| = 1 ⇒ 𝑎2 + 𝑏2 = 𝑐2 + 𝑑2 = 1 ℜ(𝑧1𝑧2) = 0 ⇒ ℜ[(𝑎 + 𝑖𝑏)(𝑐 − 𝑖𝑑)] =
0 ⇒ 𝑎𝑐 + 𝑏𝑑 = 0

𝑎2 + 𝑏2 = 𝑐2 + 𝑑2 ⇒ (𝑎 + 𝑖𝑐)2 = (𝑑 − 𝑖𝑏)2 [∵ 𝑎𝑐 == 𝑏𝑑] ⇒ 𝑎 + 𝑖𝑐 = 𝑑 − 𝑖𝑏𝑜𝑟 − 𝑑 + 𝑖𝑏
⇒ 𝑎 = 𝑑 and 𝑐 = −𝑏 or 𝑎 = −𝑑, 𝑐 = 𝑏

⇒ 𝑎2 + 𝑐2 = 𝑏2 + 𝑑2 = 1 ⇒ |𝑤1| = |𝑤2| = 1 ⇒ ℜ(𝑤1𝑤2) = ℜ[(𝑎 + 𝑖𝑐)(𝑏 − 𝑖𝑑)] =
𝑎𝑏 + 𝑐𝑑 = 0.

136. Let 𝑧1 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃). Given, ∣𝑧1⁄𝑧2∣ = 1 ⇒ |𝑧1| = |𝑧2| = 𝑟. Also given, arg(𝑧1𝑧2) =
0 ⇒ arg(𝑧1)+ arg(𝑧2) = 0

⇒ arg(𝑧2) = −𝜃 ⇒ 𝑧2 = 𝑟[cos(−𝜃)+ 𝑖 sin(−𝜃)] = 𝑟[cos 𝜃 − 𝑖 sin 𝜃] = 𝑧1 ⇒ 𝑧2 = 𝑧1 ⇒
|𝑧2|2 = 𝑧1𝑧2.

137. 𝑡𝑛 = (𝑛 + 1)(𝑛 + 1⁄
𝜔)(𝑛 +

1⁄
𝜔2) = 𝑛3 + 𝑛2(1 + 1⁄

𝜔 +
1⁄
𝜔2)+ 𝑛(1 + 1⁄

𝜔 +
1⁄
𝜔2)+ 1

= 𝑛3 + 𝑛2(1 + 𝜔 + 𝜔2) + 𝑛(1 + 𝜔 + 𝜔2) + 1 = 𝑛3 + 1 ∴𝑆𝑛 =
𝑛
∑
𝑖=1

𝑡𝑖 = ∑
𝑖=1

(𝑖3 + 1) =

𝑛2(𝑛+1)2
⁄

4 + 1.

138. Given |𝑧1 + 𝑖𝑧2| = |𝑧1 − 𝑖𝑧2| ⇒ (𝑧1 + 𝑖𝑧2)(𝑧1 − 𝑖𝑧2) = (𝑧1 − 𝑖𝑧2)(𝑧1 + 𝑖𝑧2)

⇒ 𝑧1𝑧2 = 𝑧1𝑧2 ⇒ 𝑧1⁄
𝑧2 =

𝑧1⁄
𝑧2. Thus, 𝑧1⁄𝑧2 is purely real.

139. 𝑧 = −2 + 2√


3𝑖 = 4𝜔 ⇒ 𝑧2𝑛 + 22𝑛𝑧𝑛 + 24𝑛 = 42𝑛[𝜔2𝑛 + 𝜔𝑛 + 1]

The above expression has value of 0 if 𝑛 is not a multiple of 3 and 3.42𝑛 if 𝑛 is multiple
of 3.

140. 𝑥+ 1
⁄

𝑥 = 2 cos 𝜃,⇒ 𝑥2−2 cos 𝜃𝑥+1 = 0 ⇒ 𝑥 = 2cos 𝜃±√

4 cos2 𝜃−1⁄
2 = cos 𝜃± 𝑖 sin 𝜃 = 𝑒±𝑖𝜃

Similarly, 𝑦 = 𝑒±𝑖𝜙 ⇒ 𝑥
⁄

𝑦 +
𝑦
⁄

𝑧 = 2 cos(𝜃 − 𝜙) and 𝑥𝑦 + 1
⁄

𝑥𝑦 = 2 cos(𝜃 + 𝜙).
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141. Given, |𝑧1| = |𝑧2|, ℜ(𝑧1) > 0 and ℑ(𝑧1) < 0 ℜ(𝑧1+𝑧2⁄𝑧1−𝑧2) = 1
⁄

2 (
𝑧1+𝑧2⁄
𝑧1−𝑧2 +

𝑧1+𝑧2⁄
𝑧1−𝑧2)

= 1
⁄

2(
2(|𝑧1|2−|𝑧2|2)⁄

|𝑧1−𝑧2|2
) = 0 Thus, 𝑧1+𝑧2⁄𝑧1−𝑧2 is purely imaginary.

142. Given, 𝐴𝐵⁄𝐵𝐶 = √


2 ⇒ 𝑧1−𝑧2⁄
𝑧3−𝑧2 =

|𝑧1−𝑧2|⁄
|𝑧3−𝑧2| .𝑒

𝑖𝜋/4

= 𝐴𝐵⁄
𝐵𝐶 .𝑒𝑖𝜋/4 =√


2( 1⁄
√


2+
𝑖⁄
√


2)= 1+𝑖 ⇒ 𝑧1−𝑧2 = (1+𝑖)(𝑧3−𝑧2)⇒ 𝑧2 = 𝑧3+𝑖(𝑧1−𝑧3).

143. Given, 𝑧1(𝑧21 − 3𝑧22 ) = 2 and 𝑧2(3𝑧21 − 𝑧22 ) = 11 ⇒ 𝑧31 − 3𝑧1𝑧22 + 𝑖𝑧2(3𝑧21 − 𝑧22 ) =
2 + 11𝑖 ⇒ (𝑧1 + 𝑖𝑧2)3 = 2 + 11𝑖, and

⇒ 𝑧31 − 3𝑧1𝑧22 − 𝑖𝑧2(3𝑧21 − 𝑧22 ) = 2 − 11𝑖 ⇒ (𝑧1 − 𝑖𝑧2)3 = 2 − 11𝑖

Multiplying above equations, we get (𝑧21 + 𝑧22 )3 = 4 + 121 = 125 ⇒ 𝑧21 + 𝑧22 = 5.

144. Given √

1 − 𝑐2 = 𝑛𝑐 − 1 ⇒ 1 − 𝑐2 = 𝑛2𝑐2 − 2𝑛𝑐 + 1 ⇒ 𝑐⁄

2𝑛 =
1⁄

1+𝑛2

𝑐⁄
2𝑛 (1 + 𝑛𝑧)(1 + 𝑛
⁄

𝑧) =
1⁄

1+𝑛2 [1 + 𝑛2 + 𝑛(𝑧 + 1
⁄

𝑧)]

= 1⁄
1+𝑛2 [1 + 𝑛2 + 2 cos 𝜃 + 𝑛] = 1 + 2𝑛⁄

1+𝑛2 cos 𝜃 = 1 + 𝑐 cos 𝜃.

145. If 𝑃 (𝑧) is any point of the ellipse, then equation of ellipse is given by |𝑧−𝑧1|+ |𝑧−𝑧2| =
|𝑧1−𝑧2|⁄

𝑒

If we put 𝑧1 or 𝑧2 in the above equation then L.H.S. becomes |𝑧1 − 𝑧2|. Thus, for any
interior point of the ellipse, we have |𝑧 − 𝑧1|+ |𝑧 − 𝑧2| < |𝑧1−𝑧2|⁄

𝑒

If 𝑃 (𝑧) lies on the ellipse, we have |𝑧 − 𝑧1|+ |𝑧 − 𝑧2| = |𝑧1−𝑧2|⁄
𝑒 . It is given that origin

is an internal point, so |0 − 𝑧1|+ |0 − 𝑧2| < |𝑧1−𝑧2|⁄
𝑒 ⇒ 𝑒 ∈ (0, |𝑧1−𝑧2|⁄|𝑧1|+|𝑧2|).

146. Let 𝑧 = 𝑥 + 𝑖𝑦, then we have |(𝑥 − 2) + 𝑖(𝑦 − 1) | = |𝑧|∣ 1⁄√2 cos 𝜃 − 1⁄
√


2 sin 𝜃∣ where,
𝜃 = arg(𝑧)

⇒√

(𝑥 − 2)2 + (𝑦 − 1)2 = 1⁄

√


2 |𝑥 − 𝑦|, which is equation of a parabola.

147. Since |𝑧 − 𝑧1| = |𝑧 − 𝑧2|, therefore 𝑧 will be one of the vertices of the isosceles triangle
where base will be formed by 𝑧1 and 𝑧2.

Also, since ∣𝑧 − 𝑧1+𝑧2⁄
2 ∣ ≤ 𝑟 so 𝑧 will lie on the circle whose center is 𝑧1+𝑧2⁄2 and radius

is 𝑟. Thus, the distance between segment 𝑧1𝑧2 will be 𝑟. Thus, the maximum area
of the triangle will be 1⁄2 |𝑧1 − 𝑧2|.𝑟.

148. Given |𝑧1| = 1 ⇒ 𝑎21 + 𝑏21 = 1, |𝑧2| = 2 ⇒ 𝑎22 + 𝑏22 = 4. Also given ℜ(𝑧1𝑧2) = 0 ⇒
𝑎1𝑎2 − 𝑏1𝑏2 = 0 ⇒ 𝑎1𝑎2 = 𝑏1𝑏2
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⇒ 𝑎22 + 𝑏22 = 4𝑎21 + 4𝑏21 ⇒ 𝑎22 − 4𝑎21 = 4𝑏21 − 𝑏22 ⇒ 𝑎22 − 4𝑎21 + 4𝑖𝑎1𝑎2 = 4𝑏21 − 𝑏22 + 4𝑖𝑏1𝑏2
⇒ (𝑎2 + 2𝑖𝑎1)2 = (2𝑏1 + 𝑖𝑏2)2 ⇒ 𝑎2 = ±2𝑏1

𝜔1 = 𝑎1 + 𝑖𝑎2⁄
2 = 𝑎1 ± 𝑏1 ⇒ |𝜔1| =√

𝑎21 + 𝑏21 = 1 𝜔2 = 2𝑏1 + 𝑖𝑏2 = ±𝑎2 + 𝑖𝑏2 ⇒ |𝜔2| =

√

𝑎22 + 𝑏22 = 2 ℜ(𝜔1𝜔2) = 2𝑎1𝑏1 − 2𝑎2𝑏2 = 0.

149. Given 𝑧2 + 𝑎𝑧 + 𝑎2 = 0 ⇒ 𝑧 = 𝑎𝜔, 𝑎𝜔2 where 𝜔 is cube-root of unity.

Thus, it represents a pair of straight lines and |𝑧| = |𝑎|. arg(𝑧) = arg(𝑎)+ arg(𝜔) or
arg(𝑎)+ arg(𝜔2) = ±2𝜋⁄

3 .

150. Given 𝑥+ 1
⁄

𝑥 = 1 ⇒ 𝑥2−𝑥+1 = 0 ∴𝑥 = −𝜔,−𝜔2. Now, for 𝑥 = −𝜔, 𝑝 = 𝜔4000+ 1⁄
𝜔4000 =

𝜔 + 1⁄
𝜔 = −1

Similarly, for 𝑥 = −𝜔2, 𝑝 = −1 ⇒ 22
𝑛
= 24𝑘 = 16𝑘 = a number with last digit as

6 ⇒ 𝑞 = 6 + 1 = 7 ⇒ 𝑝 + 𝑞 = −1 + 7 = 6.

151. 𝐴(𝑧1) = 2𝑖⁄
√


3 ,𝐵(𝑧2) =
2⁄
√


3(
√


3⁄
2 − 𝑖 1⁄2) = 1 − 𝑖⁄

√


3 , 𝐶(𝑧3) =
2⁄
√


3(−
√


3⁄
2 − 𝑖
⁄

2) = −1 − 𝑖⁄
√


3

Clearly, the points lie on the circle 𝑧 = 2/√


3 and △𝐴𝐵𝐶 is equilateral and its centroid
coincides with circumcentre. Hence,

𝑧1 + 𝑧2 + 𝑧3 = 0 and 𝑧1 + 𝑧2 + 𝑧3 = 0. Clearly, radius of incircle = 1⁄
√


3 hence any point

on circle is 1⁄
√


3 (cos 𝛼 + 𝑖 sin 𝛼). 𝐴𝑃2 = |𝑧 − 𝑧1|2 = |𝑧|2 + |𝑧1|2 − (𝑧𝑧1 + 𝑧𝑧1)

⇒𝐴𝑃2+𝐵𝑃2+𝐶𝑃2 = 3|𝑧|2+ |𝑧1|2+ |𝑧2|2+ |𝑧3|2− 𝑧(𝑧1+ 𝑧2+ 𝑧3)−𝑧(𝑧1+ 𝑧2+ 𝑧3)
= 3 × 1
⁄

3 +
4
⁄

3 +
4
⁄

3 +
4
⁄

3 − 0 − 0 = 5.

152. Let 𝑂 be the center of the polygon and 𝑧0, 𝑧1, … , 𝑧𝑛−1 represent the vertices
𝐴1, 𝐴2, … , 𝐴𝑛. ∴ 𝑧0 = 1, 𝑧1 = 𝛼, 𝑧2 = 𝛼2, … , 𝑧𝑛−1 = 𝛼𝑛−1 where 𝛼 = 𝑒𝑖2𝜋/𝑛

|𝐴1𝐴2|2 = |𝛼𝑟−1|2 = |1−𝛼𝑟|2 = ∣1−cos 2𝑟𝜋⁄𝑛 + 𝑖 sin 2𝑟𝜋⁄
𝑛 ∣

2
= (1−cos 2𝑟𝜋⁄𝑛 )

2
+ sin2 2𝑟𝜋⁄𝑛 =

2 − 2 cos 2𝑟𝜋⁄𝑛
𝑛
∑
𝑟=1

|𝐴1𝐴2|2 = 2(𝑛 − 1) − 2[cos 2𝜋⁄𝑛 + cos 4𝜋⁄3 + … + cos 2(𝑛−1)𝜋⁄𝑛 ] = 2(𝑛 − 1) − 2. real

part of (𝛼 + 𝛼2 +…+ 𝛼𝑛−1) = 2𝑛[∵ 1 + 𝛼 + 𝛼2 +…+ 𝛼𝑛−1 = 0]

|𝐴1𝐴2||𝐴1𝐴3|… |𝐴1𝐴𝑛| = |1 − 𝛼||1 − 𝛼2|… |1 − 𝛼𝑛−1| = |(1 − 𝛼)(1 − 𝛼2)… (1 −
𝛼𝑛−1) |

Since 1, 𝛼, 𝛼2,… ,𝛼𝑛−1 are roots of 𝑧𝑛−1 = 0. (𝑧 −1)(𝑧 −𝛼)(𝑧 −𝛼2)… (𝑧 −𝛼𝑛−1) =
𝑧𝑛 − 1 ⇒ (𝑧 − 𝛼)(𝑧 − 𝛼2)… (𝑧 − 𝛼𝑛−1) = 𝑧𝑛−1⁄

𝑧−1 = 1 + 𝑧 + 𝑧2 + …+ 𝑧𝑛−1

Putting 𝑧 = 1, we get |(1 − 𝛼)(1 − 𝛼2)… (1 − 𝛼𝑛−1) | = 𝑛 ⇒ 𝑎
⁄

𝑏 = 2.



Answers of Complex Numbers 435

153. Let L.H.S. = 𝑧1 and R.H.S. = 𝑧2 then 𝑧1 = 𝑧2 ⇒ 𝑧1𝑧1 = 𝑧2𝑧2 ⇒ 𝑧21 = 𝑧22

⇒ (1 + 𝑥2
⁄

𝑎2)(1 +
𝑥2
⁄

𝑏2)(1 +
𝑥2
⁄

𝑐2)… = 𝐴2 + 𝐵2.

154. Given, 𝑥 + 𝑖𝑦 + 𝛼√

(𝑥 − 1)2 + 𝑦2 + 2𝑖 = 0. Equating real and imaginary parts, we get

𝑦 + 2 = 0 ⇒ 𝑦 = −2 and 𝑥 + 𝛼√

(𝑥 − 1)2 + 𝑦2 = 0. Substituting the value of 𝑦, we

get 𝛼√

𝑥2 − 2𝑥 + 5 = −𝑥 ⇒ (𝛼2 − 1)𝑥2 − 2𝛼2𝑥 + 5𝛼2 = 0

Because 𝑥 is real, the discriminant has to be greater than zero. ⇒4𝛼4−20𝛼2(𝛼2−1)≥ 0
⇒ 𝛼2 − 5𝛼2 + 5 ≥ 0 ⇒ −√


5⁄
2 ≤ 𝛼 ≤ √


5⁄
2 .

155. Let 𝑧 = 𝑥 + 𝑖𝑦 ⇒ 2√

𝑥2 + 𝑦2 − 4𝑎(𝑥 + 𝑖𝑦)+ 1 + 𝑖𝑎 = 0. Equating real and imaginary

parts, we get

2√

𝑥2 + 𝑦2 − 4𝑎𝑥 + 1 = 0 and −4𝑎𝑦 + 𝑎 = 0 ⇒ 𝑦 = 1

⁄

4 ⇒ 2√

𝑥2 + 1
⁄

16 − 4𝑎𝑥 + 1 = 0 ⇒

4(𝑥2 + 1
⁄

16) = 16𝑎2𝑥2 − 8𝑎𝑥 + 1

𝑥2(4 − 16𝑎2)+ 8𝑎𝑥 − 3
⁄

4 = 0 ⇒ 𝑥 = −𝑎⁄
1−4𝑎2 ±

1
⁄

4
√

4𝑎2+3⁄
1−4𝑎2 .

156. (𝑥 + 𝑖𝑦)5 = (𝑥5 − 10𝑥3𝑦2 + 5𝑥𝑦4) + 𝑖(5𝑥4𝑦 − 10𝑥2𝑦3 + 𝑦5). Taking modulus and
squaring, we get (𝑥2 + 𝑦2)5 = (𝑥5 − 10𝑥3𝑦2 + 5𝑥𝑦4)+ (5𝑥4𝑦 − 10𝑥2𝑦3 + 𝑦5)2.

157. (𝑥+ 𝑖𝑎)(𝑥+ 𝑖𝑏)(𝑥+ 𝑖𝑐) = [(𝑥2−𝑎𝑏)+𝑖(𝑎+ 𝑏)𝑥](𝑥+ 𝑖𝑐) = (𝑥3−𝑎𝑏𝑥−𝑎𝑐𝑥− 𝑏𝑐𝑥)+
𝑖(𝑐𝑥2 − 𝑎𝑏𝑐 + 𝑎𝑥2 + 𝑏𝑥2)

Taking modulus and squaring, we get (𝑥2 + 𝑎2)(𝑥2 + 𝑏2)(𝑥2 + 𝑐2) = [𝑥3 − (𝑎𝑏 + 𝑏𝑐 +
𝑐𝑎)𝑥]+ [(𝑎 + 𝑏 + 𝑐)𝑥2 − 𝑎𝑏𝑐]2.

158. Given, (1 + 𝑥)𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + …+ 𝑎𝑛𝑥𝑛. Substituting 𝑥 = 𝑖,we get

(1 + 𝑖)𝑛 = 𝑎𝑜 + 𝑖𝑎1 − 𝑎2 − 𝑖𝑎3 + 𝑎4 + … = (𝑎0 − 𝑎2 + 𝑎4 −…)+ 𝑖(𝑎1 − 𝑎3 + 𝑎5 −…)

Taking modulus and squaring, we get 2𝑛 = (𝑎0− 𝑎2+ 𝑎4−…)2 + (𝑎1− 𝑎3+ 𝑎5−…)2.

159. Let 𝑓(𝑧) = 𝑚(𝑧 − 𝑖) + 𝑖 and 𝑓(𝑧) = 𝑛(𝑧 + 𝑖) + 1 + 𝑖 where 𝑚 and 𝑛 are quotients
upon division. Substituting 𝑧 = 𝑖 in the first equation and 𝑧 = −𝑖 in the second we
obtain 𝑓(𝑖) = 𝑖 and 𝑓(−𝑖) = 1 + 𝑖.

Let 𝑔(𝑧) be the quotient and 𝑎𝑧 + 𝑏 be the remainder upong division of 𝑓(𝑧) by 𝑧2 + 1.
Hence we have 𝑓(𝑧) = 𝑔(𝑧)(𝑧2 + 1)+ 𝑎𝑧 + 𝑏. Substituting 𝑧 = 𝑖 and 𝑧 = −𝑖, we get

𝑓(𝑖) = 𝑖 = 𝑎𝑖 + 𝑏 and 𝑓(−𝑖) = 1 + 𝑖 = −𝑎𝑖 + 𝑏. Adding, we get 2𝑏 = 1 + 2𝑖 ⇒ 𝑏 =
1+2𝑖⁄
2 ⇒ 𝑎𝑖 = 𝑖 − 1+2𝑖⁄

2 .

160. Let 𝑧 = 𝑟1𝑒𝑖𝜃1, 𝑤 = 𝑟2𝑒𝑖𝜃2. ∵ |𝑧| ≤ 1 and |𝑤| ≤ 1 ⇒ 𝑟1 ≤ 1 and 𝑟2 ≤ 1
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|𝑧 − 𝑤|2 = (𝑟1 cos 𝜃1 − 𝑟2 cos 𝜃2)2 + (𝑟1 sin 𝜃1 − 𝑟2 sin 𝜃2)2 = 𝑟21 + 𝑟22 − 2𝑟2𝑟2 cos(𝜃1 −
𝜃2) = (𝑟1 − 𝑟2)2 + 2𝑟2𝑟2 − 2𝑟2𝑟2 cos(𝜃1 − 𝜃2)

= (𝑟1 − 𝑟2)2 + 4𝑟1𝑟2 sin(𝜃1−𝜃2⁄2 )
2
≤ (𝑟1 − 𝑟2)2 + (𝜃1 − 𝜃2)2[∵ 𝑟1, 𝑟2 ≤ 1 and sin 𝜃 ≤ 𝜃]

= (|𝑧|− |𝑤|)2 + [arg(𝑧)− arg(𝑤)]2.

161. Let 𝑧 = 𝑟𝑒𝑖𝜃, then 𝑧⁄
|𝑧| = 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃 ⇒ ∣ 𝑧⁄|𝑧| − 1∣ = |(cos 𝜃 − 1) + 𝑖 sin 𝜃| =

√

cos 𝜃2 − 2 cos 𝜃 + 1 + sin2 𝜃

= √

2 − 2 cos 𝜃 =√

4 sin2 𝜃⁄2 = 2 sin 𝜃
⁄

2 ≤ 𝜃 ⇒ ∣ 𝑧⁄|𝑧|− 1∣ ≤ |𝑎𝑟𝑔(𝑧) |.

162. Clearly, |𝑧 − 1| = |𝑧 − |𝑧|+ |𝑧|− 1| ≤ |𝑧 − |𝑧||+ ||𝑧|− 1| = |𝑧|∣ 𝑧⁄|𝑧|− 1∣+ ||𝑧|− 1|

Using the result of previous problem, we get |𝑧 − 1| ≤ ||𝑧|− 1|+ |𝑧||𝑎𝑟𝑔𝑧|.

163. Let 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃), then 1⁄𝑧 =
1
⁄

𝑟 (cos 𝜃 − 𝑖 sin 𝜃), ∣𝑧 + 1
⁄

𝑧∣ = ∣(𝑟 + 1
⁄

𝑟) cos 𝜃 + 𝑖(𝑟 −
1
⁄

𝑟) sin 𝜃∣

⇒ (𝑟 + 1
⁄

𝑟)
2
cos2 𝜃 + 𝑖(𝑟 − 1
⁄

𝑟)
2
sin2 𝜃 = 𝑎2 ⇒ (𝑟 − 1
⁄

𝑟)
2
= 𝑎2 − 4 cos2 𝜃

𝑟 will be greatest when 𝑟 − 1
⁄

𝑟 will be greatets i.e. cos 𝜃 = 0 ⇒ 𝑟 − 1
⁄

𝑟 = 𝑎 ⇒ 𝑟𝑚𝑎𝑥 =
𝑎+√


𝑎2+4⁄
2

Similarly, for lowest value of 𝑟, cos 𝜃 = 1 ⇒ 𝑟 − 1
⁄

𝑟 = 𝑎2 − 4 ⇒ 𝑟2 − (𝑎2 − 4)𝑟 − 1 = 0

𝑟𝑚𝑖𝑛 = 𝑎2−4−√

𝑎4−8𝑎2+20⁄
2 .

164. We have to prove that |𝑧1 + 𝑧2|2 < (1+ 𝑐)|𝑧1|2 + (1+ 1
⁄

𝑐)|𝑧2|
2 ⇒ (𝑧1 + 𝑧2)(𝑧1 + 𝑧2) <

(1 + 𝑐) |𝑧1|2 + (1 + 1
⁄

𝑐)|𝑧2|
2

⇒ |𝑧1|2+𝑧1𝑧2+𝑧2𝑧1+ |𝑧1|2 < (1+𝑐)|𝑧1|2+(1+1
⁄

𝑐)|𝑧2|
2 ⇒ 𝑧1𝑧2+𝑧2𝑧1 < (1+𝑐)|𝑧1|2+

(1 + 1
⁄

𝑐)|𝑧2|
2

⇒ (𝑥1 + 𝑖𝑦1)(𝑥2 − 𝑖𝑦2) + (𝑥2 + 𝑖𝑦2)(𝑥1 − 𝑖𝑦1) < 1
⁄

𝑐 [𝑐
2(𝑥21 + 𝑦21 ) + (𝑥22 + 𝑦22 )] ⇒

2𝑐𝑥1𝑥2 + 2𝑐𝑦1𝑦2 < 𝑐2𝑥21 + 𝑐2𝑦21 + 𝑥22 + 𝑦22
⇒ (𝑐𝑥1 − 𝑥2)2 + (𝑐𝑦1 − 𝑦2)2 > 0 which is true.

165. Given ∣𝑧1−𝑧2⁄𝑧1+𝑧2∣ = 1 ⇒ |𝑧1 − 𝑧2|2 = |𝑧1 + 𝑧2|2 ⇒ (𝑧1 − 𝑧2)(𝑧1 − 𝑧2) = (𝑧1 + 𝑧2)(𝑧1 + 𝑧2)

⇒ 2𝑧1𝑧2 = −2𝑧2𝑧1 ⇒ (𝑧1⁄𝑧2) = −𝑧1⁄
𝑧2 ⇒

𝑧1⁄
𝑧2 = purely imaginary ⇒ 𝑖 𝑧1⁄𝑧2 = real = 𝑥

Now 𝑧1+𝑧2⁄𝑧1−𝑧2 = 𝑧1/𝑧2+1⁄
𝑧1/𝑧2−1 =

−𝑖𝑥+1⁄
−𝑖𝑥−1 =

−1+𝑥2+2𝑖𝑥⁄
1+𝑥2 . If 𝜃 is the angle between given lines then

tan 𝜃 = arg 𝑧1+𝑧2⁄
𝑧1−𝑧2 =

2𝑥
⁄

𝑥2−1.
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166. Let 𝑧1 = 𝑟1(cos 𝜃1 + 𝑖 sin 𝜃1), 𝑧2 = 𝑟2(cos 𝜃2 + 𝑖 sin 𝜃2). Also let 𝑎 = 𝑟 cos 𝛼, 𝑏 = 𝑟 sin 𝛼.
|𝑎𝑧1 + 𝑏𝑧2|2 = |𝑟𝑟1(cos 𝜃1 + 𝑖 sin 𝜃1) cos 𝛼 + 𝑟𝑟2(cos 𝜃2 + 𝑖 sin 𝜃2) sin 𝛼|2

= 𝑟2(𝑟1 cos 𝜃1 cos 𝛼 + 𝑟2 cos 𝜃2 sin 𝛼)2 + 𝑟2(𝑟1 sin 𝜃1 cos 𝛼 + 𝑟2 sin 𝜃2 sin 𝛼)2 =
𝑟2[𝑟21 cos2 𝛼 + 𝑟22 sin2 𝛼 + 2𝑟1𝑟2 cos 𝛼 sin 𝛼 cos(𝜃1 − 𝜃2)]

= 𝑟2
⁄

2 [𝑟
2
1(1 + cos 2𝛼) + 𝑟22(1 − cos 2𝛼) + 2𝑟1𝑟2 sin 2𝛼 cos(𝜃1 − 𝜃2)] 2|𝑎𝑧1+𝑏𝑧2|2⁄

𝑎2−𝑏2 = 𝑟21 +
𝑟22 + (𝑟21 − 𝑟22) cos 2𝛼 + 2𝑟2𝑟2 cos(𝜃1 − 𝜃2) sin 2𝛼

= 𝐴 + 𝐵 cos 2𝛼 + 𝐶 sin 2𝛼 where 𝐴 = 𝑟21 + 𝑟22, 𝐵 = 𝑟21 − 𝑟22, 𝐶 = 2𝑟1𝑟2 cos(𝜃1 − 𝜃2)
Clearly, −√

𝐵2 + 𝐶2 ≤ 𝐵 cos 2𝛼 + 𝐶 sin 2𝛼 ≤√


𝐵2 + 𝐶2

∴𝐴 − √

𝐵2 + 𝐶2 ≤ 𝐴 + 𝐵 cos 2𝛼 + 𝐶 sin 2𝛼 ≤ 𝐴 + √


𝐵2 + 𝐶2 ∴𝐴 − √

𝐵2 + 𝐶2 ≤

2|𝑎𝑧1+𝑏𝑧2|2⁄
𝑎2+𝑏2 ≤ 𝐴 +√

𝐵2 + 𝐶2

Now 𝐵2+𝐶2 = 𝑟41 + 𝑟42 − 2𝑟21𝑟22 + 4𝑟21𝑟22 cos2(𝜃1 − 𝜃2). Again |𝑧21 + 𝑧22 | = |𝑟21(cos 2𝜃1 +
𝑖 sin 2𝜃1)+𝑟22(cos 2𝜃2+𝑖 sin 2𝜃2)|=√


(𝑟21 cos 2𝜃1 + 𝑟22 cos 2𝜃2)2 + (𝑟21 sin 2𝜃1 + 𝑟22 sin 2𝜃2)2

= √

𝑟41 + 𝑟42 + 2𝑟21𝑟22 cos 2(𝜃1 − 𝜃2) = √


𝑟41 + 𝑟42 + 2𝑟21𝑟22[2 cos2(𝜃1 − 𝜃2)− 1] =

√

𝐵2 + 𝐶2

𝐴 = 𝑟21 + 𝑟22 = |𝑧1|2 + |𝑧2|2 Hence, |𝑧1|2 + |𝑧2|2 − |𝑧21 + 𝑧22 | ≤ 2 |𝑎𝑧1+𝑏𝑧2|
2⁄

𝑎2+𝑏2 ≤ |𝑧1|2 +
|𝑧2|2 + |𝑧21 + 𝑧22 |.

167. Given 𝑧 = 𝑏+𝑖𝑐⁄
1+𝑎 ∴ 𝑖𝑧 =

−𝑐+𝑖𝑏⁄
1+𝑎 ⇒ 1⁄

𝑖𝑧 =
1+𝑎⁄
−𝑐+𝑖𝑏. Using componendo and dividendo, we get

⇒ 1+𝑖𝑧⁄
1−𝑖𝑧 =

1+𝑎−𝑐+𝑖𝑏⁄
1+𝑎+𝑐−𝑖𝑏. Also, given 𝑎2 + 𝑏2 + 𝑐2 = 1 ⇒ 𝑎2 + 𝑏2 = 1 − 𝑐2

⇒ (𝑎 + 𝑖𝑏)(𝑎 − 𝑖𝑏) = (1 + 𝑐)(1 − 𝑐) ⇒ 𝑎+𝑖𝑏⁄
1−𝑐 = 1+𝑐⁄

𝑎−𝑖𝑏 =
1⁄
𝑢(say) ∴ 1+𝑖𝑧⁄1−𝑖𝑧 = 𝑎+𝑖𝑏+1−𝑐⁄

1+𝑐+𝑎−𝑖𝑏 =
𝑎+𝑖𝑏+𝑢(𝑎+𝑖𝑏)⁄
1+𝑐+𝑢(1+𝑐) = 𝑎+𝑖𝑏⁄

1+𝑐 .

168. We can write that (𝑥−𝑎)(𝑥−𝑏)… (𝑥−𝑘) = 𝑥𝑛+𝑝1𝑥𝑛−1+ 𝑝2𝑥𝑛−2+…+𝑝𝑛−1𝑥+𝑝𝑛

Substituting 𝑥 = 𝑖, we get (𝑖−𝑎)(𝑖−𝑏)… (𝑖−𝑘)= 𝑖𝑛+𝑝1𝑖𝑛−1+𝑝2𝑖𝑛−2+…+𝑝𝑛−1𝑖+
𝑝𝑛. Dividing both sides by 𝑖𝑛, we get (1 + 𝑖𝑎)(1 + 𝑖𝑏)… (1 + 𝑖𝑘) = 1 + 𝑝1

⁄

𝑖 +
𝑝2
⁄

𝑖2 + …

Taking modulus and squaring, we get (1+𝑎2)(1+𝑏2)… (1+𝑘2)= (1−𝑝2+𝑝4+…)2+
(𝑝1 − 𝑝3 + …)2.

169. 3 + 2𝑖 is one value of 𝑥 for which 𝑓(3 + 2𝑖) = 𝑎+ 𝑖𝑏 ⇒ 𝑥 = 3 + 2𝑖 ⇒ 𝑥2 − 6𝑥 + 13 = 0

𝑓(𝑥) = 𝑥4 − 8𝑥3 + 4𝑥2 + 4𝑥 + 39 = (𝑥2 − 6𝑥 + 13)(𝑥2 − 2𝑥 − 21) − 96𝑥 + 312
⇒ 𝑓(3 + 2𝑖) = −96(3 + 2𝑖)+ 312 = 24 − 192𝑖 = 𝑎 + 𝑖𝑏 ⇒ 𝑎 : 𝑏 = 1 : −8.

170. Given 𝐴⁄𝐵 + 𝐵⁄
𝐴 = 1 ⇒ 𝐴2 − 𝐴𝐵 +𝐵2 = 0. 𝐴 = 𝐵±√



3𝑖𝐵⁄
2 = −𝜔𝐵, −𝜔2𝐵 ⇒ |𝐴| = |𝐵|

|𝐴 − 𝐵| = | − 𝜔𝐵 − 𝐵| or | − 𝜔2𝐵 − 𝐵| = |𝜔2𝐵| or |𝜔𝐵| ⇒ |𝐴 − 𝐵| = |𝐵|. Thus,
|𝐴| = |𝐵| = |𝐴−𝐵| making the triangle equilateral.
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171. Given 𝑧𝑛 = (𝑧+1)𝑛⇒ |𝑧|𝑛 = |𝑧+1|𝑛⇒ |𝑧|= |𝑧+1|⇒𝑥2 = (𝑥2+2𝑥+1)⇒2𝑥+1 = 0,
which is the equation of a straight line on which roots of the given equation will lie.

172. Let 𝑧1, 𝑧2, 𝑧3, 𝑧4 be represented by the points 𝐴, 𝐵, 𝐶, 𝐷 respectively. ∴𝐴𝐷 = |𝑧1 − 𝑧4|
and 𝐵𝐶 = |𝑧2 − 𝑧3|

Let 𝑎 = (𝑧1 − 𝑧4)(𝑧2 − 𝑧3), 𝑏 = (𝑧2 − 𝑧4)(𝑧3 − 𝑧1) and 𝑐 = (𝑧3 − 𝑧4)(𝑧1 − 𝑧2)
𝑏 + 𝑐 = (𝑧2 − 𝑧4)(𝑧3 − 𝑧1)+ (𝑧3 − 𝑧4)(𝑧1 − 𝑧2) = −(𝑧1 − 𝑧4)(𝑧2 − 𝑧3) = −𝑎

|𝑎| = |𝑏 + 𝑐| ≤ |𝑏| + |𝑐| ⇒ | − (𝑧1 − 𝑧4)(𝑧2 − 𝑧3) | = |(𝑧2 − 𝑧4)(𝑧3 − 𝑧1) | + |(𝑧3 −
𝑧4)(𝑧1 − 𝑧2) | ⇒ 𝐴𝐷.𝐵𝐶 ≤ 𝐵𝐷.𝐶𝐴 + 𝐶𝐷.𝐴𝐵.

173. Euqation of a line joining points 𝑎 and 𝑖𝑏 is [
𝑧 𝑧 1
𝑎 𝑎 1
𝑖𝑏 𝑖𝑏 1] = 0 or (𝑎 + 𝑖𝑏)𝑧 − (𝑎 − 𝑖𝑏)𝑧 −

𝑖(𝑎𝑏 + 𝑎𝑏) = 0

⇒ (𝑎+ 𝑖𝑏)𝑧 − (𝑎− 𝑖𝑏)𝑧 − 2𝑎𝑏𝑖 = 0[∵ 𝑎, 𝑏 ∈ 𝑅 ∴𝑎 = 𝑎, 𝑏 = 𝑏]⇒ (𝑎+ 𝑖𝑏)𝑧 − (𝑎− 𝑖𝑏)𝑧 =
2𝑎𝑏𝑖 ⇒ ( 1⁄

2𝑎 −
𝑖⁄
2𝑏)𝑧 + ( 1⁄

2𝑎 +
𝑖⁄
2𝑏)𝑧 = 1.

174. Let 𝑧1 = 𝑟1𝑒𝑖𝜃1 and 𝑧2 = 𝑟2𝑒𝑖𝜃2.

Then 𝑟1 − 𝑟2 =√

(𝑟1 cos 𝜃1 − 𝑟2 cos 𝜃2)2 + (𝑟1 sin 𝜃1 − 𝑟2 sin 𝜃2)2

⇒ 2𝑟1𝑟2 = 2𝑟1𝑟2 cos(𝜃1 − 𝜃2)⇒ cos(𝜃1 − 𝜃2) = cos 2𝑛𝜋 ⇒ arg(𝑧1)− arg(𝑧2) = 2𝑛𝜋.

175. △𝐴𝐵𝐶 and △𝐷𝑂𝐸 will be similar if 𝐴𝐶⁄𝐴𝐵 = 𝐷𝐸⁄
𝐷𝑂 and ∠𝐵𝐴𝐶 = ∠𝑂𝐷𝐸

⇒ ∣𝑧3−𝑧1⁄𝑧2−𝑧1∣ = ∣𝑧5−𝑧4⁄0−𝑧4 ∣ and arg(𝑧3−𝑧1⁄𝑧2−𝑧1) = arg(𝑧5−𝑧4⁄0−𝑧4 )
⇒ 𝑧3−𝑧1⁄

𝑧2−𝑧1 =
𝑧5−𝑧4⁄
0−𝑧4 . Solving this yields (𝑧3 − 𝑧2)𝑧4 = (𝑧1 − 𝑧2)𝑧5 and hence triangles

are similar.

176. Given 𝑂𝐴 = 1 and |𝑧| = 1 = 𝑂𝑃 ⇒ 𝑂𝐴 = 𝑂𝑃 . 𝑂𝑃0 = |𝑧0| and 𝑂𝑄 = |𝑧𝑧0| = |𝑧||𝑧0| =
|𝑧0|

⇒𝑂𝑃0 = 𝑂𝑄. Also given that ∠𝑃0𝑂𝑃 = arg𝑧0⁄𝑧 . ∠𝐴𝑂𝑄= arg( 1⁄
𝑧𝑧0)= arg( 𝑧⁄

𝑧0)[∵ 𝑧𝑧 = 1]

= −arg(𝑧0⁄𝑧 ) = −arg (𝑧0⁄𝑧 ) = arg(𝑧0⁄𝑧 ) = ∠𝑃0𝑂𝑃 and thus the triangles are congruent.

177. 𝑃 = 𝑎𝑧2+𝑏𝑧1⁄
𝑎+𝑏 , 𝑄 = 𝑎𝑧2−𝑏𝑧1⁄

𝑎−𝑏 𝑂𝑃2 = ∣𝑎𝑧2+𝑏𝑧1⁄𝑎+𝑏 ∣
2
= (𝑎𝑧2+𝑏𝑧1⁄𝑎+𝑏 )(𝑎𝑧2+𝑏𝑧1⁄𝑎+𝑏 )

= 1⁄
𝑎2+𝑏2 [𝑎

2|𝑧2|2 + 𝑏2|𝑧1|2 + 𝑎𝑏(𝑧1𝑧2 + 𝑧1𝑧2)]. Similalry 𝑂𝑄2 can be computed and the
sum be found.

178. Let 𝑐 ≠ 0, then 𝑐 = −(𝑎+ 𝑏) so we can write 𝑎𝑧1+ 𝑏𝑧2− (𝑎+ 𝑏)𝑧3 = 0 ⇒ 𝑧3 = 𝑎𝑧1+𝑏𝑧2⁄
𝑎+𝑏 .

Thus, we see that 𝑧3 divides line segment 𝑧1𝑧2 in the ratio of 𝑎 : 𝑏 making all three of
them collinear.
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179. Equation of a line passing through origin is 𝑎𝑧 + 𝑎𝑧 = 0. Let us assume that all the
points lie on the same side of the above line, so we have

𝑎𝑧𝑖 + 𝑎𝑧𝑖 > 0 or < 0 for 𝑖 = 1, 2, 3, … , 𝑛. Thus, 𝑎
𝑛
∑
𝑖=1

𝑧𝑖 + 𝑎
𝑛
∑
𝑖=1

𝑧𝑖 > 0 or < 0

But it is given that 
𝑛
∑
𝑖=1

𝑧𝑖 = 0 ⇒
𝑛
∑
𝑖=1

𝑧𝑖 = 0 ∴ 𝑎
𝑛
∑
𝑖=1

𝑧𝑖 + 𝑎
𝑛
∑
𝑖=1

𝑧𝑖 = 0, which is in

contradiction with equation above. So all points cannot lie on the same side of line.

180. Let 𝑂𝐴 and 𝑂𝐵 be the unit vectors representing 𝑧1 and 𝑧2, then we have 𝑂𝐴 =
𝑧1⁄
|𝑧1| , 𝑂𝐵 = 𝑧2⁄

|𝑧2|

Therefore equation of bisector will be 𝑧 = 𝑡( 𝑧1⁄
|𝑧1| +

𝑧2⁄
|𝑧2|) =

6
⁄

5 𝑡, where is an arbitrary
positive integer.

181. The diagram is given below:

𝐿

𝑀𝐻

𝐴

𝐵 𝐶𝑎

𝑐 𝑏

Let 𝐴𝐿 be perpendicular on 𝐵𝐶 and 𝐻 be orthocenter of
the △𝐴𝐵𝐶.
𝐵𝐿⁄
𝐿𝐶 = 𝑐cos𝐵⁄

𝑏 cos𝐶 = 𝑐 sec𝐶⁄
𝑏 sec𝐵, thus 𝐿 divides 𝐵𝐶 internally in the

ratio of 𝑐 sec𝐶 : 𝑏 sec𝐵, 𝐿 = 𝑧3𝑐 sec𝐶+𝑧2𝑏 sec𝐵⁄
𝑐 sec𝐶+𝑏 sec𝐵

𝐴𝐻⁄
𝐻𝐿 = Δ𝐴𝐵𝐻⁄

Δ𝐻𝐵𝐿 =
1
⁄

2𝐴𝐵.𝐵𝐻 sin∠𝐴𝐵𝑀⁄
1
⁄

2𝐵𝐿.𝐵𝐻. sin∠𝑀𝐵𝐶
= 𝑐cos𝐴⁄

𝑐 cos𝐵cos𝐶 [∵∠𝐴𝐵𝑀 =

90∘ − 𝐴, ∠𝑀𝐵𝐶 = 90∘ − 𝐶 ]

= 𝑎cos𝐴⁄
𝑎cos𝐵cos𝐶 = (𝑏 cos𝐶+𝑐 cos𝐵) cos𝐴⁄

𝑎cos𝐵cos𝐶 = 𝑏sec𝐵+𝑐 sec𝐶⁄
𝑎 sec𝐴

𝐻 = 𝑧1𝑎 sec𝐴+𝑧2𝑏 sec𝐵+𝑧3𝑐 sec𝐶⁄
𝑎 sec𝐴+𝑏 sec𝐵+𝑐 sec𝐶

Since the above expression is similar w.r.t. 𝐴, 𝐵 and 𝐶, therefore it will also lie
on the perpendiculars from 𝐵 and 𝐶 to opposing sides as well. Thus, orthocenter
𝐻 = 𝑧1𝑎 sec𝐴+𝑧2𝑏 sec𝐵+𝑧3𝑐 sec𝐶⁄

𝑎 sec𝐴+𝑏 sec𝐵+𝑐 sec𝐶

𝐻 = 𝑧1𝑘 sin𝐴sec𝐴+𝑧2𝑘 sin𝐵sec𝐵+𝑧3𝑘 sin𝐶 sec𝐶⁄
𝑘 sin𝐴sec𝐴+𝑘sin𝐵sec𝐵+𝑘sin𝐶 sec𝐶 , 𝐻 = 𝑧1 tan𝐴+𝑧2 tan𝐵+𝑧3 tan𝐶⁄

tan𝐴+tan𝐵+tan𝐶 .

182. The diagram is given below:
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𝐷 𝐿

𝑂

𝐴

𝐵 𝐶

2𝐶
𝜋 − 2𝐶 𝜋 − 2𝐵

𝜋 − 2𝐵

𝑎

𝑐 𝑏

Let 𝑂 be the circumcenter of △𝐴𝐵𝐶 where 𝐴 =
𝑧1, 𝐵 = 𝑧2 and 𝐶 = 𝑧3. 𝐵𝐷⁄𝐷𝐶 =

1
⁄

2𝐵𝐷.𝑂𝐿⁄
1
⁄

2𝐷𝐶.𝑂𝐿
= Δ𝐵𝑂𝐷⁄

Δ𝐶𝑂𝐷

=
1
⁄

2𝑂𝐵.𝑂𝐷. sin(𝜋−2𝐶)⁄
1
⁄

2𝑂𝐶.𝑂𝐷sin(𝜋−2𝐶)
= sin2𝐶⁄

sin 2𝐵. Thus, 𝐷 divides

𝐵𝐶 internally in the ratio sin 2𝐶 : sin 2𝐵 ⇒ 𝐷 =
𝑧3 sin 2𝐶+𝑧2 sin 2𝐵⁄

sin 2𝐶+sin2𝐵

The complex number dividing 𝐴𝐷 inter
nally in the ratio sin 2𝐵 + sin 2𝐶 : sin 2𝐴 is
𝑧1 sin 2𝐴+𝑧2 sin 2𝐵+𝑧3 sin 2𝐶⁄

sin 2𝐴+sin2𝐵+sin2𝐶

Since the above expression is similar w.r.t. 𝐴, 𝐵
and 𝐶, therefore it will also lie on the perpendicular

bisectors on 𝐴𝐶 and 𝐴𝐵 as well.

Let 𝐵𝑂 produced meet 𝐴𝐶 at 𝐸 and 𝐶𝑂 produced meet 𝐴𝐵 at 𝐹 . We can show that,
the complex numner representing the point dividing the line segment 𝐵𝐸 internally in
the ratio (sin 2𝐶 + sin 2𝐴) : sin 2𝐵 and the complex number representing the point
dividing the line segment 𝐶𝐹 internally in the ratio (sin 2𝐴 + sin 2𝐵) : sin 2𝐶 will be
each = 𝑧1 sin 2𝐴+𝑧2 sin 2𝐵+𝑧3 sin 2𝐶⁄

sin 2𝐴+sin2𝐵+sin2𝐶

Thus, circumcenter is 𝑧1 sin 2𝐴+𝑧2 sin 2𝐵+𝑧3 sin 2𝐶⁄
sin 2𝐴+sin2𝐵+sin2𝐶

183. Let 𝑧 be the circumcenter of the triangle represented by 𝐴(𝑧1), 𝐵(𝑧2) and 𝐶(𝑧3)
respectively, then |𝑧 − 𝑧1| = |𝑧 − 𝑧2| = |𝑧 − 𝑧3| so we have |𝑧 − 𝑧1| = |𝑧 − 𝑧2| ⇒
|𝑧 − 𝑧1|2 = |𝑧 − 𝑧2|2 ⇒ (𝑧 − 𝑧1)(𝑧 − 𝑧1) = (𝑧 − 𝑧2)(𝑧 − 𝑧2)

⇒ 𝑧𝑧+𝑧1𝑧1−𝑧𝑧1−𝑧𝑧1 = 𝑧𝑧+𝑧2𝑧1−𝑧𝑧2−𝑧𝑧2 ⇒ 𝑧(𝑧1−𝑧2)+𝑧(𝑧1−𝑧2) = 𝑧1𝑧1−𝑧2𝑧2

Similarly considering |𝑧 − 𝑧1| = |𝑧 − 𝑧3|, we will have ⇒ 𝑧(𝑧1 − 𝑧3) + 𝑧(𝑧1 − 𝑧3) =
𝑧1𝑧1 − 𝑧3𝑧3

We have to eliminate 𝑧 from equation (1) and (2) i.e. multiplying equation (1) with
(𝑧1 − 𝑧3) and (2) with (𝑧1 − 𝑧2), we get following

𝑧[𝑧1(𝑧2− 𝑧3)+𝑧2(𝑧3− 𝑧1)+𝑧3(𝑧1− 𝑧2)] = 𝑧1𝑧1(𝑧2− 𝑧3)+𝑧2𝑧2(𝑧3− 𝑧1)+𝑧3𝑧3(𝑧1−
𝑧2) ⇒ 𝑧 = ∑𝑧1𝑧1(𝑧2−𝑧3)⁄

∑𝑧1(𝑧2−𝑧3) .

184. Let 𝑧 be the orthocenter of △𝐴(𝑧1)𝐵(𝑧2)𝐶(𝑧3) i.e. the intersection point of perpen
diculars on sides from opposite vertices.

Since 𝐴𝐻 ⊥ 𝐵𝐶 ∴arg( 𝑧1−𝑧⁄
𝑧3−𝑧2) = ±𝜋
⁄

2 ⇒
𝑧1−𝑧⁄
𝑧3−𝑧2 is purely imaginary.

⇒ ( 𝑧1−𝑧⁄
𝑧3−𝑧2) = −( 𝑧1−𝑧⁄

𝑧3−𝑧2)⇒
𝑧1−𝑧⁄
𝑧3−𝑧2 =

𝑧−𝑧1⁄
𝑧3−𝑧2 ⇒ 𝑧1 − 𝑧 = (𝑧−𝑧1)(𝑧3−𝑧2)⁄

𝑧3−𝑧2

Similarly for 𝐵𝐻 ⊥ 𝐴𝐶, 𝑧2 − 𝑧 = (𝑧−𝑧2)(𝑧1−𝑧2)⁄
𝑧1−𝑧3
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Eliminating 𝑧 like last problem we arrive at the desired result.

185. We have ∠𝐶𝐵𝐴 = 2𝜋⁄
3 , therefore 𝑧3−𝑧2⁄𝑧1−𝑧2 = |𝑧3−𝑧2|⁄

|𝑧1−𝑧2| [cos
2𝜋⁄
3 + 𝑖 sin 2𝜋⁄

3 ] = −1
⁄

2 +
𝑖√


3⁄
2 [∵𝐵𝐶 =

𝐴𝐵]

𝑧3 + (1⁄2 −
𝑖√


3⁄
2 )𝑧1 = (3⁄2 −

𝑖√


3⁄
2 )𝑧2

Solving this yields 2√


3𝑧2 = (√


3 − 𝑖)𝑧1 + (√


3 + 𝑖)𝑧3. Also, since diagonals bisect
each other ⇒ 𝑧1+𝑧3⁄

2 = 𝑧2+𝑧4⁄
2 , 𝑧4 = 𝑧1 + 𝑧3 − 𝑧2 Substituting the value of 𝑧2, we get

2√


3𝑧4 = (√


3 + 𝑖)𝑧1 + (√


3 − 𝑖)𝑧3.

186. Since ∠𝑃𝑄𝑅 = ∠𝑃𝑅𝑄 = 1
⁄

2 (𝜋 − 𝛼) ∴𝑃𝑄 = 𝑃𝑅 Also, ∠𝑄𝑃𝑅 = 𝜋 − 2(𝜋⁄2 −
𝛼⁄
2) = 𝛼

∴arg 𝑧3−𝑧1⁄
𝑧2−𝑧1 = 𝛼 ⇒ 𝑧3−𝑧1⁄

𝑧2−𝑧1 =
𝑃𝑅⁄
𝑅𝑄 (cos 𝛼 + 𝑖 sin 𝛼)

⇒ 𝑧3−𝑧1⁄
𝑧2−𝑧1 − 1 = (cos 𝛼 − 1)+ 𝑖 sin 𝛼 ⇒ 𝑧3−𝑧2⁄

𝑧2−𝑧1 = −2 sin2 𝛼⁄2 + 𝑖2 sin 𝛼⁄
2 cos

𝛼⁄
2

⇒ (𝑧3−𝑧2⁄𝑧2−𝑧1)2 = −4 sin2 𝛼⁄2 [cos 𝛼⁄2 + 𝑖 sin 𝛼⁄
2]

2
= −4 sin2 𝛼⁄2 [cos 𝛼+ 𝑖 sin 𝛼] = −4 sin2 𝛼⁄2 . 𝑧3−𝑧1⁄𝑧2−𝑧1

⇒ (𝑧3 − 𝑧2)2 = 4(𝑧3 − 𝑧1)(𝑧1 − 𝑧2) sin2 𝛼⁄2.
187. Let 𝐶 be the center of a regular polygon of 𝑛 sides. Let 𝐴1(𝑧1), 𝐴2(𝑧2) and 𝐴3(𝑧3)

be its three consecutive vertices.

∠𝐶𝐴2𝐴1 = 1
⁄

2 (𝜋 −
2𝜋⁄
𝑛 ) ∴𝐴1𝐴2𝐴3 = 𝜋 − 2𝜋⁄

𝑛

Case I: When 𝑧1, 𝑧2, 𝑧3 are in anticlockwise order. ⇒ 𝑧1 − 𝑧2 = (𝑧3 −
𝑧2)𝑒𝑖(𝜋−2𝜋/𝑛)[∵𝐴1𝐴2 = 𝐴3𝐴2 ]

𝑧1 − 𝑧2 = (𝑧2 − 𝑧3)𝑒−𝑖2𝜋/𝑛[∵ 𝑒𝑖𝜋 = −1]⇒ 𝑧3 = 𝑧2 − (𝑧1 − 𝑧2)𝑒𝑖2𝜋/𝑛

Case II: When 𝑧1, 𝑧2, 𝑧3 are in clockwise order. ⇒ 𝑧3 − 𝑧2 = (𝑧1 − 𝑧2)𝑒𝑖(𝜋−𝑖2𝜋/𝑛)

𝑧3 = 𝑧2 + (𝑧2 − 𝑧1)𝑒−𝑖2𝜋/𝑛.

188. Let 𝑂 be the origin and the complex number representing 𝐴1 be 𝑧, then 𝐴2, 𝐴3, 𝐴4
will be represented by 𝑧𝑒𝑖2𝜋/𝑛, 𝑧𝑒𝑖4𝜋/𝑛, 𝑧𝑒𝑖6𝜋/𝑛. Let |𝑧| = 𝑎

𝐴1𝐴2 = ∣𝑧 − 𝑧𝑒𝑖2𝜋/𝑛 ∣ = |𝑧|∣1 − cos 2𝜋⁄
𝑛 − 𝑖 sin 2𝜋⁄

𝑛 ∣ = 𝑎√

(1 − cos 2𝜋⁄𝑛 )2 + sin2 2𝜋⁄𝑛 =

𝑎√

2(1 − cos 2𝜋⁄𝑛 ) = 2𝑎 sin 𝜋
⁄

𝑛

Similarly, 𝐴1𝐴3 = 2𝑎 sin 2𝜋⁄
𝑛 and 𝐴1𝐴4 = 2𝑎 sin 3𝜋⁄

𝑛

Given 1⁄
𝐴1𝐴2

= 1⁄
𝐴1𝐴3

+ 1⁄
𝐴1𝐴4

∴ 1⁄
2𝑎 sin𝜋
⁄

𝑛
= 1⁄

2𝑎 sin2𝜋⁄
𝑛
+ 1⁄

2𝑎 sin3𝜋⁄
𝑛
⇒ sin 𝜋
⁄

𝑛 (sin
3𝜋⁄
𝑛 + sin 2𝜋⁄

𝑛 ) =

sin 2𝜋⁄
𝑛 sin 3𝜋⁄

𝑛
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⇒ sin 3𝜋⁄
𝑛 + sin 2𝜋⁄

𝑛 = 2 cos 2𝜋⁄𝑛 sin 3𝜋⁄
𝑛 = sin 4𝜋⁄

𝑛 + sin 2𝜋⁄
𝑛 ⇒ sin 3𝜋⁄

𝑛 = sin 4𝜋⁄
𝑛 ⇒ 3𝜋⁄

𝑛 = 𝑚𝜋 +

(−1)𝑛 4𝜋⁄
𝑛 , 𝑚 = 0, ± 1, ±2,…

If 𝑚 = 0 ⇒ 3𝜋⁄
𝑛 = 4𝜋⁄

𝑛 ⇒ 3 = 4 (not possible). If 𝑚 = 1 ⇒ 3𝜋⁄
𝑛 = 𝜋 − 4𝜋⁄

𝑛 ⇒ 𝑛 = 7. If
𝑚 = 2,3… , −1, −2,… gives values of 𝑛 which are not possible. Thus 𝑛 = 7.

189. Given, |𝑧| = 2. Let 𝑧1 = −1 + 5𝑧 ⇒ 𝑧1 + 1 = 5𝑧.

|𝑧1 + 1| = |5𝑧| = 5|𝑧| = 10 ⇒ 𝑧1 lies on a circle with center (−1, 0) having radius 10.

190. Given, |𝑧 − 4 + 3𝑖| ≤ 2 ⇒ ||𝑧|− |4 − 3𝑖|| ≤ 2 ⇒ ||𝑧|− 5| ≤ 2 ⇒ −2 ≤ |𝑧|− 5 ≤ 2 ⇒ 3 ≤
|𝑧| ≤ 7.

191. |𝑧 − 6 − 8𝑖| ≤ |4|⇒ −4 ≤ ||𝑧|− |6 + 8𝑖|| ≤ 4 ⇒ −4 ≤ |𝑧|− 10 ≤ 10 ⇒ 6 ≤ |𝑧| ≤ 14.

192. The diagram is given below:

𝑥

𝑦

𝑂

𝐶(0, 25)

𝑃

𝜃

𝜃

Given 𝑧 − 25𝑖 ≤ 15, which represents a
circle having center (0, 25) and a radius
15. Let 𝑂𝑃 be tangent to the circle at
point 𝑃 , then ∠𝑋𝑂𝑃 will represent least
value of arg(𝑧).

Let ∠𝑋𝑂𝑃 = 𝜃 then ∠𝑂𝐶𝑃 = 𝜃. Now
𝑂𝐶 = 25, 𝐶𝑃 = 15 ∴𝑂𝑃 = 20 ∴ tan 𝜃 =
𝑂𝑃⁄
𝐶𝑃 = 4
⁄

3. ∴ Least value of arg(𝑧) = 𝜃 =

tan−1 4⁄3

193. Given, |𝑧 − 𝑧1|2 + |𝑧 − 𝑧2|2 = 𝑘 ⇒ |𝑧|2 + |𝑧1|2 − 2𝑧𝑧1 + |𝑧|2 + |𝑧2|2 − 2𝑧𝑧2 = 𝑘

⇒ 2|𝑧|2 − 2𝑧(𝑧1 + 𝑧2) = 𝑘 − (|𝑧1|2 + |𝑧2|2) ⇒ |𝑧|2 − 2𝑧(𝑧1+𝑧2⁄2 ) + 1
⁄

4 |𝑧1 + 𝑧2|2 = 𝑘
⁄

2 +
1
⁄

4 [|𝑧1 + 𝑧2|2 − 2|𝑧1|2 − 2|𝑧2|2 ]

⇒ ∣𝑧 − 𝑧1+𝑧2⁄
2 ∣

2
= 1
⁄

2 [𝑘−
1
⁄

2 |𝑧1− 𝑧2|2]. The above equation represents a circle with center

at 𝑧1+𝑧2⁄2 and radius 1⁄2√

2𝑘 − |𝑧1 − 𝑧2|2 provided 𝑘 ≥ |𝑧1−𝑧2|2⁄

2 .

194. Since |𝑧 − 1| = 1, 𝑧 represents a circle with center (1, 0) and a radius of of 1. It is
shown below:
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𝑥

𝑦

𝑂 𝐶(1, 0)

Now |𝑧 − 1| = 1. Let 𝑧 = 𝑥+ 𝑖𝑦 then 𝑥2 + 𝑦2 = 2𝑥. Also,

𝑧−2
⁄

𝑧 = 𝑥−2+𝑖𝑦⁄
𝑥+𝑖𝑦 = 𝑥2−2𝑥+𝑦2+2𝑖𝑦⁄

𝑥2+𝑦2 = 𝑖 𝑦⁄𝑥

Case I. When 𝑧 lies in the first quadrant. This implies
arg(𝑧) = 𝜃, where tan 𝜃 = 𝑦
⁄

𝑥 ∴ 𝑖 tan[arg(𝑧)] = 𝑖 tan 𝜃 =

𝑖 𝑦⁄𝑥.

Case II. When 𝑧 lies in the fourth quadrant. Thus,
arg(𝑧) = 2𝜋 − 𝜃, where tan 𝜃 = −𝑦⁄

𝑥 ∴ 𝑖 tan[arg(𝑧)] =

𝑖 tan(2𝜋 − 𝜃) = 𝑖 𝑦⁄𝑥.

195. Let 𝑧 = 𝑥 + 𝑖𝑦. Now we have 𝑧−1⁄𝑧+1 =
(𝑥2−1)+𝑦2⁄
(𝑥+1)2+𝑦2 + 𝑖 2𝑦⁄

(𝑥+1)2+𝑦2

∴ arg(𝑧−1⁄𝑧+1) =
𝜋
⁄

4 ⇒ tan(arg(𝑧−1⁄𝑧+1)) =
2𝑦⁄

𝑥2−1+𝑦2

⇒ 𝑥2 + 𝑦2 − 1 − 2𝑦 = 0 ⇒ 𝑥2 + (𝑦 − 1)2 = 2, which is equation of a circle having
center at (0, 1) and radius √



2.

196. Let 𝑧 = 𝑥 + 𝑖𝑦. Now, 𝑢 + 𝑖𝑣 = (𝑧 − 1)(cos 𝛼 − 𝑖 sin 𝛼) + 1
⁄

𝑧−1 (cos 𝛼 + 𝑖 sin 𝛼) =

(𝑥 − 1) cos 𝛼 + 𝑦 sin 𝛼 + 𝑖[𝑦 cos 𝛼 − (𝑥 − 1) sin 𝛼]+ 𝑥−1−𝑖𝑦⁄
(𝑥−1)2+𝑦2 (cos 𝛼 + 𝑖 sin 𝛼) = 0

Equating imaginary parts, we get 𝑣 = 𝑦 cos 𝛼 − (𝑥 − 1) sin 𝛼 + (𝑥−1) sin𝛼−𝑦 cos𝛼⁄
(𝑥−1)2+𝑦2 =

0 ⇒ [𝑦 cos 𝛼 − (𝑥 − 1) sin 𝛼] [(𝑥 − 1)2 + 𝑦2 ] = 0

∴ Either 𝑦 cos 𝛼− (𝑥− 1) sin 𝛼 = 0 ⇒ 𝑦 = tan𝛼(𝑥− 1), which is a straight line passing
through (1, 0) or (𝑥 − 1)2 + 𝑦2 − 1 = 0 which is a circle with center (1, 0) and unit
radius.

197. Given, 1 + 𝑎1𝑧 + 𝑎2𝑧2 + ⋯ + 𝑎𝑛𝑧𝑛 = 0 ⇒ |𝑎1𝑧|+ |𝑎2𝑧2|+⋯+ |𝑎𝑛𝑧𝑏| ≥ 1 and

L.H.S. < 2|𝑧|+ 2|𝑧|2 + ⋯ to ∞[∵ |𝑎𝑛| < 2].

Let |𝑧| < 1 then 2|𝑧|⁄
1−|𝑧| < 1 ⇒ |𝑧| > 1
⁄

3

When |𝑧| > 1, clearly |𝑧| > 1
⁄

3; hence, 𝑧 does not lie in the interior of the circle with

radius 1⁄3.

198. Given, 𝑧𝑛 cos 𝜃0 + 𝑧𝑛−1 cos 𝜃1 + ⋯ + cos 𝜃𝑛 = 2 ⇒ 2 = |𝑧𝑛 cos 𝜃0 + 𝑧𝑛−1 cos 𝜃1 + ⋯ +
cos 𝜃𝑛|

< |𝑧𝑛 cos 𝜃0|+ |𝑧𝑛−1 cos 𝜃1|+⋯+ | cos 𝜃𝑛| = |𝑧𝑛|| cos 𝜃0|+ |𝑧𝑛−1|| cos 𝜃1|+⋯+ | cos 𝜃𝑛|

≤ |𝑧|𝑛+ |𝑧|𝑛−1+⋯+1 < 1+ |𝑧|+ |𝑧|2+⋯ to ∞ ⇒ 2 = 1⁄
1−|𝑧|⇒ |𝑧| > 1
⁄

2 [ when |𝑧| < 1]
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Hence 𝑧 lies outside the circle |𝑧| = 1
⁄

2. Thus all roots of the given equation lie outside

the circle |𝑧| = 1
⁄

2.

199. Recall that points 𝑧1, 𝑧2, 𝑧3 are concyclic if (𝑧2−𝑧4⁄𝑧1−𝑧4)(𝑧1−𝑧3⁄𝑧2−𝑧3) is real. We assume that 𝑧4
is origin.

Given, 2⁄𝑧1 = 1⁄
𝑧2 +

1⁄
𝑧3 =

𝑧2+𝑧3⁄
𝑧2𝑧3 ∴ 𝑧1 = 2𝑧2𝑧3⁄

𝑧1+𝑧3.

Putting the value of 𝑧1 and 𝑧4 in the concyclic condition expression we obtain

(𝑧2−𝑧4⁄𝑧1−𝑧4)(𝑧1−𝑧3⁄𝑧2−𝑧3) = 1
⁄

2. Thus, 𝑧1, 𝑧2, 𝑧3 lie on a circle passing through origin.

200. The diagram given below:

𝑂
𝐶(𝑧3)𝐵(𝑧2)

𝐴(𝑧1)

𝑃 (𝑧)

We have 𝑂𝑃 = 𝑂𝐴 = 𝑂𝐵 = 𝑂𝐶 ∴ |𝑧| = |𝑧1| = |𝑧2| =
|𝑧3| ⇒ |𝑧|2 = |𝑧1|2 = |𝑧2|2 = |𝑧3|2 ⇒ 𝑧𝑧 = 𝑧1𝑧1 = 𝑧𝑧2 =
𝑧𝑧3.

Since 𝐴𝑃 is perpendicular to 𝐵𝐶, ∴ arg( 𝑧1−𝑧⁄
𝑧2−𝑧3) =

𝜋
⁄

2 or
−𝜋⁄
2 ⇒ 𝑧1−𝑧⁄

𝑧2−𝑧3 is purely imaginary.

⇒ ( 𝑧1−𝑧⁄
𝑧2−𝑧3) = − 𝑧1−𝑧⁄

𝑧2−𝑧3. Solving the above equation gives

𝑧 = 𝑧2𝑧3⁄
𝑧1 .

201. The diagram is given below:

𝐴 𝐵𝑃
𝐶

𝐷

𝐴
𝑃

𝐵𝐶

𝐷

Let 𝑃 (𝑧) be the point of intersec
tion and 𝐴, 𝐵, 𝐶, 𝐷 represent points
𝑎, 𝑏, 𝑐, 𝑑 respectively. Clearly, 𝑃,𝐴,𝐵
are collinear. Thus,

[
𝑧 𝑧 1
𝑎 𝑎 1
𝑏 𝑏 1] = 0 ⇒ 𝑧(𝑎 − 𝑏) − 𝑧(𝑎 −

𝑏)+ (𝑎𝑏 − 𝑎𝑏) = 0

Similarly, 𝑃, 𝐶, 𝐷 are collinear and thus ⇒ 𝑧(𝑐 − 𝑑)− 𝑧(𝑐 − 𝑑)+ (𝑐𝑑 − 𝑐𝑑) = 0

Eliminating 𝑧 because we have to find 𝑧, we have 𝑧(𝑎 − 𝑏)(𝑐 − 𝑑)− 𝑧(𝑐 − 𝑑)(𝑎 − 𝑏) =
(𝑐𝑑 − 𝑐𝑑)(𝑎 − 𝑏)− (𝑎𝑏 − 𝑎𝑏)(𝑐 − 𝑑).

∵ 𝑎, 𝑏, 𝑐, 𝑑 lie on the circle. |𝑎| = |𝑏| = |𝑐| = |𝑑| = 𝑟 ⇒ 𝑎2 = 𝑏2 = 𝑐2 = 𝑑2 = 𝑟2
⇒ 𝑎𝑎 = 𝑏𝑏 = 𝑐𝑐 = 𝑑𝑑 = 𝑟2

⇒ 𝑎 = 𝑟2
⁄

𝑎 , 𝑏 =
𝑟2
⁄

𝑏 , 𝑐 =
𝑟2
⁄

𝑐 , 𝑑 =
𝑟2
⁄

𝑑

Putting these values in the equation we had obtained, 𝑧(𝑟
2
⁄

𝑎 − 𝑟2
⁄

𝑏 )(𝑐 − 𝑑) − 𝑧(𝑟
2
⁄

𝑐 −
𝑟2
⁄

𝑑 )(𝑎 − 𝑏) = (𝑐𝑟
2⁄

𝑑 − 𝑑𝑟2⁄
𝑐 )(𝑎 − 𝑏)− (𝑎𝑟

2
⁄

𝑏 − 𝑏𝑟2⁄
𝑎 )(𝑐 − 𝑑)
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Solving this for 𝑧, we arrive at desired answer.

202. Given [
𝑎 𝑏 𝑐
𝑏 𝑐 𝑎
𝑐 𝑎 𝑏 ] = 0 ⇒ 𝑎3+ 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐 = 0 ⇒ (𝑎+ 𝑏 + 𝑐)(𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑏𝑐 −

𝑐𝑎) = 0

∵ 𝑧1, 𝑧2, 𝑧3 are three non-zero complex numbers, hence 𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑏𝑐 − 𝑐𝑎 = 0
⇒ (𝑎− 𝑏)2+ (𝑏 − 𝑐)2+ (𝑐 − 𝑎)2 = 0 ⇒ 𝑎 = 𝑏 = 𝑐. This can be represented by following
diagram:

𝐴

𝐵𝐶

𝑂

Now 𝑂𝐴 = 𝑂𝐵 = 𝑂𝐶, where 𝑂 is the origin and
𝐴, 𝐵 and 𝐶 are the points representing 𝑧1, 𝑧2 and 𝑧3
respectively. ∴𝑂 is the circumcenter of △𝐴𝐵𝐶.

Now arg(𝑧3⁄𝑧2) = ∠𝐵𝑂𝐶 = 2∠𝐵𝐴𝐶 = arg(𝑧3−𝑧1⁄𝑧2−𝑧1)2.

203. The diagram is given below:

𝑂 𝑃 (𝑧1)

𝑄(𝑧2)𝑅(𝑧3)
𝑧2 = 𝑂𝑄⁄

𝑂𝑃 𝑧1𝑒𝑖𝜃 = cos 𝜃𝑧1𝑒𝑖𝜃 and 𝑧3 =
𝑂𝑅⁄
𝑂𝑃 𝑧1𝑒𝑖2𝜃 = cos 2𝜃𝑧1𝑒𝑖2𝜃

⇒ 𝑧22 = cos2 𝜃𝑧21𝑒𝑖2𝜃 ⇒ 𝑧22 cos 2𝜃 =
𝑧1𝑧3 cos2 𝜃.

204. Given circles are |𝑧| = 1 ⇒ 𝑥2 + 𝑦2 − 1 = 0 and |𝑧 − 1| = 4 ⇒ 𝑥2 − 2𝑥 + 𝑦2 − 15 = 0.

Let the circles cut by these two orthogonally is 𝑥2 + 𝑦2 + 2𝑔𝑥 + 2𝑓𝑦 + 𝑐 = 0. Since
first circle cuts this family of circles orthoginally, therefore

2𝑔.0 + 2𝑓.0 = 𝑐 − 1 ⇒ 𝑐 = 1 and 2𝑔(−1) + 2𝑓.0 = 𝑐 − 15 ⇒ 𝑔 = 7. Thus, required
circles are 𝑥2 + 𝑦2 + 14𝑥 + 2𝑓𝑦 + 1 = 0 ⇒ |𝑧 + 7 + 𝑖𝑓 | =√


48 + 𝑓2.

205. Given, |𝑧 + 3| = 𝑡2 − 2𝑡 + 6 which is equation of a circle having center (−3, 0) and
radius 𝑡2 − 2𝑡+ 6. Let 𝐴 = (−3, 0) and 𝑟1 = 𝑡2− 2𝑡+ 6. In this case 𝑧 lies on the circle.
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Also, |𝑧 − 3√


3𝑖| < 𝑡2 implies 𝑧 lies on the interior of the circle having center (0, 3√


3)
and radius 𝑡2. Let 𝐵 = (0, 3√



3) and 𝑟2 = 𝑡2. 𝐴𝐵 =√

32 + 27 = 6. 𝑟2 − 𝑟1 = 2(𝑡 − 3)

Clearly, when the two circles are disjoint or touching each other no solution is possible.
This leads to following cases:

Case I: When 𝑡 > 3 i.e. 𝑟2 > 𝑟1. In this case at least one 𝑧 is possible if 𝐴𝐵 <
𝑟1 + 𝑟2 ⇒ 6 < 2(𝑡2 − 𝑡 + 3)⇒ 𝑡 < 0 or 𝑡 > 1 ⇒ 3 < 𝑡 < ∞

Case II: When 𝑡 ≤ 3 i.e. 𝑟1 > 𝑟2. In this case at least one 𝑧 will be possible if
|𝑟1 − 𝑟2| ≤ 𝐴𝐵 < 𝑟1 + 𝑟2

2(3 − 𝑡) ≤ 6 < 2(𝑡2 − 𝑡 + 3) i.e. 𝑡 ≤ 0 and 𝑡 < 0 or 𝑡 > 1 Combining all solutions we
gace 1 < 𝑡 < ∞.

206. Let 𝑧 = 𝑥 + 𝑖𝑦. 𝑎𝑧+𝑏⁄𝑐𝑧+𝑑 = 𝑎𝑥+𝑏+𝑖𝑎𝑦⁄
𝑐𝑥+𝑑+𝑖𝑐𝑦 =

(𝑎𝑥+𝑏+𝑖𝑎𝑦)(𝑐𝑥+𝑑−𝑖𝑐𝑦)⁄
(𝑐𝑥+𝑑)2+𝑐2𝑦2

ℑ(𝑎𝑧+𝑏⁄𝑐𝑧+𝑑) = 𝑎𝑦(𝑐𝑥+𝑑)−𝑐𝑦(𝑎𝑥+𝑏)⁄
(𝑐𝑥+𝑑)2+𝑐2𝑦2 = 𝑎𝑑𝑦−𝑏𝑐𝑦⁄

(𝑐𝑥+𝑑)2+𝑐2𝑦2

∵ 𝑎𝑑 > 𝑏𝑐, therefore the signs of imaginary parts of 𝑧 and 𝑎𝑧+𝑏⁄𝑐𝑧+𝑑 are the same.

207. Given, 𝑧1 = 𝑖(𝑧2+1)⁄
𝑧2−1 ⇒ 𝑥1 + 𝑖𝑦1 = −𝑦2+𝑖(𝑥2+1)⁄

(𝑥2−1)+𝑖𝑦2 = [−𝑦2+𝑖(𝑥2+1)][(𝑥2−1)+𝑖𝑦2 ]⁄
(𝑥2−1)2+𝑦22

Comparing real and imaginary parts, we have

𝑥1 = −𝑦2(𝑥2−1)−(𝑥2+1)𝑦2⁄
(𝑥2−1)2+𝑦22

= −2𝑥2𝑦2⁄
(𝑥2−1)2+𝑦22

and 𝑦1 =
𝑥22−1−𝑦22⁄

(𝑥2−1)2+𝑦22

Substituting for 𝑥1 and 𝑦1 in 𝑥21 + 𝑦21 − 𝑥1 we will arrive at the desired result.

208. (cos 3𝜃 − 𝑖 sin 3𝜃)6 = (𝑒−𝑖3𝜃)6 = 𝑒−𝑖18𝜃 and (cos 2𝜃 + 𝑖 sin 2𝜃)5 = (𝑒𝑖2𝜃)5 = 𝑒𝑖10𝜃

(sin 𝜃− 𝑖 cos 𝜃)3 = [(−𝑖)3(cos 𝜃+ 𝑖 sin 𝜃)3] = 𝑖.𝑒𝑖3𝜃 and (cos 3𝜃−𝑖 sin 3𝜃)
6(sin 𝜃−𝑖 cos 𝜃)3⁄

(cos 2𝜃+𝑖 sin 2𝜃)5 =
𝑖.𝑒−𝑖25𝜃 = sin 25𝜃 + 𝑖 cos 25𝜃.

209. Let 𝑧 = 𝑥 + 𝑖𝑦, then we have 𝑥2 − 𝑦2 + 2𝑖𝑥𝑦 +√

𝑥2 + 𝑦2 = 0

Equating imaginary parts, we have 2𝑥𝑦 = 0 i.e. either 𝑥 = 0 or 𝑦 = 0.

If 𝑥 = 0, then −𝑦2 +√

𝑦2 = 0 ⇒ 𝑦4 − 𝑦2 = 0 ⇒ 𝑦 = 0, 𝑦 = ±1.

If 𝑦 = 0, then 𝑥2 +√

𝑥2 = 0 Since 𝑥 is real only one solution is possible i.e. 𝑥 = 0.

Hence, 𝑧 = 0, ±𝑖.

210. Clearly 𝑧 = 0 is one of the solutions. For other solutions divide both sides by |𝑧|2 which
gives us 𝑡2 + 𝑡 + 1 = 0 where 𝑡 = 𝑧⁄

|𝑧|.

The equation 𝑡2 + 𝑡 + 1 = 0 has two roots i.e. 𝑡 = 𝜔, 𝜔2 ⇒ 𝑧⁄
|𝑧| = 𝜔, 𝜔2 ⇒ 𝑧 = 𝑘𝜔, 𝑘𝜔2

where 𝑘 = |𝑧| is a non-negative real number.



Answers of Complex Numbers 447

211. Let 𝑧 = 𝑥 + 𝑖𝑦, then (𝑥 + 𝑖𝑦)√

𝑥2 + 𝑦2 + 𝑎(𝑥 + 𝑖𝑦) + 1 = 0. Comparing real and

imaginary parts, we get

𝑦√

𝑥2 + 𝑦2+𝑎𝑦 = 0 ⇒ 𝑦 = 0 ∵√

𝑥2 + 𝑦2+𝑎 ≠ 0 [∵ 𝑎 > 0] and ∴ 𝑥√



𝑥2 + 0+𝑎𝑥+1 =
0 ⇒ 𝑥2 + 𝑎𝑥 + 1 = 0 ⇒ 𝑥 = −𝑎±√



𝑎2−4⁄
2

Clearly, both the values of 𝑥 are negative, so 𝑧 is a negative real number.

212. Let 𝑧 = 𝑥+𝑖𝑦, then 𝑥2+𝑦2−2𝑖(𝑥+𝑖𝑦)+2𝑎(1+ 𝑖) = 0. Comparing real and imaginary
parts, we get

𝑥2 + 𝑦2 + 2𝑦 + 2𝑎 = 0 ⇒ 𝑥2 + (𝑦 − 1)2 = 1 − 2𝑎 and −2𝑥 + 2𝑎 = 0 ⇒ 𝑥 = 𝑎

⇒ (𝑦 − 1)2 = 1 − 2𝑎 − 𝑎2 ⇒ 𝑦 = 1 ±√

1 − 2𝑎 − 𝑎2. However 1 − 2𝑎 − 𝑎2 > 0. Roots

of equivalent quadratic equation is 𝑎 = 2±√


8⁄
−2 ⇒ −1 ±√


2 but 𝑎 > 0 so the range for 𝑎
is 0 < 𝑎 < √


2 − 1.

213. i. We have (3 + 4𝑖)𝑥 = 5
𝑥
⁄

2. Squaring both sides (−7 + 24𝑖)𝑥 = 5𝑥 ⇒ (−7+24𝑖⁄5 )
𝑥
= 1

which is possible only if 𝑥 = 0.

ii. Given (1 − 𝑖)𝑥 = 2𝑥 ⇒ (1−𝑖⁄2 )
𝑥
= 1 which is possible only if 𝑥 = 0.

iii. Given (1− 𝑖)𝑥 = (1+ 𝑖)𝑥 ⇒ (1−𝑖⁄1+𝑖)𝑥 = 1 ⇒ (−𝑖)𝑥 = 1 ⇒ 𝑥 = 0, 4, 8,… , 4𝑛 ∀ 4𝑛 ∈ 𝐼.

214. 𝑧3 + 2𝑧2 + 2𝑧 + 1 = 0 ⇒ (𝑧 + 1)(𝑧2 + 𝑧 + 1) = 0 ⇒ 𝑧 = −1, 𝜔, 𝜔2.

When 𝑧 = −1, 𝑧1985 + 𝑧100 + 1 = −1+ 1+ 1 = 1 ≠ 0, when 𝑧 = 𝜔, 𝜔1985 + 𝜔100 + 1 =
𝜔2 + 𝜔 + 1 = 0 and when 𝑧 = 𝜔2, 𝜔1985∗2 + 𝜔200 + 1 = 𝜔 + 𝜔2 + 1 = 0. Thus common
roots are 𝜔, 𝜔2.

215. Adding all equations 𝛼 + 𝛽 + 𝛾 = 3𝑧1 ⇒ 𝑧1 = 𝛼+𝛽+𝛾⁄
3 . Similarly, multiplying second

equatin with 𝜔 and third equation with 𝜔2, and then adding we have 𝑧3 = 𝛼+𝛽𝜔+𝛾𝜔2⁄
3 .

Similarly, 𝑧2 = 𝛼+𝛽𝜔2+𝛾𝜔⁄
3 .

|𝛼|2 = 𝛼𝛼 = (𝑧1 + 𝑧2 + 𝑧3)(𝑧1 + 𝑧2 + 𝑧3), |𝛽|2 = 𝛽𝛽 = (𝑧1 + 𝑧2𝜔 + 𝑧3𝜔2)(𝑧1 + 𝑧2𝜔2 +
𝑧3𝜔) and |𝛾|2 = 𝛾𝛾 = (𝑧1 + 𝑧2𝜔2 + 𝑧3𝜔)(𝑧1 + 𝑧2𝜔 + 𝑧3𝜔2) [∵𝜔 = 𝜔2 & 𝜔2 = 𝜔]

⇒ |𝛼|2 + |𝛽|2 + |𝛾|2 = 3(|𝑧1|2 + |𝑧2|2 + |𝑧3|2) + 𝑧1[𝑧2(1 + 𝜔 + 𝜔2) + 𝑧3(1 + 𝜔 +
𝜔2)]+ 𝑧2[𝑧1(1 + 𝜔 + 𝜔2)+ 𝑧2(1 + 𝜔 + 𝜔2)]+ 𝑧3[𝑧1(1 + 𝜔 + 𝜔2)+ 𝑧2(1 + 𝜔 + 𝜔2)] =
3(|𝑧1|2 + |𝑧2|2 + |𝑧3|2) = R.H.S.

216. Let 𝑓(𝑥) = (𝑥 + 1)𝑛 − 𝑥𝑛 − 1.𝑥3 + 𝑥2 + 𝑥 = 0 ⇒ 𝑥(𝑥2 + 𝑥 + 1) = 0 ⇒ 𝑥 = 0, 𝜔, 𝜔2.
So for 𝑥3 + 𝑥2 + 𝑥 to be a factor of 𝑓(𝑥), 𝑓(0) = 0, 𝑓(𝜔) = 0, 𝑓(𝜔2) = 0.

𝑓(0) = 1𝑛 − 1 = 0, 𝑓(𝜔) = (𝜔 + 1)𝑛 − 𝜔𝑛 − 1 = −𝜔2𝑛 − 𝜔𝑛 − 1 [∵𝑛 is odd. ] =
−(1 + 𝜔𝑛 + 𝜔2𝑛) = 0. Similarly, 𝑓(𝜔2) = 0. Hence proved.



Answers of Complex Numbers 448

217. Let 𝑓(𝑥, 𝑦) = (𝑥 + 𝑦)𝑛 − 𝑥𝑛 − 𝑦𝑛.𝑥𝑦(𝑥 + 𝑦)(𝑥2 + 𝑥𝑦 + 𝑦2) = 0 ⇒ 𝑥 = 0, 𝑦 = 0, 𝑥 =
−𝑦, 𝑦 = 𝑥𝜔, 𝑦 = 𝑥𝜔2. When 𝑥 = 0, 𝑓(𝑥, 𝑦) = 0; 𝑦 = 0, 𝑓(𝑥, 𝑦) = 0; 𝑦 = −𝑥 ⇒ 𝑓(𝑥, 𝑦) =
−𝑥𝑛 − (−𝑥)𝑛 = 0[∵𝑛 = 2𝑚 + 1 ∀ 𝑚 ∈ 𝕀], 𝑦 = 𝑥𝑤 ⇒ 𝑓(𝑥, 𝑦) = [𝑥𝑛(1 + 𝜔)𝑛 − 𝑥𝑛 −
𝑥𝑛𝜔𝑛 ] = −𝑥𝑛𝜔2𝑛 − 𝑥𝑛 − 𝑥𝑛𝜔𝑛 = 0, and similarly when 𝑦 = 𝑥𝜔2, 𝑓(𝑥, 𝑦) = 0. Hence
proved.

218. R.H.S. = ∣ 1⁄𝑧1 + 1⁄
𝑧2 + ⋯ + 1⁄

𝑧𝑛∣ = ∣ 𝑧1⁄
|𝑧1|2

+ 𝑧2⁄
|𝑧2|2

+ ⋯ + 𝑧𝑛⁄
|𝑧𝑛|2

∣

= |𝑧1 + 𝑧2 + ⋯+ 𝑧𝑛| = |𝑧1 + 𝑧2 + ⋯+ 𝑧𝑛| = |𝑧1 + 𝑧2 + ⋯+ 𝑧𝑛| = L.H.S.

219. For any two complex numbers 𝑧1 and 𝑧2, we know that |𝑧1 + 𝑧2|2 + |𝑧1 − 𝑧2|2 =
2|𝑧1|2 + 2|𝑧2|2. Let 𝑧1 = 𝛼 +√


𝛼2 − 𝛽2 and 𝑧2 = 𝛼 −√

𝛼2 − 𝛽2.

Now (|𝑧1|+ |𝑧2|)2 = |𝑧1|2 + |𝑧2|2 + 2|𝑧1||𝑧2| = 2|𝛼|2 + 2|𝛼2 − 𝛽2|+ 2|𝛽|2 = |𝛼 + 𝛽|2 +
|𝛼 − 𝛽|2 + 2|𝛼 + 𝛽||𝛼 − 𝛽|

= (|𝛼 + 𝛽|+ |𝛼 − 𝛽|)2 ⇒ |𝑧1|+ |𝑧2| = |𝛼 + 𝛽|+ |𝛼 − 𝛽| = R.H.S.

220. |𝑧1| = |𝑧1| = 1 ⇒ 𝑎2+ 𝑏2 = 𝑐2+ 𝑑2 = 1, 𝑧1𝑧2 = 𝑎𝑐 + 𝑏𝑑 + 𝑖(𝑏𝑐 − 𝑎𝑑) ∵ ℜ(𝑧1𝑧2) = 0 ⇒
𝑎𝑐 + 𝑏𝑑 = 0 ⇒ 𝑎
⁄

𝑑 = − 𝑏⁄
𝑐 = 𝑘 (say). ∴ 𝑎 = 𝑘𝑑, 𝑏 = −𝑘𝑐.

∴ 𝑘2𝑑2 + 𝑘2𝑐2 = 1 ⇒ 𝑘2 = 1 ⇒ 𝑘 = ±1. Now |𝜔1| =√


𝑎2 + 𝑐2 =√

𝑎2 + 𝑏2 = 1, |𝜔2| =

√


𝑏2 + 𝑑2 =√

𝑎2 + 𝑏2 = 1, 𝜔1𝜔2 = (𝑎 + 𝑖𝑐)(𝑏 − 𝑖𝑑) ∴ℜ(𝜔𝜔2) = 𝑎𝑏 + 𝑐𝑑 = 0.

221. Given, ∣ 𝑧1−𝑧2⁄1−𝑧1𝑧2∣ < 1 ⇔ ∣ 𝑧1−𝑧2⁄1−𝑧1𝑧2∣2 < 1 ⇔ |𝑧1 − 𝑧2|2 < |1 − 𝑧1𝑧2|2

⇔ (𝑧1− 𝑧2)(𝑧1 − 𝑧2) < (1− 𝑧1𝑧2)(1 − 𝑧1𝑧2)⇔ (𝑧1− 𝑧2)(𝑧1− 𝑧2) < (1− 𝑧1𝑧2)((1−
𝑧1𝑧2))

⇔ |𝑧1|2 + |𝑧2|2 > 1 + |𝑧1|2|𝑧2|2 ⇔ 1 − |𝑧1|2 − |𝑧2|2 + |𝑧1|2|𝑧2|2 > 0 ⇔ (1 − |𝑧1|2)(1 −
|𝑧2|2) > 0 ⇒ (1 + |𝑧1|)(1 − |𝑧1|)(1 + |𝑧2|)(1 − |𝑧2|) > 0

⇔ (1 − |𝑧1|)(1 − |𝑧2|) > 0 which is true as |𝑧1| < 1 and |𝑧2| < 1.

222. Let 𝑧 = 𝑥 + 𝑖𝑦 then 𝑧−𝑧1⁄𝑧−𝑧2 = (𝑥−10)+𝑖(𝑦−6)⁄
(𝑥−4)+𝑖(𝑦−6) . Rationalizing 𝑥

2−14𝑥+40+(𝑦−6)2⁄
(𝑥−4)2+(𝑦−6)2 +

𝑖6(𝑦−6)⁄
(𝑥−4)2+(𝑦−6)2 = 𝑎 + 𝑖𝑏 (say)

∵ arg(𝑎+ 𝑖𝑏) = 𝜋
⁄

4 ⇒ 𝑥2−14𝑥+40+ (𝑦−6)2 = 6(𝑦−6)⇒ 𝑥2+𝑦2−14𝑥−18𝑦+112 =
0 ⇒ |𝑧 − 7 − 9𝑖|2 = 18. Hence proved.

223. Let 𝑧 = 𝑥+𝑖𝑦 then 3𝑧−6−3𝑖⁄2𝑧−8−6𝑖 = 𝑥−6+𝑖(3𝑦−3)⁄
2𝑥−8+𝑖(2𝑦−6). Rationalizing 6𝑥

2+6𝑦2−36𝑥−24𝑦+66+𝑖(12𝑥−12𝑦−12)⁄
(2𝑥−8)2+(2𝑦−6)2 =

𝑎 + 𝑖𝑏 (let)

∵ arg(𝑎 + 𝑖𝑏) = 𝜋
⁄

4 ⇒ 6𝑥2 + 6𝑦2 − 36𝑥 − 24𝑦 + 66 = 12𝑥 − 12𝑦 − 12 ⇒ 𝑥2 + 𝑦2 − 8𝑥 −
2𝑦 + 13 = 0. Also given, |𝑧 − 3 + 𝑖| = 3 ⇒ 𝑥 = −2𝑦 + 6. Substituting this in previously
obtained equation, we have

5𝑦2 − 10𝑦 + 1 = 0 ⇒ 𝑦 = 1 ± 2⁄
√


5 ⇒ 𝑥 = 4 ∓ 4⁄
√


5. Hence we have our 𝑧.



Answers of Complex Numbers 449

224. Let |𝑧| = 𝑟1, |𝑤| = 𝑟2, arg(𝑧) = 𝜃1 and arg(𝑤) = 𝜃2. Then, |𝑧 − 𝑤|2 = (𝑟1 cos 𝜃1 −
𝑟1 sin 𝜃1)2 + (𝑟2 cos 𝜃2 − 𝑟2 sin 𝜃2)2 = (𝑟1 − 𝑟2)2 + 2𝑟1𝑟2 − 2𝑟1𝑟2 cos(𝜃1 − 𝜃2)

= (𝑟1−𝑟2)2+4𝑟1𝑟2 sin2𝜃1−𝜃2⁄2 ≤ (𝑟1−𝑟2)2+2.1.1.2(𝜃1−𝜃2⁄2 )
2
= (|𝑧|− |𝑤|)2+(𝜃1−𝜃2)2.

Hence proved.

225. Let 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) ⇒ 𝑧⁄
|𝑧| = cos 𝜃 + 𝑖 sin 𝜃 ∴ ∣ 𝑧⁄|𝑧| − 1∣ = |(cos 𝜃 − 1) + 𝑖 sin 𝜃| =

√

(cos 𝜃 − 1)2 + sin2 𝜃 =√


4 sin2 𝜃⁄2 = 2| sin 𝜃
⁄

2 | ≤ |𝜃|.

Now, |𝑧 − |𝑧|| = |𝑧 − 1 − (|𝑧|− 1) | ≥ |𝑧 − 1|− ||𝑧|− 1| ∴ |𝑧 − 1|− ||𝑧|− 1| ≤ |𝑧 − |𝑧||

⇒ |𝑧 − |𝑧|| = |𝑟(cos 𝜃 + 𝑖 sin 𝜃)− 𝑟| =√

4𝑟2 sin2 𝜃⁄2 ≤ 2𝑟∣𝜃⁄2∣ = 𝑟|𝜃| = |𝑧|| arg(𝑧) |

⇒ |𝑧 − 1|− ||𝑧|− 1| ≤ |𝑧|| arg(𝑧) |⇒ |𝑧 − 1| ≤ ||𝑧|− 1|+ |𝑧|| arg(𝑧) |.

226. Let 𝑧 = 𝑟(cos 𝜃+ 𝑖 sin 𝜃) then 1⁄𝑧 =
1
⁄

𝑟 (cos 𝜃− 𝑖 sin 𝜃). Given ∣𝑧+1
⁄

𝑧∣ = 𝑎⇒ ∣(𝑟+1
⁄

𝑟) cos 𝜃+

𝑖(𝑟 − 1
⁄

𝑟) sin 𝜃∣ = 𝑎

⇒ (𝑟 + 1
⁄

𝑟)
2
cos2 𝜃 + (𝑟 − 1
⁄

𝑟)
2
sin2 𝜃 = 𝑎2 ⇒ (𝑟 − 1
⁄

𝑟) = 𝑎2 − 4 cos2 𝜃. Clearly, 𝑟 will be

greatest if cos 𝜃 = 0 ⇒ 𝑟2 − 𝑎𝑟 − 1 = 0 ⇒ 𝑟 = 𝑎±√


𝑎2+4⁄
2 . This also implies that 𝑧 is a

purely imaginary number.

227. |𝑧1 + 𝑧2|2 < |𝑧1|2 + 𝑐|𝑧1|2 + |𝑧2|2 + 1
⁄

𝑐 |𝑧2|
2 ⇒ (𝑧1 + 𝑧2)(𝑧1 + 𝑧2) < |𝑧1|2 + |𝑧2|2 +

𝑐2|𝑧1|2+|𝑧2|2⁄
𝑐 ⇒ 𝑧2𝑧1 + 𝑧1𝑧2 < 1
⁄

𝑐 (𝑐
2|𝑧1|2 + |𝑧2|2)

⇒ (𝑥2 + 𝑖𝑦2)(𝑥1 − 𝑖𝑦1)+ (𝑥1 + 𝑖𝑦1)(𝑥2 − 𝑖𝑦2) < 1
⁄

𝑐 [𝑐
2(𝑥21 + 𝑦21 )+ 𝑥22 + 𝑦22 ]⇒ (𝑐𝑥1 −

𝑥2)2 + (𝑐𝑦1 − 𝑦2)2 > 0 which is true.

228. Given, ∣𝑧1−𝑧2⁄𝑧1+𝑧2∣ = 1 ⇒ |𝑧1− 𝑧2|2 = |𝑧1+ 𝑧2|2 ⇒ (𝑧1− 𝑧2)(𝑧1− 𝑧2) = (𝑧1+ 𝑧2)(𝑧1+ 𝑧2)

⇒ −𝑧2𝑧1 − 𝑧1𝑧2 = 𝑧2𝑧1 + 𝑧1𝑧2 ⇒ 𝑧1𝑧2 = −2𝑧2𝑧1 ⇒ (𝑧1⁄𝑧2) = −𝑧1⁄
𝑧2

⇒ 𝑧1⁄
𝑧2 is purely imaginary ⇒ 𝑖𝑧1⁄

𝑧2 is real, which we take as 𝑥.

𝑧1+𝑧2⁄
𝑧1−𝑧2 =

𝑧1/𝑧2+1⁄
𝑧1/𝑧2−1 =

−𝑖𝑥+1⁄
−𝑖𝑥−1 =

−1+𝑥2+2𝑖𝑥⁄
1+𝑥2

If 𝜃 is the angle between the lines joining the origin to the points 𝑧1 + 𝑧2 and 𝑧1 − 𝑧2,
then tan 𝜃 = ∣arg(𝑧1+𝑧2⁄𝑧1−𝑧2)∣ = ∣ 2𝑥

⁄

𝑥2−1∣.

229. Let 𝑧1 = 𝑟1(cos 𝜃1 + 𝑖 sin 𝜃1), 𝑧2 = 𝑟2(cos 𝜃2 + 𝑖 sin 𝜃2). Let √

𝑎2 + 𝑏2 = 𝑟. Let

𝑎 = 𝑟 cos 𝛼, 𝑏 = 𝑟 cos 𝛼. Now |𝑎𝑧1 + 𝑏𝑧2|2 = |𝑟𝑟1(cos 𝜃1 + 𝑖 sin 𝜃1) cos 𝛼 + 𝑟𝑟2(cos 𝜃2 +
𝑖 sin 𝜃2) sin 𝛼|2
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= 𝑟2[𝑟21 cos2 𝛼 + 𝑟22 sin2 𝛼 + 2𝑟1𝑟2 cos 𝛼 sin 𝛼 cos(𝜃1 − 𝜃2)] = 𝑟2
⁄

2 [𝑟
2
1 + 𝑟22 + (𝑟21 −

𝑟22) cos 2𝛼 + 2𝑟2𝑟2 cos(𝜃1 − 𝜃2) sin 2𝛼]

Thus, |𝑎𝑧1+𝑏𝑧2|2 = 𝑟2
⁄

2 [𝐴+𝐵 cos 2𝛼+𝐶 sin 2𝛼]⇒ 2|𝑎𝑧1+𝑏𝑧2|2⁄
𝑟2 [𝐴+𝐵 cos 2𝛼+𝐶 sin 2𝛼],

where 𝐴 = 𝑟21 + 𝑟22, 𝐵 = 𝑟21 − 𝑟22 and 𝐶 = 2𝑟1𝑟2 cos(𝜃1 − 𝜃2).

Since 𝐴−√

𝐵2 + 𝐶2 ≤ 𝐴+𝐵 cos 2𝛼 + 𝐶 sin 2𝛼 ≤ 𝐴+√


𝐵2 + 𝐶2

𝐵2 + 𝐶2 = 𝑟41 + 𝑟42 − 2𝑟21𝑟22 + 4𝑟21𝑟22 cos2(𝜃1 − 𝜃2).

|𝑧21+𝑧22 | = |𝑟21(cos 2𝜃1+𝑖 sin 2𝜃1)+𝑟22(cos 2𝜃2+𝑖 sin 2𝜃2)| =√

𝐵2 + 𝐶2. Hence proved.

230. Given 𝑧 = 𝑏+𝑖𝑐⁄
1+𝑎 ⇒ 𝑖𝑧 = −𝑐+𝑖𝑏⁄

1+𝑎 ⇒ 1+𝑖𝑧⁄
1−𝑖𝑧 =

1+𝑎−𝑐+𝑖𝑏⁄
1+𝑎+𝑐−𝑖𝑏

Given, 𝑎2 + 𝑏2 + 𝑐2 = 1 ⇒ (𝑎 + 𝑖𝑏)(𝑎 − 𝑖𝑏) = (1 + 𝑐)(1 − 𝑐)⇒ 1+𝑖𝑧⁄
1−𝑖𝑧 =

𝑎+𝑖𝑏⁄
1+𝑐 .

231. Let 𝑧1 = 𝑥1+𝑖𝑦1 and 𝑧2 = 𝑥2+𝑖𝑦2. L.H.S. = |𝑎𝑧1−𝑏𝑧2|2+ |𝑏𝑧1−𝑎𝑧2|2 = (𝑎𝑥1−𝑏𝑥2)2+
(𝑎𝑦1 − 𝑏𝑦2)2 + (𝑏𝑥1 − 𝑎𝑥2)2 + (𝑏𝑦1 − 𝑏𝑦2)2

= (𝑎2 + 𝑏2)(𝑥21 + 𝑦21 )+ (𝑎2 + 𝑏2)(𝑥22 + 𝑦22 ) = (𝑎2 + 𝑏2)(|𝑧1|2 + |𝑧2|2) = R.H.S.

232. Let 𝛼 = 𝑥1 + 𝑖𝑦1 and 𝛽 = 𝑥2 + 𝑖𝑦2. Then |𝛼 + 𝛽|2 = (𝑥1 + 𝑥2)2 + (𝑦1 + 𝑦2)2 =
𝑥21 + 𝑥22 + 𝑦21 + 𝑦22 + 2𝑥1𝑥2 + 2𝑦1𝑦2.

|𝛼|2 = 𝑥21 + 𝑦21, |𝛽|2 = 𝑥22 + 𝑦22, ℜ(𝛼𝛽) = 𝑥1𝑥2 + 𝑦1𝑦2 and ℜ(𝛼𝛽) = 𝑥1𝑥2 + 𝑦1𝑦2. Now
it is trivial to prove the equality.

233. |1 − 𝑧1𝑧2|2 − |𝑧1 − 𝑧2|2 = (1 − 𝑧1𝑧2)(1 − 𝑧1𝑧2) − (𝑧1 − 𝑧2)(𝑧1 − 𝑧2) = (1 − 𝑧1𝑧2 −
𝑧1𝑧2 + |𝑧1|2|𝑧2|2) − (|𝑧1|2 − 𝑧1𝑧2 − 𝑧1𝑧2 + |𝑧2|2) = 1 − |𝑧1|2 − |𝑧2|2 + |𝑧1|2|𝑧2|2 =
(1 − |𝑧1|2)(1 − |𝑧2|2) = R.H.S.

234. Consider two complex numbers 𝑧1 = 𝑎1 + 𝑖𝑏1 and 𝑧2 = 𝑎2 + 𝑖𝑏2. Now we have to prove
|𝑧1 + 𝑧2| ≤ |𝑧1|+ |𝑧2| which can be further extended to prove the result.

⇒√

(𝑎1 + 𝑎2)2 + (𝑏2 + 𝑏2)2 ≤√

𝑎21 + 𝑏21 +√

𝑎22 + 𝑏22.

Squaring both sides and simplifying

⇒ 𝑎1𝑎2 + 𝑏1𝑏2 ≤√

(𝑎21 + 𝑏21)(𝑎22 + 𝑏22)⇒ (𝑎1𝑎2 + 𝑏1𝑏2)2 − (𝑎21 + 𝑏21)(𝑎22 + 𝑏22) ≤ 0 ⇒

−(𝑎1𝑏2 − 𝑎2𝑏1)2 ≤ 0.

235. Given, ∣𝑧1−2𝑧2⁄2−𝑧1𝑧2∣ = 1 ⇒ |𝑧1 − 2𝑧2|2 = |2 − 𝑧1𝑧2|2

⇒ (𝑧1 − 2𝑧2)(𝑧1 − 2𝑧2) = (2 − 𝑧1𝑧2)(2 − 𝑧1𝑧2) ⇒ |𝑧1|2 − 2𝑧1𝑧2 − 2𝑧1𝑧2 + 4|𝑧2|2 =
4 − 2𝑧1𝑧2 − 2𝑧1𝑧2 + |𝑧1|2|𝑧2|2

⇒ |𝑧1|2|𝑧2|2 − 4|𝑧2|2 − |𝑧1|2 − 4 = 0 ⇒ |𝑧2| = 2 ∵ |𝑧1| ≠ 1.
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236. ∣𝑧1+𝑧2⁄2 +√

𝑧1𝑧2∣+ ∣𝑧1+𝑧2⁄2 −√

𝑧1𝑧2∣

= 1
⁄

2 ∣(√

𝑧1 +√

𝑧2)2 ∣+ 1
⁄

2 ∣(√

𝑧1 −√

𝑧2)2 ∣ = |𝑧1|+ |𝑧2|

237. We have proven that |𝑎 +√

𝑎2 − 𝑏2 |+ |𝑎 −√

𝑎2 − 𝑏2 | = |𝑎 + 𝑏|+ |𝑎 − 𝑏|. Substituting

𝑎 = 𝛽 and 𝑏 =√

𝛼𝛾 we have

|𝛽 +√

𝛼𝛾 |+ |𝛽 −√

𝛼𝛾 | = |𝛼|(| 𝛽⁄𝛼 +√


𝛾⁄
𝛼 |+ | 𝛽⁄𝛼 −√


𝛾⁄
𝛼 |)

= |𝛼|(|− 𝑧1 − 𝑧2 +√

𝑧1𝑧2 |+ |− 𝑧1 − 𝑧2 −√

𝑧1𝑧2 |) = |𝛼|(|𝑧1|+ |𝑧2|).

238. We have |𝑎| = 1 ⇒ |𝑎|2 = 1 ⇒ 𝑎𝑎 = 1 ⇒ 𝑎 = 1
⁄

𝑎. Thus, 1⁄𝑎 +
1
⁄

𝑏 +
1
⁄

𝑐 = 𝑎 + 𝑏 + 𝑐 =
0[∵ 𝑎 + 𝑏 + 𝑐 = 0]

239. |𝑧 + 4| ≤ 3 ⇒ −3 ≤ 𝑧 + 4 ≤ 4 ⇒ 0 ≤ 𝑧 + 1 ≤ 6.

240. We have to prove that (|𝑧1|+ |𝑧2|)∣ 𝑧1⁄|𝑧1|+ 𝑧2⁄
|𝑧2|∣ ≤ 2|𝑧1+ 𝑧2|. Let 𝑧1 = 𝑟1(cos 𝜃1+ 𝑖 sin 𝜃1)

and 𝑧2 = 𝑟2(cos 𝜃2 + 𝑖 sin 𝜃2). Then

(|𝑧1| + |𝑧2|) ∣ 𝑧1⁄|𝑧1| + 𝑧2⁄
|𝑧2|∣ = (𝑟1 + 𝑟2) |(cos 𝜃1 + cos 𝜃2) + 𝑖(sin 𝜃1 + sin 𝜃2)| = (𝑟1 +

𝑟2)√

2 + 2 cos(𝜃1 − 𝜃2)

Also, 4|𝑧1 + 𝑧2|2 = 4[(𝑟1 cos 𝜃1 + 𝑟2 cos 𝜃2)2 + (𝑟1 sin 𝜃1 + 𝑟2 sin 𝜃2)2 ] = 4[𝑟21 + 𝑟22 +
𝑟1𝑟2 cos(𝜃1− 𝜃2)] and squaring L.H.S. we have 2(𝑟1+ 𝑟2)2[1+ cos(𝜃1− 𝜃2)]2. Clearly,
L.H.S. ≤ R.H.S.

241. Given equation is 𝑧2 + 𝑎𝑧 + 𝑏 = 0. Let 𝑝, 𝑞 are two of its roots. Then we have
𝑝 + 𝑞 = −𝑎 and 𝑝𝑞 = 𝑏. Taking modulus of both we have |𝑝 + 𝑞| = |𝑎| and |𝑝𝑞| = 𝑏.
Now it is required that |𝑝| = |𝑞| = 1. Therefore we have |𝑝 + 𝑞| ≤ |𝑝|+ |𝑞| = 2∴ |𝑎| ≤ 2.
Similarly, |𝑏| = |𝑝𝑞| = |𝑝||𝑞| = 1. Since 𝑝, 𝑞 have unit modulii, we can have them as
𝑝 = 𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1 and 𝑞 = 𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2.

arg(𝑏) = arg(𝑝𝑞) = arg(cos(𝜃1 + 𝜃2)+ 𝑖 sin(𝜃1 + 𝜃2)) = 𝜃1 + 𝜃2

arg(𝑎) = arg(𝑝 + 𝑞) = arg[(cos 𝜃1 + cos 𝜃2) + 𝑖(sin 𝜃1 + sin 𝜃2)] = arg[(cos2 𝜃1⁄
2 +

𝑖2 sin 𝜃1⁄
2 + 2𝑖 sin 𝜃1⁄

2 cos 𝜃1⁄2 )+ (cos2 𝜃2⁄2 + 𝑖2 sin 𝜃2⁄
2 + 2𝑖 sin 𝜃2⁄

2 cos 𝜃2⁄2 )]
= arg[cos 𝜃1+𝜃2⁄2 + 𝑖 sin 𝜃1+𝜃2⁄

2 ] = 𝜃1+𝜃2⁄
2 and hence arg(𝑏) = 2arg(𝑎).

242. Let 𝑧 = 𝑥 + 𝑖𝑦. First we consider first two inequalities |𝑧| ≤ |ℜ(𝑧) | + |ℑ(𝑧) | ⇒
√

𝑥2 + 𝑦2 ≤ 𝑥 + 𝑦. Squaring, we have 𝑥2 + 𝑦2 ≤ 𝑥2 + 𝑦2 + 2𝑥𝑦 ⇒ 2𝑥𝑦 ≥ 0,

which is true. Now we consider last two inequalities, |ℜ(𝑧) | + |ℑ(𝑧) | ≤ √


2 |𝑧| ⇒
𝑥+ 𝑦 ≤√

2(𝑥2 + 𝑦2). Squaring, we have 𝑥2 + 𝑦2 + 2𝑥𝑦 ≤ 2(𝑥2 + 𝑦2)⇒ (𝑥 − 𝑦)2 ≥ 0,

which is also true.
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243. ∣𝑧 − 4
⁄

𝑧∣ = 2 ⇒ |𝑧|− 4⁄
|𝑧| ≥ 2 ⇒ |𝑧|2 − 2|𝑧|− 4 ≥ 0. The greatest root of this equation is

√


5 + 1. Hence proven.

244. Since 𝛼, 𝛽, 𝛾, 𝛿 are roots of the equation. ∴ 𝑎(𝑥 − 𝛼)(𝑥 − 𝛽)(𝑥 − 𝛾)(𝑥 − 𝛿) = 𝑎𝑥4 +
𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒. Substituting 𝑥 = 𝑖, we get following

𝑎(𝑖 − 𝛼)(𝑖 − 𝛽)(𝑖 − 𝛾)(𝑖 − 𝛿) = 𝑎𝑖4 + 𝑏𝑖3 + 𝑐𝑖2 + 𝑑𝑖 + 𝑒 ⇒ 𝑎(1 + 𝑖𝛼)(1 + 𝑖𝛽)(1 +
𝑖𝛾)(1 + 𝑖𝛿) = 𝑎 − 𝑖𝑏 − 𝑐 + 𝑖𝑑 + 𝑒.

Taking modulus and squaring we get our desired result.

245. ∵𝛼1, 𝛼2, … , 𝛼𝑛 are the roots of the given equation. ∴ (𝑥 − 𝛼1)(𝑥 − 𝛼2)⋯ (𝑥 − 𝛼𝑛) =
𝑥𝑛 + 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛−2 + …+ 𝑎𝑛−1𝑥 + 𝑎𝑛 = 0.

Substituting 𝑥 = 𝑖, we get following (𝑖 − 𝛼1)(𝑖 − 𝛼2)⋯ (𝑖 − 𝛼𝑛) = 𝑖𝑛 + 𝑎1𝑖𝑛−1 +
𝑎2𝑖𝑛−2 + …+ 𝑎𝑛−1𝑖 + 𝑎𝑛.

Taking modulus and squaring we get our desired result.

246. Let |𝑧1| = |𝑧2| = |𝑧3| = 𝑅. ∴ Origin is the circumcenter of triangle. Since triangle is also
equilateral circumcenter and centroid coincide. Therefore, origin is also centroid. Thus,

𝑧1+𝑧2+𝑧3⁄
3 = 0 ⇒ 𝑧1 + 𝑧2 + 𝑧3 = 0.

247. 𝑧1 + 𝑧2 + 𝑧3 = 0 implies centroid of the triangle is the origin. Circumcenter is also
origin as 𝑍𝑖 lies on the circle |𝑧| = 1. Hence, circumcenter is same as centroid making
the triangle an equilateral triangle having circumcircle with unit radius.

248. Since the triangle is equilateral therefore the circumcenter and centroid will be same
i.e. 𝑧0 = 𝑧1+𝑧2+𝑧3⁄

3 . Also for equilateral triangle, 𝑧21 + 𝑧22 + 𝑧23 = 𝑧1𝑧2 + 𝑧2𝑧3 + 𝑧3𝑧1.

Squaring the first equation 9𝑧20 = 𝑧21 + 𝑧22 + 𝑧23 + 2(𝑧1𝑧2 + 𝑧2𝑧3 + 𝑧3𝑧2) = 𝑧21 + 𝑧22 +
𝑧23 + 2(𝑧21 + 𝑧22 + 𝑧23 )⇒ 𝑧21 + 𝑧22 + 𝑧23 = 3𝑧20.

249. Since 𝑧1, 𝑧2 and origin form an equilateral triangle we have 𝑧21 + 𝑧22 + 02− 𝑧1𝑧2− 𝑧2.0 −
𝑧1.0 = 0. Hence, proven.

250. From previous probelm 𝑧1, 𝑧2 and origin will form a triangle if 𝑧21 + 𝑧22 − 𝑧1𝑧2 = 0.
Therefore, (𝑧1 + 𝑧2)2 = 3𝑧1𝑧2 ⇒ 𝑎2 = 3𝑏.

251. Since 𝑧1, 𝑧2, 𝑧3 are roots of the equation 𝑧3 + 3𝛼𝑧2 + 3𝛽𝑧 + 𝛾 = 0 ⇒ 𝑧1 + 𝑧2 + 𝑧3 =
−3𝛼, 𝑧1𝑧2 + 𝑧2𝑧3 + 𝑧3𝑧1 = 3𝛽 and 𝑧1𝑧2𝑧3 = −𝛾.

Centroid is given by 𝑧1+𝑧2+𝑧3⁄3 = −𝛼. Triangle will be equilateral if 𝑧21 + 𝑧22 + 𝑧33 =
𝑧1𝑧2 + 𝑧2𝑧3 + 𝑧3𝑧1 ⇒ (𝑧1 + 𝑧2 + 𝑧3)2 = 3(𝑧1𝑧2 + 𝑧2𝑧3 + 𝑧3𝑧1)⇒ 𝛼2 = 𝛽.

252. Given 2𝑧2 = 𝑧1 + 𝑧3. Clearly, from section formula we can deduce that 𝑧2 divides line
segment joining 𝑧1 and 𝑧3 in two equal segments hence the complex numbers are
collinear.
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253. If 𝑧1, 𝑧2, 𝑧3 are collinear then either 𝑧2 divides 𝑧1𝑧3 internally/externally or 𝑧3 di
vides 𝑧1𝑧2 internally/externally. Now we can apply the condition for collinearity i.e.

∣
𝑧1 𝑧2 𝑧3
𝑧1 𝑧2 𝑧3
1 1 1 ∣ = 0 and hence we can show desired conditions.

254. 𝑧 represents the ring between the concentric circles whose center is at (3, 4𝑖) having
radii 1 and 2.

255. Let 𝑧 = 𝑥+ 𝑖𝑦 ⇒ |𝑧|2 = 𝑥2+ 𝑦2, |𝑧 − 1|2 = (𝑥−1)2+ 𝑦2, |𝑧 + 1|2 = (𝑥+1)2+ 𝑦2. From
given inequailty |𝑧 + 1|2 = 16 + |𝑧 − 1|2 − 8|𝑧 − 1|⇒ 4𝑥 = 16 − 8|𝑧 − 1|⇒ 4|𝑧 − 1|2 =
(4 − 𝑥)2 ⇒ 3𝑥2 + 4𝑦2 = 12, which is an equation of an ellipse.

256. Let 𝑧 = 𝑥 + 𝑖𝑦, then 𝑥 = 𝑡 + 5 ⇒ 𝑥 − 5 = 𝑡 and 𝑦 = √

4 − 𝑡2 ⇒ 𝑦2 = 4 − 𝑡2 ⇒

(𝑥 − 5)2 + 𝑦2 = 4, which is a circle with center (5, 0) and radius 2.

257. Let 𝑧 = 𝑥 + 𝑖𝑦, then 𝑧2
⁄

𝑧−1 =
(𝑥2−𝑦2+2𝑖𝑥𝑦)[(𝑥−1)−𝑖𝑦]⁄

(𝑥−1)2+𝑦2 . Since it is real, we can equate the
imaginary part to zero.

⇒ 𝑦(𝑦2 − 𝑥2) + 2𝑥2𝑦 − 2𝑥𝑦 = 0 ⇒ 𝑦 = 0 or 𝑥2 + 𝑦2 − 2𝑥 = 0 ⇒ (𝑥 − 1)2 + 𝑦2 = 1.
However, 𝑦 ≠ 0 else 𝑧 won't remain a complex number. ⇒𝑥+𝑦2−2𝑥 = (𝑥−1)2+𝑦2 = 1,
which represents a circle with center at (1, 0) and unit radius.

258. Let 𝑧 = 𝑥+𝑖𝑦, then |𝑧2−1|= |𝑧|2+1⇒ (𝑥2−𝑦2−1)+4𝑥2𝑦2 = (𝑥2+𝑦2+1)2 ⇒ 𝑥 = 0.
Hence, locus of 𝑧 is a straight line specifically imginary axis.

259. Let 𝑧 = 𝑥 + 𝑖𝑦 then 𝑦⁄𝑥 ≥ tan 𝜋
⁄

3 ⇒ 𝑦 ≥ √


3𝑥. Similarly, 𝑦⁄𝑥 ≤ tan 3𝜋⁄
2 = −∞.

This represents the set of straight lines whose slope is greater than √


3 and less than or
equal to −∞.

260. Let 𝑧 = 𝑥 + 𝑖𝑦, then arg(𝑧−2⁄𝑧+2) =
𝜋
⁄

3 ⇒ arg(𝑥−2+𝑖𝑦⁄𝑥+2+𝑖𝑦) = 𝜋
⁄

3

⇒ arg(𝑥
2+𝑦2−4+4𝑖𝑦⁄
(𝑥+2)2+𝑦2 ) = 𝜋
⁄

3 ⇒
4𝑦⁄

𝑥2+𝑦2−4 = √


3, which is equation of a circle.

261. Let 𝑧 = 𝑥 + 𝑖𝑦. Given, arg(𝑧−1⁄𝑧+1) =
𝜋
⁄

2 ⇒ arg((𝑥−1)+𝑖𝑦⁄(𝑥+1)+𝑖𝑦) = 𝜋
⁄

2 ⇒
2𝑦⁄

𝑥2+𝑦2−1 = ∞.

The above equation implies 𝑥2 + 𝑦2 − 1 = 0 and 𝑦 > 0 which is circle at (0, 0) with
unit circle above 𝑥-axis. The points (−1, 0) and (1, 0) are excluded because that will
make the above equation indeterminate.

262. log√3
|𝑧|2−|𝑧|+1⁄

2+|𝑧| < 2 ⇒ |𝑧|2−|𝑧|+1⁄
2+|𝑧| < (√


3)2 ⇒ |𝑧|2 − 4|𝑧|− 5 < 0 ⇒ |𝑧| < 5.

263. Clearly 𝐴 is (1, 0) or (−1, 0). Let A is (1, 0). Then 𝑧 = cos 0∘ + 𝑖 sin 0∘. Clearly, 𝐵
and 𝐶 would be cos 120∘ + 𝑖 sin 120∘ and cos 240∘ + 𝑖 sin 240∘. Similarly, 𝐵 and 𝐶 can
be found if 𝐴 is (−1, 0).
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264. Let 𝑧 represent 𝐴, then 𝑧−(2−𝑖)⁄
1+𝑖−(2−𝑖) =

𝐴𝑀⁄
𝑀𝐷𝑒

2𝜋𝑖⁄
2 ⇒ 𝑧 = (2− 𝑖)+ 𝑖
⁄

2 (−1+2𝑖)⇒ 𝑧 = 1− 3
⁄

2 𝑖

or 3 − 𝑖
⁄

2.

265. 𝑧1−𝑧2⁄
𝑧3−𝑧2 = 𝑟

𝑖𝜋⁄
2 = 𝑖 ⇒ 𝑧3 = −𝑖𝑧1 + 𝑧2(1 + 𝑖). Similarly, 𝑧4 can be found.

266. 𝑧1 = 2(1⁄2 +
√


3⁄
2 𝑖) = 2(cos 60∘ + 𝑖 sin 60∘). Therefore, 𝑧2 = 2(cos 180∘ + 𝑖 sin 180∘) = −2

and 𝑧3 = 2(cos 300∘ + 𝑖 sin 300∘).

267. We know that three vertices represent an equilateral triangle if 𝑧21 + 𝑧22 + 𝑧23 − 𝑧1𝑧2 −
𝑧2𝑧3 − 𝑧1𝑧3 = 0. Substituting the respective values, we get

𝑎2 − 1 + 2𝑎𝑖 + 1 − 𝑏2 + 2𝑏𝑖 − 𝑎 + 𝑏 − 𝑎𝑏𝑖 − 𝑖 = 0 ⇒ 𝑎2 − 𝑏2 − 𝑎 + 𝑏 = 0 ⇒ (𝑎 − 𝑏)(𝑎 +
𝑏 + 1) = 0. So either 𝑎 = 𝑏 or 𝑎 + 𝑏 = −1 but if we choose 𝑎 + 𝑏 = −1 then the other
part leads us to 𝑎𝑏 = 3 which is not possible.

Choosing 𝑎 = 𝑏, the imaginary part becomes 2𝑎 + 2𝑏 − 𝑎𝑏 − 1 = 0 ⇒ 𝑎 = 2 ±√


3. But
𝑎 = 2 +√


3 does not make triangle equilateral. So 𝑎 = 𝑏 = 2 −√


3.

268. Let 𝑂 = 𝑧 represent center of the sqsuare then 𝑧 = 𝐴+𝐶⁄
2 ⇒ 𝐶 = 4 + 0𝑖 = 4. 𝐴𝐶 =

𝐴𝐵.√


2.𝑒𝜋/4 ⇒ 𝐵 = 1 + 2𝑖 and 𝐴𝐷 = 𝐴𝐵.𝑒𝜋/2 = 6 + 3𝑖.

269. Let 𝑂 be the origin and 𝐴1 the vertex 𝑧1. Let the vertex adjacent to 𝐴1 be 𝐴2. Then
𝑧2 = 𝑧1𝑒2𝜋𝑖/𝑛 ∵∠𝐴1𝑂𝐴2 = 2𝜋⁄

𝑛 . Similarly, 𝑧3, 𝑧4, … , 𝑧𝑛 are other vertices in order,
then 𝑧3 = 𝑒4𝜋𝑖/𝑛, 𝑧4 = 𝑒6𝜋𝑖/𝑛, …. Thus, all vertices are given by 𝑧𝑟+1 = 𝑧1𝑒2𝜋𝑟𝑖/𝑛 =
𝑧1(cos 2𝑟𝜋/𝑛 + 𝑖 sin 2𝑟𝜋/𝑛), …, where 𝑟 = 1, 2, … , 𝑛 − 1.

270. 𝑧1, 𝑧2, 𝑧3 are collinear if ∣
𝑧1 𝑧1 1
𝑧2 𝑧2 1
𝑧3 𝑧3 1 ∣ = 0. Substituting 𝑎, 𝑏, 𝑐 in this and expnading the

determinant it is trivial to obtain the given condition.

271. 𝑃𝐴2 = 4𝑃𝐵2 ⇒ |𝑧 − 6𝑖|2 = 4|𝑧 − 3|2 ⇒ 𝑥2 + (𝑦 − 6)2 = 4[(𝑥− 3)2 + 𝑦2 ]⇒ 𝑥2+ 𝑦2 −
8𝑥 + 4𝑦 = 0, which represents a circle with center at (4 − 2) and radius √


20.

𝑥2 + 𝑦2 − 8𝑥 + 4𝑦 = 0 ⇒ 𝑥2 + 𝑦2 = 4(2𝑥)+ 2𝑖(2𝑖𝑦)⇒ |𝑧|2 = 4(𝑧 + 𝑧)+ 2𝑖(𝑧 − 𝑧) =
(4 + 2𝑖)𝑧 + (4 − 2𝑖)𝑧.

272. The diagram is given below:
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θ

θ

π − θ

A(z1) B(z2)

P (z)

C(z3)

P (z)

Let three non-collinear points be 𝐴(𝑧1), 𝐵(𝑧2)
and 𝐶(𝑧3). Let 𝑃 (𝑥) be any point on the circle.

Then either ∠𝐴𝐶𝐵 = ∠𝐴𝑃𝐵 (when they are
in the same segment) or ∠𝐴𝐶𝐵 +∠𝐴𝑃𝐵 = 𝜋
(when they are in the opposite segment).

arg(𝑧3−𝑧2⁄𝑧3−𝑧1) − arg(𝑧−𝑧2⁄𝑧−𝑧1) = 0 or arg(𝑧3−𝑧2⁄𝑧3−𝑧1) +
arg(𝑧−𝑧1⁄𝑧−𝑧2) = 𝜋

arg[(𝑧3−𝑧2⁄𝑧3−𝑧1)(𝑧−𝑧1⁄𝑧−𝑧2)]= 0 or arg[(𝑧3−𝑧2⁄𝑧3−𝑧1)(𝑧−𝑧1⁄𝑧−𝑧2)]=
𝜋

In any case, we get (𝑧3−𝑧2)⁄(𝑧3−𝑧1) (𝑧−𝑧1)⁄(𝑧−𝑧2) is purely real. Hence, proved.

273. Following from previous problem we have one equation for the condition for the four
vertices to be cyclic. Also, sum of all four angles of the quadrilateral is equal to be 2𝜋.
From these two equations, the results can be deduced.

274. Consider the following diagram:

𝐴(𝑧1) 𝐵(𝑧2)

𝐶(𝑧3)

𝑃 (𝑧′1) 𝑄(𝑧′2)

𝑅(𝑧′3)

△𝐴𝐵𝐶 and △𝑃𝑄𝑅 will be similar if all their angles are equal
and ratios of sides as well.

𝑎𝑟𝑔(𝑧3−𝑧1⁄𝑧2−𝑧1) = 𝑎𝑟𝑔(𝑧
′
3−𝑧′1⁄
𝑧′2−𝑧′1

)

𝐴𝐵⁄
𝑃𝑄 = 𝐴𝐶⁄

𝑃𝑅 or 𝐴𝐶⁄𝐴𝐵 = 𝑃𝑅⁄
𝑃𝑄 or 𝑧3−𝑧1⁄𝑧2−𝑧1 = 𝑧′3−𝑧′1⁄

𝑧′2−𝑧′1

Simplifying these two equations gives us our determinant.

275. From these two equations we have 𝑟 = 𝑐−𝑎
⁄

𝑏−𝑎 and 𝑟 = 𝜔−𝑢⁄
𝑣−𝑢. Equating these two equations

and taking modulus and argument, it follows from the previous problem that the two
triangles are similar.

276. We know that points on a perpendicular bisector is equidistant from the two points of
the line to which it is perperndicular bisector.

⇒ |𝑧 − 𝑧1| = |𝑧 − 𝑧2|⇒ |𝑧 − 𝑧1|2 = |𝑧 − 𝑧2|2 ⇒ (𝑧 − 𝑧1)(𝑧 − 𝑧1) = (𝑧 − 𝑧2)(𝑧 − 𝑧2),
which can be written in the form of 𝑎𝑧 + 𝑎𝑧 + 𝑏 = 0, which is equation of a straight
line.

277. Mid-point of such a diameter is 𝑧1+𝑧2⁄2 . Let 𝑃 be a point lying on this circle, which,

is represented by complex number 𝑧. Thus, the equation of circle is ∣𝑧 − 𝑧1+𝑧2⁄
2 ∣ =

∣𝑧1− 𝑧1+𝑧2⁄
2 ∣ or ∣𝑧 − 𝑧1+𝑧2⁄

2 ∣ = ∣𝑧2− 𝑧1+𝑧2⁄
2 ∣. Square and simplify to arrive at the equation.

278. The equation can be written as |𝑧 − 𝑧1 | = 𝑐|𝑧 − 𝑧2 |, which, when substituted with
𝑧1 = 𝑥1 + 𝑖𝑦1 and 𝑧2 = 𝑥2 + 𝑖𝑦2 gives following
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|(𝑥 − 𝑥1)+ 𝑖(𝑦 − 𝑦1)| = 𝑐|(𝑥 − 𝑥2)+ 𝑖(𝑦 − 𝑦2)|⇒ (𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 = 𝑐2{(𝑥 −
𝑥2)2 + (𝑦 − 𝑦2)2}, which is equation of a circle.

279. Given, |𝑧| = 1 ⇒ 2𝑧𝑧 = 2 ⇒ 2
⁄

𝑧 = 2𝑧 which gives us a circle.

280. Let 𝑧1 = 𝑟1(cos 𝜃1 + 𝑖 sin 𝜃1) and 𝑧2 = 𝑟2(cos 𝜃2 + 𝑖 sin 𝜃2). Then L.H.S. = |𝑧1 + 𝑧2 |
⇒ |𝑧1 + 𝑧2 |2 = 𝑟21 + 𝑟22 + 2𝑟1𝑟2 cos(𝜃1 − 𝜃2).

Similarly, (|𝑧1 |+ |𝑧1 |)2 = (𝑟21 + 𝑟22 + 2𝑟1𝑟2).

Thus, cos(𝜃1 − 𝜃2) = 0 ⇒ arg(𝑧1)− arg(𝑧2) = 2𝑛𝜋.

281. The diagram is given below:

𝐶

𝑃

𝑂 𝑥

𝑦

The equation |𝑧 − 2 + 2𝑖| = 1 represents a circle with
center at (2, −2𝑖) with unity radius. Since, the line between
(2, −2𝑖) and origin will make an angle of 45∘. Therefore, 𝑃
is 2 − 1⁄

√


2 + 𝑖( 1⁄
√


2 − 2).

282. The diagram is given below:

𝑥

𝑦

𝑂

𝐶(0, 5)

𝑃

𝜃

𝜃

Given equation is a circle with center (0, 5) and radius
3 ∴𝑂𝐶 = 5, 𝐶𝑃 = 3.

The point having least argument will have a tangent from
origin which makes △𝑂𝐶𝑃 right angle triangle.

⇒ 𝐶𝑃 = 4 ⇒ tan 𝜃 = 4
⁄

3. Therefore, the point would be

4(cos 𝜃 + 𝑖 sin 𝜃) = 12
⁄

5 + 16𝑖⁄
5 .

283. From given equation, ( |𝑧−1|+4⁄3|𝑧−1|−2) < 1
⁄

2

⇒ |𝑧 − 1| > 10. This represents area which lies outside a circle with center at (1, 0)
and radius 10.

284. Let 𝑧 = 𝑥 + 𝑖𝑦 then the equation becomes 𝑥2 − 𝑦2 + 𝑥 + 1 + 𝑖𝑦(1 + 2𝑥) = 0. Clearly,
imaginary part has to be zero i.e. either 𝑦 = 0 or 𝑥 = −1

⁄

2. So, it is real and positive for

all points on the x-axis. When, 𝑥 = −1
⁄

2 the real part becomes 𝑦2 = 3
⁄

4. Thus, for points

𝑥 = −1
⁄

2 and −√


3⁄
2 < 𝑦 < √


3⁄
2 the required condition is satisfied.
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285. First equation represents a circle whose center is at (0, 𝑖𝑎) and radius equal to √


𝑎 + 4.
The second equation represents interior of a circle with center at (2, 0) and radius
unity. Now, for the possibility of existence of 𝑧 the two circles must intersect each
other.

⇒√


𝑎2 + 4 ≤ 𝑎 + 4 + 1 ⇒ 𝑎 ≥ −21
⁄

10 and 𝑎 + 4 − 1 ≤√


𝑎2 + 4 ⇒ 𝑎 ≤ −5
⁄

6. Combining
these two gives us the range for values of 𝑎.

286. Let 𝑧 = 𝑥 + 𝑖𝑦 then |𝑧 +√


2 | =√

𝑥2 + 2√


2𝑥 + 2 + 𝑦2 = 𝑡2 − 3𝑡 + 2 and |𝑧 + 𝑖√


2 | =
√

𝑥2 + 𝑦2 + 2√


2𝑦 + 2 < 𝑡2.

Because |𝑧 +√


2 | > 0 ⇒ 𝑡2 − 3𝑡 + 2 > 0 ⇒ 𝑡 < 1, 𝑡 > 2 and 𝑡 > 0. Both the equations
are circles so they must intersect for 𝑡 to exist. The distance between centers i.e.
(−√


2, 0) and (0, −𝑖√


2) is 2.

⇒ 𝑟1 + 𝑟2 > 2 ⇒ 2𝑡2 − 3𝑡 + 2 > 2 ⇒ 𝑡(2𝑡 − 3) > 0 ⇒ 𝑡 < 0, 𝑡 > 3
⁄

2 and 𝑟1 < 𝑟2 + 2 ⇒
𝑡2 − 2𝑡 + 2 < 𝑡2 + 2 ⇒ 𝑡 > 0. Combining all the inequalities, 𝑡 > 2.

287. Let 𝑧 = 𝑥+𝑖𝑦 then √

𝑥2 + 8𝑥 + 16 + 𝑦2 =√

𝑎2 − 12𝑎 + 28 and √


𝑥2 − 8√


3𝑥 + 48 + 𝑦2 <
1.

Becaise |𝑧 + 4| > 0 ⇒ 𝑎2 − 12𝑎 + 28 > 0 ⇒ 𝑎 > 6+ 2√


2, 𝑎 < 6 − 2√


2 and 𝑎 > 0. Both
the equations are circles so they must intersect for 𝑎 to exist. The distance between
centers i.e. (0, −4𝑖) and (4√



3, 0) is 8.

⇒ 𝑟1 + 𝑟2 > 8 ⇒ √

𝑎2 − 12𝑎 + 28 + 𝑎 > 8 ⇒ 𝑎 > 9 and 𝑟1 < 𝑟2 + 8 ⇒ 𝑎 < −9

⁄

7.
Combining all these inequalities we have 𝑎 > 9.

288. Let 𝑧 = 𝑥+𝑖𝑦 ⇒ (1+𝑖)𝑧2 = (1+𝑖)(𝑥2−𝑦2+2𝑖𝑥𝑦)⇒ℜ[(1+𝑖)𝑧2] = 𝑥2−𝑦2−2𝑥𝑦 >
0 ⇒ 𝑥 has two limits 𝑦(1 ±√



2).

289. Let 𝑧 = 𝑥 + 𝑖𝑦 then 2𝑧 = |𝑧|+ 2𝑖 ⇒ 2(𝑥 + 𝑖𝑦) =√

𝑥2 + 𝑦2 + 2𝑖𝑦. Equating real and

imaginary parts, 𝑦 = 1, 2𝑥 =√


𝑥2 + 1. Squaring 4𝑥2 = 𝑥2 + 1 ⇒ 𝑥 = ± 1⁄
√


3.

290. We have earlier proven that if there are two non-parallel lines cutting a circle at 𝑎, 𝑏
and 𝑐, 𝑑 then their point of intersection is given by 𝑎

−1+𝑏−1−𝑐−1−𝑑−1⁄
𝑎−1𝑏−1−𝑐−1𝑑−1 . Now if 𝑐 and 𝑑

coincide then that line will become a tangent. So putting 𝑑 = 𝑐 we have

𝑧 = 𝑎−1+𝑏−1−2𝑐−1⁄
𝑎−1𝑏−1−𝑐−2 .

291. Given 𝑎1𝑧3 + 𝑎2𝑧2 + 𝑎3𝑧 + 𝑎4 = 3 ⇒ |𝑎1𝑧3 + 𝑎2𝑧2 + 𝑎3𝑧 + 𝑎4| = 3 ⇒ |𝑎1𝑧3|+ |𝑎2𝑧2|+
|𝑎3𝑧|+ |𝑎4| ≥ 3

⇒ |𝑎1||𝑧3|+ |𝑎2||𝑧2|+ |𝑎3||𝑧|+ |𝑎4| ≥ 3 ⇒ |𝑧|3 + |𝑧|2 + |𝑧|+ 1 ≥ 3 [∵ |𝑎𝑖| ≤ 1]

⇒ 1+ |𝑧|+ |𝑧|2 + |𝑧|3 + ⋯ to ∞ > 3 ⇒ 1⁄
1−|𝑧| > 3 ⇒ |𝑧| > 2
⁄

3, which shows that roots lie

outside the circle with center origin and radius 2⁄3.

292. The diagram is given below:



Answers of Complex Numbers 458

𝐴𝐵

𝐶 𝐷

𝑂

Given, 𝑏1𝑧1 + 𝑏3𝑧3 = −(𝑏2𝑧2 + 𝑏4𝑧4) and 𝑏1 + 𝑏3 = −(𝑏2 +
𝑏4) ∴

𝑏1𝑧1+𝑏3𝑧3⁄
𝑏1+𝑏3 = 𝑏2𝑧2+𝑏4𝑧4⁄

𝑏2+𝑏4 .

This means that the point dividing 𝐴𝐶 in the ratio 𝑏3 : 𝑏1 also divides
𝐵𝐶 in the ratio 𝑏4 : 𝑏2. Let this point be 𝑂. Let 𝑏1𝑏2|𝑧1 − 𝑧2|2 =
𝑏3𝑏4|𝑧3 − 𝑧4|2

⇒ 𝑏1𝑏2(𝑏23 + 𝑏24 − 2𝑏3𝑏4 cos 𝛼) = 𝑏3𝑏4(𝑏22 + 𝑏21 − 2𝑏1𝑏2 cos 𝛼)

⇒ 𝑏3
⁄

𝑏4 +
𝑏4
⁄

𝑏3 =
𝑏1
⁄

𝑏2 +
𝑏2
⁄

𝑏1 ⇒
𝑏3
⁄

𝑏4 =
𝑏1
⁄

𝑏2 or 𝑏2⁄𝑏1

If 𝑏3⁄𝑏4 =
𝑏1
⁄

𝑏2, then 𝑏3⁄𝑏1 =
𝑏4
⁄

𝑏1 ⇒
𝐴𝑂⁄
𝐶𝑂 = 𝐵𝑂⁄

𝐷𝑂

⇒ △𝐴𝑂𝐵 ∼ △𝐵𝐶𝑂 ⇒ ∠𝐵𝐴𝑂 = ∠𝐶𝐷𝑂 ⇒ 𝐴𝐵 ∥ 𝐶𝐷 which is not possible.

If 𝑏3⁄𝑏4 =
𝑏2
⁄

𝑏1 then 𝐴𝑂⁄𝐵𝑂 = 𝐷𝑂⁄
𝐶𝑂 ⇒ △𝐴𝐷𝑂 ∼ △𝐵𝐶𝑂 ⇒ ∠𝐷𝐴𝑂 = ∠𝑂𝐵𝐶 ⇒ 𝐴, 𝐵, 𝐶, 𝐷 are

concyclic.

293. The diagram is given below:

𝐵(𝛽, 𝛾)

𝐶(𝛽, −𝛾)

𝑃 𝑄
𝐿(𝛽, 0)𝐴(𝑎, 0)

Let 𝑓(𝑥) = 𝑘(𝑥 − 𝑎)(𝑥 − 𝛽 − 𝑖𝛾)(𝑥 − 𝛽 + 𝑖𝛾) =
𝑘(𝑥 − 𝑎)[(𝑥 − 𝛽)2 + 𝛾2 ]

⇒ 𝑓′(𝑥) = 𝑘[3𝑥2 − 2(𝑎+ 2𝛽)𝑥+ 𝛽2+ 𝛾2 + 2𝑎𝛽].
Discriminant of 𝑓′(𝑥) is given by 𝐷 = 4[(𝑎 +
2𝛽)2−3(𝛽2+𝛾2+2𝑎𝛽)]= 4(𝑎2+𝛽2−3𝛾2−2𝑎𝛽)

𝐵𝐶 = 2|𝛾| ⇒ 𝑃𝐿 = √


3 |𝛾|. If 𝐴 lies inside the
equilateral triangle having 𝐵𝐶 as base, then |𝛽 −
𝑎| < √


3𝛾 ⇒ (𝛽 − 𝑎)2 < 3𝛾2 ⇒ 𝑎2 + 𝛽2 − 3𝛾2 −
2𝑎𝛽 < 0 ⇒ 𝐷 < 0. Thus roots will be complex
numbers.

294. Let 𝑎 = 𝛼+ 𝑖𝛽 and 𝑧 = 𝑥+ 𝑖𝑦, then 𝑎𝑧 +𝑎𝑧 = 0 becomes as 𝛼𝑥+𝛽𝑦 = 0 or 𝑦 = (−𝛼⁄𝛽 )𝑥.

Its reflection in the x-axis is 𝑦 = 𝛼⁄
𝛽 𝑥 or 𝛼𝑥−𝛽𝑦 = 0 ⇒ (𝑎+𝑎⁄2 )(𝑧+𝑧⁄2 )− (𝑎−𝑎⁄2 )(𝑧−𝑧⁄2 ) = 0

⇒ 𝑎𝑧 + 𝑎𝑧 = 0

295. We have 𝑧 = 𝛼+𝛽𝑡⁄
𝛾+𝛿𝑡 ⇒ 𝑡 = 𝛼−𝛾𝑧⁄

𝛿𝑧−𝛽. As 𝑡 is real, 𝛼−𝛾𝑧⁄𝛿𝑧−𝛽 = 𝛼−𝛾𝑧⁄
𝛿𝑧−𝛽

⇒⇒ (𝛼 − 𝛾𝑧)(𝛿𝑧 − 𝛽) = (𝛼 − 𝛾𝑧)(𝛿𝑧 − 𝛽)

⇒ (𝛾𝛿 − 𝛾𝛿)𝑧𝑧 + (𝛾𝛽 − 𝛼𝛿)𝑧 + (𝛼𝛿 − 𝛽𝛾)𝑧 = (𝛼𝛽 − 𝛼𝛽)

Since 𝛾⁄𝛿 is real, 𝛾⁄𝛿 = 𝛾⁄
𝛿 or 𝛾𝛿 − 𝛿𝛾 = 0.

Thus, 𝑎𝑧 + 𝑎𝑧 = 𝑐, where 𝑎 = 𝑖(𝛼𝛿)− 𝛽𝛾 and 𝑐 = 𝑖(𝛼𝛽 − 𝛼𝛽).
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Note that 𝑎 ≠ 0 for if 𝑎 = 0 then 𝛼𝛿 − 𝛽𝛾 = 0 ⇒ 𝛼⁄
𝛽 =

𝛾⁄
𝛿 =

𝛾⁄
𝛿 ⇒ 𝛼𝛿 − 𝛽𝛾 = 0, which is

against the hypothesis.

Also, note that 𝑐 = 𝑖(𝛼𝛽 − 𝛼𝛽) is a purely real number. Thus, 𝑧 = 𝛼+𝛽𝑡⁄
𝛾+𝛿𝑡 represents a

straight line.

296. The solutions are given below:

i. L.H.S. = (3 + 3𝜔 + 5𝜔2)6 − (2 + 6𝜔 + 2𝜔2)3 = [(3 + 3𝜔 + 3𝜔2 + 2𝜔2)6 − (2 +
2𝜔 + 2𝜔2 + 4𝜔)3 ] = [{3(1 + 𝜔 + 𝜔2)+ 2𝜔2}6 ]− [{2(1 + 𝜔 + 𝜔2)+ 4𝜔}3 ]

= 64𝜔12 − 64𝜔3 = 0 = R.H.S. [∵ 1 + 𝜔 + 𝜔2 = 0].

ii. L.H.S. = (2−𝜔)(2−𝜔2)(2−𝜔10)(2−𝜔11) = (2−𝜔)(2−𝜔2)(2−𝜔)(2−𝜔2) =
[(2 − 𝜔)(2 − 𝜔2)]2

= (4 − 2𝜔 − 2𝜔2 + 𝜔3)2 = [5 − 2(𝜔 + 𝜔2)]2 = (5 + 2)2 = 49 = R.H.S.

iii. L.H.S. = (1−𝜔)(1−𝜔2)(1−𝜔4)(1−𝜔5) = (1−𝜔)2(1−𝜔2)2 = (1−𝜔−𝜔2+
𝜔3)2

= [2 − (−1)]2 = 9 = R.H.S.

iv. L.H.S. = (1 − 𝜔 + 𝜔2)5 + (1 + 𝜔 − 𝜔2)5 = (−2𝜔)5 + (−2𝜔2)5 = −32(𝜔 + 𝜔2) =
32 = R.H.S.

v. L.H.S. = 1 + 𝜔𝑛 + 𝜔2𝑛, where 𝑛 = 3𝑚 ∀ 𝑚 ∈ 𝕀 L.H.S. = 1 + 𝜔3𝑚 + 𝜔6𝑚 =
1 + (𝜔3)𝑚+ (𝜔3)2𝑚 = 1 + 1 + 1 = 3 = R.H.S.

vi. We have to prove that 1 + 𝜔𝑛 + 𝜔2𝑛 = 0. If 𝑛 = 3𝑚 + 1 ∀ 𝑚 ∈ 𝕀 then L.H.S.
= 1 + 𝜔3𝑚+1 + 𝜔6𝑚+2 = 1 + 𝜔 + 𝜔2 = 0 = R.H.S.

If 𝑛 = 3𝑚 + 2, ∀ 𝑚 ∈ 𝕀 then L.H.S. = 1 + 𝜔3𝑚+2 + 𝜔6𝑚+4 = 1 + 𝜔2 + 𝜔 = 0 =
R.H.S.

297. We have 𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑏𝑐 − 𝑐𝑎 = 𝑎2 + 𝜔3𝑏2 + 𝜔3𝑐2 + (𝜔+ 𝜔2)𝑎𝑏 + (𝜔+ 𝜔2)𝑏𝑐 +
(𝜔 + 𝜔2)𝑐𝑎

= (𝑎2 + 𝑎𝑏𝜔 + 𝑐𝑎𝜔2)+ (𝑎𝑏𝜔2 + 𝑏2𝜔3 + 𝑏𝑐𝜔)+ (𝑐𝑎𝜔 + 𝑏𝑐𝜔2 + 𝑐2𝜔3)

= 𝑎(𝑎 + 𝑏𝜔 + 𝑐𝜔2)+ 𝑏𝜔2(𝑎 + 𝑏𝜔 + 𝑐𝜔2)+ 𝑐𝜔(𝑎 + 𝑏𝜔 + 𝑐𝜔2)

= (𝑎 + 𝑏𝜔 + 𝑐𝜔2)(𝑎 + 𝑏𝜔2 + 𝑐𝜔).

298. 𝑥3+ 𝑦3+ 𝑧3 = (𝑎+ 𝑏)3+ (𝑎𝜔+ 𝑏𝜔2)3+ (𝑎𝜔2+ 𝑏𝜔)3 = 𝑎3+ 𝑏3+ 3𝑎2𝑏 + 3𝑎𝑏2+ 𝑎3𝜔3+
𝑏3𝜔6+ 3𝑎2𝑏𝜔4+ 3𝑎𝑏2𝜔5+ 𝑎3𝜔6+ 𝑏3𝜔3+ 3𝑎2𝑏𝜔5+ 3𝑎𝑏2𝜔4 = 3[𝑎3+ 𝑏3+ 3𝑎2𝑏(1+𝜔+
𝜔2)+ 3𝑎𝑏2(1 + 𝜔 + 𝜔2)] = 3(𝑎3 + 𝑏3) =R.H.S.

𝑥𝑦𝑧 = (𝑎+ 𝑏)(𝑎𝜔 + 𝑏𝜔2)(𝑎𝜔2 + 𝑏𝜔) = (𝑎+ 𝑏)(𝑎2 + 𝑎𝑏𝜔 + 𝑎𝑏𝜔2 + 𝑏2) = (𝑎+ 𝑏)(𝑎2 +
𝑏2 − 𝑎𝑏) = 𝑎3 + 𝑏3 = R.H.S.
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299. Given below are the factorization of the expressions:

i. 𝑎2 − 𝑎𝑏 + 𝑏2 = 𝑎2 + (𝜔 + 𝜔2)𝑎𝑏 + 𝑏2𝜔3 = (𝑎 + 𝑏𝜔)(𝑎 + 𝑏𝜔2).

ii. 𝑎2 + 𝑎𝑏 + 𝑏2 = 𝑎2 − (𝜔 + 𝜔2)𝑎𝑏 + 𝑏2𝜔3 = (𝑎 − 𝑏𝜔)(𝑎 − 𝑏𝜔2).

iii. 𝑎3 + 𝑏3 = (𝑎 + 𝑏)(𝑎2 − 𝑎𝑏 + 𝑏2) = (𝑎 + 𝑏)(𝑎 + 𝑏𝜔)(𝑎 + 𝑏𝜔2).

iv. 𝑎3 − 𝑏3 = (𝑎 − 𝑏)(𝑎2 + 𝑎𝑏 + 𝑏2) = (𝑎 + 𝑏)(𝑎 − 𝑏𝜔)(𝑎 − 𝑏𝜔2).

v. 𝑎3 + 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐 = (𝑎 + 𝑏 + 𝑐)(𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑏𝑐 − 𝑐𝑎) = (𝑎 + 𝑏 + 𝑐)(𝑎 +
𝑏𝜔 + 𝑐𝜔2)(𝑎 + 𝑏𝜔2 + 𝑐𝜔).

300. 𝑥3𝑝 + 𝑥3𝑞+1 + 𝑥3𝑟+2 will be divisible by 𝑥2 + 𝑥+ 1 only if all the factors of 𝑥2 + 𝑥+ 1
satisfy 𝑥3𝑝 + 𝑥3𝑞+1 + 𝑥3𝑟+2.

𝑥2 + 𝑥 + 1 = 0 ⇒ 𝑥 = 𝜔, 𝜔2. If 𝑥 = 𝜔 then 𝑥3𝑝 + 𝑥3𝑞+1 + 𝑥3𝑟+2 = (𝜔3)𝑝 + (𝜔3)𝑞 .𝜔 +
(𝜔3)𝑟 .𝜔2 = 1 + 𝜔 + 𝜔2 = 0.

If 𝑥 = 𝜔2 then 𝑥3𝑝+𝑥3𝑞+1+𝑥3𝑟+2 = (𝜔6)𝑝+ (𝜔6)𝑞 .𝜔2+ (𝜔6)𝑟 .𝜔4 = 1+𝜔2+𝜔 = 0.
Hence proved.

301. Following like previous problem 𝑥3 + 𝑥2 + 𝑥+ 1 = (𝑥 + 1)(𝑥2 + 1) = 0 ⇒ 𝑥 = −1, ±𝑖.

If 𝑥 = −1 then 𝑥4𝑝 + 𝑥4𝑞+1 + 𝑥4𝑟+2 + 𝑥4𝑠+3 = (−1)4𝑝 + (−1)4𝑞+1 + (−1)4𝑟+2 +
(−1)4𝑠+3 = 1 − 1 + 1 − 1 = 0.

If 𝑥 = 𝑖, then 𝑥4𝑝+𝑥4𝑞+1+𝑥4𝑟+2+𝑥4𝑠+3 = 𝑖4𝑝+𝑖4𝑞+1+𝑖4𝑟+2+𝑖4𝑠+3 = 1+𝑖−1−𝑖 =
0.

If 𝑥 = −𝑖, then 𝑥4𝑝 + 𝑥4𝑞+1 + 𝑥4𝑟+2 + 𝑥4𝑠+3 = (−𝑖)4𝑝 + (−𝑖)4𝑞+1 + (−𝑖)4𝑟+2 +
(−𝑖)4𝑠+3 = 1 − 𝑖 − 1 + 𝑖 = 0. Hence proved.

302. 𝑝3+ 𝑞3+ 𝑟3− 3𝑝𝑞𝑟 = (𝑝 + 𝑞 + 𝑟)(𝑝2+ 𝑞2+ 𝑟2− 𝑝𝑞 − 𝑞𝑟 − 𝑟𝑝) = (𝑝 + 𝑞 + 𝑟)(𝑝 + 𝑞𝜔+
𝑟𝜔2)(𝑝 + 𝑞𝜔2 + 𝑟𝜔)

𝑝 + 𝑞 + 𝑟 = 3𝑎 + 𝑏(1 + 𝜔 + 𝜔2) + 𝑐(1 + 𝜔2 + 𝜔) = 3𝑎. Similarly, 𝑝 + 𝑞𝜔 + 𝑟𝜔2 = 3𝑐
and 𝑝 + 𝑞𝜔2 + 𝑟𝜔 = 3𝑏. Hence, 𝑝3 + 𝑞3 + 𝑟3 − 3𝑝𝑞𝑟 = 27𝑎𝑏𝑐, proved.

303. Let 𝑝 = (𝑎 + 𝑏𝜔 + 𝑐𝜔2) and 𝑞 = (𝑎 + 𝑏𝜔2 + 𝑐𝜔) then we know that 𝑝3 + 𝑞3 =
(𝑝 + 𝑞)(𝑝 + 𝑞𝜔)(𝑝 + 𝜔2).

𝑝 + 𝑞 = 2𝑎 − 𝑏 − 𝑐, 𝑝 + 𝑞𝜔 = 2𝑏 − 𝑐 − 𝑎, 𝑝 + 𝑞𝜔2 = 2𝑐 − 𝑎 − 𝑏, and hence

(𝑎 + 𝑏𝜔 + 𝑐𝜔2)3 + (𝑎 + 𝑏𝜔2 + 𝑐𝜔)3 = (2𝑎 − 𝑏 − 𝑐)(2𝑏 − 𝑎 − 𝑐)(2𝑐 − 𝑎 − 𝑏).

304. The solutions are given below:

i. (𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑏𝑐 − 𝑐𝑎)(𝑥2 + 𝑦2 + 𝑧2 − 𝑥𝑦 − 𝑦𝑧 − 𝑧𝑥) = (𝑎+ 𝑏𝜔 + 𝑐𝜔2)(𝑎+
𝑏𝜔2 + 𝑐𝜔)(𝑥 + 𝑦𝜔 + 𝑧𝜔2)(𝑥 + 𝑦𝜔2 + 𝑧𝜔)

= (𝑎 + 𝑏𝜔 + 𝑐𝜔2)(𝑥 + 𝑦𝜔 + 𝑧𝜔2)[(𝑎 + 𝑏𝜔2 + 𝑐𝜔)(𝑥 + 𝑦𝜔2 + 𝑧𝜔)]
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= (𝑎𝑥 + 𝑐𝑦𝜔3 + 𝑏𝑧𝜔3 + 𝑐𝑥𝜔2 + 𝑏𝑦𝜔2 + 𝑧𝑎𝜔2 + 𝑏𝑥𝜔 + 𝑎𝑦𝜔 + 𝑐𝑧𝜔4)(𝑎𝑥 + 𝑐𝑦𝜔3 +
𝑏𝑧𝜔3 + 𝑐𝑥𝜔 + 𝑏𝑦𝜔4 + 𝑎𝑧𝜔 + 𝑏𝑧𝜔2 + 𝑎𝑦𝜔2 + 𝑐𝑧𝜔2)

= [(𝑎𝑥+ 𝑐𝑦 + 𝑏𝑧)(𝑐𝑥+ 𝑏𝑦 + 𝑎𝑧)𝜔2+ (𝑏𝑥+ 𝑎𝑦 + 𝑐𝑧)𝜔][(𝑎𝑥+ 𝑐𝑦 + 𝑏𝑧)(𝑐𝑥+ 𝑏𝑦 +
𝑎𝑧)𝜔 + (𝑏𝑥 + 𝑎𝑦 + 𝑐𝑧)𝜔2 ]

= (𝑋 + 𝑌 𝜔2 + 𝑍𝜔)(𝑋 + 𝑌 𝜔 + 𝑍𝜔2) = (𝑋2 + 𝑌 2 + 𝑍2 − 𝑌 𝑍 − 𝑍𝑋 −𝑋𝑌 ).

ii. We just introduce two new factors to previous problem 𝑎 + 𝑏 + 𝑐 and 𝑥 + 𝑦 + 𝑧
and then it is only a matter of simplification to obtain the result.

305. L.H.S. = (cos 𝜃+𝑖 sin 𝜃⁄sin 𝜃+𝑖 cos 𝜃)4 = ( cos 𝜃+𝑖 sin 𝜃⁄
𝑖(cos 𝜃−𝑖 sin 𝜃))

4
= 𝑒𝑖4𝜃⁄

𝑒−𝑖4𝜃 = 𝑒𝑖8𝜃 = cos 8𝜃 + 𝑖 sin 8𝜃 = R.H.S.

306. Roots of the quadratic equation 𝑧2 − 2𝑧 cos 𝜃 + 1 = 0 are given by 𝑧 = cos 𝜃 ± 𝑖 sin 𝜃.

⇒ 𝑧2 + 𝑧−2 = cos 2𝜃 ± 𝑖 sin 2𝜃 + cos 2𝜃 ∓ 𝑖 sin 2𝜃 = 2 cos 2𝜃 = R.H.S.

307. 1 + 𝑖 = √


2(cos 𝜋⁄4 + 𝑖 sin 𝜋
⁄

4) and (1 − 𝑖) = √


2(cos 𝜋⁄4 − 𝑖 sin 𝜋
⁄

4)

L.H.S. = (1 + 𝑖)𝑛 + (1 − 𝑖)𝑛 = (√


2)𝑛 .2 cos 𝑛𝜋⁄4 = 2
𝑛
⁄

2+1.𝑐𝑜𝑠 𝑛𝜋⁄4 = R.H.S.

308.
6
∑
𝑘=1

(𝑠𝑖𝑛 2𝜋𝑘⁄
7 − 𝑖𝑐𝑜𝑠 2𝜋𝑘⁄7 ) = −𝑖

6
∑
𝑘=1

(𝑐𝑜𝑠 2𝜋𝑘⁄7 + 𝑖𝑠𝑖𝑛 2𝜋𝑘⁄
7 )

= −𝑖∑6
𝑘=1 𝑒

𝑖2𝜋𝑘⁄
7 = −𝑖[𝑒

𝑖2𝜋⁄
7 + 𝑒

𝑖4𝜋⁄
7 + .. + 𝑒

𝑖12𝜋⁄
7 ] = −𝑖[( 1−𝑒2𝜋⁄

1−𝑒
𝑖2𝜋⁄
7
)− 1] = −𝑖[0 − 1] = 𝑖.

309. Let 𝑐𝑜𝑡−1𝑝 = 𝜃, then 𝑐𝑜𝑡𝜃 = 𝑝. Now, L. H. S. is

𝑒2𝑚𝑖𝜃(𝑖𝑐𝑜𝑡𝜃+1⁄𝑖𝑐𝑜𝑡𝜃−1)𝑚 = 𝑒2𝑚𝑖𝜃[𝑖(𝑐𝑜𝑡𝜃−𝑖)⁄𝑖(𝑐𝑜𝑡𝜃+𝑖)]
𝑚

= 𝑒2𝑚𝑖𝜃(𝑐𝑜𝑠𝜃−𝑖𝑠𝑖𝑛𝜃⁄𝑐𝑜𝑠𝜃+𝑖𝑠𝑖𝑛𝜃)
𝑚

= 𝑒2𝑚𝑖𝜃(𝑒
−𝑖𝜃
⁄

𝑒𝑖𝜃 )
𝑚
= 𝑒2𝑚𝑖𝜃.𝑒−2𝑚𝑖𝜃 = 𝑒0 = 1 = R.H.S.

310. Let 1 + sin 𝜙 + 𝑖 cos 𝜙 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) ∴ 1 + sin 𝜙 = 𝑟 cos 𝜃 and cos 𝜙 = 𝑟 sin 𝜃

Now (1 + sin 𝜙 + 𝑖 cos 𝜙)𝑛 = 𝑟𝑛(cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃). Taking conjugates, we get (1 +
sin 𝜙 − 𝑖 cos 𝜙)𝑛 = 𝑟𝑛(cos 𝑛𝜃 − 𝑖 sin 𝑛𝜃)

From these two, we get (1+sin𝜙+𝑖 cos𝜙⁄1+sin𝜙−𝑖 cos𝜙)𝑛 = cos𝑛𝜃+𝑖 sin𝑛𝜃
⁄

cos𝑛𝜃−𝑖 sin𝑛𝜃 =
𝑒𝑖𝑛𝜃
⁄

𝑒−𝑖𝑛𝜃

= 𝑒2𝑖𝑛𝜃 = cos 2𝑛𝜃 + sin 2𝑛𝜃

tan 𝜃 = cos𝜙
⁄

1+sin𝜙 =
cos2𝜙⁄2−sin2

𝜙
⁄

2
⁄

(cos𝜙⁄2+sin
𝜙
⁄

2)
2 =

cos𝜙⁄2−sin
𝜙
⁄

2
⁄

cos𝜙⁄2+sin
𝜙
⁄

2
=

1−tan𝜙
⁄

2
⁄

1+tan𝜙
⁄

2
= tan(𝜋⁄4 −

𝜙
⁄

2)

∴ 𝜃 = 𝜋
⁄

4 −
𝜙
⁄

2 ∴ 2𝑛𝜃 = (𝑛𝜋⁄2 − 𝑛𝜙). Hence, proved.
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311. Let 𝑎 = cos 𝛼 + 𝑖 sin 𝛼, 𝑏 = cos 𝛽 + 𝑖 sin 𝛽, 𝑐 = cos 𝛾 + 𝑖 sin 𝛾

Now, 𝑎 + 𝑏 + 𝑐 = (cos 𝛼 + cos 𝛽 + cos 𝛾)+ 𝑖(sin 𝛼 + sin 𝛽 + sin 𝛾) = 0 + 𝑖.0 = 0

Now, 𝑎3+ 𝑏3+ 𝑐3−3𝑎𝑏𝑐 = (𝑎+𝑏+𝑐)(𝑎2+ 𝑏2+ 𝑐2−𝑎𝑏−𝑏𝑐− 𝑐𝑎) = 0 [∵ 𝑎+𝑏+𝑐 = 0]

∴ 𝑎3+ 𝑏3+ 𝑐3 = 3𝑎𝑏𝑐 ∴ cos 3𝛼+cos 3𝛽 + cos 3𝛾 = 3 cos(𝛼+𝛽+𝛾) and sin 3𝛼+ sin 3𝛽 +
sin 3𝛾 = 3 sin(𝛼 + 𝛽 + 𝛾).

312. Proceeding similarly as last problem and with an extra calculation we have

1
⁄

𝑎 +
1
⁄

𝑏 +
1
⁄

𝑐 = (cos 𝛼 + cos 𝛽 + cos 𝛾)− 𝑖(sin 𝛼 + sin 𝛽 + sin 𝛾) = 0

∴ 𝑎2 + 𝑏2 + 𝑐2 = (𝑎 + 𝑏 + 𝑐)2 − 2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) = (𝑎 + 𝑏 + 𝑐)2 − 2𝑎𝑏𝑐(1⁄𝑎 +
1
⁄

𝑏 +
1
⁄

𝑐)

⇒ 02−2𝑎𝑏𝑐.0 = 0 ∴𝐿.𝐻.𝑆. = (cos 2𝛼+cos 2𝛽+cos 2𝛾)+𝑖(sin 2𝛼+sin 2𝛽+sin 2𝛾) = 0

Equating real and imaginary parts we have our desired result.

313. 𝑡2 − 2𝑡 + 2 = 0 ⇔ 𝑡 = 2±√


4−8
⁄

2 = 1 ± 𝑖

Let 𝛼 = 1 + 𝑖 and 𝛽 = 1 − 𝑖 ∴ 𝑥 + 𝛼 = (𝑥 + 1)+ 𝑖, 𝑥 + 𝛽 = (𝑥 + 1)− 𝑖 and 𝛼− 𝛽 = 2𝑖

Let 𝑥 + 1 = 𝑟 cos 𝜙 and 1 = 𝑟 sin 𝜙. We have, (𝑥+𝛼)
𝑛−(𝑥+𝛽)𝑛⁄
(𝛼−𝛽) = sin𝜃⁄

sin𝑛 𝜃

⇔ 𝑟𝑛(cos𝑛𝜙+𝑖 sin𝑛𝜙)−𝑟𝑛(cos𝑛𝜙−𝑖 sin𝑛𝜙)
⁄

2𝑖 = sin 𝜃⁄
sin𝑛 𝜃 ⇔ 𝑟𝑛 sin 𝑛𝜙 = sin 𝜃⁄

sin𝑛 𝜃

⇔ sin𝑛𝜙
⁄

sin𝑛 𝜙 =
sin 𝜃⁄
sin𝑛 𝜃 ⇔ one of the values of 𝜙 is 𝜃. [∵ 𝑟 sin 𝜙 = 1 ⇒ 𝑟𝑛 = 1

⁄

sin𝑛 𝜙]

∴ 𝑥 + 1 = 𝑟 cos 𝜃 and 1 = 𝑟 sin 𝜃. Dividing and evaluating we get 𝑥 = cot 𝜃 − 1.

314. Given, (1 + 𝑥)𝑛 = 𝑝0 + 𝑝1𝑥 + 𝑝2𝑥2 + ⋯ + 𝑝𝑛𝑥𝑛. Putting 𝑥 = 𝑖, we get (1 + 𝑖)𝑛 =
𝑝0 + 𝑝1𝑖 + 𝑝2𝑖2 + ⋯ + 𝑝𝑛𝑖𝑛

= (𝑝0 − 𝑝2 + 𝑝4 − ⋯) + 𝑖(𝑝1 − 𝑝3 + 𝑝5 − ⋯) ⇒ [√


2(cos 𝜋⁄4 + 𝑖 sin 𝜋
⁄

4)]
𝑛
= (𝑝0 − 𝑝2 +

𝑝4 − ⋯)+ 𝑖(𝑝1 − 𝑝3 + 𝑝5 − ⋯)

Equating real and imaginary parts, we have 𝑝0 − 𝑝2 + 𝑝4 ⋯ = 2
𝑛
⁄

2 cos 𝑛𝜋⁄4 and 𝑝1 − 𝑝3 +

𝑝5 − ⋯ = 2
𝑛
⁄

2 sin 𝑛𝜋⁄
4 .

315. Given, (1 − 𝑥 + 𝑥2)𝑛 = 𝑎0 + 𝑎1 + 𝑎2𝑥2 + ⋯𝑎2𝑛𝑥2𝑛. Putting 𝑥 = 1, 𝜔 and 𝜔2, we get

1 = 𝑎0 + 𝑎1 + 𝑎2 + ⋯ + 𝑎2𝑛, (−2𝜔)𝑛 = 𝑎0 + 𝑎1𝜔 + 𝑎2𝜔2 + ⋯ + 𝑎2𝑛𝜔2𝑛, (−2𝜔2)𝑛 =
𝑎0 + 𝑎1𝜔2 + 𝑎2𝜔4 + ⋯+ 𝑎2𝑛𝜔4𝑛

Adding these we get, 3(𝑎0+ 𝑎3+ 𝑎6+⋯) = 1+ (−2)𝑛(𝜔𝑛+𝜔2𝑛). Now 𝜔 = −1+√


3𝑖⁄
2 =

(cos 2𝜋⁄3 + 𝑖 sin 2𝜋⁄
3 )
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𝜔𝑛 = cos2𝑛𝜋⁄3 +𝑖 sin 2𝑛𝜋⁄3 . Now 𝜔2 = −1−√


3𝑖⁄
2 = (cos 2𝜋⁄3 −𝑖 sin 2𝜋⁄3 ) ∴𝜔𝑛+𝜔2𝑛 = 2 cos2𝑛𝜋⁄3 =

2 cos(𝑛𝜋 − 𝑛𝜋⁄
3 )

= 2(−1)𝑛 cos 𝑛𝜋⁄
3 . Thus, 3(𝑎0 + 𝑎3 + 𝑎6 + ⋯) = 1 + (−2)𝑛 2(−1)𝑛 cos 𝑛𝜋⁄

3 = 1 +

2𝑛+1 cos 𝑛𝜋⁄3 .

𝑎0 + 𝑎3 + 𝑎6 + ⋯ = 1
⁄

3 (1 + 2𝑛+1 cos 𝑛𝜋⁄3 ).
316. Given, (1 + 𝑥)𝑛 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛. Putting 𝑥 = 1 and 𝑥 = −1, we get

2𝑛 = 𝑐0 + 𝑐1 + 𝑐2 + ⋯+ 𝑐𝑛

and 0 = 𝑐0− 𝑐1+ 𝑐2−⋯+ (−1)𝑛𝑐𝑛. Adding these two, we get 2𝑛 = 2(𝑐0+ 𝑐2+ 𝑐4+⋯)
or 𝑐0 + 𝑐2 + 𝑐4 + ⋯ = 2𝑛−1

Putting 𝑥 = 𝑖, we get (1 + 𝑖)𝑛 = 𝑐0 + 𝑐1𝑖 + 𝑐2𝑖2 + 𝑐3𝑖3 + ⋯ + 𝑐𝑛𝑖𝑛 ⇒ [√


2(cos 𝜋⁄4 +

𝑖 sin 𝜋
⁄

4)]
𝑛
= (𝑐0 − 𝑐2 + 𝑐4 − ⋯)+ 𝑖(𝑐1 − 𝑐3 + ⋯)

⇒ 2
𝑛
⁄

2(cos 𝑛𝜋⁄4 + 𝑖 sin 𝑖𝜋
⁄

4 ) = (𝑐0 − 𝑐2 + 𝑐4 − ⋯)+ 𝑖(𝑐1 − 𝑐3 + ⋯)

Equating real parts, we get 𝑐0 − 𝑐2 + 𝑐4 − ⋯ = 2
𝑛
⁄

2 cos 𝑛𝜋⁄4 . Adding this result with the

one obtained previously, we have 2[𝑐0 + 𝑐4 + 𝑐8 + ⋯] = 2𝑛−1 + 2
𝑛
⁄

2 cos 𝑛𝜋⁄4 .

317. 𝑧8 + 1 = 0 ⇒ 𝑧8 = −1 = cos 𝜋 + 𝑖 sin 𝜋 ∴ 𝑧 = (cos 𝜋 + 𝑖 sin 𝜋)
1
⁄

8 = cos 2𝑟𝜋+𝜋
⁄

8 +

𝑖 sin 2𝑟𝜋+𝜋
⁄

8 , 𝑟 = 0, 1, 2, … , 7

∴ 𝑧 = cos 𝜋⁄8 ± sin 𝜋
⁄

8 , cos
3𝜋⁄
8 ± sin 3𝜋⁄

8 , cos
5𝜋⁄
8 ± sin 5𝜋⁄

8 , cos
7𝜋⁄
8 ± sin 7𝜋⁄

8

Now, quadratic equation whose roots are cos 𝜋⁄8 ± sin 𝜋
⁄

8 , is 𝑧2 − 2 cos 𝜋⁄8 𝑧 + 1 = 0

Similarly, we can find the quadratic equations for remaining three pairs of roots. Thus,

𝑧8+1 = (𝑧2−2 cos𝜋⁄8 𝑧+1)(𝑧2−2 cos 3𝜋⁄8 𝑧+1)(𝑧2−2 cos 5𝜋⁄8 𝑧+1)(𝑧2−2 cos 7𝜋⁄8 𝑧+1)

Dividing both sides by 𝑧4, we get

𝑧4 + 1⁄
𝑧4 = (𝑧 + 1
⁄

𝑧 − 2 cos 𝜋⁄8)(𝑧 +
1
⁄

𝑧 − 2 cos 3𝜋⁄8 )(𝑧 + 1
⁄

𝑧 − 2 cos 5𝜋⁄8 )(𝑧 + 1
⁄

𝑧 − 2 cos 7𝜋⁄8 )
Putting 𝑧 = cos 𝜃 + 𝑖 sin 𝜃, so that 𝑧𝑛 + 1
⁄

𝑧𝑛 = 2𝑛 cos 𝑛𝜃, we get

2 cos 4𝜃 = 2(cos 𝜃 − cos 𝜋⁄8)2(cos 𝜃 − cos 3𝜋⁄8 )2(cos 𝜃 − cos 5𝜋⁄8 )2(cos 𝜃 − cos 5𝜋⁄8 )
∴ cos 4𝜃 = 8(cos 𝜃 − cos 𝜋⁄8)(cos 𝜃 − cos 3𝜋⁄8 )(cos 𝜃 − cos 5𝜋⁄8 )(cos 𝜃 − cos 7𝜋⁄8 )
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318. Let 𝑧 = cos 𝜃 + 𝑖 sin 𝜃, then 𝑧7 = cos 7𝜃 + 𝑖 sin 7𝜃. If

𝜃 = 𝜋
⁄

7 ,
3𝜋⁄
7 ,

5𝜋⁄
7 ,

7𝜋⁄
7 ,

9𝜋⁄
7 ,

11𝜋⁄
7 , 13𝜋⁄7 then 𝑧7 = cos 7𝜃 + 𝑖 sin 7𝜃 = 1 or 𝑧7 + 1 = 0

Thus, 𝑧 = cos 𝜃 + 𝑖 sin 𝜃, where 𝜃 = 𝜋
⁄

7 ,
3𝜋⁄
7 ,

5𝜋⁄
7 ,

7𝜋⁄
7 ,

9𝜋⁄
7 ,

11𝜋⁄
7 , 13𝜋⁄7 are the roots of the

equation.

Also, when 𝜃 = 𝜋, 𝑧 = −1. Now, 𝑧7+1 = 0 ⇒ (𝑧+1)(𝑧6−𝑧5+𝑧4−𝑧3+𝑧2−𝑧+1) = 0

Root of equation 𝑧 + 1 = 0 is cos 𝜃 + 𝑖 sin 𝜃, where 𝜃 = 𝜋

Roots of equation 𝑧6 − 𝑧5 + 𝑧4 − 𝑧3 + 𝑧2 − 𝑧 + 1 = 0 (1)

are cos 𝜃 + 𝑖 sin 𝜃, where 𝜃 = 𝜋
⁄

7 ,
3𝜋⁄
7 ,

5𝜋⁄
7 ,

7𝜋⁄
7 ,

9𝜋⁄
7 ,

11𝜋⁄
7 , 13𝜋⁄7

Let 𝑥 = cos 𝜃, then 𝑧 + 1
⁄

𝑧 = cos 𝜃 + 𝑖 sin 𝜃 + 1⁄
cos 𝜃+𝑖 sin 𝜃 = 2 cos 𝜃 = 2𝑥

But cos(13𝜋⁄7 ) = 𝑐𝑜𝑠(2𝜋 − 𝜋
⁄

7) = cos 𝜋⁄7 , cos
11𝜋⁄
7 = cos 3𝜋⁄7 , cos 9𝜋⁄7 = cos 5𝜋⁄7

Dividing (1) by 𝑧3, we get 𝑧3 − 𝑧2 + 𝑧 − 1 + 1
⁄

𝑧 −
1⁄
𝑧2 +

1⁄
𝑧3 = 0

(𝑧3 + 1⁄
𝑧3)− (𝑧2 + 1⁄

𝑧2)+ (𝑧 + 1
⁄

𝑧)− 1 = 0

(𝑧 + 1
⁄

𝑧)
3
− 3𝑧. 1⁄𝑧 (𝑧 +

1
⁄

𝑧)− [(𝑧 + 1
⁄

𝑧)
2
− 2𝑧. 1⁄𝑧]+ 𝑧 + 1
⁄

𝑧 − 1 = 0

⇒ 8𝑥3 − 4𝑥2 − 4𝑥 + 1 = 0. Roots of this equation are cos 𝜋⁄7 , cos
3𝜋⁄
7 and cos 5𝜋⁄7 .

319. Given, 𝑧10−1 = 0 ⇒ 𝑧10 = 1 = cos 0+𝑖 sin 0 ∴ 𝑧 = (cos 0+𝑖 sin 0)
1
⁄

10 = cos 2𝑟𝜋⁄10 +𝑖 sin 2𝑟𝜋⁄10
= ±1, cos 𝜋⁄5 ± 𝑖 sin 𝜋
⁄

5 , cos
2𝜋⁄
5 ± 𝑖 sin 2𝜋⁄

5 , cos
3𝜋⁄
5 ± 𝑖 sin 3𝜋⁄

5 , cos
4𝜋⁄
5 ± 𝑖 sin 4𝜋⁄

5

Quadratic equation whose roots are ±1 is 𝑧2 − 1 = 0. And quadratic equation whose
roots are cos 𝜋⁄5 ± sin 𝜋
⁄

5 is 𝑧2 − 2 cos 𝜋⁄5 𝑧 + 1 = 0. Thus,

𝑧10 − 1 = (𝑧2 − 1)(𝑧2 − 2 cos 𝜋⁄5 𝑧 + 1)(𝑧2 − 2 cos 2𝜋⁄5 𝑧 + 1)(𝑧2 − 2 cos 3𝜋⁄5 𝑧 + 1)(𝑧2 −

2 cos 4𝜋⁄5 𝑧 + 1)

Dividing both sides by 𝑧5, we get

𝑧5− 1⁄
𝑧5 = (𝑧 − 1
⁄

𝑧)(𝑧 +
1
⁄

𝑧 − 2 cos 𝜋⁄5)(𝑧 +
1
⁄

𝑧 − 2 cos 2𝜋⁄5 )(𝑧 + 1
⁄

𝑧 − 2 cos 3𝜋⁄5 )(𝑧 + 1
⁄

𝑧 − 2 cos 4𝜋⁄5 )
Putting 𝑧 = cos 𝜃 + 𝑖 sin 𝜃 in the above equation, so that 𝑧5 − 1⁄

𝑧5 = 2𝑖 sin 5𝜃, we get

2𝑖 sin 5𝜃 = 2𝑖 sin 𝜃.2(cos 𝜃 − cos 𝜋⁄5)2(cos 𝜃 − cos 2𝜋⁄5 )2(cos 𝜃 − cos 3𝜋⁄5 )2(cos 𝜃 − cos 4𝜋⁄5 )
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∴ sin 5𝜃 = 16 sin 𝜃(cos 𝜃 − cos 𝜋⁄5)(cos 𝜃 − cos 2𝜋⁄5 )(cos 𝜃 − cos 3𝜋⁄5 )(cos 𝜃 − cos 4𝜋⁄5 )
= 16 sin 𝜃(cos 𝜃 − cos 𝜋⁄5)(cos 𝜃 + cos 𝜋⁄5)(cos 𝜃 − cos 2𝜋⁄5 )(cos 𝜃 + cos 2𝜋⁄5 )
= 16 sin 𝜃(cos2 𝜃 − cos2 𝜋⁄5)(cos

2 𝜃 − cos2 2𝜋⁄5 )
= 16 sin 𝜃(sin2 𝜋⁄5 − sin2 𝜃)(sin2 2𝜋⁄5 − sin2 𝜃)

= 16 sin 𝜃 sin2 𝜋⁄5 sin
2 2𝜋⁄

5 (1 −
sin2 𝜃
⁄

sin2𝜋⁄5
)(1 − sin2 𝜃⁄

sin22𝜋⁄5 )
= 16 sin 𝜃 sin2 36∘ sin2 72∘(1 − sin2 𝜃
⁄

sin2𝜋⁄5
)(1 − sin2 𝜃⁄

sin22𝜋⁄5 )
= 16 sin 𝜃(√


10−2√


5
⁄

4 )
2
(√


10+2√


5
⁄

4 )
2
(1 − sin2 𝜃
⁄

sin2𝜋⁄5
)(1 − sin2 𝜃⁄

sin22𝜋⁄5 )
Thus, sin 5𝜃 = 5 sin 𝜃(1 − sin2 𝜃
⁄

sin2𝜋⁄5
)(1 − sin𝜃⁄

sin22𝜋⁄5 ).

320. Given, 𝑥7 + 1 = 0 or 𝑥7 = −1 = cos 𝜋 + 𝑖 sin 𝜋

∴ 𝑥 = (cos 𝜋 + 𝑖 sin 𝜋)
1
⁄

7 = cos 2𝑟𝜋+𝜋⁄7 + 𝑖 sin 2𝑟𝜋+𝜋
⁄

7 , 𝑟 = 0, 1, 2, … , 6

= cos 𝜋⁄7 ± 𝑖 sin 𝜋
⁄

7 , cos
2𝜋⁄
7 ± 𝑖 sin 2𝜋⁄

7 , cos
3𝜋⁄
7 ± 𝑖 sin 3𝜋⁄

7 , cos 𝜋 + 𝑖 sin 𝜋(= −1)

𝑥7+ 1 = (𝑥+ 1)(𝑥2− 2 cos 𝜋⁄7 𝑥+ 1)(𝑥2− 2 cos 2𝜋⁄7 𝑥+ 1)(𝑥2− 2 cos 3𝜋⁄7 𝑥+ 1). Putting
𝑥 = 𝑖, we get

𝑖7 + 1 = (1 + 𝑖)(−2𝑖 cos 𝜋⁄7)(−2𝑖 cos
2𝜋⁄
7 )(−2𝑖 cos

3𝜋⁄
7 )

1 − 𝑖 = 8(1 + 𝑖) cos 𝜋⁄7 cos
2𝜋⁄
7 cos 3𝜋⁄7 = −8(1 − 𝑖) cos 𝜋⁄7 cos

2𝜋⁄
7 cos 3𝜋⁄7

∴ cos 𝜋⁄7 cos
2𝜋⁄
7 cos 3𝜋⁄7 = −1
⁄

8.

321. (cos 𝛼 + 𝑖 sin 𝛼)𝑛 = cos𝑛 𝛼 + 𝑖.𝑛𝐶1 cos𝑛−1 𝛼 sin 𝛼 + 𝑖2.𝑛𝐶2 cos𝑛−2 𝛼 sin2 𝛼 + ⋯ +
𝑖𝑛.𝑛𝐶𝑛 sin𝑛 𝛼

⇒ cos 𝑛𝛼 + 𝑖 sin 𝑛𝛼 = (cos𝑛 𝛼 −𝑛 𝐶2 cos𝑛−2 𝛼 sin2 𝛼)+ 𝑖(𝑛𝐶1 cos𝑛−1 𝛼 sin 𝛼). Equat
ing imaginary parts, we get

∴ sin 𝑛𝛼 =𝑛 𝐶1 cos𝑛−1 𝛼 sin 𝛼 −𝑛 𝐶3 cos𝑛−3 𝛼 sin3 𝛼 + ⋯

∴ sin(2𝑛 + 1)𝛼 =2𝑛+1 𝐶1 cos2𝑛 𝛼 sin 𝛼 −2𝑛+1 𝐶3 cos2𝑛−2 𝛼 sin3 𝛼 + ⋯

⇒ sin(2𝑛 + 1)𝛼 = sin2𝑛+1 𝛼[2𝑛+1𝐶1 cot2𝑛 𝛼 −2𝑛+1 𝐶3 cot2𝑛−2 𝛼 + ⋯]

when𝛼 = 𝜋
⁄

2𝑛+1,
2𝜋
⁄

2𝑛+1, ⋯ , 𝑛𝜋
⁄

2𝑛+1, sin(2𝑛 + 1)𝛼 = 0
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∴ cot2 𝜋
⁄

2𝑛+1, cot
2 2𝜋
⁄

2𝑛+1, ⋯ , cot2 𝑛𝜋
⁄

2𝑛+1 are the roots of the equation. From the second
term coefficient we get sum of roots in a polynomial.

∴ cot2 𝜋
⁄

2𝑛+1 + cot2 2𝜋
⁄

2𝑛+1 + ⋯+ cot2 𝑛𝜋
⁄

2𝑛+1 =
2𝑛+1𝐶3
⁄

2𝑛+1𝐶1
.

322. Let 𝐶 = cos 𝜃 cos 𝜃 + cos2 𝜃 cos 2𝜃 + ⋯ + 𝑐𝑜𝑠𝑛𝜃 cos 𝑛𝜃 and

𝑆 = cos 𝜃 sin 𝜃 + cos2 𝜃 sin 2𝜃 + ⋯ + 𝑐𝑜𝑠𝑛𝜃 sin 𝑛𝜃

Now, 𝐶 + 𝑖𝑆 = cos 𝜃(𝑐𝑜𝑠𝜃 + 𝑖 sin 𝜃) + cos2 𝜃(cos 2𝜃 + 𝑖 sin 2𝜃) + ⋯ + cos𝑛 𝜃(cos 𝑛𝜃 +
𝑖 sin 𝑛𝜃)

= cos 𝜃.𝑒𝑖𝜃 + cos2 𝜃.𝑒2𝑖𝜃 + ⋯ + cos𝑛 𝜃.𝑒𝑛𝑖𝜃 = 𝑥 + 𝑥2 + ⋯ + 𝑥𝑛, where 𝑥 = cos 𝜃𝑒𝑖𝜃 =
𝑥(𝑥𝑛−1)
⁄

𝑥−1 = cos 𝜃𝑒𝑖𝜃(cos𝑛 𝜃𝑒𝑖𝑛𝜃−1)
⁄

cos 𝜃𝑒𝑖𝜃−1

= cos 𝜃[cos𝑛 𝜃(cos𝑛𝜃+𝑖 sin𝑛𝜃)−1]
⁄

cos 𝜃−𝑒−𝑖𝜃 = cos 𝜃[(cos𝑛 𝜃 cos𝑛𝜃−1)+𝑖𝑐𝑜𝑠𝑛𝜃 sin𝑛𝜃]
⁄

cos 𝜃−(cos 𝜃−𝑖 sin 𝜃)

= −𝑖 cot 𝜃(cos𝑛 𝜃 cos 𝑛𝜃 − 1)+ 𝑖 cos𝑛 𝜃 sin 𝑛𝜃

Equating imaginary parts, we get

𝑆 = −cot 𝜃(cos𝑛 𝜃 cos 𝑛𝜃 − 1) = cot 𝜃(1 − cos𝑛 𝜃 cos 𝑛𝜃).

323. L.H.S. = −3 − 4𝑖 = 5(−3
⁄

5 − 𝑖 4⁄5) = 5(cos(𝜋 + tan−1 4⁄5)+ 𝑖 sin(𝜋 + tan−1 4⁄5))

= 5𝑒𝑖(𝜋+tan
−14
⁄

5) = R.H.S.

324. Putting 𝑥4 = √


3−1⁄
2√


2 + 𝑖√


3+1⁄
2√


2 in polar form we get

𝑥4 = cos 5𝜋⁄12 + 𝑖 sin 5𝜋⁄
12 ∴ 𝑥 = cos (24𝑟+5)𝜋⁄48 + 𝑖 sin (24𝑟+5)𝜋⁄48 , 𝑟 = 0, 1, 2, 4.

325. L.H.S. = 𝑧1𝑧2𝑧3 … = (cos 𝜋⁄3 + 𝑖 sin 𝜋
⁄

3)(cos
𝜋
⁄

32 + 𝑖 sin 𝜋
⁄

32)(cos
𝜋
⁄

33 + 𝑖 sin 𝜋
⁄

33)⋯

= cos(
𝜋
⁄

3⁄
1−1
⁄

3
)+ 𝑖 sin(

𝜋
⁄

3⁄
1−1
⁄

3
) = cos 𝜋⁄2 + 𝑖 sin 𝜋
⁄

2 = 𝑖 = R.H.S.

326. Given 𝑝0𝑥𝑛+ 𝑝1𝑥𝑛−1+ 𝑝2𝑥𝑛−2+⋯+𝑝𝑛 = 0, prove that 𝑝1 sin 𝜃+ 𝑝2 sin 2𝜃+⋯+𝑝𝑛 =
0 ⇒ 𝑝0(cos 𝑛𝜃+ 𝑖 sin 𝑛𝜃)+ 𝑝1[cos(𝑛−1)𝜃+ sin(𝑛−1)𝜃]+ 𝑝2[cos(𝑛−2)𝜃+ 𝑖 sin(𝑛−
2)𝜃]+⋯+ 𝑝𝑛 = 0 [∵ cos 𝜃 + 𝑖 sin 𝜃] is a solution.

Dividing both sides by cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃, we have

𝑝0+ 𝑝1(cos 𝜃 − 𝑖 sin 𝜃)+ 𝑝2(cos 2𝜃 − 𝑖 sin 2𝜃)+⋯+ 𝑝𝑛(cos 𝑛𝜃 − 𝑖 sin 𝑛𝜃) = 0. Equating
real and imaghinary parts we have required equations.

327. L.H.S. = (1+cos𝜙+𝑖 sin𝜙⁄1+cos𝜙−𝑖 sin𝜙)𝑛 = ((1+cos𝜙+𝑖 sin𝜙)(1+cos𝜙+𝑖 sin𝜙)⁄(1+cos𝜙)2+sin2 𝜙 )
𝑛

= (1+2cos𝜙+cos
2 𝜙−sin2 𝜙+2𝑖 sin𝜙(1+cos𝜙)
⁄

1+2cos𝜙+cos2 𝜙+sin2 𝜙 )
𝑛
= (2(1+cos𝜙)+2𝑖 sin𝜙(1+cos𝜙)⁄2 cos𝜙(1+cos𝜙) )

𝑛
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= (cos 𝜙 + 𝑖 sin 𝜙𝑛) = cos 𝑛𝜙 + 𝑖 sin 𝑛𝜙 = R.H.S.

328. Given 2 cos 𝜃 = 𝑥 + 1
⁄

𝑥 ⇒ 𝑥2 − 2 cos 𝜃𝑥 + 1 = 0 ⇒ 𝑥 = cos 𝜃 ± 𝑖 sin 𝜃. Similarly, 𝑦 =
cos 𝜙 ± 𝑖 sin 𝜙.

i. 𝑥
⁄

𝑦 = cos(𝜃 − 𝜙)± 𝑖 sin(𝜃 − 𝜙) and 𝑦⁄𝑥 = cos(𝜙 − 𝜃)± 𝑖 sin(𝜙 − 𝜃)

∴ L.H.S. = 2 cos(𝜃 − 𝜙) = R.H.S. [∵ cos(−𝜃) = cos 𝜃, sin(−𝜃) = −sin 𝜃]

ii. 𝑥𝑦 = cos(𝜃 + 𝜙)± 𝑖 sin(𝜃 + 𝜙), 1
⁄

𝑥𝑦 = cos(𝜃 + 𝜙)∓ 𝑖 sin(𝜃 + 𝜙)

∴ L.H.S. = 2 cos(𝜃 + 𝜙) = R.H.S.

iii. 𝑥𝑚𝑦𝑛 = (cos𝑚𝜃 ± 𝑖 sin𝑚𝜃)(cos 𝑛𝜙 ± 𝑖 sin 𝑛𝜙) = cos(𝑚𝜃+ 𝑛𝜙)± 𝑖 sin(𝑚𝜃+ 𝑛𝜙)
and 1⁄

𝑥𝑚𝑦𝑛 = cos(𝑚𝜃+𝑛𝜙)∓ 𝑖 sin(𝑚𝜃+𝑛𝜙) ∴ L.H.S. = 2 cos(𝑚𝜃+𝑛𝜙) = R.H.S.

iv. 𝑥𝑚⁄
𝑦𝑛 = cos(𝑚𝜃 − 𝑛𝜙)± 𝑖 sin(𝑚𝜃 − 𝑛𝜙) and 𝑦

𝑛⁄
𝑥𝑚 = cos(𝑛𝜙 −𝑚𝜃)± 𝑖 sin(𝑛𝜙 −𝑚𝜃)

∴ L.H.S. = 2 cos(𝑚𝜃 − 𝑛𝜙) = R.H.S.

329. Given equation is 𝑥2−2𝑥+4 = 0 whose roots are 𝛼, 𝛽 = 1± 𝑖√


3 = 2(cos 𝜋⁄3 ± 𝑖 sin 𝜋
⁄

3)⇒

𝛼𝑛, 𝛽𝑛 = 2(cos 𝑛𝜋⁄3 ± 𝑖 sin 𝑛𝜋⁄
3 )

∴𝛼𝑛 + 𝛽𝑛 = 2𝑛+1 cos 𝑛𝜋⁄3 = R.H.S.

330. Given equation is 𝑥2−2𝑥 cos 𝜃+1 = 0, whose roots are cos 𝜃±𝑖 sin 𝜃, 𝑛th power of which
are cos 𝑛𝜃±𝑖 sin 𝑛𝜃. Therefore, the equation having these roots are 𝑥2−2 cos 𝑛𝜃+1 = 0.

331. L.H.S. = 𝐴(cos 2𝜃 + 𝑖 sin 2𝜃)+𝐵(cos 2𝜃 − 𝑖 sin 2𝜃) = 5 cos 2𝜃 + 7𝑖2 sin 2𝜃.

⇒ 𝐴+𝐵 = 5, 𝐴 − 𝐵 = 7𝑖 ⇒ 𝐴 = 5+7𝑖⁄
2 , 𝐵 = 5−7𝑖⁄

2 .

332. Given 𝑥 = cos 𝜃 + 𝑖 sin 𝜃 and √

1 − 𝑐2 = 𝑛𝑐 − 1. Squaring the second equaiton 𝑛2𝑐2 +

𝑐2 − 2𝑛𝑐 = 0 ⇒ 𝑐 = 2𝑛⁄
𝑛2+1. We have to prove that 1 + cos 𝜃 = 𝑐⁄

2𝑛 (1 + 𝑛𝑥)(1 + 𝑛
⁄

𝑥).

R.H.S. = 1⁄
𝑛2+1 (1 + 𝑛2 + 2𝑛 cos 𝜃) = 1 + 2𝑛⁄

𝑛2+1 cos 𝜃 = 1 + 𝑐 cos 𝜃 = L.H.S.

333. From the given equality, we have (1+𝑧⁄1−𝑧)
𝑛
= 1 ⇒ 1 + 𝑧 = (1 − 𝑧)(cos 2𝑟𝜋⁄𝑛 + 𝑖 sin 2𝑟𝜋⁄

𝑛 )

Let 2𝑟𝜋⁄𝑛 = 𝜃 then 1+𝑧 = (1−𝑧)(cos 𝜃+𝑖 sin 𝜃)⇒ 𝑧((1+cos 𝜃)+𝑖 sin 𝜃) = (cos 𝜃−1)+

𝑖 sin 𝜃 ⇒ 𝑧 = (cos 𝜃−1)+𝑖 sin 𝜃
⁄

(1+cos 𝜃)+𝑖 sin 𝜃

𝑧 = 𝑖 tan 𝜃
⁄

2 = 𝑖 tan 2𝜋⁄
𝑛 , 𝑟 = 0, 1, 2, …, (𝑛 − 1)

Clearly, the above equation is invalid if 𝑛 is even and 𝑟 = 𝑛
⁄

2 as it will cause the value of
tan function to reach infinity.
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334. L.H.S. = 𝑥𝑦(𝑥+𝑦)−(𝑥+𝑦)
⁄

𝑥𝑦(𝑥−𝑦)+(𝑥−𝑦). Dividing numerator and denominator by 𝑥𝑦

=
𝑥+𝑦−1
⁄

𝑥−
1
⁄

𝑦
⁄

𝑥−𝑦+1
⁄

𝑦−
1
⁄

𝑥
= cos𝛼+𝑖 sin𝛼+cos𝛽+𝑖 sin𝛽−cos𝛼+𝑖 sin𝛼−cos𝛽+𝑖 sin𝛽
⁄

cos𝛼+𝑖 sin𝛼−cos𝛽−𝑖 sin𝛽−cos𝛼+𝑖 sin𝛼+cos𝛽−𝑖 sin𝛽 =
sin𝛼+sin𝛽
⁄

𝑠𝑖𝑛𝛼−sin𝛽 = R.H.S.

335. (1 + 𝑥)𝑛 =𝑛 𝐶0 +𝑛 𝐶1𝑥 +𝑛 𝐶3𝑥2 +𝑛 𝐶3𝑥3 + ⋯

We know that 𝜔, 𝜔2 = −1±√


3𝑖⁄
2 = −𝑐𝑜𝑠 𝜋⁄3 ± sin 𝜋
⁄

3.

Putting 𝑥 = 1, 𝜔, 𝜔2 and adding we get

2𝑛+ 2 cos 𝑛𝜋⁄3 = 3[𝑛𝐶0+𝑛 𝐶3+𝑛 𝐶6+⋯]⇒𝑛 𝐶0+𝑛 𝐶3+𝑛 𝐶6+⋯ = 1
⁄

3 (2
𝑛+ 2 cos 𝑛𝜋⁄3 ).

336. Proceeding like previous question,

2𝑛 =𝑛 𝐶0 +𝑛 𝐶1 +𝑛 𝐶2 +𝑛 𝐶3 +𝑛 𝐶4 +𝑛 𝐶5 + ⋯

(−𝜔2)𝑛 =𝑛 𝐶0 +𝑛 𝐶1𝜔 +𝑛 𝐶2𝜔2 +𝑛 𝐶3𝜔3 +𝑛 𝐶4𝜔4 +𝑛 𝐶5𝜔5 + ⋯

⇒ (−𝜔2)𝑛𝜔2 =𝑛 𝐶0𝜔2 +𝑛 𝐶1𝜔3 +𝑛 𝐶2𝜔4 +𝑛 𝐶3𝜔5 +𝑛 𝐶4𝜔6 +𝑛 𝐶5𝜔7 + ⋯

and (−𝜔)𝑛 =𝑛 𝐶0 +𝑛 𝐶1𝜔2 +𝑛 𝐶2𝜔4 +𝑛 𝐶3𝜔6 +𝑛 𝐶4𝜔8 +𝑛 𝐶5𝜔10 + ⋯

⇒ (−𝜔)𝑛𝜔 =𝑛 𝐶0𝜔 +𝑛 𝐶1𝜔3 +𝑛 𝐶2𝜔5 +𝑛 𝐶3𝜔7 +𝑛 𝐶4𝜔9 +𝑛 𝐶5𝜔11 + ⋯

Adding 2𝑛−2 + 2 cos (𝑛−2)𝜋⁄3 = 3[𝑛𝐶1 +𝑛 𝐶4 +𝑛 𝐶7 + ⋯]⇒𝑛 𝐶1 +𝑛 𝐶4 +𝑛 𝐶7 + ⋯ =
1
⁄

3 [2
𝑛−2 + 2 cos (𝑛−2)𝜋⁄3 ]

337. This problem can be solved like previous problem. Put 𝑥 = 1, 𝜔, 𝜔2 and multiply with
1, 𝜔, 𝜔2 and then add to obtain the result.

338. 𝐶0+𝐶1𝑥+𝐶2𝑥2+𝐶3𝑥3+𝐶4𝑥4+⋯ = (1+ 𝑥)4𝑛. Putting 𝑥 = 1, −1, 𝑖, −𝑖 and adding

4[𝐶0 + 𝐶4 + 𝐶8 + ⋯] = 24𝑛 + (1 + 𝑖)4𝑛 + (1 − 𝑖)4𝑛

⇒ 𝐶0 + 𝐶4 + 𝐶8 + ⋯ = 24𝑛−2 + (−1)𝑛 22𝑛−1.

339. Given (1 − 𝑥 + 𝑥2)6𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯. Putting 𝑥 = 1, 𝜔, 𝜔2

16𝑛 = 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 + ⋯

(−2𝜔)6𝑛 = 26𝑛 = 𝑎0 + 𝑎1𝜔 + 𝑎2𝜔2 + 𝑎3𝜔3 + ⋯

(−2𝜔2)6𝑛 = 26𝑛 = 𝑎0 + 𝑎1𝜔2 +2 𝜔4 + 𝑎3𝜔6 + ⋯

Adding 26𝑛+1 + 1 = 3[𝑎0 + 𝑎3 + 𝑎6 + ⋯] ⇒ 𝑎0 + 𝑎3 + 𝑎6 + ⋯ = 1
⁄

3 [2
6𝑛+1 + 1].

340. Proceeding like previous problem we obtain 3[𝑎0 + 𝑎3 + 𝑎6 + ⋯].

R.H.S. becomes 1𝑛 + (−2𝜔)𝑛 + (−2𝜔2)𝑛 but −𝜔 = cos 𝜋⁄3 + 𝑖 sin 𝜋
⁄

3 and −𝜔2 = cos 𝜋⁄3 −

𝑖 sin 𝜋
⁄

3 and hence we have R.H.S.
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341. Clearly, 𝑥″ = 𝐴𝐴′+𝐵𝐵′+𝐶𝐶′
⁄

3 , 𝑦″ = 𝐴𝐴′+𝐵𝐵′𝜔2+𝐶𝐶′𝜔
⁄

3 and 𝑧″ = 𝐴𝐴′+𝐵𝐵′𝜔+𝐶𝐶′𝜔2
⁄

3 ,

and 𝐴𝐴′ + 𝐵𝐵′ + 𝐶𝐶′ = (𝑥 + 𝑦 + 𝑧)(𝑥′ + 𝑦′ + 𝑧′) + (𝑥 + 𝑦𝜔 + 𝑧𝜔2)((𝑥′ + 𝑦′𝜔 +
𝑧′𝜔2) + (𝑥 + 𝑦𝜔2 + 𝑧𝜔)((𝑥′ + 𝑦′𝜔2 + 𝑧′𝜔) = 3(𝑥𝑥′ + 𝑧𝑦′ + 𝑦𝑧′). Analogously 𝑦″ =
𝑦𝑦′ + 𝑧𝑥′ + 𝑥𝑧′, 𝑧″ = 𝑧𝑧′ + 𝑥𝑦′ + 𝑦𝑧′.

342. We have the identity (𝛼𝛿 − 𝛽𝛾)(𝛼′𝛿′ − 𝛽′𝛾′) = (𝛼𝛼′ + 𝛽𝛾′)(𝛾𝛽′ + 𝛿𝛿′) − (𝛼𝛽′ +
𝛽𝛿′)(𝛾𝛼′ + 𝛾𝛼′ + 𝛿𝛾′)

Putting 𝛼 = 𝑥+ 𝑦𝑖, 𝛽 = 𝑧 + 𝑡𝑖, 𝛾 = −(𝑧 − 𝑡𝑖), 𝛿 = 𝑥 − 𝑦𝑖, 𝛼′ = 𝑎 + 𝑏𝑖, 𝛽′ = 𝑐 + 𝑑𝑖, 𝛾′ =
−(𝑐 − 𝑑𝑖) and 𝛿′ = 𝑎 − 𝑏𝑖 then

𝛼𝛿 − 𝛽𝛾 = 𝑥2 + 𝑦2 + 𝑧2 + 𝑡2 and 𝛼′𝛿′ − 𝛽′𝛾′ = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2

⇒ 𝛼𝛼′ + 𝛽𝛾′ = (𝑎𝑥 − 𝑏𝑦 − 𝑐𝑎 − 𝑑𝑡) + 𝑖(𝑏𝑥 + 𝑎𝑦 + 𝑑𝑧 − 𝑐𝑡), 𝛾𝛽′ + 𝛿𝛿′ = 𝛽𝛾′ + 𝛼𝛼′ =
𝛽𝛾′ + 𝛼𝛼′

∴𝛼𝛽′ + 𝛽𝛿′ = (𝑐𝑥 − 𝑑𝑦 + 𝑎𝑧 + 𝑏𝑡) + 𝑖(𝑑𝑥 + 𝑐𝑦 − 𝑏𝑧 + 𝑎𝑡), 𝛾𝛼′ + 𝛿𝛾′ = −(𝑐𝑥 − 𝑑𝑦 +
𝑎𝑧 + 𝑏𝑡)+ 𝑖(𝑑𝑥 + 𝑐𝑦 − 𝑏𝑧 + 𝑎𝑡)

Thus, −(𝛼𝛽′ + 𝛽𝛿′)(𝛾𝛼′ + 𝛿𝛾′) = (𝑐𝑥 − 𝑑𝑦 + 𝑎𝑧 + 𝑏𝑡)2 + (𝑑𝑥 + 𝑐𝑦 − 𝑏𝑧 + 𝑎𝑡)2

Substituting obtained expression in the original idendity we have the required result.

343. (cos 𝜃 + 𝑖 sin 𝜃)𝑛 = cos𝑛 𝜃 + 𝑖𝐶𝑛
1 cos𝑛−1 𝜃 sin 𝜃 + 𝑖2𝐶𝑛

2 cos(𝑛−2) 𝜃 sin2 𝜃 + ⋯ +
𝑖𝑟𝐶𝑛

𝑟 cos(𝑛 − 𝑟 + 1)𝜃 sin𝑟−1 𝜃 + ⋯

Separating real part, cos 𝑛𝜃 = cos𝑛 𝜃 − 𝐶𝑛
2 cos𝑛−2 𝜃 sin2 𝜃 + ⋯

Taking into account the parity of 𝑛 and dividing both members of these equalities
by cos𝑛 𝜃, we get the required formulas.

344. Replacing real part with imaginary part in previous problem we arrive at required
formula.

345. cos 𝜃 = (cos 𝜃+𝑖 sin 𝜃)+(cos 𝜃−𝑖 sin 𝜃)
⁄

2 . Let cos 𝜃 + 𝑖 sin 𝜃 = 𝑧 then cos 𝜃 − 𝑖 sin 𝜃 = 𝑧−1.

∴ cos2𝑚 𝜃 = (𝑧+𝑧
−1
⁄

2 )
2𝑚

= 1
⁄

22𝑚

2𝑚
∑
𝑘=0

𝐶2𝑚
𝑘 𝑧2𝑚−𝑘.𝑧−𝑘

Moreover 22𝑚 cos2𝑚 𝜃 =
𝑚−1
∑
𝑘=0

𝐶2𝑚
𝑘 𝑧2(𝑚−𝑘)+𝐶2𝑚

𝑚 +
2𝑚
∑

𝑘=𝑚+1
𝐶2𝑚
𝑘 𝑧2(𝑚−𝑘)

Putting 𝑚 − 𝑘 = −(𝑚 − 𝑘′), we rewrite the sum 
0
∑

𝑘′=𝑚−1
𝐶2𝑚
2𝑚−𝑘′𝑧

−2(𝑚−𝑘′) =

𝑚−1
∑
𝑘=0

𝐶2𝑚
𝑘 𝑧−2(𝑚−𝑘)

And so 22𝑚 cos2𝑚 𝜃 = ∑𝑚−1
𝑘=0 𝐶2𝑚

𝑘 (𝑧2(𝑚−𝑘)+ 𝑧−2(𝑚−𝑘))+𝐶2𝑚
𝑚 .
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However, 𝑧2(𝑚−𝑘)+ 𝑧−2(𝑚−𝑘) = 2 cos 2(𝑚− 𝑘).

∴ 22𝑚 cos2𝑚 𝜃 =
𝑚−1
∑
𝑘=0

2(2𝑚𝑘 ) cos 2(𝑚− 𝑘)𝑥 + (2𝑚𝑚 ).

346. Putting 𝜃 = 𝜋
⁄

2 − 𝜃 in the previous problem, we get the required formula.

347. This is deduced like previous problem.

348. This is deduced like previous problem.

349. We have the expression 𝑢𝑛 + 𝑖𝑣𝑛 = (cos 𝛼 + 𝑖 sin 𝛼)+ 𝑟[cos(𝛼 + 𝜃)+ 𝑖 sin(𝛼 + 𝜃)]+
⋯+ 𝑟𝑛[cos(𝛼 + 𝑛𝜃)+ 𝑖 sin(𝛼 + 𝑛𝜃)]

= (cos 𝛼+ 𝑖 sin 𝛼)[1+ (cos 𝜃 + 𝑖 sin 𝜃)+⋯+𝑟𝑛(cos 𝑛𝜃+ 𝑖 sin 𝑛𝜃)]. Putting 𝑧 = cos 𝜃 +
𝑖 sin 𝜃, then

𝑢𝑛 + 𝑖𝑣𝑛 = (cos 𝛼 + 𝑖 sin 𝛼)[1 + 𝑟𝑧 + ⋯+ 𝑟𝑛𝑧𝑛 ] = 𝑒𝑖𝛼 (𝑟𝑧)
𝑛+1−1
⁄

𝑟𝑧−1

Transforming (𝑟𝑧)
𝑛+1−1
⁄

𝑟𝑧−1 , separating real part from the imaginary one.

(𝑟𝑧)𝑛+1−1
⁄

𝑟𝑧−1 = [(𝑟𝑧)𝑛+1−1][𝑟𝑧−1]
⁄

(𝑟𝑧−1)(𝑟𝑧−1)

= 𝑟𝑛+2[cos𝑛𝜃+𝑖 sin𝑛𝜃]−𝑟[cos 𝜃−𝑖 sin 𝜃]
⁄

1−2𝑟 cos 𝜃+𝑟2 + −𝑟𝑛+1[cos(𝑛+1)𝜃+𝑖 sin(𝑛+1)𝜃]+1
⁄

1−2𝑟 cos 𝜃+𝑟2

Multiplying above with (cos 𝛼 + 𝑖 sin 𝛼) and separating real and imaginary parts we
have

𝑢𝑛 + 𝑖𝑣𝑛 = cos𝛼−𝑟 cos(𝛼−𝜃)−𝑟𝑛+1 cos[𝛼+(𝑛+1)𝜃]+𝑟𝑛+2 cos(𝛼+𝑛𝜃)
⁄

1−2𝑟 cos 𝜃+𝑟2 +

𝑖 sin𝛼−𝑟 sin(𝛼−𝜃)−𝑟
𝑛+1 sin[𝛼+(𝑛+1)𝜃]+𝑟𝑛+2 sin(𝛼+𝑛𝜃)
⁄

1−2𝑟 cos 𝜃+𝑟2 .

Note: Putting 𝛼 = 0, 𝑟 = 1, we obtain 1 + cos 𝜃 + cos 2𝜃 + ⋯ + cos 𝑛𝜃 =
sin𝑛+1⁄

2 𝜃 cos𝑛𝜃
⁄

2
⁄

sin𝜃
⁄

2

and sin 𝜃 + sin 2𝜃 + ⋯ + sin 𝑛𝜃 =
sin𝑛+1⁄

2 𝜃 sin𝑛𝜃
⁄

2
⁄

sin𝜃
⁄

2
.

350. 𝑆 + 𝑖𝑆′ =
𝑛
∑
𝑘=0

𝐶𝑛
𝑘 (cos 𝑘𝜃 + 𝑖 sin 𝑘𝜃) =

𝑛
∑
𝑘=0

(cos 𝜃 + 𝑖 sin 𝜃)𝑘

= (1 + cos 𝜃 + 𝑖 sin 𝜃)𝑛 = [2 cos2 𝜃⁄2 + 2𝑖 sin 𝜃
⁄

2 cos
𝜃
⁄

2]
𝑛
= 2𝑛 cos𝑛 𝜃
⁄

2 (cos
𝜃
⁄

2 + 𝑖 sin 𝜃
⁄

2)
𝑛

= 2𝑛 cos𝑛 𝜃
⁄

2 (cos
𝑛𝜃
⁄

2 + 𝑖 sin 𝑛𝜃
⁄

2 ).

Equating real and imaginary parts we have 𝑆 and 𝑆′.
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351. Put 𝑆 = sin2𝑝 𝛼 + sin2𝑝 2𝛼 + ⋯+ sin2𝑝 2𝛼 =
𝑛
∑
𝑙=1

sin2𝑝 𝑙𝛼

But we have proved earlier sin2𝑝 𝑙𝛼 = 1
⁄

22𝑝−1)(−1)
𝑝
𝑝−1
∑
𝑘=0

𝐶2𝑝
𝑘 cos 2(𝑝 − 𝑘) 𝑙𝛼 + 1
⁄

22𝑝𝐶
2𝑝
𝑝 ,

therefore

𝑆 = (−1)𝑝
⁄

22𝑝−1

𝑝−1
∑
𝑘=0

(−1)𝑘𝐶2𝑝
𝑘

𝑛
∑
𝑙=1

cos 2(𝑝 − 𝑘) 𝑙𝛼 + 1
⁄

22𝑝𝐶
2𝑝
𝑝

Put 2(𝑝 − 𝑘)𝛼 = 𝜃,∑𝑛
𝑙=1 cos 2(𝑝 − 𝑘)𝛼 = cos 𝜃 + ⋯ + cos 𝑛𝜃 =

sin𝑛𝜃
⁄

2 cos𝑛+1⁄
2 𝜃
⁄

sin𝜃
⁄

2

Denoting 
sin𝑛𝜃
⁄

2 cos𝑛+1⁄
2 𝜃
⁄

sin𝜃
⁄

2
= 𝜎𝑘, we can prove that 𝜎𝑘 = 0 if 𝑘 is of the same parity as

𝑝{𝑘 ≡ 𝑝(mod 2)} and 𝜎𝑘 = −1 if 𝑘 and 𝑝 are of different parity {𝑘 ≡ 𝑝 + 1(mod) 2},
and we get

𝑆 = (−1)𝑝+1
⁄

22𝑝−1

𝑝−1
∑
𝑘=0

𝑘≡𝑝+1(mod2)

(−1)𝑘𝐶2𝑝
𝑘 + 𝑛
⁄

22𝑝𝐶
2𝑝
𝑝 .

Hence, 𝑆 = 1
⁄

22𝑝−1

𝑝−1
∑
𝑘=0

𝑘≡𝑝+1(mod2)

𝐶2𝑝
𝑘 + 𝑛
⁄

22𝑝𝐶
2𝑝
𝑝 .

But we can prove that 
𝑝−1
∑
𝑘=0

𝑘≡𝑝+1(mod2)

𝐶2𝑝
𝑘 = 22𝑝−2 (check binomial theorem chapter)

and hence our formula is deduced.

352. Considering the given expression as a polynomial in 𝑦 we see that at 𝑦 = 0 the
polynomial vanishes. Therefore, our polynomial is divisible by 𝑦. Since it is symmetrical
both w.r.t. to 𝑥 and 𝑦 this must also be true for 𝑥 i.e. the polynomial being divisible
by 𝑥. Hence, the polynomial is divisible by 𝑥𝑦. Putting 𝑦 = −𝑥(we do this for checking
divisibility by 𝑥+𝑦), we have (𝑥−𝑥)𝑛−𝑥𝑛− (−𝑥)𝑛 = 0. Consequently, the polynomial
is divisible by 𝑥 + 𝑦.

Now it remains to prove that the polynomial is divisible by 𝑥2 + 𝑥𝑦 + 𝑦2. Expansind
this into linear factors we have 𝑥2 + 𝑥𝑦 + 𝑦2 = (𝑦 − 𝑥𝜔)(𝑦 − 𝑥𝜔2) where 𝜔 is cube
root of unity, which leads to 1 + 𝜔 + 𝜔2 = 0.

Since 𝑛 = 3𝑚+ 1, 3𝑚 + 2 ∀ 𝑚 ∈ 𝕀, we substitute 𝑦 = 𝑥𝜔 and 𝑦 = 𝑥𝜔2 and find that it
vanishes for both. Consequently, we have proven the divisibility condition.

353. Let the quantities −𝑥,−𝑦 and 𝑥+𝑦 be the roots of the cubic equation 𝑥3−𝑟𝑥2−𝑝𝑥−𝑞 =
0. Then 𝑟 = −𝑥−𝑦+𝑥+𝑦 = 0,−𝑝 = 𝑥𝑦−𝑥(𝑥+𝑦)−𝑦(𝑥+𝑦), 𝑞 = 𝑥𝑦(𝑥+𝑦) reducing
our equation to 𝑥3 − 𝑝𝑥 + 𝑞 = 0.
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Putting (𝑥 + 𝑦)𝑛 − 𝑥𝑛 − 𝑦𝑛 = 𝑆𝑛 we find that between successive values of 𝑆𝑛 their
exists relationship 𝑆𝑛+3 = 𝑝𝑆𝑛+1 + 𝑞𝑆𝑛. We will use mathematical induction to prove
that 𝑆𝑛 is divisible by 𝑝2 with the knowledge that 𝑆1 = 0.

Let 𝑆𝑛 be divisble by 𝑝2 then let 𝑆𝑛+6 be also divisible by 𝑝2. We have, 𝑆𝑛+6 =
𝑝𝑆𝑛+4 + 𝑞𝑆𝑛+3, 𝑆𝑛+4 = 𝑝𝑆𝑛+2 + 𝑞𝑆𝑛+1. Therefore,

𝑆𝑛+6 = 𝑝(𝑝𝑆𝑛+2 + 𝑞𝑆𝑛+1)+ 𝑞(𝑝𝑆𝑛+1 + 𝑞𝑆𝑛) = 𝑝2𝑆𝑛+2 + 2𝑝𝑞𝑆𝑛+1 + 𝑞2𝑆𝑛.

Since by supposition, 𝑆𝑛 is divisible by 𝑝2, it suffices to prove that 𝑆𝑛+1 is divisible
by 𝑝. Thus, we only have to prove that given expression is divisible by 𝑥2 + 𝑥𝑦 + 𝑦2 if
𝑛 ≡ 2(mod6), which can be proved by proceeding like previous problem.

354. Let 𝑓(𝑥) = (cos 𝜃 + 𝑥 sin 𝜃)𝑛 − cos 𝑛𝜃 − 𝑥 sin 𝑛𝜃. But 𝑥2 + 1 = (𝑥 + 𝑖)(𝑥 − 𝑖) and
𝑓(𝑖)= cos 𝑛𝜃+𝑖 sin 𝑛𝜃−cos 𝑛𝜃−𝑖 sin 𝑛𝜃 = 0. Similarly, 𝑓(−𝑖)= 0. And hence, required
condition is proved.

355. Roots of the equation 𝑥2−2𝑝𝑥 cos 𝜃+ 𝑝2 = 0 are 𝑝(cos 𝜃± sin 𝜃). Let 𝑓(𝑥) = 𝑥𝑛 sin 𝜃−
𝑝𝑛−1𝑥 sin 𝑛𝜃 + 𝑝𝑛 sin(𝑛 − 1)𝜃, then

𝑓[𝑝(cos 𝜃+ 𝑖 sin 𝜃)] = 𝑝𝑛(cos 𝑛𝜃+ 𝑖 sin 𝑛𝜃) sin 𝜃− 𝑝𝑛(cos 𝜃+ 𝑖 sin 𝜃) sin 𝑛𝜃+ 𝑝𝑛 sin(𝑛−
1)𝜃. Separating real and imaginary parts

cos 𝑛𝜃 sin 𝜃 − cos 𝜃 sin 𝑛𝜃 + sin(𝑛 − 1)𝜃 = − sin(𝑛 − 1)𝜃 + sin(𝑛 − 1)𝜃 = 0

and sin 𝜃 sin 𝑛𝜃 − sin 𝜃 sin 𝑛𝜃 = 0. Hence, 𝑓(𝑥) is divisible by 𝑝(cos 𝜃 + 𝑖 sin 𝜃) and
similarly we can prove it for the other root.

356. Let 𝑥4 + 1 = (𝑥2 + 𝑝𝑥 + 𝑞)(𝑥2 + 𝑝′𝑥 + 𝑞′) = 𝑥4 + (𝑝 + 𝑝′)𝑥3 + (𝑝𝑝′ + 𝑞 + 𝑞′)𝑥2 +
(𝑝𝑞′+𝑝′𝑞)𝑥+𝑞𝑞′ which gives us four equations 𝑝+𝑝′ = 0, 𝑝𝑝′+𝑞+𝑞′ = 0, 𝑝𝑞′+𝑝′𝑞 = 0
and 𝑞𝑞′ = 1.

Assuming 𝑝 = 0, 𝑝′ = 0, 𝑞 + 𝑞′ = 0, 𝑞𝑞′ = 1, 𝑞2 = −1, 𝑞 = ±𝑖, 𝑞′ = ∓𝑖.

Consequently, corresponding factorization has form 𝑥4 + 1 = (𝑥2 + 𝑖)(𝑥2 − 𝑖).

Let 𝑞 = 𝑞′, 𝑞2 = 1, 𝑞 = ±1. First let 𝑞 = 𝑞′ = 1. Then 𝑝𝑝′ = −2, 𝑝 + 𝑝′ = 0, 𝑝2 = 2, 𝑝 =
±√


2, 𝑝′ = ∓√


2. The corresponding factorization is 𝑥4 + 1 = (𝑥2 −√


2𝑥 + 1)(𝑥2 +
√


2𝑥 + 1).

Then we assume 𝑞 = 𝑞′ = −1, 𝑝 + 𝑝′ = 0, 𝑝𝑝′ = 2, 𝑝 = ±√


2𝑖, 𝑝′ = ∓√


2𝑖.

The factorization will be (𝑥2 +√


2𝑖𝑥 − 1)(𝑥2 −√


2𝑖𝑥 − 1).

357. Let 𝑆 =
𝑛−1
∑
𝑘=1

𝑥𝑝𝑘 =
𝑛−1
∑
𝑘=1

𝑧𝑘𝑝 where 𝑧 = cos 2𝜋⁄𝑛 + 𝑖 sin 2𝜋⁄
𝑛 .

Thus, 
𝑛−1
∑
𝑘=1

𝑥𝑝𝑘 = 1 + 𝑧𝑝 + 𝑧2𝑝 + ⋯ + 𝑧(𝑛−1)𝑝 but 𝑧𝑝 = cos 2𝑝𝜋⁄𝑛 + 𝑖 sin 2𝑝𝜋
⁄

𝑛 . Obviously

𝑧𝑝 = 1 if and only if 𝑝 is divisible by 𝑛, in which case 𝑆 = 𝑛. If 𝑧𝑝 ≠ 1, then
𝑆 = 𝑧𝑛𝑝−1
⁄

𝑧𝑝−1 = 0 ∵ 𝑧𝑛𝑝 = 1.
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358. We have 
𝑛−1
∑
𝑘=0

|𝐴𝑘|2 =
𝑛−1
∑
𝑘=0

𝐴𝑘𝐴𝑘.

But 𝐴𝑘𝐴𝑘 = (𝑥 + 𝑦𝜖𝑘 + 𝑧𝜖2𝑘 + …+ 𝑤𝜖(𝑛−1)𝑘)(𝑥 + 𝑦𝜖−𝑘 + 𝑧𝜖−2𝑘 + ⋯ + 𝑤𝜖−(𝑛−1)𝑘)

= (𝑥𝑥 + 𝑦𝑦 + ⋯ + 𝑤𝑤) + 𝑥(𝑦𝜖−𝑘 + 𝑧𝜖−2𝑘 + ⋯ + 𝑤𝜖−(𝑛−1)𝑘) + 𝑦𝜖𝑘(𝑥 + 𝑥𝜖−2𝑘 + ⋯ +
𝑤𝜖−(𝑛−1)𝑘)+⋯+𝑤𝜖(𝑛−1)𝑘(𝑥 + 𝑦𝜖−𝑘 + ⋯+ 𝑢𝜖−(𝑛−2)𝑘)

Therefore, 
𝑛−1
∑
𝑘=0

|𝐴𝑘|2 = 𝑛(|𝑥|2 + |𝑦|2 + ⋯ + |𝑤|2) + 𝑥
𝑛−1
∑
𝑘=1

(𝑦𝜖−𝑘 + 𝑧𝜖−2𝑘 + ⋯ +

𝑤𝜖−(𝑛−1)𝑘)+𝑦
𝑛−1
∑
𝑘=0

(𝑥𝜖𝑘+𝑧𝜖−𝑘+⋯+𝑤𝜖−(𝑛−2)𝑘)+⋯+𝑤
𝑛−1
∑
𝑘=0

(𝑥𝜖(𝑛−1)𝑘+𝑦𝜖(𝑛−2)𝑘+

⋯ + 𝑢𝜖𝑘)

But 
𝑛−1
∑
𝑘=0

𝜖𝑙𝑘 = 0 if 𝑙 is not divisible by 𝑛 from previous problem. Therefore all the sums

in the right vanish and we get

𝑛−1
∑
𝑘=0

|𝐴𝑘|2 = 𝑛(|𝑥|2 + |𝑦|2 + …+ |𝑤|2).

359. Considering 2𝑛th root of unity 𝑥𝑠 = cos 2𝑠𝜋⁄𝑛 + 𝑖 sin 2𝑠𝜋
⁄

𝑛 (𝑠 = 1, 2, 3, … , 𝑛).

Therefore, 𝑥2𝑛 − 1 =
2𝑛
∏
𝑠=1

(𝑥 − 𝑥𝑠) =
𝑛−1
∏
𝑠=1

(𝑥 − 𝑥𝑠)
2𝑛−1
∏

𝑠=𝑛+1
(𝑥 − 𝑥𝑠) (𝑥2 − 1) ∵ 𝑥𝑛 =

−1, 𝑥2𝑛 = 1. But 𝑥2𝑛−𝑠 = 𝑥𝑠, consequently,

𝑥2𝑛 − 1 = (𝑥2 − 1)
𝑛−1
∏
𝑠=1

(𝑥 − 𝑥𝑠) (𝑥 − 𝑥𝑠) = (𝑥2 − 1)
𝑛−1
∏
𝑠=1

(𝑥2 − 2𝑥 cos 𝑠𝜋⁄𝑛 + 1).

360. Considering 2𝑛+1th root of unity 𝑥𝑠 = cos 2(2𝑠+1)𝜋⁄2𝑛+1 + 𝑖 sin (2𝑠+1)𝜋⁄2𝑛+1 (𝑠 = 1, 2, 3,… , 𝑛).

Therefore 𝑥2𝑛+1 − 1 =
2𝑛+1
∏
𝑠=1

(𝑥 − 𝑥𝑠). However, 𝑥2𝑛+1 = 1, therefore

𝑥2𝑛+1 − 1 = (𝑥 − 1)
2𝑛
∏
𝑠=1

(𝑥 − 𝑥𝑠), but 𝑥2𝑛−𝑠 = 𝑥𝑠 ⇒ 𝑥2𝑛+1 − 1 = (𝑥 − 1)
𝑛
∏
𝑥=1

(𝑥 −

𝑥𝑠) (𝑥 − 𝑥𝑠) = (𝑥 + 1)
𝑛
∏
𝑘=1

(𝑥2 − 2𝑥 cos 2𝑘𝜋
⁄

2𝑛+1 + 1).

361. Considering 2𝑛+1th root of −1,𝑥𝑠 = −cos 2(2𝑠+1)𝜋⁄2𝑛+1 + 𝑖 sin (2𝑠+1)𝜋⁄2𝑛+1 (𝑠 = 1, 2, 3,… ,𝑛).

Therefore 𝑥2𝑛+1 + 1 =
2𝑛+1
∏
𝑠=1

(𝑥 − 𝑥𝑠). However, 𝑥2𝑛+1 = −1, therefore
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𝑥2𝑛+1 + 1 = (𝑥 + 1)
2𝑛
∏
𝑠=1

(𝑥 − 𝑥𝑠), but 𝑥2𝑛−𝑠 = 𝑥𝑠 ⇒ 𝑥2𝑛+1 + 1 = (𝑥 + 1)
𝑛
∏
𝑥=1

(𝑥 −

𝑥𝑠) (𝑥 − 𝑥𝑠) = (𝑥 + 1)
𝑛
∏
𝑘=1

(𝑥2 + 2𝑥 cos 2𝑘𝜋
⁄

2𝑛+1 + 1).

362. This problem can be solved like previous problem.

363. We have proven that 𝑥2𝑛 − 1 = (𝑥2 − 1)
𝑛−1
∏
𝑘=1

(𝑥2 − 2𝑥 cos 𝑘𝜋⁄𝑛 + 1)

⇒ 𝑥2𝑛−2 + 𝑥2𝑛−4 + ⋯+ 𝑥2 + 1 =
𝑛−1
∏
𝑘=1

(𝑥2 − 2𝑥 cos 𝑘𝜋⁄𝑛 + 1)

Putting 𝑥 = 1, we have 𝑛 =
𝑛−1
∏
𝑘=1

(2 − 2 cos 𝑘𝜋⁄
𝑛 ) =

𝑛−1
∏
𝑘=1

4 sin2 𝑘𝜋⁄
2𝑛 =

22(𝑛−1) sin2 𝜋⁄
2𝑛 sin

2 2𝜋⁄
2𝑛⋯ sin2 (𝑛−1)𝜋⁄2𝑛

⇒ sin 𝜋⁄
2𝑛 sin

2𝜋⁄
2𝑛… sin (𝑛−1)𝜋⁄2𝑛 = √

𝑛
⁄

2𝑛−1.

364. This problem can be solved like previous problem.

365. Since cos 𝛼 + 𝑖 sin 𝛼 is the root of the given equation, we have 
𝑛
∑
𝑘=0

𝑝𝑘(cos 𝛼 +

𝑖 sin 𝛼)𝑛−𝑘 = 0 (𝑝0 = 1)

⇒ (cos 𝛼 + 𝑖 sin 𝛼)𝑛
𝑛
∑
𝑘=0

𝑝𝑘(cos 𝛼 + 𝑖 sin 𝛼)−𝑘 = 0 ⇒
𝑛
∑
𝑘=0

𝑝𝑘(cos 𝛼𝑘 − 𝑖 sin 𝛼𝑘) = 0.

Hence, 
𝑛
∑
𝑘=0

𝑝𝑘 sin 𝛼𝑘 = 𝑝1 sin 𝛼 + 𝑝2 sin 2𝛼 + ⋯+ 𝑝𝑛 sin 𝑛𝛼 = 0.

366. The roots of the equation 𝑥7 = 1 are cos 2𝑘𝜋⁄7 + 𝑖 sin 2𝑘𝜋⁄
7 (𝑘 = 0, 1, 2, … , 6).

Therefore, the roots of the equation 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 = 0 will be
𝑥𝑘 = cos 2𝑘𝜋⁄7 + 𝑖 sin 2𝑘𝜋⁄

7 (𝑘 = 1, 2, 3, … , 6).

Putting 𝑥 + 1
⁄

𝑥 = 𝑦, then 𝑥2 + 1
⁄

𝑥2 = 𝑦2 − 2 and 𝑥3 + 1
⁄

𝑥3 = 𝑦3 − 3𝑦. Rewriting the above

equation (𝑥3 + 1
⁄

𝑥3)+ (𝑥2 + 1
⁄

𝑥2)+ (𝑥 + 1
⁄

𝑥)+ 1 = 0.

Clearly, 𝑥1 = 𝑥6, 𝑥2 = 𝑥5, 𝑥3 = 𝑥4, 𝑥𝑘 +
1
⁄

𝑥𝑘 = 𝑥𝑘 + 𝑥𝑘 = 2 cos 2𝑘𝜋⁄7 .

Hence we can say that quantities 2 cos 2𝜋⁄7 , 2 cos 4𝜋⁄7 , 2 cos 6𝜋⁄7 are the rootss of the equation
𝑦3 + 𝑦2 − 2𝑦 − 1 = 0.
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Let the roots of the cubic equation 𝑥3 − 𝑎𝑥2 + 𝑏𝑥 − 𝑐 = 0 be 𝛼, 𝛽, 𝛾. Then 𝛼+ 𝛽 + 𝛾 =
𝑎, 𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼 = 𝑏, 𝛼𝛽𝛾 = 𝑐.

Let the equation, whose roots are 3√


𝛼, 3√

𝛽, 3√


𝛾, be 𝑥3 − 𝐴𝑥2 + 𝐵𝑥 − 𝐶 = 0. Then,
3√


𝛼 + 3√

𝛽 + 3√


𝛾 = 𝐴, 3√


𝛼𝛽 + 3√


𝛽𝛾 + 3√

𝛾𝛼 = 𝐵, 3√


𝛼𝛽𝛾 = 𝐶.

We know that (𝑚+ 𝑝 + 𝑞)3 = 𝑚3 + 𝑝3 + 𝑞3 + 3(𝑚+ 𝑝 + 𝑞)(𝑚𝑝 +𝑚𝑞 + 𝑝𝑞)− 3𝑚𝑝𝑞.
Substituting 3√


𝛼, 3√

𝛽, 3√


𝛾 and 3√


𝛼𝛽, 3√


𝛽𝛾, 3√

𝛾𝛼 for 𝑚, 𝑝, 𝑞 we obtain

𝐴3 = 𝑎+ 3𝐴𝐵−3𝐶, 𝐵3 = 𝑏 + 3𝐵𝐶𝐴−3𝐶2. In our case, 𝑎 = −1, 𝑏 = −2, 𝑐 = 1, 𝐶 = 1.
Hence, 𝐴3 = 3𝐴𝐵 − 4, 𝐵3 = 3𝐴𝐵 − 5.

Multiplying these equations and putting 𝐴𝐵 = 𝑧, we find

𝑧3 − 9𝑧2 + 27𝑧 − 20 = 0 ⇒ (𝑧 − 3)3 + 7 = 0 ⇒ 𝑧 = 3 − 3√

7

But 𝐴3 = 3𝑧 − 4 ⇒ 𝐴 = 3√


5 − 3 3√

7 and hence

3√

cos 2𝜋⁄7 + 3√

cos 4𝜋⁄7 + 3√

cos 8𝜋⁄7 = 3√

1
⁄

2 (5 − 3 3√

7).

367. This problem can be solved like previous problem.

368. Squaring the first trimonial, 𝐴2 = (𝑥21 + 2𝑥2𝑥3)+ (𝑥23 + 2𝑥1𝑥2)𝜔 + (𝑥22 + 2𝑥1𝑥3)𝜔2.

Then 𝐴3 = (𝑥21+𝑥22+𝑥23+6𝑥1𝑥2𝑥3)+ (3𝑥21𝑥2+3𝑥22𝑥1+3𝑥22𝑥3)𝜔+ (3𝑥21𝑥3+3𝑥22𝑥1+
3𝑥23𝑥2)𝜔2

Putting 3𝛼 = 3𝑥21𝑥2 + 3𝑥22𝑥1 + 3𝑥22𝑥3 and 3𝛽 = 3𝑥21𝑥3 + 3𝑥22𝑥1 + 3𝑥23𝑥2.

Now 𝑥31+𝑥32+𝑥33 = −(𝑝𝑥1+ 𝑞)− (𝑝𝑥2+ 𝑞)− (𝑝𝑥3+ 𝑞) = −3𝑞 since 𝑥1+𝑥2+𝑥3 = 0.
Moreover, 𝑥1𝑥2𝑥3 = −𝑞, therefore

𝐴3 = −9𝑞 + 3𝛼𝜔 + 3𝛽𝜔2, we also find 𝐵3 = −9𝑞 + 3𝛼𝜔2 + 3𝛽𝜔.

Hence, 𝐴3 + 𝐵3 = −18𝑞 − 3𝛼 − 3𝛽 = −27𝑞, and similarly, 𝐴3𝐵3 = −27𝑝3.

369. Let 𝑓(𝑥) = 5𝑥4+10𝑥2+1
⁄

𝑥4+10𝑥2+5 then the equation takes the form 𝑓(𝑥) .𝑓(𝑎) = 𝑎𝑥.

𝑥 − 𝑓(𝑥) = (𝑥−1)5
⁄

𝑥4+10𝑥2+5 and 𝑥 + 𝑓(𝑥) = (𝑥+1)5
⁄

𝑥4+10𝑥2+5. Dividing,

𝑥−𝑓(𝑥)
⁄

𝑥+𝑓(𝑥) = (𝑥−1⁄𝑥+1)
5
. Let 𝑥−1⁄𝑥+1 = 𝑦 and 𝑎−1⁄𝑎+1 = 𝑏.

⇒ 𝑥− 𝑓(𝑥) = 𝑦5𝑥 + 𝑦5𝑓(𝑥), 𝑥(1 − 𝑦5) = 𝑓(𝑥)(1 + 𝑦5)⇒ 𝑓(𝑥)
⁄

𝑥 = 1−𝑦5
⁄

1+𝑦5.

Similarly, 𝑓(𝑎)⁄𝑎 = 1−𝑏5
⁄

1+𝑏5. So we can write the equation as 1−𝑦
5
⁄

1+𝑦5 =
1+𝑏5
⁄

1−𝑏5 ⇒ 𝑦5 = −𝑏5.

The last equation has five roots. 𝑦𝑘 = −𝑏𝜖𝑘, where 𝜖 = cos 2𝜋⁄5 + 𝑖 sin 2𝜋⁄
5 .

But 𝑥 = 1+𝑦
⁄

1−𝑦 ⇒ 𝑥𝑘 =
(𝑎+1)−(𝑎−1)𝜖𝑘
⁄

(𝑎+1)+(𝑎−1)𝜖𝑘 =
cos𝑘𝜋⁄5 −𝑖𝑎 sin𝑘𝜋
⁄

5
⁄

𝑎cos𝑘𝜋⁄5 −𝑖 sin𝑘𝜋
⁄

5
.
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370. (−1
⁄

2 + 𝑖√


3⁄
2 )

𝑛
= cos 2𝑛𝜋⁄3 + 𝑖 sin 2𝑛𝜋
⁄

3

Further (−1
⁄

2 + 𝑖√


3⁄
2 )

𝑛
= (−1)𝑛⁄

2𝑛 (1 − 𝑖√


3)𝑛 = (−1)𝑛⁄
2𝑛 [1 + 𝐶𝑛

1 (−𝑖√


3) + 𝐶𝑛
2 (−𝑖√


3)2 +
𝐶𝑛
3 (−𝑖√


3)3 + ⋯]

= (−1)𝑛⁄
2𝑛 [1 − 3𝐶𝑛

2 + ⋯]− 𝑖√


3[𝐶𝑛
1 − 3𝐶𝑛

3 + 32𝐶𝑛
5 − 33𝐶𝑛

7 + ⋯]

Equating coefficient of 𝑖 in both the equations, 𝑆 = (−1)𝑛+1 2𝑛⁄
√


3 sin
2𝑛𝜋
⁄

3 .

371. We have (1 + 𝑖)𝑛 = 1 + 𝐶𝑛
1 𝑖 + 𝐶𝑛

2 𝑖
2 + 𝐶𝑛

3 𝑖
3 + ⋯ = 1 + 𝐶𝑛

1 𝑖 − 𝐶𝑛
2 − 𝐶𝑛

3 𝑖 + ⋯

But 1 + 𝑖 = √


2(cos 𝜋⁄4 + 𝑖 sin 𝜋
⁄

4)

Therefore, 𝜎 = 1 − 𝐶𝑛
2 + 𝐶𝑛

4 − 𝐶𝑛
6 + ⋯ = 2

𝑛
⁄

2 cos 𝑛𝜋⁄4 ,

𝜎′ = 𝐶𝑛
1 − 𝐶𝑛

3 + 𝐶𝑛
5 − 𝐶𝑛

7 + ⋯ = 2
𝑛
⁄

2 sin 𝑛𝜋⁄
4 .

Hence, if 𝑛 = 0(mod4) i.e. 𝑛 = 4𝑚 ∀ 𝑚 ∈ 𝕀, then 𝜎 = (−1)𝑚22𝑚, 𝜎′ = 0. If 𝑛 =
4𝑚 + 1, then 𝜎 = 𝜎′ = (−1)𝑚22𝑚, for 𝑛 = 4𝑚 + 2, 𝜎 = 0, 𝜎′ = (−1)22𝑚+1 and for
𝑛 = 4𝑚+ 3, 𝜎 = (−1)𝑚+1 22𝑚+1, 𝜎′ = (−1)𝑚22𝑚+1.
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Answers of Chapter 4
Polynomials and Theory of Equations

1. 𝑥 + 𝑥9 + 𝑥25 + 𝑥49 + 𝑥81 = 𝑥(1 + 𝑥8 + 𝑥24 + 𝑥48 + 𝑥80) = 𝑥[(𝑥80 − 1)+ (𝑥48 − 1)+
(𝑥24 − 1)+ (𝑥8 − 1)+ 5].

All terms are divisible by 𝑥(𝑥2−1) except last term 5𝑥, and hence, 5𝑥 is the remainder.

2. Let 𝑃 = 𝑥9999 + 𝑥8888 + 𝑥7777 + ⋯ + 𝑥1111 + 1 and 𝑄 = 𝑥9 + 𝑥8 + 𝑥7 + ⋯ + 𝑥 + 1,
then 𝑃 −𝑄 = 𝑥9[(𝑥10)999 − 1]+ 𝑥8[(𝑥10)888 − 1]+⋯+ 𝑥[(𝑥10)100 − 1]

But (𝑥10)𝑛 − 1 is divisible by 𝑥10 − 1 ∀ 𝑛 ≥ 1. ∴𝑃 − 𝑄 is divisible by 𝑥10 − 1.

Because 𝑥9 + 𝑥8 + 𝑥7 + ⋯ + 𝑥 + 1|𝑥10 − 1 ⇒ 𝑥9 + 𝑥8 + 𝑥7 + ⋯ + 𝑥 + 1|𝑃 − 𝑄 ⇒
𝑥9 + 𝑥8 + 𝑥7 + ⋯+ 𝑥 + 1|𝑃 .

3. We will prove this by contradiction. Suppose that 𝑓(𝑛) = 0, then 𝑓(𝑥−𝑛) divides 𝑓(𝑥)
i.e. 𝑓(𝑥) = (𝑥 − 𝑛)𝑔(𝑥), where 𝑔(𝑥) is another polynomial with integral coefficients.
Now 𝑓(1) = (1 − 𝑛)𝑔(1) and 𝑓(2) = (2 − 𝑛)𝑔(2). Both of these should be odd
numbers but that is not possible as 1 − 𝑛 and 2 − 𝑛 are consecutive integers. Thus,
either 𝑓(1) or 𝑓(2) should be even, which is a contradiction, and hence, the result.

4. Suppose that there exists such an integer 𝑏, such that 𝑓(𝑏) = 1993. Let 𝑔(𝑥) =
𝑓(𝑥) − 1991. Now, 𝑔 is a polynomial with integer coefficients and 𝑔(𝑎𝑖) = 0 for
𝑖 = 1, 2, 3, 4.

Thus, (𝑥 − 𝑎1), (𝑥 − 𝑎2), (𝑥 − 𝑎3) and (𝑥 − 𝑎4) are all factors of 𝑔(𝑥). So 𝑔(𝑥) =
(𝑥 − 𝑎1)(𝑥 − 𝑎2)(𝑥 − 𝑎3)(𝑥 − 𝑎4)ℎ(𝑥), where ℎ(𝑥) is a polynomial with integer
coefficients. 𝑔(𝑏)= 𝑓(𝑏)−1991 = 2 so 𝑔(𝑏)= (𝑏−𝑎1)(𝑏−𝑎2)(𝑏−𝑎3)(𝑏−𝑎4)ℎ(𝑏)= 2.

Thus, (𝑏 − 𝑎1)(𝑏 − 𝑎2)(𝑏 − 𝑎3)(𝑏 − 𝑎4) are all divisors of 2 and distinct. Such values
are 1, −1, −2, 2 and ℎ(𝑏) is an integer.

∴ 𝑔(𝑏) = 4.ℎ(𝑏) = 2, which is not possible. Hence, such an integer does not exist.

5. We know that when coefficients of a polynomial are integers then quadratic surds
as roots appear in pairs. Therefore, the other root would be −√



5 giving us a second
degree polynomial 𝑥2 − 5. Therefore, we can write the polynomial is of the form
𝑎𝑥2 − 5𝑎.

Second method: Since the order of the surd √


5 is 2, we can expect a polynomial of
the lowest degree to be a polynomial of degree 2. Let 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, 𝑎, 𝑏, 𝑐 ∈ ℚ.
𝑓(√


5) = 5𝑎 +√


5𝑎 + 𝑐 = 0 But √


5 is irrational so 5𝑎 + 𝑐 = 0 and 𝑏 = 0 ⇒ 𝑐 = −5𝑎
so the polynomial is of the form 𝑎𝑥2 − 5𝑎 giving us second root at −√



5.

6. Let 𝑓(𝑥) = 𝑥 − (√


5 +√


2) = [(𝑥 −√


5) −√


2]. Using conjugate as the other zero,
we have 𝑓1(𝑥) = [(𝑥 −√


5) −√


2] [(𝑥 −√


5) +√


2] = (𝑥2 + 3 − 2√


5𝑥) ⇒ 𝑓2(𝑥) =
[(𝑥2 + 3) − 2√


5𝑥] [(𝑥2 + 3) + 2√


5𝑥] = 𝑥4 − 14𝑥2 + 9 ⇒ 𝑓(𝑥) = 𝑎𝑥4 − 14𝑥2 + 9𝑎,
where 𝑎 ∈ ℤ, 𝑎 ≠ 0.
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7. Putting 𝑥 = 0, 0 = −𝑓(0) ⇒ 𝑓(0) = 0. Putting 𝑥 = 1, 𝑓(0) = −3𝑓(1) ⇒ 𝑓(1) = 0.
Similalrly, 𝑓(2) = 𝑓(3) = 0. Let is assume 𝑓(𝑥) = 𝑥(𝑥− 1)(𝑥− 2)(𝑥− 3)𝑔(𝑥), where
𝑔(𝑥) is some polynomial. Now using the given relation we have 𝑥(𝑥 − 1)(𝑥 − 2)(𝑥 −
3)(𝑥 − 4)𝑔(𝑥 − 1) = 𝑥(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑥 − 4)𝑔(𝑥)

⇒ 𝑔(𝑥 − 1) = 𝑔(𝑥) ∀ 𝑥 ∈ ℝ − {0, 1, 2, 3, 4}⇒ 𝑔(𝑥 − 1) = 𝑔(𝑥) ∀ 𝑥 ∈ ℝ from identity
theorem.

⇒ 𝑔(𝑥) is periodic. ⇒ 𝑔(𝑥) = 𝑐 ⇒ 𝑓(𝑥) = 𝑐𝑥(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)

8. Because 𝑓(𝑥) is a monic coefficient of highest degree will be 1. Let 𝑔(𝑥) = 𝑓(𝑥)− 𝑥,
where 𝑔(𝑥) is also a cubic polynomial.

𝑔(1) = 0, 𝑔(2) = 0, 𝑔(3) = 0 ⇒ 𝑔(𝑥) = (𝑥− 1)(𝑥− 2)(𝑥− 3)⇒ 𝑓(𝑥) = (𝑥− 1)(𝑥−
2)(𝑥 − 3)+ 𝑥 ⇒ 𝑓(4) = 10.

9. Let 𝑓(𝑥) = 𝑥 − (√


3 +√

7) = [(𝑥 −√


3) −√

7]. Using conjugate as the other zero,

we have 𝑓1(𝑥) = [(𝑥 −√


3) −√

7] [(𝑥 −√


3) +√

7] = (𝑥2 − 4 − 2√


3𝑥) ⇒ 𝑓2(𝑥) =
[(𝑥2 − 4)− 2√


3𝑥] [(𝑥2 − 4)+ 2√


3𝑥] = 𝑥4 − 8𝑥2 + 16 − 12𝑥2 = 𝑥4 − 20𝑥2 + 16 = 0.

10. Clearly, we will have conjugate roots for the given surds as roots, which would be
2 −√


3 and 3 −√


2. Therefore, the polynomial would be

𝑓(𝑥) = [(𝑥− 2)−√


3][(𝑥− 2)+√


3][(𝑥− 3)−√


2][(𝑥− 3)+√


2] = (𝑥2 − 4𝑥+ 4−
3)(𝑥2 − 6𝑥 + 9 − 2) = (𝑥2 − 4𝑥 + 1)(𝑥2 − 6𝑥 + 7) = 𝑥4 − 10𝑥3 + 32𝑥2 − 34𝑥 + 7 = 0.

11. Let 𝑦 = 3√


2, then 𝑥 = 𝑦 + 3𝑦2 = 𝑦(3𝑦 + 1). Cubing both sides 𝑥3 = 𝑦3(27𝑦3 + 27𝑦2 +
9𝑦 + 1) = 2(9𝑥 + 55) ⇒ 𝑥3 − 18𝑥 − 110 = 0. This is the minimal polynomial as
[ℚ( 3√


2) : 𝑄] = 3.

12. 𝑥𝑛− 𝑛𝑥+ 𝑛− 1 = (𝑥− 1)(𝑥𝑛−1 + 𝑥𝑛−2 +⋯+ 𝑥+ 1)−𝑛(𝑥− 1) = (𝑥− 1)[(𝑥𝑛−1 −
1)+ (𝑥𝑛−2 − 1)+⋯+ (𝑥 − 1)], which clearly has a factor (𝑥 − 1)2.

13. Because 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are all zeroes of the polynomial 6𝑥5 + 5𝑥4 + 4𝑥3 + 3𝑥2 + 2𝑥 + 1,
therefore, 6(𝑥 − 𝑎)(𝑥 − 𝑏)(𝑥 − 𝑐)(𝑥 − 𝑑)(𝑥 − 𝑒) = 6𝑥5 + 5𝑥4 + 4𝑥3 + 3𝑥2 + 2𝑥 + 1.

Putting 𝑥 = 1, −6(1 + 𝑎)(1 + 𝑏)(1 + 𝑐)(1 + 𝑑)(1 + 𝑒) = −6 + 5 − 4 + 3 − 2 + 1 =
−3 ⇒ (1 + 𝑎)(1 + 𝑏)(1 + 𝑐)(1 + 𝑑)(1 + 𝑒) = 1

⁄

2.

14. Because 1, 𝛼1, 𝛼2, … , 𝛼𝑛−1 are the roots of the equation 𝑥𝑛 − 1 = 0, therefore,
(𝑥−1)(𝑥−𝛼1)(𝑥−𝛼2)⋯ (𝑥−𝛼𝑛−1) = 𝑥𝑛−1 ⇒ (𝑥−𝛼1)(𝑥−𝛼2)⋯ (𝑥−𝛼𝑛−1) =
𝑥𝑛−1 + 𝑥𝑛−2 + ⋯+ 𝑥 + 1.

Putting 𝑥 = 1, in the above equation, we deduce the desired result.

15. Consider a function 𝑔(𝑥) = 𝑓(𝑥) − 10𝑥, then 𝑔(1) = 𝑔(2) = 𝑔(3) = 0 i.e. (𝑥 −
1)(𝑥 − 2)(𝑥 − 3) would divide 𝑔(𝑥). Since 𝑓(𝑥) has a degree of 4 so 𝑔(𝑥) will also
have a degree of 4. Let 𝑔(𝑥) = (𝑥 − 𝑡)(𝑥 − 1)(𝑥 − 2)(𝑥 − 3) so 𝑓(𝑥) = 10𝑥 +
(𝑥 − 𝑡)(𝑥 − 1)(𝑥 − 2)(𝑥 − 3).
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Now for 𝑥 = 12, (𝑥− 1)(𝑥− 2)(𝑥− 3) = 990 and for 𝑥 = −8, (𝑥− 1)(𝑥− 2)(𝑥− 3) =
−990.

∴ 𝑓(12)+𝑓(−8)⁄10 = 10(12−8)+(12−𝑡)990+(−8−𝑡) .−990
⁄

10 = 1984.

16. Roots of 𝑥2 + 𝑥 + 1 are 𝜔, 𝜔2. Since given polynomial is not divisible by 𝑥2 + 𝑥 + 1, so
these roots won't satisfy the given polynomial. Thus,

𝜔2𝑘+1+(1+𝜔)2𝑘 = 𝜔2𝑘+1+(𝜔2)2𝑘 = 1+𝜔𝑘+𝜔2𝑘 ≠ 0. We know that 1+𝜔𝑘+𝜔2𝑘 =
3 when 𝑘 = 3𝑛, 𝑛 ∈ ℕ. Hence, 𝑘 = 3, 6, 9, ….

17. Putting 𝑥 = 1, −7𝑃 (2) = 0 ⇒ 𝑃 (2) = 0. Putting 𝑥 = 8, 0 = 56𝑃 (8)⇒ 𝑃 (8) = 0.

⇒ 𝑃 (𝑥) = (𝑥 − 2)(𝑥 − 8)𝑄(𝑥)⇒ 𝑃 (2𝑥) = (2𝑥 − 2)(2𝑥 − 8)𝑄(2𝑥)

⇒ (𝑥− 8)(2𝑥− 2)(2𝑥− 8)𝑄(2𝑥) = 8(𝑥− 1)(𝑥− 2)(𝑥− 8)𝑄(𝑥)⇒ 𝑄(2𝑥)
⁄

𝑄(𝑥) =
2𝑥−4⁄
𝑥−4 ⇒

𝑄(𝑥) = 𝑥 − 4 ⇒ 𝑃 (𝑥) = (𝑥 − 2)(𝑥 − 4)(𝑥 − 8).

18. If (𝑥 − 1)3 divides 𝑓(𝑥) + 1, then (𝑥 − 1)2 divides 𝑓′(𝑥) and if (𝑥 + 1)3 divides
𝑓(𝑥)− 1 then (𝑥 + 1)3 divides 𝑓′(𝑥). Since we have to find 𝑓(𝑥) of degree 5, 𝑓′(𝑥)
will be of degree 4. So 𝑓′(𝑥) = 𝑘(𝑥 − 1)2(𝑥 + 1)2 = 𝑘(𝑥4 − 2𝑥2 + 1).

Integrating both sides, 𝑓(𝑥) = 𝐾(𝑥
5
⁄

5 −
2𝑥3⁄
3 +𝑥)+𝑐, where 𝑐 ∈ ℝ. Also, (𝑥−1)3 divides

𝑓(𝑥)+ 1 ⇒ 𝑓(1)+ 1 = 0 ⇒ 𝑓(1) = −1 and (𝑥+ 1)3 divides 𝑓(𝑥)− 1 ⇒ 𝑓(−1)− 1 =
0 ⇒ 𝑓(−1) = 1.

Putting 𝑥 = 1 in the equation for 𝑓(𝑥), ⇒ 𝑓(1) = 𝐾(1⁄5 −
2
⁄

3 + 1)+ 𝑐 = −1, and putting

𝑥 = −1 ⇒ 𝑓(−1) = 𝐾(−1⁄5 + 2
⁄

3 − 1)+ 𝑐 = 1.

From these two equations we deduce 𝐾 = −15
⁄

8 , 𝑐 = 0. Thus, our required polynomial

is 𝑓(𝑥) = −3
⁄

8 𝑥
5 + 5
⁄

4 𝑥
3 − 15
⁄

8 𝑥.

19. Since the polynomial equation has rational coefficients the complex roots must appear
in conjugate pairs. So we have at least two more roots i.e. 3 − 2𝑖 and 2 − 3𝑖 making out
polynomial equation of at least having a degree of 4. Let us find out the polynomial
equation to test if the coefficients with these roots are rational.

𝑓(𝑥) = 𝑎[(𝑥 − 3 − 2𝑖)(𝑥 − 3 + 2𝑖)] [𝑥 − 2 − 3𝑖] [𝑥 − 2 + 3𝑖] = 𝑎(𝑥4 − 10𝑥3 + 50𝑥2 −
130𝑥 + 169), 𝑎 ∈ ℚ ∖ {0}.

20. Since all the roots are rational, so they are divisors of −30. The divisors or −30 are
±1, ±2, ±3, ±5, ±6, ±10, ±15, and ±30. By applying remainder theorm, we find the
roots as −1, −2, −3 and 5.

21. Let the roots be of the form 𝑝⁄𝑞, where (𝑝, 𝑞) = 1 and 𝑞 > 0. Since 𝑞 ∣ 2, 𝑞 must be 1
or 2 and 𝑝 ∣ 6 ⇒ 𝑝 = ±1, ±2, ±3, ±6.
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Applying remainder theorem, 𝑓(1⁄2) = 𝑓(−2⁄1 ) = 𝑓(3⁄1) = 0. So the three roots of the

equation are 1⁄2 , −2, and 3.

22. 𝑥3 − 3𝑥3 + 5𝑥 − 15 = (𝑥2 + 5)(𝑥 − 3) = 0 ⇒ 𝑥 = 3,√


5𝑖, −√


5𝑖.

23. Let the roots be of the form 𝑝⁄𝑞, where (𝑝, 𝑞) = 1 and 𝑞 > 0. Since 𝑞 ∣ 1 ⇒ 𝑞 = ±1, also

𝑝 ∣ 1 ⇒ 𝑝 = ±1 ⇒ 𝑝
⁄

𝑞 = ±1. But 𝑓(±1) ≠ 0.

Hence, the given equation has no real roots.

24. Let 𝛼 and 𝛽 be the two roots of the given equation, where 𝛼 ∈ ℤ. Then,

𝛼 + 𝛽 = −𝑎 and 𝛼𝛽 = 𝑏 + 1 ⇒ 𝛽 = −𝑎 − 𝛼 is an integer. Also, since 𝑏 + 1 ≠ 0, 𝛽 ≠ 0.
From these equations 𝑎2 + 𝑏2 = (𝛼 + 𝛽)2 + (𝛼𝛽 − 1)2 = (1 + 𝛼2)(1 + 𝛽)2. Hence,
𝑎2 + 𝑏2 is a composite number.

25. Let 𝛼 and 𝛽 bet the roots of the given equation, then 𝛼 + 𝛽 = 𝑝, 𝛼𝛽 = 𝑝 − 1.

(𝛼2+𝛽2) = (𝛼+𝛽)2− 2𝛼𝛽 = 𝑝2− 2𝑝+ 2 = (𝑝 − 1)2+ 1. For the sum to be minimum
(𝑝 − 1)2 has to be minimum, which is minimum at 𝑝 = 1.

26. Let 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 be the polynomial, of which 𝛼,𝛽 and 𝛼𝛽 are the roots and
𝑎, 𝑏 and 𝑐 are all rationals.

From Vieta's relations 𝛼 + 𝛽 + 𝛼𝛽 = −𝑎, 𝛼𝛽 + 𝛼2𝛽 + 𝛼𝛽2 = 𝑏, 𝛼2𝛽2 = −𝑐. 𝑏 =
𝛼𝛽(1 + 𝛼 + 𝛽) = 𝛼𝛽(1 − 𝑎 − 𝛼𝛽) = (1 − 𝑎)𝛼𝛽 − 𝛼2𝛽2 = (1 − 𝑎)𝛼𝛽 + 𝑐. As 𝑎 ≠
−1, 𝛼𝛽 = 𝑏−𝑐⁄

1−𝑎 and since 𝑎, 𝑏, 𝑐 are rational 𝛼𝛽 is rational.

Note that 𝑎 = 1 ⇒ 1 + 𝛼 + 𝛽 + 𝛼𝛽 = 0 ⇒ (1 + 𝛼)(1 + 𝛽) = 0 ⇒ 𝛼 = −1 or 𝛽 = −1,
which is not the case.

27. Let the roots be 𝛼, 2𝛼 and 𝛽, then from Vieta's relations we have 3𝛼 + 𝛽 = 27
⁄

9 = 3 ⇒

𝛽 = 3(1 − 𝛼), 2𝛼2 + 3𝛼𝛽 = 26
⁄

9 and 2𝛼2𝛽 = 8
⁄

9.

From first two equations, we get 2𝛼2 + 3𝛼.3(1 − 𝛼) = 26
⁄

9 ⇒ 𝛼 = 13
⁄

21 or 2⁄3. If 𝛼 = 13
⁄

21 then

𝑏𝑒𝑡𝑎 = 8
⁄

7 but then 2𝛼2𝛽 = 2 × 169
⁄

144 ×
8
⁄

7 ≠
8
⁄

9, which is a contradiction.

So taking 𝛼 = 2
⁄

3 ⇒ 𝛽 = 1. Hence, 𝛼+2𝛼+𝛽 = 3, 2𝛼2+ 3𝛼𝛽 = 26
⁄

9 and 2𝛼2𝛽 = 8
⁄

9. Hence,

the roots are 2⁄3 ,
4
⁄

3 and 1.

28. Suppose the roots are 𝛼, 𝛽, 𝛾, 𝛿 and 𝛼𝛽 = 1. Now 𝛼 + 𝛽 + 𝛾 + 𝛿 = −24
⁄

6 = −4, (𝛼 +

𝛽)(𝛾 + 𝛿) + 𝛼𝛽 + 𝛾𝛿 = 31
⁄

4 ⇒ (𝛼 + 𝛽)(𝛾 + 𝛿) + 𝛾𝛿 = 27
⁄

4 , 𝛾𝛿(𝛼 + 𝛽) + 𝛼𝛽(𝛾 + 𝛿) =
−3⁄
2 ⇒ 𝛾𝛿(𝛼 + 𝛽)+ 𝛾 + 𝛿 = −3⁄

2 , 𝛼𝛽𝛾𝛿 = −2 ⇒ 𝛾𝛿 = −2.
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From second and fourth equation, we have (𝛼 + 𝛽)(𝛾 + 𝛿) = 35
⁄

6 from third and fourth

equation, we have −2(𝛼 + 𝛽)+ 𝛾 + 𝛿 = −3⁄
2 ⇒ 3(𝛼 + 𝛽) = 15
⁄

2 ⇒ 𝛼 + 1⁄
𝛼 = 5
⁄

2 ⇒ 𝛼 = 2, 1⁄2.

Hence, 𝛽 = 1
⁄

2 , 2. Now it is trivial to find 𝛾 and 𝛿, which can be found to be −1⁄2 and 4.

29. Since the coefficients are rational, where 3 +√


2 is a root, so 3 −√


2 is also a root.
Thus, if two other roots are 𝛼 and 𝛽, we have

𝜎1 = 𝛼 + 𝛽 + 3 +√


2 + 3 −√


2 = −(−5) = 5 ⇒ 𝛼+ 𝛽 = −1.

𝜎2 = (𝛼+𝛽)(3+√


2+3−√


2)+𝛼𝛽+ (3+√


2)(3−√


2) = 𝑎⇒ 6(𝛼+𝛽)+𝛼+𝛽+7 =
𝑎 ⇒ 𝛼𝛽 = 𝑎 − 1.

𝜎3 = 𝛼𝛽(3+√


2+3−√


2)+(3+√


2)(3−√


2)(𝛼+𝛽)=−𝑏 ⇒ 6𝛼𝛽−7 = 𝑏 ⇒ 𝛼𝛽 = 7−𝑏
⁄

6

𝜎4 = 7𝛼𝛽 = 𝑐 ⇒ 𝛼𝛽 = 𝑐
⁄

7.

We take 𝛼+𝛽 = −1,𝛼𝛽 = 𝑘. 𝛼 and 𝛽 are roots of the equation 𝑥2+𝑥+𝑘 = 0. Since the
roots of the given equation are real ⇒ 1−4𝑘 ≥ 0 ⇒ 𝑘 ≤ 1

⁄

4. Now for 𝑎, 𝑘 = 𝑎−1 ⇒ 𝑎 ≤ 5
⁄

4.

So the greatest value of 𝑎 is 5⁄4. For 𝑏, 𝑘 = 7−𝑏
⁄

6 ⇒ 𝑏 ≥ 11
⁄

2 so least value of 𝑏 will be 11⁄2 .

For 𝑐, 𝑘 = 𝑐
⁄

7 ⇒ 𝑐 ≤ 7
⁄

4 So the maximum value of 𝑐 will be 7⁄4.

The two other roots can be found as −1
⁄

2, which is a repeated root.

30. Let the rational roots be of the form 𝑝⁄𝑞, then 𝑞 ∣ 1 ⇒ 𝑞 = ±1 and 𝑝 ∣ 1 ⇒ 𝑝 = ±1 ⇒ 𝑝
⁄

𝑞 =
±1. But we see that 𝑥 = −1 does not satisfy the equation so 𝑥 = 1 is the only root.

Second method: You can observe by looking at the coefficients that it is expansion of
(𝑥 − 1)4 as the coefficients are from binomoal theorem. Hence, the root is 1.

31. Let 𝛼, 𝛽, 𝛾, 𝛿 are the roots of the equation, then from Vieta's relations 𝛼+ 𝛽 + 𝛾 + 𝛿 =
−10. From question 𝛼 + 𝛽 = 𝛾 + 𝛿 ⇒ 𝛼+ 𝛽 = 𝛾 + 𝛿 = −5.

Let the roots be of the form 𝑝⁄𝑞 then 𝑞 ∣ 1 ⇒ 𝑞 = ±1 and 𝑝 ∣ 24 ⇒ 𝑝 =
±1, ±2, ±3, ±4, ±6, ±8, ±12, ±24. Clearly, ±12 and ±24 are not possible values.
Testing with other values we find roots as −1, −2, −3, −4.

32. Let the rational roots be of the form 𝑝⁄𝑞, then 𝑞 ∣ 6 ⇒ 𝑞 = ±1, ±2, ±3, ±6 and
𝑝 ∣ −4 ⇒ 𝑝 = ±1, ±2, ±4.

We find that −1
⁄

2 and 4⁄3 satisfy the given equation and the given equation becomes
(2𝑥 + 1)(3𝑥 − 4)(𝑥2 + 𝑥 + 1) = 0, which has two more roots 𝜔, 𝜔2, which are cube
roots of unity, and are not rational roots.

33. Let the rational roots be of the form 𝑝⁄𝑞, then 𝑞 ∣ 6 ⇒ 𝑞 = ±1, ±2, ±3, ±6 and

𝑝 ∣ 2 ⇒ 𝑝 = ±1, ±2. We see that all coefficients are positive so positive values of 𝑝⁄𝑞 will
not satisfy the given equation.
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From negative values we see that only 𝑥 = −1 satisfies the given equation.

34. Let 𝛼, 𝛽, 𝛾 are the roots of the given equation, then according to the questions
𝛼 + 𝛽 = 0 ⇒ 𝛼 = −𝛽.

From Vieta's relations 𝛼+𝛽+𝛾 = −𝑎
⁄

4 ⇒ 𝛾 = −𝑎
⁄

4, 𝛼𝛽 +𝛽𝛾 +𝛼𝛾 = 𝛼𝛽 = −𝛽2 = −1
⁄

4 ⇒

𝛽 = ±1
⁄

2 ⇒ 𝛼 = ∓1
⁄

2 and 𝛼𝛽𝛾 = − 𝑏
⁄

4 ⇒ 𝑎 + 4𝑏 = 0, where 𝑏 ∈ ℚ.

35. Let the roots be 𝛼, 𝛼.𝑟, 𝛼.𝑟2 be the roots of the given equation, then from Vieta's
relations, we have

𝛼⁄
𝑟 + 𝛼 + 𝛼.𝑟 = −𝑎, 𝛼

2⁄
𝑟 + 𝛼2 + 𝛼2.𝑟 = 𝑏 and 𝛼3 = 8 ⇒ 𝛼 = 2.

From first two equations, 𝛼 = − 𝑏
⁄

𝑎 = 2 ⇒ 𝑏 = −2𝑎. Substituting the value of 𝛼 in the
first equation, we have

2𝑟2+(𝑎+2)𝑟+2 = 0, but 𝑟 is real so 𝐷≥ 0⇒ 𝑎2+4𝑎−12 = 0⇒ 𝑎 ∈ (−∞,6)∪(2,∞).

36. 2𝑥6 + 12𝑥5 + 30𝑥4 + 60𝑥3 + 80𝑥2 + 30𝑥 + 45 = 2(𝑥3 + 3𝑥2)2 + 12(𝑥2 + 5
⁄

2 𝑥)
2
+ 5(𝑥 +

3)2 = 0, but it could be zero only if

(𝑥3 + 3𝑥2) = (𝑥2 + 5
⁄

2 𝑥) = 𝑥 + 3 = 0.

The last and first condition simplifies to 𝑥 = −3, but it contradicts the seccond. Thus,
given polynomial has no real roots.

Second method: Let the roots be of the form 𝑝⁄𝑞 then 𝑞 ÷ 2 ⇒ 𝑞 = ±1, ±2 and
𝑝 ÷ 45 ⇒ 𝑝 = ±1, ±3, ±5, ±9, ±15, ±45. Clearly, the roots have to be negative as all
coefficients are positive. But none of the combinations of 𝑝⁄𝑞 satisfy the given equation,
hence, it has no real roots.

37. sin 30∘ = 3 sin 10∘ − 4 sin3 10∘ ⇒ sin 10∘ is a root of 6𝑥 − 8𝑥3 = 1. By the rational root
theorem, this equation has no rational roots. Therefore, sin 10∘ is not rational. Since 3
is prime, this equation is the one with least degree having sin 10∘ as a root.

Second Method: sin 10∘ = cos 80∘ = cos 4𝜋⁄9 . Let 𝜔 = 𝑒2𝑖𝜋/9, then 𝜔6+𝜔3+1 = 0, from

which we can calculate that 𝜔+ 1⁄
𝜔, 𝜔

2+ 1⁄
𝜔2 and 𝜔4+ 1⁄

𝜔4 are the roots of 𝑥3− 3𝑥+1 = 0.
Since 2 cos 80∘ is such a root so 8𝑥3 − 6𝑥 + 1 = 0 is the equation.

38. Following like previous problem sin 60∘ = 3 sin 20∘ − 4 sin3 20∘. Putting 𝑥 = sin 20∘ and
squaring, 64𝑥6 − 96𝑥4 + 36𝑥2 − 3 = 0 is the required equation.

39. Following like previous problem cos 30∘ = 4 cos3 10∘ − 3 cos 10∘ ⇒ √


3⁄
2 = 4 cos3 10∘ −

3 cos 10∘ ⇒ 64𝑥6 − 96𝑥4 + 36𝑥2 − 3 = 0 is the required equation.

40. Following like previous problems cos 60∘ = 4 cos 20∘ − 3 cos 20∘ ⇒ 8𝑥3 − 6𝑥 − 1 = 0.
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41. Following like previous problems tan 30∘ = 3tan10∘−tan3 10∘
⁄

1−3 tan2 10∘ ⇒ 1⁄
√


3 =
3𝑥−𝑥3
⁄

1−3𝑥2. Squaring,

we get 3𝑥6 − 27𝑥4 + 33𝑥2 − 1 = 0.

42. Following like previous problems tan 60∘ = 3tan20∘−tan3 20∘
⁄

1−3 tan2 20∘ ⇒ √


3 = 3𝑥−𝑥3
⁄

1−3𝑥2. Squaring,
we get 𝑥6 − 33𝑥4 + 27𝑥2 − 3 = 0.

43. We have found the equations for sin 10∘ and cos 20∘ are 8𝑥3 − 6𝑥 + 1 = 0 and 8𝑥3 −
6𝑥 − 1 = 0. Therefore, the equation having these two as roots must be (8𝑥3 − 6𝑥 +
1)(8𝑥3 − 6𝑥 − 1) = 0 ⇒ 64𝑥6 − 96𝑥4 − 36𝑥2 − 1 = 0.

44. From Vieta's relations 𝑝 + 𝑞 + 𝑟 = 6, 𝑝𝑞 + 𝑞𝑟 + 𝑟𝑝 = 3, 𝑝𝑞𝑟 = −1 ⇒ 𝑝2 + 𝑞2 + 𝑟2 =
30, 𝑝3 + 𝑞3 + 𝑟3 = 159, 𝑝3𝑞3 + 𝑞3𝑟3 + 𝑟3𝑝3 = 84.

Let 𝐴 = 𝑝2𝑞 + 𝑞2𝑟 + 𝑟2𝑝 and 𝐵 = 𝑝2𝑟 + 𝑞2𝑝 + 𝑟2𝑞, then 𝐴+𝐵 = 6(𝑝2 + 𝑞2 + 𝑟2)−
(𝑝3 + 𝑞3 + 𝑟3) = 21 and 𝐴𝐵 = −(𝑝3 + 𝑞3 + 𝑟3)(𝑝3𝑞3 + 𝑞3𝑟3 + 𝑟3𝑝3)+ 3 = 72.

Thus, possible value of 𝐴 are 24, −3.

45. Let 𝛼, 𝛽, 𝛾, 𝛿 be the roots of the given equation such that 𝛼𝛽 = −32, then from Vietas
relations 𝛼+𝛽+𝛾+𝛿 = 18,𝛼𝛽+𝛽𝛾+𝛾𝛿+𝛼𝛾+𝛼𝛿+𝛽𝛿 = 𝑘,𝛼𝛽𝛾+𝛼𝛽𝛿+𝛼𝛾𝛿+𝛽𝛾𝛿 =
−200 and 𝛼𝛽𝛾𝛿 = −1984.

∴ 𝛾𝛿 = 𝛼𝛽𝛾𝛿
⁄

𝛼𝛽 = −1984
⁄

−32 = 62.

∴ − 32 + 𝛽𝛾 + 62 + 𝛼𝛾 + 𝛼𝛿 + 𝛽𝛿 = 𝑘 ⇒ 𝛽𝛾 + 𝛼𝛾 + 𝛼𝛿 + 𝛽𝛿 = 𝑘 − 30. Let 𝑝 = 𝛼 + 𝛽
and 𝑞 = 𝛾 + 𝛿.

∴ − 200 = −32𝑞 + 62𝑝 and 𝑝 + 𝑞 = 18 ⇒ 𝑝 = 4, 𝑞 = 14 ⇒ 𝛼+𝛽
⁄

2
𝛾+𝛿
⁄

2 = 𝑘 − 30 ⇒ 𝑘 = 86.

46. 𝑥2 + 𝑦2 = 1 − 2𝑥𝑦 ⇒ (𝑥2 + 𝑦2)2 = (1 − 2𝑥𝑦)2 ⇒ 𝑥4 + 𝑦4 = 2𝑥2𝑦2 − 4𝑥𝑦 + 1 ⇒
2𝑥2𝑦2 − 4𝑥𝑦 + 1 − 𝑐 = 0 ⇒ 𝑥𝑦 = 4±√


16+8𝑐−8
⁄

4 = 1 ±√


1+𝑐⁄
2

Now, 𝑥2 + 𝑦2 = 1 − 2(1 ±√


1+𝑐⁄
2 ) = −1 ±√


2(1 + 𝑐),

and 𝑥3 + 𝑦3 = (𝑥 + 𝑦)3 − 3𝑥𝑦(𝑥 + 𝑦) = 2 ± 3
⁄

2√


2 + 2𝑐.

47. Let 𝑥 + 𝑦 = 𝛼 and 𝑥𝑦 = 𝛽, then 𝑥2 + 𝑦2 = 𝛼2 − 2𝛽.

Now, 𝑥3 + 𝑦3 = (𝑥 + 𝑦)(𝑥2 + 𝑦2 − 𝑥𝑦) = 𝛼(𝛼2 − 3𝛽) = 7 ⇒ 𝛼3 − 3𝛼𝛽 = 7,

and 𝑥2 + 𝑦2 + 𝑥 + 𝑦 + 𝑥𝑦 = 4 ⇒ 𝛼2 − 2𝛽 + 𝛼 + 𝛽 = 4 ⇒ 𝛽 = 𝛼2 + 𝛼 − 4.

From these two equations 𝛼3−3𝛼(𝛼2+𝛼−4) = 7 ⇒ 𝑓(𝛼) = 2𝛼3+3𝛼2−12𝛼+7 = 0.

Since sum of coefficients is zero, therefore, 𝛼 = 1 must be a solution. ⇒ 𝑓(1) = 0 ⇒
𝑓(𝛼) = (𝛼 − 1)2(2𝛼 + 7) = 0 ⇒ 𝛼 = 1, − 7

⁄

2.
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When 𝛼 = 1, 𝛽 = −2 and when 𝛼 = −7
⁄

2 , 𝛽 = 19
⁄

4 . Thus, when 𝛼 = 1, 𝛽 = −2 we find

that (𝑥, 𝑦) is (−2, 1) or (1, −2). But when 𝛼 = −7
⁄

2 and 𝛽 = 19
⁄

4 , then 𝑥, 𝑦 are roots
of 4𝑡2 + 14𝑡 + 19 = 0, whose discriminant is less than 0 and hence no real roots are
possible. Thus, value of 𝑥, 𝑦 is −2, 1 or 1, −2.

48. From Vieta's relations 𝛼+𝛽+𝛾 =∑𝛼 = 0,𝛼𝛽+𝛽𝛾+𝛾𝛼 =∑𝛼𝛽 = 𝑝,𝛼𝛽𝛾 =∏𝛼 = 𝑞.

Since 𝛼,𝛽,𝛾 are roots of 𝑥3+𝑝𝑥+𝑞 = 0⇒ 𝛼3+𝑝𝛼+𝑞 = 0,𝛽3+𝑝𝛽+𝑞 = 0,𝛾3+𝑝𝛾+𝑞 =
0

Adding these equations, we have ∑𝛼3 + 𝑝∑𝛼+ 3𝑞 = 0 ⇒ ∑𝛼3 = −3𝑞[∵∑𝛼 = 0]

∑𝛼2 = (∑𝛼)2 − 2∑𝛼𝛽 = 02 − 2𝑝 = −2𝑝.

Multiplying the given equation by 𝑥2, we get 𝑥5 + 𝑝𝑥3 + 𝑞𝑥2 = 0. Putting 𝑥 = 𝛼, 𝛽, 𝛾
and adding, we have

∑𝛼5 + 𝑝∑𝛼3 + 𝑞∑𝛼2 = 0 ⇒ ∑𝛼5 = 5𝑝𝑞 ⇒ 1
⁄

5∑𝛼5 = 𝑝𝑞 = 1
⁄

3∑𝛼3. 1⁄2∑𝛼2.

Hence, proved.

49. Following like previous problem and using results from previous problem, multiplying
the given equation by 𝑥, we have 𝑥4 + 𝑝𝑥2 + 𝑞𝑥 = 0 ⇒∑𝛼4 + 𝑝∑𝛼2 + 𝑞∑𝛼 = 0 ⇒
∑𝛼4 = −𝑝∑𝛼2.

Multiplying the given equation by 𝑥4, we get 𝑥7 + 𝑝𝑥5 + 𝑞𝑥4 = 0 ⇒ ∑𝛼7 + 𝑝∑𝛼5 +
𝑞∑𝛼4 = 0 ⇒ ∑𝛼7 = −𝑝∑𝛼5 − 𝑞∑𝛼4 = −5𝑝2𝑞 + 𝑝𝑞∑𝛼2 = −7𝑝2𝑞 ⇒ ∑𝛼7

⁄

7 =

𝑝𝑞.(−𝑝) = ∑𝛼5
⁄

5 .∑𝛼2
⁄

2

⇒ 𝛼7+𝛽7+𝛾7⁄
7 = 𝛼5+𝛽5+𝛾5⁄

5 × 𝛼2+𝛽2+𝛾2⁄
2 .

50. Since 𝛼+ 𝛽 + 𝛾 = 0, therefore, 𝛼, 𝛽, 𝛾 are the roots of the equation 𝑥3 + 𝑝𝑥+ 𝑞 = 0. ⇒
∑𝛼𝛽 = 𝑝 and ∏𝛼 = −𝑞 as shown in previous problems.

𝛼2+𝛽2+ 𝛾2 = (𝛼+𝛽 +𝛾)2− 2(𝛼𝛽 +𝛽𝛾 +𝛾𝛼) = 02− 2𝑝 = −2𝑝 and ∑𝛼3 = 3𝛼𝛽𝛾 =
−3𝑞.

Multiplying 𝑥3 + 𝑝𝑥 + 𝑞 = 0 with 𝑥, we have 𝑥4 + 𝑝𝑥2 + 𝑞𝑥 = 0. Putting 𝑥 = 𝛼, 𝛽, 𝛾
and adding, we have

∑𝛼4 + 𝑝∑𝛼2 + 𝑞∑𝛼 = 0 ⇒∑𝛼4 = −𝑝∑𝛼2 = 2𝑝2.

Similarly, 𝑥5 + 𝑝𝑥3 + 𝑞𝑥2 = 0 ⇒ ∑𝛼5 = −𝑝∑𝛼3 − 𝑞∑𝛼2 = −5𝑝𝑞.

∴ 3(𝛼2 + 𝛽2 + 𝛾2)(𝛼5 + 𝛽5 + 𝛾5) = 3 × −2𝑝 × −5𝑝𝑞 = 5 × (−3𝑞) × −2𝑝2 = 5(𝛼3 +
𝛽3 + 𝛾3)(𝛼4 + 𝛽4 + 𝛾4).

Hence, proved.
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51. Suppose that 𝑎3+ 𝑏3 = 𝑐3+𝑑3 and 𝑎+ 𝑏 = 𝑐+𝑑 = 𝑚(say), then (𝑎+ 𝑏)3 = (𝑐 + 𝑑)3 ⇒
3𝑎𝑏(𝑎 + 𝑏) = 3𝑐𝑑(𝑐 + 𝑑)⇒ 𝑎𝑏 = 𝑐𝑑 = 𝑛 (say).

If 𝑎, 𝑏 are the roots of a quadratic equation, then the equation is 𝑥2 −𝑚𝑥 + 𝑛 = 0.
But 𝑎 + 𝑏 = 𝑚 and 𝑎𝑏 = 𝑛. So 𝑎 and 𝑏 are roots of this equation, and thus, 𝑐 and 𝑑
are also the roots of the equation. But a quadratic equation can have at most two
distinct roots.

Hence, our supposition is incorrect. Hence, proved.

52. Let 𝑥,𝑦, 𝑧 be the roots of the cubic equation 𝑡3−𝑎𝑡2+𝑏𝑡−𝑐 = 0, then 𝑥+𝑦+𝑧 = 𝑎,𝑥𝑦+
𝑦𝑧 + 𝑧𝑥 = 𝑏 ⇒ 2𝑥𝑦 + 2𝑦𝑧 + 2𝑧𝑥 = 2𝑏 = (𝑥+ 𝑦 + 𝑧)2 − (𝑥2+ 𝑦2+ 𝑧2) = 9− 3 ⇒ 𝑏 = 3.

Substituting 𝑥,𝑦, 𝑧 in our equation and adding, we get (𝑥3+𝑦3+𝑧3)−𝑎(𝑥2+𝑦2+𝑧2)+
𝑏(𝑥 + 𝑦 + 𝑧)− 3𝑐 = 0 ⇒ 𝑐 = 1.

Thus, our equation becomes 𝑡3 − 3𝑡2 + 3𝑡 − 1 = 0 ⇒ (𝑡 − 1)3 = 0, thus roots are 1, 1, 1.
And hence, 𝑥 = 𝑦 = 𝑧 = 1.

53. 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 = 1
⁄

2 [(𝑥 + 𝑦 + 𝑧)2 − (𝑥2 + 𝑦2 + 𝑧2)] = 2.

We know that 𝑥3 + 𝑦3 + 𝑧3 − 3𝑥𝑦𝑧 = (𝑥 + 𝑦 + 𝑧)(𝑥2 + 𝑦2 + 𝑧2 − 𝑥𝑦 − 𝑦𝑧 − 𝑧𝑥) ⇒
𝑥𝑦𝑧 = −2
⁄

3.

𝑥4+ 𝑦4+ 𝑧4 = (𝑥2+ 𝑦2+ 𝑧2)2− 2[(𝑥𝑦)2+ (𝑦𝑧)2+ (𝑧𝑥)2] = 25− 2[(𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥)2−
2(𝑥𝑦2𝑧 + 𝑧𝑥𝑦2 + 𝑥𝑦𝑧2)] = 25 − 2[4 − 2𝑥𝑦𝑧(𝑥 + 𝑦 + 𝑧)] = 9.

54. From question 𝛼 + 𝛽 = 𝑎 + 𝑑 and 𝛼𝛽 = 𝑎𝑑 − 𝑏𝑐.

𝛼3+ 𝛽3 = (𝛼+ 𝛽)3 − 3𝛼𝛽(𝛼+ 𝛽) = (𝑎+ 𝑑)3 − 3(𝑎𝑑 − 𝑏𝑐)(𝑎+ 𝑑) = 𝑎3+ 𝑑3+ 3𝑎2𝑑 +
3𝑎𝑑2 − 3𝑎2𝑑 − 3𝑎𝑑2 + 3𝑎𝑏𝑐 + 3𝑏𝑐𝑑 = 𝑎3 + 𝑑3 + 3𝑎𝑏𝑐 + 3𝑏𝑐𝑑 and 𝛼3𝛽3 = (𝑎𝑑 − 𝑏𝑐)3.

Thus, equation whose roots are 𝛼3 and 𝛽3 is 𝑥2−(𝑎3+𝑑3+3𝑎𝑏𝑐+3𝑏𝑐𝑑)𝑥+(𝑎𝑑−𝑏𝑐)3 =
0.

55. 𝑎3 + 𝑏3 + 𝑐3 = 𝑎3 + 𝑏3 + 𝑐3 + 3(𝑎 + 𝑏)(𝑏 + 𝑐)(𝑐 + 𝑎) ⇒ (𝑎 + 𝑏)(𝑏 + 𝑐)(𝑐 + 𝑎) = 0,
which implies that one of 𝑎 + 𝑏, 𝑏 + 𝑐, 𝑐 + 𝑎 = 0.

In any case 𝑎2𝑛+1 + 𝑏2𝑛+1 + 𝑐2𝑛+1 = (𝑎 + 𝑏 + 𝑐)2𝑛+1 ∀ 𝑛 ∈ ℕ and for 𝑛 = 2, 𝑎5 +
𝑏5 + 𝑐5 = (𝑎 + 𝑏 + 𝑐)5.

56. We know that 𝑝3 + 𝑞3 + 𝑟3 = (𝑝 + 𝑞 + 𝑟)[(𝑝 + 𝑞 + 𝑟)2 − 3(𝑝𝑞 + 𝑞𝑟 + 𝑟𝑝)]+ 3𝑝𝑞𝑟.

From Vieta's relations, we have 𝑝 + 𝑞 + 𝑟 = 1, 𝑝𝑞 + 𝑞𝑟 + 𝑟𝑝 = 1 and 𝑝𝑞𝑟 = 2, therefore,

𝑝3 + 𝑞3 + 𝑟3 = 1[1 − 3]+ 6 = 4.

57. Let 𝑎, 𝑏, 𝑐 be the roots of the equation, then from Vieta's relations 𝑎 + 𝑏 + 𝑐 =
0, 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 = 3, 𝑎𝑏𝑐 = −9.

Given equation is 𝑥3 + 3𝑥 + 9 = 0, putting 𝑥 = 𝑎, 𝑏, 𝑐, and adding 𝑎3 + 𝑏3 + 𝑐3 +
3(𝑎 + 𝑏 + 𝑐)+ 27 = 0 ⇒ 𝑎3 + 𝑏3 + 𝑐3 = −27.
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Multiplying given equation with 𝑥2, putting 𝑥 = 𝑎, 𝑏, 𝑐, and adding 𝑎5 + 𝑏5 + 𝑐3 +
3(𝑎3 + 𝑏3 + 𝑐3)+ 9(𝑎2 + 𝑏2 + 𝑐2) = 0

⇒ 𝑎5 + 𝑏5 + 𝑐5 = 81 − 9[(𝑎 + 𝑏 + 𝑐)2 − 2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)] = 81 + 18 × 3 = 135.

58. Let 𝑎, 𝑏, 𝑐 are the roots of the equation 𝑥3 − 7𝑥2 + 4𝑥 − 3 = 0, then from Vieta's
relations 𝑎 + 𝑏 + 𝑐 = 7, 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 = 4, and 𝑎𝑏𝑐 = 3.

𝑎2 + 𝑏2 + 𝑐2 = (𝑎 + 𝑏 + 𝑐)2 − 2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) = 72 − 2.4 = 41.

Putting 𝑥 = 𝑎, 𝑏, 𝑐 and adding, we get 𝑎3+𝑏3+𝑐3 = 7(𝑎2+𝑏2+𝑐2)−4(𝑎+𝑏+𝑐)+9 =
7 × 41 − 4 × 7 + 9 = 287 − 28 + 9 = 268.

Multiplying given equation with 𝑥, putting 𝑥 = 𝑎, 𝑏, 𝑐, and adding 𝑎4 + 𝑏4 + 𝑐4 =
7(𝑎3 + 𝑏3 + 𝑐3)− 4(𝑎2 + 𝑏2 + 𝑐2)+ 3(𝑎 + 𝑏 + 𝑐) = 7 × 268 − 4 × 41 + 3 × 7 = 1733.

Multiplying given equation with 𝑥2, putting 𝑥 = 𝑎, 𝑏, 𝑐, and adding 𝑎5 + 𝑏5 + 𝑐5 =
7(𝑎4+𝑏4+𝑐4)−4(𝑎3+𝑏3+𝑐3)+3(𝑎2+𝑏2+𝑐2)= 7×1733−4×268+3×41 = 11182.

59. From Vieta's relations we have 𝛼 + 𝛽 + 𝛾 = 0, 𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼 = −9, 𝛼𝛽𝛾 = −9.

Putting 𝑥 = 1⁄
𝛼,

1⁄
𝛽 and 1⁄𝛾 in the given equation and adding, we have 𝛼−3 + 𝛽−3 + 𝛾−3 =

9(1⁄𝛼 + 1⁄
𝛽 +

1⁄
𝛾)− 27 = 9𝛼𝛽+𝛽𝛾+𝛾𝛼⁄𝛼𝛽𝛾 − 27 = −18.

Multiplying the given equation by 𝑥2 and putting 𝑥 = 1⁄
𝛼,

1⁄
𝛽 ,

1⁄
𝛾, and adding

𝛼−5 + 𝛽−5 + 𝛾−5 = 9(𝛼−3 + 𝛽−3 + 𝛾−3)− 9(𝛼−2 + 𝛽−2 + 𝛾−2) = 4
⁄

9.

60. Let the cubic equation be 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, then from Vieta's relation 𝑎 =
−(𝛼+𝛽+𝛾) = −9. We also have 𝛼𝛽+𝛽𝛾 +𝛾𝛼 = (𝛼+𝛽+𝛾)2−(𝛼2+𝛽2+𝛾2)
⁄

2 = 81−29
⁄

2 = 26
and hence 𝑏 = 𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼 = 26.

Putting 𝑥 = 𝛼, 𝛽, 𝛾 in the given equation, and adding

(𝛼3 + 𝛽3 + 𝛾3)− 9(𝛼2 + 𝛽2 + 𝛾2)+ 26(𝛼 + 𝛽 + 𝛾)+ 3𝑐 = 0 ⇒ 𝑐 = −24, and hence,
our equation is 𝑥3 − 9𝑥2 + 26𝑥 − 24 = 0

Multiplying the given equation with 𝑥, putting 𝑥 = 𝛼, 𝛽, 𝛾 and adding, we have

𝛼4 + 𝛽4 + 𝛾4 = 9(𝛼3 + 𝛽3 + 𝛾3)− 26(𝛼2 + 𝛽2 + 𝛾2)+ 9(𝛼 + 𝛽 + 𝛾) = 353.

61. Let the cubic equation be 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, then from Vieta's relation 𝑎 =
−(𝛼 + 𝛽 + 𝛾) = −4. We also have 𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼 = (𝛼+𝛽+𝛾)2−(𝛼2+𝛽2+𝛾2)
⁄

2 = 16−7
⁄

2 = 9
⁄

2

and hence 𝑏 = 𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼 = 9
⁄

2.

Putting 𝑥 = 𝛼, 𝛽, 𝛾 in the given equation, and adding

(𝛼3+𝛽3+ 𝛾3)−4(𝛼2+𝛽2+ 𝛾2)+9
⁄

2 (𝛼+𝛽 +𝛾)+3𝑐 = 0 ⇒ 3𝑐 = −28+ 4× 7− 9
⁄

2 4 =
−18 ⇒ 𝑐 = −6.
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Now we can multiply the given equation with 𝑥 and 𝑥2 and put 𝑥 = 𝛼, 𝛽, 𝛾 and add to
find 𝛼4 + 𝛽4 + 𝛾4 and 𝛼5 + 𝛽5 + 𝛾5 as 209⁄2 and 334.

62. (𝑥 + 𝑦 + 𝑧)2 = 𝑥2 + 𝑦2 + 𝑧2 + 2(𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥) ⇒ 𝑎2 = 𝑎2 + +2(𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥) ⇒
𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 = 0

𝑥3 + 𝑦3 + 𝑧3 − 3𝑥𝑦𝑧 = (𝑥 + 𝑦 + 𝑧)(𝑥2 + 𝑦2 + 𝑧2 − 𝑥𝑦 − 𝑦𝑧 − 𝑧𝑥) ⇒ 𝑎3 − 3𝑥𝑦𝑧 =
𝑎(𝑎2 − 0)⇒ 𝑥𝑦𝑧 = 0 ⇒ 𝑥 = 0 or 𝑦 = 0 or 𝑧 = 0.

If 𝑥 = 0 ⇒ 𝑦 + 𝑧 = 𝑎 and 𝑦2 + 𝑧2 = 𝑎2 ⇒ (𝑎 − 𝑧)2 + 𝑧2 = 𝑎2 ⇒ 2𝑧2 − 2𝑧𝑎 = 0 ⇒ 𝑧 =
0, 𝑎 ⇒ 𝑦 = 𝑎, 0.

When 𝑦 = 0, 𝑧 = 0, then 𝑥 = 𝑎. Thus the solution is (𝑥,𝑦, 𝑧) = (𝑎,0, 0), (0,𝑎, 0), (0, 0, 𝑎).

63. On multiplying given equation with 𝑥−1 we have 𝑥3(𝑥−1)+(𝑥−1)(𝑥3+𝑥2+𝑥+1)=
0 ⇒ 2𝑥4 − 𝑥3 − 1 = 0 ⇒ 1
⁄

𝑥3 = 2𝑥 − 1. Thus, required equation becomes

𝐸 = (2𝛽 + 2𝛾 − 2𝛼 − 1)(2𝛽 + 2𝛼 − 2𝛾 − 1)(2𝛼 + 2𝛾 − 2𝛽 − 1).

From Vieta's relations 𝛼 + 𝛽 + 𝛾 = −1
⁄

2. So the expression becomes

𝐸 = −8(2𝛼 + 1)(2𝛽 + 1)(2𝛾 + 1) = −16.

64. Observe that 𝑥 = 2, 𝑦 = 3 or 𝑥 = 3, 𝑦 = 2 are two possible roots. Then,

(𝑥2− 5𝑥+ 19)(𝑥− 2)(𝑥− 3) = 0 so the roots of 𝑥2− 5𝑥+ 19 = 0 are 5±√


51𝑖
⁄

2 complex
conjugates.

65. Let 4√

97 − 𝑥 = 𝑎 and 4√


𝑥 = 𝑏, then 𝑎 + 𝑏 = 5 and 𝑎4 + 𝑏4 = 97.

Now, 𝑎4+𝑏4 = (𝑎2+𝑏2)2−2𝑎2𝑏2 = [(𝑎+𝑏)2−2𝑎𝑏]2−2𝑎2𝑏2 = 625−100𝑎𝑏+2𝑎2𝑏2 =
97

⇒ (𝑎𝑏 − 25)2 = 361 ⇒ 𝑎𝑏 = 44 which is impossible and 𝑎𝑏 = 6 which gives 𝑥 as 16, 81.

66. The HCF of given polynomials is 𝑥2 − 2, and hence, the common roots of the given
polynomials are the roots of 𝑥2 − 2 = 0 i.e. ±√



2.

67. The HCF is 4(𝑥2 − 5𝑥 + 6) and hence the common roots are 𝑥 = 2, 3. If two other
roots of first equation are 𝛼 and 𝛽, then 𝛼 + 𝛽 + 5 = −5 and 6𝛼𝛽 = 132 ⇒ 𝛼𝛽 = 22.

Therefore, the having 𝛼, 𝛽 as roots is 𝑥2 + 10𝑥 + 22 = 0, whose roots are −5 ±√


3.

Similarly, let 𝛼1 and 𝛽1 be two other roots of the second equation then 𝛼1+𝛽1+5 = −1
and 6𝛼1𝛽1 = 24 ⇒ 𝛼1𝛽1 = 4. Thus, 𝛼1 and 𝛽1 are roots of 𝑥2 + 6𝑥 + 4 = 0, whose
roots are −3 ±√


5.

68. If 𝑘 = 1, 𝑝1(𝑥) = 𝑥9+𝑥3+𝑥2+𝑥+1 = 𝑥9−𝑥4+𝑥4+𝑥3+𝑥2+𝑥+1 = 𝑥4(𝑥5− 1)+
(𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1)
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= (𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1)[𝑥4(𝑥 − 1)+ 1]. Thus, 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 is a non-tirvial
polynomial divisor of 𝑝1(𝑥).

𝑝𝑘(𝑥) = 𝑥4(𝑥5𝑘−1)+𝑥4+𝑥3+𝑥2+𝑥+1. 𝑥5−1 divides 𝑥5𝑘−1, 𝑥4+𝑥3+𝑥2+𝑥+1
divides 𝑥5 − 1, and hence 𝑥5𝑘 − 1. Therefore, 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 divides 𝑝𝑘(𝑥) for
all 𝑘.

69. The HCF of given equations is 𝑥 + 2, and hence, common root is −2.

70. The HCF of given equations is 𝑥2 − 4, and hence, common roots are 2, −2.

71. ∵ 𝑑, 𝑒, 𝑓 are in G.P. ∴ 𝑑𝑓 = 𝑒2. Discriminant of second equation is 𝐷 = 4𝑒2 − 4𝑓𝑑 =
4𝑒2 − 4𝑒2 = 0.

Thus, second equation will have one, repeated root 𝑥 = − 2𝑒
⁄

2𝑑 = − 𝑒⁄
𝑑. This is the common

root with first equation. Thus,

𝑎𝑒2
⁄

𝑑2 − 2𝑏𝑒
⁄

𝑑 + 𝑐 = 0 ⇒ 𝑎𝑑𝑓
⁄

𝑑2 − 2𝑏𝑒
⁄

𝑑 + 𝑐 = 0 ⇒ 𝑎𝑓
⁄

𝑑 − 2𝑏𝑒
⁄

𝑑 + 𝑐 = 0 ⇒ 𝑎𝑓
⁄

𝑑 + 𝑐 = 2𝑏𝑒
⁄

𝑑 ⇒ 𝑎
⁄

𝑑 +
𝑐⁄
𝑓 =

2𝑏𝑒
⁄

𝑑𝑓 = 2𝑏⁄
𝑒 .

Thus, 𝑑⁄𝑎,
𝑒⁄
𝑏 ,

𝑓⁄
𝑐 are in H.P.

72. 𝑥2 + 𝑝𝑥 + 𝑞 = (𝑥 − 𝛼)(𝑥 − 𝛽)⇒ 𝛼+ 𝛽 = −𝑝 and 𝛼𝛽 = 𝑞.

𝑥2𝑛 + 𝑝𝑛𝑥𝑛 + 𝑞𝑛 = (𝑥 − 𝛼𝑛)(𝑥 − 𝛽𝑛)⇒ 𝛼𝑛 + 𝛽𝑛 = −𝑝𝑛 and 𝛼𝑛𝛽𝑛 = 𝑞𝑛

𝑓(𝛼⁄𝛽) = (1+𝛼𝑛⁄
𝛽𝑛)
⁄

1+𝛼𝑛⁄
𝛽𝑛

= (𝛼+𝛽)𝑛
⁄

𝛼𝑛+𝛽𝑛 = (−𝑝)𝑛
⁄

−𝑝𝑛 = −1.

73. Over ℚ : 𝑥4+4 = 𝑥4+4𝑥2−4𝑥2+4 = (𝑥2+2)2− (2𝑥)2 = (𝑥2+2𝑥+2)(𝑥2−2𝑥+2).
Over ℝ it is same.

Over ℂ. We need further factorization of 𝑥2 + 2𝑥 + 2 and 𝑥2 − 2𝑥 + 2.𝑥2 + 2𝑥 + 2 =
0 ⇒ 𝑥 = −1 ± 𝑖 and 𝑥2 − 2𝑥 + 2 = 0 ⇒ 𝑥 = 1 ± 𝑖.

Thus, 𝑥4 + 4 = (𝑥 + 1 − 𝑖)(𝑥 + 1 + 𝑖)(𝑥 − 1 − 𝑖)(𝑥 − 1 + 𝑖).

74. 𝑥4+𝑥3−𝑥−1 = 𝑥3(𝑥+1)− (𝑥+1) = (𝑥3−1)(𝑥+1) = (𝑥−1)(𝑥+1)(𝑥2+𝑥+1).
Hence, it is reducible over ℤ.

75. As it is a cubic polynomial, if this is reducible then it would have to have a linear
factor 𝑥 − 𝛼, hence a root (𝛼 ∈ ℤ). But by integer root theorem 𝛼 would have been an
integer divisor of constant 3, hence it would have to be 1, −1, 3 or −3, however, none
of these is a root, and hence the polynomial is irreducible.

76. Following like previous problem using integer root theorem we have no integral roots,
and hence, no linear factors. However, it might be a product of two quadratics.
Consider:
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𝑥4 + 𝑥3 − 𝑥 + 1 = (𝑥2 + 𝑎𝑥 + 𝑏)(𝑥2 + 𝑐𝑥 + 𝑑). Now equating coefficients, 𝑎 + 𝑐 =
1, 𝑏 + 𝑎𝑐 + 𝑑 = 0, 𝑎𝑑 + 𝑏𝑐 = −1, 𝑏𝑑 = 1. Since 𝑎, 𝑏, 𝑐, 𝑑 are all integers, we have either
𝑏 = 𝑑 = 1 or 𝑏 = 𝑑 = −1.

In the first case the other equations become 𝑎 + 𝑐 = 0, 𝑎𝑐 = −2, 𝑎 + 𝑐 = −1, which is
impossible. And in the second case we obtain 𝑎 + 𝑐 = 1, 𝑎𝑐 = 2 which has no integer
solution. Thus, there is no factorization, and the poynomial is irreducible.

77. Suppose 𝑓 can be faactored then 𝑓(𝑥) = (𝑥 − 𝑛)𝑔(𝑥) or 𝑓(𝑥) = (𝑥2 − 𝑏𝑥 + 𝑐)𝑔(𝑥).

In the first case, 𝑓(𝑛) = 𝑛5 − 𝑛 + 𝑎. Now 𝑛5 ≡ 𝑛(mod5) by Fermat's little theorem
5 ∣ (𝑏 − 𝑏5) = 𝑎, contradiction.

In the second case, 𝑓(𝑥) = 𝑥5 − 𝑥 + 𝑎 by 𝑥2 − 𝑏𝑥 + 𝑐, we get the remainder (𝑏4 +
3𝑏2𝑐 + 𝑐2 − 1)(𝑏3𝑐 + 2𝑏𝑐2 + 𝑎). Since 𝑥2 − 𝑏𝑥 + 𝑐 is a factor of 𝑓(𝑥), both coefficients
of remainder equal to 0. That is 𝑏4 + 3𝑏2𝑥 + 𝑐2 − 1 = 0 and 𝑏3𝑐 + 2𝑏𝑐2 + 𝑎 = 0 ⇒
𝑏(𝑏4+3𝑏2𝑥+ 𝑐2−1)−3(𝑏3𝑐 +2𝑏𝑐2+𝑎) = 𝑏5− 𝑏−5𝑏𝑐2−3𝑎 = 0 ⇒ 3𝑎 = 𝑏5− 𝑏−5𝑏𝑐2
is divisible by 5 ⇒ 5 ∣ 𝑎, which is a contradiction.

78. Let 𝛼 be any complex zero of 𝑓 .

Case I: Consider |𝛼| ≤ 1, then |𝑎0| = |𝑎1𝛼 + ⋯+ 𝑎𝑛𝛼𝑛| ≤ |𝑎1|+⋯+ |𝑎𝑛|, which is a
contradiction.

Case II: Therefore, all the zeros of 𝑓 satisfy the condition |𝛼| > 1. Let us assume
that 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥), where 𝑔 and ℎ are non-constant integer polynomials. Then
𝑎0 = 𝑓(0) = 𝑔(0)ℎ(0). Since 𝑎0 is a prime, one of |𝑔(0), ℎ(0)| equals 1.. Say |𝑔(0)| = 1,
and let 𝑏 be the leading coefficient of 𝑔.

Let 𝛼1,𝛼2,… ,𝛼𝑘 are the roots of 𝑔, then |𝛼1𝛼2 …𝛼𝑘| =
1
⁄

|𝑏| ≤ 1(∵ 𝑏 ∈ ℤ−{0}⇒ |𝑏| ≥ 1).

But 𝛼1, 𝛼2, … ,𝛼𝑘 are also zeroes of 𝑓 , and from case 1 have magnitude of each
𝛼𝑖 ≥ 1 ⇒ |𝛼1𝛼2 …𝛼𝑘| ≥ 1, which is a contradiction.

Hence, 𝑓 is irreducible.

79. The given polynomial is irreducible by Eisenstein's criterion with 7 being the prime 𝑝. 7
does not divide the leading coefficient but it divides all others, and its square 49, does
not divide 175. Note that using prime 5 is not valid because 25 divides the constant
coefficinet 175.

80. Let 𝑓(𝑥) = 𝑥3 − 3𝑥2 + 3𝑥 + 22. Eisenstein's criteria does not apply since there is no
suitable prime. Substituting 𝑥 − 1 for 𝑥 gives the polynomial 𝑥3 − 6𝑥2 + 6𝑥 + 21 to
which we can apply Eisenstein's criteria with 𝑝 = 3. Writing 𝑓(𝑥) for the original
polynomial, we deduce that 𝑓(𝑥 − 1) is irreducible. But a factorization of 𝑓(𝑥) would
give a factorization of 𝑓(𝑥 − 1), hence 𝑓(𝑥) is irreducible over ℤ.

81. Φ𝑝(𝑥) = 𝑥𝑝−1 + 𝑥𝑝−2 + ⋯+ 𝑥 + 1 = 𝑥𝑝−1
⁄

𝑥−1 .

Consider Φ𝑝(𝑥 + 1) = (𝑥+1)𝑝−1
⁄

𝑥+1−1 = 𝑥𝑝+𝐶𝑝
1𝑥𝑝−1+𝐶

𝑝
2𝑥𝑝−1+𝐶

𝑝−1
𝑃 𝑥2+𝐶𝑝−1

𝑃 𝑥
⁄

𝑥 = 𝑥𝑝−1 +
𝐶𝑝
1𝑥

𝑝−1 + ⋯+ 𝐶𝑝−2
𝑝 𝑥 + 𝐶𝑝−1

𝑝 .
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As 𝑝 ∣ 𝐶𝑝
𝑖 ∀ 𝑖 = 1, 2, 3,… , 𝑝 − 1, so all the lower coefficients are divisible by 𝑝 and

the constant coefficient is exactly 𝑝, so it is not divisible by 𝑝. Thus, Eisenstein's
criteria apply, and Φ𝑝(𝑥 + 1) is irreducible. Certainly if Φ𝑝(𝑥) = 𝑔(𝑥)ℎ(𝑥) then
Φ𝑝(𝑥+1) = 𝑔(𝑥+1)ℎ(𝑥+1) gives a factorization of Φ𝑝(𝑥+1). Thus, Φ𝑝 is irreducible.

82. Taking prime 𝑝 = 3, clearly 3 ∣ 𝑎𝑖 ∀ 𝑖 = 0, 1, 2, … , 𝑛 − 2; 32 ∤ 𝑎0 = 3, 3 ∤ 𝑎𝑛−1 = 5.
Hence, by extended Eisenstein's criterion 𝑓 has an irreducible factor of degree at least
𝑛 − 1. If possible, let us take one factor of degree 𝑛 − 1 then other must be linear and
monic as 𝑓 is monic. This implies that 𝑓 has integral roots. By integer root theorem
this root must be an integer divisor of 3, hence would have to be 1, −1, 3 or −3.
However, none of these are roots of the given equation, and hence, 𝑓 is irreducible.

83. We treat the polynomial as 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0, where 𝑎𝑛 =
0, 𝑎𝑖 = 0 ∀ 𝑖 ∈ {1, 2, … , 𝑛 − 1} and 𝑎0 = −𝑝.

Clearly if we consider the prime 𝑝 given in the polynomial then 𝑝 ∣ 𝑎𝑖 for 0 ≤ 𝑖 ≤
𝑛 − 1, 𝑝 ∤ 1 and 𝑝2 ∤ −𝑝. Thus, 𝑓(𝑥) is irreducible over ℤ.

84. Considering prime 𝑝 = 3, we have 𝑝 ∣ 𝑎𝑖 for 0 ≤ 𝑛 − 1, 𝑝 ∤ 1 and 𝑝2 ∤ 24. Thus, the
polynomial is irreducible over ℤ.

85. Considering prime 𝑝 = 2, we have 𝑝 ∣ 𝑎𝑖 for 0 ≤ 𝑛 − 1, 𝑝 ∤ 1 and 𝑝2 ∤ 2. Thus, the
polynomial is irreducible over ℤ, which implies that it cannot be represented as product
of two given polynomials.

86. Considerung prime 𝑝 = 3, we have 𝑝 ∣ 𝑎𝑖 for 0 ≤ 𝑛 − 1, 𝑝 ∤ 1 and 𝑝2 ∤ 2. Thus, the
polynomial is irreducible over ℤ.

87. There is no suitable prime for 𝑥3 + 3𝑥2 + 3𝑥 + 5. Substituting 𝑥 − 3 for 𝑥 gives
the polynomial 𝑥3 − 6𝑥2 + 14𝑥 − 10 to which Eisenstein does apply, with 𝑝 = 2.
Writing 𝑓(𝑥) for the original polynomial, we deduce that 𝑓(𝑥− 3) is irreducible. But a
factorization of 𝑓(𝑥) would give a factorization of 𝑓(𝑥 − 3), hence 𝑓(𝑥) is irreducible
over ℤ.

88. We see that our prime 𝑝 will divide the coefficient of 𝑥 but it won't divide 𝑝 − 1 for
𝑝 > 2 making the prime 𝑝 unsuitable for Eisenstein criteria. However, if 𝑝 = 2 the
the polynomial is 𝑥2 + 2𝑥 + 1 = (𝑥 + 1)2. So if the polynomial has to be reducible for
some prime then it must be 2.

89. Given polynomial is irreducible over ℤ. Substituting 𝑥 = 1
⁄

𝑥 we obtain the desired
polynomial and find that it is irreducible over ℤ.

If we substitute 𝑥 = 1
⁄

𝑥 in 21𝑥5−49𝑥3+14𝑥2−4 then it becomes 4𝑥5−14𝑥3+49𝑥2−21
for which Eisenstein's ceriteria is satisfied for 𝑝 = 7.

90. If the polynomial were reducible over ℤ, then there would exist two monic polynomials
𝑃 (𝑥) and 𝑄(𝑥) such that 𝑃 (𝑥)𝑄(𝑥) = (𝑥−𝑎1)(𝑥−𝑎2)⋯ (𝑥−𝑎𝑛)−1. Consequently,
𝑃 (𝑎𝑖)𝑄(𝑎𝑖) = −1 ∀𝑖 ∈ {1, 2, … , 𝑛} but 𝑃 (𝑎𝑖) and 𝑄(𝑎𝑖) are integers, so there are
only two possibilities:
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𝑃 (𝑎𝑖) = 1, 𝑄(𝑎𝑖) = −1 and 𝑃 (𝑎𝑖) = −1, 𝑄(𝑎𝑖) = 1. In any case, 𝑃 (𝑎𝑖)+𝑄(𝑎𝑖) = 0,
but it is impossible because 𝑃 (𝑥)+𝑄(𝑥) ≠ 0 (sum of monic polynomials) has degree
less than 𝑛, so according to fundamental theorem of algebra, it cannot have 𝑛 different
roots. Hence, there do not exist such polynomials making the given polynomial
irreducible.

91. This problem is similar to 81 and can be solved similarly.

92. 𝑥 = 𝑝−2
⁄

2𝑝(𝑝−2). If 𝑝 = 0 or 𝑝 = 2 then the equation is undefined. However, if 𝑝 = 0, then
the equation becomes 0 = −2, which is inconsistent. Hence, no value of 𝑥 will satisfy it
and there is no solution for 𝑝 = 0.

If 𝑝 = 2 then the equation becomes 0 = 0. Thus, every value from the domain of 𝑥 will
satisfy the equationm, and hence, there exists infinite number of solutions.

If 𝑝 ≠ 0, 𝑝 ≠ 2, then the equation is well defined and 𝑥 = 1
⁄

2𝑝.

93. Substituting the roots we have 𝑎𝑥21 + 𝑏𝑥1 + 𝑐 = 0, −𝑎𝑥22 + 𝑏𝑥2 + 𝑐 = 0 and 𝑓(𝑥1) =
𝑎
⁄

2 𝑥
2
1 + 𝑏𝑥1 + 𝑐, 𝑓(𝑥2) = 𝑎
⁄

2 𝑥
2
2 + 𝑏𝑥2 + 𝑐.

∴ 𝑓(𝑥1)+ 𝑎
⁄

2 𝑥
2
1 = 𝑎𝑥21 + 𝑏𝑥1 + 𝑐 = 0 and 𝑓(𝑥2)− 3

⁄

2 𝑎𝑥
2
2 = −𝑎𝑥22 + 𝑏𝑥2 + 𝑐 = 0

∵ 𝑓(𝑥1) and 𝑓(𝑥2) have opposite signs, and hence, 𝑓(𝑥) must have a root between 𝑥1
and 𝑥2.

94. Let 𝑃 (𝑥) = 𝑥2 + 𝑎𝑥 + 𝑏 = (𝑥 − 𝛼)(𝑥 − 𝛽), where 𝛼 + 𝛽 = −𝑎 and 𝛼𝛽 = 𝑏.

Now 𝑃 (𝑛)𝑃 (𝑛 + 1) = (𝑛 − 𝛼)(𝑛 − 𝛽)(𝑛 + 1 − 𝛼)(𝑛 + 1 − 𝛽) = (𝑛 − 𝛼)(𝑛 + 1 −
𝛽)(𝑛−𝛽)(𝑛+ 1−𝛼) = [𝑛2− (𝛼+𝛽 −1)𝑛+𝛼𝛽 −𝛼][𝑛2+ (𝛼+𝛽 −1)𝑛+𝛼𝛽 − 𝑏] =
[𝑛2 + (𝑎 + 1)𝑛 + 𝑏 − 𝛼] [𝑛2 + (𝑎 + 1)𝑛 + 𝑏 − 𝛽] = (𝑀 − 𝛼)(𝑀 − 𝛽), where 𝑀 =
𝑛2 + (𝑎 + 1)𝑛 + 𝑏.

95. Let there be a rational root 𝑝⁄𝑞, where (𝑝, 𝑞) = 1. Then, 𝑎 𝑝
2
⁄

𝑞2 + 𝑏 𝑝⁄𝑞 + 𝑐 = 0 ⇒ 𝑎𝑝2+ 𝑏𝑝𝑞 +
𝑐𝑞2 = 0

Now 𝑝, 𝑞 both may be odd or one of the 𝑝, 𝑞 be even. In both the cases 𝑎𝑝2 + 𝑏𝑝𝑞 + 𝑐𝑞2
cannot be equal to zero. Thus, the equation cannot have rational roots.

96. Given, 1⁄𝑎 +
1
⁄

𝑏 +
1
⁄

𝑐 =
1
⁄

𝑎+𝑏+𝑐 ⇒
1
⁄

𝑎 +
1
⁄

𝑏 =
1
⁄

𝑎+𝑏+𝑐 −
1
⁄

𝑐 ⇒ (𝑎+ 𝑏)(𝑏 + 𝑐)(𝑐 + 𝑎) = 0 ⇒ 𝑎 = −𝑏
or 𝑏 = −𝑐 or 𝑐 = −𝑎.

If 𝑎 = −𝑏, then 𝑎𝑛 = −𝑏𝑛 for odd 𝑛 ⇒ 1
⁄

𝑎𝑛 = − 1⁄
𝑏𝑛 ⇒

1
⁄

𝑎𝑛+
1⁄
𝑏𝑛+

1⁄
𝑐𝑛 =

1⁄
𝑎𝑛+𝑏𝑛+𝑐𝑛. Similarly,

it can be proved for other two cases as well.

97. We have 𝑎3⁄
(𝑎−𝑏)(𝑎−𝑐) = − 𝑎3⁄

(𝑎−𝑏)(𝑐−𝑎) ,
𝑏3⁄

(𝑏−𝑎)(𝑏−𝑐) = − 𝑏3⁄
(𝑎−𝑏)(𝑏−𝑐) and 𝑐3⁄

(𝑐−𝑎)(𝑐−𝑏) =

− 𝑐3⁄
(𝑐−𝑎)(𝑏−𝑐).

𝑎3⁄
(𝑎−𝑏)(𝑎−𝑐) = [(𝑏−𝑐)𝑎

3+(𝑐−𝑎)𝑏3+(𝑎−𝑏)𝑐3
⁄

(𝑎−𝑏)(𝑏−𝑐)(𝑐−𝑎) ]
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Numerator of RHS is a cyclic symmetric expression in 𝑎, 𝑏, 𝑐 in 4th degree and writting
𝑏 = 𝑐, we get (𝑐 − 𝑎)𝑏3 + (𝑎− 𝑏)𝑐3 = 0. So 𝑏 − 𝑐 and hence 𝑐 − 𝑎 and 𝑎− 𝑏 are factors.
Since it is a 4th degree symmetric expression 𝑎 + 𝑏 + 𝑐 is also a factor. Thus, we have

𝑘(𝑎 + 𝑏 + 𝑐)(𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎) = (𝑏 − 𝑐)𝑎3 + (𝑐 − 𝑎)𝑏3 + (𝑎 − 𝑏)𝑐3.

If 𝑎 = 1, 𝑏 = −1 and 𝑐 = 2, we get 𝑘 = −1.

Thus, the expression (𝑎+𝑏+𝑐)(𝑎−𝑏)(𝑏−𝑐)(𝑐−𝑎)⁄(𝑎−𝑏)(𝑏−𝑐)(𝑐−𝑎) = 𝑎 + 𝑏 + 𝑐.

98. 𝑥𝑛 − 𝑎1𝑥𝑛−1 − ⋯− 𝑎𝑛−1𝑥 − 𝑎𝑛 = 0 ⇒ −𝑥𝑛[−1 + 𝑎1
⁄

𝑥 + 𝑎2
⁄

𝑥2 + ⋯ + 𝑎𝑛⁄
𝑥𝑛] = 0.

Let 𝑓(𝑥) = 𝑎1
⁄

𝑥 +𝑎2
⁄

𝑥2+⋯+𝑎𝑛⁄
𝑥𝑛 .𝑓(𝑥) is a decreasing function as 𝑥 increases in (0,∞), 𝑓(𝑥)

decreases in (∞, 0). Hence there exists a unique positive real number 𝑅 such that
𝑓(𝑅) = 𝑎1
⁄

𝑅 + 𝑎2
⁄

𝑅2 + ⋯+ 𝑎𝑛
⁄

𝑅𝑛 = 1. Thus, for 𝑥 = 𝑅, we get

−𝑅𝑛[−1 + 𝑎1
⁄

𝑅 + 𝑎2
⁄

𝑅2 + ⋯+ 𝑎𝑛
⁄

𝑅𝑛] = 0. Therefore, 𝑅 is a root of the given equation.

99. Considering the polynomial ±𝑃 (±𝑥) we may assume without loss of generality that
𝑎, 𝑏 ≥ 0.

Case I: If 𝑐, 𝑑 ≥ 0, then |𝑎|+ |𝑏|+ |𝑐|+ |𝑑| = 𝑃 (1) ≤ 1 < 7

Case II: If 𝑐 ≥ 0 and 𝑑 ≤ 0, then |𝑎|+ |𝑏|+ |𝑐|+ |𝑑| = 𝑎+ 𝑏+ 𝑐−𝑑 = (𝑎+ 𝑏+ 𝑐 +𝑑)−
2𝑑 = 𝑃 (1)− 2𝑃 (0) ≤ 1 + 2 = 3 < 7

Case III: If 𝑐 < 0 and 𝑑 ≥ 0, then |𝑎| + |𝑏| + |𝑐| + |𝑑| = 𝑎 + 𝑏 − 𝑐 + 𝑑 = 4
⁄

3 𝑃 (1) −
1
⁄

3 𝑃 (−1)−
8
⁄

3 𝑃(
1
⁄

2)+
8
⁄

3 𝑃(−
1
⁄

2) ≤
4
⁄

3 +
1
⁄

3 +
8
⁄

3 +
8
⁄

3 = 7

Case IV: If 𝑐, 𝑑 < 0, then |𝑎| + |𝑏| + |𝑐| + |𝑑| = 𝑎 + 𝑏 − 𝑐 − 𝑑 = 5
⁄

3 𝑃 (1) − 4𝑃(1⁄2) +
4
⁄

3 𝑃(−
1
⁄

2) ≤
5
⁄

3 + 4 + 4
⁄

3 = 7.

100. In one hour, the minute hand makes one complete revolution, i.e., it moved through 60
divisions and the hour hand moves through 5 divisions. Suppose, when the man went
out, the hour hand was 𝑥 divisions ahead of the point labeled 12 of the dial, where
20 < 𝑥 < 25 as he went out between 4 p.m. and 5 p.m. Also, suppose, when the man
the hour hand was 𝑦 divisions ahead of 0 mark and 25 < 𝑦 < 30.

Given that minute hand and hour hand exchanged their places, the minute hand was
at 𝑦 when he went out and at 𝑥 when he returned. Because minute hand moves 12
times faster than hour hand,

𝑦 = 12(𝑥 − 20) and 𝑥 = 12(𝑦 − 25)⇒ 𝑦 = 12[12(𝑦 − 25)− 20]⇒ 𝑦 = 3840⁄
143 . Since the

man went out when the hand was at 𝑦, the man went at 3840⁄143 minutes past 4 p.m.
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101. Sum of roots is 𝛼 + 𝛼3 + 𝛼4 + 𝛼−4 + 𝛼−3 + 𝛼−1 + 𝛼2 + 𝛼5 + 𝛼6 + 𝛼−6 + 𝛼−5 +
𝛼−2 = 𝛼 + 𝛼2 + 𝛼3 + 𝛼4 + 𝛼5 + 𝛼6 + 𝛼7 + 𝛼8 + 𝛼9 + 𝛼10 + 𝛼11 + 𝛼12 (∵𝛼13 = 1) =
(1 + 𝛼 + 𝛼2 + ⋯+ 𝛼12)− 1 = 1−𝛼13
⁄

1−𝛼 − 1 = −1.

Product of roots is (𝛼+𝛼3+𝛼4+𝛼−4+𝛼−3+𝛼−1)(𝛼2+𝛼5+𝛼6+𝛼−6+𝛼−5+𝛼−2)=
3(𝛼 + 𝛼2 + ⋯+ 𝛼12) = −3.

Thus, the quadratic equation having these roots is 𝑥2 + 𝑥 − 3 = 0.

102. 1 + 𝑥𝑛 + 𝑥2𝑛 + ⋯+ 𝑥𝑚𝑛 = 𝑥(𝑚+1)𝑛−1
⁄

𝑥𝑛−1 and

1 + 𝑥 + 𝑥2 + ⋯+ 𝑥𝑚 = 𝑥𝑚+1−1
⁄

𝑥−1 .

We have to find (𝑚, 𝑛) such that 𝑥
(𝑚+1)𝑛−1
⁄

𝑥𝑛−1 ÷ 𝑥𝑚+1−1
⁄

𝑥−1 = (𝑥(𝑚+1)𝑛−1)(𝑥−1)
⁄

(𝑥𝑛−1)(𝑥𝑚+1−1) is a poly
nomial.

Now if 𝑘 and 𝑙 are relatively prime, then (𝑥𝑘 − 1) and (𝑥𝑙 − 1) have just one common
factor 𝑥− 1. By De'moivre's theorem, the roots of 𝑥𝑘− 1 = 0 are cos 2𝑛𝜋⁄𝑘 + 𝑖 sin 2𝑛𝜋

⁄

𝑘 for

𝑛 = 0,1, 2,… ,𝑘−1 and those of 𝑥𝑙−1 = 0 are cos 2𝑛𝜋⁄𝑙 + 𝑖 sin 2𝑛𝜋⁄𝑙 for 𝑛 = 0,1, 2,… ,𝑛−1.
If 𝑙 and 𝑘 are co-prime integer other than zero, these roots will be different.

Since all the factors of 𝑥(𝑚+1)𝑛 − 1 are distinct, 𝑥𝑚 − 1, 𝑥𝑛 − 1 cannot have any
common factors other than 𝑥 − 1. Thus, 𝑚+ 1 and 𝑛 must be relatively prime.

Again, 𝑥(𝑚+1)𝑛 − 1 = (𝑥𝑛)𝑚+1 − 1 = (𝑥𝑚+1)𝑛 − 1. So 𝑥(𝑚+1)𝑛 − 1 is divisible by
both the factors in denominator. Thus, it is sufficient for our result for 𝑚+ 1 and 𝑛 to
be relatively prime.

103. Given, (𝑎−𝑏)2+(𝑎−𝑐)2 = (𝑏−𝑐)2 ⇒ 2𝑎2−2𝑎𝑏−2𝑎𝑐+2𝑏𝑐 = 0⇒ 𝑎2−𝑎(𝑏+𝑐)+𝑏𝑐 =
0 ⇒ (𝑎 − 𝑏)(𝑎 − 𝑐) = 0 ⇒ 𝑎 = 𝑏 or 𝑎 = 𝑐.

However, it contradicts with the given fact that 𝑎, 𝑏, 𝑐 are all distinct, and hence, has
no solution.

104. 2𝑚 = (1 + 1)𝑚 = 𝐶𝑚
0 + 𝐶𝑚

1 + 𝐶𝑚
2 + ⋯+ 𝐶𝑚

𝑚 for 𝑚 = 1, 2, … , 𝑛 + 1.

Now consider the polynomial 𝑓(𝑥) = 2[𝐶𝑥−1
0 + 𝐶𝑥−1

1 + 𝐶𝑥−1
2 + ⋯ + 𝐶𝑥−1

𝑛 ], clearly,
𝑓(𝑥) is of degree 𝑛.

So 𝑓(𝑥) = 2.2𝑥−1 for all 𝑥 = 1, 2, … , 𝑛 + 1. Thus, 𝑓(𝑥 + 2) = 2[𝐶𝑥+1
0 + 𝐶𝑥+1

1 +
𝐶𝑥+1
2 + ⋯ + 𝐶𝑥+1

𝑛 ] = 2[2𝑥+1 − 1] = 2𝑥+2 − 2.

105. Given, 𝑎2+𝑏2+𝑐2+𝑑2 = 𝑎𝑏+𝑏𝑐+𝑐𝑑+𝑑𝑎⇒ (𝑎−𝑏)2+(𝑏−𝑐)2+(𝑐−𝑑)2+(𝑑−𝑎)2 =
0 ⇒ 𝑎 = 𝑏, 𝑏 = 𝑐, 𝑐 = 𝑑, 𝑑 = 𝑎 ⇒ 𝑎 = 𝑏 = 𝑐 = 𝑑.

106. Given, 2𝑥2 + 𝑦2 + 2𝑥2 − 8𝑥 + 2𝑦 − 2𝑥𝑦 + 2𝑥𝑧 − 16𝑧 = 35 = 0 ⇒ (𝑥 − 𝑦)2 + (𝑥 + 𝑧)2 +
𝑧2 − 16𝑥 − 8𝑥 + 2𝑦 + 35 = 0 ⇒ (𝑥 − 𝑦 − 1)2 + (𝑥 + 𝑧 − 3)2 + 𝑧2 − 10𝑧 + 25 = 0 ⇒
(𝑥−𝑦−1)2+(𝑥+𝑧−3)2+(𝑧−5)2 = 0⇒ 𝑥−𝑦 = 1,𝑥+𝑧 = 3,𝑧 = 5⇒ 𝑥 =−2,𝑦 = −3.
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107. We know that 𝑥8 + 𝑦8 + 6 = 8𝑥𝑦 ⇒ 𝑥 and 𝑦 must be of the same sign otherwise LHS
> 0 and RHS < 0. Moreover (𝑥, 𝑦) is a solution then (−𝑥, −𝑦) is also a solution, also
WLOG 𝑥, 𝑦 > 0.

Now, 𝑥8 + 𝑦8 + 1 + 1 + 1 + 1 + 1 + 1 = 8𝑥𝑦. By AM-GM inequality 𝑥8 + 𝑦8 + 1 + 1 +
1 + 1 + 1 + 1 ≥ 8 8√

𝑥8 + 𝑦8 = 8|𝑥𝑦|. But, by this hypothesis, equality holds. Hence, all

eight terms are equal. Therefore, 𝑥8 = 𝑦8 = 1. Hence, (𝑥, 𝑦) = (1, 1) = (−1, −1) is
the solution set.

By observation you can see that the genral equation is 𝑥2𝑛 + 𝑦2𝑛 = 2𝑛𝑥𝑦 + 2𝑛 − 2,
where 𝑛 = 1, 2, … which will have the same solution set.

108. Given that, 5𝑥(1 + 1⁄
𝑥2+𝑦2) = 12 ⇒ 25𝑥2 = 144
⁄

(1+ 1
⁄

𝑥2+𝑦2
)
2. Similarly, we can find from the

second equation 25𝑦2 = 16
⁄

(1− 1
⁄

𝑥2+𝑦2
)
2.

Adding, 25(𝑥2 + 𝑦2) = 144
⁄

(1+ 1
⁄

𝑥2+𝑦2
)
2 +

16
⁄

(1− 1
⁄

𝑥2+𝑦2
)
2. Let 1⁄

𝑥2+𝑦2 = 𝑡 ⇒ 𝑥2 + 𝑦2 = 1
⁄

𝑡

∴ 25⁄𝑡 = 144
⁄

(1+𝑡)2 +
16
⁄

(1−𝑡)2 ⇒ 32𝑡(5𝑡2 − 8𝑡 + 5) = 25(𝑡4 − 2𝑡2 + 1). Dividing both sides

by 𝑡2, we arrive at 32[5(𝑡 + 1
⁄

𝑡)− 8] = 25[(𝑡 + 1
⁄

𝑡)
2
− 4]

Putting 𝑡 + 1
⁄

𝑡 = 𝛼, we have 25𝛼2 − 160𝛼 + 156 = 0 ⇒ 𝛼 = 6
⁄

5 ,
26
⁄

5 ⇒ 𝑡 + 1
⁄

𝑡 =
6
⁄

5 ,
26
⁄

5 ⇒
5𝑡2 − 6𝑡 + 5 = 0 or 5𝑡2 − 26𝑡 + 5 = 0. Since the discriminant of 5𝑡2 − 6𝑡 + 5 = 0 is
36 − 100 < 0, there is no real root. 5𝑡2 − 26𝑡 + 5 = 0, the roots are 5, 1⁄5.

If 𝑥2 + 𝑦2 = 5 then 5𝑥(1 + 1
⁄

5) = 12 and 5𝑦(1 − 1
⁄

5) = 4 ⇒ 𝑥 = 2, 𝑦 = 1. If 𝑥2 + 𝑦2 = 1
⁄

5

then 5𝑥(1 + 5) = 12 and 5𝑦(1 − 5) = 4. Thus, 𝑥 = 2
⁄

5 and 𝑦 = −1
⁄

5.

109. Adding all 2(𝑥+ 𝑦 + 𝑧)2 = 48+ 2𝐿 ⇒ 𝑥+ 𝑦 + 𝑧 = √


24 + 𝐿. Dividing all the equations
with 𝑥 + 𝑦 + 𝑧 = √


24 + 𝐿, we get 𝑥 + 𝑦 = 18
⁄

√


24+𝐿, 𝑦 + 𝑧 = 30
⁄

√


24+𝐿, 𝑧 + 𝑥 = 2𝐿
⁄

√


24+𝐿.

Solving these, we get 𝑥 = 𝐿−6
⁄

√


24+𝐿, 𝑦 =
24−𝐿
⁄

√


24+𝐿, 𝑧 =
𝐿+6
⁄

√


24+𝐿, where 6 < 𝐿 < 24.

110. From eq. (1), (𝑥 − 𝑧) = (4 − 𝑦)⇒ 𝑥2 − 2𝑧𝑥 + 𝑧2 = 16 − 8𝑦 + 𝑦2 ⇒ (𝑥2 + 𝑧2 − 𝑦2)−
2𝑧𝑥 + 8𝑦 − 16 = 0 ⇒ 𝑧𝑥 = 2(2𝑦 − 5)[∵ 𝑥2 + 𝑦2 − 𝑧2 = −4]⋯ (4)

From eq. (3) and (4), we get 𝑦 × 2(2𝑦 − 5) = 6 ⇒ 𝑦 = −1
⁄

2 , 3. Putting 𝑦 = −1
⁄

2 in eq.

(1) and (3), we get 𝑥 − 𝑧 = 9
⁄

2 and 𝑧𝑥 = −12

(𝑥 + 𝑧)2 = (𝑥 − 𝑧)2 + 4𝑧𝑥 = 81
⁄

4 − 48 < 0. So 𝑦 = 3 is the only valid solution for 𝑦

(𝑥 − 𝑧) = 1, 𝑧𝑥 = 2 ⇒ 𝑥 + 𝑧 = ±3 ⇒ 𝑥 = 2, −1 and 𝑧 = 1, −2.
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111. Multiplying given equations, we get 3𝑥𝑦(𝑥 + 𝑦 − 2)(𝑥 + 𝑦 − 1) = 18𝑥𝑦 ⇒ 3𝑥𝑦[(𝑥 +
𝑦 − 1)(𝑥 + 𝑦 − 2)− 6] = 0 ⇒ 3𝑥𝑦(𝑥 + 𝑦 − 4)(𝑥 + 𝑦 + 1) = 0.

So 𝑥 = 0 or 𝑦 = 0 or 𝑥 + 𝑦 = 4 or 𝑥 + 𝑦 = −1. Putting 𝑥 + 𝑦 = 4 in eq. (1), we get
6𝑥 = 2𝑦 ⇒ 𝑦 = 3𝑥 ⇒ 𝑥 = 1, 𝑦 = 3.

Putting 𝑥 + 𝑦 = −1 in eq. (1), we get 𝑦 = −9𝑥
⁄

2 ⇒ −7
⁄

2 𝑥 = −1 ⇒ 𝑥 = 2
⁄

7 , 𝑦 = −9
⁄

7.

112. Adding 1 to both sides of (1), 𝑥𝑦 + 𝑥 + 𝑦 + 1 = 24 ⇒ (𝑥 + 1)(𝑦 + 1) = 24. Similarly,
(𝑦 + 1)(𝑧 + 1) = 32 and (𝑧 + 1)(𝑥 + 1) = 48.

⇒ (𝑥 + 1)2(𝑦 + 1)2(𝑧 + 1)2 = 24 × 32 × 48 ⇒ (𝑥 + 1)(𝑦 + 1)(𝑧 + 1) = ±(24 × 8)⇒
𝑧 + 1 = ±8, 𝑥 + 1 = ±6, 𝑦 + 1 = ±4.

Thus, 𝑥 = 5, 𝑦 = 3, 𝑧 = 7 and 𝑥 = −7, 𝑦 = −5, 𝑧 = −9.

113. If 𝑥 > 1, then 𝑦 = 𝑥3 + 3𝑥(𝑥2 − 1) > 𝑥3 > 𝑥 > 1, 𝑧 = 𝑦3 + 3𝑦(𝑦2 − 1) > 𝑦3 > 𝑦 > 1
and 𝑥 = 𝑧3 + 3𝑧(𝑧2 − 1) > 𝑧3 > 𝑧 > 1.

Thus, 𝑧 > 𝑦 > 𝑥 > 𝑧, which is impossible. Thus, 𝑥 ≤ 1 and again, 𝑥 < −1 leads to
𝑥 > 𝑦 > 𝑧 > 𝑥 so 𝑥𝑔𝑒𝑞 − 1. So |𝑥| ≤ 1, |𝑦| ≤ 1, |𝑧| ≤ 1.

And hence we can write 𝑥 = cos 𝜃, where 0 ≤ 𝜃 ≤ 𝜋.

Now, 𝑦 = 4 cos3 𝜃−3 cos 𝜃 = cos 3𝜃, 𝑧 = 4 cos3 3𝜃−3 cos 3𝜃 = cos 9𝜃 and 𝑥 = 4𝑧3−3𝑧 =
4 cos3 9𝜃 − 3 cos 9𝜃 = cos 27𝜃.

Since trigonometric functions are periodic, it is possible. Thus, cos 𝜃 = cos 27𝜃 ⇒
cos 𝜃 − cos 27𝜃 = 0 ⇒ 2 sin 14𝜃 cos 13𝜃 = 0 ⇒ 𝜃 = 𝑘𝜋⁄

13, where 𝑘 = 0, 1, 2, … , 13 or 𝜃 = 𝑘𝜋⁄
14,

where 𝑘 = 1, 2, … , 13. The solution is (𝑥, 𝑦, 𝑧) = (cos 𝜃, cos 3𝜃, cos 9𝜃) where 𝜃 takes
all the above values.

114. Consider the equation 𝑝 + 𝑞𝑡 + 𝑟𝑡2 + 𝑠𝑡3 = 𝑡4 ⇒ 𝑡4 − 𝑠𝑡3 − 𝑟𝑡2 − 𝑞𝑡 − 𝑝 = 0. Given that
𝑎1, 𝑎2, 𝑎3, 𝑎4 are the solutions of this equation, and hence,

𝜎1 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 = 𝑠, 𝜎2 = (𝑎1 + 𝑎2)(𝑎3 + 𝑎4) + 𝑎1𝑎2 + 𝑎3𝑎4 = −𝑟, 𝜎3 =
𝑎1𝑎2(𝑎3 + 𝑎4)+ 𝑎3𝑎4(𝑎1 + 𝑎2) = 𝑞, 𝜎4 = 𝑎1𝑎2𝑎3𝑎4 = −𝑝.

The second system of equation is (𝑡2)4 − 𝑤(𝑡2)3 − 𝑧(𝑡2)2 − 𝑦(𝑡2)− 𝑥 = 0. Putting
𝑡2 = 𝑢, we have 𝑢4 − 𝑤𝑢3 − 𝑧𝑢2 − 𝑦𝑢 − 𝑥 = 0 and the roots would be 𝑎21, 𝑎22, 𝑎23, 𝑎24.

𝜎1 = 𝑎21 + 𝑎22 + 𝑎23 + 𝑎24 = 𝑤 ⇒ 𝑤 = (∑𝑎𝑖)
2
− 2∑

𝑖<𝑗
𝑎𝑖𝑎𝑗 = 𝑠2 + 2𝑟.

𝜎2 =𝑖<𝑗𝑎2𝑖 𝑎2𝑗 = −𝑧 ⇒ 𝑧 = −(∑
𝑖,𝑗

𝑎𝑖𝑎𝑗)
2

− 2∑𝑎𝑖 ∑
𝑖<𝑗<𝑘

𝑎𝑖𝑎𝑗𝑎𝑘 − 2𝑎1𝑎2𝑎3𝑎4 = −𝑟2+

2𝑞𝑠 + 2𝑝.

𝜎3 = 𝑎21𝑎22𝑎23 + 𝑎21𝑎22𝑎24 + 𝑎21𝑎23𝑎24 + 𝑎22𝑎23𝑎24 = 𝑦 ⇒ 𝑦 = 𝑞2 − 2𝑝𝑟

𝜎4 = −𝑥 = −𝑝2.
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115. We observe that both (𝑥, 𝑦, 𝑧) and (−𝑥, −𝑦, 𝑧) satisfy the given system of equations.
Since there has to be only one solution, we deduce 𝑥 = 𝑦 = 0 and so 𝑧2 = 4 ⇒ 𝑧 = ±2.

From equations (1) and (2), 𝑧 = 𝑎, 𝑧 = 𝑏. So either 𝑎 = 𝑏 = 2 or 𝑎 = 𝑏 = −2.

If 𝑎 = 𝑏 = 2, we have 𝑥𝑦𝑧 + 𝑧 = 2, 𝑥𝑦𝑧2 + 𝑧 = 2, 𝑥2 + 𝑦2 + 𝑧2 = 4 ⇒ 𝑥𝑦𝑧(𝑧 − 1) = 0 so
either 𝑥 = 0 or 𝑦 = 0 or 𝑧 = 0 or 𝑧 = 1. If 𝑧 = 0 the from last equation 0 = 4, which is
not possible. If 𝑧 = 1, then 𝑥, 𝑦 are not zero, which gives more than one solution of the
equation. Hence, 𝑎 = 𝑏 = 2 does not satisfy the condition.

If 𝑎 = 𝑏 = −2, we have 𝑥𝑦𝑧 + 𝑧 = −2, 𝑥𝑦𝑧2 + 𝑧 = −2, 𝑥2 + 𝑦2 + 𝑧2 = 4. Following
like above when 𝑧 = 0, we have 0 = −2, which is not possible. If 𝑧 = 1, then
𝑥𝑦 + 1 = −2 ⇒ 𝑥𝑦 = −3 and 𝑥2 + 𝑦2 = 3 ⇒ (𝑥 + 𝑦)2 = −3, which is not posssible for
real 𝑥, 𝑦, and hence, 𝑧 ≠ 1.

Thus, we have a unique solution (0, 0, −2).

116. Clearly, 𝑎2 + 𝑎𝑏 + 𝑏2
⁄

3 = 𝑏2
⁄

3 + 𝑐2 + 𝑐2 + 𝑐𝑎 + 𝑎2 ⇒ 2𝑐2 + 𝑎𝑐 − 𝑎𝑏 = 0 ⇒ 𝑎 + 2𝑐 = 𝑎𝑏
⁄

𝑐 .

Also, 25 − 9 + 16 = 32 ⇒ 2𝑎 + 𝑏 + 𝑐 = 32
⁄

𝑎 .

𝑎𝑏 + 2𝑏𝑐 + 3𝑐𝑎 = 𝑏(𝑎 + 2𝑐)+ 3𝑐𝑎 = 𝑏×𝑎𝑏
⁄

𝑐 + 3𝑐𝑎 = 3𝑎⁄
𝑐 (

𝑏2
⁄

3 + 𝑐) = 27𝑎⁄
𝑐 .

Again, 𝑎𝑏 + 2𝑏𝑐 + 3𝑐𝑎 = 2𝑐2 + 𝑎𝑐 + 2𝑏𝑐 + 3𝑐𝑎 = 2𝑐(𝑐 + 𝑏 + 2𝑎).

⇒ 32
⁄

𝑎 = 27𝑎⁄
𝑐 . 1⁄2𝑐 =

27𝑎⁄
2𝑐2 ⇒

𝑎2
⁄

𝑐2 =
64
⁄

27 ⇒ 𝑎𝑏 + 2𝑏𝑐 + 3𝑐𝑎 = 27 × 𝑎
⁄

𝑐 = 24√


3.

117. We have log3(log2 𝑥) + log1/3(log1/2 𝑦) = 1 ⇒ log3(log2 𝑥) − log3(log1/2 𝑦) = 1 ⇒
log2 𝑥
⁄

log1/2 𝑦
= 3 ⇒ log2 𝑥 = −3 log2 𝑦 ⇒ log2 𝑥𝑦3 = 0 ⇒ 𝑥𝑦3 = 1 ⇒ 𝑦 = 1

⁄

4 , 𝑥 = 64.

118. We know that log𝑎 𝑥 = log(𝑎𝑛)(𝑥𝑛). So log2 𝑥 = log4 𝑥2, log3 𝑦 = log9 𝑦2, log4 𝑧 =
log16 𝑧2.

Now, log2 𝑥 + log4 𝑦 + log4 𝑧 = 2 ⇒ 𝑥2𝑦𝑧 = 16. Similarly, 𝑦2𝑧𝑥 = 81 and 𝑧2𝑥𝑦 = 256.

⇒ 𝑥2𝑦𝑧 × 𝑦2𝑧𝑥 × 𝑧2𝑥𝑦 = (𝑥𝑦𝑧)4 = 16 × 81 × 256 ⇒ 𝑥𝑦𝑧 = 24.

⇒ 𝑥 = 2
⁄

3 , 𝑦 =
27
⁄

8 , 𝑧 =
32
⁄

3 .

119. By observation one solution is 𝑥 = 3, 𝑦 = 2. As log3 3 + log2 2 = 2 and 33 − 22 = 23.

If 𝑥 < 3, then log3 𝑥 < 1. Since, log3 𝑥 + log2 𝑦 = 2 ⇒ log2 𝑦 > 2 ⇒ 𝑦 > 2. Hence,
3𝑥 < 33 = 27 and 2𝑦 > 22 = 4 ⇒ 3𝑥−2𝑦 < 27− 4 = 23. Hence, 𝑥 cannot be less than 3.

Similarly, 𝑥 cannot be greater than 3. Thus, 𝑥 = 3, 𝑦 = 2.

120. Given that 𝛼, 𝛽, 𝛾 are roots of the equation 𝑥3 − 𝑥2 − 1 = 0, so from Vieta's relations,
we have 𝛼 + 𝛽 + 𝛾 = 1, 𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼 = 0 and 𝛼𝛽𝛾 = 1. Now,
1+𝛼⁄
1−𝛼 +

1+𝛽⁄
1−𝛽 +

1+𝛾
⁄

1+𝛾 =
3−(𝛼+𝛽+𝛾)−(𝛼𝛽+𝛽𝛾+𝛾𝛼)+3𝛼𝛽𝛾
⁄

1−(𝛼+𝛽+𝛾)+(𝛼𝛽+𝛽𝛾+𝛾𝛼)−𝛼𝛽𝛾 = −5.
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121. 𝑥𝑚+1 − 𝑥𝑚− 𝑥+ 1 = (𝑥𝑚− 1)(𝑥 − 1) = (𝑥𝑚−1 + 𝑥𝑚−2 +⋯+ 𝑥2 + 𝑥+ 1)(𝑥 − 1)2,
and hence, (𝑥 − 1)2 is a factor of 𝑥𝑚+1 − 𝑥𝑚− 𝑥 + 1.

122. 𝑥10 − 𝑥8 + 8𝑥6 − 24𝑥4 + 32𝑥2 − 48 = (𝑥2 − 2)(𝑥8 + 𝑥6 + 10𝑥4 − 4𝑥2 + 24) = 0.

If 𝑥2 − 2 = 0 then 𝑥 = ±√


2. Now 𝑥8 + 𝑥6 + 10𝑥4 − 4𝑥2 + 24 = 𝑥8 + 𝑥6 + 9𝑥4 + 𝑥4 −
4𝑥2 + 4 + 20 = 𝑥8 + 𝑥6 + 9𝑥4 + (𝑥2 − 2)2 + 20 > 0.

Thus, the given equation has two solutions ±√


2.

123. Given, 3 + 2𝑥 + ⋯ + 3𝑥96 + 2𝑥97 + 3𝑥98 + 2𝑥99 = 0 ⇒ 3𝑥
100−1
⁄

𝑥2−1 + 2𝑥 𝑥100−1
⁄

𝑥2−1 = 0 ⇒

3 + 2𝑥 = 0 as 𝑥 ≠ 1 ⇒ 𝑥 = −3
⁄

2.

124. 1+𝑥111+𝑥222+𝑥333+𝑥444 = 𝑥555−1
⁄

𝑥111−1 and 1+𝑥111+𝑥222+𝑥333+⋯+𝑥999 = 𝑥1110−1
⁄

𝑥111−1 .

Now 𝑥1110 = 𝑥2∗555 ⇒ 𝑥1110−1 = (𝑥555−1)(𝑥555+1), and thus, we see that required
condition is satisfied.

125. Given, 1⁄𝑥 +
1
⁄

𝑦 =
1
⁄

𝑧 ⇒ 𝑧𝑥 + 𝑦𝑧 − 𝑥𝑦 = 0

(𝑥+𝑦−𝑧)2 = 𝑥2+𝑦2+ 𝑧2− 𝑧𝑥−𝑦𝑧 +𝑥𝑦 = 𝑥2+𝑦2+ 𝑧2, and hence, √

𝑥2 + 𝑦2 + 𝑧2 =

±(𝑥 + 𝑦 − 𝑧), which is rational.

126. Given, 𝑎𝑥2 = 𝑏𝑦2 = 𝑐𝑧2 = 𝑘(say), then also given, 𝑎2𝑥3 + 𝑏2𝑦3 + 𝑐2𝑧3 = 𝑝5 ⇒ 𝑘2
⁄

𝑥 +
𝑘2
⁄

𝑦 + 𝑘2
⁄

𝑧 = 𝑝5 ⇒ 1
⁄

𝑥 +
1
⁄

𝑦 +
1
⁄

𝑧 =
𝑝5
⁄

𝑘2 =
1
⁄

𝑝 ⇒ 𝑘 = 𝑝3.

Now, √


𝑎 +√

𝑏 +√

𝑐 = √


𝑝3
⁄

𝑥 +√


𝑝3
⁄

𝑦 +√


𝑝3
⁄

𝑧 =√


𝑝3(1⁄𝑥 +
1
⁄

𝑦 +
1
⁄

𝑧) =
√


𝑝3
⁄

𝑝 =√


𝑝.

127. Given, 𝑎𝑥3 = 𝑏𝑦3 = 𝑐𝑧3 = 𝑘(say). Then, 3√

𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 = 3√


𝑘
⁄

𝑥 +
𝑘
⁄

𝑦 +
𝑘
⁄

𝑧 =
3√


𝑘 =
3√


𝑘(1⁄𝑥 +
1
⁄

𝑦 +
1
⁄

𝑧) =
3√


𝑎 + 3√

𝑏 + 3√

𝑐.

128. Clearly, 1⁄𝑥 +
1
⁄

𝑦 +
1
⁄

𝑧 =
1⁄

𝑥+𝑦+𝑧 ⇒ (𝑥 + 𝑦)(𝑦 + 𝑧)(𝑧 + 𝑥) = 0. Clearly, at least one of the
terms on L.H.S. has to be zero automatically making third as ‘𝑎’.

129. Since 𝑎, 𝑘 ∈ ℝ, the root will have a complex conjugate pair. Thus, second root will be
1
⁄

2 (𝑎 − 5𝑖). Sum of the roots would be 𝑎 = 3. Product of the roots is 𝑘⁄2 =
1
⁄

4 (9 + 25)⇒
𝑘 = 17.

130. Let the given equation have roots 𝑎, 𝑎, 𝑏, where 𝑎 has the multiplicity of 2. From
Vieta's relations 2𝑎 + 𝑏 = −𝑝, 𝑎2 + 2𝑎𝑏 = 0 ⇒ 𝑎 = −2𝑏 and 𝑎2𝑏 = −𝑞.

We have to prove that 4𝑝3 + 27𝑞 = 0 ⇒ −4(2𝑎 + 𝑏)3 − 27𝑎2𝑏 = 0 ⇒ −4(−3𝑏)3 −
27(−2𝑏)2 𝑏 = 0. Hence proved.

131. Let the quadratic polynomial be 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. Given, 𝑓(0) = 6 ⇒ 𝑐 = 6; 𝑓(1) =
1 ⇒ 𝑎 + 𝑏 + 𝑐 = 1, and 𝑓(2) = 0 ⇒ 4𝑎 + 2𝑏 + 𝑐 = 0.
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⇒ 2𝑏 + 3𝑐 = 4 ⇒ 𝑏 = −7, ⇒ 𝑎 = 2.

⇒ 𝑓(3) = 18 − 21 + 6 = 3.

132. Given, 𝑎𝑐 = 2(𝑏 + 𝑑). Discriminant of given equations are 𝑎2 − 4𝑏 and 𝑐2 − 4𝑑. For
roots of the equation to be real the discriminant have to be greater or equal to zero.
We assume that it is the case. Thus,

𝑎2 + 𝑐2 ≥ 4(𝑏 + 𝑑)⇒ 𝑎2 + 𝑐2 ≥ 2𝑎𝑐 ⇒ (𝑎 − 𝑐)2 ≥ 0. Thus, the assumption is correct,
and hence proven.

133. Suppose we have four real numbers 0 < 𝐴 < 𝐵 < 𝐶 < 𝐷. If 1 < 4𝐵𝐶, then 1 < 4𝐵𝐶 <
4𝐵𝐷 < 4𝐶𝐷; so we can choose 𝐵, 𝐶, 𝐷. If 1 ≥ 4𝐵𝐶, then 1 ≥ 4𝐵𝐶 ≥ 4𝐴𝐶 ≥ 4𝐴𝐵; so
we can choose 𝐴, 𝐵,𝐶. In first case all roots are imaginary, and in second case all roots
are real.

134. We can rewrite the given equations as (𝑥2 − 3)2 − 𝑥3 − 2𝑥 > 0 ∀ 𝑥 < 0. And thus, the
given equation has no negative roots.

135. Given equation is 3𝑥2 − (𝑎 + 𝑐 + 2𝑏 + 2𝑑) + (𝑎𝑐 + 2𝑏𝑑) = 0, whose discriminant is
(𝑎 + 𝑐 + 2𝑏 + 2𝑑)2 − 12(𝑎𝑐 + 2𝑑𝑏) = [(𝑎 + 2𝑑) − (𝑐 + 2𝑏)]2 + 8(𝑐 − 𝑏)(𝑑 − 𝑎) > 0,
and hence, the roots will be real and distinct.

136. Let 𝑓(𝑥) = 𝑥4 + 𝑥3 + 𝑥2 − 𝑥 − 1. We notice that there is one sign change so it can
have at most one positive root. Now, 𝑓(−𝑥) = 𝑥4 − 𝑥3 + 𝑥2 + 𝑥 − 1, and there are
three sign changes so it can have at most treee negative roots.

137. Dicriminanats are 𝑏2 − 4𝑎𝑐 and 𝑏2 + 4𝑎𝑐, and thus, one of these have to be positive,
making either 𝑃 (𝑥) or 𝑄(𝑥) to have two real roots. And hence, 𝑃 (𝑥)𝑄(𝑥) will have
two real roots.

138. Let 𝛼, 𝛽, 𝛾 are the roots of the equation 𝑓(𝑥) = 0, then roots of 𝑔(𝑥) = 0 will be
𝛼2, 𝛽2, 𝛾2. It is given that 𝑓(𝑥) = 𝑥3+𝑥+1, and hence, 𝛼+𝛽+𝛾 = 0, 𝛼𝛽 +𝛽𝛾 +𝛾𝛼 =
1, 𝛼𝛽𝛾 = −1. Also, since 𝑔(0) = −1 ⇒ 𝛼2𝛽2𝛾2 = −1.

Thus, 𝑔(𝑥) = 𝑥3 − (𝛼2 + 𝛽2 + 𝛾2)𝑥2 + (𝛼2𝛽2 + 𝛽2𝛾2 + 𝛾2𝛼2)𝑥 − 𝛼2𝛽2𝛾2 ⇒ 𝑔(9) =
729− 81[(𝛼+𝛽 + 𝛾)2 − 2(𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼)]+9[(𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼)2 − 𝛼𝛽𝛾(𝛼+𝛽 + 𝛾)]−
𝛼2𝛽2𝛾2 = 729 + 162 + 9 − 1 = 899.

139. The dicriminants of the terms are 𝑝2 − 12𝑞, 𝑟2 − 4𝑞 and 𝑠2 + 8𝑞. Clearly, 𝑝2, 𝑟2, 𝑠2 are
positive. Now if 𝑞 is positive then 𝑠2 + 8𝑞 > 0 giving us two real roots. However, if
𝑞 < 0, then both 𝑝2 − 12𝑞 and 𝑟2 − 4𝑞 are positive giving us four real roots.

140. Let 𝑎 be the first term and 𝑑 be the common difference. Then, 1⁄𝑞 = 𝑎 + (𝑝 − 1)𝑑 and
1
⁄

𝑝 = 𝑎 + (𝑞 − 1)𝑑 ⇒ 𝑑 = 1
⁄

𝑝𝑞 ⇒ 𝑎 = 1
⁄

𝑝𝑞.

Now, 𝑡𝑝𝑞 = 1
⁄

𝑝𝑞 +
𝑝𝑞−1
⁄

𝑝𝑞 = 1. Clearly, 1 is a root of the given equation.

141. 𝐷 =√


4𝑝2 − 8𝑞 = 2√


𝑝2 − 2𝑞. The term under square root is odd minus even. Let this
be a perfect square so that we have rational roots. Now since the term under question
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is odd the square root will be odd. Let it be 𝑟. Now, 𝑝2 − 𝑟2 = 2𝑞. Let 𝑝 = 2𝑚+ 1 and
𝑟 = 2𝑛 + 1, then (2𝑚+ 1)2 − (2𝑛 + 1)2 = 2𝑞 ⇒ (2𝑚+ 2𝑛 + 2)(𝑚−𝑛) = 𝑞. L.H.S. is
even while R.H.S. is odd and thus our supposition is wrong giving us no rational roots.

142. If for some 𝑛 division is possible then the g.c.d. of 𝑛3 − 𝑛 + 3 and 𝑛3 + 𝑛2 + 𝑛 + 2
must be 𝑛3 − 𝑛 + 3. Using Euclidean algorithm, (𝑛3 + 𝑛2 + 𝑛 + 2, 𝑛3 − 𝑛 + 2) =
(𝑛3 − 𝑛 + 2, 𝑛2 + 2𝑛 − 1) = (𝑛2 + 2𝑛 − 1, −2𝑛2 + 3) = (𝑛2 + 2𝑛 − 1, 4𝑛 + 5) =
(4𝑛2+8𝑛−4, 4𝑛+5) = (4𝑛+5, 3𝑛−4) = (3𝑛−4,𝑛+9) = (−31,𝑛+9) ∈ {±1,±31}.
So we have four possible values for 𝑛3− 𝑛+ 2 i.e. ±1, ±31. But for none of these values
division is possible.

143. 𝑠𝑛 = 𝑞𝑛+1−1
⁄

𝑞−1 , 𝑆𝑛 =
(1+𝑞⁄2 )

𝑛+1
−1
⁄

1+𝑞
⁄

2 −1
= (1+𝑞)𝑛+1−2𝑛+1
⁄

2𝑛(𝑞−1) ⇒ 2𝑛𝑆𝑛 = (1+𝑞)𝑛+1−2𝑛+1
⁄

(𝑞−1) .

We have to find (𝑛+11 )+ (𝑛+12 ) 𝑠 + (𝑛+13 ) 𝑠2 + ⋯ + (𝑛+1𝑛+1) 𝑠
𝑛. The 𝑟th term is given

by 𝑡𝑟 = 𝐶𝑛+1
𝑟

𝑞𝑟+1
⁄

𝑞−1 − 𝐶𝑛+1
𝑟

1⁄
𝑞−1.

Therefore, sum is given by ∑𝑡𝑟 = 1⁄
𝑞−1 [∑𝐶𝑛+1

𝑟 𝑞𝑟+1−∑𝐶𝑛+1
𝑟 ] = 1⁄

𝑞−1 [(1+ 𝑞)𝑛+1−
1 − 2𝑛+1 + 1]. Hence proved.

144. 1
⁄

𝑎 =
1
⁄

𝑥+
1
⁄

𝑦,
1
⁄

𝑏 =
1
⁄

𝑦+
1
⁄

𝑧,
1
⁄

𝑐 =
1
⁄

𝑥+
1
⁄

𝑧 ⇒
𝑎−𝑏
⁄

𝑎𝑏 = 𝑧−𝑥⁄
𝑥𝑧 , 1⁄𝑐 =

𝑧+𝑥⁄
𝑧𝑥 ⇒ 𝑧 = 2𝑎𝑏𝑐
⁄

𝑎𝑏−𝑏𝑐+𝑐𝑎, 𝑥 =
2𝑎𝑏𝑐
⁄

𝑎𝑏+𝑏𝑐−𝑐𝑎, 𝑦 =
2𝑎𝑏𝑐
⁄

𝑏𝑐+𝑐𝑎−𝑎𝑏.

145. Adding all equations (𝑥 + 𝑦 + 𝑧)2 = 0 ⇒ 𝑥 = 0
⁄

0. Thus, 𝑥, 𝑦, 𝑧 can assume any value as
long as 𝑥 + 𝑦 + 𝑧 = 0 so if 𝑥 = 𝑎, 𝑦 = 𝑏 then 𝑧 = −𝑎 − 𝑏.

146. 𝑧2 − 𝑥2 + 𝑦𝑧 − 𝑥𝑦 = 12 ⇒ (𝑧 − 𝑥)(𝑥 + 𝑦 + 𝑧) = 12, 𝑦2 − 𝑧2 + 𝑥𝑦 − 𝑧𝑥 = 4 ⇒ (𝑦 −
𝑧)(𝑥 + 𝑦 + 𝑧) = 4, 𝑦2 − 𝑥2 + 𝑦𝑧 − 𝑧𝑥 = 16 ⇒ (𝑦 − 𝑥)(𝑥 + 𝑦 + 𝑧) = 16.

⇒ 𝑧 − 𝑥 = 3(𝑦 − 𝑧), 𝑦 − 𝑥 = 4(𝑦 − 𝑧), 3(𝑦 − 𝑥) = 4(𝑧 − 𝑥) ⇒ (𝑥, 𝑦, 𝑧) =
(−1, 3, 2), (1, −3, −2), (− 5

⁄

√


13 ,
11
⁄

√


13 ,
7
⁄

√


13), (
5
⁄

√


13 , −
11
⁄

√


13 , −
7
⁄

√


13).

147. Let 𝑎 = 𝑥2 + 3𝑥 − 4, 𝑏 = 2𝑥2 − 5𝑥 + 3, the the given equation is of the form 𝑎3 + 𝑏3 =
(𝑎 + 𝑏)3 ⇒ 3𝑎𝑏(𝑎 + 𝑏) = 0.

This implies that 𝑥2 + 3𝑥 − 4 = 0 or 2𝑥2 − 5𝑥 + 3 = 0 or 3𝑥2 − 2𝑥 − 1 = 0. Thus
solutions are 𝑥 = −4, 1, 3⁄2 , −

1
⁄

3.

148. 𝑛4 + 2𝑛3 + 2𝑛2 + 2𝑛 + 1 = (𝑛2 + 1)(𝑛 + 1)2 so for the given number to be a perfect
square 𝑛2 + 1 will have to be perfect square. Now we see that perfect squares are
1, 4, 9, 16, … i.e. difference between perfect squares is more than 1 so 𝑛2 + 1 cannot a
perfect square.

Another way to solve this is 𝑛2 + 1 can only be (𝑛 + 1)2 ⇒ 𝑛 = 0. Hence, there is no
such positive number.
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149. 𝑎𝑥/𝑦 = 𝑎𝑦/𝑧 = 𝑎𝑧/𝑥 ⇒ 𝑥 = 𝑦 = 𝑧 ⇒ 𝑎 = 3𝑥 ⇒ (𝑥, 𝑦, 𝑧) = (𝑎⁄3 ,
𝑎
⁄

3 ,
𝑎
⁄

3).

150. Suppose the given polynomial can be factored into polynomials with integer coefficients.
One such factor must be of the form 𝑝𝑥+ 𝑞 then from rational root theorem 𝑞 = ±1,±2
and 𝑝 = ±1, ±5. But we see that no such value satisfies the given polynomial and thus
𝑝𝑥 + 𝑞 cannot be a factor.

151. Let 𝛼, 𝛽, 𝛾, 𝛿 be four roots such that 𝛼𝛽 = −200. From Vieta's relations 𝛼+𝛽+𝛾 +𝛿 =
−7, 𝛼𝛽 + 𝛽𝛾 + 𝛾𝛿 +𝛼𝛾 +𝛼𝛿 + 𝛽𝛿 = −240, 𝛼𝛽(𝛾 + 𝛿)+𝛾𝛿(𝛼+𝛽) = −𝑘, 𝛼𝛽𝛾𝛿 = 2000.

⇒ 𝛾𝛿 = −10 ⇒ 200(𝛾 + 𝛿)+ 10(𝛼 + 𝛽) = 𝑘 ⇒ (𝛼 + 𝛽)(𝛾 + 𝛿) = −30 ⇒ (𝛾 + 𝛿)2 +
7(𝛾 + 𝛿)− 30 = 0 ⇒ 𝛾 + 𝛿 = −10, 3 ⇒ 𝛼 + 𝛽 = 3, −10 ⇒ 𝑘 = −1970, 500.

152. 𝑥4− 20𝑥3+ 𝑘𝑥2+ 590𝑥− 1992 = (𝑥2+𝑎𝑥+24)(𝑥2+ 𝑏𝑥−83). Comparing coefficients
𝑎 + 𝑏 = −20, 𝑎𝑏 − 59 = 𝑘, 24𝑏 − 83𝑎 = 590 ⇒ 𝑎 = −10, 𝑏 = −10 ⇒ 𝑘 = 41.

153. Let the roots be 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, then from Vieta's relations ∑𝑥𝑖 = 0 and
∑𝑥𝑖𝑥𝑗 = 0 ⇒ ∑𝑥2𝑖 = 0. However, if all the roots are real then ∑𝑥2𝑖 ≠ 0. Hence, all
roots cannot be real.

154. 𝑎𝑥2 + 2𝑏𝑥 + 𝑐 ≥ 0 ⇒ 𝑎 > 0 and 𝐷 ≤ 0 ⇒ 𝑏2 ≤ 𝑎𝑐. Similarly, 𝑞2 ≤ 𝑝𝑞. Multiplying
𝑏2𝑞2 ≤ 𝑎𝑐𝑝𝑟 ⇒ 𝑏2𝑞2 ≤ 4𝑎𝑐𝑝𝑟 which makes 𝑎𝑝𝑥2 + 𝑏𝑞𝑥 + 𝑐𝑟 ≥ 0.

155. Let 𝑃 (𝑥) = 𝑥𝑛 + (2 + 𝑥)𝑛 + (2 − 𝑥)𝑛. First we assume 𝑛 to be even, then 𝑃 (𝑥) =
3𝑥𝑛 + ⋯+ 2𝑛+1. From rational root theorem if there is a root 𝑝⁄𝑞, then 𝑝 = ±1, ±2 and

𝑞 = ±1, ±3. Since we need integral roots, therefore 𝑝⁄𝑞 = ±1. Now, 𝑃 (±1) = 2+ 3𝑛 ≠ 0.
Thus, our assumption is wrong and 𝑛 is an odd number.

Also, if 𝑥 is odd then 𝑃 (𝑥) is odd, hence, 𝑥 must be even. Let 𝑥 = 2𝑦, 𝑄(𝑦) = 𝑃 (2𝑥)
⁄

2𝑛 =
𝑦𝑛+ (1+ 𝑦)𝑛+ (1− 𝑦)𝑛 = 2+⋯+𝑦𝑛. Again, from rational root theorem, 𝑦 = ±1,±2.
The values of 𝑄(𝑦) for these values are 3𝑛 − 2𝑛 − 1, 2𝑛 − 1, 2𝑛 + 1, 3𝑛 + 2𝑛 − 1. None
of these vanish unless 𝑛 = 1, which is our first case. When 𝑛 = 1, 𝑃 (𝑥) = 𝑥 + 4, and
hence, 𝑥 = −4 is the only solution.

156. Since the equation is symmetrical so we can assume 𝛾 = 90∘, 𝛼 = 𝜃, and 𝛽 = 90∘ − 𝜃
because they are angles of a right-angle triangle. Substituting these in the given
equation

sin 𝜃 cos 𝜃 sin(2𝜃 − 90∘)+ cos 𝜃 sin(−𝜃)+ sin 𝜃 cos 𝜃 + sin(2𝜃 − 90∘) sin(−𝜃) sin(90∘ −
𝜃) = −sin 𝜃 cos 𝜃 cos 2𝜃 − sin 𝜃 cos 𝜃 + sin 𝜃 cos 𝜃 + cos 2𝜃 sin 𝜃 cos 𝜃 = 0.

157. Since the roots are complex 𝐷< 0⇒ (𝑎+𝑏+𝑐)2−4(𝑎𝑏+𝑏𝑐+𝑐𝑎) < 0⇒ 𝑎2+𝑏2+𝑐2 <
2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎). Since 𝑎, 𝑏, 𝑐 are real 𝑎2 + 𝑏2 + 𝑐2 > 0. 2𝛼 = 𝑎+ 𝑏 + 𝑐 ⇒ 𝑎+ 𝑏 + 𝑐 > 0.
Thus, 𝑎, 𝑏, 𝑐 > 0.

We assume that 𝑎 ≤ 𝑏 ≤ 𝑐, so it is enough to prove that √


𝑎+√

𝑏 ≥√

𝑐 ⇒ 𝑎+𝑏+2√


𝑎𝑏 ≥
𝑐 ⇒ 4𝑎𝑏 ≥ 𝑎2 + 𝑏2 + 𝑐2 + 2𝑎𝑏 − 2𝑏𝑐 − 2𝑐𝑎, which is true.

158. Since 𝑥 + 1 divides 𝑎𝑥2 + 𝑏𝑥 + 𝑐, therefore, 𝑥 = −1 must be its root. Thus, 𝑎 − 𝑏 + 𝑐 =
0 ⇒ 𝑏 = 𝑎 + 𝑐.
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Clearly, 𝑏 > 2. So we observe that for 𝑏 = 3, 4 we have 2 pairs of solutions for 𝑎 and 𝑐,
for 𝑏 = 5, 6, we have 4 and so on. This becomes an A.P. summing which, we get 498002.

159. For 𝑥2 + 2𝑎𝑥 + 𝑏 = 0, 𝐷 = 𝑎2 − 𝑏 = (𝑎 − 𝑘)2 = 𝑎2 − 2𝑎𝑘 + 𝑘2. Setting 𝑏 = 𝑘2 − 2𝑎𝑘
we have discriminant of first equation as 𝑎2 − 4𝑏 = (𝑎 − 4𝑘)2 − 3(2𝑘)2. Thus, we
can say that if there are infinite no. of rational points on 𝑥2 − 3𝑦2 = 1 such that
(𝑎, 𝑏) is relatively prime then it is proved. Now we choose (2, 1) as (𝑎, 𝑏), which are
relatively prime. The infinte no. of points is given by intersection of the curve with
𝑦 = 𝑚(𝑥 − 2)+ 1, where 𝑚 ∈ ℚ.

160. Putting 𝑥 = 0, 1, 1⁄2, we get |𝑐| ≤ 1, |𝑎 + 𝑏 + 𝑐| ≤ 1, |𝑎 + 2𝑏 + 4𝑐| ≤ 4.

Thus, |𝑏 + 3𝑐| ≤ 5 ⇒ |𝑏| ≤ 8 ⇒ |𝑎 + 𝑏 + 3𝑐| ≤ 3 ⇒ |𝑎| ≤ 8 ⇒ |𝑎|+ |𝑏|+ |𝑐| ≤ 17.

161. When 𝑥 = 0, |𝑐| ≤ 1. Setting 𝑥 = ±1, |𝑎 + 𝑏 + 𝑐| ≤ 1 and |𝑎 − 𝑏 + 𝑐| ≤ 1 ⇒ |𝑎 + 𝑐| ≤
1 ⇒ |𝑎| ≤ 2.

Considering −1 ≤ 𝑥 ≤ 1, if 𝑎 > 0 then, 2𝑎𝑥+𝑏 ≤ 2𝑎+𝑏 = 𝑎+𝑏+𝑐+𝑎−𝑐 ≤ 1+𝑎−𝑐 ≤
1+ 1+ 2 = 4 and −4 = −2−1− 1 ≤ −(𝑎+ 𝑐)−1 ≤ (−𝑎+ 𝑐)−𝑎+ 𝑏− 𝑐 ≤ −2𝑎+ 𝑏 ≤
2𝑎𝑥 + 𝑏.

Similarly, it can be proven for 𝑎 < 0.

162. |𝑎| = 𝑚𝑎𝑥{−𝑎, 𝑎} implies |𝑝(1)+𝑝(−1) |⁄2 = |1+𝑝+𝑞|+|1−𝑝𝑞|
⁄

2 = 1
⁄

2max{(1 + 𝑝 + 𝑞 + 1− 𝑝 −
𝑞), (1 + 𝑝 + 𝑞 − (1 − 𝑝 + 𝑞))} = max{|1 + 𝑞|, |𝑝|}.

Clearly, minimum value of max{|1 + 𝑞|, |𝑝|} will be when 𝑝 = 0 and 𝑞 = −1
⁄

2. Thus,

our polynomial is 𝑥2 − 1
⁄

2.

163. Clearly, |𝑎+𝑏+𝑐|≤ 1, |𝑎−𝑏+𝑐|≤ 1, |𝑐|≤ 1⇒ |𝑎|≤ 2. Now, 8⁄3 𝑎
2+2𝑏2 = 2
⁄

3 [4𝑎
2+3𝑏2]=

2
⁄

3 [2(𝑎 + 𝑏)2 + 2(𝑎 − 𝑏)2 − 𝑏2 ], which will be maximum if 𝑏 = 0. Thus, 𝑎 = ±2, 𝑐 = ±1.

164. Let the roots are −𝑝, −𝑞, −𝑟 so that 𝑝, 𝑞, 𝑟 > 0. From Vieta's relations, we have
𝑝+𝑞+𝑟 = 𝑎 < 3,𝑏+𝑐 = 𝑝𝑞+𝑞𝑟+𝑟𝑝+𝑝𝑞𝑟. By AM-GM inequality, 𝑝𝑞𝑟 ≤ (𝑝+𝑞+𝑟⁄3 )

3
< 1.

Also, 𝑝2 + 𝑞2 + 𝑟2 ≥ 𝑝𝑞 + 𝑞𝑟 + 𝑟𝑝 ⇒ (𝑝 + 𝑞 + 𝑟)2 ≥ 3(𝑝𝑞 + 𝑞𝑟 + 𝑟𝑝)⇒ 𝑝𝑞 + 𝑞𝑟 = 𝑟𝑝 ≤
3 ⇒ 𝑝𝑞 + 𝑞𝑟 + 𝑟𝑝 + 𝑝𝑞𝑟 < 3 + 1 = 4.

165. Set 𝑥 = 0, 𝑝(0) = 1. Setting 𝑥 = 1, 𝑝(1) = 0. We continue till 𝑥 = 29 to find 𝑝(29) = 0.
Let 𝑝(𝑥) = 𝑥(𝑥 − 1)(𝑥 − 2)⋯ (𝑥 − 29)𝑄(𝑥), where 𝑄(𝑥) is some polynomial. Then,

𝑥(𝑥−1)(𝑥−2)⋯ (𝑥−30)𝑄(𝑥−1) = 𝑥(𝑥−1)(𝑥−2)⋯ (𝑥−30)𝑄(𝑥)⇒𝑄(𝑥−1) =
𝑄(𝑥)⇒ 𝑄(𝑥) is periodic. ⇒ 𝑄(𝑥) = 𝑐 ⇒ 𝑝(𝑥) = 𝑐𝑥(𝑥 − 1)(𝑥 − 2)⋯ (𝑥 − 29).

166. We observe that 𝑝(0) = 0, 𝑝(1) = 0, 𝑝(2) = 0 and so on. Hence, 𝑝(𝑥) has infinite
roots. Thus, 𝑝(𝑥) = 0.

167. We will prove this by contradiction. Suppose 𝑓(𝑓(𝑥)) = 𝑥 has a real root 𝑎 i.e.
𝑓(𝑓(𝑎)) = 𝑎, then 𝑓(𝑥) = 𝑏 ≠ 𝑎 since 𝑓(𝑥) = 𝑥 has no real root. WLOG, we may
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assume that 𝑏 > 𝑎, then 𝑓(𝑎) = 𝑏, 𝑓(𝑏) = 𝑎. Let 𝑔(𝑥) = 𝑓(𝑥)− 𝑥 for all 𝑥. It follows
that 𝑔(𝑎) = 𝑏 − 𝑎 > 0 and 𝑔(𝑏) = 𝑎 − 𝑏 < 0. Since 𝑓 is a quadratic poplynomial, 𝑓
is continuous. This means that between 𝑎 and 𝑏 there must exist one 𝑥0 such that
𝑓(𝑥0) = 0 making it a root, which is a contradiction.

168. We set 𝑥 = 0, ±1, ±2, we have 7|𝑒, 7|𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒, 7|𝑎 − 𝑏 + 𝑐 − 𝑑 + 𝑒, 7|16𝑎 + 8𝑏 +
4𝑐 + 2𝑑 + 𝑒, 7|16𝑎 − 8𝑏 + 4𝑐 − 2𝑑 + 𝑒, which simplifies to 7|𝑎 + 𝑐, 7|32𝑎 + 8𝑐, which
implies the given result.

169. (2𝑎 + 𝑏 − 3)2 + 3(𝑏 − 1)2 ≥ 0.

170. 𝑝(𝑥5)= 𝑥20+𝑥15+𝑥10+𝑥5+1 = 𝑥20−𝑥15+2𝑥15−2𝑥10+3𝑥10−3𝑥5+4𝑥5−4+5 =
(𝑥5 − 1)(𝑥15 + 2𝑥10 + 3𝑥5 + 4)+ 5 = 𝑓(𝑥)(𝑥 − 1)(𝑥15 + 2𝑥10 + 3𝑥5 + 4)+ 5. Thus,
remainder would be 5.

171. Roots of 𝑥2 + 1 are ±𝑖 and roots of 𝑥2 + 𝑥 + 1 are 𝜔, 𝜔2. Let 𝑥2025 = 𝑓(𝑥)𝑔(𝑥) +
𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑, where 𝑔(𝑥) is divisible by (𝑥2 + 1)(𝑥2 + 𝑥 + 1).

Setting 𝑥 = 𝑖, 𝑖 = −𝑎𝑖 − 𝑏 + 𝑐𝑖 + 𝑑. Comparing real and imaginary parts, 𝑏 = 𝑑 and
𝑐 − 𝑎 = 1. Setting 𝑥 = 𝜔, 𝜔 = 𝑎 + 𝑏𝜔2 + 𝑐𝜔 + 𝑑 = 𝑎 + 𝑏(−1+𝑖√



3⁄
2 ) + 𝑐(−1−𝑖√


3⁄
2 ) + 𝑑.

Comparing real and imaginary parts, 2𝑎 + 2𝑑 − 𝑏 − 𝑐 = 2 and 𝑏 = 𝑐. Thus, 𝑎 = 1, 𝑏 =
2, 𝑐 = 2, 𝑑 = 2. So the remainder is 𝑥3 + 2𝑥2 + 2𝑥 + 2.

172. We may assume that the leading coefficient in 𝑝(𝑥) is positive, so that 𝑝(𝑥)→ ∞
when 𝑛 → ∞, and 𝑝(𝑛) > 1 for 𝑛 > 𝑁 . If 𝑥 > 𝑁 and 𝑝(𝑥) = 𝑎𝑛𝑥𝑛 + ⋯ = 𝑦 > 1 then
𝑝(𝑟𝑦 + 𝑥) = 𝑎𝑛(𝑟𝑦 + 𝑥)𝑛+⋯ is divisible by 𝑦 for every integral 𝑟; and 𝑝(𝑟𝑦 + 𝑥) tends
to infinity with 𝑟. Hence there are infinitely many composite values off(𝑛).

173. Given, 𝑥 +√

𝑎 +√


𝑥 = 𝑎 ⇒ (𝑎 − 𝑥)2 = 𝑎 + √


𝑥 ⇒ 𝑎2 − (2𝑥 + 1)𝑎 + 𝑥2 − √


𝑥 = 0,
which is a quadratic equation in 𝑎. Thus, 𝑎 = 2𝑥+1±(2√


𝑥)+1
⁄

2 . Let 𝑧 = √


𝑥, then
𝑎 = 𝑧2 + 𝑧 + 1 and 𝑎 = 𝑧2 − 𝑧. First we consider second root. From the given
equation √


𝑎 +√


𝑥 = 𝑎 − 𝑥 ≥ 0 ⇒ 𝑎 ≥ 𝑥 ⇒ 𝑎 ≥ 𝑧2. Substituting from first equation
𝑧2 − 𝑧 = 𝑎 ≥ 𝑧2 ⇒ −𝑧 ≥ 0 ⇒ −√



𝑥 ≥ 0. This is true only if 𝑥 = 0 ⇒ 𝑎 = 0.

Now we consider the first root. 𝑎 = 𝑧2 + 𝑧 + 1 ⇒ 𝑧 = −1±√

4𝑎−3
⁄

2 . Since 𝑧 > 0, we

discard negative root. ⇒ 𝑧 = −1±√

4𝑎−3
⁄

2 ⇒ 4𝑎 − 3 ≥ 0 ∩ 𝑧 ≥ 0 ⇒ 𝑎 ≥ 1. Thus,

𝑥 = 𝑧2 = 2𝑎−1−√

4𝑎−3
⁄

2 .

174. Given, 𝑥2 −√

𝑎 − 𝑥 = 𝑎 ⇒ 𝑎2 − (2𝑥2 + 1)𝑎 + 𝑥4 + 𝑥 = 0 ⇒ 𝑎 = 𝑥2 + 𝑥, 𝑥2 − 𝑥 + 1 ⇒

𝑥 = −1±√

1+4𝑎
⁄

2 , 1±√

4𝑎−3⁄
2 . Clearly, 𝑎 ≥ 3
⁄

4 and we also need to discard negative root in
the first one.

175. Given, √

𝑎 −√


𝑎 + 𝑥 = 𝑥 ⇒ 𝑎2− (2𝑥2 + 1)𝑎+ 𝑥4− 𝑥 = 0 ⇒ 𝑎 = 𝑥2+ 𝑥+ 1, 𝑥2 − 𝑥 ⇒

𝑥 = −1+√


4𝑎
⁄

2 , 1±√

1+4𝑎⁄
2 . Clearly, if 𝑎 ≥ 0, then 𝑥 will be real.
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176. Let the three rational roots of the equation are 𝛼2⁄
𝛼1
, 𝛽2⁄𝛽1 ,

𝛾2
⁄

𝛾1, then 𝑎𝑥3 + 𝑏𝑥2 +
𝑐𝑥 + 𝑑 = 𝑘(𝛼1𝑥 + 𝛼2) + (𝛽1𝑥 + 𝛽2) + (𝛾1𝑥 + 𝛾2) ⇒ 𝑎 = 𝛼1𝛽1𝛾1, 𝑏 = 𝛼1𝛽1𝛾2 +
𝛼1𝛽2𝛾1 + 𝛼2𝛽1𝛾1, 𝑐 = 𝛼1𝛽2𝛾2 + 𝛼2𝛽1𝛾2 + 𝛼2𝛽2𝛾1, 𝑑 = 𝛼2𝛽2𝛾2. As 𝑎𝑑 is odd, all of
𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛾1, 𝛾2 must be odd. This implies that 𝑏 and 𝑐 must be odd as well, which
is a contradiction.

177. We observe that 𝑓(𝑥) = 𝑓(1⁄𝑥). Dividing the given equation by 𝑥2, we have 𝑥2 + 𝑎𝑥 +

𝑏 + 𝑎
⁄

𝑥+
1
⁄

𝑥2 = 0 ⇒ (𝑥+ 1
⁄

𝑥)
2
+ 𝑎(𝑥+ 1
⁄

𝑥)+ 𝑏− 2 = 0. Substituting 𝑥+ 1
⁄

𝑥 = 𝑧 ≥ 2, we have

𝑧2 + 𝑎𝑧 + 𝑏 − 2 = 0 ⇒ 𝐷 = −𝑎±√


𝑎2−4𝑏+8
⁄

2 ≥ 2 ⇒ 𝑎2 − 4𝑏 + 8 ≥ 𝑎2 + 8𝑎 + 16 ⇒ −𝑏 ≥
2𝑎 + 2 ⇒ 𝑎2 + 𝑏2 ≥ 5𝑎2 + 8𝑎 + 4.

We know that for a quadratic equation minimum value is −𝐷2
⁄

4𝑎 , so minimum value

of 𝑎2 + 𝑏2 is 4⁄5.

178. (𝑥 − 2)2 = 𝑥2 − 4𝑥 + 4 ⇒ (𝑥 − 2)2 − 2 = 𝑥2 − 4𝑥 + 2 thus we see that the term
involving power of 𝑥0 will always become 4 as after the expansion and before squaring
the constant term will always be 2, and hence, 𝑎0 = 4.

𝑎1 is coefficient of 𝑥. Again (𝑥 − 2)2 − 2 = 𝑥2 − 4𝑥 + 2. Now if we perform a square
then we see that coefficient of 𝑥 will be four times because it will get multiplied with 2
twice and get added. Thus, 𝑎1 = −4𝑘.

Similarly, we find that on first expansion 𝑎2 = 1 = 4−1
⁄

3 , on second expansion it is

𝑎2 = 4+42 = 43−41
⁄

3 , and on third expansion 𝑎2 = 42+43+44 = 42𝑘−1−4𝑘−1
⁄

3 , proceeding

we find that 𝑎𝑘 = 4𝑘−1 + 4𝑘 + ⋯+ 42𝑘−2 = 42𝑘−1−4𝑘−1
⁄

3 .

The coefficient of 𝑎2𝑘 = 1 becauase it is the coefficient of highest power of 𝑥, which will
remain constant on any number of squaring.

179. We have 𝑥2− 3𝑥𝑦 + 2𝑦2+𝑥−𝑦 = 0 ⇒ (𝑥− 𝑦)(𝑥−2𝑦 + 1) = 0 ⇒ 𝑥 = 𝑦 or 𝑥 = 2𝑦 − 1.
Substituting 𝑥 = 𝑦 in the second equation, we have 𝑦 = 0, which satisfy the third
equation. Setting 𝑥 = 2𝑦 − 1 in the second equation, we have 𝑦2 − 5𝑦 + 6 = 0 ⇒ 𝑦 =
2,3 ⇒ 𝑥 = 3, 5. Both these pairs of value satisfy the third equation.

180. From first equation 𝑦 = 2𝑥 + 𝑎. Setting this in the second equation we have 3𝑥2 +

3𝑎𝑥 + (𝑎2 − 𝑏) = 0 ⇒ 𝑥 = −3𝑎±√


12𝑏−3𝑎2
⁄

3 .

Given that roots are rational, ∴ 12𝑏 − 3𝑎2 = 𝑐2 𝑐 ∈ 𝕀. 𝑐 will be a multiple of 3 becaause
L.H.S. is a multiple of 3. If 𝑎 is odd, then 𝑐 is odd and if 𝑎 is even then 𝑐 is even.
Thus, 𝑎 and 𝑐 has same parity, and −3𝑎 ± 𝑐 is always even, and hence is a multiple
of 6. This implies that 𝑥 and 𝑦 are integers.

181. We can assume that 𝑎 ≥ 𝑏 ≥ 𝑐 ≥ 𝑑 ≥ 𝑒, then 3𝑎 ≤ 3𝑒 ⇒ 𝑎 = 𝑒 ⇒ 3𝑎 = (3𝑎)3 ⇒ 𝑎 =
0, 1⁄3 , −

1
⁄

3. Similarly, it can be proven if 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑 ≤ 𝑒.
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182. Setting 𝑦 = 𝑥𝑡, we have 𝑥3𝑡2 = 15𝑥2 + 17𝑥2𝑡 + 15𝑥2𝑡2 and 𝑥3𝑡2 = 20𝑥2 + 3𝑥2𝑡2.
Multiplying second equation by 𝑡, and subtracting 3𝑥2(𝑡 − 5)(𝑡2 + 1) = 0 ⇒ 𝑥 = 0, 𝑡 =
5 ⇒ (𝑥, 𝑦) = (19, 95).

183. Subtracting we have 𝑦2−𝑥2 = 7 ⇒ (𝑦 −𝑥)(𝑦 +𝑥) = 7. Now there are four possibilities
𝑦 − 𝑥 = 1, 𝑦 + 𝑥 = 7 ⇒ 𝑦 = 4, 𝑥 = 3, 𝑦 − 𝑥 = 7, 𝑦 + 𝑥 = 1 ⇒ 𝑦 = 3, −4 which does
not satisfy the given equations, 𝑦 − 𝑥 = −1, 𝑦 + 𝑥 = −7 ⇒ 𝑦 = −4, 𝑥 = −3, and
𝑦 − 𝑥 = −7, 𝑦 + 𝑥 = −1 ⇒ 𝑦 = −4, 𝑥 = 3, which does not satisfy the given equations.

184. 𝑎1 + 𝑎2 + 𝑎3 = 40, 𝑎2 + 𝑎3 + 𝑎4 = 40 ⇒ 𝑎1 = 𝑎4 or 𝑎𝑖+1 = 𝑎𝑖+4. Similarly, 𝑎3𝑖 =
𝑎3𝑖+3 ⇒ 𝑎2013 = 𝑎3 = 10.

185. 𝑡1 = 2007, 𝑡2 = 53, 𝑡3 = 34, 𝑡4 = 25, 𝑡5 = 29, 𝑡6 = 85, 𝑡7 = 89, 𝑡8 = 145, 𝑡9 = 42, 𝑡10 =
20, 𝑡11 = 4, 𝑡12 = 16, 𝑡13 = 37, 𝑡14 = 58, 𝑡15 = 89, so we see that 89 has recurred,
and hence, the sequence will repeat. The sum of first 7 terms is 2322. Now we will
have this repetition of next 8 terms. No. of such repetitions is 2013−7⁄8 = 250 + 6

⁄

8.
Sum of these 8 terms is 411 and sum of first 6 terms is 264. Hence, required sum is
2322 + 411 × 250 + 264 = 105336.

186. Let the sequence be 𝑎1, 𝑎2, … , 𝑎16. Then, 𝑎1 + 𝑎2 + ⋯+ 𝑎7 = −1, 𝑎2 + 𝑎3 + ⋯+ 𝑎8 =
−1, ⋯ , 𝑎10 + 𝑎11 + ⋯ + 𝑎16 = −1, and 𝑎1 + 𝑎2 + ⋯ + 𝑎11 = 1, 𝑎2 + 𝑎3 + ⋯ + 𝑎12 =
1, ⋯ , 𝑎6 + 𝑎7 +⋯+ 𝑎16 = 1. Also, 𝑎1 = 𝑎16, 𝑎2 = 𝑎15, ⋯ , 𝑎8 = 𝑎9. Solving these we get
the numbers as 5, 5, −13, 5, 5, 5, −13, 5, 5, −13, 5, 5, 5, −13, 5, 5.

187. Because of the inaccuracies of the balance if 𝑥 is the weight in left pan and 𝑦 is the
weight in right pan then there will be two constants 𝑚 and 𝑛 such that 𝑦 = 𝑚𝑥 + 𝑛.
Thus, 𝐴2 = 𝑚𝐴1 + 𝑛, 𝐵2 = 𝑚𝐵1 + 𝑛 ⇒ 𝑚 = 𝐵2−𝐴2
⁄

𝐵1−𝐴1
, 𝑛 = 𝐴2𝐵1−𝐴1𝐵2
⁄

𝐵1−𝐴1
.

Thus, 𝐶2 = 𝑚𝐶1 + 𝑛 = 𝐶1(𝐵2−𝐴2)+𝐴2𝐵1−𝐴1𝐵2
⁄

𝐵1−𝐴1
.

188. Let 𝑎,𝑏,𝑐,𝑑 be the roots of 𝑥4+𝑥3−1 = 0. From Vieta's relations, we have 𝑎+𝑏+𝑐+𝑑 =
−1, 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑑 + 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑑 = 0, 𝑎𝑏𝑐 + 𝑎𝑏𝑑 + 𝑎𝑐𝑑 + 𝑏𝑐𝑑 = 0 and 𝑎𝑏𝑐𝑑 = −1.
Thus, 𝑎𝑏 = − 1
⁄

𝑐𝑑 , 𝑐 + 𝑑 = −1 − 𝑎 − 𝑏. Also, 𝑎𝑏 + (𝑎 + 𝑏)(𝑐 + 𝑑) + 𝑐𝑑 = 0 ⇒ 𝑎𝑏 +

(𝑎+ 𝑏)(−1−𝑎− 𝑏)− 1
⁄

𝑎𝑏 = 0. Let 𝑎+ 𝑏 = 𝑚 and 𝑎𝑏 = 𝑛, then 𝑛+𝑚(−1−𝑚)− 1
⁄

𝑛 = 0.

Also, 𝑎𝑏𝑐 + 𝑎𝑏𝑑 + 𝑎𝑐𝑑 + 𝑏𝑐𝑑 = 0 ⇒ 𝑛(−1 − 𝑚) − 𝑛
⁄

𝑚 = 0 ⇒ 𝑛 = − 𝑚2
⁄

𝑚2+1. Thus,
𝑛6+𝑛4+𝑛3−𝑛2−1
⁄

𝑛(𝑛2+1)2 = 0. Thus, 𝑎𝑏 is a root of 𝑥6 + 𝑥4 + 𝑥3 − 𝑥2 − 1 = 0.

189. Let 𝑙, 𝑚, 𝑛 be three distinct fifth roots of unity. Then, 𝑃 (1) + 𝑙𝑄(1) + 𝑙2𝑅(1) =
𝑙5−1
⁄

𝑙−1 𝑆(𝑙) = 0, 𝑃 (1) + 𝑚𝑄(1) + 𝑚2𝑅(1) = 𝑚5−1
⁄

𝑚−1 𝑆(𝑚) = 0 ⇒ 𝑚𝑄(1) + 𝑚2𝑅(1) =
𝑛𝑄(1)+𝑛2𝑅(1)⇒𝑄(1) = −(𝑙+𝑚)𝑅(1). By symmetry, 𝑄(1) = −(𝑙+𝑛)𝑅(1). Since
𝑙 ≠ 𝑛, it follows that 𝑄(1) = 𝑅(1) = 0. Then as above 𝑃 (1)+ 𝑙𝑄(1)+ 𝑙2𝑅(1) = 0, so
(𝑥 − 1) is a factor of 𝑃 (𝑥) as asked for.

190. We have to prove that 𝑥6 ≥ 2𝑎 − 1 ⇒ 𝑥6 − 2𝑥5 + 2𝑥3 − 2𝑥 + 1 ≥ 0 ⇒ 𝑥6 − 2𝑥5 + 𝑥4 −
𝑥4+ 2𝑥3− 𝑥2+ 𝑥2− 2𝑥+ 1 ≥ 0 ⇒ 𝑥4(𝑥2− 2𝑥+ 1)−𝑥2(𝑥2− 2𝑥+ 1)+𝑥2− 2𝑥+ 1 ≥
0 ⇒ (𝑥2 − 2𝑥 + 1)(𝑥4 − 𝑥2 + 1) ≥ 0, which is true.
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191. From Vieta's relations, 𝑥1 + 𝑥2 + 𝑥3 = 0, 𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥3𝑥1 = 𝑎, 𝑥1𝑥2𝑥3 = −𝑎. Also,
because 𝑥1, 𝑥2, 𝑥3 are roots of 𝑥3 + 𝑎𝑥 + 𝑎 = 0, we will have 𝑥31 = −(𝑎𝑥1 + 𝑎), 𝑥32 =
−(𝑎𝑥2 + 𝑎), 𝑥33 = −(𝑎𝑥3 + 𝑎).

We have to prove that 𝑥21
⁄

𝑥2 + 𝑥22
⁄

𝑥3 + 𝑥23
⁄

𝑥1 = −8 ⇒ 𝑥31𝑥3+𝑥32𝑥1+𝑥33𝑥2
⁄

𝑥1𝑥2𝑥3 = −8 ⇒
−𝑎(𝑥1𝑥2+𝑥2𝑥3+𝑥3𝑥1+𝑥1+𝑥2+𝑥3)
⁄

−𝑎 = −8 ⇒ 𝑎 = −8 ⇒ 𝑥3 − 8𝑥 − 8 = 0. Solving Vieta's
relations we have roots as −2, 1 ±√



5.

192. Let 𝑓(𝑥) be a function such that 𝑓(𝑥) = 2007 − 𝑥, then 𝑔(𝑥) = 𝑝(𝑥) − 𝑓(𝑥) =
𝑥(𝑥 − 1)(𝑥 − 2)⋯ (𝑥 − 2007)⇒ 𝑝(𝑥) = 𝑥(𝑥 − 1)(𝑥 − 2)⋯ (𝑥 − 2007)+ (2007 − 𝑥).

193. 𝑥𝑃 (𝑥)−1 = 𝑘(𝑥−1)(𝑥−2)⋯ (𝑥−𝑛−1). Setting 𝑥 = 0, 𝑘 = (−1)𝑛⁄
(𝑛+1)! ⇒ (𝑛+2)𝑃 (𝑛+

2)− 1 = (−1)𝑛 ⇒ 𝑃 (𝑛 + 2) = 1+(−1)𝑛
⁄

𝑛+2 .

194. 𝑄(𝑥) = (𝑥+1)𝑃 (𝑥)−𝑥 = 𝑘𝑥(𝑥−1)(𝑥−2)⋯ (𝑥−𝑛). Setting 𝑥 = −1, 𝑘 = (−1)𝑛+1
⁄

(𝑛+1)! ⇒

𝑄(𝑛 + 1) = (−1)𝑛+1 ⇒ 𝑃 (𝑛 + 1) = 𝑛+1+(−1)𝑛+1
⁄

𝑛+2 .

195. If 𝑃 is a polynomial with integral coefficients then 𝑎 − 𝑏 ∣ 𝑃 (𝑎) − 𝑃 (𝑏). Clearly,
𝑎 − 𝑏 ∣ 𝑃 (𝑎)−𝑃 (𝑏) = 𝑏 − 𝑐 ∣ 𝑃 (𝑏)−𝑃 (𝑐) = 𝑐 − 𝑎 ∣ 𝑃 (𝑐)−𝑃 (𝑎) so 𝑎 − 𝑏, 𝑏 − 𝑐, 𝑐 − 𝑎
must be equal in magnitude. Let us say that two of them, 𝑎 − 𝑏 and 𝑏 − 𝑐, are equal.
Then 0 = |𝑎 − 𝑏 + 𝑏 − 𝑐 + 𝑐 − 𝑎| = |2(𝑎 − 𝑏)+ (𝑐 − 𝑎)| ≥ 2|𝑎 − 𝑏|− |𝑐 − 𝑎| = |𝑎 − 𝑏| so
𝑎 = 𝑏 = 𝑃 (𝑎), and 𝑐 = 𝑃 (𝑏) = 𝑃 (𝑎) = 𝑏, so 𝑎, 𝑏, 𝑐 are equal.

196. The proof will follow from following Lemma:

Lemma: If 0 ≤ 𝑚 ≤ 1 ≤ 𝑛 then (2 +𝑚)(2 + 𝑛) ≥ 3(2 +𝑚𝑛)

Proof: (2 + 𝑚)(2 + 𝑛) ≥ 3(2 + 𝑚𝑛) ⇒ 4 + 2𝑚 + 2𝑛 + 𝑚𝑛 ≥ 6 + 3𝑚𝑛 ⇒ 0 ≥
2 − 2𝑚− 2𝑛 + 2𝑚𝑛 ⇒ 0 ≥ (𝑚− 1)(𝑛 − 1).

Now we solve the problem. Let 𝛼1, 𝛼2, … , 𝛼𝑛 are 𝑛 real roots then 𝑃 (𝑥) = (𝑥 −
𝛼1)(𝑥 − 𝛼2)⋯ (𝑥 − 𝛼𝑛)

Let 𝛽𝑖 = −𝛼𝑖, then without loss of generality we can assume that 𝛽1 ≤ 𝛽2 ≤ … ≤ 𝛽𝑛.
As 𝛽1𝛽2 …𝛽𝑛 = 1 if 𝛽𝑛 ≥ 1, then 𝛽1𝛽2 …𝛽𝑛−1 ≤ 1.

𝑃 (2) = (2 + 𝛽1)(2 + 𝛽2)⋯ (2 + 𝛽𝑛). Now we repeat the lemma

(2+𝛽1)(2+𝛽2)⋯ (2+𝛽𝑛) ≥ (3+𝛽1𝛽2)(2+𝛽3)⋯ (2+𝛽𝑛) ≥ 32(2+𝛽1𝛽2𝛽3)… (2+
𝛽𝑛) ≥ 3𝑛−1(2 + 𝛽1𝛽2 …𝛽𝑏) ≥ 3𝑛.

Aliter: If 𝛽1, 𝛽2, … , 𝛽𝑛 are non-negative numbers, then by the AM-GM inequality:
2+𝛽𝑖 = 1+1+𝛽𝑖 ≥ 3 3√


𝛽𝑖. And thus, (2+𝛽1)(2+𝛽2)⋯ (2+𝛽𝑛) ≥ 3𝑛 3√


𝛽1𝛽2 …𝛽𝑛 =
3𝑛.

197. Let the polynomial be 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎0 = 0 such that 𝑎𝑖 ∈ {1, −1}. Let
the roots be 𝛼𝑖, where 𝑖 = 1, 2, 3, … , 𝑛.
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WLOG, let 𝑎𝑛 = 1, then from Vieta's relations 
𝑛
∑
𝑖=1

𝛼𝑖 = −𝑎𝑛−1, ∑
1≤𝑖𝑗≤𝑛

𝛼𝑖𝛼𝑗 = 𝑎𝑛−2,

and 
𝑛
∏
𝑖=1

𝛼𝑖 = (−1)𝑛 𝑎0.

𝑛
∑
𝑖=1

𝛼2𝑖 = (
𝑛
∑
𝑖=1

𝛼𝑖) − 2( ∑
1≤𝑖𝑗≤𝑛

𝛼𝑖𝛼𝑗) = 𝑎2𝑛−1 − 2𝑎𝑛−2 = 1 − 2𝑎𝑛−2. However, all

the roots are real, therefore 
𝑛
∑
𝑖=1

𝛼2𝑖 ≥ 0, and hence, 𝑎𝑛−1 = −1 ⇒
𝑛
∑
𝑖=1

𝛼2𝑖 = 3.

We also have that 
𝑛
∑
𝑖=1

|𝛼2𝑖 | =
𝑛
∑
𝑖=1

𝛼2𝑖 = 3, and 
𝑛
∏
𝑖=1

|𝛼𝑖| = ∣
𝑛
∏
𝑖=1

𝛼𝑖 ∣ = |(−1)𝑛 𝑎0| = 1.

Using RMS-GM inequality, 1 = (
𝑛
∏
𝑖=1

|𝛼𝑖|)

1
⁄

𝑛

≤ (1
⁄

𝑛

𝑛
∑
𝑖=1

|𝛼𝑖|2)

1
⁄

2

=√


3
⁄

𝑛.

Thus, maximum value of 𝑛 is 3. Now we find out the equations as 𝑥 − 1, 𝑥 + 1, 𝑥2 −
𝑥 − 1, 𝑥2 + 𝑥 − 1, 𝑥3 − 𝑥2 − 𝑥 + 1, 𝑥3 + 𝑥2 − 𝑥 − 1, and their negatives.

198. WLOG we assume that at the three different integer 𝑎, 𝑏, 𝑐 the polynomial 𝑝(𝑥) assumes
the value 1. Let 𝑑 be one of its roots. Then 𝑝(𝑑) = (𝑑 − 𝑎)(𝑑 − 𝑏)(𝑑 − 𝑐)𝑞(𝑑)+ 1,
where 𝑞(𝑥) has integer coefficients. We know for suree that one of |𝑑 − 𝑎|, |𝑑 − 𝑏|, |𝑑 − 𝑐|
is greater than 1. Thus, 𝑝(𝑑) = 𝑘𝑞(𝑑)+ 1 = 0 ⇒ 𝑞(𝑑) = −1

⁄

𝑘, but 𝑑 is an integer and 𝑞
has integer coefficients so we have a contradiction, and hence, 𝑝(𝑥) cannot have integral
roots.

199. We have 𝛼+𝛽 = 6,𝛼𝛽 = 1, and 𝛼𝑛+𝛽𝑛 = (𝛼+𝛽)(𝛼𝑛−1+𝛽𝑛−1)−𝛼𝛽(𝛼𝑛−2+𝛽𝑛−2),
which is a recurrence relation which will eventually come down to 𝛼 + 𝛽 and 𝛼𝛽 both
of which are in ℤ, and hence, 𝛼𝑛 + 𝛽𝑛 ∈ ℤ. Similarly, second part can be proven.

200. It is given that 𝑃 (𝑥) ≥ 0. If it has a root of odd multiplicity, then it changes sign
at that root. So any real roots must have even multiplicity. If 𝑥 = 𝛼 + 𝑖𝛽 is a complex
root so is 𝑥 = 𝛼 − 𝑖𝛽, because the coefficients are real. Let 𝑥𝑖 be the even no. of rela
roots.

Therefore, 𝑃 (𝑥) = ∏𝑖(𝑥 − 𝑥𝑖)2∏𝑗((𝑥 − 𝛼𝑗)2 + 𝛽2𝑗 ). Now ∏𝑗((𝑥 − 𝛼𝑗)2 + 𝛽2𝑗 ) =
(𝑥 − 𝛼𝑗 + 𝑖𝛽𝑗)(𝑥 − 𝛼𝑗 − 𝑖𝛽𝑗) = 𝑅(𝑥)2 + 𝐼(𝑥)2.

201. Let 𝐹 (𝑥) = 𝑓(𝑔(ℎ(𝑥))) = ∏8
𝑖=1(𝑥 − 𝑖) ⇒ 𝐹′(𝑥) = 4(2𝑥 − 9)(𝑥6 − 27𝑥5 + 288𝑥4 −

1539𝑥3 + 4299𝑥2 − 5886𝑥 + 3044). We see that 6 degree equation is irreducible.
However, 𝐹′(𝑥) = 𝑓′(𝑔(ℎ(𝑥))) .𝑔′(ℎ(𝑥)) .ℎ′(𝑥), which is not possible. Hence, the
required condition is not possible.

202. For |𝑧| = 1, we have 𝑧 = 1
⁄

𝑧 ⇒ |𝑃 (𝑧) |2 = 𝑃 (𝑧)𝑃 (𝑧). Expanding, |𝑃 (𝑧) |2 = 4 +
2ℜ(𝑎𝑏𝑧 + 𝑎𝑧𝑧2 + 𝑎𝑐𝑧3 + 𝑏𝑐𝑧 + 𝑏𝑑𝑧2 + 𝑐𝑑𝑧).



Answers of Polynomials and Theory of Equations 507

Let 𝜔 = 𝑒2𝜋𝑖/3 as third root of unity, we have |𝑃 (𝑧) |2 + |𝑃 (𝑧𝜔) |2 + |𝑃 (𝑧𝜔2) |2 =
12 + 6(𝑎𝑑𝑧3). We can choose a 𝑧0 such that 𝑎𝑑𝑧30 = 1, then one of the terms on left
must be greater than or equal to 6.

203. From the question it is clear that both the functions cross 𝑥-axis at 𝑎 and 𝑏 respectively.
This means, 𝑎 and 𝑏 are roots of 𝑓(𝑥) and 𝑔(𝑥). Let 𝑎 and 𝑏 repeat evenly for 𝑓(𝑥),
then we have to prove that

(𝛼 − 𝑎)2(𝛼 − 𝑏)2 < (𝛼 − 𝑎)(𝛼 − 𝑏) ⇒ (𝛼 − 𝑎)(𝛼 − 𝑏)[(𝛼 − 𝑎)(𝛼 − 𝑏) − 1] < 0.
Substituting 𝛼 = 𝑏 + 𝑐, (2 + 𝑐)𝑐[(2 + 𝑐)𝑐 − 1] < 0 ⇒ 𝑐(𝑐3 + 4𝑐2 + 3𝑐 − 2) < 0 which
is true for very small 𝑐.

Let 𝑎 has a multiplicity of 3 and 𝑏 has of 1, then we have to prove that

(𝑥 − 𝑎)3(𝑥 − 𝑏) < (𝑥 − 𝑎)(𝑥 − 𝑏)⇒ (𝑥 − 𝑎)(𝑥 − 𝑏)[(𝑥 − 𝑎)2 − 1] < 0, which is true
between 𝑎 and 𝑏 because 𝑏 − 𝑎 > 2.

204. Putting 𝑥 = 2 cos 𝑡 we find 𝑃𝑛(𝑥) = 2 cos 2𝑛𝑡. Then 𝑃𝑛(𝑥) = 𝑥 ⇒ cos 2𝑛𝑡 = cos 𝑡,
which has 2𝑛 solutions giving 2𝑛 distinct solutions in 𝑥.

205. If 𝛼 is a root then 𝛼2 is also a root. Similarly, if 𝛼 − 1 is a root then (𝛼 − 1)2 is also a
root. If |𝛼| > 1, then it implies that there are infinitely many roots. If 𝛼 ∈ (−1, 0)
or 𝛼 ∈ (0, 1), then it implies that there are infinitely many roots. Thus, 𝑓(𝑥) can have
only 0 and 1 as roots. We also see that if we have have root of one kind then it must
also have root of the other kind.

Setting 𝑓(𝑥) = 𝑘𝑥𝑎(𝑥 − 1)𝑏, where 𝑘 ≠ 0. Using the identity we get that −𝑘 =
𝑥𝑎−𝑏(𝑥 + 1)𝑏−𝑎, but 𝑘 is a constant. Hence, 𝑎 = 𝑏 and 𝑘 = −1. Thus, −𝑥𝑛(𝑥 − 1)𝑛 is
one form of function.

We see that complex numbers, which are root of unity, and satisfy the property 𝑧1 = 𝑧22
will also be roots of this identity. For example, cube roots of unity. Deducing similarly
we find that −(𝑥2 + 𝑥 + 1)𝑛 is another form of funciton.

If 𝑓(𝑥) = 𝑐 then 𝑐 = −1 or 𝑐 = 0.

206. 𝑃 (2𝑥2) = 𝑃 (2𝑥3+𝑥)
⁄

𝑃 (𝑥) is an even function so either both 𝑃 (2𝑥3 + 𝑥) and 𝑃 (𝑥) are even
functions or both are odd functions. We also see that 𝑃 (0)𝑃 (0) = 𝑃 (0)⇒ 𝑃 (0) = 0
or 1.

Consider 𝑃 (0) = 0 and 𝑃 (𝑥) is even, let 𝑎2𝑛𝑥2𝑛 be the minimum power of 𝑥.
Then, (𝑃′(𝑥) + 𝑎2𝑛𝑥2𝑛)(𝑃′(2𝑥2) + 𝑎2𝑛(2𝑥2)2𝑛) = 𝑃′(2𝑥3 + 𝑥) + 𝑎2𝑛(2𝑥3 + 𝑥)2𝑛.
Considering only lower powers of 𝑥, we find that 𝑎2𝑛 = 0. Similarly, we find that of
𝑃 (0) = 0 and 𝑃 (𝑥) odd, we can prove that 𝑃 (𝑥) cannot also be odd.

So 𝑃 (0) = 1 and 𝑃 (𝑥) is even then 𝑃 (𝑥) = 1 +∑𝑛
𝑘=1 𝑎2𝑛𝑥

2𝑛, putting 𝑛 = 1, 2, …
and so on we find that 𝑃 (𝑥) = (1 + 𝑥2)𝑛.

207. If 𝑓(𝑥) is constant 𝑘, then 𝑘2 = 𝑘 ⇒ 𝑓(𝑥) = 0 and 𝑓(𝑥) = 1. Given, 𝑓(𝑥)𝑓(𝑥 + 1) =
𝑓(𝑥2 + 𝑥 + 1). Setting 𝑥 = 𝑥 − 1, we have 𝑓(𝑥)𝑓(𝑥 − 1) = 𝑓(𝑥2 − 𝑥 + 1). Suppose
𝑓(𝑥) is not a constant. Assume that it has at least one complex root. Let 𝑧 be at



Answers of Polynomials and Theory of Equations 508

maximum distance from 𝑂. From our equations 𝑓(𝑧2 + 𝑧 + 1) = 𝑓(𝑧2 − 𝑧 + 1) = 0.
Thus, 𝑧 ≠ 0. If also 𝑧2 + 1 ≠ 0, then 𝑧, 𝑧2 + 𝑧 + 1, 𝑧2 − 𝑧 + 1, −𝑧 are vertices of a
parallelogram. Thus, either of 𝑧2 + 𝑧 + 1 or 𝑧2 − 𝑧 + 1 is greater than |𝑧|, which
is a contradiction with the choice of 𝑧. Thus, 𝑧2 + 1 = 0 is a factor of 𝑓 . Hence,
𝑓(𝑥) = (𝑥2 + 1)𝑚𝑔(𝑥) , 𝑚 ∈ ℕ, 𝑥2 + 1 ∤ 𝑔(𝑥).

Putting this in our equation we see that it is satisfied. We also see that 𝑔(𝑥) satisfies
our equation. Since it is not divisible by 𝑥2 + 1, we must have 𝑔(𝑥) = 1. Thus the
solution is 𝑓(𝑥) = (𝑥2 + 1)𝑚 ∀𝑚 ∈ ℕ.

208. We see that if 𝛼 is a root then 𝛼2 is also a root. Thus if |𝛼| > 1 or 0 < |𝛼| < 1 then
there will be infinitely many roots. Thus, all roots must lie on unit circle.

If 𝑓(𝑥) is constant then 𝑐2−𝑐2 = 0 ⇒ 𝑐 = 0 or 𝑐 = 1. Let us assume that 𝑓(𝑥) = 𝑎𝑥+𝑏.
then (𝑎𝑥 + 𝑏)(𝑏 − 𝑎𝑥) = 𝑎𝑥2 + 𝑏 ⇒ 𝑎 = −1, 𝑏 = 0 or 𝑏 = 1. Thus, 𝑓(𝑥) = −𝑥 and
𝑓(𝑥) = 1 − 𝑥.

If 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, then (𝑎𝑥2 + 𝑏𝑥 + 𝑐)(𝑎𝑥2 − 𝑏𝑥 + 𝑐) = (𝑎𝑥4 + 𝑏𝑥2 + 𝑐)⇒ 𝑎 =
1, 𝑐2 = 𝑐 ⇒ 𝑐 = 0, 1, and 2𝑎𝑐 − 𝑏2 = 𝑏. If 𝑐 = 0 ⇒ 𝑏 = 0, −1. If 𝑐 = 1 ⇒ 𝑏 = 1, −2. So
we have 𝑓(𝑥) = 𝑥2, 𝑥2 − 𝑥, 𝑥2 − 2𝑥 + 1 = (𝑥 − 1)2, 𝑥2 + 𝑥 + 1. We can rewrite the
second and third in the form 𝑓(𝑥) = −𝑥(1 − 𝑥) and 𝑓(𝑥) = (1 − 𝑥)2. Now we can
write a general solution 𝑓(𝑥) = (−𝑥)𝑝(1 − 𝑥)𝑞(𝑥2 + 𝑥 + 1)𝑟, 𝑝, 𝑞, 𝑟 ∈ ℤ.

209. Suppose 𝑝(𝑥), 𝑞(𝑥), 𝑟(𝑥) ∈ ℤ[𝑥] with 𝑝(𝑥) = 𝑞(𝑥)𝑟(𝑥) where 0 ≤ deg(𝑞) ≤ 3 <
deg(𝑟) ≤ deg(𝑝) = 7. Given that for 𝑛1, 𝑛2, … , 𝑛7 distinct integers |𝑝(𝑛𝑖) | = 1 for
1 ≤ 𝑖 ≤ 7. Observe that 𝑞(𝑥) and 𝑟(𝑥) are both polynomials with integer coefficients.

Then 𝑞(𝑛𝑖), 𝑟(𝑛𝑖) ∈ ℤ for each 𝑖 and |𝑞(𝑛𝑖)𝑟(𝑛𝑖) | = 1 ⇒ 𝑞(𝑛𝑖) = ±1. We see that
the values of 1 or −1 is taken at least 4 times but the degree of 𝑞(𝑥) is at most 3 thus,
𝑞(𝑥) = ±1. Hence, 𝑝(𝑥) is irreducible.

210. Let 𝑓(𝑥) = (𝑥−𝑎1)2(𝑥−𝑎2)2 ⋯ (𝑥−𝑎𝑛)2+1, and suppose that it factors non-trivially
as 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥) over ℤ.

By Gauss's lemma we may assume that 𝑔, ℎ are monic polynomials with integeral
coefficients. Let 𝑔(𝑥) = 𝑥𝑘+ 𝑏𝑘−1𝑥𝑘−1+⋯+𝑏0, ℎ(𝑥) = 𝑥𝑙+ 𝑐𝑙−1𝑥𝑙−1+⋯+𝑐0 ∈ ℤ[𝑥]

Observe that the polynomial functions 𝑔, ℎ satisfy 𝑔(𝑟), ℎ(𝑟) > 0 for 𝑟 ∈ 𝕣 and that
𝑔(𝑎𝑖) = ℎ(𝑎𝑖) = 1. Suppose 𝑘 < 𝑙 then the polynomial 𝑔 has the value 1 then for 𝑛
distinct values 𝑎1, … , 𝑎𝑛 and, because it has degree 𝑘 < 𝑛, that the polynomial is the
constant 1, and the factorization is trivial which is a contradiction. When 𝑘 = 𝑙 = 𝑛,
then 𝑓 = 𝑔2 ⇒ 1 = [𝑔(𝑥)]+ (𝑥−𝑎1)⋯ (𝑥−𝑎𝑛)[𝑔(𝑥)]− (𝑥−𝑎1)⋯ (𝑥−𝑎𝑛), which is
again trivial factorization. In both the cases the assumed non-triviality of factorization
leads to contradiction, and thus 𝑓 is actullay irreducible.

211. For roots to be equal the discriminant has to be zero.

𝐷 = 4(1+ 3𝑚)2 − 4(1+𝑚)(1+ 8𝑚) = 0 ⇒ 4(1+ 9𝑚2+ 6𝑚−1− 9𝑚−8𝑚2) = 0 ⇒
𝑚2 − 3𝑚 = 0∴𝑚 = 0, 3

212. Discriminant of the equation is: 𝐷 = (𝑐+𝑎−𝑏)2−4(𝑏+𝑐−𝑎)(𝑎+𝑏−𝑐) = 4(𝑏2−4𝑎𝑐)
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Given 𝑎 + 𝑏 + 𝑐 = 0 ⇒ 𝑏 = −(𝑎 + 𝑐) . Substituting in above equation, 𝐷 = 4{(𝑎 +
𝑐)2 − 4𝑎𝑐} = 4(𝑎 − 𝑐)2 = a perfect square and thus roots are rational.

213. Discriminant of the equation is: 𝐷 = 4(𝑎𝑐+𝑏𝑑)2−4(𝑎2+𝑏2)(𝑐2+𝑑2) = −4(𝑎𝑑−𝑏𝑐)2.
Roots are real if 𝐷 ≥ 0 i.e. −4(𝑎𝑑 − 𝑏𝑐)2 ≥ 0 ⇒ (𝑎𝑑 − 𝑏𝑐)2 ≤ 0

But since (𝑎𝑐 − 𝑏𝑑)2 ≮ 0 ∴ (𝑎𝑑 − 𝑏𝑐)2 = 0 i.e. 𝐷 = 0 (because roots are real). Thus, if
roots are real they are equal.

214. Let 𝐴 = 𝑎(𝑏 − 𝑐), 𝐵 = 𝑏(𝑐 − 𝑎) and 𝑐 = 𝑐(𝑎 − 𝑏) Clearly, 𝐴+𝐵 +𝐶 = 0. Since roots
are equal i.e. 𝐷 = 0∴𝐵2 − 4𝐴𝐶 = 0

Substituting for 𝐵, [−(𝐴+𝐶)2 − 4𝐴𝐶 ] = (𝐴−𝐶)2 = 0 ⇒ 𝐴 = 𝐶 ⇒ 2𝑎𝑐 = 𝑎𝑏 + 𝑐𝑏 ⇒
𝑏 = 2𝑎𝑐
⁄

𝑎+𝑐.

Thus, 𝑎, 𝑏, 𝑐 are in H. P.

215. Given equation is (𝑏−𝑥)2−4(𝑎−𝑥)(𝑐−𝑥)= 0⇒−3𝑥2+2(2𝑎+2𝑐−𝑏)𝑥+𝑏2−4𝑎𝑐 =
0

Discriminant of the above equation is: 𝐷 = 4(2𝑎 + 2𝑐 − 𝑏)2 + 12(𝑏2 − 4𝑎𝑐) = 8[(𝑎 −
𝑏)2 + (𝑏 − 𝑐)2 + (𝑐 − 𝑎)2 ] ∵ 𝑎, 𝑏, 𝑐 are real ∴𝐷 > 0 unless 𝑎 = 𝑏 = 𝑐.

Hence, roots are real unless 𝑎 = 𝑏 = 𝑐.

216. Discriminant of the equations are 𝑝2 − 4𝑞 and 𝑟2 − 4𝑠.

Adding them we have 𝑝2 + 𝑟2 − 4(𝑞 + 𝑠) = 𝑝2 + 𝑟2 − 2𝑝𝑟 = (𝑝 − 𝑟)2 ≥ 0.

Thus, at least one of the discriminant is greater than zero and that equation has real
roots.

217. Since 𝑥2 − 2𝑝𝑥 + 𝑞 = 0 has equal roots 𝐷 = 0 ⇒ 4𝑝2 − 4𝑞 = 0 ⇒ 𝑝2 = 𝑞.

Discriminant of the second equation: 𝐷 = 4(𝑝 + 𝑦)2 − 4(1 + 𝑦)(𝑞 + 𝑦) = 4[𝑝2 + 2𝑦 +
𝑦2 − 𝑞 − 𝑞𝑦 − 𝑦 − 𝑦2 ]

Substituting for 𝑞, 𝐷 = −4𝑦(𝑝 − 1)2. Roots of the equation will be real and distinct
only if 𝐷 ≥ 0 but (𝑝 − 1) ≥ 0 if 𝑝 ≠ 1. Thus, 𝑦 has to be negative as well.

218. Since roots of equation 𝑎𝑥2 + 2𝑏𝑥 + 𝑐 = 0 are equal ∴ 4𝑏2 − 4𝑎𝑐 ≥ 0. Discriminant of
the equation 𝑎𝑥2 + 2𝑚𝑏𝑥 + 𝑛𝑐 = 0 is 4𝑚2𝑏2 − 4𝑎𝑛𝑐.

Since 𝑚2 > 𝑛 > 0 and 𝑏2 ≥ 𝑎𝑐 4𝑚2𝑏2 − 4𝑎𝑛𝑐 > 0. Thus, roots of the second equation
are real.

219. Given 𝑎𝑥+𝑏𝑦 = 1 ⇒ 𝑦 = 1−𝑎𝑥⁄
𝑏 , substituting this in second equation, 𝑐𝑥2+𝑑(1−𝑎𝑥⁄𝑏 )

2
=

𝑏2𝑐𝑥2+𝑑(1−𝑎𝑥)2
⁄

𝑏2 = 1

⇒ (𝑏2𝑐 + 𝑑𝑎2)𝑥2 − 2𝑎𝑑𝑥 + 𝑑 − 𝑏2 = 0. Since first two equations have one solution this
equation will also have only one solution which means roots will be equal i.e. 𝐷 = 0
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⇒ 4𝑎2𝑑2−4(𝑏2𝑐+𝑎𝑑)(𝑑−𝑏2)= 0⇒ 𝑏2(𝑏2𝑐+𝑎2𝑑−𝑐𝑑)= 0∵ 𝑏2 ≠ 0 ∴ 𝑏2𝑐+𝑎2𝑑−𝑐𝑑 =
0 ⇒ 𝑏2𝑐 + 𝑎𝑑 = 𝑐𝑑

Dividing both sides by 𝑐𝑑 we have

𝑏2
⁄

𝑑 + 𝑎2
⁄

𝑐 = 1 ⇒ 𝑥 = 2𝑎𝑑
⁄

2(𝑏2𝑐+𝑎2𝑑) =
𝑎
⁄

𝑐. Substituting for 𝑦, we get 𝑦 = 𝑏⁄
𝑑.

220. Let the roots of the equation be 𝛼 and 𝑟𝛼.

Sum of roots = 𝛼 + 𝑟𝛼 = − 𝑏
⁄

𝑎 ⇒ 𝛼 = − 𝑏⁄
𝑎(𝑟+1).

Product of roots = 𝑟𝛼2 = 𝑟𝑏2
⁄

𝑎2(1+𝑟)2 =
𝑐
⁄

𝑎 ⇒
𝑏2
⁄

𝑎𝑐 =
(𝑟+1)2⁄

𝑟 .

221. Let the roots of the equation be 𝛼 and 2𝛼.. Sum of roots = 3𝛼 = − 𝑙
⁄

𝑙−𝑚 ⇒ 𝛼 = − 𝑙
⁄

𝑙−𝑚.

Product of roots = 2𝛼2 = 1
⁄

𝑙−𝑚. Substituting for 𝛼, 2𝑙2
⁄

9(𝑙−𝑚)2 =
1
⁄

𝑙−𝑚 ⇒ 2𝑙2 − 9𝑙 + 9𝑚 =
0[∵ 𝑙 ≠ 𝑚 else it would not be a quadratic equation].

Since 𝑙 is real, therefore discriminant of this equation would be ≥ 0, ⇒ 81 − 72𝑚 ≥
0∴𝑚 ≤ 9
⁄

8.

222. Let the roots be 𝛼 and 𝛼𝑛, then sum of roots = 𝛼+ 𝛼𝑛 = − 𝑏
⁄

𝑎 and product of roots

= 𝛼𝑛+1 = 𝑐
⁄

𝑎.

From products, we have 𝛼 = (𝑐⁄𝑎)
1⁄

𝑛+1. From sum we have 𝑎𝛼𝑛 + 𝑎𝛼 + 𝑏 = 0.

Substituting value of 𝛼 from above ⇒ 𝑎(𝑐⁄𝑎)
𝑛⁄

𝑛+1 + 𝑎(𝑐⁄𝑎)
1⁄

𝑛+1 + 𝑏 = 0. From this we arrive
at our desired equation.

223. Let the roots be 𝑝𝛼 and 𝑞𝛼.

Sum of roots = (𝑝 + 𝑞)𝛼 = − 𝑏
⁄

𝑎 and product of roots = 𝑝𝑞𝛼2 = 𝑐
⁄

𝑎.

From equation for product of roots, we have 𝛼2 = 𝑐
⁄

𝑎𝑝𝑞 ∴𝛼 =√


𝑐
⁄

𝑎𝑝𝑞.

Substituting this in sum of roots and solving we arrive at desired equation.

224. The questions are solved below:

i. 𝛼 + 𝛽 = −𝑝 and 𝛼𝛽 = 𝑞. Now, 𝛼
2⁄
𝛽 + 𝛽2⁄

𝛼 = 𝛼3+𝛽3
⁄

𝛼𝛽

= (𝛼+𝛽)3−3𝛼𝛽(𝛼+𝛽)
⁄

𝛼𝛽 = 𝑝(3𝑞−𝑝2)
⁄

𝑞 .

ii. (𝜔𝛼 + 𝜔2𝛽)(𝜔2𝛼 + 𝜔𝛽) = 𝜔3𝛼2 + 𝜔4𝛼𝛽 + 𝜔2𝛼𝛽 + 𝜔3𝛽2

= 𝛼2 + 𝜔𝛼𝛽 + 𝜔2𝛼𝛽 + 𝛽2 = 𝛼2 − 𝛼𝛽 + 𝛽2 = (𝛼 + 𝛽)2 − 3𝛼𝛽 = 𝑝2 − 3𝑞.
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225. Rewriting the equation we have (𝐴+ 𝑐𝑚2)𝑥2 + 𝐴𝑚𝑥 + 𝐴𝑚2 = 0.

Sum of roots = 𝛼+ 𝛽 = − 𝐴𝑚
⁄

𝐴+𝑐𝑚2 and product of roots = 𝛼𝛽 = 𝐴𝑚2
⁄

𝐴+𝑐𝑚2

The expression to be evaluated is 𝐴(𝛼2 + 𝛽2)+𝐴𝛼𝛽 + 𝑐𝛼2𝛽2.

= 𝐴[(𝛼 + 𝛽)2 − 2𝛼𝛽]+𝐴𝛼𝛽 + 𝑐(𝛼𝛽)2.

= 𝐴[ 𝐴2𝑚2
⁄

(𝐴+𝑐𝑚2)2 −
2𝐴𝑚2
⁄

𝐴+𝑐𝑚2]+
𝐴2𝑚2
⁄

𝐴+𝑐𝑚2 +
𝑐𝐴2𝑚4
⁄

(𝐴+𝑐𝑚2)2 = 0.

226. Sum of roots = 𝛼+ 𝛽 = − 𝑏
⁄

𝑎 and product of roots = 𝛼𝛽 = 𝑐
⁄

𝑎.

Now, 𝑎(𝛼
2⁄
𝛽 + 𝛽2⁄

𝛼 )+ 𝑏(𝛼⁄𝛽 + 𝛽⁄
𝛼) =

𝑎(𝛼3+𝛽3)
⁄

𝛼𝛽 + 𝑏(𝛼2+𝛽2)
⁄

𝛼𝛽

= 𝑎 [(𝛼+𝛽)
3−3𝛼𝛽(𝛼+𝛽)]
⁄

𝛼𝛽 + 𝑏[(𝛼+𝛽)2−2𝛼𝛽]
⁄

𝛼𝛽 . Substituting for sum and product of the roots

=
𝑎[(−𝑏⁄

𝑎)
3
−3.𝑐⁄𝑎(−𝑏⁄

𝑎)]
⁄

𝑐⁄
𝑎

+
𝑏[(−𝑏⁄

𝑎)
2
−2𝑐⁄

𝑎]
⁄

𝑐⁄
𝑎

Solving this we get the desired result.

227. Since 𝑎 and 𝑏 are the roots of the equation 𝑥2 + 𝑝𝑥 + 1 = 0 we have 𝑎 + 𝑏 = −𝑝 and
𝑎𝑏 = 1.

Similarly, since 𝑐 and 𝑑 are the roots of the equation 𝑥2+𝑞𝑥+1 = 0 we have 𝑐+𝑑 = −𝑝
and 𝑐𝑑 = 1.

Now (𝑎 − 𝑐)(𝑏 − 𝑐)(𝑎 + 𝑑)(𝑏 + 𝑑) = (𝑎𝑏 − 𝑏𝑐 − 𝑎𝑐 + 𝑐2)(𝑎𝑏 + 𝑏𝑑 + 𝑎𝑑 + 𝑑2) =
[𝑎𝑏 − 𝑐(𝑎 + 𝑏)+ 𝑐2 ] .[𝑎𝑏 + 𝑑(𝑎 + 𝑏)+ 𝑑2 ]

= [1+ 𝑝𝑐 + 𝑐2] .[1− 𝑝𝑑 +𝑑2](putting the values of 𝑎+ 𝑏 and 𝑎𝑏) = 1+ 𝑐𝑝+ 𝑐2− 𝑝𝑑 −
𝑐𝑑𝑝2 − 𝑐2𝑝𝑑 + 𝑑2 + 𝑐𝑝𝑑2 + 𝑐2𝑑2

= 1+ (𝑐2+ 𝑑2)+𝑐2𝑑2− 𝑐𝑑𝑝2+ 𝑝(𝑐 − 𝑑)+𝑐𝑝𝑑(𝑑 − 𝑐) = 1+ [(𝑐 + 𝑑)2− 2𝑐𝑑]+𝑐2𝑑2−
𝑐𝑑𝑝2 + 𝑝(𝑐 − 𝑑)+ 𝑐𝑝𝑑(𝑑 − 𝑐).

Substituting for 𝑐 + 𝑑 and 𝑐𝑑, 1 + 𝑞2 − 2 + 1 − 𝑝2 + 𝑝(𝑐 − 𝑑)+ 𝑝(𝑑 − 𝑐) = 𝑞2 − 𝑝2.

228. Let 𝛼 and 𝛽 be the roots of the equation 𝑥2+ 𝑝𝑥+ 𝑞 = 0 then 𝛼+𝛽 = −𝑝 and 𝛼𝛽 = 𝑞.

Also, let 𝛾 and 𝛿 be the roots of the equation 𝑥2 + 𝑞𝑥 + 𝑝 = 0 then 𝛾 + 𝛿 = −𝑞 and
𝛾𝛿 = 𝑝.

Now, given is that roots differ by the same quantity so we can say that, 𝛼 − 𝛽 =
𝛾 − 𝛿 ⇒ (𝛼 − 𝛽)2 = (𝛾 − 𝛿)2

(𝛼 + 𝛽)2 − 4𝛼𝛽 = (𝛾 + 𝛿)2 − 4𝛾𝛿 ⇒ 𝑝2 − 4𝑞 = 𝑞2 − 4𝑝 ⇒ 𝑝2 − 𝑞2 + 4(𝑝 − 𝑞) = 0 ⇒
(𝑝 − 𝑞)(𝑝 + 𝑞 + 4) = 0

Clearly, 𝑝 ≠ 𝑞 else equations would be same ∴ 𝑝 + 𝑞 + 4 = 0.
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229. Since 𝛼, 𝛽 are the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 ∴ 𝑎𝛼2 + 𝑏𝛼 + 𝑐 = 0 and
𝑎𝛽2 + 𝑏𝛽 + 𝑐 = 0.

and 𝛼 + 𝛽 = − 𝑏
⁄

𝑎 and 𝛼𝛽 = 𝑐
⁄

𝑎 . Also, given 𝑆𝑛 = 𝛼𝑛 + 𝛽𝑛. Now, 𝑎𝑆𝑛+1 + 𝑏𝑆𝑛 + 𝑐𝑆𝑛−1

= 𝑎(𝛼𝑛+1 + 𝛽𝑛+1) + 𝑏(𝛼𝑛 + 𝛽𝑛) + 𝑐(𝛼𝑛−1 + 𝛽𝑛−1) = 𝛼𝑛−1(𝑎𝛼2 + 𝑏𝛼 + 𝑐) +
𝛽𝑛−1(𝑎𝛽2 + 𝑏𝛽 + 𝑐) = 𝛼𝑛−1.0 + 𝛽𝑛−1.0

∴ 𝑆𝑛+1 = − 𝑏
⁄

𝑎 𝑆𝑛 −
𝑐
⁄

𝑎 𝑆𝑛−1

Substituting 𝑛 = 4 we have

𝑆5 = − 𝑏
⁄

𝑎 𝑆4 −
𝑐
⁄

𝑎 𝑆3 = − 𝑏
⁄

𝑎 (−
𝑏
⁄

𝑎 𝑆3 −
𝑐
⁄

𝑎 𝑆 − 2)− 𝑐
⁄

𝑎 𝑆3 = (𝑏
2
⁄

𝑎2 −
𝑐
⁄

𝑎)𝑆3 +
𝑏𝑐
⁄

𝑎2 𝑆2

Proceeding similarly we have the solution as

= − 𝑏
⁄

𝑎5 (𝑏
2 − 2𝑎𝑐)2 + (𝑏2−𝑎𝑐)𝑏𝑐
⁄

𝑎4 .

230. Let 𝛼 and 𝛽 be the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. Given, 𝛼 + 𝛽 = 1⁄
𝛼2 +

1⁄
𝛽2 ⇒

𝛼 + 𝛽 = (𝛼+𝛽)2−2𝛼𝛽
⁄

𝛼2𝛽2

− 𝑏
⁄

𝑎 =
𝑏2⁄
𝑎2
−2𝑐⁄

𝑎
⁄

𝑐2⁄
𝑎2

= 𝑏2−2𝑎𝑐⁄
𝑐2 ⇒ −𝑏𝑐2 = 𝑎𝑏2 − 2𝑎2𝑐 ⇒ 𝑐𝑎2 = 𝑎𝑏2+𝑏𝑐2
⁄

2

Thus, 𝑏𝑐2, 𝑐𝑎2, 𝑎𝑏2 are in A. P.

231. Rewriting the equation 𝑚2𝑥2 + (2𝑚 −𝑚2)𝑥 + 3 = 0.

Since 𝛼 and 𝛽 are the roots of the equation 𝛼 + 𝛽 = −2𝑚−𝑚2
⁄

𝑚2 = 𝑚−2⁄
𝑚 and 𝛼𝛽 = 3
⁄

𝑚2

Given, 𝛼⁄𝛽 + 𝛽⁄
𝛼 = 4
⁄

3 ⇒
𝛼2+𝛽2
⁄

𝛼𝛽 = 4
⁄

3

3(𝛼2+𝛽2) = 4𝛼𝛽 ⇒ 3[(𝛼+𝛽)2−2𝛼𝛽] = 4𝛼𝛽 ⇒ 3(𝛼+𝛽)2−10𝛼𝛽 = 0⇒ 3[(𝑚−2⁄
𝑚 )

2
−

10
⁄

𝑚2] = 0

⇒ 𝑚2 − 4𝑚− 6 = 0

Since 𝑚1, 𝑚2 are two values of 𝑚 we have 𝑚1 + 𝑚2 = 4 and 𝑚1𝑚2 = −6. Now,
𝑚2

1
⁄

𝑚2
+ 𝑚2

2
⁄

𝑚1
= 𝑚3

1+𝑚3
2
⁄

𝑚1𝑚2
= (𝑚1+𝑚2)3−3𝑚1𝑚2(𝑚1+𝑚2)
⁄

3𝑚1𝑚2
= −68
⁄

3 .

232. Let 𝛼 and 𝛽 be the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0; 𝛾 and 𝛿 are the roots of
the equation 𝑎1𝑥2 + 𝑏1𝑥 + 𝑐1 = 0, then

𝛼 + 𝛽 = − 𝑏
⁄

𝑎, 𝛼𝛽 = 𝑐
⁄

𝑎 and 𝛾 + 𝛿 = − 𝑏1
⁄

𝑎1 , 𝛾𝛿 =
𝑐1
⁄

𝑎1

According to question, 𝛼⁄𝛽 = 𝛾⁄
𝛿. By componendo and dividendo,
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𝛼−𝛽
⁄

𝛼+𝛽 =
𝛾−𝛿
⁄

𝛾+𝛿. Squaring both sides

⇒ (𝛼−𝛽⁄𝛼+𝛽)
2
= (𝛾−𝛿⁄𝛾+𝛿)

2
⇒ (𝛼+𝛽)2−4𝛼𝛽
⁄

(𝛼+𝛽)
2
= (𝛾+𝛿)2−4𝛾𝛿
⁄

(𝛾+𝛿)2

⇒ 𝑏2−4𝑎𝑐⁄
𝑏2 = 𝑏21−4𝑎1𝑐1
⁄

𝑏21
⇒ −4𝑎𝑐𝑏21 = −4𝑎1𝑐1𝑏2 ⇒ ( 𝑏
⁄

𝑏1)
2
= 𝑎𝑐⁄

𝑎1𝑐1.

233. Since irrational roots appear in pairs and are conjugate. Thus, if first root is 𝛼 = 1⁄
2+√


5

𝛼 = 1⁄
2+√


5
2−√


5⁄
2−√


5 =
2−√


5⁄
4−5 = −2 +√


5

Then second root would be 𝛽 = −2 +√


5 ⇒ 𝛼 + 𝛽 = −4 and 𝛼𝛽 = −1

Therefore, the equation is 𝑥2 − (𝛼 + 𝛽)𝑥 + 𝛼𝛽 = 0 ⇒ 𝑥2 + 4𝑥 − 1 = 0.

234. Since 𝛼 and 𝛽 are the roots of the equation ∴𝛼 + 𝛽 = − 𝑏
⁄

𝑎 and 𝛼𝛽 = 𝑐
⁄

𝑎. Sum of the

roots for which quadratic equation is to be found = 1⁄
𝑎𝛼+𝑏 +

1⁄
𝑎𝛽+𝑏

= 𝑎(𝛼+𝛽)+2𝑏
⁄

𝑎2𝛼𝛽+𝑎𝑏(𝛼+𝛽)+𝑏2 =
𝑎(−𝑏⁄

𝑎)+2𝑏
⁄

𝑎2.𝑐⁄𝑎+𝑎𝑣(−𝑏⁄
𝑎)
+ 𝑏2 = 𝑏
⁄

𝑎𝑐

Product of the roots = ( 1⁄
𝑎𝛼+𝑏)(

1⁄
𝑎𝛽+𝑏) =

1
⁄

𝑎2𝛼𝛽+𝑎𝑏(𝛼+𝛽)+𝑏2 =
1
⁄

𝑎2.𝑐⁄𝑎+𝑎𝑏(−𝑐⁄
𝑎)+𝑏2

= 1
⁄

𝑎𝑐.

Therefore, the equation is 𝑥2 − 𝑏
⁄

𝑎𝑐 𝑥 +
1
⁄

𝑎𝑐 = 0 ⇒ 𝑎𝑐𝑥2 − 𝑏𝑥 + 1 = 0.

235. Given equation is (𝑥 − 𝑎)(𝑥 − 𝑏)− 𝑘 = 0 ⇒ 𝑥2 − (𝑎 + 𝑏)𝑥 + 𝑎𝑏 − 𝑘 = 0.

Since 𝑐, 𝑑 are roots of this equation ⇒ 𝑐 + 𝑑 = 𝑎 + 𝑏 and 𝑐𝑑 = 𝑎𝑏 − 𝑘.

The equation where roots are 𝑎, 𝑏 is 𝑥2− (𝑎+𝑏)𝑥+𝑎𝑏 = 0⇒ 𝑥2− (𝑐+𝑑)𝑥+𝑐𝑑+𝑘 = 0.

236. Correct equation is 𝑥2 + 13𝑥 + 𝑞 = 0 and incorrect equation is 𝑥2 + 17𝑥 + 𝑞 = 0.

Roots of correct incorrect equation are −2 and −15. Thus 𝑞 = 30.

Therefore, correct equation is 𝑥2 + 13𝑥 + 30 = 0 and thus roots are −3, −10.

237. Clearly, 𝛼 + 𝛽 = −𝑝 and 𝛼𝛽 = 𝑞. Substituting 𝑥 = 𝛼⁄
𝛽 in the given equation we have

𝑞 𝛼
2⁄

𝛽2 − (𝑝2 − 2𝑞)𝛼⁄𝛽 + 𝑞 = 0 ⇒ 𝑞𝛼2 − (𝑝2 − 2𝑞)𝛼𝛽 + 𝑞𝛽2 = 0

𝑞(𝛼2 + 𝛽2)− (𝑝2 − 2𝑞)𝑞 = 0 ⇒ 𝑞[(𝛼 + 𝛽)2 − 2𝛼𝛽]− (𝑝2 − 2𝑞)𝑞 = 0

𝑞(𝑝2 − 2𝑞)− (𝑝2 − 2𝑞)𝑞 = 0 ⇒ 0 = 0. Thus, 𝛼⁄𝛽 is a root of the given equation.

238. Let 𝛼 and 𝛽 be the roots of 𝑥2 − 𝑎𝑥 + 𝑏 = 0 and 𝛼 be the common and equal root
from the second equation 𝑥2 − 𝑝𝑥 + 𝑞 = 0.
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Thus, 𝛼+𝛽 = 𝑎, 𝛼𝛽 = 𝑏 and 2𝛼 = 𝑝, 𝛼2 = 𝑞 ⇒ 𝑏+ 𝑞 = 𝛼𝛽 +𝛼2 = 𝛼(𝛽 +𝛼) = 𝑝
⁄

2 𝑎 =
𝑎𝑝⁄
2 .

239. Let 𝛼 be the common root. Then, we have 𝑎𝛼2+2𝑏𝛼+ 𝑐 = 0 and 𝑎1𝛼2+2𝑏1𝛼+ 𝑐1 = 0.

Solving equations by cross-multiplication we have 𝛼2
⁄

2(𝑏𝑐1−𝑏1𝑐) =
𝛼
⁄

(𝑐𝑎1−𝑎1𝑐) =
1
⁄

2(𝑎𝑏1−𝑎1𝑏).

From first two we have 𝛼 as 𝛼 = 2(𝑏𝑐1−𝑏1𝑐)
⁄

𝑐𝑎1−𝑎1𝑐 and from last two we have 𝛼 as 𝛼 = 𝑐𝑎1−𝑎𝑐1
⁄

2(𝑎𝑏1−𝑎1𝑏)

Equating we get, 2(𝑏𝑐1−𝑏1𝑐)⁄𝑐𝑎1−𝑎1𝑐 = 𝑐𝑎1−𝑎𝑐1
⁄

2(𝑎𝑏1−𝑎1𝑏) ⇒ (𝑐𝑎1 − 𝑎𝑐1)2 = 4(𝑎𝑏1 − 𝑎1𝑏)(𝑏𝑐1 − 𝑏1𝑐)

Given, 𝑎⁄𝑎1 ,
𝑏
⁄

𝑏1 ,
𝑐⁄
𝑐1 are in A. P., let 𝑑 be the common difference.

( 𝑐⁄
𝑐1 −

𝑎
⁄

𝑎1)
2
𝑐21𝑎21 = 4( 𝑎
⁄

𝑎1 −
𝑏
⁄

𝑏1)𝑎1𝑏2(
𝑏
⁄

𝑏1 −
𝑐⁄
𝑐1)𝑏1𝑐1

(2𝑑)2 𝑐21𝑎22 = 4(−𝑑)𝑎1𝑏1(−𝑑)𝑏1𝑐1 ⇒ 4𝑑2𝑐21𝑎21 = 4𝑑2𝑎1𝑐1𝑏21 ⇒ 𝑐1𝑎1 = 𝑏21.

Thus, 𝑎1, 𝑏1, 𝑐1 are in G. P.

240. Let 𝛼 be the common root between first two, 𝛽 be the common root between last two
and 𝛾 be the common root between first and last equations.

Thus, 𝛼 and 𝛽 are the roots of the first equation. ⇒ 𝛼+ 𝛾 = −𝑝1, 𝛼𝛾 = 𝑞1

Similarly, 𝛼 + 𝛽 = −𝑝2, 𝛼𝛽 = 𝑞2 ⇒ 𝛽 + 𝛾 = −𝑝3, 𝛽𝛾 = 𝑞3

L.H.S. = (𝑝1 + 𝑝2 + 𝑝3)2 = 4(𝛼 + 𝛽 + 𝛾)2 and R.H.S. = 4(𝑝1𝑝2 + 𝑝2𝑝3 + 𝑝1𝑝3 − 𝑞1 −
𝑞2 − 𝑞3)

= 4[(𝛼 + 𝛾)(𝛼 + 𝛽)+ (𝛼 + 𝛽)(𝛽 + 𝛾)+ (𝛼 + 𝛾)(𝛽 + 𝛾)− 𝛼𝛾 − 𝛼𝛽 − 𝛽𝛾 ]

= 4(𝛼2 + 𝛽2 + 𝛾2 + 2𝛼𝛽 + 2𝛼𝛾 + 2𝛽𝛾) = 4(𝛼 + 𝛽 + 𝛾)2.

Hence, proven that L.H.S. = R.H.S.

241. Let 𝛼 be the common root then we have, 𝛼2 + 𝑐𝛼 + 𝑎𝑏 = 0 and 𝛼2 + 𝑏𝛼 + 𝑐𝑎 = 0.

By cross-multiplication, we get the solution as 𝛼2
⁄

𝑎𝑐2−𝑎𝑏2 =
𝛼
⁄

𝑎𝑏−𝑎𝑐 =
1
⁄

𝑏−𝑐.

From first two we have 𝛼 = 𝑎𝑐2−𝑎𝑏2
⁄

𝑎𝑏−𝑎𝑐 = −(𝑏 + 𝑐). From last two we have 𝛼 = 𝑎.

Equating these two we get 𝑎 = −(𝑏 + 𝑐)⇒ 𝑎+ 𝑏 + 𝑐 = 0. Let the other root of the
equations be 𝛽 and 𝛽1 then we have

𝛼𝛽 = 𝑎𝑏 and 𝛼𝛽1 = 𝑐𝑎 ∴ 𝛽 = 𝑏 and 𝛽1 = 𝑐. Equation whose roots are 𝛽 and 𝛽1 is

𝑥2 − (𝛽 + 𝛽1)𝑥 + 𝛽𝛽1 = 0 ⇒ 𝑥2 − (𝑏 + 𝑐)+ 𝑏𝑐 = 0 ⇒ 𝑥2 + 𝑎𝑥 + 𝑏𝑐 = 0.

242. Clearly, root of the equation 𝑥2 + 2𝑥 + 9 = 0 are imaginary and since they appear
in pairs both the roots will be common and thus the ratio of the coefficients of the
terms will be equal. ⇒ 𝑎 : 𝑏 : 𝑐 = 1 : 2 : 9.
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243. Let 𝛼 be a common root. Then, we have 3𝛼2 − 2𝛼 + 𝑝 = 0 and 6𝛼2 − 17𝛼 + 12 = 0.

Solving by cross-multiplication 𝛼2
⁄

−24+17𝑝 =
𝛼
⁄

6𝑝−36 =
1
⁄

−39.

From first two we have 𝛼 = 17𝑝−24
⁄

6𝑝−36 and from last two we have 𝛼 = 6𝑝−36
⁄

−39 = −2𝑝−12
⁄

13 .

Equating these two and solving for 𝑝 we get 𝑝 = −15
⁄

4 , −
8
⁄

3.

244. When 𝑥 = 0, |𝑥|2 − |𝑥|− 2 = |0|2 − |0|− 2 = −2 ≠ 0. Since it is not satisfied by 𝑥 = 0
it is an equation.

245. When 𝑥 = −𝑎 the equation is satisfied. Similarly, it is satisfied by values of 𝑥 being −𝑏
and −𝑐. The highest power of 𝑥 occurring is 2 and is true for three distinct values of 𝑥
therefore it cannot be equation but an identity.

246. Since both the equations have only one common root so the roots must be rational
as irrational and complex roots appear in pairs. Thus, the roots of these two equations
must be rational and therefore the discriminants must be perfect squares. Therefore,
𝑏2 − 𝑎𝑐 and 𝑏21 − 𝑎1𝑐2 must be perfect squares.

247. Equating the coefficients for similar powers of 𝑥, we get, coefficient of 𝑥2 : 𝑎2 − 1 =
0 ⇒ 𝑎 = ±1.

Coefficient of 𝑥 : 𝑎 − 1 = 0 ⇒ 𝑎 = 1. Constant term: 𝑎2 − 4𝑎 + 3 = 0 ⇒ 𝑎 = 1, 3.

The common value of 𝑎 is 1 which will make this an identity.

248. Given, (𝑥 + 1
⁄

𝑥)
2
= 4 + 3
⁄

2 (𝑥 −
1
⁄

𝑥) ⇒ (𝑥 + 1
⁄

𝑥)
2
− 4 − 3
⁄

2 (𝑥 −
1
⁄

𝑥) = 0 ⇒ {(𝑥 − 1
⁄

𝑥)
2
+

4𝑥 1
⁄

𝑥}−
3
⁄

2 (𝑥 −
1
⁄

𝑥)− 4 = 0

Substituting 𝑎 = 𝑥 − 1
⁄

𝑥 ⇒ 𝑎2 − 3
⁄

2 𝑎 = 0 ⇒ 2𝑎2 − 3𝑎 = 0 ∴ 𝑎 = 0, 3⁄2

𝑥 − 1
⁄

𝑥 = 0 ⇒ 𝑥 = ±1 ⇒ 𝑥 − 1
⁄

𝑥 −
3
⁄

2 ⇒ 𝑥 = 2, − 1
⁄

2.

249. Given equation is (𝑥 + 4)(𝑥 + 7)(𝑥 + 8)(𝑥 + 11)+ 20 = 0.

Rewriting the equation, [(𝑥 + 4)(𝑥 + 11)] [(𝑥 + 7)(𝑥 + 8)]+ 20 = 0

⇒ (𝑥2 + 15𝑥 + 44)(𝑥2 + 15𝑥 + 56) + 20 = 0. Substituting 𝑎 = 𝑥2 + 15𝑥, we get
(𝑎 + 44)(𝑎 + 56)+ 20 = 0 ⇒ 𝑎 = −46, −54

If 𝑎 = −46 ⇒ 𝑥2 + 15𝑥 + 46 = 0 ⇒ 𝑥 = −15±√


41
⁄

2 . If 𝑎 = −54 ⇒ 𝑥2 + 15𝑥 + 54 = 0 ⇒
𝑥 = −6, −9.

250. Given equation is 32𝑥+1 + 32 = 3𝑥+3 + 3𝑥. Let 3𝑥 = 𝑎, then we have 3𝑎2 + 9 = 28𝑎 ⇒
3𝑎2 − 28𝑎 + 9 = 0.

⇒ 𝑎 = 1
⁄

3 , 9. If 𝑎 =
1
⁄

3 ⇒ 𝑥 = −1. If 𝑎 = 9 ⇒ 𝑥 = 2.
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251. Clearly, (5 + 2√


6)𝑥
2−3(5 − 2√


6)𝑥
2−3 = 1. Let (5 + 2√


6)𝑥
2−3 = 1 then (5 −

2√


6)𝑥
2−3 = 1
⁄

𝑦.

The given equation becomes 𝑦 + 1
⁄

𝑦 = 10 where 𝑦 = (5 + 2√


6)𝑥
2−3 ⇒ 𝑦2 − 10𝑦 + 1 = 0.

Solving the equation we have roots as 𝑦 = 5 ± 2√


6 ∴ 𝑥2 − 3 = ±1 ⇒ 𝑥 = ±2, ±√


2.

252. Let the speed of the bus = 𝑥 km/hour ∴ the speed of car = 𝑥 + 25 km/hour.

Time taken by bus = 500
⁄

𝑥 hours and by car = 500⁄
𝑥+25 hours. Given, 500⁄𝑥 = 500⁄

𝑥+25 + 10 ⇒
𝑥2 − 25𝑥 + 1250 = 0.

𝑥 = −50, 25 but 𝑥 cannot be negative as it is a scalar quantity. Thus, speed of car =
50 km/hour.

253. Given equation is (𝑎+𝑏)2𝑥2−2(𝑎2−𝑏2)𝑥+(𝑎−𝑏)2 = 0. Discriminant = 4(𝑎2−𝑏2)2−
4(𝑎 + 𝑏)2(𝑎 − 𝑏)2 = 0. Since discriminant is zero, roots are equal.

254. Given equation is 3𝑥2 + 7𝑥 + 8 = 0. Discriminant 𝐷 = 49 − 96 < 0.

Since it is negative roots will be complex and conjugate pair.

255. Given equation is 3𝑥2 + (7 + 𝑎)+ 8 − 𝑎 = 0. Discriminant 𝐷 = (7 + 𝑎)2 + 12𝑎

For roots to be equal it has to be zero. ⇒ 𝑎2 + 26𝑎 + 49 = 0 ⇒ 𝑎 = 13 ± 6√


6.

256. It is given that roots are equal i.e. discriminant is zero. ⇒ 4(𝑎𝑐 + 𝑏𝑑)2 − 4(𝑎2 +
𝑏2)(𝑐2 + 𝑑2) = 0 ⇒ 𝑎2𝑐2 + 𝑏2𝑑2 − 2𝑎𝑏𝑐𝑑 − 𝑎2𝑐2 − 𝑎2𝑑2 − 𝑏2𝑐2 − 𝑏2𝑑2 = 0

⇒ (𝑎𝑑 − 𝑏𝑐)2 = 0 ⇒ 𝑎𝑑 = 𝑏𝑐 ⇒ 𝑎
⁄

𝑏 =
𝑐⁄
𝑑.

257. Discriminant is 4(𝑐 − 𝑎)2 − 4(𝑏 − 𝑐)(𝑎 − 𝑏)

= 𝑐2 + 𝑎2 − 2𝑎𝑐 − 𝑎𝑏 + 𝑏2 + 𝑎𝑐 − 𝑏𝑐 = 𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑏𝑐 − 𝑎𝑐 = 1
⁄

2 [(𝑎 − 𝑏)2(𝑏 −
𝑐)2(𝑐 − 𝑎)2 ].

Clearly the above expression is either greater than zero or equal to zero. Hence, roots
are real.

258. Given equation is 𝑥2 − 𝑥+ 𝑥2− (𝑎+ 1)𝑥+ 𝑎+ 𝑥2− 𝑎𝑥 = 0 ⇒ 3𝑥2− 2(𝑎+ 1)+𝑎 = 0.

Discriminant 𝐷 = 4(𝑎 + 1)2 − 12𝑎 = 𝑎2 + 2𝑎 + 1 − 3𝑎 = 𝑎2 − 𝑎 + 1 = (𝑎 − 1)2 + 𝑎

which is greater than zero for all 𝑎 and hence roots are real.

259. Discriminant of the equation 𝐷 = 𝑏2 − 4𝑎𝑐. Given, 𝑎 + 𝑏 + 𝑐 = 0 ⇒ 𝑏 = −(𝑎 + 𝑐).

Substituting value of 𝑏, 𝐷 = (𝑎 + 𝑐)2 − 4𝑎𝑐 = (𝑎 − 𝑐)2, which is either zero or positive.
Hence, roots are rational.
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260. 𝐷 = (𝑐 + 𝑎 − 2𝑏)2 − 4(𝑏 + 𝑐 − 2𝑎)(𝑎 + 𝑏 − 2𝑐) = 𝑐2 + 𝑎2 + 4𝑏2 + 2𝑎𝑐 − 4𝑏𝑐 − 4𝑎𝑏 −
4𝑏𝑎 − 4𝑏2 + 8𝑏𝑐 − 4𝑐𝑎 − 4𝑏𝑐 + 8𝑐2 + 8𝑎2 + 8𝑎𝑏 − 8𝑐𝑎

⇒ 9𝑎2+9𝑐2−18𝑐𝑎 = 9(𝑎−𝑐)2 ≥ 0 which is a perfect square. Hence, roots are rational.

261. Given 𝑟 = 𝑘 + 𝑠
⁄

𝑘 ⇒ 𝑟2 = 𝑘2 + 𝑠2
⁄

𝑘2 + 2𝑠

⇒ 𝑟2 − 4𝑠 = 𝑘2 + 𝑠2
⁄

𝑘2 + 2𝑠 − 4𝑠 ⇒ 𝑟−4𝑠 = 𝑘2 + 𝑠2
⁄

𝑘2 − 2𝑠 = (𝑘 − 𝑠
⁄

𝑘)
2

Clearly, 𝑟2 − 4𝑠 ≥ 0 if 𝑟, 𝑠, 𝑘 are rationals which is discriminant of the given equation.
Thus, roots will be rational provided given condition is met.

262. The given equation is (𝑥 − 𝑎)(𝑥 − 𝑏)+ (𝑥 − 𝑏)(𝑥 − 𝑐)+ (𝑥 − 𝑐)(𝑥 − 𝑎) = 0

⇒ 3𝑥2−(𝑎+𝑏+𝑏+𝑐+𝑐+𝑎)𝑥+𝑎𝑏+𝑏𝑐+𝑐𝑎 = 0⇒𝐷= 4(𝑎+𝑏+𝑐)2−12(𝑎𝑏+𝑏𝑐+𝑐𝑎)

= 4𝑎2 + 4𝑏2 + 4𝑐2 − 4𝑎𝑏 − 4𝑏𝑐 − 4𝑎𝑐 = 2[(𝑎 − 𝑏)2 + (𝑏 − 𝑐)2 + (𝑐 − 𝑎)2 ].

This cannot be zero unless 𝑎 = 𝑏 = 𝑐, which is the required condition for the roots
to be equal.

263. Given equation is 𝑎2(𝑏2 − 𝑐2)𝑥2 + 𝑏2(𝑐2 − 𝑎2)𝑥 + 𝑐2(𝑎2 − 𝑏2) = 0

𝐷 = 𝑏4(𝑐2 − 𝑎2)2 − 4𝑎2𝑐2(𝑏2 − 𝑐2)(𝑎2 − 𝑏2) = 𝑏4𝑐4 + 𝑏4𝑎4 − 2𝑏4𝑎2𝑐2 − 4𝑎4𝑏2𝑐2 +
4𝑎2𝑏4𝑐2 − 4𝑎4𝑐4 + 4𝑎2𝑏2𝑐4

= 𝑏4𝑐4 + 𝑏4𝑎4 + 2𝑏4𝑎2𝑐2 − 4𝑎4𝑏2𝑐2 − 4𝑎4𝑐4 + 4𝑎2𝑏2𝑐4 = (𝑏2𝑐2 + 𝑏2𝑎2 − 2𝑎2𝑐2)2 ≥ 0,
which is a perfect square, and thus, roots will be rational.

264. 𝐷 = 16𝑎2𝑏2𝑐2𝑑2 − 4(𝑎4 + 𝑏4)(𝑐4 + 𝑑4) = 4[4𝑎2𝑏2𝑐22𝑑2 − 𝑎4𝑐4 − 𝑎4𝑑4 − 𝑏4𝑐4 − 𝑏4𝑑4 ]

= −4[(𝑎2𝑐2 + 𝑏2𝑑2)2(𝑎2𝑐2 + 𝑏2𝑑2)2 ]. Thus, if the roots are real then discriminant
has to be zero because else it can be only negative and then roots wont remain real.

265. 𝐷 = 4𝑞2 − 4𝑝𝑟 = 4(𝑞2 − 𝑝𝑟). Since 𝑝, 𝑞, 𝑟 are in H. P. ⇒ 𝑞 = 2𝑝𝑟
⁄

𝑝+𝑟

Substituting for 𝑞, we get 𝐷 = 4[ 4𝑝2𝑟2
⁄

(𝑝+𝑟)2 − 𝑝𝑟] = 4[4𝑝
2𝑟2−𝑝3𝑟−𝑝𝑟3−2𝑝2𝑟2
⁄

(𝑝+𝑟)2 ]

= 4[2𝑝
2𝑟2−𝑝3−𝑟3
⁄

(𝑝+𝑟)2 ] = 4[𝑝𝑟(2𝑝𝑟−𝑝
2−𝑟2)
⁄

(𝑝+𝑟)2 ]

= 4[−𝑝𝑟(𝑝−𝑟)
2
⁄

(𝑝+𝑟)2 ]. Since 𝑝 and 𝑟 have the same sign discriminant is bound to be negative
and roots will be complex numbers.

266. Discriminant of 𝑏𝑥2 + (𝑏 − 𝑐)𝑥 + (𝑏 − 𝑐 − 𝑎) = 0, 𝐷1 = (𝑏 − 𝑐)2 − 4𝑏(𝑏 − 𝑐 − 𝑎) =
𝑏2 + 𝑐2 − 2𝑏𝑐 − 4𝑏2 + 4𝑏𝑐 + 4𝑎𝑏

Discriminant of 𝑎𝑥2 + 2𝑏𝑐 + 𝑏 = 0, 𝐷2 = 4𝑏2 − 4𝑎𝑏. Now, if 𝐷2 < 0

𝐷1 = (𝑏 + 𝑐)2 − (4𝑏2 − 4𝑎𝑏) > 0 and thus roots will be real. However, if 𝐷1 < 0 i.e.
roots are imaginary then we have
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𝐷1 = (𝑏 + 𝑐)2 − (4𝑏2 − 4𝑎𝑏) < 0 ⇒ 4𝑏2 − 4𝑎𝑏 > 0 ∵ [(𝑏 + 𝑐)2 > 0].

Then roots of equation 𝑎𝑥2 + 2𝑏𝑥 + 𝑏 = 0 will be real.

267. From first equation 𝑥 =√


1−𝑏𝑦2
⁄

𝑎 and from second equation 𝑥 = 1−𝑏𝑦
⁄

𝑎 .

Equating the values obtained (1−𝑏𝑦⁄𝑎 )
2
= 1−𝑏𝑦2
⁄

𝑎

1 + 𝑏2𝑦2 − 2𝑏𝑦 = 𝑎 − 𝑎𝑏𝑦2 ⇒ (𝑏2 + 𝑎𝑏)𝑦2 − 2𝑏𝑦 + 1 − 𝑎 = 0

Values of 𝑥 will be equal if values of 𝑦 are equal i.e. discriminant of above equation is
zero.

⇒ 42𝑏2 − 4(𝑏2 + 𝑎𝑏)(1 − 𝑎) = 0 ⇒ 4𝑏2 − 4𝑏2 + 4𝑏2𝑎 − 4𝑎𝑏 + 4𝑎2𝑏 = 0

(𝑎2𝑏 + 𝑎𝑏2 − 𝑎𝑏) = 0 ⇒ 𝑎𝑏(𝑎 + 𝑏) = 𝑎𝑏 ⇒ 𝑎 + 𝑏 = 1.

268. Substituting 𝑦 = 𝑚𝑥 + 𝑐 in 𝑥2 + 𝑦2 = 𝑎2, we get 𝑥2 +𝑚2𝑥2 + 2𝑐𝑚𝑥 + 𝑐2 − 𝑎2 = 0

For roots to be equal, discriminant must be zero. 𝐷 = 4𝑐2𝑚2−4(1+𝑚2)(𝑐2− 𝑎2) = 0

⇒ 𝑐2𝑚2 − 𝑐2 + 𝑎2 − 𝑐2𝑚2 + 𝑎2𝑚2 = 0 ⇒ 𝑐2 = 𝑎2(1 +𝑚2).

269. Clearly, roots are 𝛼, 𝛼 + 1. Sum of roots = 𝛼+ 𝛼 + 1 = 5𝑎+1
⁄

4 ⇒ 𝛼 = 5𝑎−3
⁄

8 .

Product of roots = 𝛼(𝛼 + 1) = 5𝑎⁄
4 . Substituting value of 𝛼 from above

(5𝑎−3⁄8 )
2
+ 5𝑎−3
⁄

8 = 5𝑎⁄
4 ⇒ 25𝑎2−30𝑎+9+40𝑎−24−80𝑎
⁄

64 = 0

⇒ 25𝑎2 − 70𝑎 − 15 = 0 ⇒ 5𝑎2 − 14𝑎 − 3 = 0 ⇒ 𝑎 = 3, − 1
⁄

5.

If 𝑎 = 3 ⇒ 𝛼 = 3
⁄

2 else if 𝑎 = −1
⁄

5 ⇒ 𝛼 = −1
⁄

2.

Now it is trivial to calculate the value of 𝛽.

270. Let one of the roots is 𝛼 then second root is 1⁄𝛼.

Product of roots = 𝛼 ∗ 1⁄
𝛼 = 𝑘
⁄

5 ⇒ 𝑘 = 5.

271. (a) The equation is :math:(5 + 4𝑚)𝑥2 − (4 + 2𝑚)𝑥 + 2 −𝑚 = 0

For roots to be equal discriminant has to be zero.

4(2 +𝑚)2 − 4(5 + 4𝑚)(2 −𝑚) = 0 ⇒ 4 + 4𝑚+𝑚2 − 10 − 3𝑚+ 4𝑚2 = 0

5𝑚2 −𝑚− 6 = 0 ⇒ 𝑚 = 1, − 6
⁄

5

(b) Product of roots = 2−𝑚
⁄

5+4𝑚 = 2 ⇒ 2 −𝑚 = 10 + 8𝑚 ⇒ −8
⁄

9

(c) Sum of roots = 4+2𝑚
⁄

5+4𝑚 = 6 ⇒ 𝑚 = −13
⁄

11
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272. Let one root be 𝛼 then the second root is 𝑛𝛼.

Sum of roots (𝑛 + 1)𝛼 = − 𝑏
⁄

𝑎 ⇒ 𝛼 = − 𝑏
⁄

(𝑛+1)𝑎

Product of roots 𝑛𝛼2 = 𝑐
⁄

𝑎

Substituting value of 𝛼 from the earlier equation

𝑛𝑏2
⁄

(𝑛+1)2 𝑎2 =
𝑐
⁄

𝑎 ⇒ (𝑛 + 1)2 𝑐𝑎 = 𝑛𝑏2.

273. Following from previous problem 𝑛 = 3
⁄

4 and substituting in final solution

(3⁄4 + 1)
2
𝑐𝑎 = 3
⁄

4 𝑏
2 ⇒ 12𝑏2 = 49𝑎𝑐.

274. From earlier problem, we have 𝑎 = 4, 𝑏 = 𝑎, 𝑐 = 3 and 𝑛 = 1
⁄

2

Substituting in the final relation we have, 9⁄4 .3.4 =
1
⁄

2 𝑎
2 ⇒ 𝑎2 = 54.

Discriminant of the second equation, 𝐷 = 9 − 4(𝑎2 − 2𝑎) < 0, and thus roots are
imaginary.

275. Let 𝛼, 𝛽 be the roots of the given equation.

Sum of roots, 𝛼 + 𝛽 = 𝑝 and product of the roots 𝛼𝛽 = 𝑞

Given, 𝛼 + 𝛽 = 𝑚(𝛼 − 𝛽). Squaring, (𝛼 + 𝛽)2 = 𝑚2(𝛼 − 𝛽)2

𝑝2 = 𝑚2(𝛼 + 𝛽)2 − 4𝑚2𝛼𝛽 = 𝑚2𝑝2 − 4𝑚2𝑞 ⇒ 𝑝2(𝑚2 − 1) = 4𝑚2𝑞.

276. Let 𝛼, 𝛽 be the roots of the given equation. Sum of roots, 𝛼 + 𝛽 = 𝑝 and product of
the roots 𝛼𝛽 = 𝑞

Given, 𝛼 − 𝛽 = 1. Squaring we have,

⇒ (𝛼 − 𝛽)2 = 1 ⇒ (𝛼 + 𝛽)2 − 4𝛼𝛽 = 1 ⇒ 𝑝2 − 4𝑞 = 1. Also, [(𝛼 − 𝛽)2 + 2𝛼𝛽]2 =
(1 + 2𝑞)2

⇒ (𝛼2 + 𝛽2)2 = 𝛼4 + 𝛽4 + 2𝛼2𝛽2 = 𝛼4 + 𝛽4 − 2𝛼2𝛽2 + 4𝛼2𝛽2 = (𝛼2 − 𝛽2)2 + 4𝑞2

⇒ [(𝛼 + 𝛽)2(𝛼 − 𝛽)2 ]+ 4𝑞2 = 𝑝2 + 4𝑞2.

277. The given equation is 𝑎(𝑥 − 𝑏)+ 𝑏(𝑥 − 𝑎) = 𝑚(𝑥 − 𝑎)(𝑥 − 𝑏)⇒𝑚𝑥2 − 𝑥𝑚(𝑎 + 𝑏)−
𝑚𝑎𝑏 − 𝑎𝑥 + 𝑎𝑏 − 𝑏𝑥 + 𝑎𝑏 = 0

⇒ 𝑚𝑥2 − 𝑥(𝑚 + 1)(𝑎 + 𝑏) − 𝑎𝑏(𝑚 − 2) = 0. If roots are equal in magnitude but
opposite in sign then sum would be zero.

⇒ (𝑚+ 1)(𝑎 + 𝑏) = 0 ⇒ 𝑚 = −1 or 𝑎 + 𝑏 = 0.
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278. Let 𝛼, 𝛽 be the roots of the equation.

Sum of roots, 𝛼 + 𝛽 = − 𝑏
⁄

𝑎 and product of roots, 𝛼𝛽 = 𝑐
⁄

𝑎.

Difference of roots, 𝛼 − 𝛽 = 𝑘 as given.

Squaring we get, (𝛼 − 𝛽)2 = 𝑘2 ⇒ (𝛼 + 𝛽)2 − 4𝛼𝛽 = 𝑘2

𝑏2
⁄

𝑎2 − 4 𝑐⁄𝑎 = 𝑘2 ⇒ 𝑏2 − 4𝑎𝑐 = 𝑘2𝑎2.

279. Let 𝛼 be one of the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. Clearly, 𝛼2 will be the
other root.

Sum of roots, 𝛼 + 𝛼2 = − 𝑏
⁄

𝑎 and product of the roots 𝛼3 = 𝑐
⁄

𝑎. Cubing sum of roots,

𝑏3
⁄

𝑎3 = −𝛼3(𝛼 + 1)3 = − 𝑐
⁄

𝑎 (𝛼
3 + 3𝛼(𝛼 + 1)+ 1)

𝑏3
⁄

𝑎3 = − 𝑐
⁄

𝑎 (
𝑐
⁄

𝑎 −
3𝑏⁄
𝑎 + 1)

Simplifying we get the desired relationship.

280. Let 𝛼 be one of the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. Clearly, 𝛼2 will be the
other root.

Sum of roots, 𝛼 + 𝛼2 = −𝑝 and product of roots 𝛼3 = 1.

Thus, 𝛼 is cube root of unity. If 𝛼 = −1 then 𝑝 = −2

else if it is one of the complex numbers then we know that 1 + 𝜔+𝜔2 = 0 which makes
𝑝 = 1.

281. Let 𝛼 be one of the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. Clearly, 𝛼2 will be the
other root.

Sum of roots, 𝛼 + 𝛼2 = −𝑝 and product of roots 𝛼3 = 𝑞

𝑝3 = −𝛼3(𝛼 + 1)3 = −𝑞(𝛼3 + 3𝛼(𝛼 + 1)+ 1) = −𝑞(𝑞 − 3𝑝 + 1)

⇒ 𝑝3 − 𝑞(3𝑝 − 1)+ 𝑞2 = 0.

282. The solution is given below:

i. 𝛼 + 𝛽 = −3
⁄

2 and 𝛼𝛽 = 4
⁄

2 = 2.

⇒ 𝛼2 + 𝛽2 = (𝛼 + 𝛽)2 − 2𝛼𝛽 = 9
⁄

4 − 4 = −7
⁄

4.

ii. 𝛼⁄
𝛽 +

𝛽⁄
𝛼 = 𝛼2+𝛽2
⁄

𝛼𝛽

Substituting for numerator from previous part,

⇒ 𝛼⁄
𝛽 +

𝛽⁄
𝛼 = −7
⁄

8.
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283. Sum of roots, 𝛼 + 𝛽 = − 𝑏
⁄

𝑎 and product of roots, 𝛼𝛽 = 𝑐
⁄

𝑎

𝛼2⁄
𝛽 + 𝛽2⁄

𝛼 = 𝛼3+𝛽3
⁄

𝛼𝛽 = (𝛼+𝛽)3−3𝛼𝛽(𝛼+𝛽)
⁄

𝛼𝛽 =
−𝑏3
⁄

𝑐3
+3𝑐
⁄

𝑎
𝑏⁄
𝑎
⁄

𝑐⁄
𝑎

= 3𝑎𝑏𝑐−𝑏3
⁄

𝑎2𝑐 .

284. Sum of roots, 𝛼 + 𝛽 = − 𝑏
⁄

𝑎 and product of roots, 𝛼𝛽 = 𝑏
⁄

𝑎

Given expression is, √

𝛼⁄
𝛽 +√


𝛽⁄
𝛼 +√


𝑏
⁄

𝑎 =
𝛼+𝛽
⁄

√


𝛼𝛽 +√

𝑏
⁄

𝑎 =
−𝑏⁄

𝑎
⁄

√


𝑏⁄
𝑎

+√

𝑏
⁄

𝑎 = 0.

285. Product of the roots of the first equation is 𝑏2 and sum of roots of the second equation
is 2𝑏.

Geometric mean of the roots of the first equation = square root of product of roots =
√


𝑏2 = 𝑏.

Arithmetic mean of the roots of the second equation = half of sum of roots = 2𝑏⁄
2 = 𝑏

and thus both are equal.

286. Let 𝛼, 𝛽 be the roots of the equation.

Sum of roots, 𝛼 + 𝛽 = − 𝑞
⁄

𝑝 and product of roots, 𝛼𝛽 = 𝑟
⁄

𝑝.

Given, sum of roots is equal to sum of square of roots. ∴𝛼 + 𝛽 = 𝛼2 + 𝛽2

− 𝑞
⁄

𝑝 = (𝛼 + 𝛽)2 − 2𝛼𝛽 = 𝑞2
⁄

𝑝2 −
2𝑟
⁄

𝑝 ⇒ 2𝑝𝑟 = 𝑝𝑞 + 𝑞2.

287. Let 𝛼, 𝛽 be the roots of the equation. Sum of roots, 𝛼 + 𝛽 = 𝑝 and product of roots,
𝛼𝛽 = 𝑞.

𝛼2⁄
𝛽2 +

𝛽2⁄
𝛼2 =

𝛼4+𝛽4
⁄

(𝛼𝛽)2 = (𝛼2+𝛽2)2−2𝛼2𝛽2
⁄

𝛼2𝛽2 = [(𝛼+𝛽)2−2𝛼𝛽]2
⁄

𝛼2𝛽2 − 2

= (𝑝2−2𝑞)2
⁄

𝑞2 − 2 = 𝑝4
⁄

𝑞2 −
4𝑝2⁄
𝑞 + 2.

288. Let 𝛼, 𝛽 be the roots of the equation. Sum of roots, 𝛼 + 𝛽 = − 𝑏
⁄

𝑎 and product of roots,

𝛼𝛽 = 𝑐
⁄

𝑎

⇒ 1⁄
(𝑎𝛼+𝑏)2 +

1⁄
(𝑎𝛽+𝑏)2 =

(𝑎𝛼+𝑏)2+(𝑎𝛽+𝑏)2
⁄

[(𝑎𝛼+𝑏)(𝑎𝛽+𝑏)]2

⇒ 𝑎(𝛼2+𝛽2)+2𝑎𝑏(𝛼+𝛽)+2𝑏2
⁄

(𝑎2𝛼𝛽+2𝑎𝑏(𝛼+𝛽)+𝑏2)2

Substituting for sum of roots, product of roots and 𝛼2 + 𝛽2 = (𝛼 + 𝛽)2 − 2𝛼𝛽 and
simplifying

= 𝑏2−2𝑎𝑐⁄
𝑐2𝑎2 .
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289. Rewriting the equation we have 𝜆𝑥2 + 𝑥(1 − 𝜆)+ 5 = 0.

Since 𝛼 and 𝛽 are the roots therefore, we have 𝛼 + 𝛽 = 𝜆−1
⁄

𝜆 and 𝛼𝛽 = 5⁄
𝜆.

Given, 𝛼⁄𝛽 + 𝛽⁄
𝛼 = 4
⁄

5

𝛼2+𝛽2
⁄

𝛼𝛽 = (𝛼+𝛽)2−2𝛼𝛽
⁄

𝛼𝛽 ⇒ (𝜆−1)2−10𝜆
⁄

5𝜆 = 4
⁄

5

⇒ (𝜆 − 1)2 − 10𝜆 = 4𝜆 ⇒ 𝜆2 − 16𝜆 + 1 = 0 ∴𝜆1 + 𝜆2 = 16 and 𝜆1𝜆2 = 1.

i. 𝜆1⁄
𝜆2
+ 𝜆2⁄

𝜆1
= (𝜆1+𝜆2)2−2𝜆1𝜆2
⁄

𝜆1𝜆2

Substituting the values for sum and product we have, result as 254.

ii. 𝜆2
1⁄

𝜆2
+ 𝜆2

2⁄
𝜆1

= 𝜆3
1+𝜆3

2
⁄

𝜆1𝜆2
= (𝜆1+𝜆2)3−3𝜆1𝜆2(𝜆1+𝜆2)
⁄

𝜆1𝜆2

= 4048.

290. For the first equation 𝛼 + 𝛽 = −𝑝 and 𝛼𝛽 = 𝑞 and similarly for the second 𝛾 + 𝛿 = −𝑟
and 𝛾𝛿 = 𝑠.

i. (𝛼 + 𝛾)(𝛼 + 𝛿)(𝛽 + 𝛾)(𝛽 + 𝛿) = [𝛼2 + 𝛼(𝛾 + 𝛿)+ 𝛾𝛿] [𝛽2 + 𝛽(𝛾 + 𝛿)+ 𝛾𝛿]

= (𝛼2 − 𝑟𝛼 + 𝑠)(𝛽2 − 𝑟𝛽 + 𝑠) = (𝛼2𝛽2 − 𝑟𝛼𝛽2 + 𝑠𝛽2 − 𝑟𝛼2𝛽 − 𝑟2𝛼𝛽 − 𝑟𝑠𝛽 +
𝑠𝛼2 − 𝑟𝑠𝛼 + 𝑠2)

= 𝑞2− 𝑟𝛼𝛽(𝛼+𝛽)+𝑠(𝛼2+𝛽2)+𝑟2𝑝− 𝑟𝑠(𝛼+𝛽)+𝑠2 = 𝑞2+ 𝑝𝑟𝑠+ 𝑠(𝑝2−2𝑞)+
𝑟2𝑝 − 𝑟𝑠𝑞 + 𝑠2

ii. (𝛼 − 𝛾)(𝛽 − 𝛿)+ (𝛽 − 𝛾)(𝛼 − 𝛿) = 𝛼𝛽 − 𝛼𝛿 − 𝛽𝛾 + 𝛾𝛿 + 𝛼𝛽 − 𝛽𝛿 − 𝛼𝛾 + 𝛾𝛿

= 2𝛼𝛽 + 2𝛾𝛿 − (𝛼 + 𝛽)(𝛾 + 𝛿) = 2𝑞 + 2𝑠 − 𝑝𝑟.

iii. (𝛼 − 𝛾)2 + (𝛽 − 𝛿)2 + (𝛽 − 𝛾)2 + (𝛼 − 𝛿)2

= 2(𝛼2+𝛽2+𝛿2+𝛾2)−2(𝛼+𝛽)(𝛾 +𝛿) = 2[(𝛼+𝛽)2−2𝛼𝛽+ (𝛾 +𝛿)2−2𝛾𝛿]−
2(𝛼 + 𝛽)(𝛾 + 𝛿)

= 2[𝑝2 + 𝑟2 − 2𝑞 − 2𝑠]− 2𝑝𝑟.

291. 𝛼 + 𝛽 = 𝑝 and 𝛼𝛽 = 𝑞

Now, R.H.S. = (𝛼 + 𝛽)(𝛼𝑛 + 𝛽𝑛)− 𝛼𝛽(𝛼𝑛−1 + 𝛽𝑛−1) = 𝛼𝑛+1 + 𝛽𝑛+1 = L.H.S.

292. 𝛼 + 𝛽 = 𝛾 + 𝛿 = −𝑝, 𝛼𝛽 = −𝑞 and 𝛾𝛿 = 𝑟 Also, since 𝛼, 𝛽 are roots of 𝑥2 + 𝑝𝑥 + 𝑞 =
0, ∴𝛼2 + 𝑝𝛼 + 𝑞 = 0 and 𝛽2 + 𝑝𝛽 + 𝑞 = 0.

Now, (𝛼 − 𝛾)(𝛼 − 𝛿) = 𝛼2 − 𝛼(𝛾 + 𝛿)+ 𝛾𝛿 = 𝛼2 + 𝑝𝛼 − 𝑟 = −𝑞 − 𝑟 = −(𝑞 + 𝑟), and
similarly, (𝛽 − 𝛾)(𝛽 − 𝛿) = −(𝑞 + 𝑟).
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293. Clearly, 𝛼 + 𝛽 = 2𝑝, 𝛼𝛽 = 𝑞 and 𝛾 + 𝛿 = 2𝑟, 𝛾𝛿 = 𝑠

i. 𝛼⁄
𝛽 =

𝛾⁄
𝛿. By componendo and dividendo

⇒ 𝛼+𝛽
⁄

𝛼−𝛽 =
𝛾+𝛿
⁄

𝛾−𝛿

Squaring, (𝛼+𝛽⁄𝛼−𝛽)
2
= (𝛾+𝛿⁄𝛾−𝛿)

2

1 − 4𝛼𝛽⁄
(𝛼+𝛽)2 = 1 − 4𝛾𝛿
⁄

(𝛾+𝛿)2 ⇒
𝑞
⁄

𝑝2 =
𝑠
⁄

𝑟2.

ii. Since 𝛼, 𝛽, 𝛾, 𝛿 are in G. P. Hence, 𝛼⁄𝛽 = 𝛾⁄
𝛿 and then we can proceed like previous

part.

iii. Since 𝛼, 𝛽, 𝛾, 𝛿 are in A. P. Hence, 𝛼 − 𝛽 = 𝛾 − 𝛿

⇒ (𝛼 + 𝛽)2 − 4𝛼𝛽 = (𝛾 + 𝛿)2 − 4𝛾𝛿 ⇒ 4𝑝2 − 4𝑞 = 4𝑟2 − 4𝑠 ⇒ 𝑠 − 𝑞 = 𝑟2 − 𝑝2.

294. Clearly, 𝛼 + 𝛽 = −2𝑏⁄
𝑎 and 𝛼𝛽 = 𝑐
⁄

𝑎 for 𝑎𝑥2 + 2𝑏𝑥 + 𝑐 = 0 and 𝛼 + 𝛽 + 2𝑘 = −2𝐵
⁄

𝐴 and

(𝛼 + 𝑘)(𝛽 + 𝑘) = 𝐶
⁄

𝐴 for 𝐴𝑋2 + 2𝐵𝑥 + 𝐶 = 0.

Given expression can be rewritten as 𝑏
2
⁄

𝑎2 −
𝑐
⁄

𝑎 =
𝐵2
⁄

𝐴2 −
𝐶
⁄

𝐴

(𝛼+𝛽)2⁄
4 − 𝛼𝛽 = (𝛼+𝛽+2𝑘)2
⁄

4 − (𝛼 + 𝑘)(𝛽 + 𝑘)⇒ (𝛼 − 𝛽)2 = (𝛼 + 𝑘 − 𝛽 − 𝑘)2, which is
true.

295. Proceeding like previous problem, we have to prove that 𝑏2−4𝑎𝑐⁄
𝐵2−4𝐴𝐶 = 𝑎2⁄

𝐴2 ⇒
𝑏2
⁄

𝑎2 −
4𝑐
⁄

𝑎 =
𝐵2
⁄

𝐴2 −
4𝐶
⁄

𝐴 ⇒ (𝛼 + 𝛽)2 − 4𝛼𝛽 = (𝛼 + 𝛽 + 2𝑘)2 − 4(𝛼 + 𝑘)(𝛽 + 𝑘)

⇒ (𝛼 − 𝛽)2 = (𝛼 + 𝑘 − 𝛽 − 𝑘)2, which is true.

296. Let 𝛼, 𝛽 be the roots of 𝑥2 + 2𝑝𝑥 + 𝑞 = 0 and 𝛾, 𝛿 be the roots of 𝑥2 + 2𝑞𝑥 + 𝑝 = 0

𝛼 + 𝛽 = −2𝑝 and 𝛾 + 𝛿 = −2𝑞. Also, 𝛼𝛽 = 𝑞 and 𝛾𝛿 = 𝑝

Given that roots differ by a constant term say 𝑘. ∴𝛼 + 𝑘 = 𝛾 and 𝛽 + 𝑘 = 𝛿

Thus, 𝛼+𝛽+2𝑘 = −2𝑞 ⇒−2𝑝+2𝑘 = −2𝑞 ⇒ 𝑘 = 𝑝−𝑞 ⇒ 𝛾𝛿 = 𝛼𝛽+(𝛼+𝛽)𝑘+𝑘2 = 𝑝

Also, 𝑞 − 2𝑝𝑘 + 𝑘2 = 𝑝 ⇒ −2𝑝 + 𝑘 = 1 ⇒ 𝑝 + 𝑞 + 1 = 0.

297. Clearly, 𝛼 + 𝛽 = − 𝑏
⁄

𝑎 and 𝛼𝛽 = 𝑐
⁄

𝑎.

i. Sum of these roots is 𝛼⁄𝛽 + 𝛽⁄
𝛼 = 𝛼2+𝛽2
⁄

𝛼𝛽 = 𝑏2−2𝑎𝑐⁄
𝑎𝑐

Product of these roots is 1. Therefore, such an equation is 𝑥2 − 𝑏2−2𝑎𝑐⁄
𝑎𝑐 𝑥 + 1 = 0.

ii. Sum of these roots is 𝛼
3+𝛽3
⁄

𝛼𝛽 = (𝛼+𝛽)3−3𝛼𝛽(𝛼+𝛽)
⁄

𝛼𝛽 = 3𝑎𝑏𝑐−𝑏3
⁄

𝑎2𝑐 .
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Product of these roots is 𝛼𝛽 = 𝑐
⁄

𝑎. Therefore, an equation whose roots were these is

𝑥2 − 3𝑎𝑏𝑐−𝑏3
⁄

𝑎2𝑐 𝑥 + 𝑐
⁄

𝑎 = 0.

iii. Sum of these roots is (𝛼 + 𝛽)2 + (𝛼 − 𝛽)2 = 2(𝛼 + 𝛽)2 − 4𝛼𝛽 = 2𝑏2
⁄

𝑎2 −
4𝑐
⁄

𝑎 .

Product of these roots is (𝛼 + 𝛽)2(𝛼 − 𝛽)2 = (𝛼 + 𝛽)2 [(𝛼 + 𝛽)2 − 4𝛼𝛽] =
𝑏2
⁄

𝑎2(
𝑏2
⁄

𝑎2 −
4𝑐
⁄

𝑎 ).

So the equation is 𝑥2 − (2𝑏
2
⁄

𝑎2 −
4𝑐
⁄

𝑎 )𝑥 +
𝑏2
⁄

𝑎2(
𝑏2
⁄

𝑎2 −
4𝑐
⁄

𝑎 ) = 0.

iv. Sum of these roots is 1−𝛼⁄1+𝛼 + 1−𝛽⁄
1+𝛽 =

1+𝛽−𝛼−𝛼𝛽+1+𝛼−𝛽−𝛼𝛽
⁄

1+(𝛼+𝛽)+𝛼𝛽

= 2−2𝛼𝛽
⁄

1+(𝛼+𝛽)+𝛼𝛽 =
2(1+𝑏⁄

𝑎)
⁄

1−𝑏⁄
𝑎+

𝑐⁄
𝑎
= 2(𝑎+𝑏)
⁄

𝑎−𝑏+𝑐.

Product of these roots is 1−𝛼⁄1+𝛼 . 1−𝛽⁄1+𝛽 = 1−(𝛼+𝛽)+𝛼𝛽
⁄

1+(𝛼+𝛽)+𝛼𝛽 =
1+𝑏⁄

𝑎+
𝑐⁄
𝑎
⁄

1−𝑏⁄
𝑎+

𝑐⁄
𝑎
= 𝑎+𝑏+𝑐
⁄

𝑎−𝑏+𝑐.

Therefore, the equation is (𝑎 − 𝑏 + 𝑥)𝑥2 − 2(𝑎 + 𝑏)𝑥 + (𝑎 + 𝑏 + 𝑐) = 0.

v. Sum of these roots is 1⁄
(𝛼+𝛽)2 + (𝛼−𝛽)2 = 𝑎2
⁄

𝑏2 + [(𝛼+𝛽)2 − 4𝛼𝛽] = 𝑎2
⁄

𝑏2 + [
𝑏2
⁄

𝑎2 −
4𝑐
⁄

𝑎 ].

Product of these roots is 1⁄
(𝛼+𝛽)2 .(𝛼 − 𝛽)2 = 1⁄

(𝛼+𝛽)2 .[(𝛼 + 𝛽)2 − 4𝛼𝛽] = 𝑎2
⁄

𝑏2 [
𝑏2
⁄

𝑎2 −
4𝑐
⁄

𝑎 ] =
𝑏2−4𝑎𝑐⁄

𝑏2 .

Now it is trivial to deduce the equation.

298. Let the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 are 𝑝 and 𝑞, then 𝑝 + 𝑞 = − 𝑏
⁄

𝑎 and

𝑝𝑞 = 𝑐
⁄

𝑎.

(a) The reciprocal of roots are 1⁄𝑝 and 1⁄𝑞. Sum of these is 𝑝+𝑞⁄𝑝𝑞 = − 𝑏⁄
𝑐 and product is

1
⁄

𝑝𝑞 =
𝑎
⁄

𝑐. Therefore, the equation is 𝑐𝑥2 + 𝑏𝑥 + 𝑎 = 0.

(b) Let one of the roots is 𝑝 then the other will be −𝑝. Sum will be 0 and product will
be − 𝑐
⁄

𝑎. Therefore, the equation is 𝑎𝑥2 − 𝑐 = 0.

299. Clearly, 𝛼 + 𝛽 = −𝑝 and 𝛼𝛽 = 𝑞.

(a) 𝛼4 + 𝛽4 = (𝛼2 + 𝛽2)− 2𝛼2𝛽2 = [(𝛼 + 𝛽)2 − 2𝛼𝛽]2 − 2𝛼2𝛽2 = [𝑝2 − 2𝑞]2 − 2𝑞2 =
𝑝4 − 4𝑝2𝑞 + 2𝑞2.

(b) 𝛼−4 + 𝛽−4 = 𝛼4+𝛽4
⁄

𝛼4𝛽4 = 𝑝4−4𝑝2𝑞+2𝑞2
⁄

𝑞4 .

300. Clearly, 𝛼 + 𝛽 = 𝑝 and 𝛼𝛽 = 𝑞.
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i. Sum of these roots is 𝑞⁄
𝑝−𝛼 +

𝑞⁄
𝑝−𝛽 =

2𝑝𝑞−𝑞(𝛼+𝛽)
⁄

𝑝2−𝑝(𝛼+𝛽)+𝛼𝛽 =
𝑝𝑞
⁄

𝑞 = 𝑝.

Product of these roots is 𝑞⁄
𝑝−𝛼 .

𝑞⁄
𝑝−𝛽 =

𝑞2
⁄

𝑞 = 𝑞.

Thus the eqation of these new roots remain same i.e. 𝑥2 − 𝑝𝑥 + 𝑞 = 0.

ii. Sum of these roots is 𝛼 + 𝛽 + 1⁄
𝛼 +

1⁄
𝛽 = 𝛼 + 𝛽 + 𝛼+𝛽
⁄

𝛼𝛽 = 𝑝 + 𝑝
⁄

𝑞 =
𝑝(1+𝑞)
⁄

𝑞 .

Product of these roots is (𝛼 + 1⁄
𝛽)(𝛽 +

1⁄
𝛼) = 𝛼𝛽 + 𝛼⁄

𝛽 +
𝛽⁄
𝛼 +

1
⁄

𝛼𝛽 = 𝑞 + 1
⁄

𝑞 +
𝛼2+𝛽2
⁄

𝛼𝛽 =
𝑞2+1
⁄

𝑞 + 𝑝2−2𝑞
⁄

𝑞 .

Now deducing the equation is trivial.

301. Because 5 + 3𝑖 is a complex root the other root will be complex conjugate i.e. 5 − 3𝑖.
Thus, equation having these complex roots will be 𝑥2 − 10𝑥 + 34 = 0.

302. Because 3 + 4𝑖 is a complex root the other root will be complex conjugate i.e. 3 − 4𝑖.
Thus, equation having these complex roots will be 𝑥2 − 6𝑥 + 25 = 0.

303. Roots are given by −2±√


4+16
⁄

6 = −1±√


5⁄
4 . Now √


5−1⁄
4 = cos 72∘ and −√


5+1⁄
4 = −cos 36∘ =

cos 216∘ = cos(3.72∘)

Now, cos 3𝑥 = 4 cos3 𝑥 − 3 cos 𝑥, therefore if one root is 𝛼 then the other would be
4𝛼3 − 3𝛼.

304. Clearly, by observation 𝛼, 𝛽 are roots of the eqation 𝑥2 − 5𝑥 + 3 = 0. ⇒ 𝛼+ 𝛽 = 5 and
𝛼𝛽 = 3.

Now, 𝛼⁄𝛽 + 𝛽⁄
𝛼 = 𝛼2+𝛽2
⁄

𝛼𝛽 = 5(𝛼+𝛽)−6
⁄

3 = 19
⁄

3 .

305. Correct value of 𝑝 = −11. 𝑞 is 4×6 = 24. Hence, the correct equation is 𝑥2−11𝑥+24 =
0. Hence roots are 8, 3.

306. Correct value of 𝑞 is 2. 𝑝 is −(6−1) = 5. Hence, the correct equation is 𝑥2−5𝑥+2 = 0.

307. From first student the correct value of 𝑞 = 6 × 2 = 12. From second student the correct
value of 𝑝 = −(2 + −9) = 7. Hence the correct equation is 𝑥2 + 7𝑥 + 12 = 0 giving us
3, 4 as correct roots.

308. We have 𝛼 + 𝛽 = −𝑝, 𝛼𝛽 = 𝑞, 𝛼1 + 𝛽1 = 𝑝, 𝛼1𝛽1 = 𝑞.

Now, 1⁄
𝛼1𝛽 +

1⁄
𝛼𝛽1 +

𝛼𝛼1⁄
+ 𝛽𝛽1 = (𝛼+𝛽)(𝛼1+𝛽1)
⁄

𝛼𝛽𝛼1𝛽1 = 𝑝𝑞
⁄

𝑞𝑝 = 1

and ( 1⁄
𝛼1𝛽 +

1⁄
𝛼𝛽1)(

1⁄
𝛼𝛼1

+ 1⁄
𝛽𝛽1) =

1
⁄

𝛼2
1𝛼𝛽

+ 1
⁄

𝛼1𝛽1𝛽2
+ 1
⁄

𝛼1𝛽1𝛼2 +
1
⁄

𝛼𝛽𝛽21

= 1
⁄

𝛼𝛽 [
1⁄
𝛼2
1
+ 1⁄

𝛽21
]+ 1
⁄

𝛼1𝛽1 [
1⁄
𝛼2 +

1⁄
𝛽2] =

1
⁄

𝑞 [
𝛼1
1+𝛽21
⁄

𝛼2
1𝛽21

]+ 1
⁄

𝑝 [
𝛼2+𝛽2
⁄

𝛼2𝛽2 ]

= 𝑝3+𝑞3−𝑝𝑞
⁄

𝑝2𝑞2 . Therefore, the equation with these as roots is
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𝑥2 − 𝑥 + 𝑝3+𝑞3−𝑝𝑞
⁄

𝑝2𝑞2 = 0.

309. We know that complex roots always appear in pair and as 2 +√


3𝑖 is a complex root
the other root will be its complex conjugate i.e. 2 −√



3𝑖. Hence, 𝑝 = −4 and 𝑞 = 13
makring the equation 𝑥2 − 4𝑥 + 13 = 0.

310. 1⁄
2+√


3 = 2 −√


3 which is an irrational root and the other root will be its conjugate i.e.

2 +√


3 hence the equation will be 𝑥2 − 4𝑥 + 1 = 0

311. Since 𝛼, 𝛽 are roots of the equation 𝑥2 − 𝑝𝑥 + 𝑞 = 0, 𝛼 + 𝛽 = 𝑝 and 𝛼𝛽 = 𝑞.

Let us assume that 𝛼 + 1⁄
𝛽 is a root of 𝑞𝑥2 − 𝑝(1 + 𝑞)𝑥 + (1 + 𝑞)2 = 0 then it must

satisfy the equation. Substituting the values we have

𝛼𝛽 (𝛼𝛽+1)
2
⁄

𝛽2 − (𝛼+𝛽)(1+𝛼𝛽)(𝛼𝛽+1)
⁄

𝛽 + (1 + 𝛼𝛽)2 = 0

(𝛼𝛽 + 1)2 [𝛼𝛽 − (𝛼 + 𝛽)𝛽 − 𝛽2 ] = 0

∵ L.H.S. = R.H.S. it is proven that 𝛼 + 1⁄
𝛽 is a root of the given equation.

312. One of the given equations is 2𝑥2 + 3𝑥 − 2 = 0 ⇒ (2𝑥 − 1)(𝑥 + 2) = 0 so the roots
are 𝑥 = 1
⁄

2 , −2. Putting these two in the equation 3𝑥2 + 4𝑚𝑥 + 2 = 0 we obtain two

values −7
⁄

4 , −
11
⁄

8 for 𝑚.

313. Let 𝑝 be the common root then it must satisfy both the equations i.e. 𝑝2 − 11𝑝 + 𝑎 = 0
and 𝑝2−14𝑝+2𝑎 = 0. Equating 𝑎 from both equations 11𝑝− 𝑝2 = 14𝑝−𝑝2

⁄

2 ⇒ 𝑝2−8𝑝 =
0 ⇒ 𝑝 = 0, 8 ⇒ 𝑎 = 0, 24.

314. The condition for having common roots is obtained by cross-multiplication:

(𝑏𝑎 − 𝑐2)(𝑐𝑎 − 𝑏2) = (𝑎2 − 𝑏𝑐)2 ⇒ 𝑎2𝑏𝑐 − 𝑎𝑏3 − 𝑎𝑐3 + 𝑏2𝑐2 = 𝑎4 − 2𝑎2𝑏𝑐 + 𝑏2𝑐2 ⇒
3𝑎2𝑏𝑐 − 𝑎𝑏3 − 𝑎𝑐3 − 𝑎4 = 0

𝑎(3𝑎𝑏𝑐 − 𝑏3 − 𝑐3 − 𝑎3) = 0∵ 𝑎 ≠= 0 ⇒ 𝑎3 + 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐 = 0 ⇒ (𝑎 + 𝑏 + 𝑐)(𝑎2 +
𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑏𝑐 − 𝑐𝑎) = 0

⇒ 𝑎 + 𝑏 + 𝑐 = 0 or 𝑎 = 𝑏 = 𝑐.

315. Proceeding as in last example, condition for common root is

(10𝑚−189)(9−10)= (21−𝑚)2 ⇒ 189−10𝑚 = 441−42𝑚+𝑚2⇒𝑚2−32𝑚+252 =
0 ⇒ 𝑚 = 18, 14.

Roots of 𝑥2 + 10𝑥 + 21 = 0 are −3, −7. When 𝑚 = 18 roots of 𝑥2 + 9𝑥 + 18 = 0 are
−3, −6.

In that case equation formed with −7 and −6 is 𝑥2+ 13𝑥+ 42 = 0 When 𝑚 = 14 roots
of 𝑥2 + 9𝑥 + 14 = 0 are −2, −7.
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In that case equation formed with −3 and −2 are 𝑥2 + 5𝑥 + 6 = 0.

316. Following condition for common roots, we have

(−3 + 120)(10 + 3) = (3 + 36)2 ⇒ 117 ∗ 13 = 392 which is true and thus equations
have a common root.

Roots of 𝑥2 − 𝑥 − 12 = 0 are 4, −3 and roots of 3𝑥2 + 10𝑥 + 3 = 0 are −3, − 1
⁄

3 and
thus common root is −3.

317. Condition for common root is given below:

(𝑝 − 𝑞)(3𝑞 − 2𝑝) = (3 − 2)2 ⇒ (2𝑝 − 3𝑞)(𝑝 − 𝑞)+ 1 = 0 ⇒ 2𝑝2 + 3𝑞2 − 5𝑝𝑞 + 1 = 0.

318. The condition for common root is (𝑏 − 𝑐)(𝑎 − 𝑏) = (𝑎 − 𝑐)2

⇒ 𝑎𝑏 − 𝑎𝑐 − 𝑏2 + 𝑏𝑐 = 𝑎2 + 𝑐2 − 2𝑎𝑐 ⇒ 𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑎𝑐 − 𝑏𝑐 = 0

⇒ 1
⁄

2 (𝑎 − 𝑏)2(𝑏 − 𝑐)2(𝑐 − 𝑎)2 = 0 ⇒ 𝑎 = 𝑏 = 𝑐.

319. Let 𝛼 be the common root then

𝛼2⁄
𝑝𝑞1−𝑝1𝑞 =

𝛼
⁄

𝑞−𝑞1 =
1⁄

𝑝1−𝑝. Clearly, the root is either 𝑝𝑞1−𝑝1𝑞⁄
𝑞−𝑞1 or 𝑞−𝑞1⁄

𝑝1−𝑝.

320. Condition for having common root is:

(−4𝑏 + 3𝑐)(−6𝑎 − 2𝑏) = (4𝑎 − 2𝑐)2. Solving this gives us required equation.

321. Condition for having a common root is:

[(𝑟 − 𝑝)(𝑞 − 𝑟)− (𝑝 − 𝑞)2][(𝑝 − 𝑞)(𝑞 − 𝑟)− (𝑟 − 𝑝)2] = [(𝑞 − 𝑟)2− (𝑝 − 𝑞)(𝑟 − 𝑝)]2,
which is an equality and hence the equations have a common root.

322. Let 𝛼 be a common root then

𝛼2
⁄

𝑎𝑏2−𝑎𝑐2 =
1
⁄

𝑏−𝑐 =
1
⁄

𝑎𝑐−𝑎𝑏 ⇒ 𝛼 = −𝑎(𝑏 + 𝑐) or 𝛼 = − 1
⁄

𝑎.

Let 𝛼, 𝛽 be roots of first and 𝛼, 𝛾 be roots of the second equation. Then, 𝛼 + 𝛽 = −𝑎𝑏
and 𝛼𝛽 = 𝑐 also, 𝛼 + 𝛾 = −𝑎𝑐 and 𝛼𝛾 = 𝑏

⇒ 2𝛼 + 𝛽 + 𝛾 = −𝑎(𝑏 + 𝑐) and 𝛼2𝛽𝛾 = 𝑏𝑐

Equation formed by 𝛽 and 𝛾 would be 𝑥2 − (𝛽 + 𝛾)𝑥 + 𝛽𝛾 = 0.

For either values of 𝛼 equation is 𝑥2 − 𝑎(𝑏 + 𝑐)𝑥 + 𝑎2𝑏𝑐 = 0.

323. Let 𝛼 is a common root then 𝑥2 − 𝑝𝑥+ 𝑞 = 0 and 𝑥2 − 𝑎𝑥+ 𝑏 = 0. Let 𝛽 be the second
root of the first equationa then 1⁄𝛽 will be the second root of the second equation.

Clearly, 𝛼 + 𝛽 = 𝑝, 𝛼𝛽 = 𝑞, 𝛼 + 1⁄
𝛽 = 𝑎, 𝛼⁄𝛽 = 𝑏.



Answers of Polynomials and Theory of Equations 528

∴ (𝑞 − 𝑏)2 = (𝛼𝛽 − 𝛼⁄
𝛽)

2,

𝑏𝑞(𝑝 − 𝑎)2 = 𝛼⁄
𝛽 (𝛼𝛽)(𝛽 −

1⁄
𝛽)

2 = (𝛼𝛽 − 𝛼⁄
𝛽)

2. Hence, proved.

324. It is a quadratic equation but satisfied by three values of 𝑥 = 1, 2, 3 therefore it is
an identity.

325. It is a quadratic equation but satisfied by three values of 𝑥 = 𝑎, 𝑏, 𝑐 therefore it is
an identity.

326. Let 𝑥5 = 𝑦 then equation becomes 3𝑦2 − 2𝑦 − 8 = 0.

Since it is satisfied by two distinct values and it is a quadratic equation therefore it is
an equation.

327. (𝑥+2)2−(𝑥−2)2
⁄

𝑥2−4 = 5
⁄

6

⇒ 8𝑥
⁄

𝑥2−4 =
5
⁄

6 ⇒ 5𝑥2 − 20 − 48𝑥 = 0 ⇒ 𝑥 = 10, − 2
⁄

5.

328. Let 𝑥 = 𝑦2 ⇒ 2𝑦+1⁄
3−𝑦 = 11−3𝑦
⁄

5𝑦−9

⇒ 10𝑦2 − 13𝑦 − 9 = 33 − 20𝑦 + 3𝑦2 ⇒ 7𝑦2 + 7𝑦 − 42 = 0 ⇒ 𝑦 = 2, −3

⇒ 𝑥 = 4, 9 but 𝑥 = 9 does not apply to the equation and is an impossible solution.

329. (𝑥 + 1)(𝑥 − 3)(𝑥 + 2)(𝑥 − 4) = 336 ⇒ (𝑥2 − 2𝑥 − 3)(𝑥2 − 2𝑥 − 8) = 336

Let 𝑥2 − 2𝑥 − 3 = 𝑦 ⇒ 𝑦(𝑦 − 5) = 336 ⇒ 𝑒𝑦2 − 5𝑦 − 336 = 0 ⇒ 𝑦 = 21, −16

⇒ 𝑥 = −4, 6, 1 ± 2√


3𝑖.

330. Squaring 𝑥 + 1 + 2𝑥 − 5 + 2√


(𝑥 + 1)(2𝑥 − 5) = 9 ⇒ 2√


(𝑥 + 1)(2𝑥 − 5) = 13 − 3𝑥

Squaring again 4(𝑥+1)(2𝑥−5) = 9𝑥2−78𝑥+169 ⇒ 𝑥2−66𝑥+189 = 0 ⇒ 𝑥 = 3, 63.

We see that 𝑥 = 63 does not satisfy the equation hence the only solution is 𝑥 = 3.

331. We have 22𝑥 + 2𝑥+2 − 32 = 0 ⇒ (2𝑥 − 4)(2𝑥 + 8) = 0. However, 2𝑥 ≠ 8 ⇒ 2𝑥 = 4 ⇒
𝑥 = 2.

332. Let the speed be 𝑥 km/hour. Then, from the statement 800⁄𝑥 = 800⁄
𝑥+40 +

2
⁄

3

Solving we get 𝑥 = 200 km/hour.

333. Let width be 𝑤 meter. Thus, (𝑤+8)(𝑤−2) = 119 ⇒ 𝑤2+6𝑤−135 = 0 ⇒ 𝑤 = 9,−15
but width cannot be negative. Length is 11 m.

334. Equivalent equation is −𝑥2 + 3𝑥 + 4 = 0 and roots are −1, 4.

Since coefficient of 𝑥2 is -ve the expression will be +ve if 𝑥 lies between the root.

Therefore, for −𝑥2 + 3𝑥 + 4 > 0 the range is ]−1, 4[.
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335. 5𝑥 − 1 < (𝑥 + 1)2 ⇒ 𝑥2 − 3𝑥 + 2 > 0.

Roots of equivalent equation 𝑥2 − 3𝑥 + 2 = 0 are 𝑥 = 2, 1.

Since coefficient of 𝑥2 is positive, 𝑥 must lie outside the range of [1, 2] for the expression
to be positive.

Now considering, (𝑥 + 1)2 < 7𝑥 − 3 ⇒ 𝑥2 − 5𝑥 + 4 < 0

Roots of the equivalent equation 𝑥2 − 5𝑥 + 4 = 0 are 𝑥 = 1, 4 and for expression to be
negative 𝑥 must lie inside the open interval ]1, 4[.

Therefore, the only integral value satisfying the original expression is 3.

336. 8𝑥2+16𝑥−51⁄
(2𝑥−3)(𝑥+4) > 3 ⇒ 2𝑥2+𝑥−15⁄

2𝑥2+5𝑥−12 > 0

2𝑥2 + 𝑥 − 15 = 0 has roots 𝑥 = −3, 5⁄2 ⇒ 2𝑥2 + 5𝑥 − 12 = 0 has roots 𝑥 = −4, 3⁄2

Thus, the inequality will hold true for 𝑥 < −4 and −3 < 𝑥 < 3
⁄

2 and 𝑥 > 5
⁄

2.

337. Let 𝑦 = 𝑥2−3𝑥+4⁄
𝑥2+3𝑥+4 ⇒ (𝑦 − 1)𝑥2 + 3(𝑦 + 1)𝑥 + 4(𝑦 − 1) = 0

Since 𝑥 is real, the discriminant will be greater that 0 ⇒ 9(𝑦 + 1)2 − 16(𝑦 − 1)2 ≥ 0

−7𝑦2 + 50𝑦 − 7 ≥ 0. The roots are 7 and 1⁄7

Since coefficient of 𝑦2 is negative, for the expression to be positive 𝑦 has to lie between
the open interval formed by its roots i.e. ]1⁄7 , 7[

338. Let 𝑦 = 𝑥2+34𝑥−71⁄
𝑥2+2𝑥−7 ⇒ (𝑦 − 1)𝑥2 + 2(𝑦 − 17)𝑥 + (71 − 𝑦) = 0

Since 𝑥 is real, the discriminant will be greater that 0 ⇒ 4(𝑦 − 17)2 − 4(𝑦 − 1)(71 −
7𝑦) ≥ 0

⇒ 𝑦2 − 14𝑦 + 45 ≥ 0. Its roots are 5 and 9

Since coefficient of 𝑦2 is positive, therefore for the expression to be positive 𝑦 has
to lie outside the open interval formed by its roots. Thus, the expression has no value
between 5 and 9.

339. Let 𝑦 = 4𝑥2+36𝑥+9⁄
12𝑥2+8𝑥+1 ⇒ 4(3𝑦 − 1)𝑥2 + 4(2𝑦 − 9)𝑥 + 𝑦 − 9 = 0.

Since 𝑥 is real, the discriminant will be greater that 0 ⇒ 16(2𝑦 − 9)2 − 16(3𝑦 − 1)(𝑦 −
1) ≥ 0 ⇒ 𝑦2 − 8𝑦 + 72 ≥ 0

Corresponding equation is 𝑦2 − 8𝑦 + 72 = 0 ⇒ 𝐷 = 64 − 288 = −224 < 0

Since coefficient of 𝑦2 is positive and discriminant is less than 0 therefore 𝑦2−8𝑦+72 ≥ 0
holds true for all value of 𝑦. Therefore, the expression can take any value.
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340. Let 𝑦 = (𝑥−𝑎)(𝑥−𝑐)⁄
𝑥−𝑏 ⇒ 𝑥2 − (𝑎 + 𝑐 + 𝑦)𝑥 + 𝑎𝑐 + 𝑦𝑏 = 0

Since 𝑥 is real, the discriminant will be greater that 0

⇒ (𝑎 + 𝑐 + 𝑦)2 − 4(𝑎𝑐 + 𝑦𝑏) ≥ 0 ⇒ 𝑦2 + 2(𝑎 + 𝑐 − 2𝑏)𝑦 + (𝑎 − 𝑐)2 ≥ 0.

Corresponding equation is 𝑦2 + 2(𝑎 + 𝑐 − 2𝑏)𝑦 + (𝑎 − 𝑐)2 = 0. Discriminant of above
equation is 𝐷 = −16(𝑎 − 𝑏)(𝑏 − 𝑐)

If 𝑎 > 𝑏 > 𝑐 then 𝐷 < 0 and if 𝑎 < 𝑏 < 𝑐 then also 𝐷 < 0.

Since coefficient of 𝑦2 is positive and 𝐷 < 0 the expression 𝑦2 + 2(𝑎 + 𝑐 − 2𝑏)𝑦 +
(𝑎 − 𝑐)2 ≥ 0 is true for all real values of 𝑦.

Therefore, the given expression is capable of holding any value for the given conditions.

341. Given 𝑥 + 𝑦 = 𝑘 (say, a constant). Let 𝑧 = 𝑥𝑦, then 𝑧 = 𝑥(𝑘 − 𝑥)⇒ 𝑥2 − 𝑘𝑥 + 𝑧 = 0.

Since 𝑥 is real, 𝐷 ≥ 0 for the above equation.

𝑘2 − 4𝑧 ≥ 0 ⇒ 𝑧 ≤ 𝑘2
⁄

4

Hence, the maximum value of 𝑧 = 𝑘2
⁄

4 .

Thus, 𝑥2 − 𝑘𝑥 + 𝑘2
⁄

4 = 0 ⇒ (𝑥 − 𝑘
⁄

2)
2
= 0 ⇒ 𝑥 = 𝑘
⁄

2.

∴ 𝑦 = 𝑘
⁄

2 and thus 𝑥𝑦 is maximum when 𝑥 = 𝑦.

342. Let 𝑦 = 3 − 6𝑥 − 8𝑥2 ⇒ 8𝑥2 + 6𝑥 + 𝑦 − 3 = 0. Since 𝑥 is real, 𝐷 ≥ 0 for the this
equation.

⇒ 36 − 32(𝑦 − 3) ≥ 0 ⇒ 𝑦 ≤ 33
⁄

8 . Hence, maximum value of 𝑦 = 33
⁄

8

⇒ 64𝑥2 + 48𝑥 + 9 = 0 ⇒ (8𝑥 + 3)2 = 0 ⇒ 𝑥 = −3
⁄

8.

343. Let 𝑦 = 12𝑥⁄
4𝑥2+9 ⇒ 4𝑦𝑥2 − 12𝑥 + 9𝑦 = 0. Since 𝑥 is real, 𝐷 ≥ 0 for the above equation.

⇒ 144 − 144𝑦2 ≥ 0 ⇒ 𝑦2 ≤ 1 ⇒ −1 ≤ 𝑦 ≤ 1 ⇔ |𝑦| ≤ 1 ⇔ ∣ 12𝑥⁄
4𝑥2+9∣ ≤ 1

Now, ∣ 12𝑥⁄
4𝑥2+9∣ = 1 ⇔ 4|𝑥|2 − 12|𝑥|+ 9 = 0 ⇒ (2|𝑥|− 3)2 = 0 ⇒ |𝑥| = 3

⁄

2.

344. 𝑥2 + 9𝑦2 − 4𝑥 + 3 = 0. Since 𝑥 is real, 𝐷 ≥ 0 for the above equation.

⇒ (−4)2 − 4(9𝑦2 + 3) ≥ 0 ⇒ 9𝑦2 − 1 ≤ 0 ⇔ 𝑦2 ≤ 1
⁄

9 ⇒ −1
⁄

3 ≤ 𝑦 ≤ 1
⁄

3

The given equation can also be written as 9𝑦2 + 𝑥2 − 4𝑥+ 3 = 0. Since 𝑦 is real, 𝐷 ≥ 0
for the above equation.
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⇒ −36(𝑥2 − 4𝑥 + 3) ≥ 0 ⇒ 𝑥2 − 4𝑥 + 3 ≤ 0

Since coefficient of 𝑥2 is positive, it must lie between its root for the above expression
to be negative. Therefore, 𝑥 must lie between 1 and 3.

345. Given expression is 𝑥2 − 𝑎𝑥 + 1 − 2𝑎2 > 0

Since 𝑥 is real the discriminant of the corresponding equation has to be negative for it
to be positive for all values of 𝑥.

𝑎2 − 4(1 − 2𝑎2) < 0 ⇔ 9𝑎2 ≤ 4 ⇒ −2
⁄

3 < 𝑎 < 2
⁄

3.

346. Let 𝛼 be a common factor, therefore it will satisfy both the equations.

𝛼2 − 11𝛼 + 𝑎 = 0 and 𝛼2 − 14𝛼 + 2𝑎 = 0. By cross-multiplication

𝛼2
⁄

−22𝑎+14𝑥 =
𝛼
⁄

𝑎−2𝑎 =
1
⁄

−14+11 ⇒
𝛼2
⁄

−8𝑎 =
𝛼
⁄

−𝑎 = −1
⁄

3

From first two we have 𝛼 = 8 and from last two we have 𝛼 = 𝑎
⁄

3 ∴ 𝑎 = 24.

347. 𝑦 = 𝑚𝑥 is a factor of 𝑎𝑥2+ 𝑏𝑥𝑦 + 𝑐𝑦2 means 𝑎𝑥2+ 𝑏𝑥𝑦 + 𝑐𝑦2 will be zero when 𝑦 = 𝑚𝑥.

𝑎𝑥2 + 𝑏𝑥.𝑚𝑥 + 𝑐𝑚2𝑥2 = 0 ⇒ 𝑐𝑚2 + 𝑏𝑚+ 𝑎 = 0. Similarly, 𝑎1𝑚2 + 𝑏1𝑚+ 𝑐1 = 0 since
𝑚𝑦 − 𝑥 is a factor of 𝑎1𝑥2 + 𝑏1𝑥𝑦 + 𝑐1𝑦2

Solving these two equations in 𝑚 by cross-multiplication 𝑚2
⁄

𝑏𝑐1−𝑎𝑏1 =
𝑚
⁄

𝑎𝑎1−𝑐𝑐1 =
1
⁄

𝑐𝑏1−𝑏𝑎1

From first two we get, 𝑚 = 𝑏𝑐1−𝑎𝑏1
⁄

𝑎𝑎1−𝑐𝑐1, and from last two we get, 𝑚 = 𝑎𝑎1−𝑐𝑐1
⁄

𝑐𝑏1−𝑏𝑎1

Equating the two values of 𝑚 obtained, we get (𝑏𝑐1 − 𝑎𝑏1)(𝑐𝑏1 − 𝑏𝑎1) = (𝑎𝑎1 − 𝑐𝑐1)2.

348. We know that 𝑎𝑥2+ 2ℎ𝑥𝑦 + 𝑏𝑦2 + 2𝑔𝑥+ 2𝑓𝑦 + 𝑐 can be resolved into two linear factors
if and only if

𝑎𝑏𝑐 + 2𝑓𝑔ℎ − 𝑎𝑓2 − 𝑏𝑔2 − 𝑐ℎ2 = 0 and ℎ2 − 𝑎𝑏 > 0. Given expression is 2𝑥2 +𝑚𝑥𝑦 +
3𝑦2 − 5𝑦 − 2

Here, 𝑎 = 2, ℎ = 𝑚
⁄

2 , 𝑏 = 3, 𝑔 = 0, 𝑓 = −5⁄
2 , 𝑐 = −2 ⇒ ℎ2 − 𝑎𝑏 = 𝑚2
⁄

4 − 6 > 0 ⇒ 𝑚2 > 24

Applying the second condition, −12 − 25
⁄

2 + 𝑚2
⁄

2 = 0 ⇒ 𝑚2 = 49 ∴𝑚 = ±7.

349. Given expression is 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 + 2𝑎𝑦𝑧 + 2𝑏𝑧𝑥 + 2𝑐𝑥𝑦

= 𝑧2[𝑎(𝑥⁄𝑧)
2
+ 𝑏(𝑦⁄𝑧)

2
+ 𝑐 + 2𝑎 𝑦⁄𝑧 + 2𝑏 𝑥⁄𝑧 + 2𝑐 𝑥𝑦⁄𝑧2]

= 𝑧2(𝑎𝑋2+ 𝑏𝑌 2+ 𝑐 + 2𝑎𝑌 + 2𝑏𝑋 + 2𝑐𝑋𝑌 ) where 𝑋 = 𝑥
⁄

𝑧 , 𝑌 = 𝑦
⁄

𝑧. Now this will resolve
in linear factors if

𝑎𝑏𝑐 + 2𝑎𝑏𝑐 − 𝑎.𝑎2 − 𝑏.𝑏2 − 𝑐.𝑐2 =⇒ 𝑎3 + 𝑏3 + 𝑐3 = 3𝑎𝑏𝑐.
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350. Given expression is 2𝑥2 − 𝑦2 − 𝑥 + 𝑥𝑦 + 2𝑦 − 1

Corresponding equation is 2𝑥2 − 𝑦2 − 𝑥 + 𝑥𝑦 + 2𝑦 − 1 = 0 ⇒ 𝑥 =
1−𝑦±√


(1−𝑦)2+8(𝑦2−2𝑦+1)
⁄

4 ⇒ 𝑥 = 1 − 𝑦, − 1−𝑦
⁄

2 .

Therefore, required linear factors are 𝑥 + 𝑦 − 1 and 2𝑥 − 𝑦 + 1.

351. Corresponding quadratic equation is 𝑥2 + 2(𝑎 + 𝑏 + 𝑐)𝑥 + 3(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) = 0. It will
be a perfect square if its discriminant is zero.

⇒ 4(𝑎 + 𝑏 + 𝑐)2 − 4.3(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) = 0 ⇒ 𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑏𝑐 − 𝑐𝑎 = 0

⇒ 1
⁄

2 (𝑎 − 𝑏)2(𝑏 − 𝑐)2(𝑐 − 𝑎)2 = 0 ⇒ 𝑎 = 𝑏 = 𝑐.

352. Discriminant of the given equation is 𝐷 = 36 − 72 < 0.

Now since coefficient of 𝑥2 is less than zero the expression is always positive.

353. 8𝑥 − 15 − 𝑥2 > 0 ⇒ 𝑥2 − 8𝑥 + 15 < 0 ⇒ (𝑥 − 3)(𝑥 − 5) < 0.

The above is true if 𝑥 lies in the open interval ]3, 5[.

354. −𝑥2 + 5𝑥 − 4 > 0 ⇒ 𝑥2 − 5𝑥 + 4 < 0 ⇒ (𝑥 − 4)(𝑥 − 1) < 0.

The above is true if 𝑥 lies in the open interval ]1, 4[.

355. 𝑥2 + 6𝑥 − 27 > 0 ⇒ (𝑥 + 9)(𝑥 − 3) > 0. This is true if 𝑥 < −9 or 𝑥 > 3.

356. 4𝑥
⁄

𝑥2+3 ≤ 1 ⇒ 𝑥2 + 3 ≤ 4𝑥 ⇒ 𝑥2 − 4𝑥 + 3 ≤ 0

⇒ (𝑥 − 3)(𝑥 − 1) 𝑙𝑒0, This is true for closed interval [1, 3].

357. 𝑥2 − 3𝑥 + 2 > 0 ⇒ (𝑥 − 2)(𝑥 − 1) > 0. This is true for 𝑥 > 2 or 𝑥 < 1.

𝑥2 − 3𝑥 − 4 ≤ 0 ⇒ (𝑥 − 4)(𝑥 + 1) ≤ 0. This is true for −1 ≤ 𝑥 ≤ 4.

Thus values of 𝑥 which satisfy both are −1 ≤ 𝑥 < 1 and 2 < 𝑥 ≤ 4.

358. Since roots of 𝑎𝑥2 + 𝑏𝑥 + 𝑐 are imaginary, therefore discriminant is negative. ⇒
𝑏2 − 4𝑎𝑐 < 0.

Discriminant of 𝑎2𝑥2 + 𝑎𝑏𝑥 + 𝑎𝑐 is 𝐷 = 𝑎2𝑏2 − 4𝑎3𝑐 = 𝑎2(𝑏2 − 4𝑎𝑐) < 0.

But coefficient of the expression is positive hence it will be always positive.

359. Let 𝑦 = 𝑥2−2𝑥+4⁄
𝑥2+2𝑥+4 ⇒ (𝑦 − 1)𝑥2 + 2(𝑦 + 1)𝑥 + 4(𝑦 − 1) = 0

Since 𝑥 is real discriminant will be greater or equal to zero.

⇒ 4(𝑦 + 1)2− 16(𝑦 − 1)2 ≥ 0 ⇒ 𝑦2+ 2𝑦 + 1− 4𝑦2+ 8𝑦 − 4 ≥ 0 ⇒ −3𝑦2+ 10𝑦 − 3 ≥ 0.
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Roots of corresponding equation are 1⁄3 , 3. Since coefficient of 𝑦2 is negative, for above

to be true 𝑦 must lie between 1⁄3 and 3.

360. Let 𝑦 = 2𝑥2−3𝑥+2⁄
2𝑥2+3𝑥+2 ⇒ 2(𝑦 − 1)𝑥2 + 3(𝑦 + 1)𝑥 + 2(𝑦 − 1) = 0

Since 𝑥 is real discriminant will be greater or equal to zero.

⇒ 9(𝑦+1)2−16(𝑦−1)2 ≥ 0⇒ 9𝑦2+18𝑦+9−16𝑦2+32𝑦−16 ≥ 0⇒−7𝑦2+50𝑦−7 ≥
0

Roots of the corresponding equation are 1⁄7, 7. Since coefficients of 𝑦2 is negative, for the

above to be true 𝑦 must lie between 1⁄7 and 7.

361. Let 𝑦 = 𝑥2−2𝑥+𝑝2⁄
𝑥2+2𝑥+𝑝2 ⇒ (𝑦 − 1)𝑥2 + 2(𝑦 + 1)𝑥 + (𝑦 − 1)𝑝2 = 0.

Since 𝑥 is real, discriminant of above equation has to be greater or equal to zero.

⇒ 4(𝑦 + 1)2 − 4𝑝2(𝑦 − 1)2 ≥ 0 ⇒ (1 − 𝑝2)𝑦2 + 2(1 + 𝑝2)𝑦 + 1 − 𝑝2 ≥ 0

Since 𝑝 > 1 coefficient of 𝑦2 is negative and thus 𝑦 must lie between its roots for the
above to be true.

The roots are 𝑦 = −2(1+𝑝2)±√


4(1+𝑝2)2−4(1−𝑝2)2
⁄

2(1−𝑝2)

𝑦 = 𝑝−1
⁄

𝑝+1,
𝑝+1
⁄

𝑝−1.

362. Let 𝑦 = (𝑥−1)(𝑥+3)⁄
(𝑥−2)(𝑥+4) ⇒ 𝑦 = 𝑥2+2𝑥−3⁄

𝑥2+2𝑥−8 ⇒ (𝑦 − 1)𝑥2 + 2(𝑦 − 1)𝑥2 + 3 − 8𝑦 = 0.

Since 𝑥 is real, discriminant must be greater than or equal to 0.

4(𝑦−1)2+4(𝑦−1)(8𝑦−3) ≥ 0⇒ 𝑦2−2𝑦+1+8𝑦2−11𝑦+3 ≥ 0⇒ 9𝑦2−13𝑦+4 ≥ 0.

For above to be true 𝑦 must not lie between 1 and 4⁄9.

363. Let 𝑦 = 𝑥+𝑎⁄
𝑥2+𝑏𝑥+𝑐2 ⇒ 𝑦𝑥2 + (𝑏𝑦 − 1)𝑥 − 𝑎 + 𝑐2𝑦 = 0.

Since 𝑥 is real, discriminant must be greater than or equal to 0.

⇒ (𝑏𝑦 − 1)2 − 4𝑦(𝑐2𝑦 − 𝑎) ≥ 0 ⇒ 𝑏2𝑦2 − 2𝑏𝑦 + 1+ 4𝑎𝑦 − 4𝑐2𝑦2 ≥ 0 ⇒ (𝑏2 − 4𝑐2)𝑦2 +
2(2𝑎 − 𝑏)𝑦 + 1 ≥ 0.

Discriminant of corresponding equation is 𝐷 = 4(2𝑎 − 𝑏)2 − 4(𝑏2 − 4𝑐2) = 4[4𝑎2 +
𝑏2 − 4𝑎𝑏 − 𝑏2 + 4𝑐2 ] = 16(𝑎2 + 𝑐2 − 𝑎𝑏).

Given 𝑏2 > 4𝑐2 and 𝑎2 + 𝑐2 > 𝑎𝑏 therefore 𝐷 < 0 and coefficient of 𝑦2 is negative.
Therefore, 𝑦 is capable of assuming any value.
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364. Let 𝑦 = 𝑥2−𝑏𝑐⁄
2𝑥−𝑏−𝑐 ⇒ 𝑥2 − 2𝑦𝑥 + (𝑏 + 𝑐)𝑦 − 𝑏𝑐 = 0

Since 𝑥 is real, discriminant must be greater than or equal to 0.

⇒ 4𝑦2 − 4(𝑏 + 𝑐)𝑦 + 4𝑏𝑐 ≥ 0 ⇒ 𝑦2 − (𝑏 + 𝑐)𝑦 + 𝑏𝑐 ≥ 0.

For above to be true 𝑦 must not lie between 𝑏 and 𝑐.

365. Given 𝑥2 − 𝑥𝑦 + 𝑦2 − 4𝑥 − 4𝑦 + 16 = 0 ⇒ 𝑥2 − (𝑦 + 4)𝑥 + 𝑦2 − 4𝑦 + 16 = 0

Since 𝑥 is real, discriminant has to be greater than or equal to 0.

⇒ (𝑦 + 4)2 − 4(𝑦2 − 4𝑦 + 16) ≥ 0 ⇒ 𝑦2 + 8𝑦 + 16 − 4𝑦2 + 16𝑦 − 64 ≥ 0

⇒ −3𝑦2 + 24𝑦 − 48 ≥ 0 ⇒ 𝑦2 − 8𝑦 + 16 ≤ 0 ⇒ (𝑦 − 4)2 ≤ 0

The above inequality is only satisfied by 𝑦 = 4. However, if 𝑦 = 4 the given equation
becomes

𝑥2 − 8𝑥 + 16 = 0 which is again only satisfied by 𝑥 = 4.

366. Given 𝑥2 + 12𝑥𝑦 + 4𝑦2 + 4𝑥 + 8𝑦 + 20 = 0 ⇒ 𝑥2 + 4(1 + 3𝑦)𝑥 + 4(𝑦2 + 2𝑦 + 5) = 0

Since 𝑥 is real, discriminant has to be greater than or equal to zero.

⇒ 16(1 + 3𝑦)2 − 16(𝑦2 + 2𝑦 + 5) ≥ 0 ⇒ 1 + 6𝑦 + 9𝑦2 − 𝑦2 − 2𝑦 − 5 ≥ 0

⇒ 8𝑦2 + 4𝑦 − 4 ≥ 0 ⇒ 2𝑦2 + 𝑦 − 1 ≥ 0 ⇒ (2𝑦 − 1)(𝑦 + 1) ≥ 0

Therefore, 𝑦 cannot lie between −1 and 1⁄2. Rewriting the equation in terms of 𝑦

4𝑦2 + 4(3𝑥 + 2)𝑦 + 𝑥2 + 4𝑥 + 20 = 0.

Since 𝑥 is real, discriminant has to be greater than or equal to zero.

⇒ (3𝑥 + 2)2 − 𝑥2 − 4𝑥 − 20 ≥ 0 ⇒ 8𝑥2 + 8𝑥 − 16 ≥ 0 ⇒ 𝑥2 + 𝑥 − 2 ≥ 0

Therefore, 𝑥 cannot lie between −2 and 1.

367. Let 𝑥 be the length and 𝑦 be the breadth then 𝑥 + 2𝑦 = 600 and we have to maximize
𝑥𝑦.

𝑥𝑦 = 𝑥 600−𝑥
⁄

2 = 𝑧 (say) 𝑥2 − 600𝑥 + 2𝑧 = 0.

Since 𝑥 is real, discriminant has to be greater than or equal to zero.

⇒ 360000 − 8𝑧 ≥ 0 ⇒ 𝑧 ≤ 45000. Thus, maximum area is 45000 mt. sq.

Substituting, 𝑥2 − 600𝑥 + 90000 = 0 ⇒ (𝑥 − 300)2 = 0 ⇒ 𝑥 = 300 ⇒ 𝑦 = 150.

368. If 𝑦 −𝑚𝑥 is a factor then equation reduces to 𝑏𝑚2 + 2ℎ𝑚+ 𝑎 = 0 and if 𝑚𝑦 + 𝑥 is a
factor then it reduces to 𝑎𝑚2 − 2ℎ𝑚+ 𝑏 = 0. By cross-multiplication we have

𝑚2
⁄

−2ℎ(𝑎+𝑏) =
𝑚⁄

𝑎2−𝑏2 =
1
⁄

2ℎ(𝑎+𝑏). Thus, condition becomes 𝑎+ 𝑏 = 0 or 4ℎ2+ (𝑎2− 𝑏2) = 0.
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369. Roots of equation 𝑃 (𝑥)𝑄(𝑥) = 0 will be the roots of equation 𝑃 (𝑥) = 0 i.e. 𝑎𝑥2 +
𝑏𝑥 + 𝑐 = 0 and 𝑄(𝑥) = −𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0

Let 𝐷1 and 𝐷2 be the discriminants of two equations, then 𝐷1+𝐷2 = 𝑏2 − 4𝑎𝑐 + 𝑏2 +
4𝑎𝑐 = 2𝑏2 > 0.

Hence, 𝑃 (𝑥)𝑄(𝑥) = 0 has at least two real roots.

370. Let 𝐷1 be the discriminant of 𝑏𝑥2 + (𝑏 − 𝑐)𝑥 + 𝑏 − 𝑐 − 𝑎 = 0 and 𝐷2 be discriminant
of 𝑎𝑥2 + 2𝑏𝑥 + 𝑏 = 0, then

𝐷1+𝐷2 = (𝑏 − 𝑐)2 − 4𝑏(𝑏 − 𝑐 − 𝑎)+ 4𝑏2 − 4𝑎𝑏 = (𝑏 + 𝑐)2 ≥ 0. Hence, if 𝐷2 < 0, then
𝐷1 > 0.

Therefore, roots of 𝑏𝑥2+ (𝑏−𝑐)𝑥+𝑏−𝑐−𝑎 = 0 will be real if roots of 𝑎𝑥2+2𝑏𝑥+𝑏 = 0
are imaginary and vice versa.

371. Let 𝑎 = 2𝑚+ 1, 𝑏 = 2𝑛 + 1, 𝑐 = 2𝑟 + 1. Now 𝐷 = (2𝑛 + 1)2 − 4(2𝑚 + 1)(2𝑟 + 1)

= (an odd number)− (an even number) = an odd number.

If possible, let 𝐷 be a perfect square then it has to be square of an odd number.

⇒ (2𝑘+1)2 = (2𝑛+1)2−4(2𝑚+1)(2𝑟+1)⇒ (2𝑚+1)(2𝑟+1)= (𝑛+𝑘+1)(𝑛−𝑘).

If 𝑛 and 𝑘 are both odd or even then 𝑛 − 𝑘 will be even or zero. However, if one is odd
and one is even then (𝑛 + 𝑘 + 1) will be even. So, R. H. S. is an even while L. H. S. is
an odd number. Thus, 𝐷 cannot be a perfect square. Hence, roots cannot be a rational
numbers.

372. Let 𝐷1 be discriminant of 𝑎𝑥2 + 2𝑏𝑥 + 𝑐 = 0 then 𝐷1 = 4𝑏2 − 4𝑎𝑐 = 4𝑘, where
𝑘 = 𝑏2 − 𝑎𝑐.

Let 𝐷2 is discriminant of (𝑎 + 𝑐)(𝑎𝑥2 + 2𝑏𝑥 + 𝑐) = 2(𝑎𝑐 − 𝑏2)(𝑥2 + 1)

⇒ 𝐷2 = 4(𝑎 + 𝑐)2 𝑏2 − 4(𝑎2 + 𝑏2 + 𝑘)(𝑏2 + 𝑐2 + 𝑘) = −𝐷1[4𝑏2 + (𝑎 − 𝑐)2 ] ⇒ 𝐷2 <
0∵𝐷1 > 0.

Therefore, roots of second equation are non-real complex numbers.

373. 𝐷 = 4[(𝐶𝑛
𝑟 )2 − 𝐶𝑛

𝑟−1𝐶
𝑛
𝑟+1 ] = 4(𝑎 − 𝑏) , where 𝑎 = (𝐶𝑛

𝑟 )2, 𝑏 = 𝐶𝑛
𝑟−1𝐶

𝑛
𝑟+1

⇒ 𝑎
⁄

𝑏 = (1 + 1
⁄

𝑟)(1 +
1
⁄

𝑛−𝑟) > 1 ⇒ 𝑎 > 𝑏 ⇒ 𝐷 > 0.

Thus, roots of given equation are real and distinct.

374. Let 𝑦 = 𝑒sin𝑥 then given equation becomes

𝑦 − 1
⁄

𝑦 − 4 = 0 ⇒ 𝑦 = 2 ±√


5 ∴ 𝑒sin𝑥 = 2 ±√


5

sin 𝑥 = log𝑒(2 −√


5) is not defined.

sin 𝑥 = log𝑒(2 +√


5) > 1 is not possible. Hence, roots of given equation cannot be real.
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375. Given equation is 𝑎𝑧2 + 𝑏𝑧 + 𝑐 + 𝑖 = 0. 𝑧 = −𝑏±√


𝑏2−4𝑎(𝑐+𝑖)
⁄

2𝑎 = −𝑏±(𝑝+𝑖𝑞)
⁄

2𝑎

where √


𝑏2 − 4𝑎(𝑐 + 𝑖) = 𝑝 + 𝑖𝑞. Now 𝑏2 − 4𝑎𝑐 = 𝑝2 − 𝑞2 and −4𝑎 = 2𝑞𝑝

Since 𝑧 is purely imaginary −𝑏±𝑝⁄2𝑎 = 0 ⇒ ±𝑝 = 𝑏 ⇒ −4𝑎 = 2(±)𝑞 ⇒ 𝑞 = ±2𝑎⁄
𝑏

Then, 𝑏2 − 4𝑎𝑐 = 𝑏2 − 4𝑎2⁄
𝑏2 ⇒ 𝑐 = 𝑎
⁄

𝑏2 ⇒ 𝑎 = 𝑏2𝑐.

376. 𝐷 = 𝑎2 − 4𝑏. Let 𝑎 be an odd number then 𝐷 is an odd number and a perfect square
as roots are rational. Let 𝐷 = (2𝑛 + 1)2 , and 𝑎 = 2𝑚+ 1 where 𝑚, 𝑛 ∈ 𝐼.

Now roots = −(2𝑚+1)±(2𝑛+1)
⁄

2 = an even no.
⁄

2 = an integer.

Similarly, it can be proven when 𝑎 is an even no. then roots are integers.

377. Let 𝛼, 𝛽 be integral roots of the given equation. 𝛼 + 𝛽 = −7 and 𝛼𝛽 = 14(𝑞2 + 1).

𝛼𝛽
⁄

7 = 2(𝑞2 + 1) = an integer.

∴𝛼𝛽 is divisible by 7 and 7 is a prime number.

∴ at least one of 𝛼 and 𝛽 must be a multiple of 7.

Let 𝛼 = 7𝑘, where 𝑘 ∈ 𝐼 ⇒ 𝛽 = −7(𝑘 + 1)

Thus, −2(𝑞2+1)
⁄

7 = −7𝑘(𝑘 + 1) = an integer

Let 𝑓(𝑞) = 𝑞2 + 1 then it can be shown that 𝑓(1), 𝑓(2), …, 𝑓(7) are not divisible by 7.

𝑓(𝑞 + 7) = 𝑞2 + 1 + 14𝑞 + 49 which is not divisible by 7 as 𝑞2 + 1 is not divisible by 7.

Hence, 𝛼, 𝛽 cannot be integers.

378. Given equation is [𝑎3(𝑏 − 𝑐)+ 𝑏3(𝑐 − 𝑎)+ 𝑐3(𝑎− 𝑏)]𝑥2− [𝑎3(𝑏2 − 𝑐2)+ 𝑏3(𝑐2 − 𝑎2)+
𝑐3(𝑎2 − 𝑏2)]𝑥 + 𝑎𝑏𝑐[𝑎2(𝑏 − 𝑐)+ 𝑏2(𝑐 − 𝑎)+ 𝑐2(𝑎 − 𝑏)] = 0

But 𝑎3(𝑏 − 𝑐) + 𝑏3(𝑐 − 𝑎) + 𝑐3(𝑎 − 𝑏) = −(𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎)(𝑎 + 𝑏 + 𝑐) and
𝑎3(𝑏2 − 𝑐2)+ 𝑏3(𝑐2 − 𝑎2)+ 𝑐3(𝑎2 − 𝑏2) = −(𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎)(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) and
𝑎2(𝑏− 𝑐)+𝑏2(𝑐 −𝑎)+𝑐2(𝑎−𝑏) = −(𝑎−𝑏)(𝑏− 𝑐)(𝑐 −𝑎) the above equation becomes

(𝑎 + 𝑏 + 𝑐)𝑥2 − (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)𝑥 + 𝑎𝑏𝑐 = 0.

Roots are (𝑎𝑏+𝑏𝑐+𝑐𝑎±√


(𝑎𝑏+𝑏𝑐+𝑐𝑎)2−4𝑎𝑏𝑐(𝑎+𝑏+𝑐))
⁄

2(𝑎+𝑏+𝑐) , which will be equal if 𝐷 = 0.

If 1⁄
√


𝑎 ±
1⁄
√


𝑏 ±
1
⁄

𝑐 = 0 ⇒ √


𝑏𝑐±√

𝑐𝑎±√


𝑎𝑏
⁄

√

𝑎𝑏𝑐 = 0

⇒ √


𝑏𝑐 ±√

𝑐𝑎 ±√


𝑎𝑏 = 0. Squaring

𝑏𝑐 + 𝑐𝑎+ 𝑎𝑏 ± 2√


𝑎𝑏𝑐(√


𝑎±√

𝑏 ±√

𝑐) = 0 ⇒ (𝑏𝑐 + 𝑐𝑎+ 𝑎𝑏)2 = 4𝑎𝑏𝑐(𝑎+ 𝑏+ 𝑐 +√



𝑏𝑐 ±
√

𝑐𝑎 ±√


𝑎𝑏)⇒ 𝐷 = 0 i.e. roots are equal.
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379. Product of roots = 𝑘+2⁄
𝑘 = 𝑐
⁄

𝑎 ⇒ 𝑘 = 2𝑎
⁄

𝑐−𝑎

Sum of roots = 𝑘+1⁄
𝑘 + 𝑘+2⁄

𝑘+1 = − 𝑏
⁄

𝑎. Substituting for 𝑘

𝑐+𝑎
⁄

2𝑎 + 2𝑐
⁄

𝑐+𝑎 = − 𝑏
⁄

𝑎 ⇒
(𝑎+𝑐)2+4𝑎𝑐
⁄

2𝑎(𝑎+𝑐) = − 𝑏
⁄

𝑎

⇒ 𝑎(𝑎 + 𝑐)2 + 4𝑎2𝑐 = −2𝑎𝑏𝑐 − 2𝑎2𝑏 ⇒ (𝑎 + 𝑐)2 + 4𝑎𝑐 = −2𝑏𝑐 − 2𝑎𝑏 ⇒ (𝑎 + 𝑏 + 𝑐)2 =
𝑏2 − 4𝑎𝑐.

380. Given, 𝑓(𝑥) = 𝑎𝑥2+ 𝑏𝑥+𝑐 and that 𝛼,𝛽 are the roots of the equation 𝑝𝑥2+ 𝑞𝑥+𝑟 = 0.

⇒ 𝛼+ 𝛽 = − 𝑞
⁄

𝑝 and 𝛼𝛽 = 𝑟
⁄

𝑝.

Now 𝑓(𝛼)𝑓(𝛽) = (𝑎𝛼2 + 𝑏𝛼 + 𝑐)(𝑎𝛽2 + 𝑏𝛽 + 𝑐)

= 𝑎2𝛼2𝛽2 + 𝑏2𝛼𝛽 + 𝑐2 + 𝑎𝑏𝛼𝛽(𝛼 + 𝛽)+ 𝑎𝑐(𝛼2 + 𝛽2)+ 𝑏𝑐(𝛼 + 𝛽)

= 𝑎2 𝑟
2
⁄

𝑝2 + 𝑏2 𝑟⁄𝑝 + 𝑐2 − 𝑎𝑏 𝑟⁄𝑝
𝑞
⁄

𝑝 + 𝑎𝑐(𝑞
2
⁄

𝑝2 −
2𝑟
⁄

𝑝 )− 𝑏𝑐 𝑞⁄𝑝

= 1
⁄

𝑝2 [𝑎
2𝑟2 + 𝑏2𝑟𝑝 + 𝑐2𝑝2 − 𝑎𝑏𝑟𝑞 + 𝑎𝑐𝑞2 − 2𝑎𝑐𝑟𝑝 − 𝑏𝑐𝑞𝑝] = 1

⁄

𝑝2 [(𝑐𝑝 − 𝑎𝑟)2 + 𝑏2𝑟𝑝 −
𝑏𝑐𝑞𝑝 − 𝑎𝑏𝑟𝑞 + 𝑎𝑐𝑞2 ]

= 1
⁄

𝑝2 [(𝑐𝑝 − 𝑎𝑟)2 − (𝑏𝑝 − 𝑎𝑞)(𝑐𝑞 − 𝑏𝑟)]

Now since 𝛼, 𝛽 are the roots of the equation 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0

Therefore, if 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 and 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0 have to have a common root then
it has to be either 𝛼 or 𝛽.

𝑓(𝛼) = 0 or 𝑓(𝛽) = 0∴ 𝑓(𝛼)𝑓(𝛽) = 0 ⇒ (𝑐𝑝 − 𝑎𝑟)2 − (𝑏𝑝 − 𝑎𝑞)(𝑐𝑞 − 𝑏𝑟) = 0

∴ 𝑏𝑝 − 𝑎𝑞, 𝑐𝑝 − 𝑎𝑟, 𝑐𝑞 − 𝑏𝑟 are in G. P.

381. From the given equations it follows that 𝑞 and 𝑟 are roots of the equation

𝑎(𝑝 + 𝑥)2 + 2𝑏𝑝𝑥 + 𝑐 = 0 ⇒ 𝑎𝑥2 + 2(𝑎 + 𝑏)𝑝𝑥 + 𝑐 = 0.

Product of roots 𝑞𝑟 = 𝑎𝑝2+𝑐
⁄

𝑎 = 𝑝2 + 𝑐
⁄

𝑎

382. Since 𝛼, 𝛽 are the roots of the equation 𝑥2 − 𝑝𝑥 − (𝑝 + 𝑐) = 0

𝛼 + 𝛽 = 𝑝 and 𝛼 + 𝛽 = −(𝑝 + 𝑐). Now (𝛼 + 1)(𝛽 + 1) = −𝑝 − 𝑐 + 𝑝 + 1 = 1 − 𝑐.

⇒ 𝛼2+2𝛼+1⁄
𝛼2+2𝛼+𝑐 +

𝛽2+2𝛽+1⁄
𝛽2+2𝛽+𝑐 =

(𝛼+1)2
⁄

(𝛼+1)2−(1−𝑐)+
(𝛽+1)2
⁄

(𝛽+1)2−(1−𝑐)

= (𝛼+1)2
⁄

(𝛼+1)2−(𝛼+1)(𝛽+1)+
(𝛽+1)2
⁄

(𝛽+1)2−(𝛼+1)(𝛽+1) =
(𝛼+1)2
⁄

(𝛼+1)(𝛼−𝛽)+
(𝛽+1)2
⁄

(𝛽+1)(𝛽−𝛼) = 1. Hence,
proved.
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383. 𝛼, 𝛽 are the roots of the equation 𝑥2 + 𝑝𝑥 + 𝑞 = 0. ∴𝛼 + 𝛽 = −𝑝 and 𝛼𝛽 = 𝑞

Since 𝛼, 𝛽 are the roots of the equation 𝑥22𝑛 + 𝑝𝑛𝑥𝑛 + 𝑞𝑛 = 0.

Substituting it follows that 𝛼𝑛, 𝛽𝑛 are the roots of the equation 𝑦2 + 𝑝𝑛𝑦 + 𝑞𝑛 = 0

∴𝛼𝑛 + 𝛽𝑛 = (−𝑝)𝑛 and 𝛼𝑛𝛽𝑛 = 𝑞𝑛 ⇒ (𝛼 + 𝛽)𝑛 = (−𝑝)𝑛 = 𝑝𝑛[∵ n is even].

Thus, 𝛼𝑛 + 𝛽𝑛 + (𝛼 + 𝛽)𝑛 = 0

Dividing by 𝛽𝑛 we have (𝛼⁄𝛽)𝑛 + 1 + (𝛼⁄𝛽 + 1)
𝑛
= 0

Dividing by 𝛼𝑛 we have (𝛽⁄𝛼)𝑛 + 1 + (𝛽⁄𝛼 + 1)
𝑛
= 0

From last two equations it is evident that 𝛼⁄𝛽 and 𝛽⁄𝛼 are roots of the equation 𝑥𝑛 + 1 +
(𝑥 + 1)𝑛 = 0.

384. Let 𝛼 and 𝛽 are the roots of the given equation.

Since roots are real and distinct 𝐷 > 0 ⇒ 𝑎2 − 4𝑏 > 0 ⇒ 𝑏 < 𝑎2
⁄

4

Again it is given that |𝛼 − 𝛽| < 𝑐 ⇒ (𝛼 − 𝛽)2 < 𝑐2

(𝛼 + 𝛽)2 − 4𝛼𝛽 < 𝑐2 ⇒ 𝑎2 − 4𝑏 < 𝑐2 ⇒ 4𝑏 > 𝑎2 − 𝑐2 ⇒ 𝑎2−𝑐2
⁄

4 < 𝑏 < 𝑎2
⁄

4 .

385. Given, 𝑎𝑥2 + 𝑏𝑥 + 𝑐 − 𝑝 = 0 for two integral values of 𝑥 say 𝛼 and 𝛽.

Then, 𝛼 + 𝛽 = − 𝑏
⁄

𝑎 and 𝛼𝛽 = 𝑐−𝑝
⁄

𝑎

If possible, let 𝑎𝑥2 + 𝑏𝑥 + 𝑐 − 2𝑝 = 0 for some integer 𝑘.

𝑎𝑘2 + 𝑏𝑘 + 𝑐 − 𝑝 = 𝑝 ⇒ 𝑘2 − (𝛼+ 𝛽)𝑘 + 𝛼𝛽 = 𝑝
⁄

𝑎 ⇒ (𝑘 − 𝛼)(𝑘 − 𝛽) = an integer = 𝑝
⁄

𝑎

But since 𝑝 is prime this cannot hold true unless 𝑎 = 𝑝 or 𝑎 = 1

𝑎 = 𝑝[∵ 𝑎 > 1]⇒ (𝑘 − 𝛼)(𝑘 − 𝛽) = 1 which implies that 𝑘 − 𝛼 = 𝑘 − 𝛽 = 1, which is
not possible since 𝛼 ≠ 𝛽

Thus, we have a contradiction. Hence, 𝑎𝑥2 + 𝑏𝑥 + 𝑐 ≠ 2𝑝 for any integral value of 𝑥.

386. 𝛼 + 𝛽 = −𝑝, 𝛼𝛽 = 𝑞, 𝛼4 + 𝛽4 = 𝑟, 𝛼4𝛽4 = 𝑠

Let 𝐷 be the discriminant of 𝑥2 − 4𝑞𝑥 + 2𝑞2 − 𝑟 = 0 then

𝐷 = 16𝑞2 − 4(2𝑞2 − 𝑟) = 8𝑞2 + 4𝑟 = 8𝛼2𝛽2 + 4(𝛼4 + 𝛽4) = 4(𝛼2 + 𝛽2)2

𝐷 ≥ 0 hence roots of the third equation are always real.

387. 𝛼 + 𝛽 = − 𝑏
⁄

𝑎 and 𝛼𝛽 = 𝑐
⁄

𝑎 ⇒ 𝛼1 − 𝛽 = − 𝑏1
⁄

𝑎1 and −𝛼1𝛽 = 𝑐1
⁄

𝑎1
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⇒ 𝛼+ 𝛼1 = −(𝑏⁄𝑎 +
𝑏1
⁄

𝑎1).

Also, dividing 𝛼 + 𝛽 by 𝛼𝛽, 1⁄𝛽 + 1⁄
𝛼 = − 𝑏⁄

𝑐

Similarly, dividing 𝛼1 − 𝛽 by −𝛼1𝛽, 1⁄
𝛼1

− 1⁄
𝛽 = − 𝑏1⁄

𝑐1

Thus, 1⁄𝛼 + 1⁄
𝛼1

= −(𝑏⁄𝑐 + 𝑏1⁄
𝑐1)

Equation whose roots are 𝛼 and 𝛼1 is

𝑥2 − (𝛼 + 𝛼1)𝑥 + 𝛼𝛼1 = 0 ⇒ 𝑥2
⁄

−(𝛼+𝛼1)+ 𝑥 − 𝛼𝛼1
⁄

𝛼+𝛼1
= 0

𝑥2
⁄

𝑏⁄
𝑎+

𝑏1⁄
𝑎1

+ 𝑥 + 1
⁄

𝑏
⁄

𝑐+
𝑏1
⁄

𝑐1

= 0.

388. Let 𝛼 and 𝛽 be roots of such quadratic equation given by 𝑥2 + 𝑝𝑥 + 𝑞 = 0

⇒ 𝛼+ 𝛽 = −𝑝 and 𝛼𝛽 = 𝑞. Now quadratic equation whose roots are 𝛼2 and 𝛽2 is

𝑥2 − (𝛼2 + 𝛽2)𝑥 + 𝛼2𝛽2 = 0 ⇒ 𝑥2 − (𝑝2 − 2𝑞)𝑥 + 𝑞2 = 0.

But the equation remains unchanged, therefore,

1
⁄

1 =
𝑝
⁄

𝑝2−2𝑞 =
𝑞
⁄

𝑞2 ⇒ 𝑞 = 𝑞2 ⇒ 𝑞(𝑞 − 1) = 0 ⇒ 𝑞 = 0, 1

If 𝑞 = 0 ⇒ 𝑝 = 0, −1 and if 𝑞 = 1 ⇒ 𝑝 = −2, 1. Thus, four such quadratic equations
are possible.

389. Given 𝑑⁄𝑎,
𝑒⁄
𝑏 ,

𝑓⁄
𝑐 are in A. P. and 𝑎, 𝑏, 𝑐 are in G. P.

Equations 𝑎𝑥2 + 2𝑏𝑥 + 𝑐 = 0 and 𝑑𝑥2 + 2𝑒𝑥 + 𝑓 = 0 will have a common root if

2(𝑏𝑓−𝑒𝑐)
⁄

𝑐𝑑−𝑎𝑓 = 𝑐𝑑−𝑎𝑓
⁄

2(𝑎𝑒−𝑏𝑑) ⇒ 4(𝑏𝑓 − 𝑒𝑐)(𝑎𝑒 − 𝑏𝑑) = (𝑐𝑑 − 𝑎𝑓 )2

4[(𝑓⁄𝑐 − 𝑒⁄
𝑏)𝑏𝑐][(

𝑒⁄
𝑏 −

𝑑
⁄

𝑎)𝑎𝑏] = (𝑑⁄𝑎 −
𝑎⁄
𝑓)

2
𝑎2𝑐2

4𝑘.𝑘.𝑏2 = 4𝑘2𝑎𝑐 where 𝑘 is the c.d. of the A. P. i.e. 𝑏2 = 𝑎𝑐 which is true because 𝑎, 𝑏, 𝑐
are in G. P.

390. Let 𝛼 be the common root and 𝛽1 another root of 𝑥2 + 𝑎𝑥 + 12 = 0, 𝛽2 be another
root of 𝑥2 + 𝑏𝑥 + 15 = 0 and 𝛽3 be a root of 𝑥2 + (𝑎 + 𝑏)𝑥 + 36 = 0.

⇒ 𝛼+𝛽1 = −𝑎 and 𝛼𝛽1 = 12, 𝛼+ 𝛽2 = −𝑏 and 𝛼𝛽2 = 15, and 𝛼+ 𝛽3 = −(𝑎 + 𝑏) and
𝛼𝛽3 = 36.

Thus, 2𝛼+𝛽1+𝛽2 = 𝛼+𝛽3 ⇒ 𝛼 = 𝛽3−𝛽1−𝛽2 and 𝛼(𝛽3−𝛽1−𝛽2) = 36−12−15 = 9

⇒ 𝛼2 = 9 ⇒ 𝛼 = ±3 but 𝛼 > 0 ⇒ 𝛼 = 3 ⇒ 𝛽1 = 4, 𝛽2 = 5, 𝛽3 = 12.
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391. Given 𝑚(𝑎𝑥2 + 2𝑏𝑥+ 𝑐)+ 𝑝𝑥2+ 1𝑞𝑥+ 𝑟 = 𝑛(𝑥+ 𝑘)2. Equating coefficients for powers
of 𝑥, we get

𝑚𝑎+ 𝑝 = 𝑛, 𝑚𝑏 + 𝑞 = 𝑛𝑘, 𝑚𝑐 + 𝑟 = 𝑛𝑘2 ⇒ 𝑚(𝑎𝑘 − 𝑏)+ 𝑝𝑘 − 𝑞 = 0 ⇒ 𝑚 = −𝑝𝑘−𝑞
⁄

𝑎𝑘−𝑏

⇒ 𝑚(𝑏𝑘 − 𝑐)+ 𝑞𝑘 − 𝑟 = 0 ⇒ 𝑚 = −𝑞𝑘−𝑟
⁄

𝑏𝑘−𝑐.

Equating values for 𝑚, (𝑎𝑘 − 𝑏)(𝑞𝑘 − 𝑟) = (𝑝𝑘 − 𝑞)(𝑏𝑘 − 𝑐).

392. Given equation is 𝑥3 − 𝑥2 + 𝛽𝑥 + 𝛾 = 0. Let it roots 𝑥1, 𝑥2, 𝑥3 be 𝑎 − 𝑑, 𝑎, 𝑎 + 𝑑
respectively.

⇒ 𝑎 − 𝑑 + 𝑎 + 𝑎 + 𝑑 = 1 ⇒ 𝑎 = 1
⁄

3 ⇒ (𝑎 − 𝑑)𝑎 + 𝑎(𝑎 + 𝑑) + (𝑎 − 𝑑)(𝑎 + 𝑑) = 𝛽 ⇒
3𝑎2 − 𝑑2 = 𝛽 ⇒ 1 − 3𝛽 = 3𝑑2

(𝑎 − 𝑑)𝑎(𝑎 + 𝑑) = 𝛾 ⇒ 𝑎(𝑎2 − 𝑑2) = 𝛾 ⇒ 1 + 27𝛾 = 9𝑑2

Since 𝑑 is real ∴ 1 − 3𝛽 ≥ 0 ⇒ 𝛽 ≤ 1
⁄

3 and 1 + 27𝛾 ≥ 0 ⇒ 𝛾 ≥ − 1
⁄

27.

393. Let 𝛼 be a common root, then

𝛼3 + 3𝑝𝛼2 + 3𝑞𝛼 + 𝑟 = 0 … (1) and 𝛼2 + 2𝑝𝛼 + 𝑞 = 0 … (2)

(1)− 𝛼(2) gives us ⇒ 𝑝𝛼2 + 2𝑞𝛼 + 𝑟 = 0 … (3)

By cross multiplication between (2) and (3)

𝛼2
⁄

2(𝑝𝑟−𝑞2) =
𝛼
⁄

𝑝𝑞−𝑟 =
1
⁄

2(𝑞−𝑝2)

Equating for values of 𝛼 we get the desired condition.

394. Let 𝛼 be a common root, then

𝛼3 + 2𝑎𝛼2 + 3𝑏𝛼 + 𝑐 = 0 … (1) and 𝛼3 + 𝑎𝛼2 + 2𝑏𝛼 = 0 … (2)

Since 𝑐 ≠ 0, therefore 𝛼 = 0 cannot be a common root. Therefore, from (2)

𝛼2 + 𝑎𝛼 + 2𝑏 = 0 … (3)

(1)− 𝛼(2)⇒ 𝑎𝛼2 + 𝑏𝛼 + 𝑐 = 0 … x(4)

Solving (3) and (4) by cross-multiplication yields the desired result.

395. Given equation is 𝑥3 + 𝑎𝑥 + 𝑏 = 0 and 𝛼, 𝛽, 𝛾 be its real roots. Then we have

𝛼 + 𝛽 + 𝛾 = 0 … (1) 𝛼𝛽 + 𝛽𝛾 + 𝛼𝛾 = 𝑎 … (2) 𝛼𝛽𝛾 = −𝑏

Let 𝑦 = (𝛼 − 𝛽)2 , then 𝑦 = (𝛼 + 𝛽)2 − 4𝛼𝛽 ⇒ 𝑦 = 𝛾2 + 4𝑏⁄
𝛾 ⇒ 𝛾3 − 𝑦𝛾 + 4𝑏 = 0.

Also, 𝛾 is a root of the original equation.
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𝛾3 + 𝑎𝛾 + 𝑏 = 0 ⇒ (𝑎 + 𝑦)𝛾 − 3𝑏 = 0 ⇒ 𝛾 = 3𝑏
⁄

𝑎+𝑦

⇒ 27𝑏3
⁄

(𝑎+𝑦)3 + 𝑎( 3𝑏
⁄

𝑎+𝑦)+ 𝑏 = 0 ⇒ 𝑦3 + 6𝑎𝑦2 + 9𝑎2𝑦 + 4𝑎3 + 27𝑏2 = 0

We would have got same equation if we would have chosen 𝑦 = (𝛽−𝛼)2 or 𝑦 = (𝛾 −𝛼)2.

Hence, product of roots −(4𝑎3+27𝑏2)= (𝛼−𝛽)2(𝛽−𝛾)2(𝛾−𝛼)2 ≥ 0 ∴ 4𝑎3+27𝑏2 ≤ 0.

396. 𝛼 is a root of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 ∴ 𝑎𝛼2 + 𝑏𝛼 + 𝑐 = 0

Similarly, −𝑎𝛽2 + 𝑏𝛽 + 𝑐 = 0. Let 𝑓(𝑥) = 𝑎
⁄

2 𝑥
2 + 𝑏𝑥 + 𝑐 = 0 ⇒ 𝑓(𝛼) = −𝑎

⁄

2 𝛼
2,

and 𝑓(𝛽) = 3
⁄

2 𝛽
2∴ 𝑓(𝛼)𝑓(𝛽) = −3
⁄

4 𝑎
2𝛼2𝛽2 < 0[∵𝛼,𝛽 ≠ 0]

∴ 𝑓(𝛼) and 𝑓(𝛽) have opposite signs. Therefore, 𝑓(𝑥) will have exactly one root
between 𝛼 and 𝛽.

397. Let 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. Since equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 i.e. equation 𝑓(𝑥) = 0
has no real root, therefore, 𝑓(𝑥) will have same sign for real values of 𝑥.

∴ 𝑓(1)𝑓(0) > 0 ⇒ (𝑎 + 𝑏 + 𝑐)𝑐 > 0.

398. Let 𝑓(𝑥) = (𝑥 − 𝑎)(𝑥 − 𝑐) + 𝜆(𝑥 − 𝑏)(𝑥 − 𝑑). Given 𝑎 > 𝑏 > 𝑐 > 𝑑, now 𝑓(𝑏) =
(𝑏 − 𝑎)(𝑏 − 𝑐) < 0, and 𝑓(𝑑) = (𝑑 − 𝑎)(𝑑 − 𝑐) > 0

Since 𝑓(𝑏) and 𝑓(𝑑) have opposite signs, therefore equation 𝑓(𝑥) = 0 will have one
real root between 𝑏 and 𝑑.

Since one root is real and 𝑎, 𝑏, 𝑐, 𝑑, 𝜆 are all real the other root will also be real.

399. Let 𝑓′(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, then 𝑓(𝑥) = 𝑎𝑥
3
⁄

3 + 𝑏 𝑥
2
⁄

2 + 𝑐𝑥 + 𝑘 = 2𝑎𝑥3+3𝑏𝑥2+4𝑐𝑥+6𝑘
⁄

6 ,

⇒ 𝑓(1) = 2𝑎+3𝑏+6𝑐+6𝑘
⁄

6 = 𝑘. Again, 𝑓(0) = 𝑘

Thus, 𝑓(0) = 𝑓(1) hence equation will have at least one root between 0 and 1 which
implies that it will have a real root between 0 and 2.

400. Let 𝑓(𝑥) = ∫(1 + cos8 𝑥) (𝑎𝑥2 + 𝑏𝑥 + 𝑐)𝑑𝑥 then 𝑓′(𝑥) = (1 + cos8 𝑥)(𝑎𝑥2 + 𝑏𝑥 + 𝑐).

Given, ∫
1

0
(1 + cos8 𝑥) (𝑎𝑥2 + 𝑏𝑥 + 𝑐)𝑑𝑥 = ∫

2

0
(1 + cos8 𝑥) (𝑎𝑥2 + 𝑏𝑥 + 𝑐)𝑑𝑥.

⇒ 𝑓(1)− 𝑓(0) = 𝑓(2)− 𝑓(0)⇒ 𝑓(1) = 𝑓(2).

Therefore, equation 𝑓(𝑥) = 0 has at least one root between 1 and 2 which implies that
𝑎𝑥2 + 𝑏𝑥 + 𝑐 has a root between these two limits as 1 + cos8 𝑥 ≠ 0.

401. Given equation 𝑓(𝑥) − 𝑥 = 0 has non-real roots where 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 is a
continuous function.
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∴ 𝑓(𝑥)− 𝑥 has same sign for all 𝑥 ∈ 𝑅. Let 𝑓(𝑥)− 𝑥 > 0 ∀ 𝑥 ∈ 𝑅

⇒ 𝑓(𝑓(𝑥)) − 𝑓(𝑥) > 0 ∀ 𝑥 ∈ 𝑅 ⇒ 𝑓(𝑓(𝑥)) − 𝑥 = 𝑓(𝑓(𝑥)) − 𝑓(𝑥) + 𝑓(𝑥) − 𝑥 >
0 ∀ 𝑥 ∈ 𝑅

Hence it has no real roots.

402. Let 𝑓(𝑥) = 𝑎𝑥2− 𝑏𝑥+ 𝑐 = 0 and that 𝛼, 𝛽 be its roots. Then, 𝑓(𝑥) = 𝑎(𝑥−𝛼)(𝑥−𝛽).

Given 𝛼 ≠ 𝛽, 0 < 𝛼 < 1, 0 < 𝛽 < 1 and 𝑎, 𝑏, 𝑐 ∈ 𝑁

Since quadratic equation has both roots between 0 and 1, therefore

𝑓(0)𝑓(1) > 0 but 𝑓(0)𝑓(1) = 𝑐(𝑎 − 𝑏 + 𝑐) = an integer

Thus, 𝑓(0)𝑓(1) ≥ 1 ⇒ 𝑎𝛼(1 − 𝛼)𝑎𝛽(1 − 𝛽) = 𝑎2𝛼𝛽(1 − 𝛼)(1 − 𝛽).

Let 𝑦 = 𝛼(1 − 𝛼)⇒ 𝛼2 − 𝛼 + 𝑦 = 0.

Since 𝛼 is real ∴ 1 − 4𝑦 ≥ 0 ⇒ 𝑦 ≤ 1
⁄

4 ⇒ 𝛼 = 1
⁄

2 max value.

Similarly, maximum value of 𝛽 = 1
⁄

2.

Maximum value of ∴ 𝑓(0)𝑓(1) < 𝑎2
⁄

16 > 1 ⇒ 𝑎 > 4 ⇒ 𝑎 = 5 [least integral value]

Since 𝑎𝑥2 − 𝑏𝑥 + 𝑐 = 0 has real and distinct roots ⇒ 𝑏2 > 4𝑎𝑐 [∵ 𝑎 ≥ 4, 𝑐 ≥ 1]

⇒ 𝑏2 ≥ 20 ⇒ 𝑏 ≥ 5.

403. Proceeding from previous question, 𝑏2 − 4𝑎𝑐 > 0 ⇒ 𝑏2 > 4.5.1[∵ 𝑐 ≥ 1] ⇒ 𝑏 = 5 ⇒
log5(𝑎𝑏𝑐) ≥ 2.

404. Given equation is 𝑎𝑥2 + 𝑏𝑥 + 6 = 0. Let 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 6

Since the equation has imaginary roots or real and equal roots, 𝑓(0) = 6 > 0∴ 𝑓(𝑥) ≥ 0
for all real 𝑥

⇒ 𝑓(3) ≥ 0 ⇒ 9𝑎 + 3𝑏 + 6 ≥ 0 ⇒ 3𝑎 + 𝑏 ≥ −2 and hence least value is −2.

405. Let 𝛼, 𝛽, 𝛾 be the roots of the equation. Then,

𝑓(𝑥) = 2𝑥3 − 𝛼+𝛽+𝛾⁄
2 𝑥2 + 𝛼𝛽+𝛽𝛾+𝛾𝛼
⁄

2 𝑥 − 𝛼𝛽𝛾
⁄

2 = 0

Clearly, all roots have to be negative for signs to be satisfied as 𝑎, 𝑏 > 0.

𝑓(0) = 4 > 0∴ 𝑓(1) > 0 because sign of 𝑓(𝑥) will not change for all 𝑥.

2 + 𝑎 + 𝑏 + 4 > 0 ⇒ 𝑎 + 𝑏 > −6.

406. 𝑓(𝑥) = 𝑥3 + 2𝑥2 + 𝑥 + 5 = 0 and 𝑓′(𝑥) = 3𝑥2 + 4𝑥 + 1 which has roots −1 and −1
⁄

3.

𝑓(0) = 5 and 𝑓(𝑥) is increasing in (0, ∞) therefore it will have no root in [0, ∞[.
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𝑓(−2) = 3 > 0 and 𝑓(−3) = −7 < 0.

Since 𝑓(−2) and 𝑓(−3) are of opposite sign therefore equation 𝑓(𝑥) = 0 will have
one root between −2 and −3 and this will be only one root as 𝑓(𝑥) is increasing in
]−∞, −1]⇒ [𝛼] = −3.

407. Given equation is (𝑥2 + 2)2 + 8𝑥2 = 6𝑥(𝑥2 + 2). Let 𝑦 = 𝑥2 + 2 then above equation
becomes 𝑦2 + 8𝑥2 = 6𝑥𝑦 ⇒ 𝑦 = 4𝑥, 2𝑥.

If 𝑦 = 4𝑥 ⇒ 𝑥2 − 4𝑥 + 2 = 0 ⇒ 𝑥 = 2 ±√


2.

If 𝑦 = 2𝑥 ⇒ 𝑥2 − 2𝑥 + 2 = 0 ⇒ 𝑥 = 1 ± 𝑖.

408. Given equation is 3𝑥3 = (𝑥2 + √

18𝑥 + √


32)(𝑥2 − √


18𝑥 − √


32) − 4𝑥2 ⇒ 3𝑥3 =

𝑥4 − (√

18𝑥 +√


32)2 − 4𝑥2

⇒ 𝑥2(3𝑥 + 4) = 𝑥4 − 2(3𝑥 + 4)2 ⇒ 𝑥2𝑦 = 𝑥4 − 2𝑦2 where 𝑦 = 3𝑥 + 4 ⇒ 𝑦 = −𝑥2, 𝑥
2
⁄

2 .

If 𝑦 = −𝑥2 ⇒ 𝑥 = −3±√

7𝑖
⁄

2 and if 𝑦 = 𝑥2
⁄

2 ⇒ 𝑥 = 3 ±√

17.

409. Clearly, (15 + 4√

14)𝑡(15 − 4√


14)𝑡 = (225 − 224)𝑡 = 1. Let (15 + 4√


14)𝑡 = 𝑦, then

(15 − 4√

14)𝑡 = 1
⁄

𝑦.

Substituting for the given equation

𝑦 + 1
⁄

𝑦 = 30 ⇒ 𝑦2 − 30𝑦 + 1 = 0 ⇒ 𝑦 = 15 ± 4√

14

If 𝑦 = 15 + 4√

14 ⇒ 𝑡 = 1, then 𝑥2 − 2|𝑥| = 1 ⇒ |𝑥|2 − 2|𝑥|− 1 = 0

⇒ |𝑥| = 1 +√


2 ∴ 𝑥 = ±(1 +√


2)

If 𝑦 = 15 − 4√

14 ⇒ 𝑡 = −1 ⇒ |𝑥|2 − 2|𝑥|+ 1 = 0 ⇒ |𝑥| = 1 ⇒ 𝑥 = ±1.

410. Given equation is 𝑥2−2𝑎|𝑥−𝑎|−3𝑎2 = 0. When 𝑎 = 0 equation becomes 𝑥2 = 0⇒ 𝑥 = 0

Let 𝑎 < 0.

Case I: When 𝑥 < 𝑎 then equation becomes

𝑥2 + 2𝑎(𝑥 − 𝑎)− 3𝑎2 = 0 ⇒ 𝑥2 + 2𝑎𝑥 − 5𝑎2 = 0 ⇒ 𝑥 = −𝑎 ±√


6𝑎

Since 𝑥 < 𝑎, 𝑥 = −𝑎 −√


6𝑎 is not acceptable.

Case II: When 𝑥 > 𝑎 the equation becomes

𝑥2 − 2𝑎𝑥 − 𝑎2 = 0 ⇒ 𝑥 = 𝑎 ±√


2𝑎

Since 𝑥 > 𝑎, 𝑥 = 𝑎 +√


2𝑎 is not acceptable.

Clearly, 𝑥 = 𝑎 does not satisfy the equation.
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411. 𝑥2 − 𝑥 − 6 = 0 ⇒ 𝑥 = −2, 3

Case I: When 𝑥 < −2 or 𝑥 > 3 then 𝑥2 − 𝑥 − 6 > 0

Then equation becomes 𝑥2 − 𝑥 − 6 = 𝑥 + 2 ⇒ 𝑥2 − 2𝑥 − 8 = 0

𝑥 = −2, 4 but 𝑥 = −2 is not acceptable as 𝑥 < −2

Case II: When −2 < 𝑥 < 3 𝑥2 − 𝑥 − 6 < 0

Then equation becomes −(𝑥2 − 𝑥− 6) = 𝑥+ 2 ⇒ 𝑥2 − 4 = 0 ⇒ 𝑥 = 2 because 𝑥 = −2
is not acceptable.

Case III: Clearly 𝑥 = −2 satisfies the equation by 𝑥 = 3 does not.

412. |𝑥 + 2| = 0 ⇒ 𝑥 = −2 and |2𝑥+1 − 1| = 0 ⇒ 2𝑥+1 = 1 ⇒ 𝑥 = −1

Case I: When 𝑥 < −2 then 𝑥 + 2 < 0 and 2𝑥+1 − 1 < 0

Equation becomes 2−(𝑥+2)− [−(2𝑥+1 − 1)] = 2𝑥+1 + 1

⇒ 𝑥 = 3

Case II: When −2 < 𝑥 < 1 then 𝑥 + 2 > 0 and 2𝑥+1 − 1 < 0

Equation becomes 2𝑥+2 − [−(2𝑥+1 − 1)] = 2𝑥+1 + 1

⇒ 𝑥 = 1

Case III: When 𝑥 > −1 then 𝑥 + 2 > 0 and 2𝑥+1 − 1 > 0

Equation becomes 2𝑥+2 − (2𝑥+1 − 1) = 2𝑥+1 + 1

⇒ 𝑥 + 2 = 𝑥 + 2

which is true for all 𝑥 but only values for 𝑥 > −1 are acceptable.

Case IV: Clearly, 𝑥 = −2 does not satisfy the equation but 𝑥 = −1 satisfies it.

413. Given equation is 3𝑥 + 4𝑥 + 5𝑥 = 6𝑥. Then,

(3⁄6)
𝑥
+ (4⁄6)

𝑥
+ (5⁄6)

𝑥
= 1

Clearly, 𝑥 = 3 satisfies the equation.

When 𝑥 > 3, (3⁄6)
𝑥
+ (4⁄6)

𝑥
+ (5⁄6)

𝑥
< 1

When 𝑥 < 3, (3⁄6)
𝑥
+ (4⁄6)

𝑥
+ (5⁄6)

𝑥
> 1

Therefore, 𝑥 = 3 is the only solution.

414. Proceeding as previous problem 𝑥 = 2 is the only solution.
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415. 𝑥 = [𝑥]+ {𝑥} , given equation is 4{𝑥} = 𝑥 + [𝑥]⇒ {𝑥} = 2
⁄

3 [𝑥]

∵ 0 < {𝑥} < 1∴ 0 < 2
⁄

3 [𝑥] < 1 ⇒ 0 < [𝑥] < 3
⁄

2 ⇒ [𝑥] = 1

∴ {𝑥} = 2
⁄

3 ⇒ 𝑥 = 5
⁄

3.

416. Given, [𝑥]2 = 𝑥(𝑥 − [𝑥])⇒ [𝑥]2 = ([𝑥]+ {𝑥}){𝑥}[∵ 𝑥 = [𝑥]+ {𝑥}]

𝑦2 = (𝑦 + 𝑧)𝑧, where 𝑦 = [𝑥] and 𝑧 = {𝑥}⇒ 𝑧2 + 𝑦𝑧 − 𝑦2 = 0 ⇒ 𝑧 = −𝑦±√


5𝑦
⁄

2

Since 0 < 𝑧 < 1 it implies that

if 𝑧 = −√


5+1⁄
2 𝑦, then

0 > 𝑦 > − 2⁄
√


5+1 ⇒ −√


5−1⁄
2 < 𝑦 < 0 is not possible as 𝑦 is an integer.

If 𝑧 = √


5−1⁄
2 𝑦 then 0 < 𝑦 < 2⁄

√


5−1 ⇒ 𝑦 = 1 ⇒ 𝑧 = √


5−1⁄
2 and 𝑥 = 𝑦 + 𝑧 = √


5+1⁄
2 .

417. Let 𝑦 = 𝑚𝑥 the equations become 𝑥3(1 −𝑚3) = 127 and 𝑥3(𝑚−𝑚2) = 42.

Dividing we get 1−𝑚
3
⁄

𝑚−𝑚2 =
127⁄
42 ⇒ 1+𝑚+𝑚2
⁄

𝑚 = 127⁄
42 [∵𝑚 = 1] does not satisfy the equations.

⇒𝑚 = 7
⁄

6 ,
6
⁄

7. Substituting we get 𝑥 = −6, 𝑦 = −7 and 𝑥 = 7, 𝑦 = 6.

418. Solving first two equations by cross-multiplication

𝑥
⁄

7 =
𝑦
⁄

7 =
𝑧
⁄

7 or 𝑥 = 𝑦 = 𝑧 = 𝑘.

Substituting in third equation 𝑘 = ±√

7.

419. Let 𝑥 = 𝑢 + 𝑣 and 𝑦 = 𝑢 − 𝑣 then first equation becomes (𝑢 + 𝑣)4 + (𝑢 − 𝑣)4 = 82

⇒ 𝑢4 + 6𝑢2𝑣2 + 𝑣4 = 41

Second equation becomes 2𝑢 = 4 ⇒ 𝑢 = 2. Substituting in this equation 𝑣 = ±5𝑖, ±1

∴ 𝑥 = 2 ± 5𝑖, 3, 1 and 𝑦 = 2 ∓ 5𝑖, 1, 3.

420. Let 𝑦 = 2𝑥 > 0 then give equation becomes √


𝑎(𝑦 − 2)+ 1 = 1− 𝑦 ⇒ 𝑦2 − (𝑎 + 2)𝑦 +
2𝑎 = 0.

𝑦 = 2, 𝑎 but 𝑦 = 2 does not satisfy the equation. When 𝑦 = 𝑎 then √


𝑎(𝑎 − 2)+ 1 =
1 − 𝑎 ⇒ 𝑎 ≤ 1

∴ 0 < 𝑎 ≤ 1[∵ 𝑦 > 0]⇒ 𝑦 = 𝑎 ⇒ 𝑥 = log2 𝑎, where 0 < 𝑎 ≤ 1

When 𝑎 > 1, given equation has no solution.
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421. Given (𝑥 − 5)(𝑥 + 𝑚) = −2.Since 𝑥 and 𝑚 are both integers, therefore, 𝑥 − 5 and
𝑥 +𝑚 are also integers.

So we have following combination of solutions:

𝑥 − 5 = 1 and 𝑥 +𝑚 = 2 then 𝑥 = 6, 𝑚 = −8

𝑥 − 5 = 2 and 𝑥 +𝑚 = −1 then 𝑥 = 7, 𝑚 = −8

𝑥 − 5 = −1 and 𝑥 +𝑚 = 2 then 𝑥 = 4, 𝑚 = −2

𝑥 − 5 = −2 and 𝑥 +𝑚 = 1 then 𝑥 = 3, 𝑚 = −2

Thus, 𝑚 = −8, −2.

422. Multiplying the equations we get (𝑥𝑦)𝑥+𝑦 = (𝑥𝑦)2𝑛 ∴ 𝑥 + 𝑦 = 2𝑛 where 𝑥𝑦 ≠ 1.

⇒ 𝑥2 = 𝑦 then 𝑥 + 𝑥2 = 2𝑛 ⇒ 𝑥 = −1±√

1+8𝑛
⁄

2

But 𝑥 > 0 ∴𝑥 = −1+√

1+8𝑛
⁄

2 ⇒ 𝑦 = 𝑥2 = 1+4𝑛−√

1+8𝑛

⁄

2 .

423. Let 𝑦 = 12|𝑥|, then given equation becomes 𝑦2 − 2𝑦 + 𝑎 = 0 ⇒ 𝑦 = 1 ±√


1 − 𝑎

|𝑥| = log12(1 +√


1 − 𝑎) as 𝑦 = 1 −√


1 − 𝑎 has to be rejected as 𝑦 > 1.

But √


1 − 𝑎 has to be real 1 − 𝑎 ≥ 0 ⇒ 𝑎 ≤ 1

For log12(1 +√


1 − 𝑎) to be defined 1 +√


1 − 𝑎 > 0 ∴𝑥 = ± log12(1 +√


1 − 𝑎).

424. Let 𝑚 = 2𝑝 + 1 and 𝑛 = 2𝑞 + 1 the 𝐷 = 4(2𝑝 + 1)2 − 8(2𝑞 + 1) = an even no.

Let 𝐷 be a perfect square then it has to be perfect square of an even no. Let that no.
be 2𝑟 then

4𝑟2 = 4(2𝑝 + 1)2 − 8(2𝑞 + 1)⇒ 2(2𝑞 + 1) = (2𝑝 + 1 − 𝑟)(2𝑝 + 1 + 𝑟).

Clearly, if 𝑟 is an even no. then L. H. S. is an even and R. H. S. is even no which is not
possible.

Let 𝑟 is an odd no. then R. H. S. is product of 2 even numbers. Let 2𝑝 + 1 − 𝑟 = 2𝑘
and 2𝑝 + 1 + 𝑟 = 2𝑙

2(2𝑞 + 1) = 4𝑘𝑙 which is an odd no. 2𝑞 + 1 having equality to even no. 2𝑘𝑙 which is
again not possible. Thus, under the given conditions equation cannot have rational
roots.

425. Equation representing points of local extrema is 𝑓′(𝑥) = 3𝑎𝑥2 + 2𝑏𝑥 + 𝑐 = 0.

Let one of these points is 𝛼 and then second would be −𝛼.

Sum of these roots = 𝛼− 𝛼 = − 2𝑏⁄
3𝑎 ⇒ 𝑏 = 0.
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Product of roots = −𝛼2 = 𝑐⁄
3𝑎 but since roots are opposite in equation it implies that 𝑎

and 𝑐 have opposite signs.

∴ 𝑏2 − 4𝑎𝑐 = −4𝑎𝑐 > 0 therefore roots of 𝑎𝑥2 + 𝑏𝑥 + 𝑐 will have real and distinct roots.

426. Given equation is (𝑥−𝑎)(𝑎𝑥−1)⁄
𝑥2−1 = 𝑏.

𝑎𝑥2 − (1 + 𝑎2)𝑥 + 𝑎 = 𝑏𝑥2 − 𝑏 ⇒ (𝑎 − 𝑏)𝑥2 − (1 + 𝑎2)𝑥 + 𝑎 + 𝑏 = 0.

Discriminant 𝐷2 = (1 + 𝑎2)2 − 𝑎2 + 𝑏2 = 1 + 𝑎2 + 𝑎4 + 𝑏2 > 0[∵ 𝑏 ≠ 0]

Therefore, roots can never be equal.

427. Given equation is 𝐶𝑛
𝑟 𝑥2 + 2𝐶𝑛

𝑟+1𝑥 + 𝐶𝑛
𝑟+2 = 0. Let 𝐷 be discriminant, then we have

to prove that

𝐷 = 4𝑙𝑒𝑓𝑡(𝐶𝑛
𝑟+1)− 4(𝐶𝑛

𝑟 .𝐶𝑛
𝑟+2) > 0

⇒ [ 𝑛!
⁄

(𝑟+1)!(𝑛−𝑟−𝑟)!]
2
− 𝑛!
⁄

𝑟!(𝑛−𝑟)! .
𝑛!
⁄

(𝑟+2)!(𝑛−𝑟−2)! =
𝑛!2

⁄

𝑟!(𝑟+1)!(𝑛−𝑟−1)!(𝑛−𝑟−2)! [
1
⁄

(𝑟+1)(𝑛−𝑟−1)−
1
⁄

(𝑛−𝑟)(𝑟+2)] > 0

⇒ 𝑛𝑟 + 2𝑛 − 𝑟2 − 2𝑟 − [𝑛𝑟 + 𝑛 − 𝑟2 − 𝑟 − 𝑟 − 1] > 0 ⇒ 𝑛− 1 > 0.

From given conditions minimum value of 𝑛 is 4, hence above condition is true proving
that roots are real.

428. 𝐷= 𝑐2(3𝑎2+𝑏2)2+4𝑎𝑏𝑐2(6𝑎2+𝑎𝑏−2𝑏2)= 𝑐2(9𝑎4+𝑏4+6𝑎2𝑏2+4𝑎3𝑏+4𝑎2𝑏2−8𝑎𝑏3)

= 𝑐2(3𝑎2 − 𝑏2 + 4𝑎𝑏)2, which is a perfect square and hence roots are rational.

429. √

𝑚
⁄

𝑛 +√

𝑛
⁄

𝑚+ 𝑏⁄
√

𝑎𝑐 = 0

L.H.S. =√

𝛼⁄
𝛽 +√


𝛽⁄
𝛼 +

𝑏⁄
√

𝑎𝑐

= 𝛼+𝛽
⁄

√


𝛼𝛽 +
𝑏⁄

√

𝑎𝑐 =

−𝑏⁄
𝑎
⁄

√


𝑐⁄
𝑎

+ 𝑏⁄
√

𝑎𝑐 = 0.

430. Let 𝛼 be the root, then the second root would be 𝛼3.

Product of roots = 𝛼4 = 𝑎 ⇒ 𝛼 = 𝑎
1
⁄

4.

Sum of roots = 𝛼+ 𝛼3 = −𝑓(𝑎)⇒ 𝑓(𝑎) = −𝑎
1
⁄

4 − 𝑎
3
⁄

4.

Therefore, the general equation in 𝑥 would be 𝑓(𝑥) = −𝑥
1
⁄

4 − 𝑥
3
⁄

4.

431. Since 𝛼, 𝛽 are roots of the equation 𝑥2 − 𝑝𝑥 + 𝑞 = 0 therefore

𝛼 + 𝛽 = 𝑝 and 𝛼𝛽 = 𝑞
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(𝛼2 − 𝛽2)(𝛼3 − 𝛽3) = (𝛼 − 𝛽)2(𝛼 + 𝛽)[(𝛼2 + 𝛽2)+ 𝛼𝛽] = (𝑝2 − 4𝑞)𝑝(𝑝2 + 𝑞), and

𝛼3𝛽2 + 𝛼2𝛽3 = 𝛼2𝛽2(𝛼 + 𝛽) = 𝑝𝑞2

Therefore, the equation would be

𝑥2 − 𝑝[(𝑝2 − 4𝑞)(𝑝2 + 𝑞)+ 𝑞2 ]𝑥 + 𝑝2𝑞2(𝑝2 − 4𝑞)(𝑝2 + 𝑞) = 0.

432. 𝛼 + 𝛽 = 𝑏 and 𝛼𝛽 = 𝑐. Then proceeding like previous problem,

(𝛼2+ 𝛽2)(𝛼3+ 𝑏𝑒𝑡𝑎3) = [(𝛼+𝛽)2 − 2𝛼𝛽][(𝛼+𝛽)3 − 3𝛼𝛽(𝛼+𝛽)] = (𝑏2 − 2𝑐)(𝑏3 −
3𝑏𝑐), and

𝛼5𝛽3 + 𝛼3𝛽5 − 2𝛼4𝛽4 = 𝛼3𝛽3(𝛼2 + 𝛽2 − 2𝛼𝛽) = 𝑐3(𝑏2 − 4𝑐).

Therefore, the equation would be

𝑥2 − [(𝑏2 − 2𝑐)(𝑏3 − 3𝑏𝑐)+ 𝑐3(𝑏2 − 4𝑐)]𝑥 + (𝑏2 − 2𝑐)(𝑏3 − 3𝑏𝑐)𝑐3(𝑏2 − 4𝑐) = 0.

433. Let 𝛼, 𝛽 be the roots then 𝛼 + 𝛽 = − 𝑏
⁄

𝑎 and 𝛼𝛽 = 𝑐
⁄

𝑎.

According to the question 𝛼 + 𝛽 = 1⁄
𝛼2 +

1⁄
𝛽2

⇒ − 𝑏
⁄

𝑎 =
(𝛼+𝛽)2−2𝛼𝛽
⁄

𝛼2𝛽2 ⇒ − 𝑏
⁄

𝑎 =
𝑏2⁄
𝑎2
⁄

𝑐2⁄
𝑎2

− 2 1⁄𝑐⁄
𝑎

⇒ − 𝑏
⁄

𝑎 =
𝑏2
⁄

𝑐2 − 2 𝑎⁄𝑐 ⇒
𝑏2
⁄

𝑎𝑐 +
𝑏𝑐
⁄

𝑎2 = 2.

434. Given, 𝑇 = 2𝜋√

ℎ2+𝑘2⁄
𝑔ℎ . Squaring, ℎ2 + 𝑘2 = 𝑇2𝑔ℎ

⁄

4𝜋2

⇒ ℎ2 − 𝑇2𝑔ℎ
⁄

4𝜋2 + 𝑘2 = 0. Clearly, ℎ1 and ℎ2 are two possible roots of above equation,
where

ℎ1 + ℎ2 = 𝑇2𝑔
⁄

4𝜋2 and ℎ1ℎ2 = 𝑘2.

435. Clearly, 𝛼1 + 𝛼2 = −𝑝 and 𝛼1𝛼2 = 𝑞, 𝛽1 + 𝛽2 = −𝑟 and 𝛽1𝛽2 = 𝑠.

Solving the two equations in 𝑦 and 𝑧 by elimination we have

𝛼1⁄
𝛼2

= 𝛽1
⁄

𝛽2 = 𝑘 ⇒ 𝑝2
⁄

𝑟2 =
(𝛼1+𝛼2)2
⁄

(𝛽1+𝛽2)2
= 𝛼2

1(1+𝑘2)
⁄

𝛽1(1+𝑘2)
=

𝛼1𝛼2
⁄

𝑘
⁄

𝛽1𝛽2
⁄

𝑘
= 𝑞
⁄

𝑠.

436. −(1 + 𝛼𝛽) = −(𝑎+𝑐⁄𝑎 ).

H. M. of 𝛼 and 𝛽 = 2𝛼𝛽
⁄

𝛼+𝛽 = −2𝑐
⁄

𝑏 , but since 𝑎, 𝑏, 𝑐 are in H. P. it becomes

= − 2𝑐
⁄

2𝑎𝑐
⁄

𝑎+𝑐
= −(𝑎+𝑐⁄𝑎 ) = −(1 + 𝛼𝛽).
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437. Given equation is 𝑥 + 1 = 𝜆𝑥 − 𝜆2𝑥2 ⇒ 𝜆2𝑥2 + (1 − 𝜆)𝑥 + 1 = 0.

⇒ 𝛼+ 𝛽 = 𝜆−1
⁄

𝜆2 and 𝛼𝛽 = 1⁄
𝜆2.

Also given that, 𝛼⁄𝛽 + 𝛽⁄
𝛼 = 𝑟 − 2

⇒ 𝛼2 + 𝛽2 = (𝑟 − 2)𝛼𝛽 ⇒ (𝛼 + 𝛽)2 = 𝑟𝛼𝛽

(𝜆−1)2
⁄

𝜆4 = 𝑟⁄
𝜆2 ⇒ 𝜆1 + 𝜆2 = 2
⁄

1−𝑟 and 𝜆1𝜆2 = 1
⁄

1−𝑟.

Now it is trivial to deduce the desired result.

438. Let 𝛼, 𝛽 be roots of 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 then

𝛼 + 𝛽 = − 𝑏
⁄

𝑎 and 𝛼𝛽 = 𝑐
⁄

𝑎.

According to question, 1⁄𝛼 + 1⁄
𝛽 = −𝑚
⁄

𝑙 and 1
⁄

𝛼𝛽 =
𝑛
⁄

𝑙 .

From product of roots, 𝑐⁄𝑎 =
𝑙
⁄

𝑛 and from sum of roots 𝑏⁄𝑐 = 𝑚
⁄

𝑙 .

439. Let the roots are 𝑙, 𝑙𝑚, 𝑙𝑚2, 𝑙𝑚3 which is an increasing G. P.

Sum of roots for first equation = 𝑙(1 +𝑚) = 3

Sum of roots for second equation = 𝑙𝑚2(1 +𝑚) = 12 ⇒ 𝑚2 = 4 ⇒ 𝑚 = 2 because G.
P. is increasing.

⇒ 𝑙 = 1.

⇒ 𝐴 = 𝑙2𝑚 = 2 and 𝐵 = 𝑙2𝑚5 = 32.

440. For first equation, 𝑝 + 𝑞 = 2 and 𝑝𝑞 = 𝐴. For second equation, 𝑟 + 𝑠 = 18 and 𝑟𝑠 = 𝐵.

Let 𝑎 be the first term and 𝑑 be the common difference, then

𝑝 = 𝑎 − 3𝑑, 𝑞 = 𝑎 − 𝑑, 𝑟 = 𝑎 + 𝑑, 𝑠 = 𝑎 + 3𝑑.

Substituting in sums we have 2𝑎 − 4𝑑 = 2 and 2𝑎 + 4𝑑 = 18 ∴ 𝑎 = 5 and 𝑑 = 2

∴ 𝑝 = −1, 𝑞 = 3, 𝑟 = 7, 𝑠 = 11 ∴𝐴 = −3 and 𝐵 = 77.

441. 𝛼 + 𝛽 = −𝑎 and 𝛼𝛽 = − 1⁄
2𝑎2. Now, 𝛼4 + 𝛽4 = ((𝛼 + 𝛽)2 − 2𝛼𝛽)2 − 2𝛼2𝛽2

= 2 + 𝑎4 + 1⁄
2𝑎4.

Let 𝑎4 + 1⁄
2𝑎4 = 𝑦 ⇒ 2𝑎8 − 2𝑎4𝑦 − 1 = 0.

Since 𝑎 is real. ∴ 𝑦2 − 2 ≥ 0 ⇒ 𝑦 ≥ √


2[∵ 𝑎4 ≥ 0]⇒ 𝛼4 + 𝛽4 ≥ 2 +√


2.
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442. 𝛼 + 𝛽 = 𝑝 and 𝛼𝛽 = 𝑞.

𝛼
1
⁄

4 + 𝛽
1
⁄

4 = 4√


(𝛼
1
⁄

4 + 𝛽
1
⁄

4)
4

= 4√


𝛼 + 𝛽 + 6√


𝛼𝛽 + 4 4√


𝛼𝛽(𝛼2 + 𝛽2) = 4√


𝑝 + 6√


𝑞 + 4 4√


𝑞(𝑝2 − 2𝑞).

443. Let 𝛼, 𝑏𝑒𝑡𝑎 be roots of first equation and 𝛾, 𝛿 be that of second equation.

𝛼 + 𝛽 = 𝑏
⁄

𝑎, 𝛼𝛽 = 𝑐
⁄

𝑎 and 𝛾 + 𝛿 = 𝑐⁄
𝑏 , 𝛾𝛿 =

𝑎
⁄

𝑏

According to question, 𝛼 − 𝛽 = 𝛾 − 𝛿 ⇒ (𝛼 + 𝛽)2 − 4𝛼𝛽 = (𝛾 + 𝛿)2 − 4𝛾𝛿

⇒ 𝑏2
⁄

𝑎2 −
4𝑐
⁄

𝑎 = 𝑐2
⁄

𝑏2 −
4𝑎⁄
𝑏 ⇒ 𝑏4 − 𝑎2𝑐2 = 4𝑎𝑏(𝑏𝑐 − 𝑎2).

444. A cubic equation whose roots are 𝛼, 𝛽, 𝛾 is given by 𝑓(𝑥) = (𝑥 − 𝛼)(𝑥 − 𝛽)(𝑥 − 𝛾)

∴ 𝑓′(𝑥) = (𝑥 − 𝛼)(𝑥 − 𝛽)+ (𝑥 − 𝛽)(𝑥 − 𝛾)+ (𝑥 − 𝛼)(𝑥 − 𝛾)

Now it is trivial to prove that a sign change occurs for the given limits for 𝑓′(𝑥) and
thus a root lies in these limits.

445. Let 𝑥1, 𝑥2, … , 𝑥𝑛 are the 𝑛 roots of the given polynomial equation. If all the roots are
equal then we will have the relationship

(𝑥1 − 𝑥2)2 + (𝑥1 − 𝑥3)2 + ⋯ + (𝑥1 − 𝑥𝑛)2 + (𝑥2 − 𝑥3)2 + ⋯ + (𝑥2 − 𝑥𝑛)2 + ⋯ +
(𝑥𝑛−1 − 𝑥𝑛)2 > 0

⇒ (𝑛 − 1)(𝑥21 + 𝑥22 + ⋯ + 𝑥2𝑛) − 2(𝑥1𝑥2 + 𝑥1𝑥3 + ⋯ + 𝑥1𝑥𝑛 + 𝑥2𝑥3 + 𝑥2𝑥4 + ⋯ +
𝑥2𝑥𝑛 + ⋯+ 𝑥𝑛−1𝑥𝑛) > 0

⇒ (𝑛 − 1)(𝑥21 + 𝑥22 + ⋯+ 𝑥2𝑛)+ (2𝑛 − 2)(𝑥1𝑥2 + 𝑥1𝑥3 + ⋯+ 𝑥1𝑥𝑛 + 𝑥2𝑥3 + 𝑥2𝑥4 +
⋯+𝑥2𝑥𝑛+⋯+𝑥𝑛−1𝑥𝑛)−2𝑛(𝑥1𝑥2 + 𝑥1𝑥3+⋯+𝑥1𝑥𝑛+ 𝑥2𝑥3+ 𝑥2𝑥4+⋯+𝑥2𝑥𝑛+
⋯+ 𝑥𝑛−1𝑥𝑛) > 0

⇒ (𝑛 − 1)(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛)2 − 2𝑛(𝑥1𝑥2 + 𝑥1𝑥3 + ⋯ + 𝑥1𝑥𝑛 + 𝑥2𝑥3 + 𝑥2𝑥4 + ⋯ +
𝑥2𝑥𝑛 + ⋯+ 𝑥𝑛−1𝑥𝑛) > 0

Now from polynomial 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 = −𝑎1 and 𝑥1𝑥2 + 𝑥1𝑥3 +⋯+ 𝑥1𝑥𝑛 + 𝑥2𝑥3 +
𝑥2𝑥4 + ⋯+ 𝑥2𝑥𝑛 + ⋯+ 𝑥𝑛−1𝑥𝑛 = 𝑎1.

∴ (𝑛 − 1)𝑎21 − 2𝑛𝑎2 > 0. But it is given that (𝑛 − 1)𝑎21 − 2𝑛𝑎2 < 0, hence all the roots
cannot be equal.

446. Since 𝛼, 𝛽, 𝛾, 𝛿 are in A. P. let 𝛼 = 𝑙 − 3𝑚, 𝛽 = 𝑙 −𝑚, 𝛾 = 𝑙 +𝑚, 𝛿 = 𝑙 + 3𝑚 where 𝑙 is
the first term and 𝑚 is the common difference of A. P.

𝛼 + 𝛽 = − 𝑏
⁄

𝑎, 𝛼𝛽 = 𝑐
⁄

𝑎 and 𝛾 + 𝛿 = − 𝑞
⁄

𝑝 , 𝛾𝛿 =
𝑟
⁄

𝑝

𝐷1
⁄

𝐷2
= 𝑏2−4𝑎𝑐⁄

𝑞2−4𝑝𝑟 =
𝑏2⁄
𝑎2
−4𝑐
⁄

𝑎
⁄

𝑎2⁄
𝑝2
−4𝑟⁄

𝑝

𝑎2
⁄

𝑝2 =
(𝛼−𝛽)2⁄
(𝛾−𝛿)2

𝑎2
⁄

𝑝2 =
4𝑑2
⁄

4𝑑2
𝑎2
⁄

𝑝2.
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447. R.H.S. = 𝑞2−4𝑝𝑟⁄
𝑝2 = 𝑞2
⁄

𝑝2 − 4 𝑟⁄𝑝 = (𝛼 + 𝛽 + 2ℎ)2 − 4(𝛼 + ℎ)(𝛽 + ℎ)

= (𝛼 + ℎ − 𝛽 − ℎ)2 = (𝛼 − 𝛽)2 = (𝛼 + 𝛽)2 − 4𝛼𝛽 = 𝑏2
⁄

𝑎2 − 4 𝑐⁄𝑎 =
𝑏2−4𝑎𝑐⁄

𝑎2 = L.H.S.

448. L.H.S. = 2ℎ = (𝛼 + ℎ + 𝛽 + ℎ)− (𝛼 + 𝛽) = − 𝑞
⁄

𝑝 − (𝑏⁄𝑎) =
𝑏
⁄

𝑎 −
𝑞
⁄

𝑝 = R.H.S.

449. 𝛼 + 𝛽 = − 𝑏
⁄

𝑎, 𝛼𝛽 = 𝑐
⁄

𝑎 and 𝛼4 + 𝛽4 = −𝑚
⁄

𝑙 , 𝛼
4𝛽4 = 𝑛
⁄

𝑙 .

Discriminant of given quadratic equation, 𝐷= 16𝑎2𝑐2𝑙2−4𝑎2𝑙(2𝑐2𝑙+𝑎2𝑚)= 8𝑎2𝑐2𝑙2−
4𝑎4𝑙𝑚

= 4𝑎4𝑙2(2 𝑐
2
⁄

𝑎2 −
𝑚
⁄

𝑙 ) = 4𝑎4𝑙2(2𝛼2𝛽2 + 𝛼4 + 𝛽4) = 2𝑎4𝑙2(𝛼2 + 𝛽2)2.

Therefore, roots of the given equation can be computed which are found to be
(𝛼 + 𝛽)2, −(𝛼 + 𝛽)2 which are equal and opposite in sign.

450. 𝛼 + 𝛽 = − 𝑏
⁄

𝑎, 𝛼𝛽 = 𝑐
⁄

𝑎 and 𝛾 + 𝛿 = −𝑚
⁄

𝑙 , 𝛾𝛿 =
𝑛
⁄

𝑙

Equation whose roots are 𝛼𝛾 + 𝛽𝛿 and 𝛼𝛿 + 𝛽𝛾 is

𝑥2 − (𝛼𝛾 + 𝛽𝛿 + 𝛼𝛿 + 𝛽𝛾)𝑥 + (𝛼𝛾 + 𝛽𝛿)(𝛼𝛿 + 𝛽𝛾) = 0

⇒ 𝑥−(𝛼 + 𝛽)(𝛾 + 𝛿)𝑥 + ((𝛼2 + 𝛽2)𝛾𝛿 + (𝛾2 + 𝛿2)𝛼𝛽) = 0

⇒ 𝑎2𝑙2𝑥2 − 𝑎𝑏𝑙𝑚𝑥 + (𝑏2 − 2𝑎𝑐) 𝑙𝑛 + (𝑚2 − 2𝑙𝑛)𝑎𝑐 = 0.

451. Since 𝑝 and 𝑞 are roots of the equation 𝑥2+ 𝑏𝑥+ 𝑐 = 0 therefore 𝑝 + 𝑞 = −𝑏 and 𝑝𝑞 = 𝑐

Equation whose roots are 𝑏 and 𝑐 is 𝑥2 − (𝑏 + 𝑐)𝑥 + 𝑏𝑐 =⇒ 𝑥2 + (𝑝 + 𝑞 − 𝑝𝑞)𝑥 −
𝑝𝑞(𝑝 + 𝑞) = 0.

452. 𝑝 and 𝑞 are roots of the equation 3𝑥2 − 5𝑥 − 2 = 0.

⇒ 𝑝 + 𝑞 = 5
⁄

3 and 𝑝𝑞 = −2
⁄

3.

Equation whose roots are 3𝑝 − 2𝑞 and 3𝑞 − 2𝑝 is

𝑥2 − (𝑝 + 𝑞)𝑥 − 6𝑝2 − 6𝑞2 + 13𝑝𝑞 = 0 ⇒ 3𝑥2 − 5𝑥 − 100 = 0.

453. Sum of roots = 2𝛼 = −𝑝 and product of roots = 𝛼2 − 𝛽 = 𝑞 ⇒ 𝛽 = 𝑝2−4𝑞
⁄

4 .

Equation whose roots are 1⁄𝛼 ± 1⁄
√

𝛽 is 𝑥2 − 2⁄

𝛼𝑥 +
1⁄
𝛼2 −

1⁄
𝛽 = 0

⇒ 𝑥2 + 2
⁄

𝑝 𝑥 +
1
⁄

𝑝2 −
4
⁄

𝑝2−4𝑞 = 0 ⇒ (𝑝2 − 4𝑞)(𝑝2𝑥2 + 4𝑝𝑥) = 16𝑞.

454. Sum of roots is 𝛼2(𝛼
2−𝛽2
⁄

𝛽 )+ 𝛽2(𝛽
2−𝛼2
⁄

𝛼 )

= (𝛼2−𝛽2)(𝛼3−𝛽3)
⁄

𝛼𝛽 = (𝛼+𝛽)(𝛼−𝛽)2(𝛼2+𝛽2+𝛼𝛽)
⁄

𝛼𝛽 = 𝑝
⁄

𝑞 (𝑝
2 − 4𝑞)(𝑝2 − 𝑞).
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Product of roots is −𝛼𝛽(𝛼2 − 𝛽2)2 = −𝑞(𝛼 − 𝛽)2(𝛼 + 𝛽)2 = −𝑝2𝑞(𝑝2 − 4𝑞).

Hence the equation having these as roots is 𝑞𝑥2−𝑝(𝑝2−𝑞)(𝑝2−4𝑞)𝑥−𝑝2𝑞2(𝑝2−4𝑞)=
0.

455. Solving the system of equations, we have 𝑢 = −1
⁄

3 , 𝑣 =
2
⁄

3 and 𝑤 = 5
⁄

3.

Now, (𝑏 − 𝑐)2 + (𝑐 − 𝑎)2 + (𝑑 − 𝑏)2 = 𝑎2 + 2𝑏2 + 2𝑐2 + 𝑑2 − 2𝑏𝑐 − 2𝑐𝑎 − 2𝑏𝑑, but
because 𝑎, 𝑏, 𝑐, 𝑑 are in G.P. therefore, 𝑎𝑑 = 𝑏𝑐, 𝑐𝑎 = 𝑏2 and 𝑏𝑑 = 𝑐2 ⇒ 𝑎2 + 2𝑏2 +
2𝑐2 + 𝑑2 − 2𝑏𝑐 − 2𝑐𝑎 − 2𝑏𝑑 = (𝑎 − 𝑑)2.

Rewriting the first quadratic equaiton, (1⁄𝑢 + 1⁄
𝑣 +

1⁄
𝑤)𝑥

2 + [(𝑏 − 𝑐)2 + (𝑐 − 𝑎)2 + (𝑑 −
𝑏)2 ]𝑥 + 𝑢 + 𝑣 + 𝑤 = 0 becomes

⇒− 9
⁄

10 𝑥
2+ (𝑎−𝑑)2𝑥+2 = 0⇒ 9𝑥2−10(𝑎−𝑑)2𝑥−20 = 0. Equation whose roots will

be reciprocal of this equation will be 9⁄𝑥2−
10(𝑎−𝑑)2
⁄

𝑥 −20 = 0 ⇒ 20𝑥2+ (𝑎−𝑑)2𝑥−9 = 0,
which is what we had to prove.

456. Because 𝛼1, 𝛼2, … , 𝛼𝑛 are roots of the equation (𝛽1 − 𝑥)(𝛽2 − 𝑥)… (𝛽𝑛 − 𝑥)+𝐴 = 0,
therefore

(𝛽1 − 𝛼1)(𝛽2 − 𝛼2)… (𝛽𝑛 − 𝛼𝑛)+𝐴 = 0.

Therefore, equation having 𝛽1, 𝛽2, … , 𝛽𝑛 as roots is

(𝑥 − 𝛼1)(𝑥 − 𝛼2)… (𝑥 − 𝛼𝑛)+𝐴 = 0.

457. Given 𝛼1, 𝛼2, … , 𝛼𝑛 are roots of the equation 𝑥𝑛 + 𝑎𝑥 + 𝑏 = 0.

⇒ (𝑥 − 𝛼1)(𝑥 − 𝛼2)⋯ (𝑥 − 𝛼𝑛) = 𝑥𝑛 + 𝑛𝑎𝑥 − 𝑏

⇒ lim
𝑥→𝛼1

(𝑥 − 𝛼2) (𝑥 − 𝛼3)⋯ (𝑥 − 𝛼𝑛) =
𝑥𝑛+𝑛𝑎𝑥−𝑏
⁄

𝑥−𝛼1

Applying L'Hospital's rule, (𝛼1−𝛼2)(𝛼1−𝛼3)⋯ (𝛼1−𝛼𝑛)= 𝑛𝑥𝑛−1+𝑛𝑎 = 𝑛(𝑥𝑛−1+
𝑎).

458. We have 1 + 𝛼2 = (𝛼 + 𝑖)(𝛼 − 𝑖) and so on for other terms of the first given root
(1 + 𝛼2)(1 + 𝛽2)(1 + 𝛾2)(1 + 𝛿2).

Let 𝑃 (𝑥) = 𝑥4+ 𝑞𝑥2+ 𝑟𝑥+ 𝑡 then (1+𝛼2)(1+𝛽2)(1+ 𝛾2)(1+ 𝛿2) = 𝑃 (𝑖)𝑃 (−𝑖) =
(1 − 𝑞 + 𝑡 + 𝑟𝑖)(1 − 𝑞 + 𝑡 − 𝑟𝑖) = (1 − 𝑞 + 𝑡)2 + 𝑟2.

Hence sum of (1 + 𝛼2)(1 + 𝛽2)(1 + 𝛾2)(1 + 𝛿2) and 1 is (1 − 𝑞 + 𝑡)2 + 𝑟2 + 1 and
product is (1 − 𝑞 + 𝑡)2 + 𝑟2. Thus, we deduce the equation as

𝑥2 − [(1 − 𝑞 + 𝑡)2 + 𝑟2 + 1]𝑥 + (1 − 𝑞 + 𝑡)2 + 𝑟2 = 0.

459. Given 𝛼, 𝛽, 𝛾 are roots of 𝑥3 + 𝑝𝑥 + 𝑞 = 0, so we have

𝛼 + 𝛽 + 𝛾 = 0, 𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼 = 𝑝, 𝛼𝛽𝛾 = −𝑞.
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Now sum of 𝛼+1⁄𝛼 , 𝛽+1⁄𝛽 , 𝛾+1⁄𝛾 is 3𝛼𝛽𝛾+𝛼𝛽+𝛽𝛾+𝛼𝛾⁄

𝛼𝛽𝛾 = 3𝑞−𝑝
⁄

𝑞 .

Product of these roots taken two at a time is 3𝛼𝛽𝛾+2(𝛼𝛽+𝛽𝛾+𝛼𝛾)+𝛼+𝛽+𝛾⁄

𝛼𝛽𝛾 = 3𝑞−2𝑝
⁄

𝑞

Product of all taken together is 𝛼𝛽𝛾+𝛼𝛽+𝛽𝛾+𝛾𝛼+𝛼+𝛽+𝛾+1⁄

𝛼𝛽𝛾 = 𝑞−𝑝−1
⁄

𝑞 .

Thus the cubic equation having these roots is 𝑥3 − 3𝑞−𝑝
⁄

𝑞 𝑥2 + 3𝑞−2𝑝
⁄

𝑞 𝑥 − 𝑞−𝑝−1
⁄

𝑞 = 0 ⇒
𝑞𝑥3 + (𝑝 − 3𝑞)𝑥2 + (3𝑞 − 2𝑝)𝑥 + 1 + 𝑝 − 𝑞 = 0.

460. Given equations are 𝑎𝑥2+ 𝑏𝑥+ 𝑐 = 0 and 𝑎1𝑥2+ 𝑏1𝑥+ 𝑐1 = 0. Let 𝛼 be the root which
satisfies first equation and its reciprocal satisfies the second equation. Then,

𝑎𝛼2 + 𝑏𝛼 + 𝑐 = 0 and 𝑎1⁄𝛼2 +
𝑏1
⁄

𝛼 + +𝑐1 = 0 ⇒ 𝑐1𝛼2 + 𝑏1𝛼 + 𝑎1 = 0.

By cross multiplication 𝛼 = 𝑐𝑐1−𝑎𝑎1
⁄

𝑎𝑏1−𝑏𝑐1 =
𝑏𝑎1−𝑏1𝑐
⁄

𝑐𝑐1−𝑎𝑎1 ⇒ (𝑎𝑎1−𝑐𝑐1)2 = (𝑏𝑐1−𝑎𝑏1)(𝑏1𝑐−𝑎1𝑏).

461. Let (𝛼, 𝛽), (𝛽, 𝛾), (𝛾, 𝛼) be three pairs of roots which satisfy the given equation. Then,
we have

𝛼 + 𝛽 = −𝑝, 𝛽 + 𝛾 = −𝑞, 𝛼 + 𝛾 = −𝑟, and hence, sum of all the common roots is
obtained by adding these three equations

𝛼 + 𝛽 + 𝛾 = −𝑝+𝑞+𝑟
⁄

2 .

462. The second equation is (2𝑥 sin 𝜃 − 1)2 = 0 i.e. it has only one root, 𝑥 = 1
⁄

2 sin 𝜃. Since
it has a common root with first equation and first equation has equal roots then that
implies that first equation also has one root which is 1

⁄

2 sin 𝜃.

Observing that coefficients in first equation are cyclic we deduce that 𝑥 = 1 will satisfy
the equation. Hence, 1

⁄

2 sin 𝜃 = 1 ⇒ sin 𝜃 = 1
⁄

2.

⇒ 𝜃 = 𝑛𝜋 + (−1)𝑛 𝜋
⁄

6, is the general solution of 𝜃.

463. Let 𝛼 is a root of 𝑥2 − 𝑥 + 𝑎 = 0 then 2𝛼 will be a root of 𝑥2 − 𝑥 + 3𝑎 = 0. Thus,

𝛼2 − 𝛼 + 𝑎 = 0 and 4𝛼2 − 2𝛼 + 3𝑎 = 0. By cross-multiplication, we have

𝛼2
⁄

−3𝑎+2𝑎 =
𝛼
⁄

3𝑎−4𝑎 =
1
⁄

−2+4 ⇒ 𝑎2 = −2𝑎 ⇒ 𝑎 = 0, −2.

However, it is given that 𝑎 ≠ 0, ∴ 𝑎 = −2.

464. If (𝑥1, 𝑦1), (𝑥2, 𝑦2) are the two solutions, then 𝑦1, 𝑦2 are the two solutions of the
quadratic in 𝑦. Then we will have two cases:

Case I: 𝑥1 = 𝑦1, 𝑥2 = 𝑦2. In this case the equation becomes 𝑥2 + 2𝑙𝑥 +𝑚 = 0 therefore
𝑎 = 2𝑙, 𝑚 = 𝑏.

Case II: 𝑥1 = 𝑦2, 𝑥2 = 𝑦1. In this case 𝑥1𝑦1+ 𝑙(𝑥1+ 𝑦1)+𝑚 = 0. Replacing 𝑦1 with 𝑥2,
we get 𝑏 − 𝑎𝑙 +𝑚 = 0.
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465. Given that roots of the equation 10𝑥3 − 𝑐𝑥2 − 54𝑥 − 27 = 0 are in H.P. Therefore if we
replace 𝑥 with 1⁄𝑥 then roots will be in A.P.

⇒ 10
⁄

𝑥3 −
𝑐
⁄

𝑥
2
− 54
⁄

𝑥 − 27 = 0 ⇒ 27𝑥3 + 54𝑥2 + 𝑐𝑥 − 10 = 0.

Let the roots are 𝑎 − 𝑑, 𝑎, 𝑎 + 𝑑, then sum of roots 3𝑎 = −54
⁄

27 ⇒ 𝑎 = −2
⁄

3, which is a
root of the equation. Substituting this in new equation we find 𝑐 = 9.

466. Given that 𝑎, 𝑏, 𝑐 are the roots of the equation 𝑥3 + 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0 such that
𝑐2 = −𝑎𝑏.

⇒ 𝑎+ 𝑏 + 𝑐 = −𝑝, 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 = 𝑞 and 𝑎𝑏𝑐 = −𝑟 ⇒ 𝑐3 = −𝑎𝑏𝑐 = 𝑟.

𝑝𝑞 = −(𝑎 + 𝑏 + 𝑐)(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) = −[𝑎2𝑏 + 𝑎𝑏𝑐 + 𝑐𝑎2 + 𝑎𝑏2 + 𝑏2𝑐 + 𝑎𝑏𝑐 + 𝑎𝑏𝑐 + 𝑏𝑐2 +
𝑐2𝑎] = −(𝑎2𝑏 + 𝑎𝑏𝑐 + +𝑐𝑎2 + 𝑎𝑏2 + 𝑏2𝑐 + 𝑎𝑏𝑐 + 𝑎𝑏𝑐 − 𝑎𝑏2 − 𝑎2𝑏)

= −(3𝑎𝑏𝑐 + 𝑎2𝑐 + 𝑏2) ∴ 𝑝𝑞 − 4𝑟 = −𝑟 − 𝑎2𝑐 − 𝑏2𝑐 ⇒ (𝑝𝑞 − 4𝑟)3 = −𝑐3(𝑎2 + 𝑏2 + 𝑐2).

L.H.S. = (𝑝2 − 2𝑞)3 .𝑟 = −[(𝑎 + 𝑏 + 𝑐)2 − 2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)] .𝑐3 = −𝑐3(𝑎2 + 𝑏2 + 𝑐2) =
R.H.S.

467. If 𝛼 + 𝑖𝛽 is one root of 𝑥3 + 𝑞𝑥 + 𝑟 = 0 then 𝛼 − 𝑖𝛽 will be another root. Let 𝛾 be the
third root.

Sum of roots 2𝛼 + 𝛾 = 0 ⇒ 𝛾 = −2𝛼. Since 𝛾 is a root of given equation, therefore

(−2𝛼)3 − 2𝑞𝛼 + 𝑟 = 0, and hence we have our equation is 𝑥3 + 𝑞𝑥 − 𝑟 = 0.

468. Clearly, 𝛼 + 𝛽 + 𝛾 = −1
⁄

2 , 𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼 = 0, 𝛼𝛽𝛾 = 2.

We have to find ∑(𝛼⁄𝛽 + 𝛽⁄
𝛼) =

𝛼⁄
𝛽 +

𝛽⁄
𝛼 +

𝛽⁄
𝛾 +

𝛾⁄
𝛽 +

𝛼⁄
𝛾 +

𝛾⁄
𝛼

= 1⁄
𝛼 (𝛽 + 𝛾)+ 1⁄

𝛽 (𝛾 + 𝛼)+ 1⁄
𝛾 (𝛼 + 𝛽) = 1⁄

𝛼 (−
1
⁄

2 − 𝛼)+ 1⁄
𝛽 (−

1
⁄

2 − 𝛽)+ 1⁄
𝛾 (−

1
⁄

2 − 𝛾)

= −1
⁄

2 (
1⁄
𝛼 +

1⁄
𝛽 +

1⁄
𝛾)− 3 = −1
⁄

2 (
𝛼𝛽+𝛽𝛾+𝛾𝛼
⁄

𝛼𝛽𝛾 )− 3 = −3.

469. Given equations are 𝑥3 + 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0 and 𝑥3 + 𝑝′𝑥2 + 𝑞′𝑥 + 𝑟′ = 0. Let 𝛼, 𝛽 are
common roots. Then putting 𝛼 and 𝛽 in the equations and subtracting

(𝑝 − 𝑝′)𝛼2 + (𝑞 − 𝑞′)𝛼 + (𝑟 − 𝑟′) = 0 and (𝑝 − 𝑝′)𝛽2 + (𝑞 − 𝑞′)𝛽 + (𝑟 − 𝑟′) = 0.

Thus, the quadratic equation whose roots are 𝛼,𝛽 is (𝑝− 𝑝′)𝑥2+ (𝑞 −𝑞′)𝑥+ (𝑟−𝑟′) =
0.

470. Let 𝛼, 𝛽, 𝛾 are the roots the given equation and are in G.P. Then, 𝛽2 = 𝛼𝛾 and also

𝛼𝛽𝛾 = −𝑑
⁄

𝑎 ⇒ 𝛽 = −(𝑑⁄𝑎)
1/3

.

Substituting the value of 𝛽 thus obtained in the given equation
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𝑎(−𝑑
⁄

𝑎)+ 3𝑏(−𝑑
⁄

𝑎)
2/3

+ 3𝑐(−𝑑
⁄

𝑎)
1/3

+ 𝑑 = 0 ⇒ 𝑎𝑐3 = 𝑏3𝑑, which the needed condition.

471. Let 𝛼, 𝛽, 𝛾 are the roots of the equation 𝑥3 − 𝑝𝑥2 + 𝑞𝑥 − 𝑟 = 0, then

𝛼 + 𝛽 + 𝛾 = 𝑝, 𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼 = 𝑞, 𝛼𝛽𝛾 = 𝑟.

Mean of H.P. = 𝛽 = 3𝛼𝛽𝛾
⁄

𝛼𝛽+𝛽𝛾+𝛾𝛼 = 3𝑟
⁄

𝑞 . Substituting this in given equation

(3𝑟⁄𝑞 )
3
− 𝑝(3𝑟⁄𝑞 )

2
+ 𝑞 3𝑟⁄𝑞 − 𝑟 = 0 ⇒ 27𝑟3 − 9𝑝𝑞𝑟2 + 2𝑟𝑞3 = 0 ⇒ 27𝑟2 + 2𝑞3 = 9𝑝𝑞𝑟.

472. Let 𝛼, 𝛽, 𝛾 be the roots of the given equation. Also given that 𝑓(0) and 𝑓(−1) are odd.

𝑓(0) = odd ⇒ 𝑑 = odd, 𝑓(−1) = −1 + 𝑏 − 𝑐 + 𝑑 = odd ⇒ 𝑏 − 𝑐 = odd.

Also, 𝛼𝛽𝛾 = −𝑑 = odd which implies 𝛼, 𝛽, 𝛾 are all odd. However,

𝑏 − 𝑐 = −[(𝛼 + 𝛽 + 𝛾)− (𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼)] = −[odd− odd] = even

which contradicts the assumption that all roots are integers.

473. Let 𝛼, 𝛽, 𝛾 are roots of the equation 2𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 4 = 0, then

𝛼 + 𝛽 + 𝛾 = −𝑎
⁄

2 , 𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼 = 𝑏
⁄

𝑎 and 𝛼𝛽𝛾 = −2.

Since all coefficients are positive hence all roots are negative. Let 𝛼 = −𝑝, 𝛽 = −𝑞 and
𝛾 = −𝑟, then

𝑝 + 𝑞 + 𝑟 = 𝑎
⁄

2 , 𝑝𝑞 + 𝑞𝑟 + 𝑟𝑝 = 𝑏
⁄

2 and 𝑝𝑞𝑟 = 2.

Now A.M≥ G.M. ⇒ 𝑝+𝑞+𝑟
⁄

3 ≥ (𝑝𝑞𝑟)
1
⁄

3 ⇒ 𝑎
⁄

6 ≥ 21/3

also, because A.M.≥ G.M ⇒ 𝑝𝑞+𝑞𝑟+𝑟𝑝
⁄

3 ≥ (𝑝𝑞𝑟)2/3 ⇒ 𝑏 ≥ 6.41/3

Adding we arrive at the required inequality.

474. Given equations are 𝑎1𝑥3+ 𝑏1𝑥2+ 𝑐1𝑥+ 𝑑1 = 0 and 𝑎2𝑥3+ 𝑏2𝑥2+ 𝑐2𝑥+ 𝑑2 = 0. Let 𝛼
be a common repeated root then

𝑎1𝛼3 + 𝑏1𝛼2 + 𝑐1𝛼 + 𝑑1 = 0 and 𝑎2𝛼3 + 𝑏2𝛼2 + 𝑐2𝛼 + 𝑑2 = 0

Multiplying first equation by 𝑎2 and second equation by 𝑎1 and subtracting, we get

(𝑎2𝑏2 − 𝑎1𝑏2)𝑥2 + (𝑎2𝑐1 − 𝑎1𝑐2)𝑥 + (𝑎2𝑑1 − 𝑎1𝑑2) = 0

Also, the derivatives will be equal to zero because they have a common root i.e.

3𝑎1𝑥2 + 2𝑏1𝑥 + 𝑐1 = 0 and 3𝑎2𝑥2 + 2𝑏2𝑥 + 𝑐2 = 0 and hence the condition is

∣
3𝑎1 2𝑏1 𝑐1
3𝑎1 2𝑏1 𝑐1

𝑎2𝑏1 − 𝑎1𝑏2 𝑎2𝑐1 − 𝑎1𝑐2 𝑎2𝑑1 − 𝑎1𝑑2 ∣ = 0
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475. Given equations are 𝑎1𝑥2 + 𝑏1𝑥 + 𝑐1 = 0 and 𝑎2𝑥3 + 𝑏2𝑥2 + 𝑐2𝑥 + 𝑑2 = 0. Because
cubic equation has a repeated root therefore its derivative will be equal to 0, and hence

3𝑎2𝑥2 + 2𝑏2𝑥 + 𝑐2 = 0. Multiplying first equation by 𝑎2𝑥 and second by 𝑎1 and
subtracting, we get

(𝑎1𝑏2 − 𝑎2𝑏1)𝑥2 + (𝑎1𝑐2 − 𝑎2𝑐1)𝑥 + 𝑎1𝑑2 = 0 and thus from these three equations we
have

∣
𝑎1 𝑏1 𝑐1
3𝑎2 2𝑏1 𝑐2

𝑎1𝑏2 − 𝑎2𝑏1 𝑎1𝑐2 − 𝑎2𝑐1 𝑎1𝑑2 ∣ = 0

476. Given that 𝛼, 𝛽, 𝛾 are roots of 𝑥3 − 𝑎𝑥2 + 𝑏𝑥 − 𝑐 = 0 then we have

𝛼 + 𝛽 + 𝛾 = 𝑎, 𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼 = 𝑏 and 𝛼𝛽𝛾 = 𝑐.

We know that if 𝑎, 𝑏, 𝑐 are sides of a triangle and perimeter is 2𝑠 then area is given by
√


𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐), therefore area of required triangle is

Δ = 1
⁄

4√


(𝛼 + 𝛽 + 𝛾)(𝛼 + 𝛽 − 𝛾)(𝛼 − 𝛽 + 𝛾)(𝛽 + 𝛾 − 𝛼)

= 1
⁄

4√


𝑎(𝛼𝛽2 + 𝛽𝛾2 + 𝛾𝛼2 + 𝛼2𝛽 + 𝛽2𝛾 + 𝛾2𝛼 − 𝛼3 − 𝛽3 − 𝛾3 − 2𝛼𝛽𝛾)

= 1
⁄

4√


𝑎[4(𝛼𝛽2 + 𝛽𝛾2 + 𝛾𝛼2 + 𝛼2𝛽 + 𝛽2𝛾 + 𝛾2𝛼 + 3𝛼𝛽𝛾)−(square root continued)

√


(𝛼3 + 𝛽3 + 𝛾3 + 3𝛼2𝛽 + 3𝛼𝛽2 + 3𝛽𝛾2 + 3𝛽2𝛾 + 3𝛼𝛾2 + 3𝛼2𝛾 + 6𝛼𝛽𝛾)− 8𝛼𝛽𝛾 ]

= 1
⁄

4√


𝑎[4(𝛼 + 𝛽 + 𝛾)(𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼)− (𝛼 + 𝛽 + 𝛾)3 − 8𝛼𝛽𝛾 ]

= 1
⁄

4√

𝑎(4𝑎𝑏 − 𝑎3 − 8𝑐), hence proved.

477. Given 𝑎 < 𝑏 < 𝑐 < 𝑑 and 𝜇(𝑥 − 𝑎)(𝑥 − 𝑐) + 𝜆(𝑥 − 𝑏)(𝑥 − 𝑑) = 0. Let 𝑓(𝑥) =
𝜇(𝑥 − 𝑎)(𝑥 − 𝑐)+ 𝜆(𝑥 − 𝑏)(𝑥 − 𝑑) = 0

𝑓(𝑎) = 𝜆(𝑎 − 𝑏)(𝑎 − 𝑑), 𝑓(𝑐) = 𝜆(𝑐 − 𝑏)(𝑐 − 𝑑) ⇒ 𝑓(𝑎)𝑓(𝑐) < 0 and similarly
𝑓(𝑏)𝑓(𝑑) < 0. Thus the equation has one root between 𝑎 and 𝑐 and second root
between 𝑏 and 𝑑 which implies that both the roots are real for real 𝜇 and 𝜆.

478. Let 𝑓(𝑥)= 3𝑥5−5𝑥3+21𝑥+3 sin 𝑥+4 cos 𝑥+5 = 0 then 𝑓(∞)=−∞ and 𝑓(∞)=∞.

𝑓′(𝑥) = 15𝑥4 − 15𝑥2 + 21 + 3 cos 𝑥 − 4 sin 𝑥 = 15(𝑥4 − 2𝑥2 + 1 + 𝑥2) + 6 + 3 cos 𝑥 −
4 sin 𝑥 > 0 ∀ 𝑥 ∈ (−∞,∞) which means 𝑓(𝑥) is increasing.

Thus, we see that 𝑓(𝑥) can have only one real root.

479. The plot is given below(not in linear scale):
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𝑓′(𝑥) = 3𝑥2−20𝑥−11 = 0 ⇒ 𝑥 = 10±√

133
⁄

3 which shows two
points in the graph where tangent is parallel to 𝑥-axis. We see
that after the higher value of this root the graph is increasing
and cuts 𝑥-axis. So we substitute the increasing values of 𝑥
to obtain the integral part of root. 𝑥 = 10+√


133
⁄

3 ≈ 7.16. We
find that 𝑓(8) < 𝑓(9) < 𝑓(10) < 𝑓(11) < 0 but 𝑓(12) > 0
. So the root lies between 11 and 12, and hence the integral
part is [𝑥] = 11.

480. 𝑓(𝑥) = (𝑥 −𝑚)(𝑏𝑛𝑥𝑛 + ⋯+ 𝑏0) = (𝑥 −𝑚)𝑔(𝑥) for some
𝑏0, … , 𝑏𝑚 ∈ ℤ. Then

𝑓(0) = −𝑚.𝑔(0) and 𝑓(1) = (1 −𝑚) .𝑔(1) but either −𝑚 or 1 −𝑚 is even. Observe

that 𝑓(0) = 𝑎𝑛 and 𝑓(1) =
𝑛
∑
𝑖=0

𝑎𝑖.

481. Let 𝑔(𝑥) = 𝑒𝑥𝑓(𝑥) then 𝑔″(𝑥) = 𝑒𝑥[𝑓(𝑥) + 2𝑓′(𝑥) + 𝑓″(𝑥)] . ∴ Roots of equation
𝑓(𝑥)+ 2𝑓′(𝑥)+ 𝑓″(𝑥) = 0 will be same as those of equation 𝑔″(𝑥) = 0 as 𝑒𝑥 ≠ 0.

Also, since 𝑒𝑥 > 0, therefore roots of the equation 𝑓(𝑥) = 0 and 𝑔(𝑥) = 0 will be same.

Clearly, 𝑔(𝑥) = 0 will have 𝛼, 𝑏𝑒𝑡𝑎, 𝛾 as roots and hence 𝑔′(𝑥) = 0 will have roots 𝑎
between 𝛼 and 𝑏𝑒𝑡𝑎 and a root 𝑏 between 𝛽 and 𝛾. Hence equation 𝑔″(𝑥) = 0 will have
a root between 𝑎 and 𝑏, which obviously lies between 𝛼 and 𝛾.

482. The plot is given below(not in linear scale):

(−1, −3)

(4, 128)

Let 𝑓(𝑥) = 𝑥4 − 4𝑥3 − 8𝑥2 ⇒ 𝑓′(𝑥) = 4𝑥3 − 12𝑥2 − 16𝑥 = 4𝑥(𝑥 − 4)(𝑥 + 1) so at
𝑥 = −1, 0, 4 there will be tangents and the direction of 𝑓(𝑥) will change.
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From the graph it is clear that for 𝑓(𝑥)+ 𝑎 = 0 to have four real roots 0 ≤ 𝑎 ≤ 3.

483. Let 𝛼, 𝛽 be two distinct roots of the given equation. Then 𝛼 + 𝛽 = − 𝑏
⁄

𝑎, 𝛼𝛽 = 𝑐
⁄

𝑎. Using
A.M ≥ G.M. For 0 < 𝛼, 1 − 𝛼, 𝛽, 1 − 𝛽 < 1

So 1−𝛼+𝛼⁄2 ≥√


𝛼(1 − 𝛼)⇒ 𝛼(1 − 𝛼) ≤ 1
⁄

4

Similarly 𝛽(1 − 𝛽) ≤ 1
⁄

4 ⇒ 𝛼𝛽(1 − 𝛼)(1 − 𝛽) < 1
⁄

16

⇒ 𝛼𝛽[1 − (𝛼 + 𝛽)+ 𝛼𝛽] < 1
⁄

16 ⇒ 16𝑐(𝑎 − 𝑏 + 𝑐) < 𝑎2

However, min[𝑐(𝑎 − 𝑏 + 𝑐)] = 1 so 𝑎2 > 16 Thus, 𝑎min = 5.

Now 2 < 𝛼 + 𝛽 < 4 ⇒ 2𝑎 < 𝑏 < 4𝑎 ⇒ 𝑏min = 11.

484. Let 𝑓(𝑥) = (𝑥− 1)5 + (𝑥+ 2)7 + (7𝑥− 5)9 − 10 then 𝑓(−∞) = −∞ and 𝑓(∞) =∞.
𝑓′(𝑥) = 5(𝑥 − 1)4 + 7(𝑥 + 2)6 + 63(7𝑥 − 5)8 > 0 which makes 𝑓(𝑥) and increasing
function, which means it can cut 𝑥-axis only once; yielding only one root.

485. Given, √


2(𝑥 + 3)−√


𝑥 + 2 = 3. Squaring 2𝑥 + 6 + 𝑥 + 2 − 2√


2(𝑥 + 3)(𝑥 + 2) = 9.

Squaring again, ⇒ 8(𝑥 + 2)(𝑥 + 3) = (1 − 3𝑥)2 ⇒ 𝑥2 − 46𝑥 − 47 = 0 ⇒ 𝑥 = 47, −1.

Substituting these in the original equation, we quickly find that 𝑥 = 47 is the actual
root and 𝑥 = −1 is the extraneous root. Hence, tan 𝜃 = 47, tan 𝜙 = −1, and hence

tan(𝜃 + 𝜙) = 23
⁄

24 and cot(𝜃 − 𝜙) = −23
⁄

24.

486. Case I: When 𝑥 < −1 then the equation becomes −𝑥 − 1 + 𝑥 − 3𝑥 + 3 + 2𝑥 − 4 =
𝑥 + 2 ⇒ 2𝑥 = −4 ⇒ 𝑥 = −2.

Case II: When −1 < 𝑥 < 0, then 𝑥 + 1 + 𝑥 − 3𝑥 + 3 + 2𝑥 − 4 = 𝑥 + 2 ⇒ 𝑥 = 𝑥 + 2,
which is not possible.

Case III: When 0 < 𝑥 < 1, then 𝑥+ 1−𝑥− 3𝑥+ 3+ 2𝑥− 4 = 𝑥+ 2 ⇒ −𝑥 = 𝑥+ 2 ⇒
𝑥 = −1, which is not possible.

Case IV: When 1 < 𝑥 < 2, then 𝑥 + 1 − 𝑥 + 3𝑥 − 3 + 2𝑥 − 4 = 𝑥 + 2 ⇒ 5𝑥 − 6 =
𝑥 + 2 ⇒ 𝑥 = 2, which is not possible.

Case V: When 𝑥 ≥ 2, then 𝑥 + 1 − 𝑥 + 3𝑥 − 3 − 2𝑥 + 4 = 𝑥 + 2 ⇒ 𝑥 + 2 = 𝑥 + 2,
which is true.

Hence, the solution is 𝑥 = −2, 𝑥 ≥ 2.

487. Case I: When 𝑥 < −1, then 1⁄
2𝑥+1 − 2𝑥 = −2𝑥 + 1 + 1 ⇒ 𝑥 = −2.

Case II: When −1 < 𝑥 < 0, then 2𝑥+1 − 2𝑥 = − 1
⁄

2𝑥 + 1+ 1 ⇒ 22𝑥+1− 3.2𝑥 + 1 = 0 ⇒

2𝑥 = 0, 2𝑥 = 1
⁄

2, which is not possible.
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Case III: When 𝑥 ≥ 0, 2𝑥+1 − 2𝑥 = 2𝑥 − 1 + 1 ⇒ 0 = 0.

Hence, the solution is 𝑥 = −2, 𝑥 ≥ 0.

488. Case I: When 𝑥 < 0, 𝑦 < 0, then 𝑥2 − 2𝑥 + 𝑦 = 1, 𝑥2 − 𝑦 = 1 ⇒ 𝑥 = 1−√


5⁄
2 , 𝑦 = 1−√


5⁄
2

Case II: When 𝑥 < 0, 𝑦 > 0, then 𝑥2 − 2𝑥 + 𝑦 = 1, 𝑥2 + 𝑦 = 1 ⇒ −2𝑥 = 0, 𝑦 = 1

Case III: When 0 < 𝑥 < 2, 𝑦 < 0, then −𝑥2 + 2𝑥 + 𝑦 = 1, 𝑥2 − 𝑦 = 1 ⇒ 2𝑥 = 2, 𝑦 = 0
Case IV: When 0 < 𝑥 < 2, 𝑦 > 0, then −𝑥2 + 2𝑥 + 𝑦 = 1, 𝑥2 + 𝑦 = 1 ⇒ −2𝑥2 + 2𝑥 =
0, 𝑥 = 0, 1, 𝑦 = 1, 0

Case V: When 𝑥 > 2, 𝑦 < 0, then 𝑥2 − 2𝑥 + 𝑦 = 1, 𝑥2 − 𝑦 = 1 ⇒ 2𝑥2 − 2𝑥 = 2 ⇒ 𝑥 =
1±√


2⁄
2 < 2, which is not possible.

Case VI: When 𝑥 > 2, 𝑦 > 0, then 𝑥2 − 2𝑥 + 𝑦 = 1, 𝑥2 + 𝑦 = 1 ⇒ 𝑥 = 0, 𝑦 = 1, which
is not possible.

Hence, the solution is 𝑥 = 0, 𝑦 = 1, 𝑥 = 𝑦 = 1−√


5⁄
2 , 𝑥 = 1, 𝑦 = 0.

489. Given equation is |𝑥2 + 4𝑥 + 3|+ 2𝑥 + 5 = 0 ⇒ |(𝑥 + 1)(𝑥 + 3) |+ 2𝑥 + 5 = 0.

Case I: When 𝑥 < −3, then 𝑥2 + 4𝑥 + 3 + 2𝑥 + 5 = 0 ⇒ 𝑥2 + 6𝑥 + 8 = 0 ⇒ 𝑥 =
−6±√


4⁄
2 , ⇒ 𝑥 = −4, −2. But 𝑥 = −2 is not possible.

Case II: When −1 < 𝑥 < −3, then −𝑥2 − 4𝑥 − 3 + 2𝑥 + 5 = 0 ⇒ 𝑥2 + 2𝑥 − 2 = 0 ⇒
𝑥 = −1 ±√


3. But 𝑥 = −1 +√


3 is not possible.

Case III: When 𝑥 > −1, then 𝑥2 + 4𝑥 + 3 + 2𝑥 + 5 = 0 ⇒ 𝑥 = −4, −2, which is not
possible.

Hence, the solution is 𝑥 = −4, −1 −√


3.

490. Given equation upon simplification is 𝑥4 + 6𝑥3 − 9𝑥2 − 162𝑥 − 243 = 0 and 𝑥 ≠ −3.

Let us assume that 𝑥4 + 6𝑥3 − 9𝑥2 − 162𝑥 − 243 = (𝑥2 + 𝑎𝑥 + 𝑏)(𝑥2 + 𝑐𝑥 + 𝑑).
Comparing coefficients,

𝑎 + 𝑐 = 6, 𝑏 + 𝑑 + 𝑎𝑑 = −9, 𝑎𝑑 + 𝑏𝑐 = −162, 𝑏𝑑 = −243, which is four equations with
four unknowns. Solving these, we have 𝑎 = −3, 𝑏 = −9, 𝑐 = 9, 𝑑 = 27, and hence, the
solution is

𝑥 = 3±3√


5
⁄

2 , −9±3√


3𝑖⁄
2 .

491. Given equation is 1⁄[𝑥]+ 1⁄
[2𝑥] = {𝑥}+ 1
⁄

3. We observe that [𝑥] cannot be negative because
that will make L.H.S. negative while R.H.S. is positive.

Case I: When {𝑥} ≥ 1
⁄

2, then 2[𝑥] = 2[𝑥]+ 1. Putting [𝑥] = 𝑛, where 𝑛 ∈ ℙ.



Answers of Polynomials and Theory of Equations 560

Given equation is {𝑥} = 1
⁄

𝑛 +
1
⁄

2𝑛+1 −
1
⁄

3. Putting 𝑥 = 1, 2, 3, … we observe that {𝑥} is
not satisfied and the function is decreasing in nature.

Case II: When {𝑥} < 1
⁄

2, then {𝑥} = 1
⁄

𝑛 +
1⁄
2𝑛 −

1
⁄

3.

⇒ {𝑥} = 6+3−2𝑛
⁄

6𝑛 , now we see that numerator becomes negative once 𝑛 ≥ 5, thus those
values are ruled out. We see that 𝑥 = 2, 3, 4 are the only values which satisfy the given
conditions.

492. Let 𝑘 = log𝑎 𝑥 log10 𝑎 log𝑎 5 = log𝑎 5log10 𝑥, then 𝑎𝑘 = 5log10 𝑥 = 5𝑙(let log10 𝑥 = 𝑙).

Let 𝑚= log10( 𝑥
⁄

10)= log10 𝑥−1 = 𝑙−1 and 𝑛 = log100 𝑥+log4 2 =
1
⁄

2 log10 𝑥+
1
⁄

2 log2 2 =
𝑙+1
⁄

2 .

∴ 9𝑛 = 9
𝑙+1
⁄

1 = 3𝑙+1 = 3.3𝑙.

According to question 6⁄5 .5
𝑙 − 3𝑙
⁄

3 = 3.3𝑙 ⇒ 5𝑙−2 = 3𝑙−2, which is possible only if
𝑙 = 2 ⇒ 𝑥 = 100.

493. 5
1
⁄

𝑥 + 125 = 5log5 6+1+
1
⁄

2𝑥 = 5log5 6.5.5
1
⁄

2𝑥

⇒ 5
1
⁄

𝑥 + 125 = 6.5.5
1
⁄

𝑥 ⇒ 𝑘2 + 125 = 30𝑘, where 𝑘 = 5
1
⁄

2𝑥

⇒ 𝑘 = 5, 25 ⇒ 𝑥 = 1
⁄

2 ,
1
⁄

4.

494. Taking log of both sides with base 𝑥, we have

2
⁄

3 [(log2 𝑥)
2 + log2 𝑥 − 5
⁄

4] =
1
⁄

2 log𝑥 2

⇒ 2
⁄

3 [(log2 𝑥)
2 + log2 𝑥 − 5
⁄

4 =
1
⁄

2 log2 𝑥] (Putting log2 𝑥 = 𝑦)

⇒ 𝑦2 + 𝑦 − 5
⁄

4 =
3⁄
4𝑦 ⇒ 4𝑦3 + 4𝑦2 − 5𝑦 − 3 = 0.

Observing that sum of coefficients is zero, we quickly deduce that 𝑦 = 1 is one of the
solution. Thus, the above equation is reduced to

4𝑦2 + 8𝑦 + 3 = 0 ⇒ 𝑦 = −1
⁄

2 , −
3
⁄

2.

And hence, 𝑥 = 2, 1⁄
√


2 ,
1
⁄

2√


2.

495. Given 3𝑥2 = 8[𝑥]−1. Let [𝑥] = 1, then 𝑥 =√


7
⁄

3 and when [𝑥] = 2 ⇒ 𝑥 =√


5. However,

when [𝑥] = 3, 𝑥 = √


23
⁄

3 < 3, which is not possible. Further values are not possible
because if we increase [𝑥] linearly then L.H.S. will increase exponentially.

Thus, two possible values are √


7
⁄

3 and √


5.
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496. Let 𝑦 = 𝑡 +√

𝑡2 − 1, then 1⁄𝑦 = 𝑡 −√

𝑡2 − 1 and 𝑦 + 1
⁄

𝑦 = 2𝑡

Thus, the given equation becomes 𝑦𝑥
2−2𝑥 + 1
⁄

𝑦𝑥2−2𝑥
= 𝑦 + 1
⁄

𝑦

Let 𝑧 = 𝑦𝑥
2−2𝑥, then given equation is 𝑧 − 𝑦 + 1

⁄

𝑧 −
1
⁄

𝑦 = 0

⇒ (𝑧 − 𝑦)(1 − 1
⁄

𝑧𝑦) = 0 ⇒ 𝑧 = 𝑦 or 𝑧 = 1
⁄

𝑦 ⇒ 𝑥 = 1, 1 ±√


2.

497. Multiplying first equation by 2 and subtracting, we get

5𝑦2+ 10𝑦 − 15 = 0 ⇒ 𝑦2+ 2𝑦 − 3 = 0 ⇒ 𝑦 = −3, 1. If 𝑦 = −3,−3𝑥+ 27−𝑥− 12− 7 =
0 ⇒ −4𝑥 + 8 = 0 ⇒ 𝑥 = 2. If 𝑦 = 1, 𝑥 + 3 − 𝑥 + 4 − 7 = 0 ⇒ 0 = 0 so all values of
𝑥 ∈ ℝ will satisfy the equation.

498. We have 2𝑥−1.27
𝑥⁄

𝑥+2 = 3. Taking log with base 2, we have

𝑥 − 1 + 2𝑥−2⁄
𝑥+2 log2 3 = 0 ⇒ 𝑥 − 1 − 2𝑥−2⁄

𝑥+2 + 2𝑥−2⁄
𝑥+2 (log2 3 + log2 2) = 0

⇒ 𝑥2−𝑥
⁄

𝑥+2 + 2𝑥−2⁄
𝑥+2 log2 6 = 0 ⇒ 𝑥−1
⁄

𝑥+2 (𝑥 + log2 6) = 0 ⇒ 𝑥 = 1, −2 log2 6.

499. We have 4𝑥 − 3
𝑥−1⁄2 = 3

𝑥+1⁄2 − 22𝑥−1 ⇒ 22𝑥 + 22𝑥−1 = 3𝑥+
1
⁄

2 + 3𝑥−
1
⁄

2

⇒ 22𝑥−1.3 = 3𝑥−
1
⁄

2.4 ⇒ 22𝑥−3 = 3𝑥−
3
⁄

2.

𝑥 = 3
⁄

2 is a solution which satisfies both sides, and is the only solution.

500. We have log10[98 +√


𝑥3 − 𝑥2 − 12𝑥 + 36] = 2. Taking antilog,

√


𝑥3 − 𝑥2 − 12𝑥 + 36 = 2 ⇒ 𝑥3 − 𝑥2 − 12𝑥 + 32 = 0 ⇒ (𝑥 + 4)(𝑥2 − 5𝑥 + 8) = 0.

We find that the only real solution is 𝑥 = −4.

501. Given, log2𝑥+3(6𝑥2+23𝑥+21) = 4−log3𝑥+7(4𝑥2+12𝑥+9)⇒ log2𝑥+3(2𝑥+3)(3𝑥+
7) = 4 − log3𝑥+7(2𝑥 + 3)2

⇒ 1+log2𝑥+3(3𝑥+7)= 4−2 log3𝑥+7(2𝑥+3)⇒ log2𝑥+3(3𝑥+7)−log3𝑥+7(2𝑥+3)=
3

Let log2𝑥+3(3𝑥 + 7) = 𝑧 then log3𝑥+7(2𝑥 + 3) = 1
⁄

𝑧, and given equation becomes

𝑧 + 2
⁄

𝑧 = 3 ⇒ 𝑧 = 1, 2 ⇒ 2𝑥+ 3 = 3𝑥+ 7 ⇒ 𝑥 = −4, which is not possible as 2𝑥 + 3 > 0

and 3𝑥 + 7 = (2𝑥 + 3)2 ⇒ 4𝑥2 + 9𝑥 + 2 = 0 ⇒ 𝑥 = −1
⁄

4 , −2, but again 𝑥 = −2 is not
possible as it makes 2𝑥 + 3 < 0.

Hence, the only possible solution is 𝑥 = −1
⁄

4



Answers of Polynomials and Theory of Equations 562

502. Rewriting the given equation 𝑦4 − 2𝑥4 = 1402 ⇒ (𝑦2 +√


2𝑥2)(𝑦2 −√


2𝑥2) = 701 × 2

Suppose 𝑥, 𝑦 are integers then 𝑥2, 𝑦2 > 0, which implies

𝑦2 + √


2𝑥2 = 701 and 𝑦2 − √


2𝑥2 = 2. Adding, 2𝑦2 = 703, which has no integral
solution.

503. Given equation is |𝑥 − 1|log3 𝑥
2−2 log𝑥 9 = (𝑥 − 1)7. Clearly, 𝑥 > 1 for log𝑥 9 to be

defined. So the equation becomes

(𝑥 − 1)log3 𝑥
2−2 log𝑥 9 = (𝑥 − 1)7, taking log of both sides

(2 log3 𝑥 − 4 log𝑥 3 − 7)[log(𝑥 − 1)] = 0. So either

2 log3 𝑥 − 4 log𝑥 3 − 7 = 0 or log(𝑥 − 1) = 0 ⇒ 𝑥 − 1 = 1 ⇒ 𝑥 = 2.

Let log3 𝑥 = 𝑧 then log𝑥 3 = 1
⁄

𝑧, so we have

2𝑧2 − 7𝑧 − 4 = 0 ⇒ 𝑧 = 4, − 1
⁄

2 which gives us 𝑥 = 81, 1⁄
√


3 but 𝑥 > 1 so 𝑥 = 81 is the
second solution.

504. One of the solutions is cos 𝑥 = 1 which will make exponent 1⁄2 equalizing both sides.
Thus, 𝑥 = 2𝑛𝜋 is our first solution.

The second solution can be obtained by setting exponent to zero i.e. sin2 𝑥−3
⁄

2 sin 𝑥+
1
⁄

2 =

0 giving us sin 𝑥 = 1, 1⁄2 but if sin 𝑥 = 1 then cos 𝑥 = 0, which makes th equation invalid.

Therefore, sin 𝑥 = 1
⁄

2 is our second solution. Thus, 𝑥 = 𝑛𝜋 + (−1)𝑛 𝜋
⁄

6 , 𝑛 ∈ 𝕀.

505. We have the equation (𝑥 + 𝑎)(𝑥 + 1991)+ 1 = 0 ⇒ (𝑥 + 𝑎)(𝑥 + 1991) = −1

Either 𝑥 + 𝑎 = 1 and 𝑥 + 1991 = −1 ⇒ 𝑎 = 1993 or 𝑥 + 𝑎 = −1 and 𝑥 + 1991 = 1 ⇒
𝑎 = 1989.

506. Given equation is 2sin
2 𝑥 + 5(2cos

2 𝑥) = 7 ⇒ 2sin
2 𝑥 + 10
⁄

sin2 𝑥 = 7.

Let 2sin
2 𝑥 = 𝑦, then the equation becomes 𝑦 + 10

⁄

𝑦 = 7 ⇒ 𝑦2 − 7𝑦 + 10 = 0 ⇒ 𝑦 = 2, 5.

Now 𝑦 = 5 makes sin2 𝑥 > 1, which is not possible. If 𝑦 = 2 ⇒ 2sin
2 𝑥 = 2 ⇒ sin 𝑥 =

±1 ⇒ 𝑥 = 𝑛𝜋 + (−1)𝑛(±𝜋
⁄

2).

507. Given equation is 𝑥+ log10(1+ 2𝑥) = 𝑥 log10 5+ log10 6 ⇒ 𝑥(1− log10 5)+ log10(1+
2𝑥) = log10 6

⇒ 𝑥(log10 − log10 5)+ log10(1 + 2𝑥) = log10 6 ⇒ 𝑥 log10 2 + log10(1 + 2𝑥) = log10 6

⇒ log10 2𝑥(1 + 2𝑥) = log10 6 ⇒ 2𝑥(1 + 2𝑥) = 6 ⇒ 2𝑥 = 2, −3 but for real values of
𝑥, 2𝑥 ≠ −3, thus, 2𝑥 = 2 ⇒ 𝑥 = 1.
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508. Given equation is log𝑎(𝑎𝑥). log𝑥(𝑎𝑥)+log𝑎2(𝑎) = 0⇒ (1+ log𝑎 𝑥)(1+ log𝑥 𝑎)+1
⁄

2 = 0

⇒ 2(log𝑎 𝑥)2 + 5 log𝑎 𝑥 + 2 = 0 ⇒ log𝑎 𝑥 = −2, − 1
⁄

2 ⇒ 𝑥 = 1
⁄

𝑎2 ,
1⁄
√


𝑎.

509. Given equation is √

11𝑥 − 6 +√


𝑥 − 1 = √

4𝑥 + 5, squaring, we get

11𝑥 − 6 + 4𝑥 + 5 + 2√


(11𝑥 − 6)(𝑥 − 1) = 4𝑥 + 5 ⇒√


(11𝑥 − 6)(𝑥 − 1) = −4𝑥 + 6

Squaring again, 11𝑥2 − 17𝑥 + 6 = 16𝑥2 − 48𝑥 + 36 ⇒ 5𝑥2 − 31𝑥 + 30 = 0 ⇒ 𝑥 = 6
⁄

5 , 5
but 𝑥 = 5 does not satisfy the given equation, and is result of squaring.

510. Given equation is √

3𝑥2 − 7𝑥 − 30 −√


2𝑥2 − 7𝑥 − 5 = 𝑥 − 5. Sqauring,

3𝑥2 − 7𝑥 − 30 = (𝑥 − 5)2 + 2𝑥6 − 7𝑥 − 5 + 2(𝑥 − 5)√

2𝑥2 − 7𝑥 − 5

⇒ (𝑥−5)(5−√

2𝑥2 − 7𝑥 − 5) = 0, so 𝑥 = 5 is one of the solutions. The other solution

will be given by

5 =√

2𝑥2 − 7𝑥 − 5, squaring again, 2𝑥2 − 7𝑥 − 30 = 0 ⇒ 𝑥 = 6, − 5

⁄

2, but 𝑥 = −5
⁄

2 does
not satisfy the equation.

Hence, 𝑥 = 5, 6 are the solutions.

511. Given euations are 𝑦 = 2[𝑥] + 3 and 𝑦 = 3[𝑥 − 2] ⇒ 𝑦 = 3[𝑥] − 6. Solving yields
𝑦 = 21, [𝑥] = 9 giving [𝑥 + 𝑦] = 30.

512.
𝑛
∑
𝑖=1

(𝑥−𝑎𝑖)2 = 𝑛𝑥2− 2(𝑎1+ 𝑎2+⋯+𝑎𝑛)𝑥+ (𝑎21+ 𝑎22+⋯+𝑎2𝑛), which is a quadratic

equation in 𝑥 and coefficient of 𝑥2 is 𝑛 > 0, therefore, this quadratic equation will have
least value at 𝑥 = 𝑎1+𝑎2+⋯+𝑎𝑛

⁄

𝑛 .

513. Let the quotient be 𝑛⁄
𝑛2−1 , 𝑛 ∈ ℕ. According to question,

𝑛+2
⁄

𝑛2−1+2 >
1
⁄

3 ⇒ 𝑛2 − 3𝑛 − 5 < 0 ⇒ 3
⁄

2 −
√


29
⁄

2 < 𝑛 < 3
⁄

2 +
√


29
⁄

2 .

Also, 0 < 𝑛−3
⁄

𝑛2−1−3 <
1
⁄

10 ⇒ 0 < 𝑛−3⁄
𝑛2−4 <

1
⁄

10

Taking the first inequality, 𝑛−3⁄𝑛2−4 > 0 ⇒ −2 < 𝑛 < 2 or 3 < 𝑛 < ∞.

Taking the second inequality 𝑛−3⁄𝑛2−4 <
1
⁄

10 ⇒
𝑛2−10𝑛+26
⁄

10(4−𝑛2) < 0 ⇒ −𝑛 < −2 or 𝑛 > 2.

Thus, we have 3 < 𝑛 < 3
⁄

2 +
√


29
⁄

2 ⇒ 𝑛 = 4 (since 𝑛 is a natural number)

Thus, we deduce the quotient to be 4⁄
42−1 =

4
⁄

15.
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514. Let 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, then 𝑔(𝑥) = 𝑓(𝑥)+ 𝑓′(𝑥)+ 𝑓″(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 + 2𝑎𝑥 +
𝑏 + 2𝑎 = 𝑎𝑥2 + (𝑏 + 2𝑎)𝑥 + 2𝑎 + 𝑏 + 𝑐.

Given 𝑎𝑥2 + 𝑏𝑥 + 𝑐 > 0 ∀ 𝑥 ∈ ℝ∴ 𝑏2 − 4𝑎𝑐 < 0 and 𝑎 > 0.

Discriminant of 𝑔(𝑥), 𝐷 = (𝑏 + 2𝑎)2 − 4𝑎(2𝑎 + 𝑏 + 𝑐) = (𝑏2 − 4𝑎𝑐) − 4𝑎2 < 0 and
𝑎 > 0.

Thus, 𝑔(𝑥) > 0 ∀ 𝑥 ∈ ℝ.

515. From given equation it is clear that 𝑓(𝑥) ≥ 0 ∀ 𝑥 ∈ ℝ and

𝑓(𝑥) = (𝑎21 + 𝑎22 + ⋯+ 𝑎2𝑛)𝑥2 + 2(𝑎1𝑏1 + 𝑎2𝑏2 + ⋯+ 𝑎𝑛𝑏𝑛)𝑥 + (𝑏21 + 𝑏22 + ⋯+ 𝑏2𝑛) ≥
0 ∀ 𝑥 ∈ ℝ

∴ Discriminant of its corresponsing equation 𝐷 ≤ 0, because coefficient of 𝑥2 is positive.

⇒ 4(𝑎1𝑏1 + 𝑎2𝑏2 + ⋯ + 𝑎𝑛𝑏𝑛)2 − 4(𝑎21 + 𝑎22 + ⋯ + 𝑎2𝑛)(𝑏21 + 𝑏22 + ⋯ + 𝑏2𝑛) ≤ 0

⇒ (𝑎1𝑏1 + 𝑎2𝑏2 + ⋯ + 𝑎𝑛𝑏𝑛)2 ≤ (𝑎21 + 𝑎22 + ⋯ + 𝑎2𝑛)(𝑏21 + 𝑏22 + ⋯ + 𝑏2𝑛).

516. Given equation is 𝑥(𝑥 + 1)(𝑥 +𝑚)(𝑥 +𝑚+ 1) = 𝑚2 ⇒ [𝑥2 + (𝑚+ 1)𝑥 +𝑚] [𝑥2 +
(𝑚+ 1)𝑥] = 𝑚2

⇒ 𝑦2 +𝑚𝑦 −𝑚2 = 0, where 𝑦 = 𝑥2 + (𝑚+ 1)𝑥. ∴ 𝑦 = −𝑚±√


5
⁄

2

⇒ 2𝑥2 + 2(𝑚+ 1)𝑥 − (√


5 − 1)𝑚 = 0 and 2𝑥2 + 2(𝑚+ 1)𝑥 + (√


5 + 1)𝑚 = 0. Thus,
given equation will have four real roots if these two equations have two real roots each.

∴ 4(𝑚+ 1)2 + 8(√


5 − 1)𝑚 > 0 and 4(𝑚+ 1)2 − 8(√


5 + 1)𝑚 > 0

⇒ 𝑚2+ 2√


5𝑚+1 > 0 and 𝑚2− 2√


5𝑚+1 > 0. Thus, |𝑚| > 2+√


5 or |𝑚| < √


5− 2.

517. Given equation is 𝑥4 + (𝑎 − 1)𝑥3 + 𝑥2 + (𝑎 − 1)𝑥 + 1 = 0 ⇒ (𝑥 + 1
⁄

𝑥)
2
− 2.𝑥. 1⁄𝑥 + (𝑎 −

1)(𝑥 + 1
⁄

𝑥)+ 1 = 0

⇒ 𝑦2 + (𝑎 − 1)𝑦 − 1 = 0, where 𝑦 = 𝑥 + 1
⁄

𝑥

∴ 𝑦 = −(𝑎−1)±√


(𝑎−)2+4
⁄

2 = − (𝑎−1)∓√


(𝑎−1)2−4
⁄

2

⇒ 2𝑥2+ [(𝑎− 1)−√


(𝑎 − 1)2 + 4]𝑥+ 2 = 0 and 2𝑥2+ [(𝑎− 1)+√


(𝑎 − 1)2 + 4]𝑥+
2 = 0

Let 𝛼, 𝛽 be roots of first and 𝛾, 𝛿 be the roots of second, then

𝛼 + 𝛽 = − (𝑎−1)−√


(𝑎−1)2+4
⁄

2 and 𝛼𝛽 = 1, 𝛾 + 𝛿 = − (𝑎−1)+√


(𝑎−1)2+4
⁄

2 and 𝛾𝛿 = 1

∵√


(𝑎 − 1)2 + 4 > 𝑎 − 1, therefore, 𝛼 + 𝛽 > 0 and 𝛼𝛽 > 0, which means 𝛼, 𝛽 are
positive. Thus, the equation 2𝑥2 + [(𝑎 − 1)+√



(𝑎 − 1)2 + 4]𝑥 + 2 = 0 must have two
negative roots.
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For both roots to be negative 𝐷 > 0 ⇒ [(𝑎 − 1)+√


(𝑎 − 1)2 + 4]2 − 16 > 0

⇒ 𝑎 − 1 +√


(𝑎 − 1)2 + 4 − 4 > 0[∵ 𝑎 − 1 +√


(𝑎 − 1)2 + 4]+ 4 > 0

⇒√


(𝑎 − 1)2 + 4 > 5 − 𝑎 ⇒ 𝑎 ≥ 5 or (𝑎 − 1)2 + 4 > (5 − 𝑎)2 where 𝑎 > 5.

⇒ 5
⁄

2 < 𝑎 < ∞.

518. Given equation is 𝑥4 + 2𝑎𝑥3 + 𝑥2 + 2𝑎𝑥 + 1 = 0 ⇒ 𝑥2 + 1
⁄

𝑥2 + 2𝑎(𝑥 + 1
⁄

𝑥)+ 1 = 0

⇒ (𝑥 + 1
⁄

𝑥)
2
− 2.𝑥. 1⁄𝑥 + 2𝑎(𝑥 + 1
⁄

𝑥)+ 1 = 0 ⇒ 𝑦2 + 2𝑎𝑦 − 1 = 0, where 𝑦 = 𝑥 + 1
⁄

𝑥

⇒ 𝑦 = −𝑎±√


𝑎2 + 1. When 𝑦 = −𝑎+√


𝑎2 + 1 = 𝑥+1
⁄

𝑥 ⇒ 𝑥2+(𝑎−√


𝑎2 + 1)𝑥+1 = 0,

and, when 𝑦 = −𝑎 −√


𝑎2 + 1 = 𝑥 + 1
⁄

𝑥 ⇒ 𝑥2 + (𝑎 +√


𝑎2 + 1)𝑥 + 1 = 0.

Let 𝛼,𝛽 be roots of first equation and 𝛾,𝛿 be roots of second equation. Then,

𝛼 + 𝛽 =√


𝑎2 + 1 − 𝑎, 𝛼𝛽 = 1 and 𝛾 + 𝛿 = −(𝑎 +√


𝑎2 + 1), 𝛾𝛿 = 1.

Clearly 𝛼, 𝛽 are both imaginary or positive so from question 𝛾, 𝛿 both must be negative.
⇒ 𝐷 ≥ 0, which leads to

(𝑎 +√


𝑎2 + 1)2 − 4 > 0 ⇒√


𝑎2 + 1 > 2 − 𝑎 ⇒ 3
⁄

4 < 𝑎 < ∞.

519. Given system of equations can be written as 𝑎𝑥21 + (𝑏 − 1)𝑥1 + 𝑐 = 𝑥2 − 𝑥1, 𝑎𝑥22 +
(𝑏−1)𝑥1+𝑐 = 𝑥3−𝑥2,… ,𝑎𝑥2𝑛−1+(𝑏−1)𝑥𝑛−1+𝑐 = 𝑥𝑛−𝑥𝑛−1,𝑎𝑥2𝑛+(𝑏−1)𝑥𝑛+𝑐 =
𝑥1 − 𝑥𝑛

∴ 𝑓(𝑥1)+ 𝑓(𝑥2)+⋯+ 𝑓(𝑥𝑛) = 0 (1)

Case I: When (𝑏 − 1)2 − 4𝑎𝑐 < 0.

In this case 𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑛) will have same sign as that of 𝑎 ∴ 𝑓(𝑥1)+𝑓(𝑥2)+
⋯+ 𝑓(𝑥𝑛) ≠ 0.

Hence, the given system of equations has no solution.

Case II: When (𝑏 − 1)2 − 4𝑎𝑐 = 0.

In this case 𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑛) ≥ 0 or 𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑛) ≤ 0, From (1),
𝑓(𝑥1)+ 𝑓(𝑥2)+⋯+ 𝑓(𝑥𝑛) = 0 ⇒ 𝑓(𝑥1) = 𝑓(𝑥2) = ⋯ = 𝑓(𝑥𝑛) = 0

But 𝑓(𝑥𝑖) = 0 ⇒ 𝑎𝑥2𝑖 + (𝑏 − 1)𝑥𝑖 + 𝑐 = 0 ⇒ 𝑥𝑖 = 1−𝑏⁄
2𝑎

∴ 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 = 1−𝑏⁄
2𝑎 .

Case III: When (𝑏 − 1)2 − 4𝑎𝑐 > 0.
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Roots of equation 𝑎𝑥2 + (𝑏 − 1)𝑥 + 𝑐 = 0 are 𝛼,𝛽 = 1−𝑏±√


(1−𝑏)2−4𝑎𝑐
⁄

2𝑎 .

If 𝑥1, 𝑥2, … , 𝑥𝑛 lie between 𝛼 and 𝛽, then 𝑓(𝑥1)+ 𝑓(𝑥2)+⋯+ 𝑓(𝑥𝑛) ≠ 0 (because it
is < 0 or > 0 as 𝑎 > 0 or 𝑎 < 0)

If 𝑥1, 𝑥2, … , 𝑥𝑛 lie in (−∞, 𝛼) or (𝛽, ∞) then also 𝑓(𝑥1)+ 𝑓(𝑥2)+⋯+ 𝑓(𝑥𝑛) ≠ 0.

If all roots are either 𝛼 or 𝛽 then 𝑓(𝑥1)+ 𝑓(𝑥2)+⋯+ 𝑓(𝑥𝑛) = 0.

520. Case I: When 𝑥 > 1. We will have 𝑥2 − 3
⁄

16 > 0 ⇒ 𝑥 < −√


3⁄
4 or 𝑥 > √


3⁄
4 , and 𝑥2 − 3
⁄

16 >

𝑥4 ⇒ 1
⁄

4 < 𝑥2 < 3
⁄

4.

Thus, we see that no value of 𝑥 satisfies all these inequalities at the same time.

Case II: When 𝑥 < 1. We will have 𝑥2 − 3
⁄

16 > 0, which will impose same set of

inequalities, and 𝑥2 − 3
⁄

16 < 𝑥4 ⇒ 𝑥2 < 1
⁄

4 or 𝑥2 > 3
⁄

4.

Thus, (√


3⁄
4 , 1⁄2) ∪ (

√


3⁄
2 , 1) represents the set of solution.

521. Given log1
⁄

2
𝑥2 ≥ log1
⁄

2
(𝑥+ 2)⇒ 𝑥2 ≤ 𝑥+ 2 ⇒ 𝑥2− 𝑥− 2 ≤ 0 ⇒ −1 ≤ 𝑥 ≤ 2, 𝑥 ≠ 0. For

lagrithm to be defined 𝑥 ≠ 0 and 𝑥 > −2.

Also, 49𝑥2 − 4𝑚4 ≤ 0 ⇒ −2
⁄

7𝑚
2 ≤ 2
⁄

7𝑚
2.

According to question, [−1, 2] ⊆ [−2
⁄

7𝑚
2, 2⁄7𝑚

2]

∴ − 2
⁄

7𝑚
2 ≤ −1 ⇒ 𝑚2 ≥ 7
⁄

2 and 2⁄7𝑚
2 ≥ 2 ⇒ 𝑚2 ≥ 7.

Thus, −∞ < 𝑚 ≤ −√

7 or √

7 ≤ 𝑚 < ∞.

522. We have to find 𝑎 for which 1 + log5(𝑥2 + 1) ≥ log5(𝑎𝑥2 + 4𝑥 + 𝑎) is valid ∀ 𝑥 ∈ ℝ.

⇒ log5 5 + log5(𝑥2 + 1) ≥ log5(𝑎𝑥2 + 4𝑥 + 𝑎)⇒ 5(𝑥2 + 1) ≥ 𝑎𝑥2 + 4𝑥 + 𝑎

⇒ (5 − 𝑎)𝑥2 − 4𝑥 + 5 − 𝑎 ≥ 0

𝐷 ≤ 0 ⇒ 16 − 4(5 − 𝑎2) ≤ 0 ⇒ 𝑎 ≤ 3 or 𝑎 ≥ 7 and 5 − 𝑎 > 0 ⇒ 𝑎 < 5. Combining
−∞ < 𝑎 ≤ 3.

For log5(𝑎𝑥2 + 4𝑥 + 𝑎) to be defined 𝑎𝑥2 + 4𝑥 + 𝑎 > 0 for all real 𝑥. So 𝐷 < 0 ⇒
16 − 4𝑎2 < 0 ⇒ 𝑎 < −2 or 𝑎 > 2 and 𝑎 > 0. Combining 2 < 𝑎 < ∞.

Thus, common values are given by 2 < 𝑎 ≤ 3.

523. 2𝑥2 + 2𝑥 + 7
⁄

2 > 0 ∀ 𝑥 ∈ ℝ because discriminant of corresponding equation is less than 0
and coefficient of 𝑥2 is greater than 0.
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Thus, log𝑥(2𝑥2 + 2𝑥 + 7
⁄

2) is defined ∀ 𝑥 ∈ ℝ.

For log𝑥 𝑎(𝑥2 + 1) to be defined 0 < 𝑎 < ∞.

Given equation is 1 + log2(2𝑥2 + 2𝑥+ 7
⁄

2) ≥ log2(𝑎𝑥2 + 𝑎)⇒ log2 2 + log2(2𝑥2 + 2𝑥+
7
⁄

2) ≥ log2(𝑎𝑥2 + 𝑎)

⇒ log2 2(2𝑥2 + 2𝑥 + 7
⁄

2) ≥ log2(𝑎𝑥2 + 𝑎)⇒ 4𝑥2 + 4𝑥 + 7 ≥ 𝑎𝑥2 + 𝑎

⇒ (4 − 𝑎)𝑥2 + 4𝑥 + 7 − 𝑎 ≥ 0. Let 𝐷 be discriminant of corresponding equation, then

𝐷 = 16 − 4(4 − 𝑎)(7 − 𝑎) = 4(4 − 𝑎2 + 11𝑎 − 28) = −4(𝑎 − 3)(𝑎 − 8).

When 𝐷 > 0, 𝑎 ≠ 4, 3 < 𝑎 < 8

When 𝐷 = 0 ⇒ 𝑎 = 3, 8. When 𝑎 = 3, the equation becomes 𝑥2 + 4𝑥 + 4 ≥ 0 ∀ 𝑥 ∈ ℝ.

When 𝑎 = 8, the equation becomes −(2𝑥 − 1)2 = 0, when 𝑥 = 1
⁄

2.

When 𝑎 = 4, the equation becomes 4𝑥 + 3 ≥ 0 for infinitely many real values of 𝑥.

The equation will be satisfied for 𝑎 < 4 and 𝐷 < 0 ⇒ (𝑎 − 3)(𝑎 − 8) > 0 ⇒ 𝑎 < 3 or
𝑎 > 8 ∴ −∞ < 𝑎 < 3.

Combining all these we get possible values of 𝑎 by −∞ < 𝑎 ≤ 8.

524. Let 𝑎 − 𝑐 = 𝛼, 𝑏 − 𝑐 = 𝛽, 𝑐 + 𝑥 = 𝑢, then for √

𝑎 − 𝑐 and √


𝑏 − 𝑐 to be real 𝛼,𝛽 ≥ 0.

Also, as 𝑥 > −𝑐 ⇒ 𝑢 > 0.

Let xm 𝑦 = (𝑎+𝑥)(𝑏+𝑥)⁄
𝑐+𝑥 = (𝑢+𝛼)(𝑢+𝛽)
⁄

𝑢 = 𝑢2+(𝛼+𝛽)𝑢+𝛼𝛽
⁄

𝑢 = 𝑢 + 𝛼 + 𝛽 + 𝛼𝛽
⁄

𝑢

⇒ 𝑢2 + (𝛼 + 𝛽 − 𝑦)+ 𝛼𝛽 = 0, and because 𝑢 is real.

∴ (𝛼 + 𝛽 − 𝑦)2 − 4𝛼𝛽 ≥ 0 ⇒ 𝑦2 − 2(𝛼 + 𝛽)𝑦 + (𝛼 − 𝛽)2 ≥ 0

Corresponding roots are 𝑦 = 2(𝛼+𝛽)±√


4(𝛼+𝛽)2−4(𝛼−𝛽)2
⁄

2 = 𝛼 + 𝛽 ± 2√


𝛼𝛽

= (√


𝛼 +√

𝛽)2, (√


𝛼 −√

𝛽)2

But if 𝑦 ≤ (√


𝛼−√

𝛽)2 ⇒ 𝑦− (𝛼+𝛽)+2√


𝛼𝛽 ≤ 0 is not posssible, because 𝑦−𝛼−𝛽 =
𝑢 + 𝛼𝛽
⁄

𝑢 > 0.

Thus, least values of 𝑦 is (√


𝛼 +√

𝛽)2 = (√


𝑎 − 𝑐 +√


𝑏 − 𝑐)2.

525. Let 𝑦 = 4(𝑎−𝑥)[𝑥−𝑎+√

𝑎2 + 𝑏2]= 4𝑧(−𝑧+𝑘), where 𝑧 = 𝑎−𝑥 and 𝑘 =√


𝑎2 + 𝑏2 ⇒

4𝑥2 − 4𝑘𝑧 + 𝑦 = 0

Because 𝑧 is real, therefore, 𝐷 ≥ 0 ⇒ 18𝑘2 − 16𝑦 ≥ 0 ⇒ 𝑦 ≤ (𝑎2 + 𝑏2)

⇒ 𝑦 ≯ 𝑎2 + 𝑏2.
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526. Let 𝑦 = 𝑥2+2𝑥cos 2𝛼+1⁄
𝑥2+2𝑥cos 2𝛽+1 ⇒ (𝑦 − 1)𝑥2 + 2(𝑦 cos 2𝛽 − cos 2𝛼)+ 𝑦 − 1 = 0

Because 𝑥 is real, therefore, 𝐷 ≥ 0 ⇒ 4(𝑦 cos 2𝛽 − cos 2𝛼)2 − 4(𝑦 − 1)2 ≥ 0

(1 − cos2 2𝛽)𝑦2 + 2(cos 2𝛼 cos 2𝛽 − 1)𝑦 + 1 − cos2 2𝛼 ≤ 0 ⇒ sin2 2𝛽𝑦2 +
2(cos 2𝛼 cos 2𝛽 − 1)𝑦 + sin2 2𝛼 ≤ 0

Roots of corresponding equation are 2(1−cos 2𝛼cos 2𝛽)±4sin(𝛼−𝛽) sin(𝛼+𝛽)
⁄

2 sin2 2𝛽

= sin2 𝛼
⁄

sin2 𝛽 ,
cos2 𝛼
⁄

cos2 𝛽, which are real and unequal and dicriminant is also greater than zero.
Coefficient of 𝑦2 is also greater than zero.

Thus, 𝑦 does not lie between the roots.

527. Let 𝑦 = 2𝑎(𝑥−1) sin2 𝛼⁄
𝑥2−sin2 𝛼 ⇒ 𝑦𝑥2 − 2𝑎 sin2 𝛼𝑥 + (2𝑎 − 𝑦) sin2 𝛼 = 0.

Because 𝑥 is real, therefore, 𝐷 ≥ 0 ⇒ 4𝑎2 sin4 𝛼 − 4𝑦(2𝑎 − 𝑦) sin2 𝛼 ≥ 0 ⇒ 𝑎2 sin2 𝛼 −
𝑦(2𝑎 − 𝑦) ≥ 0 ⇒ 𝑦2 − 2𝑎𝑦 + 𝑎2 sin2 𝛼 ≥ 0.

Roots of the corresponding equation are 𝑦 = 2𝑎 sin2 𝛼⁄2 , 2𝑎 cos2 𝛼⁄2.
Hence, 𝑦 does not lie between these roots.

528. Let 𝑦 = tan(𝑥 + 𝛼)/tan(𝑥 − 𝛼) = ( 𝑝+𝑞
⁄

1−𝑝𝑞)(
1+𝑝𝑞
⁄

𝑝−𝑞 ), where 𝑝 = tan 𝑥 and 𝑞 = tan𝛼.

⇒ 𝑦 = 𝑞𝑝2+(1+𝑞2)𝑝+𝑞
⁄

−𝑞𝑝2+(1+𝑞2)𝑝−𝑞

⇒ 𝑞(𝑦 + 1)𝑝2 + (1 + 𝑞2)(1 − 𝑦)𝑝 + 𝑞(1 + 𝑦) = 0, but 𝑝 is real, and hence 𝐷 ≥ 0.

⇒ (1 + 𝑞2)2(1 − 𝑦)2 − 4𝑞2(1 + 𝑦)2 ≥ 0 ⇒ (1 − 𝑞2)2 𝑦2 − 2[(1 + 𝑞2)2 + 4𝑞2 ]𝑦 +
(1 − 𝑞2)2 ≥ 0

Disrciminant of corresponding equation is 64(1 + 𝑞2)2 𝑞2 and roots are (1−𝑞⁄
1+𝑞)

2
, (1+𝑞⁄

1−𝑞)
2

So roots are (1−tan𝛼⁄1+tan𝛼)
2
, (1+tan𝛼⁄1−tan𝛼)

2
= tan2(𝜋⁄4 − 𝛼), tan2(𝜋⁄4 + 𝛼).

Since roots are real and unequal and the coefficient of 𝑦2 is greater than zero, and
hence, 𝑦 cannot lie between the given values.

529. Let 𝑦 = 𝑎𝑥2+3𝑥−4⁄
3𝑥−4𝑥2+𝑎 ⇒ (4𝑦 + 𝑎)𝑥2 + 3(1 − 𝑦)𝑥 − (𝑎𝑦 + 4) = 0.

Since 𝑥 is real, therefore, 𝐷 ≥ 0 ⇒ 9(1− 𝑦)2+ 4(4𝑦 +𝑎)(𝑎𝑦 + 4) ≥ 0 ⇒ (9+ 16𝑎)𝑦2+
2(2𝑎2 + 23)𝑦 + 9 + 16𝑎 ≥ 0

Discriminant of corresponding equation 𝐷′ = 4(2𝑎2 + 23)2 − 4(9 + 16𝑎)2 = 16(𝑎 +
4)2(𝑎 − 1)(𝑎 − 7)
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If 1 < 𝑎 < 7 ⇒ 𝐷′ < 0 and 9 + 16𝑎 > 0, then (9 + 16𝑎)𝑦2 + 2(2𝑎2 + 23)𝑦 + 9 + 16𝑎 >
0 ∀ 𝑦 ∈ ℝ.

Hence, given expression can assume any value if 1 < 𝑎 < 7.

530. Let 𝑦 = (𝑎𝑥−𝑏)(𝑑𝑥−𝑐)⁄
(𝑏𝑥−𝑎)(𝑐𝑥−𝑑) =

𝑎𝑑𝑥2−(𝑏𝑑+𝑎𝑐)𝑥+𝑏𝑐
⁄

𝑏𝑐𝑥2−(𝑎𝑐+𝑏𝑑)𝑥+𝑎𝑑

⇒ (𝑏𝑐𝑦 − 𝑎𝑑)𝑥2 + (1 − 𝑦)(𝑏𝑑 + 𝑎𝑐)+ 𝑎𝑑𝑦 − 𝑏𝑐 = 0.

Because 𝑥 is real, therefore, 𝐷 ≥ 0

⇒ (𝑏𝑑 + 𝑎𝑐)2(1 − 𝑦)2 − 4(𝑏𝑐𝑦 − 𝑎𝑑)(𝑎𝑑𝑦 − 𝑏𝑐) ≥ 0 ⇒ (𝑏𝑑 − 𝑎𝑐)2 𝑦2 − 2[(𝑏𝑑 + 𝑎𝑐)2 −
2(𝑎2𝑑2 + 𝑏2𝑐2)]𝑦 + (𝑏𝑑 − 𝑎𝑐)2 ≥ 0

Discriminant of corresponding equation 𝐷′ = −16(𝑎𝑑 − 𝑏𝑐)(𝑎2 − 𝑏2)(𝑐2 − 𝑑2)

Because 𝑎2 − 𝑏2 and 𝑐2 − 𝑑2 are having same sign, therefore, 𝐷′ ≤ 0.

Hence, 𝑦 can have any real value.
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Answers of Chapter 5
Combinatorics

1. Given, 𝑃𝑛
4 = 360 ⇒ 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3) = 3 × 4 × 5 × 6 ⇒ 𝑛 = 6.

2. Given, 𝑃𝑛
3 = 9240 ⇒ 𝑛(𝑛 − 1)(𝑛 − 2) = 20 × 21 × 22 ⇒ 𝑛 = 22.

3. Given, 𝑃10
𝑟 = 720 = 8 × 9 × 10 ⇒ 𝑟 = 3.

4. Given, 𝑃2𝑛+1
𝑛−1 : 𝑃2𝑛−1

𝑛 = 3 : 5 ⇒ (2𝑛+1)!
⁄

(𝑛+2)! .
(2𝑛−1)!
⁄

(𝑛−−1)! =
3
⁄

5 ⇒
(2𝑛+1)2𝑛⁄

𝑛(𝑛+1)(𝑛+2) =
3
⁄

5

⇒ 3𝑛2 − 11𝑛 − 4 = 0 ⇒ 𝑛 = 4, − 1
⁄

3, but 𝑛 is an integer. Hence, 𝑛 = 4.

5. Given, 𝑃𝑛
4 = 12 × 𝑃𝑛

2 ⇒ 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3) = 12 × 𝑛(𝑛 − 1)⇒ 𝑛2 − 5𝑛 − 6 =
0 ⇒ 𝑛 = 6, −1.

But 𝑛 > 0 ⇒ 𝑛 = 6 is the only solution.

6. Given, 𝑃𝑛
5 = 20 × 𝑃𝑛

3 ⇒ (𝑛 − 3)(𝑛 − 4) = 20 ⇒ 𝑛2 − 7𝑛 − 8 = 0 ⇒ 𝑛 = 8, −1.

But 𝑛 > 0 ⇒ 𝑛 = 8 is the only solution.

7. Given, 𝑃𝑛
4 : 𝑃𝑛+1

4 = 3 : 4 ⇒ 𝑛!⁄
(𝑛−4)! .

(𝑛−3)!⁄
(𝑛+1)! =

3
⁄

4

⇒ (𝑛−3)
⁄

𝑛+1 = 3
⁄

4 ⇒ 4𝑛 − 12 = 3𝑛 + 3 ⇒ 𝑛 = 15.

8. Given 𝑃20
𝑟 = 6840 = 18 × 19 × 20 ⇒ 𝑟 = 3.

9. Given, 𝑃𝑘+5
𝑘+1 = 11(𝑘−1)⁄

2 .𝑃𝑘+3
𝑘 ⇒ (𝑘 + 5)(𝑘 + 4)(𝑘 + 3)⋯6.5 = 11(𝑘−1)⁄

2 .(𝑘 + 3)(𝑘 +
2)⋯5.4

⇒ (𝑘 + 5)(𝑘 + 4) = 22𝑘 − 22 ⇒ 𝑘2 − 13𝑘 + 42 = 0 ⇒ 𝑘 = 6, 7.

10. Given, 𝑃22
𝑟+1 : 𝑃20

𝑟+2 = 11 : 52 ⇒ 22!
⁄

(21−𝑟)! .
(18−𝑟)!
⁄

20! = 11
⁄

54

⇒ 22.21
⁄

(21−𝑟)(20−𝑟)(19−𝑟) =
11
⁄

52 ⇒ (21 − 𝑟)(20 − 𝑟)(19 − 𝑟) = 42.52 = 12.13.14 ⇒ 𝑟 = 7.

11. Given, 𝑃𝑚+𝑛
2 = 90 ⇒ (𝑚+ 𝑛)(𝑚+ 𝑛− 1) = 10.9 ⇒ 𝑚+ 𝑛 = 10, and

𝑃𝑚−𝑛
2 = 30 ⇒ (𝑚− 𝑛)(𝑚− 𝑛− 1) = 6.5 ⇒ 𝑚− 𝑛 = 6 ⇒ 𝑚 = 8, 𝑛 = 2.

12. Given, 𝑃12
𝑟 = 11880 ⇒ 12!
⁄

(12−𝑟)! = 9 × 10 × 11 × 12 ⇒ 𝑟 = 4.

13. Given, 𝑃56
𝑟+6 : 𝑃

54
𝑟+3 = 30800 : 1 ⇒ 56!

⁄

(50−𝑟)! .
(51−𝑟)!
⁄

54! = 30800

⇒ 56 × 55 × (51 − 𝑟) = 30800 ⇒ 51 − 𝑟 = 10 ⇒ 𝑟 = 41.
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14. 𝑛.𝑃𝑛
𝑛 = 𝑛.𝑛! = (𝑛 + 1 − 1) .𝑛! = (𝑛 + 1)! − 𝑛!. Similarly, (𝑛 − 1) .𝑃𝑛−1

𝑛−1 = 𝑛! −
(𝑛 − 1)!, … , 2.𝑃2

2 = 3! − 2!, 1.𝑃1
1 = 2! − 1!.

Adding these, we obtain L.H.S. = (𝑛 + 1)! − 1! = 𝑃𝑛+1
𝑛+1 − 1 = R.H.S.

15. Given, 𝐶𝑛
30 = 𝐶𝑛

4 ⇒ 𝑛!
⁄

30!(𝑛−30)! =
𝑛!⁄

4!(𝑛−4)!

Equating 𝑛 − 30 = 4 and 𝑛 − 4 = 30, we obtain 𝑛 = 34 from both.

16. Given, 𝐶𝑛
12 = 𝐶𝑛

8 ⇒ 𝑛!
⁄

(𝑛−12)!12! =
𝑛!⁄

(𝑛−8)!8! ⇒ 𝑛 − 12 = 8 and 𝑛 − 8 = 12. Thus, 𝑛 = 20

𝐶20
17 =

20!
⁄

17!3! =
20×19×18
⁄

3×2 = 1140, and 𝐶22
20 =

22!
⁄

20!2! =
22×21
⁄

2 = 231.

17. Given, 𝐶18
𝑟 = 𝐶1

𝑟+28 ⇒ 18!
⁄

(18−𝑟)!𝑟! =
18!
⁄

(𝑟+2)!(16−𝑟)! ⇒ 18 − 𝑟 = 𝑟 + 2 ⇒ 𝑟 = 8 and
𝑟 = 16 − 𝑟 ⇒ 𝑟 = 8.

𝐶𝑟
6 = 𝐶8

6 =
8!
⁄

6!2! = 28.

18. Given, 𝐶𝑛
𝑛−4 = 15 ⇒ 𝑛!⁄

(𝑛−4)!4! = 15 ⇒ 𝑛(𝑛−1)(𝑛−2)(𝑛−3) = 3×4×5×6 ⇒ 𝑛 = 6.

19. Given, 𝐶15
𝑟 : 𝐶1

𝑟−15 = 11 : 5 ⇒ 15!
⁄

(15−𝑟)!𝑟! .
(𝑟−1)!(16−𝑟!)
⁄

15! = 11
⁄

5 ⇒ 16−𝑟
⁄

𝑟 = 11
⁄

5 ⇒ 𝑟 = 5.

20. Given, 𝑃𝑛
𝑟 = 2520 ⇒ 𝑛!⁄

(𝑛−𝑟)! = 2520 and 𝐶𝑛
𝑟 = 21 ⇒ 𝑛!
⁄

(𝑛−𝑟)!𝑟! = 21

⇒ 2520⁄
𝑟! = 21 ⇒ 𝑟! = 120 ⇒ 𝑟 = 5 ⇒ 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4) = 2520 =

7 × 6 × 5 × 4 × 3 ⇒ 𝑛 = 7.

21. We know that 𝐶𝑛
𝑟 = 𝐶𝑛

𝑛−𝑟 ⇒ 𝐶20
13 = 𝐶20

7 and 𝐶20
14 = 𝐶20

6 .

∴𝐶20
13 + 𝐶20

14 − 𝐶20
6 − 𝐶20

7 = 0.

22. Given, 𝐶𝑛
𝑟−1 = 36 ⇒ 𝑛!

⁄

(𝑛−𝑟+1)(𝑟−1)! = 36, 𝐶𝑛
𝑟 = 84 ⇒ 𝑛!
⁄

(𝑛−𝑟)!𝑟! = 84, and
𝑛!
⁄

(𝑛−𝑟−1)!(𝑟+1)! = 126.

Dividing first two, 𝑟⁄
𝑛−𝑟+1 =

3
⁄

7 ⇒ 3𝑛 = 10𝑟 − 3, and dividing last two

𝑟+1
⁄

𝑛−𝑟 =
2
⁄

3 ⇒ 2𝑛 = 5𝑟 + 3. Solving these two equations, we have 𝑛 = 9, 𝑟 = 3.

23. Thousand’s place can be filled in 5 ways, hundred’s place can be filled in 4 ways, ten’s
place can be filled in 3 ways and unit’s place can be filled in 2 ways.

Thus, total number of 4 digit numbers is 5 × 4 × 3 × 2 = 120.

Alternatively, it is 𝑃5
4 = 120.

24. Hundred’s place can be filled in 3 ways excluding 0, 2, 3, ten’s place can be filled in 5
ways and unit’s place can be filled in 4 ways.

Thus, no. of numbers between 400 and 1000 is 5 × 4 × 3 = 60.



Answers of Combinatorics 572

25. Case I: When the number is of three digits i.e. between 300 and 1000.

Hundred’s place can be filled in 3 ways using 3, 4 or 5, ten’s place can be filled in 5
ways and unit’s place can be filled in 4 ways.

Thus, total no. of three digit numbers is 5 × 4 × 3 = 60.

Case II: When the number is of four digits i.e. between 1000 and 3000.

Thousand’s place can be filled in 2 ways using 1 or 2. Three remaining places can
be filled in 𝑃5

3 ways i.e. 60 ways.

Therefore, total no. of four digit numbers is 2 × 60 = 120.

Thus, total no. of numbers between 300 and 3000 is 60 + 120 = 180.

26. Case I: When 2 is at thousands place.

Hundred’s placec can be filled in 4 ways using 3, 4, 5, 6. Two remaining places can
be filled in 𝑃5

2 i.e. 20 ways. Number of numbers formed in this case is 4 × 20 = 80.

Case II: When thousands place is occupied by 3, 4, 5 or 6.

We see that there are four ways to fill thousands place. Three remaining placed can be
filled in 𝑃6

3 i.e. 120 ways. Number of numbers formed in this case is 4 × 120 = 480.

Hence, total no. of numbers is 80 + 480 = 560.

27. Case I: When the number is of one digit.

There will be four positive numbers excluding 0.

Case II: When the number is of two digits.

Ten’s place can be filled in 4 ways using 1, 2, 3 or 4. Unit’s place can be filled in 𝑃4
1

ways. Total no. of one digit numbers is 4 × 𝑃4
1 = 16.

Case III: When the number is of three digits.

Hundred’s place can be filled in 4 ways like previous case. Remaining two places can be
filled in 𝑃4

2 ways. Total no. of three digit numbers is 4 × 𝑃4
2 = 48.

Case IV: When the number is four digits.

Thousand’s place can be filled in 4 ways like previous case. Remaining three places can
be filled in 𝑃4

3 ways. Total no. of four digit numbers is 4 × 𝑃4
3 = 96.

Case V: When the number is of five digits.

Ten thousand’s place can be filled in 4 ways. Remaining four places can be filled in 𝑃4
4

ways. Total no. of five digit numbers is 4 × 𝑃4
4 = 96.

Thus, total no. of numbers formed is 4 + 16 + 48 + 96 + 96 = 260.
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28. Total no. of numbers will be 𝑃4
4 = 24. Now since there are 4 digits and 24 numbers

each no. will occur at each place for 6 times. Thus, sum of digits at each place would
be 6(1 + 2 + 3 + 4) = 60.

Therefore, sum of all numbers 60(1 + 10 + 100 + 1000) = 66660.

29. When any digit except 0 will occupy unit’s place the thousand’s place has to be
occupied by the other two digits. Thus, total no. of such numbers is 3 × 2 × 𝑃2

2 = 12.
Thus, 4 numbers for each of positive digits.

When one of 1, 2, 3 occupy thousand’s place total no. of numbers is 3 × 𝑃3
3 = 18.

Thus, 6 numbers for each of the positive digits.

Sum of digits at units, tens and thousands place will be 4(1 + 2 + 3) = 24 and sum of
digits at thousands place will be 6(1 + 2 + 3) = 36.

Thus, sum of numbers formed is 24(1 + 10 + 100)+ 36 × 1000 = 38,664.

30. Each of the four digits 1, 2, 2, 3 occurs at each place 𝑃
3
3
⁄

2! i.e. 3 times. Thus, sum of digits
at each place is 3(1 + 2 + 2 + 3) = 24.

Thus, sum of numbers formed 24(1 + 10 + 100 + 1000) = 26,664.

31. Each friennd can be sent invitation by one servant. Since there are three servants
each friend can receive an invitaion in three ways. Thus, total no. of ways of sending
invitations is 36 = 729.

32. Each prize can be given to any boy. Thus, each prize can be given in 7 ways, and
hence, three prizes can be given in 73 = 543 ways.

33. Each arm can occupy four positions, and thus, five arms can have 45 = 1024 ways. But
when all arms are in rest position no signal can be made. Hence, total no. of signal is
1024 − 1 = 1023 ways.

34. Each ring of lock can have one of the ten letters, then three rings can have 103
combinations of the letters. However, one of the combinations will be a successful
combination.

Thus, total no. of possible unsuccessful attempts that can be made is 1000 − 1 = 999.

35. We have to find numbers which are greater than 1000 but not greater than 4000 i.e.
1000 < 𝑥 ≤ 4000 which is same as 1000 ≤ 𝑥 < 4000.

Now thousands place can be filled with 1, 2, 3 i.e. in 3 ways. Hundreds, tens and units
place can be filled in 5 ways each.

Thus, total no. of numbers which can be formed is 3 × 53 = 375.

36. There are three groups. We can arrange three groups in 3! ways. 8 Indians can be
arranged among themselves in 8! ways, 4 Ameriacans in 4! ways and 4 Englishmen in
4! ways.

Thus, required answer is 3! 8! 4! 4!.
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37. Total no. of volumes is 4 + 1 + 1 + 1 = 7. We can arrange these volumes in 7! ways. 8
books volume can be arranged in 8! ways, volume having 5 books can be arranged
in 5! ways and volume of 3 books can be arranged in 3! ways.

Thus, required no. of arrangements is 7! 8! 5! 3!.

38. Taking all copies of the same book as one, we have 5 books, which can be arranged in
5! ways.

All copies being identical can be arranged only in 1 way. Thus, required no. of
arrangements is 5! = 120.

39. The no. of permutations of the 10 papers without restriction is 10!.

We find our no. of ways in which the best and worst paper come together then subtract
from total no. of permutations to get the no. of permutations in which they never
come together.

Taking the best and the worst paper as one paper we have 9 papers, which can be
arranged in 9! ways, but the two papers can be arranged among themselves in 2! ways.
Thus, total no. of permutatiosn in which both the papers are toegther is 9! 2!.

Thus, no. of permutations in which both are not together is 10! − 9! 2! = 8.9!.

40. Total no. ways in which all of them can be seated is (5 + 3)! = 8!. Taking all the girls
as one total no. of persons is 6.

The no. of ways in which these can be seated is 6!, but the 3 girls can be arranged in 3!
ways. Thus, total no. of ways, when all three girls are together can be seate, is 6! 3!.

Thus, total no. of ways in which all girls are not together is 8! − 6! 3! = 36,000.

41. Let us first position I.A. students. ∗𝐼𝐴∗ 𝐼𝐴∗ 𝐼𝐴∗ 𝐼𝐴∗ 𝐼𝐴∗ 𝐼𝐴∗ 𝐼𝐴∗. The IA indicated
the position where I.A. students sit and * indicated the positions where I.Sc. students
can sit. We observe that there are 8 open places where I.Sc. students can sit.

Now, 7 I.A. students can be seated in 7! ways and 8 I.Sc. students can be seated in 𝑃8
5

ways.

Thus, no. of required arrangements is 7! . 8!⁄3!.
42. Positioning the boys first, we have ∗𝐵 ∗ 𝐵 ∗ 𝐵 ∗ 𝐵 ∗ 𝐵 ∗ 𝐵 ∗ 𝐵∗, where 𝐵s represents

the 7 boys and ∗s represents the open positions for girls.

7 boys can be arranged in 7! ways and 3 girls can be seated in 𝑃8
3 ways. Thus, required

no. of seating arrangememnts is 7! . 8!⁄5! = 42.8!.

43. Case I: When a boy sits at the first place. The possible arrangement in this case
is 𝐵𝐺𝐵𝐺𝐵𝐺𝐵𝐺, where 𝐵 represents a boy and 𝐺 represents a girl. Now, 4 boys and 4
girls can be arranged among themselves in 4! ways. Thus, no. of possible seating
arrangement in this case is 4! 4!.
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Case II: When a girl sits at the first place. Like previous case the possible no. of
seating arrangements is same i.e. 4! 4!.

Thus, total no. of seating arrangements is 2.4! 4! = 1152.

44. Possible arrangements will have the form 𝐵𝐺𝐵𝐺𝐵𝐺𝐵, where 𝐵 represents a boy,
and 𝐺 represents a girl. 4 boys can be seated in 4! ways and 3 girls can be seated in 3!
ways.

Thus, total no. of seating arrangements is 4! 3!.

45. There are 12 letters in the word civilization; out of which 4 are i’s and other are
different.

Therefore, total no. of permutations is 12!⁄4! , which included the word civilization itself.

46. There are 10 letters in the word university; out of which 4 are vowels, and i occurs
twice. The consonants do not have repetition.

Treating the 4 vowels as one letter, because they have to appear together, we have 7
letters. These 7 letters can be arranged in 7! ways. But the four vowels can be arranged
among themselves in 4!⁄2! ways.

Thus, total no.of words possible is 7! 4!⁄2!.
47. There are 8 letters in the word director; out of which 3 are vowels, and r occurs twice.

Thus, total no. of words is 8!⁄2! .

When the vowels are together, taking them as one letter, we have 6 letters, which can
be arranged in 6!⁄2!, but the three vowels can be arranged in 3! ways among themselves,

making the total no. of words in which vowels are together 3! 6!⁄2!.
Thus, no. of words in which all three vowels are not together is 8!⁄2! − 3! 6!⁄2!.

48. There are 7 letters in the word welcome; out of which e occurs twice. Thus, total no. of
words that can be formed is 7!⁄2!.
If ‘o’ comes at end then we will have 6 letters left giving us total no. of words as 6!⁄2!.

49. There are 10 letters in the word California; out of which 5 are consonants without
repetition and 5 vowels with a and i occurring twice.

Thus, consonants can be arranged in 5! ways and vowels can be arranged in 5!
⁄

2!2! ways.

Thus, total no. of words possible such that consoanats and vowels occupy their
respective places is 5!5!⁄2!2!.
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50. There are 6 letters in the word pencil with two vowels and three even positions. Thus,
vowels can be arranged in 𝑃3

2 = 6 ways.

Rest four positions can be filled in 4! = 24 ways. Thus, total no. of words is 24×6 = 144.

51. From 5 letters 5! = 120 words can be formed. Consider the form of word when no two
vowels are together. 𝑉 𝐶𝑉 𝐶𝑉 , where C represents consonants and V represents the
vowels.

Clearly, consonants can be arranged in 2! ways and vowels can be arranged in
𝑃3
3 = 3! = 6 ways.

Thus, no. of words where vowels are not together is 2 × 6 = 12.

52. There are seven digits given and we have to form numbers greater than one million,
which implies all seven digits will have to used. Among the given digits 3 comes thrice
and 2 comes twice. Thus, total no. of numbers which can be formed is 7!

⁄

3!2! = 420.

However, these numbers also contain the numbers where zero is the first digits making
them less than one million. no. of such numbers is 6!

⁄

3!2! = 60.

Hence, no. of numbers greater than one million is 420 − 60 = 360.

53. i. Total no. of persons is 5 + 4 = 9. With no restirctions they can be seated at a
round table in (9 − 1)! = 8! ways.

ii. Treating all British as a single person because they have to be together we have 6
persons which can be seated in 5! ways. But 4 Britishers can be arranged among
themselves in 4! ways making the total no. of ways 5! 4!.

iii. This is equal to 8! − 5! 4! from previous parts.

iv. First we seat the 5 Indians in 4! ways. Then that will leave 5 positions open for
Britishers between Indians to sit, which gives us 𝑃5

4 ways. Thus, total no. of ways
in which no two Britishers are together is 4! 5!.

54. 5 Indians can be seated in a circle in 4! ways. We will have 5 positions between Indians
in which we can seat 5 Britishers in 𝑃5

5 = 5! ways.

Thus, total no. of required ways is 5! 4!.

55. Taking the two delegates who have to always sit together as a single person we have 19
persons which can be seated in 18! ways around a round table.

However, the two delegates themselves can be arranged in 2! ways making the required
no. of ways 18! 2!.

56. no. of four digit numbers which can be formed with 1, 2, 4, 5, 7 i.e. 5 digits is 𝑃5
4 = 120.

57. Units place cannot be filled with 0 so it can be filled in 4 ways using one of 1, 2, 3, 4.
Rest four positions can be filled in 𝑃4

4 = 4! = 24 ways.
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Thus, no. of 5 digit numbers is 4 × 24 = 96.

58. no. of given digits is 7 and we have to make numbers between 100 and 1000 i.e. three
digit numbers. Since there is no zero in the given digits the required no. of numbers is
𝑃7
3 = 210.

59. Units place be filled in 5 ways excluding 0 and two remaining places can be filled by
remaining 5 digits in 𝑃5

2 = 20 ways.

Thus, total no. of required numbers is 5 × 10 = 100.

60. We have 10 digits. Units place can be filled in 9 ways excluding 0. Rest 8 places can be
filled using remaining 9 digits in 𝑃9

8 = 9! ways.

Thus, total no. of 9 digit numbers with no repetition is 9.9!.

61. Thousannds place can be filled in 5 ways excluding 0. Rest three places can be filled
using remaining 5 digits in 𝑃5

3 = 60 ways.

Thus, no. of required numbers is 5 × 60 = 300.

62. Thousands place can be filled in 2 ways using either 5 or 9. Rest three places can be
filled in 3! ways using remaining three digits.

Thus, no. of required numbers is 2.3! = 12.

63. Case I: When the number is of three digits.

Hundreds place can be filled in 3 ways using 3, 4 or 5. Remaining two places can be
filled in 𝑃5

2 = 20 ways using remaining 5 digits.

Thus, no. of three digit numbers is 3 × 20 = 60.

Case II: When the number is of four digits.

Thousands place can be filled in 3 ways using 1, 2 or 3. Remaining three place can be
filled in 𝑃5

3 = 60 ways using remaining 5 digits.

Thus, no. of four digit numbers is 3 × 60 = 180.

Thus, no. of required numbers is 60 + 180 = 240.

64. Since the number has to be divisible by 5 the units place digit has to be either 0 or 5.

Case I: When 0 is at units place. Rest three places can be filled in 𝑃4
3 = 24 ways

using remaining 4 digits.

Thus, no. of four digit numbers in this case is 24.

Case II: When 5 is at units place. Thousands place can be filled in 3 ways using 4, 6
or 7. Remaining three places can be filled in 𝑃3

2 = 6 ways using remaining 3 digits.

Thus, no. of four digit numbers in this case is 3 × 6 = 18.
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Hence, total no. of required numbers is 18 + 24 = 42.

65. Since the number has to be even, therefore, units place can be filled by either 2 or 4
i.e. in 2 ways. Rest four places can be filled in 𝑃4

4 = 4! = 24 ways.

Thus, total no. of 5 digit numbers is 2 × 24 = 48.

66. Since the no. has to be divisible by 5 units place can be occupied only by 0 and 5.

Case I: When the no. is of one digit. There are two such numbers 0 and 5.

Case II: When the no. is of two digits. If 0 occurs at units place then tens place can
be filled in 9 ways giving us 9 numbers. However, when 5 occurs at units place then
tens place can be filled in 8 ways giving us 8 numbers. Thus, total no. of two digits
numbers is 17.

Caae III: When the no. is of three digits. If 0 occurs at units place then remaining
two places can be filled in 𝑃9

2 = 72 ways. If 5 is at units place then hundreds place
can be filled in 8 ways excluding zero and tens place can be filled in 8 ways using
remaining 8 digits. Thus, in this case otal no. of numbers is 72 + 8 × 8 = 136.

Thus, total no. of numbers is 2 + 17 + 136 = 155.

67. Hundreds place can be filled in 5 ways excluding 0. Rest of two places can be filled in
𝑃5
2 = 20 ways.

Thus, total no. of numbers is 5 × 20 = 100.

For odd numbers, units place can be filled in 2 ways using 5 or 7. Hundreds place
can be filled in 4 ways excluding 0 and units place can also be filled in 4 ways using
remaining digits.

Thus, total no. of odd numbers is 2 × 4 × 4 = 32.

68. Case I: When the no. is of one digit. There are three such numbers 0, 2 and 4.

Case II: When the no. is of two digits. When units place is occupied by 0, tens place
can be filled in 4 ways, making no. of such numbers 4. If units place is occupied by 2
or 4 i.e. in two ways then tens place can be filled in 3 ways excluding 0, making no. of
such numbers 2 × 3 = 6.

Thus, no. of two digit numbers is 4 + 6 = 10.

Case III: When the no. is of three digits. When units place is occupied by 0, remaining
two places can be filled in 𝑃4

2 = 12 ways, making no. of such numbers 12. If units
place is occupied by 2 or 4 i.e. in two ways then hundreds place can be filled in 3 ways
excluding 0 and tens place can be filled in 3 ways using remaining three digits, making
no. of such numbers 2 × 3 × 3 = 18.

Thus, no. of three digit numbers is 12 + 18 = 30.
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Case IV: When the no. if of four digits. When units place is occupied by 0, remaining
three places can be filled in 𝑃4

3 = 24 ways, making no. of such numbers 24. Following
similarly, when units place is occupied by 2 or 4, no. of such numbers is 2×3×3×2 = 36.

Thus, no. of four digit numbers is 24 + 36 = 60.

Case V: When the no. is of five digits. In this case, units place must be occupied by 0
and not by 2 or 4. Then remaining 4 places can be filled in 𝑃4

4 = 24 ways.

Thus, total no. of even numbers is 3 + 10 + 30 + 60 + 24 = 127.

69. Once we fix 5 at tens place we have 5 open places and 5 different digits, which can be
arranged in 𝑃5

5 ways.

Thus, no. of required numbers is 120.

70. We have 7 digits, and have to form four digit numbers. no. of such numbers possible is
𝑃7
4 = 840.

We have to find numbers greater than 3400. First we compute numbers between 3400
and 4000. The thousands place can be filled only by 3 and hundreds place can be filled
by 4, 5, 6 and 7 i.e. 4 ways. Remaining two positions can be filled in 𝑃5

2 = 20 ways.
Thus, no. of numbers between 3400 and 4000 is 4 × 20 = 80.

Now we compute numbers greater than 4000. Thousands place can be filled by 4, 5, 6
and 7 i.e. in 4 ways. Rest three places can be filled in 𝑃6

3 = 120 ways. Thus, no. of
such numbers is 4 × 120 = 480.

Thus, no. of numbers greater than 3400 is 80 + 480 = 560.

71. Since positions of 3 and 5 are fixed rest two positions can be filled with three remaining
digits in 𝑃3

2 = 6 ways. Thus, no. of such numbers is 6.

72. Thousands place can be filled in 5 ways excluding 0. Rremaining three places can
be filled in 𝑃5

3 = 60 ways using the five remaining digits. Thus, total no. of four digit
numbers is 5 × 60 = 300.

For numbers to be greater than 3000, thousands place has to be filled by 3, 4 and 5
i.e. 3 ways. Remaining three places can be filled in 𝑃5

3 = 60. Thus, no. of numbers
greater than 3000 is 3 × 60 = 180.

73. Case I: When the no. is of one digit. Total no. of numbers possible in this case is 7
including 0.

Case II: When the no. is of two digits. Tens place can be filled in 6 ways excluding 0
and units place can be filled in 6 ways with remaining digits.

Thus, no. of two digit numbers is 6 × 6 = 36.

Case III: When no. is of three digits. Following similarly the no. of numbers is
6 × 6 × 5 = 180.
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Case IV: When the no. is of four digits. Following similarly the no. of numbers is
6 × 6 × 5 × 4 = 720.

Case V: When the no. is of five digits. Following similarly the no. of numbers is
6 × 6 × 5 × 4 × 3 = 2160.

Case VI: When the no. is of six digits. Following similarly the no. of numbers is
6 × 6 × 5 × 4 × 3 × 2 = 4320.

Case VII: When the no. is of seven digits. Following similarly the no. of numbers is
6 × 6 × 5 × 4 × 3 × 2 × 1 = 4320.

Thus, total no. of numbers is 7 + 36 + 180 + 720 + 2160 + 4320 + 4320 = 11743

74. We have 5 digits so when all of them are taken at a time then no. of possible numbers
is 𝑃5

5 = 120.

Each digit will occupy each place for 24 numbers. Thus, sum of all numbers at
any place is 24(1 + 3 + 5 + 7 + 9) = 600. Therefore, sum of all such numbers is
600(1 + 10 + 100 + 1000 + 10000) = 6,666,600.

75. We have 4 digits with 3 occurring twice. Thus, total no. of numbers is 𝑃
4
4
⁄

2! = 12. Now

each of the digits will occur at each place 12⁄4 = 3 times.

Thus, sum of digits at each place is 3(3 + 2 + 3 + 4) = 36. Thus, sum of all possible
numbers is 36(1 + 10 + 100 + 1000) = 39,996.

76. Let us fix 2 at units place. Then, ten thousands place can be filled in 3 ways using
4, 6, 8 and remaining two places can be filled in 𝑃3

3 = 3! ways. Thus, total no. of
numbers is 3 × 6 = 18.

Number of numbers when 2 is at ten throusands place is 𝑃4
4 = 24. Thus, each positive

digit will occur at units, tens, hundreds and thousands place 18 times and at thousands
place 24 times.

Sum of the digits at units, tens, hundreds and thousands place will be each 18(2 + 4 +
6 + 8) = 360 and sum of digits at ten thousands place is 24(2 + 4 + 6 + 8) = 480.

Thus, sum of all numbers will be 360(1 + 10 + 100 + 1000)+ 480 × 10000 = 5,199,960.

77. Total no. of five digit numbers possible is 𝑃5
5 = 120 where each digit will appear at

each position 120⁄5 = 24 times.

Thus, sum of digits at each place is 24(3 + 4 + 5 + 6 + 7) = 600. Therefore, sum of all
such numbers is 600(1 + 10 + 100 + 1000 + 10000) = 6,666,600.

78. Let us fix 2 at units place. Then, thousands place can be filled in 2 ways using 3 or 5
and remaining two places can be filled in 𝑃2

2 = 2 ways. Thus, total no. of numbers
is 2 × 2 = 4.
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Number of numbers when 2 is at thousands place is 𝑃3
3 = 6. Thus, each positive digit

will occur at units, tens, hundreds and thousands place 4 times and at thousands
place 6 times.

Sum of digits at units, tens and hundreds place will eb each 4(2 + 3 + 5) = 40 and
sum of digits at thousands place will be 6(2 + 3 + 5) = 60.

Thus, sum of all numbers will be 40(1 + 10 + 100)+ 60 × 1000 = 64,440.

79. Each letter can be put in any one of the four letter boxes. Thus, 5 letters can be posted
in 45 ways.

80. Each prize can be given in 5 ways. So three prizes can be given in 53 ways.

81. Each thing can be given in 𝑝 ways to 𝑝 person. Thus, 𝑛 things can be given in 𝑝𝑛 ways.

82. Each monkey can have a master in 𝑚 ways. Thus, 𝑛 monkeys can have a master in 𝑚𝑛

ways.

83. First prize in mathematics and physics can be given in 10 ways and second prize in 9
ways. In chemistry, first prize can be given in 10 ways.

Thus, total no. of ways is 10 × 9 × 10 × 9 × 10 = 81,000.

84. The first animal can be picked in 3 ways with the possibility of it being a cow, a calf or
a horse. Similarly, second animal can be picked in 3 ways. Proceeding this way all
12 animals for the stall can be picked in 3 ways.

Thus, total no. of making the shipload is 312.

85. Each delegate can be put in a hotel in 6 ways. Therefore, 5 delegates can be put in 65
ways.

86. Ten thousands place can be filled in 4 ways exluding 0. Rest 4 places can be filled in 5
ways each. Thus, total no. of 5 digits numbers is 4 × 54 = 2,500.

87. Each ring can be put in a finger in 4 ways i.e. by putting it in any finger. Thus, 6 rings
can be put in 4 fingers in 46 ways.

88. Thousands place can be filled in 3 ways using 3, 4 or 5. Remaining places can be filled
in 63 ways using any of the digits. But one of these numbers will be 3000 itself.

Thus, no. of four digit numbers which can be made is 3 × 63 − 1.

89. When the number plate is of three digits, each place can be filled in 9 ways excluding
zero. This gives us 93 number plates. Similalry, when the number plate is of four digits
the no. of possible number plates is 94.

Thus, total no. of number plates is 93 + 94 = 10 × 93 = 7,290.

90. Each question can be answered in 4 ways, therefore, 10 questions can be answered
in 410 ways.
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Second part: First question can be answered in 4 ways. Now this choice won’t be
available for the second answer so there are 3 ways. Similarly, for third and so on.
Thus, total no. of ways is 4 × 39.

91. Treating all volumes of a book as one book we have four books which can be arranged
in 4! ways. However, books having 3 volumes can be arranged in 3! ways among
themselves and similarly books having 2 volumes can be arranged in 2! ways among
themselves.

Thus, total no. of arranging given books is 4! 3! 3! 2! 2!.

92. There are 14 books having different no. of copies. Treating all copies as one book we
still have 14 books which can be arranged in 14! ways.

Since copies are identical there is only one way to arrange them among themselves.
Thus, total no. of arranging the given books is 14!.

93. Treating people of different nationalities as one person we have three persons, which
can be arranged in 3! ways. Now 10 Indians can be arranged in 10! ways among
themselves, 5 Americans can be arranged in 5! ways among themselves and 5 Britished
can be arranged in 5! ways as well.

Thus, total no. of ways of seating them is 3! 10! 5! 5!.

94. The pattern would be 𝐺𝐵𝐺𝐵𝐺𝐵𝐺𝐵𝐺𝐵𝐺𝐵𝐺 where B shows boys position and G
indicates possible positions of girls. Boys can be arranged in 6! ways. For girls, there
are 7 open positions and 4 girls can be seated in 𝑃7

4 = 7!⁄
3! ways.

Thus, total no. of ways of seating them is 6! . 7!⁄31.

95. 𝑛 books can be arranged in 𝑛! ways. Now we will find the no. of arrangements when
two given books which do not have to be together are together. Treating the two
books as one book we have 𝑛 − 1 books which can be arraned in (𝑛 − 1)! ways. But
the two books can be arranged in 2 ways among themselves, making the total no.
of arrangements is 2.(𝑛 − 1)!.

Thus, no. of arrangements when the two books are not together is 𝑛! − 2.(𝑛 − 1)! =
(𝑛 − 2) .(𝑛 − 1)!.

96. From previous problem, we find the answer to be 4.5! = 480.

97. Following like previous problem, we find theh answer to be 480.

98. Following like previous problem on boys and girls we first seat the 15 I.Sc. students in
15! ways which gives us 16 open positions for 𝐵.𝑆𝑐. students, which can be seated
in 𝑃16

12 .

Thus, total no. of ways of seating the students is 15! .𝑃16
12 .

99. First we arrange black balls which will give us 20 positions in between them and on
the edges for white balls. Since the balls are identical we can choose 18 positions out of
20 for white balls in 𝐶20

18 = 190 ways.
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100. First we place 𝑝 positive signs which will give us 𝑝 + 1 positions for negative signs
between them and on the edges. Since signs are identical we can choose 𝑛 positions out
of 𝑝 + 1 in 𝐶𝑝+1

𝑛 ways.

101. 𝑚 men can be seated in 𝑚! ways which will have 𝑚+ 1 positions between them and
on the edges for women so that no two women sit together. Now 𝑛 women can be
arranged in these 𝑚+ 1 positions in 𝑃𝑚+1

𝑛 = (𝑚+1)!⁄
(𝑚−𝑛+1)! ways.

Thus, total no. of ways to seat them is 𝑚!(𝑚+1)!⁄
(𝑚−𝑛+1)!.

102. Following like previous problem, we have 𝑚 = 5, 𝑛 = 3, so the answer woulld be 5!6!⁄3! .

103. We have 12 alphabets excluding c’s out of which 5 are a’s, 3 are b’s, 1 d, 2 e’s and 1 f,
so these can be arranged in 12!

⁄

5!3!2! ways. Now these 12 alphabets will create 13 positions
between them and on the edges which are to be filled by 3 c’s in 𝑃13

3 ways.

Thus, total no. of arrangements is 12!
⁄

5!3!2! ×
13!
⁄

10!.

104. The word banana has ‘a’ repeating 3 times and ‘n’ repeating twice while total no.
of alphabets is 6.

Hence, to no. of different permutations is 6!
⁄

3!2!.

105. There are 13 alphabets in the word “circumference”. ‘c’ comes thrice, ‘r’ comes twice,
‘e’ comes thrice and rest come once.

Thus, total no. of words that can be made is 13!
⁄

3!3!2!.

106. Three copies of four books means 12 books with repetition of copies. Thus, total no. of
arragements on the shelf is 12!

⁄

3!3!3!3!.

107. There are 12 alphabets in the word “Independence”. ‘n’ comes thrice, ‘d’ comes twice,
‘e’ comes four times, and rest come once.

Thus, total no. of words that can be made is 12!
⁄

4!3!2!.

108. There are 8 alphabets in the word “Principal”, of which, ‘p’ comes twice, ‘i’ comes
twice and rest occur once. Treating all vowels as one alphabet we have 6 alphabets
which can be arranged in 6!⁄2! ways.

However, the vowels themselves can be arranged among themselves in 3!⁄2! ways. Thus,

total no. of words is 6!3!⁄2!2!.

109. There are 11 alphabets in the word “Mathematics”, of which, ‘m’ comes twice, ‘a’
comes twice, ‘t’ comes twice and rest comes once. Thus, no. of words that can be
formed is 11!
⁄

2!2!2!.
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Treating all vowels as one alphabet and all consonants as another we have two alphabets
which can be arranged in 2! ways. But 4 vowels can be arranged in 4!⁄2! ways and 7

consonants can be arranged in 7!
⁄

2!2! ways.

Thus, total no. of such words is 2!7!4!⁄2!2!2!.

110. There are 8 alphabets in the word “Director”, of which, 𝑟 comes twice and rest come
once. Since the vowels have to come together, therefore we treat them as one alphabet
making a total of 6 alphabets which can be arranged in 6!⁄2! ways.

However, the three vowels can be arranged in 3! ways among themselves making no. of
such words 6!3!⁄2! .

111. There are 8 alphabets in the word “Plantain”, of which, ‘a’ and ‘n’ come twice and
rest come once. Since the vowels have to come together, therefore we treat them as one
alphabet making a total of 6 alphabets which can be arranged in 6!⁄2! ways.

However, the three vowels can be arraned in 3!⁄2! ways among themselves making no. of

such words 6!3!⁄2!2!.

112. There are 12 letters in the word “Intermediate”, of which, ‘e’ comes thrice, ‘i’ and
‘t’ comes twice and rest come once.

We first arrange vowels which can be done in 6!
⁄

3!2!. Now because relative order does not
change we have six positions for consonants giving us total no. of ways of arranging
them as 6!⁄2!.
Thus, total no. of such words is 6!6!

⁄

3!2!2!.

113. There are 8 letters in the word “Parallel”, of which, ‘a’ comes twice, ‘l’ comes thrice
and rest comes once.

Total no. of arrangements is 8!
⁄

3!2!. Treating all the ls as one letter we have 6 letters

which can be arranged in 6!⁄2! ways in which all ls will be together.

Therefore, no. of words in which all ls are not together is 8!
⁄

3!2! −
6!⁄
2! = 3000.

114. The parts are solved below:
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i. Fixing ‘D’ at the first position; rest four positions can be filled in 𝑃4
4 ways. Thus,

no. of such words is 4! = 24.

ii. Fixing ‘I’ at the end; rest four positions can be filled in 𝑃4
4 ways. Thus, no. of

such words is 4! = 24.

iii. Fixing ‘l’ in the middle; rest four positions can be filled in 𝑃4
4 ways. Thus, no. of

such words is 4! = 24.

iv. Fixing ‘D’ and ‘I’; rest three positions can be fillled in 𝑃3
3 ways. Thus, no. of such

words is 3! = 6.

115. There are 7 unique letter in the word “Violent” with 3 vowels. There are 4 odd places
so three vowels can be arranged in 𝑃4

3 = 4! ways. Rest 4 consonants can be arrannged
in 4! = 24 ways. Thus, total no. of such words is 24 × 24 = 576.

116. There are 3 distinct consonants and 3 vowels, where ‘o’ repeats once in the word
“Saloon”. Since consonants and vowels have to occupy alternate place we will have two
patterns. 𝑉 𝐶𝑉 𝐶𝑉 𝐶 and 𝐶𝑉 𝐶𝑉 𝐶𝑉 , where 𝐶 represents consonants and 𝑉 represents
vowels.

Three consonants can be arranged in 3! arrangements and 3 vowels can be arranged
in 3!⁄2! arrangement. Thus, total no. of arrangements is 3! 3! = 36.

117. There are 4 consonants and 3 vowels in the word “Article”. Clearly, there are three
even places which are to be occupied by vowels in 3! arrangements and consonants can
be arranged in 4! arrangements for remaining 4 positions.

Thus, total no. of words is 4! 3! = 144.

118. Since the number has to be greater than 4 million and we are given 7 digits the ten
millions place can be occupied by either 4 or 5 in 2 ways.

Remaning digits can be arranged in 6!
⁄

2!2! = 180 arrangements as 2 and 3 repeat once.
Thus, total no. of required numbers is 2 × 180 = 360.

119. In the given digits 2 comes thrice and 3 comes twicec so the no. of numbers is 7!⁄3!2! = 420.

For odd numbers units place is to be occupied by 1, 3 or 5. When 1 or 5 occupy
units place remaining positions can be filled in 6!

⁄

3!2! = 60 ways making the number
2 × 60 = 120.

When one of the 3’s occupy units place rest of the positions can eb filled in 6!⁄3! = 120
ways. Thus, total no. of odd numbers is 120 + 120 = 240.

120. There are four odd digits with both 1 and 3 repeating. The even no. 2 repeats once. In
a 7 digits number there are four odd places which can be filled by odd numbers in
4!
⁄

2!2! = 6 ways.
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Even places can be filled by 2 and 4 can be filled in 3!⁄2! = 3 ways. Thus, no. of required
numbers is 6 × 3 = 18.

121. Case I: When the no. if is five digits.

When ten thousands place is occupied by 2, 3 or 4 remaining four places can be filled
in 𝑃

5
4
⁄

2! = 60 ways, making such numbers 60 × 3 = 180 in number.

When ten thousands place is occupied by 1 remaining four places can be filled in
𝑃5
4 = 120 ways.

Thus, total no. of five digit numbers is 180 + 120 = 300.

Case II: When the no. is of six digits.

When hundred thousands place is occupied by 2, 3 or 4 remaining five places can be
filled in 𝑃

5
5
⁄

2! = 60 ways, making such numbers 60 × 3 = 180 in number.

When hundred thousands place is occupied by 1 remaining four places can be filled in
𝑃5
5 = 120 ways.

Thus, total no. of six digit numbers is 180 + 120 = 300.

Thus, total no. of numbers is 300 + 300 = 600.

122. When the digits are repeated thousands place can be filled in 5 ways excluding 0.
Remaining 3 positions can be filled by 6 digits in 63 ways.

Thus, no. of such numbers is 5 × 63 = 1080.

To find the no. of numbers where at least one digit is repeated we find the no. of
numbers where no digit is repeated and subtract it from previously obtained result.

For no repetition, thousands placec can be filled in 5 ways exluding 0. Remaning 3
places can be filled by 5 digits in 𝑃5

3 = 60 ways.

Thus, no. of numbers without repetition is 60 × 5 = 300.

Thus, no. of numbers where at least one digit is repeated is 1080 − 300 = 780.

123. There are a total of 9 flags, of which, 2 are red, 2 are blue and 5 are yellow. Thus,
total no. of signals that can be made by using all of them at the same time is 9!

⁄

2!2!5!.

124. When all are of same color 𝑃6
1 signals can be made. When all are of two colors 𝑃6

2
signals can be made and so on.

Thus, total no. of signals is 𝑃6
1 + 𝑃6

2 + 𝑃6
3 + 𝑃6

4 + 𝑃6
5 + 𝑃6

6 = 1956.

125. Case I: When ‘e’ is in first place. Remaining four places can be filled in 4! ways.

Case II: When ‘e’ is in second place. First place can be filled in 3 ways and remaining 3
places in 3! ways.
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Case III: When ‘e’ is in third place. First two places in 3 × 2 ways and remaining two
places in 2! ways.

Case IV: When ‘e’ is in fourth place. First three places in 3! ways and last place with
‘i’.

Thus, total no. of words is 4! + 3 × 3! + 6 × 2! + 3! = 60.

Second method: Total no. of words is 5!. In half of these ‘e’ will come before ‘i’ and
in half of them after it. Thus, no. of words is 5!⁄2 = 60.

126. no. of ways in which 5 men can sit around a round table is (5 − 1)! = 24 arrangements.

127. When there is no restriction we have 10 girls and boys. Thus, total no. of arrangements
would be 9!.

When no girls are to sit together we first seat the boys in 4! arrangements giving us
five open positions. These can be filled by 5 girls in 5! ways.

Thus, total no. of seating arrangements is 4! 5!.

128. Treating all girls as a single girl we have 7 boys and girls which can be seated in 6!
ways. But the 4 girls can be arranged in 4! ways among themselves.

Thus, total no. of seating arrangements is 6! 4!.

129. The line can start with boys so we first seat the boys put the boys in 5! ways followed
by girls in between boys in 5! ways. This can be repeated starting with girls in same
manner.

Thus, no. of lines that can be formed is 2.5! 5!.

For a round table we have already solved previously giving us 4! 5! no. of arrangements.

130. 6 boys can be seated first in 5! ways giving us 6 open places in which girls can be
seated in 𝑃6

5 ways. Thus, total no. of seating arrangements is 5! 6!.

131. Since in a necklace clockwise and anticlockwise does not matter, therefore, total no. of
necklaces that can be made using 50 pearls is 49!⁄2! .

132. Treating the two particular delegates as one delegate we have 19 delegates which can be
seated in 18! ways. But the two delegates can be seated in 2! ways among themselves.

Thus, total no. of seating arrangements is 18! 2!.

133. The question effectively asks for alternate seating arrangements among gentlemen and
ladies. Thus, followin from problem solved previously total no. of seating arrangements
would be 4! 3!.

134. 7 Englishmen can be seated in 6! ways giving us 7 open places which can be filled by 6
Indians in 𝑃7

6 ways.

Thus, total no. of seating arrangements is 6! 7!.
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135. We know that if 𝐶𝑛
𝑥 = 𝐶𝑛

𝑦 then either 𝑥 = 𝑦 or 𝑥+ 𝑦 = 𝑛. Given, 𝐶15
3𝑟 = 𝐶15

𝑟+3 therefore
either 3𝑟 = 𝑟 + 3 or 3𝑟 + 𝑟 + 3 = 15.

However, 3𝑟 = 𝑟 = 3 ⇒ 𝑟 = 3
⁄

2, which is not possible, therefore, 3𝑟 + 𝑟 + 3 = 15 ⇒ 𝑟 = 3
must be the case.

136. Given, 𝐶𝑛
6 : 𝐶𝑛−3

3 ⇒ 𝑛!⁄
6!(𝑛−6!) .

3!(𝑛−6)!⁄
(𝑛−3)! = 33
⁄

4

⇒ 𝑛!⁄
(𝑛−3)! .

3!⁄
6! =

𝑛(𝑛−1)(𝑛−2)⁄
6.5.4 = 33
⁄

4 ⇒ 𝑛(𝑛 − 1)(𝑛 − 3) = 11.10.9 ⇒ 𝑛 = 11.

137. Given, 𝐶47
4 +

5
∑
𝑗=1

𝐶52−𝑗
3

= 𝐶47
4 + (𝐶51

3 +𝐶50
3 +𝐶49

3 +𝐶48
3 +𝐶47

3 ) = (𝐶47
4 +𝐶47

3 )+ (𝐶51
3 +𝐶50

3 +𝐶49
3 +𝐶48

3 )

= 𝐶4
48 + (𝐶51

3 + 𝐶50
3 + 𝐶49

3 + 𝐶48
3 + 𝐶47

3 )[∵𝐶𝑛
𝑟 + 𝐶𝑛

𝑟+1 = 𝐶𝑛+1
𝑟+1 ]

Repeating this we have the expression equal to 𝐶52
4 .

138. Let 𝑝 be the product of 𝑟 consecutive integers starting from 𝑛. Then, 𝑝 = 𝑛(𝑛+1)(𝑛+
2)⋯ (𝑛 + 𝑟 − 1)

⇒ 𝑝⁄
𝑟! =

𝑛(𝑛+1)(𝑛+2)⋯(𝑛+𝑟−1)
⁄

𝑟! = 1.2.3.….(𝑛−1)𝑛(𝑛+1)(𝑛+2)⋯(𝑛+𝑟−1)
⁄

1.2.3.….(𝑛−1) .𝑟!

= (𝑛+𝑟−1)!
⁄

(𝑛−1)!𝑟! = 𝐶𝑛+𝑟−1
𝑟 , which would be an integer, and hence, 𝑝 is divisible by 𝑟!.

139. A triangle is formed with three vertices so the problem is essentially about choosing 3
out of 𝑚 i.e. 𝐶𝑚

3 = 𝑚(𝑚−1)(𝑚−2)⁄
6 .

140. Number of children is 8. no. of children to be taken at a time is 3. Out of 8 children 3
can be selected in 𝐶8

3 ways. Hence, the man has to go to zoo 𝐶8
3 = 56 times.

Number of selection of 3 children out of 8 children including a particular child is
1 × 𝐶7

2 = 21. Hence, a particular child will go 21 times to the zoo.

141. Let there be 𝑛 students. no. of ways in which 2 students can be selected out of 𝑛 is 𝐶𝑛
2

i.e. we have 𝐶𝑛
2 pairs.

But, for each pair of students no. of cards sent is 2. Thus, total no. of cards sent is
2.𝐶𝑛

2 = 𝑛(𝑛 − 1) = 600 ⇒ 𝑛 = 25 because 𝑛 ≠ −24.

Second method: Each student sends cards to 𝑛− 1 students. Thus, total no. of cards
sent is 𝑛(𝑛 − 1) = 600 ⇒ 𝑛 = 25.

142. A polygon of 𝑚 sides will have 𝑚 vertices. When any two vertices of the polygon are
joined, either a diagonal or a side is formed.

Total no. of selections of 2 points taken at a time from 𝑚 points is 𝐶𝑚
2 .
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143. Total no. of persons is 6 + 4 = 10. Total no. of selections of 5 persons out of 10 is 𝐶10
5 .

Number of selections when no lady is taken is 𝐶6
5.

Thus, no. of selections when at least one lady is present is 𝐶1
50 − 𝐶6

5 = 252 − 6 = 246.

144. (a) Total no. of selections of 3 points out of 10 points is 𝐶10
3 = 120. Number of selections

of 3 points out of 4 collinear points is 𝐶4
3 = 4.

Thus, no. of triangles formed is 120 − 4 = 116.

(b) Total no. of selections of 2 points out of 10 points is 𝐶10
2 = 45. no. of selection of

points when only one line is formed is 𝐶4
2 = 6

Therefore, no. of straight lines formed is 45 − 𝐶4
2 + 1 = 40. (We take 1 line formed

from four collinear points)

(c) Total no. of selections of 4 points out of 10 points is 𝐶10
4 = 210. no. of selection of

points when no quadrilateral is formed is 𝐶4
3 .𝐶6

1 + 𝐶4
4 .𝐶

6
0 = 25.

Thus, no. of quadrilaterals formed is 210 − 25 = 185.

145. Zero or more oranges can be selected from 4 oranges in 5 ways because oranges are
identical. Similalry, the no. of selection for apples would be 6 and for mangoes it would
be 7.

Thus, no. of selections when all three types of fruits are selected from is 5×6×7 = 210.
But one of these selections will contain 0 fruits.

Thus, required no. of selections is 209.

146. no. of selections by which 1 or more green dye can be chosen is 𝐶5
1 + 𝐶5

2 + 𝐶5
3 +

𝐶5
4 + 𝐶5

5 = 25 − 1. no. of selections by which 1 or more blue dye can be chosen is
𝐶4
1 + 𝐶4

2 + 𝐶4
3 + 𝐶4

4 = 24 − 1. no. of selections by which 0 or more red dye can be
chosen is 𝐶3

0 + 𝐶3
1 + 𝐶3

2 + 𝐶3
3 = 23 = 8.

Thus, required no. of selections is 21 × 15 × 8 = 3720.

147. Factos of 216, 000 are 5 2s, 3 3s and 2 5s. Zero or more 2s can be selected in 5 + 1 = 6
ways. Zero or more 3s can be selected in 3 + 1 = 4 ways. Zero of more 5s can be
selected in 2 + 1 = 3 ways.

Thus, no. of divisors is 6× 4× 3− 1 = 71 because one of these would contain no factor.
Adding 1 to the no. of divisors we have total no. of divisors as 72.

148. A student can fail in one , two, three, four or all of five subjects. Thus, no. of ways of
failing is 𝐶5

1 + 𝐶5
2 + 𝐶5

3 + 𝐶5
4 + 𝐶5

5 = 25 − 1 = 31.

149. Each person can be given 4 things. no. of ways of giving 4 things out of 12 to the first
person is 𝐶12

4 . Then, 8 things remain. no. of ways of giving 4 things out of 8 to the
second person is 𝐶8

4. Now third person can receive 4 things out of 4 in 𝐶4
4 ways.
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Thus, required no. of ways is 𝐶12
4 × 𝐶8

4 × 𝐶4
4 =

12!
⁄

(4!)3.

no. of ways in which 12 things can be divided equally among 3 sets is 12!
⁄

(4!)3 .3.

150. There are 11 letters in the word “Examination” in which three occur in pairs i.e. ‘A’,
‘N’ and ‘I’. The different letters are 𝐸, 𝑋, 𝐴, 𝑀, 𝐼, 𝑁, 𝑇, 𝑂 i.e. 8.

Case I: When two pairs of identical letters are chosen.

The two pairs can be chosen from three in 𝐶3
2 = 3 ways. These letters can be arranged

among themselves in 4!
⁄

2!2! = 6 ways. Thus, total no. of words formed is 3 × 6 = 18.

Case II: When one pair of identical letters is chosen and remaining two letters are
different.

The pair of identical letters can be chosen in 𝐶3
1 = 3 ways. The two different letters

can be chosen in 𝐶7
2 = 21 ways. These letters can be arranged in 4!⁄2! ways.

Thus, total no. of words formed is 3 × 𝐶7
2 ×

4!⁄
2! = 756.

Case III: When all four letters are different.

no. of words that can be formed is 𝑃8
4 = 1680.

Thus, total no. of words formed is 756 + 18 + 1680 = 2454.

151. We need to select 4 vertices out of 𝑛 of a polygon to form a quadrilateral. no. of
selections of 4 points is 𝐶𝑛

4 .

152. no. of ways of selecting 3 friends out of 7 is 𝐶7
3 = 35. Thus, no. of parties that can be

given is 35.

Suppose a particular friends is mandatory in a party then 2 other friends can be
selected in 𝐶6

2 ways. Thus, no. of parties a particular friend will attend is 𝐶6
2 = 15.

153. If 𝑝 things always occue then we have to select remaning 𝑟 − 𝑝 things out of 𝑛 − 𝑝
ways, which is 𝐶𝑛−𝑝

𝑟−𝑝 .

154. (a) If a particular member is always added then we have to choose 5 more from
remaining 11, which is 𝐶11

5 .

(b) If a particular member is always excluded then we have to chhose 6 more from
remaining 11, which is 𝐶11

6 .

155. (a) Total no. of ways of seating 6 students is 𝑃6
6 = 720. Now we will put 𝐶 and 𝐷

together and subtract that from total no. of ways to find no. of ways of seating them
when 𝐶 and 𝐷 are not together.

Treating 𝐶 and 𝐷 as one student we have 5 students which can be seated in 𝑃5
5 = 120

ways. But these two can be arranged among themseleves in 2! ways making total no. of
ways 120 × 2 = 240.
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Thus, no. of ways of seating these 6 students together when 𝐶 and 𝐷 are not together
is 720 − 240 = 480.

(b) If 𝐶 is always included then we need to select 3 more from remaining 5, which can
be done in 𝐶5

3 = 10 ways.

(c) Since 𝐸 is always excluded we have only 5 students left. Thus, following previous
part it can be done in 𝐶4

3 = 4 ways.

156. Let there be 𝑛 stations. To print a ticket we need a source station and a desination
station. So different tickets which can be printed with 𝑛 stations is 𝐶𝑛

2 , which is 105 in
our case.

∴ 𝑛!⁄
(𝑛−2)!2! = 105 ⇒ 𝑛(𝑛 − 1) = 210 = 14.15 ⇒ 𝑛 = 15.

157. no. of ways to select 2 points to form a straight line out of 15 points is 𝐶15
2 = 105. This

will include 2 points out of 6 collinear points which will actually contain only 1 straight
line out of it. So no. of ways to choose 2 points out of these 6 points is 𝐶6

2 = 15. Thus,
total no. of straight lines formed is 105 − 10 + 1 = 91.

no. of ways of choosing 3 points out of 15 is 𝐶15
3 = 455. We have to not consider cases

when all three points aree selected from collinear points as those won’t form a triangle.
no. of selections of 3 points out of collinear points is 𝐶6

3 = 20.

Thus, total no. of triangles formed is 455 − 20 = 435.

158. no. of ways of choosing 4 points out of 10 is 𝐶10
4 = 210. When 3 or 4 points are chosen

from 5 collinear pooints the quadrilateral won’t be formed. When we choose 3 points
from collinear points we have 𝐶5

3 = 10 ways, and 1 remaining point from 5 non-collinear
points in 5 ways. Thus, total no. of such selections is 10 × 5 = 50.

When all four points are chosen from collinear points; this can be done in 𝐶5
4 = 5 ways.

Thus, total no. of quadrilaterals formed is 210 − 50 − 5 = 155.

159. There is a total of 12 points and we can choose 3 points from these in 𝐶12
3 = 220 ways.

However, these points must not come from points of same side.

Thus, no. of triangles formed is 220 − 𝐶3
3 − 𝐶4

3 − 𝐶5
3 = 205.

160. We need one goalkeeper in the team and two are available so goalkeeper can be chosen
in 2 ways. Rest of 10 players can be chosen from remaining 12 players in 𝐶12

10 = 66
ways.

Thus, no. of ways in which a team of 11 out of 14 can be formed is 2 × 66 = 122.

161. 2 men can be chosen from 5 men in 𝐶5
2 = 10 ways. Similarly, 2 women from 6 women

can be chosen in 𝐶6
2 = 15 ways.

Thus, total no. of ways of forming the committee is 10 × 15 = 150.
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162. Since each boy is to receive one article at least one boy will receive 2 articles. These
two articles can be given to one of the boys in 𝐶8

2 ways. The second article can be
given in 𝐶7

1 ways and so on.

Since first article can be given to any of the seven boys the above result if multiplied
by 7 will give us total no. of ways of distributing the articles.

Thus, total no. of ways is 7(𝐶8
2 + 𝐶7

1 + 𝐶6
1 + 𝐶5

1 + 𝐶4
1 + 𝐶3

1 + 𝐶2
1 + 𝐶1

1 ).

163. Case I: When there are 3 ladies in the committee.

no. of ways of choosing 3 ways out of 4 ladies is 𝐶4
3. Remaining 2 members can be

selected out of 7 men is 𝐶7
2 ways. Thus, no. of such committees is 𝐶4

3 × 𝐶7
2.

Case II: When there are 4 ladies in the committee.

no. of ways of choosing 4 ways out of 4 ladies is 𝐶4
4. Remaining 1 member can be

selected out of 7 men is 𝐶7
1 ways. Thus, no. of such committees is 𝐶4

4 × 𝐶7
1.

Thus, total no. of committees is 84 + 7 = 91.

164. There are three cases. Two questions from first group and four questions from second
group, three questions from each group, and four questions from first group and two
questions from second group.

This can be done in 𝐶5
2 × 𝐶5

4 + 𝐶5
3 × 𝐶5

3 + 𝐶5
4 × 𝐶5

2 = 50 + 100 + 50 = 200.

165. 3 students can be chosen from 20 students in 𝐶20
3 ways.

(a) When a particular professor is included the second professor for the committee out
of remaining 9 professors can be included in 𝐶9

1 ways.

Thus, total no. of such committees is 𝐶20
3 × 𝐶9

1.

(b) When a particular profession is always excluded then two professors can be chosen
from remaining 9 in 𝐶9

2 ways.

Thus, total no. of such committees is 𝐶20
3 × 𝐶9

2.

Thus, total no. of committees is 𝐶20
3 × 𝐶9

1 + 𝐶20
3 × 𝐶9

2.

166. The committee can comprise of 1, 2, 3, 4 or 5 girls, which can be selected out of 7 girls
in 𝐶7

1, 𝐶
7
2, 𝐶

7
3, 𝐶

7
4 or 𝐶7

5 ways respectively.

Remaining 4, 3, 2, 1 boys can be selected out of 6 boys in 𝐶6
4, 𝐶

4
3, 𝐶4

2, 𝐶4
1 ways

respectively.

Thus, no. of ways in which committee can be formed is 𝐶7
1 × 𝐶6

4 + 𝐶7
2 × 𝐶6

3 + 𝐶7
3 ×

𝐶6
2 + 𝐶7

4 × 𝐶6
1 + 𝐶7

5 × 𝐶6
0.

167. (a) When there are no restrictions the committees can be formed by choosing 5 out of
6 + 4 = 10 persons, which is 𝐶10

5 = 252.
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(b) When no lady is selected no. of ways to form committess is 𝐶6
5 = 6. Thus, no.

of committees when at least one lady is selected is 252 − 6 = 246.

168. Total no. of committees would be 𝐶12
5 . no. of committees comprising only of men

would be 𝐶8
5.

Thus, no. of committees including at least one lady would be 𝐶12
5 − 𝐶8

5 = 736.

169. Out of 6 hockey players 4, 5, 6 hockey players can be selected in 𝐶6
4, 𝐶

6
5, 𝐶

6
6 ways

respectively. Remaining 8, 7, 6 players can be chosen from remaining 9 players in
𝐶9
8, 𝐶

9
7, 𝐶

9
6 ways respectively.

Thus, no. of ways in which players can be selected is 𝐶6
4 × 𝐶9

8 + 𝐶6
5 × 𝐶9

7 + 𝐶6
6 × 𝐶9

6 =
15 × 9 + 6 × 36 + 1 × 84 = 435.

170. Total no. of selections of 5 out of 7 + 4 = 11 persons is 𝐶11
5 . When no ladies are

selected, no. of ways of forming the boat party is 𝐶7
5.

Thus, no. of ways of forming boat party when at least one lady is selected is 𝐶11
5 −𝐶7

5 =
771.

171. Since girls are not to be outnumbered we have to have 3, 4, 5 or 6 girls out of 6 in the
committee, which can be done in 𝐶6

3, 𝐶
6
4, 𝐶

6
5 or 𝐶6

6 ways respectively.

Remaining 3, 2, 1 positions can be filled from 4 boys in 𝐶4
3, 𝐶4

2, 𝐶4
1 ways respectively.

Thus, total no. of ways in which committee can be formed is 𝐶6
3 × 𝐶4

3 + 𝐶6
4 × 𝐶4

2 +
𝐶6
5 × 𝐶4

1 + 𝐶6
6 = 20 × 4 + 15 × 6 + 6 × 4 + 1 = 195.

172. no. of relatives which can be invited is 5, 6, 7 out of 8 relatives in 𝐶8
5, 𝐶

8
6, 𝐶

8
7 ways.

Remaining 2, 1 friends can be chosen from remaining 4 friends which are no relatives in
𝐶4
2, 𝐶4

1 ways.

Thus, no. of ways in which invitations can be made is 𝐶8
5 × 𝐶4

2 + 𝐶8
6 × 𝐶4

1 + 𝐶8
7 =

56 × 6 + 28 × 4 + 8 = 336 + 112 + 8 = 456.

173. The students can choose to answer the question paper in 4 ways. 5 questions from first
paper and 2 from second paper, 2 questions from first paper and 5 questions from
second paper, 4 questions from first paper and 3 from second paper, and 3 questions
from first paper and 3 questions from second paper.

Because both papers contain 6 questions each the no. of ways for first and second
method will be same and ways for third and fourth method will be same as well. So we
can find no. of ways in two cases and multiply the sum by 2 to arrive at the answer.

Case I: When the student chooses first or second method.

5 questions can be chosen out of 6 in 𝐶6
5 ways and 2 questions can be chosen out of 6

in 𝐶6
2 ways.

Thus, no. of selections in this case is 𝐶6
5 × 𝐶6

2 = 6 × 15 = 90.
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Case II: When the student chooses third or fourth method.

Following like previous case, no. of selections in this case is 𝐶6
4 × 𝐶6

3 = 15 × 20 = 300.

Thus, total no. of selections of questions is 2(90 + 300) = 780.

174. We can choose 1 point out 𝑃 and 𝑄 in 𝐶2
1 and 2 from remaining other 8 points in 𝐶8

2
ways, making no. of triangles 𝐶2

1 × 𝐶8
2 = 56. Clearly, half of these would include 𝑃 but

exclude 𝑄. Thus, 28 triangles will include 𝑃 and exclude 𝑄.

In second case, both 𝑃 and 𝑄 would be chosen in 1 way and 1 point from the other
line would be chosen in 𝐶8

1 = 8 ways. This gives us 8 triangles.

Thus, total no. of triangles is 56 + 8 = 64.

175. There can be two cases. First, when 1 vote is casted, and second, when 2 votes are
casted.

Case I: When 1 vote is casted.

We can choose 1 from men or 1 from ladies. Thus, total no. of choices are 𝐶7
1 + 𝐶3

1 =
7 + 3 = 10.

Case II: When 2 votes are casted.

The two votes can be casted by making choices in three different manners. We
can choose 2 men or 2 ladies or 1 man and 1 lady. Thus, total no. of choices are
𝐶7
2 + 𝐶3

2 + 𝐶7
1 × 𝐶3

1 = 21 + 3 + 21 = 45.

Thus, total no. of ways in which votes can be casted are 45 + 10 = 55.

176. No. of ways of choosing boys are 𝐶10
3 = 120. Let us first choose girls in an unrestricted

manner. No. of ways of choosing 3 girls out of 7 are 𝐶7
3 = 35. Now assume that the

two particular girls, who cannot be together are always there in selection. Treating
these two girls as one, and always selecting them gives us 𝐶5

1 = 5 choices.

However, these two girls cannot be in the same group, so total no. of choosing girls are
35 − 5 = 30. And thus, no. of ways of forming the party is 120 × 30 = 3600.

177. Since there are three sets and we have to answer at least two questions from each
set for a total of seven questions, so we will have to choose three questions from one of
the sets.

Thus, total no. of selecting questions is 𝐶4
3 ×𝐶5

2 ×𝐶6
2 +𝐶4

2 ×𝐶5
3 ×𝐶6

2 +𝐶4
2 ×𝐶5

2 ×𝐶6
3 =

600 + 900 + 1200 = 2700.

178. From 5 apples we can choose one of 0, 1, 2, 3, 4, 5 apples i.e. 6 selections. Similarly, for
oranges no. of selections is 5, and for mangoes it is 4.

Thus, total no. of selections are 6 × 5 × 4 = 120. However, one of these selections will
contains 0 fruits. Thus, the answer is 120 − 1 = 119.
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179. No. of ways to select red balls 𝐶4
1 + 𝐶4

2 + 𝐶4
3 + 𝐶4

4 = 4 + 6 + 4 + 1 = 15. No. of ways
to select green balls 𝐶3

0 + 𝐶3
1 + 𝐶3

2 + 𝐶3
3 = 8.

Thus, total no. of selections are 15 × 8 = 120.

180. There are three bills. We can choose one, two or all them to form a sum. Thus, total
no. of sums are 𝐶3

1 + 𝐶3
2 + 𝐶3

3 = 7.

181. The boy can solve 1,2, 3, 4 or 5 questions from the paper. Thus, total no. of ways are
𝐶5
1 + 𝐶5

2 + 𝐶5
3 + 𝐶5

4 + 𝐶5
5 = 5 + 10 + 10 + 5 + 1 = 31.

182. The voter can vote for one seat in 𝐶6
1 ways, for two seats in 𝐶6

2 ways, and for three seats
in 𝐶6

3 ways. Thus, total no. of ways in which the voter can vote are 𝐶6
1 +𝐶6

2 +𝐶6
3 = 41.

183. Let there be 𝑛 candidates out of which 𝑛 − 1 have to be elected. Total no. of ways
in which this can be done are 𝐶𝑛

1 + 𝐶𝑛
2 + ⋯+ 𝐶𝑛

𝑛−1 = 30 ⇒ 2𝑛 = 32 ⇒ 𝑛 = 5(Using
binomial theorem).

184. 12 books are to be distributed equally among 4 person, so each will get 3 books. No. of
ways to select 3 out of 12 are 𝐶12

3 , no. of selections for 3 out of remaining 9 are 𝐶9
3

and so on.

Thus, total no. of ways of distributing the books are 𝐶12
3 × 𝐶9

3 × 𝐶6
3 × 𝐶3

3 =
12!
⁄

(3!)4.

185. no. of ways distributing 𝑛 identical things among 𝑟 people, where any person can
get any no. of things is 𝐶𝑛+𝑟−1

𝑟−1 . Therefore, required no. of ways are 𝐶13
3 .

186. 3 constants can be selected out of 10 consonants in 𝐶10
3 ways. 2 vowels out of 4 can be

selected in 𝐶4
2 ways. Now we have 5 alphabets which be arranged in 5! ways. Thus,

total no. of words formed are 𝐶10
3 × 𝐶4

2 × 5!.

187. We seat 𝑋, 𝑌, 𝑍 on the side facing the window. Now from remaining 4 one has to sit
on this side, which is 𝐶4

1 ways of selection. From remaining 3 all 3 have to sit on the
other side, which is 𝐶3

3 ways of selection. Thus, total no. of selections are 4.

For each selection no. of arrnagements are 4! × 3!. Hence, total no. of ways of seating
are 4! × 3! × 4 = 576.

188. Six men have preferences. Suppose on one side we seat 4 men who wish to sit together
then to fill remaining 4 positions we have to choose from 10 i.e. 𝐶10

4 . Now for the
remaining 6 free seats we have 6 people, which can seated in 1 way. Both sides can be
arranged in 8! ways.

Thus, no. of ways of seating them is 𝐶10
4 .8! .8!.

189. Since two women are to be seated on seats numbered 1 to 4, the no. of arrangements
are 𝑃4

2 = 12. Now, three men are to be seated on 5 remaining chairs; the no. of
arrangements are 𝑃6

3 = 120.

Thus, total no. of arrangements are 12 × 120 = 1440.
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190. Consider 𝐶
2𝑛
𝑟⁄

𝐶2𝑛
𝑟−1

= 2𝑛−𝑟+1
⁄

𝑟 , which has to be greater than 1 if 𝐶2𝑛
𝑟 has to be greatest.

∴ 2𝑛 − 𝑟 + 1 ≥ 𝑟 ⇒ 𝑟 ≤ 𝑛 + 1
⁄

2.

Similarly, considering 𝐶
2𝑛
𝑟⁄

𝐶2𝑛
𝑟+1

, we find that 𝑟 ≥ 𝑛 − 1
⁄

2.

Combining the results 𝑛 − 1
⁄

2 ≤ 𝑟 ≤ 𝑛 + 1
⁄

2, but 𝑟 has to be an integer. Thus, 𝑟 = 𝑛.

191. In a seven digit number there are four odd places. There are two 1’s, and two 3’s,
which can occupy these places. no. of such ways are 4!

⁄

2!2! = 6.

For three even places, we have one 4, and two 2’s. no. of ways in which three even
places can be filled are 3!⁄2! = 3.

Thus, total no. of required no. are 6 × 3 = 18.

192. There are 10 letters, and the words have five of these. no. of words where any letter
can be repeated are 105. no. of letters where none of the letters are repeated are 10𝑃5.

Thus, no. of words where at least one letter is repeated are 105 − 10𝑃5.

193. Ternary no. include 0, 1, 2. First we consider the case when the required seuqence
begins with 210. We have six vacant places, which can be filled in 36 = 729 ways.
Similarly, no. of sequences which end with 210 will be 729.

However, there will be common sequences between these two which start with 210
and end with 210. no. of such sequences will be 33 = 27 (Hint: we will have only three
empty places).

Thus, no. of required numbers are 729 + 729 − 27 = 1431.

194. A seven digit no. will be a no. ranging from 1,000,000 to 9,999,999. If units place is
odd then sum of remaining six digits must be odd or if units place is even then sum of
remaining six digits must be even to satisfy the condition given. Thus, half the no. will
satisfy the given condition.

∴ Required number = 9 × 10 × 10 × 10 × 10 × 10 × 5 = 45 × 105.

195. Treating 10 Indians as one person, we have 1 + 4 + 5 = 10 persons. These can be
seated in 10! ways. However, 10 Indians can be seated among themselves in 10! ways.

Thus, total no. of seating arrangements are 10! 10!.

196. Total no. of letters are 7; of which 2 are ‘A’, and 2 are ‘R’. Total no. of arrangements
when there is no restriction = 7!

⁄

2!2! = 1260.

(a) Treating two ‘R’ as one i.e. we are considering words when both ‘R’s are together.
no. of such words = 6!⁄

2! = 360. Thus, no. of words where ‘R’ are never together
= 1260 − 360 = 900.
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(b) Number of arrangements when two ‘A’s are together is 360 like previous case.
Treating both ‘A’s and ‘R’’s as one i.e. when both are together, no. of words = 5! = 120.

Thus, required no. of words = 360 − 120 = 240.

(c) From (a) and (b) it follows that required number = 900 − 240 = 660.

197. no. of ways of dividing 𝑚+ 𝑛 persons into two groups such that one has 𝑚 persons,
and the other has 𝑛 persons is 𝐶𝑚+1

𝑚 .𝐶𝑛
𝑛 = (𝑚+𝑛)!
⁄

𝑚!𝑛! .

Now, 𝑚 persons can be seated around a round table in (𝑚− 1)! ways; similarly 𝑛
persons can be seated in (𝑛 − 1)! ways.

Thus, total no. of ways is (𝑚+𝑛)!(𝑚−1)!(𝑛−1)!
⁄

𝑚!𝑛! = (𝑚+𝑛)!
⁄

𝑚𝑛 .

198. The signal can be made by using any no. of flags. Thus, required no. of signals is
𝑃5
1 + 𝑃5

2 + 𝑃5
3 + 𝑃5

4 + 𝑃5
5 = 325.

199. There are 5 letters in the word ‘Ought’, which are all different. The alphabetical order
of letters are G, H, O,T, U.

no. of words beginning with G, H, O are 4! × 3 = 24 × 3 = 72. no. of words beginning
with TG are 3! = 6, and same for 𝑇𝐻. no. of words beginning with TOG and TOH
are 2! = 2. TOUGH is the first word beginning with 𝑇𝑂𝑈 . Thus, rank of the word
‘TOUGH’ in the dictionary will be 24 × 3 + 6 × 2 + 2 × 2 + 1 = 89.

200. Let the city be represented by a rectangle, whose sides are of length 𝑎 and 𝑏 North-South
and East-West respectively.

𝑃

𝑄

𝑊 𝐸

𝑁

𝑆

Man has to go from 𝑃 to 𝑄. For this he has to travel 𝑎
vertically downward and 𝑏 horizontally Eastward. There
are 𝑚− 1 horizontal segments and 𝑛 − 1 vertical segments.
Thus, from 𝑃 to 𝑄 there are 𝑚+ 𝑛− 2 segments total. We
have to choose 𝑚− 1, and 𝑛 − 1 segments from these. This
can be done in (𝑚+𝑛−2)!

⁄

(𝑚−1)!(𝑛−1)! ways.

201. Let the 𝑛 letters be denoted by 1, 2, 3, … , 𝑛. Let 𝐴𝑖 denote the set of distribution of
letters in envelopes so that only 𝑖th letter is put in the corresponding envelope. Then
𝑛(𝐴𝑖) = (𝑛 − 1)!, because rest 𝑛 − 1 letters can be put in 𝑛 − 1 envelopes in (𝑛 − 1)!
ways.

Similarly, 𝑛(𝐴𝑖 ∩ 𝐴𝑗) i.e. putting two letters in correct envelopes is (𝑛 − 2)!. Required
number = 𝑛(𝐴′1 ∩ 𝐴′2 ∩ 𝐴′3 ∩ … ∩ 𝐴′𝑛) = 𝑛(𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ … ∪ 𝐴𝑛)′ = 𝑛! − 𝑛(𝐴1 ∪
𝐴2 ∪ 𝐴3 ∪ … ∪ 𝐴𝑛)′

= 𝑛! − [∑𝑛(𝐴𝑖)−∑𝑛(𝐴𝑖 ∩𝐴𝑗)+∑𝑛(𝐴𝑖 ∩𝐴𝑗 ∩𝐴𝑘)−⋯+ (−1)𝑛𝑛(𝐴1∩𝐴2 ∩…∩
𝐴𝑛)]
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= 𝑛! − [𝐶𝑛
1 (𝑛 − 1)! − 𝐶𝑛

2 (𝑛 − 2)! ⋯] = 𝑛![ 1⁄2! − 1⁄
3! +

1⁄
4! + ⋯].

202. Number of non-congruent squares is 8 as they are of size 1 × 1, 2 × 2, 3 × 3, … , 8 × 8.
Number of non-congruent rectanges, which are not squares = 𝐶8

2 = 28.

Thus, required number = 28 + 8 = 36.

203. Let the three numbers selected from are 𝑎, 𝑏, 𝑐, which have to be in A.P. i.e. 𝑎+ 𝑐 = 2𝑏.
This implies that both 𝑎, 𝑐 are either even or odd as sum has to be even.

Case I: When 𝑛 is even.

Let 𝑛 = 2𝑚, then no. of odd and even numbers are same i.e. 𝑚. Thus, no. of ways
in which 𝑎 and 𝑐 can be selected is 2 × 𝐶𝑚

2 = 𝑚(𝑚− 1) = 1
⁄

4 𝑛(𝑛 − 2).

Case II: When 𝑛 is odd.

Let 𝑛 = 2𝑚 + 1, then no. of odd numbers is 𝑚+ 1, and no. of even numbers is 𝑚.
Thus, 𝑎 and 𝑐 can be selected in 𝐶𝑚+1

2 + 𝐶𝑚
2 = 1
⁄

4 (𝑛 − 1)2 ways.

204. Since there are two packs of 52 cards, therefore, number of cards from same suit and
denomination is 2 for each card.

no. of ways of selecting 26 cards out of 52 cards = 𝐶52
26, however, each card can be

selected in 2 ways. ∴ Required numbers = 𝐶52
26 .2

26.

205. For 𝑛 sides there will be 𝑛 vertices. Selection of any 3 vertices will give us a triangle. no.
of ways of selecting 3 vertices out of 𝑛 vertices i.e. no. of triangles = 𝐶𝑛

3 = 𝑛(𝑛−1)(𝑛−2)⁄
6 .

206. (a) If the 𝑛 objects are 𝑜1, 𝑜2, 𝑜3, … , 𝑜𝑛, then possible solutions will be
𝑜1𝑜2𝑜3, 𝑜2𝑜3𝑜4, 𝑜3𝑜4𝑜5, … , 𝑜𝑛−2𝑜𝑛−1𝑜𝑛.

∴ Required number = 𝑛 − 2.

(b) no. of ways to select 3 objetcs out of 𝑛 objects without restriction = 𝐶𝑛
3 . Thus,

following from (a) required number 𝐶𝑛
3 − 𝑛 + 2 = (𝑛−3)(𝑛2−4)
⁄

6 .

207. Let 𝑎 be the no. of stations before stop 1, 𝑏 be the no. of stations before stop 2, 𝑐 be
the no. of stations before stop 3, 𝑑 be the no. of stations before stop 4, and 𝑒 be the no.
of stations after stop 4. Then, 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 = 8, where 𝑎 ≥ 0, 𝑏, 𝑐, 𝑑 ≥ 1, 𝑒 ≥ 0.

Let 𝑥 = 𝑎, 𝑦 = 𝑏 − 1, 𝑧 = 𝑐 − 1, 𝑡 = 𝑑 − 1, 𝑤 = 𝑒, then 𝑥 + 𝑦 + 𝑧 + 𝑡 + 𝑤 = 5.

∴ Required no. = Number of non-negative integral solutions of the above equation
= 𝐶𝑛+𝑟−1

𝑟 = 𝐶9
5 = 126.

208. no. of straight lines formed by given 𝑚 points = 𝐶𝑚
2 = 𝑛 (let). Total no. of points

of intersections of these lines = 𝐶𝑛
2 under given conditions.

Consider a point 𝐴1. No. of lines passing through 𝐴1 = 𝑚 − 1. No. of pair of lines
intersecting at 𝐴1 = 𝐶𝑚−1

2 . Similarly, this will be the case for other points.
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Hence, required no. of points of intersections = 𝐶𝑛
2 −𝑚.𝐶𝑚−1

2 = 𝑚!
⁄

8(𝑚−4)!.

209. The word BAC cannot be spelled if the 𝑚 selected coupons do not contain at least one
of A, B or C.

no. of ways of selecting m coupon which are 𝐴 or 𝐵 = 2𝑚. This also includes when
all 𝑚 coupons are all A or all B. Similarly for B or C and for A and C. no. of ways of
selecting 𝑚 coupons where all are 𝐴 = 1. Similarly for B and C.

Thus, required no. = 2𝑚+ 2𝑚+ 2𝑚− 1 − 1 − 1 = 3(2𝑚 − 1).

210. The staight cards can be 1 − 5, 2 − 6, 3 − 7, … , 6 − 10, 7 − 𝐽, 8 − 𝑄, 9 − 𝐾, 10 − 𝐴.
Thus, we see there are 10 such straight hands. One card of any denomination can
be picked from any of the suits in 4 ways. Thus, 5 cards of five different denominations
can be selected from 4 suits in 45 ways.

Thus, number of ways of making selections = 10 × 45 = 10,240.

If all cards are not from same suit then no. of ways of making selections = 10 × 45 −
10 × 4 = 10,200 because there aree 4 suits.

211. Let 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛. Consider element 𝑎1. Either it is in 𝑃1 or it is not. So total no.
of ways for 𝑎1 and 𝑃1 = 2. No. of ways in which 𝑎1 is in 𝑃1 = 1, and same for not
belonging i.e. in 1 way.

Total no. of ways for 𝑎1, and 𝑚 subsets = 2𝑚. No. of ways in which 𝑎1 belongs to 𝑚
subsets = 1𝑚 = 1. No. of ways in which 𝑎1 belongs to none of the subsets = 1𝑚 = 1.

Thus, total no. of ways in which 𝑎1 ∉ (𝑃1 ∩ 𝑃2 ∩ … ∩ 𝑃𝑚) = 2𝑚− 1, 𝑎1 ∉ (𝑃1 ∪ 𝑃2 ∪
… ∪ 𝑃𝑚) = 1𝑚, and 𝑎1 ∈ (𝑃1 ∪ 𝑃2 ∪ … ∪ 𝑃𝑚) = 2𝑚− 1.

i. Here exactly 𝑟 elements of 𝐴 belongs to 𝑃1 ∪ 𝑃2 ∪… ∪ 𝑃𝑚, and 𝑛 − 𝑟 elements do
not belong to 𝑃1 ∪ 𝑃2 ∪ … ∪ 𝑃𝑚.

∴ Required number = 𝐶𝑛
𝑟 (2𝑚 − 1)𝑟(1)𝑛−𝑟 = 𝐶𝑛

𝑟 (2𝑚 − 1)𝑟.

ii. Here exactly 𝑟 elements of 𝐴 belongs to 𝑃1 ∩ 𝑃2 ∩… ∩ 𝑃𝑚, and 𝑛 − 𝑟 elements do
not belong to 𝑃1 ∩ 𝑃2 ∩ … ∩ 𝑃𝑚.

∴ Required number = 𝐶𝑛
𝑟 (2𝑚 − 1)𝑛−𝑟(1)𝑟 = 𝐶𝑛

𝑟 (2𝑚 − 1)𝑛−𝑟.

iii. Let 𝑃𝑚+1 = 𝐴−(𝑃1∪𝑃2∪…∪𝑃𝑚). Since 𝑃𝑖∩𝑃𝑖 = 𝜙,𝑖 ≠ 𝑗, where 𝑖, 𝑗 = 1,2,… ,𝑚.

Each element of 𝐴 should belong to exactly one of the (𝑚 + 1) subsets
𝑃1, 𝑃2, … , 𝑃𝑚, 𝑃𝑚+1. For one element there are 𝑚+ 1 ways so for 𝑛 elements
there are (𝑚+ 1)𝑛 ways.

212. Given that number of boxes is 2𝑚, and number of identical balls is 𝑚. Number of
ways to select 𝑚 boxes out of 2𝑚 is 𝐶2𝑚

𝑚 . Because 𝑚 balls are identical they can be
arranged in 𝑚!⁄

𝑚! = 1 way.
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∴ Required number = 𝐶2𝑚
𝑚 = 2𝑚!
⁄

𝑚!𝑚!.

We will make use of mathematical induction to show that 4𝑚⁄
2√


𝑚 ≤ 2𝑚!
⁄

𝑚!𝑚! ≤
4𝑚⁄

√

2𝑚+1.

Let 𝑃 (𝑚) : 4𝑚⁄
2√


𝑚 ≤ 2𝑚!⁄

(𝑚!)2.

When 𝑚 = 1, L.H.S. = 2, and R.H.S. = 2. The equality holds, and hence, 𝑃 (1) is true.

Let 𝑃 (𝑘) be true ⇒ 4𝑘
⁄

2√


𝑘 ≤
2𝑘!
⁄

(𝑘!)2.

We have to prove that 𝑃 (𝑘 + 1) is true i.e. 4𝑘+1⁄
2√


𝑘+1 ≤
2(𝑘+1)!
⁄

[(𝑘+1)!]2 = 𝛼 (say).

Multiplying both sides of 𝑃 (𝑘) with (2𝑘+1)(2𝑘+2)⁄

(𝑘+1)2 = 2(2𝑘+1)⁄
𝑘+1 , we have

(2𝑘+2)!
⁄

[(𝑘+1)!]2 ≥
2(2𝑘+1)4𝑘
⁄

2√


𝑘(𝑘+1) =
(2𝑘+1)4𝑘
⁄

√


𝑘(𝑘+1) = 𝛽 (say).

Now 𝛽⁄𝛼 = (2𝑘+1)4𝑘
⁄

√


𝑘(𝑘+1) .
2√


𝑘+1⁄
4𝑘+1 = 2𝑘+1
⁄

2√


𝑘(𝑘+1) =
2𝑘+1
⁄

√


4𝑘2+4𝑘
= √


4𝑘2+4𝑘+1
⁄

√


4𝑘2+4𝑘
> 1 ⇒ 𝛽 > 𝛼.

Hence, 𝑃 (𝑘 + 1) is true whenever 𝑃 (𝑘) is true. Thus, 𝑃 (𝑚) si true for all natural
numbers 𝑚.

Let 𝑄(𝑚) : 2𝑚!⁄
(𝑚!)2 ≤

4𝑚⁄
√

2𝑚+1

When 𝑚 = 1, L.H.S. = 2, and R.H.S. = 4⁄
√


3, so L.H.S. < R.H.S. making 𝑄(1) true.

Let 𝑄(𝑘) be true i.e. 2𝑘!⁄
(𝑚!)2 ≤

4𝑘⁄
√

2𝑘+1

We have to prove that 𝑄(𝑘 + 1) i.e. (2𝑘+2)!⁄[(𝑘+1)!]2 ≤
4𝑘+1⁄
√

2𝑘+3 = 𝑥 (let).

Multiplying 𝑄(𝑘) with (2𝑘+1)(2𝑘+2)⁄

(𝑟𝑘+1)2 , we have (2𝑘+2)!
⁄

[(𝑘+1)!]2 ≤ 4𝑘+1⁄
√

2𝑘+1 .

(2𝑘+1)(2𝑘+2)
⁄

(𝑘+1)2 =
4𝑘.2√

2𝑘+1
⁄

𝑘+1 = 𝑦 (say).

∴ 𝑦⁄𝑥 =
4𝑘.2√

2𝑘+1
⁄

𝑘+1 .√

2𝑘+3⁄
4𝑘+1 = √


4𝑘2+8𝑘+3
⁄

4𝑘2+8𝑘+4 ⇒ 𝑦 < 𝑥.

Thus, 𝑄(𝑘 + 1) is true, and hence 𝑄(𝑚) is true for all 𝑚.

Hence, we have our proof using induction.

213. To form a parallelogram we need to select 2 lines from one set, and 2 from the other
set. Thus, no. of parallelograms formed is 𝐶𝑚

2 × 𝐶𝑛
2 = 1
⁄

4𝑚𝑛(𝑚− 1)(𝑛 − 1).

214.

Number of ladies Number of men Number of committees
1 4 𝐶4

1𝐶6
4 = 60
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2 3 (𝐶4
2 − 𝐶2

0 ) .𝐶6
3 = 100

3 1 (𝐶4
3 − 𝐶2

1 ) .𝐶6
2 = 30

4 1 Not possible

215. Case I: 3 men from husband’s side, and 3 ladies from wife’s side. no. of ways to do
this is 𝐶4

0 × 𝐶3
3 × 𝐶3

3 × 𝐶4
0 = 1

Case II: 2 men, and 1 lady from husband’s side, and 1 man and 2 ladies from wife’s
side. no. of ways to do this is 𝐶4

1 × 𝐶3
2 × 𝐶3

2 × 𝐶4
1 = 144

Case III: 1 man, and 2 ladies from husband’s side, and 2 men and 1 lady from wife’s
side. no. of ways to do this is 𝐶4

2 × 𝐶3
1 × 𝐶3

1 × 𝐶4
2 = 324

Case IV: 3 ladies from husband’s side, and 3 men from wife’s side. no. of ways to do
this is 𝐶4

3 × 𝐶3
0 × 𝐶3

0 × 𝐶4
3 = 16

∴ Required number = 1 + 144 + 324 + 16 = 485.

216. For an intersection we need two lines such that they have one point on each of
the given lines. Thus, total no. of ways to select these four points is 𝐶𝑚

2 × 𝐶𝑛
2 =

1
⁄

4𝑚𝑛(𝑚− 1)(𝑛 − 1).

217. Let 𝑦 be the no. of children born after John and Mary marry. Then 𝑥 + 𝑥 + 1 + 𝑦 =
24 ⇒ 2𝑥 + 𝑦 = 23.

Let 𝑧 be the no. of fights, then 𝑧 = 𝐶𝑥
1 .𝐶

𝑦
1 + 𝐶𝑥

1 .𝐶
𝑥+1
1 + 𝐶𝑦

1 .𝐶
𝑥+1
1 ⇒ 𝑧 = 𝑥𝑦 +

𝑥(𝑥 + 1)+ 𝑦(𝑥 + 1) = 𝑥(23 − 2𝑥)+ 𝑥2 + 𝑥 + (23 − 2𝑥)(𝑥 + 1) = −3𝑥2 + 45𝑥 + 23

⇒ 3𝑥2 − 45𝑥 + 𝑧 − 23 = 0, now, because 𝑥 is read 𝐷 ≥ 0 ⇒ 452 − 12(𝑧 − 23) ≥ 0 ⇒
𝑧 ≤ 2301⁄

12 = 191.75.

So, greatest value of 𝑧 is 191.

218. Doing prime factorization, we have 2520 = 23 × 32 × 5 × 7. Each term of the product
(1 + 2 + 22 + 23)(1 + 3 + 32)(1 + 5)(1 + 7) is a divisor of 2520. Total no. of
divisors is equal to total no. of terms in the product = 48. Sum of divisors =
(1 + 2 + 22 + 23)(1 + 3 + 32)(1 + 5)(1 + 7) = 9360.

219. There can be two sets of three positive integers whose sum is 5. These sets would be
{1, 1, 3} and {1, 2, 2}. Elements of both the set can be arranged in 3!⁄2! i.e. 3 ways.

∴ Required no. = 3 × 𝐶5
3 × 𝐶2

1 × 𝐶1
1 + 3 × 𝐶5

2 × 𝐶3
2 × 𝐶1

1 = 150.

220. Let 𝑚 = (𝑛 − 1)!, then 𝑛! = 𝑚𝑛. Now (𝑛!)!
⁄

(𝑛!)(𝑛−1)! =
(𝑚𝑛)!
⁄

(𝑛!)𝑚, which is no. of ways of
distributing 𝑚𝑛 things among 𝑚 persons each having 𝑛 things.

221. (𝑎𝑏)!⁄
𝑎!(𝑏!)𝑎 is no. of ways of distributing 𝑎𝑏 different things in 𝑎 sets each having 𝑏 things,
which is an integer.
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222. Number of ways of distributing 𝑛 identical objects in 𝑟 groups, where each group can
contain any number of objects, and the ordering matters = 𝑃𝑛+𝑟−1

𝑟 = 𝑃206
6 .

223. Method I: Since each person has to get at least 3 things, if 3 persons get 3 things 4th
can get at most 7 things. Thus,

Required numbers = coeff. of 𝑥16 in (𝑥3 + 𝑥4 + ⋯ + 𝑥7)4 = coeff. of 𝑐16 in 𝑥12(1 +

𝑥 + ⋯+ 𝑥4)4 = coeff. of 𝑥4 in (1−𝑥
5
⁄

1−𝑥 )
4
= 𝐶7

4 = 35.

Method II: Let the four persons be give 𝑎, 𝑏, 𝑐, 𝑑 no. of things. Then, 𝑎+𝑏+𝑐+𝑑 = 16,
where 𝑎, 𝑏, 𝑐, 𝑑 ≥ 3, then 𝑤+𝑥+ 𝑦 + 𝑧 = 4, 𝑤, 𝑥, 𝑦, 𝑧 ≥ 0, and 𝑤 = 𝑎− 3, 𝑥 = 𝑏 − 3, 𝑦 =
𝑐 − 3, 𝑧 = 𝑑 − 3.

Required no. is solution of any of the above equations, which is number of ways of
distributing 4 identical things among 4 persons, where each person can get any no. of
things = 𝐶𝑛+𝑟−1

𝑟 = 𝐶7
4 = 35.

Method III: Sets of four posiitve integers each greater than or equal to 3 whose sum
is 16 are {7, 3, 3, 3}, {6, 4, ,3, 3}, {5, 5, 3, 3}, {5, 4, 4, 3}, {4, 4, 4, 4}.

Elements of first set can be arranged in 4!⁄3! = 4 ways. Elements of second set can be

arranged in 4!⁄2! = 12 ways. Elements of third set can be arranged in 4!
⁄

2!2! = 6 ways.

Elements of fourth set can be arranged in 4!⁄2! = 12 ways. Elements of fifth set can be

arranged in 4!⁄4! = 1 way.

Required no. = 4 + 12 + 6 + 12 + 1 = 35.

224. Let no. of red, white, blue, and green balls be 𝑤, 𝑥, 𝑦 and 𝑧 respectively. From question,
𝑤 + 𝑥 + 𝑦 + 𝑧 = 10, where 𝑤, 𝑥, 𝑦, 𝑧 ≥ 0.

This is no. of ways of distributing 10 identical things among four persons where each
can get any no. of things = 𝐶𝑛+𝑟−1

𝑟 = 𝐶1
103 = 286.

When the selections contain balls of each color the equation remains same, but
𝑤, 𝑥, 𝑦, 𝑧 ≥ 1. So 𝑎 + 𝑏 + 𝑐 + 𝑑 = 6, where, 𝑎 = 𝑤 − 1, 𝑏 = 𝑥 − 1 and so on.

In this case, the method is same but 𝑛 = 4, 𝑟 = 6, so the answer is 𝐶9
6 = 84.

225. Let the questions contain 𝑥1,𝑥2,… ,𝑥8 marks, then, from question 𝑥1+𝑥2+⋯+𝑥8 = 30,
where 𝑥 − 1, 𝑥2, … , 𝑥8 ≥ 2.

⇒ 𝑦1 + 𝑦2 + ⋯+ 𝑦8 = 14, where 𝑦1 = 𝑥1 − 2, and so on.

Required number is no. of solutions of above equations = 𝐶𝑛+𝑟−1
8 = 𝐶21

14 = 116,280.

226. Total marks is 3 × 50 + 100 = 250, and the student must score 60% i.e. 150 marks.

Required number = coeff. of 𝑥150 in (1 + 𝑥 + ⋯+ 𝑥50)3(1 + 𝑥 + ⋯+ 𝑥100) = coeff.

of 𝑥150 in (1−𝑥
15⁄

1−𝑥 )
3 1−𝑥101
⁄

1−𝑥 = coeff. of 𝑥150 in (1 − 𝑥51)3(1 − 𝑥101)(1 − 𝑥)−4 = coeff.
of 𝑥150 in (1 − 3𝑥51 + 3𝑥102 − 𝑥101)(1 − 𝑥)−4 (leaving powers greater than 160)
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= coeff.of 𝑥150 in (1−𝑥)−4−3.coeff. of 𝑥99 in (1−𝑥)−4+3.coeff. of 𝑥48 in (1−𝑥)−4−
coeff. of 𝑥49 in (1 − 𝑥)−4

= 𝐶153
150 − 3.𝐶102

90 + 3.𝐶51
48 − 𝐶52

49 = 110,556.

227. Given, 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑘 = 𝑛. Let 𝑦1 = 𝑥1 − 1, 𝑦2 = 𝑥2 − 2, … , 𝑦𝑘 = 𝑥𝑘 − 𝑘, then
𝑦1 + 𝑦2 + ⋯+ 𝑦𝑘 = 𝑛 − (1 + 2 + ⋯+ 𝑘) = 𝑛 − 𝑘(𝑘+1)⁄

2 = 𝑚.

Then no. of solutions = 𝐶𝑚+𝑘−1
𝑚 =

(𝑛+𝑘−𝑘(𝑘+1)
⁄

2 −1)!
⁄

(𝑛−𝑘(𝑘+1)
⁄

2 )!(𝑘−1)!
.

228. Given 𝑥 + 𝑦 + 𝑧 + 𝑤 = 29, where 𝑥 ≥ 1, 𝑦 ≥ 2, ≥ 3, 𝑤 ≥ 0. Putting 𝑝 = 𝑥 − 1, 𝑞 =
𝑦 − 2, 𝑟 = 𝑧 − 3,

𝑝 + 𝑞 + 𝑟 + 𝑤 = 23, where 𝑝, 𝑞, , 𝑟, 𝑤 ≥ 0.

Following like previous problems, required no. = 𝐶26
23 = 2,600.

229. Required number = coeff. of 𝑥20 in (1 − 𝑥)−3(1 − 𝑥4)−1 = coeff. of 𝑥20 in (1 +𝐶3
1𝑥 +

𝐶4
2𝑥2 + 𝐶5

3𝑥
3 + ⋯+ 𝐶22

20𝑥20 + ⋯)(1 + 𝑥4 + 𝑥8 + 𝑥12 + 𝑥16 + 𝑥20 + ⋯)

= 1 + 𝐶6
4 + 𝐶10

8 + 𝐶14
12 + 𝐶18

16 + 𝐶22
20 = 536.

230. From given equations we have 𝑣 + 𝑤 = 15, and 𝑥 + 𝑦 + 𝑧 = 3.

Number of non-negative integral solution of these equations combined is = 𝐶7
5 .𝐶

16
15 =

336.

231. Given inequality is 3𝑥 + 𝑦 + 𝑧 ≥ 30. Let 𝑤 is a non-negative integer such that
3𝑥 + 𝑦 + 𝑧 + 𝑤 = 30, where 𝑥, 𝑦, 𝑧, 𝑤 ≥ 1.

Let 𝑎 = 𝑥− 1, 𝑏 = 𝑦 − 1, 𝑐 = 𝑧 − 1, 𝑑 = 𝑤, then 3𝑎+ 𝑏 + 𝑐 + 𝑑 = 25, where 𝑎, 𝑏, 𝑐, 𝑑 ≥ 0.

Clearly, 0 ≤ 𝑎 ≤ 8. If 𝑎 = 𝑘, then 𝑏 + 𝑐 + 𝑑 = 25 − 3𝑘.

no. of non-negative solutions of this equation is 𝐶27−3𝑘
25−3𝑘 = 𝐶27−3𝑘

2 = 3
⁄

2 (3𝑘
2−53𝑘+234)

∴ Required numbers = 3
⁄

2∑
𝑘
𝑘=0(3𝑘

2 − 53𝑘 + 234) = 1215.

232. Given 𝑎+𝑏+𝑐+𝑑 = 20, where 𝑎, 𝑏, 𝑐, 𝑑 ≥ 1. Let us assume that 𝑎 < 𝑏 < 𝑐 < 𝑑. Also let,
𝑥 = 𝑎, 𝑦 = 𝑏−𝑎, 𝑧 = 𝑐 − 𝑏, 𝑤 = 𝑑− 𝑐 ∴ 𝑎 = 𝑥, 𝑏 = 𝑦 +𝑥, 𝑐 = 𝑥+ 𝑦+ 𝑧, 𝑑 = 𝑥+𝑦+ 𝑧 +𝑤

∴ 4𝑥+3𝑦+2𝑧 +𝑤 = 20. ∴ Sum of minimum values of 4𝑥, 3𝑦, 2𝑧 and 𝑤 = 4+3+2+1 =
10.

Required number = number of positive unequal integral solutions of above equation

= coeff. of 𝑥10 in (1 − 𝑥4)−1(1 − 𝑥3)−1(1 − 𝑥2)−1(1 − 𝑥)−1 = coeff. of 𝑥10 in
[(1+𝑥4+𝑥8)(1+𝑥3+𝑥6+𝑥9)(1+𝑥2+𝑥4+⋯+𝑥10)(1+𝑥+𝑥2+⋯+𝑥10)](leaving
terms greater than 𝑥10)
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= coeff. of 𝑥10 in [(1 + 𝑥3 + 𝑥4 + 𝑥6 + 𝑥7 + 𝑥8 + 𝑥9 + 𝑥10)(1 + 𝑥+ 2𝑥2 + 2𝑥3 + 3𝑥4 +
3𝑥5 + 4𝑥6 + 4𝑥7 + 5𝑥8 + 4𝑥9 + 6𝑥10)] = 23

But 𝑎, 𝑏, 𝑐, 𝑑 can be arranged in 4! ways among themselves. Thus, total no. of unique
solutions is 23 × 4! = 552.

233. Any no. between 1 and 1,000,000 must be of less than seven digits. Thus, 𝑎1 + 𝑎2 +
𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 = 18, where 𝑎1, 𝑎2, … , 𝑎5 ∈ 0, 1, 2, … , 9, and the number is of the
form 𝑎1𝑎2𝑎3𝑎4𝑎5𝑎6.

∴ Required number = coefficient of 𝑥18 in (1 + 𝑥 + 𝑥2 + ⋯+ 𝑥9)6 = coeff. of 𝑥18 in

(1−𝑥
10⁄

1−𝑥 )
6

= coeff. of 𝑥18 in (1 − 𝑥10)6(1 − 𝑥)−6 = coeff. of 𝑥18 in (1 − 6𝑥10)(1 − 𝑥)−6(leaving
out powers greater than 𝑥18)

= 𝐶6+18−1
18 − 6.𝐶6+8−1

8 = 25,927.

234. Required number = coefficient of 𝑥𝑛 in (1 + 𝑥+ 𝑥2 +⋯+ 𝑥𝑛)2(1 + 𝑥)𝑛 = coeff. of 𝑥𝑛

in (1−𝑥
𝑛+1
⁄

1−𝑥 )
2
(1 + 𝑥)𝑛 = coeff. of 𝑥𝑛 in (1 − 2𝑥𝑛+1 + 𝑥2𝑛+2)(1 − 𝑥)−2(1 + 𝑥)𝑛 =

coeff. of 𝑥𝑛 in (1 − 𝑥)−2(1 + 𝑥)𝑛(leaving powers greater than 𝑛)

= coeff. of 𝑥𝑛 in (1 − 𝑥)−2 2 − (1 − 𝑥)𝑛 = coeff. of 𝑥𝑛 in (1 − 𝑥)−2[2𝑛 −𝐶𝑛
1 2

𝑛−1(1 −
𝑥) + 𝐶𝑛

2 2
𝑛−2(1 − 𝑥)2 − ⋯ + (−1)𝑛𝐶𝑛

𝑛(1 − 𝑥)𝑛 ] = coeff. of 𝑥𝑛 in [2𝑛(1 − 𝑥)−2 −
𝐶𝑛
1 2

𝑛−1(1 − 𝑥)−1 ](other terms will not contain 𝑥𝑛)

= 2𝑛.𝐶2+𝑛−1
𝑛 − 𝐶𝑛

1 .2
𝑛−1𝐶1+𝑛−1

𝑛 = 2𝑛−1(2𝑛 + 2).

235. no. of ways in which one crew out of 3 can be arranged on the steering is 𝑃3
1 .

Since 2 particular sailors are always to remain on bow side, therefore, 2 more sailors for
bow side can be selected out of remaining 6 sailors in 𝐶6

2, and 4 sailors for stroke side
can be selected out of remaining 4 in 𝐶4

4 ways.

Now 4 sailors on bow side can be arranged among themselves in 4! ways. Again 4
sailors on stroke side can be arranged among themselves in 4! ways.

∴ Required no. = 𝑃3
1 .𝐶

6
2 .4! 4! = 25,920.

236. Total no. of letters is 11. E and N occurs thrice, D occurs twice, and rest occur once.

Case I: When three letters are identical, and remaining two are identical. We can
select three E’s and two N’s or three E’s and two D’s or three N’s and two E’s or three
N’s and two D’s. Thus, there are total 4 ways.

Case II: When three letters are identical, and remaining two are different. Letters
selected can be three E’s and two out of I, N, D, P, T or three N’s and two out of I, E,
D, P, T.

no. of ways to select is 1 × 𝐶5
2 + 1 × 𝐶5

2 = 20.
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Case III: When a two letters are identical, and there are two such letters, and the
fifth letter is different. Letter selected can be two E’s, two N’s, and one out of I, D, P,
T or two E’s, two D’s, and one out of I, N, P, T or two N’s, two D’s, and one out of I,
E, P, T.

no. of ways to make these selections is 3 × 𝐶4
1 = 12.

Case IV: When two letters are same, and remaining three are different. Letters
selected can be two E’s and three out of I, N, P, D, T or two N’s and three out of I, E,
P, D, T or two D’s and three out of I, E, P, N, T.

no. of ways to make these selections is 3 × 𝐶5
3 = 30.

Case V: When all five letters are different. no. of ways to make these selections is
𝐶6
5 = 6.

Adding all these we get 72 as the answer.

Second Method: Previous method is direct, however, for bigger and more complex
problems it becomes tedious.

Required number = coeff. of 𝑥5 in (1 + 𝑥 + 𝑥2 + 𝑥3)2(1 + 𝑥 + 𝑥2)(1 + 𝑥)3 = coeff.
of 𝑥5 in (1 + 𝑥2 + 𝑥4 + 𝑥6 + 2𝑥 + 2𝑥3 + 2𝑥3 + 2𝑥4 + 2𝑥5)(1 + 𝑥 + 𝑥2)(1 + 𝑥)3

= coeff. of 𝑥5 in (1 + 2𝑥 + 3𝑥2 + 4𝑥3 + 3𝑥4 + 2𝑥5)(1 + 𝑥 + 𝑥2)(1 + 3𝑥 + 3𝑥2 + 𝑥3) =
coeff. of 𝑥5 in (1 + 2𝑥 + 3𝑥2 + 4𝑥3 + 3𝑥4 + 2𝑥5)(1 + 4𝑥 + 7𝑥2 + 7𝑥3 + 4𝑥4 + 𝑥5) =
1 + 8 + 21 + 28 + 12 + 2 = 72.

237. Here a occurs twice, l thrice, and p, r, e once.

no. of combinations = coeff. of 𝑥4 in (1 + 𝑥 + 𝑥2 + 𝑥3)(1 + 𝑥 + 𝑥2)(1 + 𝑥)3 = coeff.
of 𝑥4 in (1 − 𝑥)−5(1 − 𝑥2)3(1 − 𝑥3)(1 − 𝑥4) = 22

no. of permutations = coeff. of 𝑥4 in 4!(1 + 𝑥 + 𝑥2
⁄

2! +
𝑥3
⁄

3!)(1 + 𝑥 + 𝑥2
⁄

2!)(1 + 𝑥)3

= 286.

238. L.H.S. =
𝑛
∑
𝑛=1

(𝑛2 + 1)𝑛! = (12 + 1) .1! + (22 + 1) .2! + ⋯ + (𝑛2 + 1) .𝑛!

We can expand this as follows:

(12 + 1) .1! = 2!

(22 + 1) .2! = 3.3! − 2.2.2!

(32 + 1) .3! = 4.4! − 2.3.3!

(42 + 1) .4! = 5.5! − 2.4.4!

…

[(𝑛 − 1)2 + 1] .(𝑛 − 1)! = 𝑛.𝑛! − 2.(𝑛 − 1) .(𝑛 − 1)!
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(𝑛2 + 1) .𝑛! = (𝑛 + 1) .(𝑛 + 1)! − 2.𝑛.𝑛!

Adding first two yields 3.3!−3.2! = 2.3!, adding this to third, we get 4.4!−2.2.3! = 3.4!,
and so on. Thus, sum would be 𝑛.(𝑛 + 1)!, which is easily verified.

239. Given, 𝑃𝑛+4
4⁄

(𝑛+2)! −
143⁄
4.𝑛! < 0 ⇒ (𝑛+4)!⁄

𝑛!(𝑛+2)! −
143⁄
4.𝑛! < 0

⇒ (𝑛 + 4)(𝑛 + 3)− 143
⁄

4 < 0 ⇒ 4𝑛2 + 28𝑛 − 95 < 0, which is only true for 𝑛 = 1, 2.

240. Given, 195⁄
4.𝑛! −

(𝑛+3)(𝑛+2)(𝑛+1)⁄
(𝑛+1)! > 0 ⇒ 195
⁄

4 − (𝑛 + 3)(𝑛 + 2) .0

⇒ 171 − 4𝑛2 − 20𝑛 > 0 ⇒ 4𝑛2 + 20𝑛 − 171 < 0

Roots of corresponding quadratic equations are −20±√


400+2736
⁄

8 , which gives us 𝑛 =
1, 2, 3, 4 as integral values for 𝑛 to satisfy the inequality.

241. Given, 𝑛−2𝑃4 :𝑛+2 𝐶8 = 16 : 57 ⇒ (𝑛−2)!⁄
(𝑛−6)! .

8!(𝑛−6)!⁄
(𝑛+2)! = 16
⁄

57

⇒ 8!
⁄

(𝑛+2)(𝑛+1)𝑛(𝑛−1) =
16
⁄

57. Solving this gives us 𝑛 = 19.

242. Given, 𝑃𝑛
𝑟 = 𝑃𝑛

𝑟+1 ⇒
𝑛!⁄

(𝑛−𝑟)! =
𝑛!
⁄

(𝑛−𝑟−1)! ⇒ 𝑛 − 𝑟 = 1,

and 𝐶𝑛
𝑟 = 𝐶𝑛

𝑟−1 ⇒
𝑛!
⁄

𝑟!(𝑛−𝑟)! =
𝑛!
⁄

(𝑟−1)!(𝑛−𝑟+1)!

⇒ 1
⁄

𝑟 =
1⁄

𝑛−𝑟+1 ⇒ 𝑛 − 2𝑟 + 1 = 0. Solving these two equations, we have 𝑛 = 3, 𝑟 = 2.

243. Given, 𝑃𝑛
𝑟−1 : 𝑃

𝑛
𝑟 : 𝑃𝑛

𝑟+1 = 𝑎 : 𝑏 : 𝑐 ⇒ 1
⁄

(𝑛−𝑟+1)(𝑛−𝑟) :
1
⁄

(𝑛−𝑟) : 1 = 𝑎 : 𝑏 : 𝑐

Now, 𝑏2 = 1
⁄

(𝑛−𝑟)2, and 𝑎(𝑏 + 𝑐) = 1
⁄

(𝑛−𝑟+1)(𝑛−𝑟) [
1
⁄

𝑛−𝑟 + 1] = 1
⁄

(𝑛−𝑟)2, and thus, 𝑏2 =
𝑎(𝑏 + 𝑐).

244. Given, 𝐶𝑛+1
𝑟+1 : 𝐶𝑛

𝑟 : 𝐶𝑛−1
𝑟−1 = 11 : 6 : 3.

Taking first two, we have (𝑛+1)!
⁄

(𝑛−𝑟)!(𝑟+1)! :
𝑛!
⁄

𝑟!(𝑛−𝑟)! ⇒
𝑛+1
⁄

𝑟+1 =
11
⁄

6 ⇒ 6𝑛 − 11𝑟 = 5

Taking last two, we have 𝑛!
⁄

𝑟!(𝑛−𝑟)! .
(𝑟−1)!(𝑛−𝑟)!
⁄

(𝑛−1)! = 𝑛
⁄

𝑟 =
6
⁄

3 = 2 ⇒ 𝑛 = 2𝑟

Solving these two obtained equations, we have 𝑟 = 5, 𝑛 = 10.

245. We have to prove that 
𝑛
∑
𝑘=𝑚

𝐶𝑘
𝑟 = 𝐶𝑛+1

𝑟+1 − 𝐶𝑚
𝑟+1

L.H.S. = 𝐶𝑚
𝑟 + 𝐶𝑚+1

𝑟 + ⋯+ 𝐶𝑛
𝑟 . Adding and subtracting 𝐶𝑚

𝑟+1, we have

L.H.S. = 𝐶𝑚
𝑟+1 + 𝐶𝑚

𝑟 + 𝐶𝑚+1
𝑟 + ⋯+ 𝐶𝑛

𝑟 − 𝐶𝑚
𝑟+1

We know that 𝐶𝑛
𝑟 + 𝐶𝑛

𝑟+1 = 𝐶𝑛+1
𝑟+1 . Applying this repeatedly on the above expression

we arrive at the desired result.
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246. We have to prove that 𝐶𝑛
𝑟 + 3.𝐶𝑛

𝑟−1 + 3.𝐶𝑛
𝑟−2 + 𝐶𝑛

𝑟−3 = 𝐶𝑛+3
𝑟

We will make use of the fact that 𝐶𝑛
𝑟 + 𝐶𝑛

𝑟+1 = 𝐶𝑛+1
𝑟+1 .

L.H.S. = 𝐶𝑛+1
𝑟 + 2.𝐶𝑛

𝑟−1 + 2.𝐶𝑛
𝑟−2 + 𝐶𝑛+1

𝑟−2 = 𝐶𝑛+1
𝑟 + 2.𝐶𝑛+1

𝑟−1 + 𝐶𝑛+1
𝑟−2

= 𝐶𝑛+2
𝑟 + 𝐶𝑛+2

𝑟−1 = 𝐶𝑛+3
𝑟 = R.H.S.

247. We have to find 𝑟 for which 18𝐶𝑟−2 + 2.18𝐶𝑟−1 +18 𝐶𝑟 ≥20 𝐶13.

L.H.S. = (𝐶18
𝑟−2 + 𝐶18

𝑟−1)+ (𝐶18
𝑟−1 + 𝐶18

𝑟 ) = 𝐶19
𝑟−1 + 𝐶19

𝑟 = 𝐶20
𝑟 .

Comparing with R.H.S., clearly 𝑟 = 7, 8, 9, … , 13.

248. We have to prove that 4𝑛𝐶2𝑛 :2𝑛 𝐶𝑛 = 1.3.5… (4𝑛 − 1) : [1.3.5… (2𝑛 − 1)]2.

L.H.S. = 𝐶4𝑛
2𝑛
⁄

𝐶2𝑛
𝑛

= 4𝑛!
⁄

2𝑛!2𝑛! .
𝑛!𝑛!
⁄

2𝑛! =
4𝑛.(4𝑛−1)(4𝑛−2)…(2𝑛+2)(2𝑛+1)
⁄

2𝑛!2𝑛! .𝑛! 𝑛!

= 1.3.5… (4𝑛−1) : [1.3.5… (2𝑛−1)]2 [∵ 2𝑛!⁄𝑛! = 2𝑛.(2𝑛−1).(2𝑛−2).… (𝑛+2) (𝑛+1)]

249. We have to find the positive integral values of 𝑥 such that 𝐶𝑥−1
4 − 𝐶𝑥−1

3 − 5
⁄

4 (𝑥 −
2)(𝑥 − 3) < 0.

L.H.S. = 𝐶𝑥−1
4 − 𝐶𝑥−1

3 − 5
⁄

2 .𝐶
𝑥−2
2 = (𝑥−2)!
⁄

(𝑥−5)! [
𝑥−1
⁄

4! − 𝑥−1
⁄

3!(𝑥−4)−
5
⁄

2.2!(𝑥−4)]

= (𝑥−2)!
⁄

(𝑥−5)!3! [
𝑥−1
⁄

4 − 𝑥−1
⁄

𝑥−4 −
15
⁄

2(𝑥−4)]

We know that factorials are always positive, hence the expression under brackets must
be less than zero.

⇒ (𝑥 − 1)(𝑥 − 4) − 4(𝑥 − 1) − 30 < 0, 𝑥 − 4 > 0 ⇒ 𝑥2 − 5𝑥 + 4 − 4𝑥 + 4 − 30 <
0 ⇒ 𝑥2 − 9𝑥 − 22 < 0. Roots of this equations are 9±√



81+88
⁄

2 = −2, 11 and 𝑥 must lie
between these two roots.

Thus, 𝑥 = 5, 6, 7, … , 10.

250. We have to prove that 2𝑛𝑃𝑛 = 2𝑛.1.3.5… (2𝑛 − 1).

L.H.S. = 𝑃2𝑛
𝑛 = 2𝑛!
⁄

𝑛!𝑛! =
2𝑛.(2𝑛−1)(2𝑛−2) .…4.3.2.1
⁄

𝑛.(𝑛−1)(𝑛−2)….3.2.1 = 2𝑛.1.3.5.… (2𝑛 − 1) = R.H.S.

251. We have to prove that there cannot exist two positive integers 𝑛 and 𝑟 for which
𝐶𝑛
𝑟 , 𝐶𝑛

𝑟+1, 𝐶
𝑛
𝑟+2 are in G.P.

For the terms to be in G.P. 𝐶𝑛
𝑟⁄

𝐶𝑛
𝑟+1

= 𝐶𝑛
𝑟+1⁄

𝐶𝑛
𝑟+2

⇒ 𝑛!
⁄

𝑟!(𝑛−𝑟)! .
(𝑟+1)!(𝑛−𝑟−1)!
⁄

𝑛! = 𝑛!
⁄

(𝑟+1)!(𝑛−𝑟−1)! .
(𝑟+2)!(𝑛−𝑟−2)!
⁄

𝑛! ⇒ 𝑟+1
⁄

𝑛−𝑟 =
𝑟+2⁄

𝑛−𝑟−1

⇒ 𝑛𝑟 + 𝑛 − 𝑟2 − 𝑟 − 𝑟 − 1 = 𝑛𝑟 + 2𝑛 − 𝑟2 − 2𝑟 ⇒ −1 = 𝑛, which is not possible.
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252. We have to prove that there cannot exist two positive integers 𝑛 and 𝑟 for which
𝐶𝑛
𝑟 , 𝐶𝑛

𝑟+1, 𝐶
𝑛
𝑟+2, 𝐶

𝑛
𝑟+3 are in A.P.

⇒ 𝐶𝑛
𝑟+1 − 𝐶𝑛

𝑟 = 𝐶𝑛
𝑟+2 − 𝐶𝑛

𝑟+1 = 𝐶𝑛
𝑟+3 − 𝐶𝑛

𝑟+2 ⇒ 𝑛!
⁄

(𝑟+1)!(𝑛−𝑟−1)! −
𝑛!
⁄

𝑟!(𝑛−𝑟)! =
𝑛!
⁄

(𝑟+2)!(𝑛−𝑟−2)! −
𝑛!
⁄

(𝑟+1)!(𝑛−𝑟−1)! =
𝑛!
⁄

(𝑟+3)!(𝑛−𝑟−3)! −
𝑛!
⁄

(𝑟+2)!(𝑛−𝑟−2)!

Taking first two, 𝑛!
⁄

𝑟!(𝑛−𝑟−1)! [
1
⁄

(𝑟+1)−
1
⁄

𝑛−𝑟] =
𝑛!
⁄

(𝑟+1)!(𝑛−𝑟−2)! [
1
⁄

𝑟+2 −
1⁄

𝑛−𝑟−1]

⇒ 1⁄
𝑛−𝑟−1

𝑛−2𝑟−1
⁄

(𝑟+1)(𝑛−𝑟) =
1
⁄

𝑟+1 .
𝑛−2𝑟−3
⁄

(𝑟+2)(𝑛−𝑟−1)⇒ 𝑛𝑟− 2𝑟2 − 𝑟 + 2𝑛− 4𝑟 − 2 = 𝑛2− 2𝑛𝑟 −
3𝑛 − 𝑛𝑟 + 2𝑟2 + 3𝑟.

Similarly, we can find another equation by considering second and the third term
to get another equation in 𝑛 and 𝑟. Solving these two we cannot find integral solutions
in 𝑛 and 𝑟.

253. For all positive integers we have to show that 2.6.10… (4𝑛− 6)(4𝑛− 2) = (𝑛+ 1)(𝑛+
2)… (2𝑛 − 2)2𝑛.

L.H.S. = 2𝑛[1.3.5… (2𝑛 − 3)(2𝑛 − 1)] = 2𝑛[1.2.3.4.5…(2𝑛−3)(2𝑛−1)2𝑛]
⁄

2.4.6.…2𝑛

= 2𝑛[1.2.3.4.5…(2𝑛−3)(2𝑛−1)2𝑛
⁄

2𝑛[1.2.3…𝑛] = 2𝑛!
⁄

𝑛! = (𝑛 + 1)(𝑛 + 2)… (2𝑛 − 1)2𝑛 = R.H.S.

254. We have to show that 47𝐶4 +
3
∑
𝑖=0

50−𝑖 𝐶3 +
5
∑
𝑗=1

56−𝑗 𝐶53−𝑗 =57 𝐶4.

L.H.S. = 𝐶47
4 + 𝐶47

3 +
2
∑
𝑖=0

𝐶50−𝑖
3 +

5
∑
𝑗=1

𝐶56−𝑗
53−𝑗

Now, we make use of the fact that 𝐶𝑛
𝑟 + 𝐶𝑛

𝑟+1 = 𝐶𝑛+1
𝑟+1 .

L.H.S. = 𝐶48
4 + 𝐶48

3 +
1
∑
𝑖=0

𝐶50−𝑖
3 +

5
∑
𝑗=1

𝐶56−𝑗
53−𝑗

Proceeding this way we have, L.H.S. = 𝐶51
4 +

5
∑
𝑗=1

𝐶56−𝑗
53−𝑗 = 𝐶51

4 + 𝐶51
48 +

4
∑
𝑗=1

𝐶56−𝑗
53−𝑗 =

𝐶51
4 + +𝐶51

3 +
4
∑
𝑗=1

𝐶56−𝑗
53−𝑗

Again repeating like earlier we find L.H.S. = 𝐶57
4 = R.H.S.

255. We have to show that 𝑛𝐶𝑘 +
𝑚
∑
𝑗=0

𝑛+𝑗 𝐶𝑘−1 =𝑛+𝑚+1 𝐶𝑘.

L.H.S. = 𝐶𝑛
𝑘 + 𝐶𝑛

𝑘−1 +
𝑚
∑
𝑗=1

𝐶𝑛+𝑗
𝑘−1
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Now, we make use of the fact that 𝐶𝑛
𝑟 + 𝐶𝑛

𝑟+1 = 𝐶𝑛+1
𝑟+1 .

∴ L.H.S. = 𝐶𝑛+1
𝑘 +

𝑚
∑
𝑗=1

𝐶𝑛+𝑗
𝑘−1 = 𝐶𝑛+1

𝑘 + 𝐶𝑛+1
𝑘−1 +

𝑚
∑
𝑗=2

𝐶𝑛+𝑗
𝑘−1 = 𝐶𝑛+2

𝑘 +
𝑚
∑
𝑗=2

𝐶𝑛+𝑗
𝑘−1

Repeating this we obtain, L.H.S. = 𝐶𝑛+𝑚
𝑘 + 𝐶𝑛+𝑚

𝑘−1 = 𝐶𝑛+𝑚+1
𝑘 = R.H.S.

256. We have to show that 𝑚𝐶1+𝑚+1𝐶2+⋯+𝑚+𝑛−1𝐶𝑛 =𝑛 𝐶1+𝑛+1𝐶2+⋯+𝑛+𝑚−1𝐶𝑚.

Adding 1 = 𝐶𝑚
0 to L.H.S., we have 𝐶𝑚

0 + 𝐶𝑚
1 + 𝐶𝑚+1

2 + 𝐶𝑚+2
3 + ⋯+ 𝐶𝑚+𝑛−1

𝑛

Now, we make use of the fact that 𝐶𝑛
𝑟 + 𝐶𝑛

𝑟+1 = 𝐶𝑛+1
𝑟+1 .

∴ L.H.S. = 𝐶𝑚+1
1 +𝐶𝑚+1

2 +𝐶𝑚+2
3 +⋯+𝐶𝑚+𝑛−1

𝑛 = 𝐶𝑚+1
2 +𝐶𝑚+2

3 +⋯+𝐶𝑚+𝑛−1
𝑛

Repeating, we obtain L.H.S. = 𝐶𝑚+𝑛
𝑛 = 𝐶𝑚+𝑛

𝑚

Proceeding similarly for R.H.S. we obtain it as 𝐶𝑚+𝑛
𝑚 = L.H.S.

257. For the number to be divisible by 25, the last two digits have to be 25, 50 or 75.

Case I: When last two digits are 25 or 75.

Ten thousand’s place can be filled in 5 ways. Thousand’s place can be filled in 5 ways,
and so on.

Thus, total no. of numbers 2 × 5 × 5 × 4 = 200

Case II: When last two digits are 50.

Ten thousand’s place can be filled in 6, and so on. Thus, no. of numbers is 6×5×4 = 120.

Thus, total no. of numbers divisible by 25 is 320.

258. A no. is divisible by 4 if last two digits of the no. are divisible by 4. Thus, the last two
digits can be 12, 24, 32, 52.

We fix last two digits. Ten thousand’s place can be filled in 3 ways, thousand’s place
can be filled in 2 ways, hundred’s place can be filled in 1 way. Thus, total no. of
numbers is 4 × 3 × 2 = 24.

259. For the no. to be divisible by 3 the sum of digits must be divisible by 3. We take two
cases when the number contains 0, and when the number does not contain 0.

Case I: These can be a combination of 123, 135, 234, 345. Thousand’s place can be
filled in 3 ways, hundred’s place can be filled in 3 ways, ten’place can be filled in 2
ways.

Thus, no. of numbers is 4 × 3 × 3 × 2 = 72.

Case II: These can be a combination of 1245, which can have 4! = 24 combinations.

Thus, total no. of such numbers is 96.
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For the no. to be divisible by 6 the sum of digits must be divisible by 3 and last digit
must be even.

Proceeding similarly, we obtain 52 as the no. of numbers, which are divisible by 6.

260. Let us assume that the three 3’s are different. Then, Thousand’s, and hundred’s place
can be filled in 3 ways, ten’s place can be filled in 2 ways, and unit's place can be filled
in 1 way.

Thus, no. of numbers = 3 × 3 × 2 = 18. However, 3’s are same so no. of numbers is
18/2 = 9.

Out of 9 numbers at unit’s, ten’s, and hundred’s place 3 will come four times, 1 will
come twice, and 0 will come thrice.

On thousand's place 3 will come six times, and 1 will come thrice.

Sum of digits at unit’s place = 4 ∗ 3 + 2 ∗ 1 = 14

Sum of digits at ten’s place = 4 ∗ 3 + 2 ∗ 1 = 14

Sum of digits at hundred’s place = 4 ∗ 3 + 2 ∗ 1 = 14

Sum of digits at thousand’s place = 6 ∗ 3 + 3 ∗ 1 = 21

Thus, sum of numbers is 22,554.

261. Note that repetition is allowed here. Total no. of ways of taking 1 thing at a time out
of 𝑛 things = 𝑛. Total no. of ways of taking 2 thing at a time out of 𝑛 things = 𝑛2.
Total no. of ways of taking 3 thing at a time out of 𝑛 things = 𝑛3 and so on. Total no.
of ways of taking 𝑟 thing at a time out of 𝑛 things = 𝑛𝑟

Total no. of ways = 𝑛 + 𝑛2 + 𝑛3 + ⋯+ 𝑛𝑟 = 𝑛(𝑛𝑟−1)⁄
𝑛−1 .

262. Smallest seven digit numbers is 1,000,000. Largest seven digit no. is 9,999,999. Total
no. of seven digit numbers is 9,000,000. Half of these will have even sum, which is
4,500,000.

263. Ways of choosing 𝑘 numbers out of 𝑟(𝑟 ≤ 𝑛) = 𝑟𝑘. However, (𝑟 − 1)𝑘 will not have 𝑟
as maximum. ∴ Required answer = 𝑟𝑘 − (𝑟 − 1)𝑘.

264. No. of ways of filling most significant positions is 9. No. of ways of filling next position
is 8, because consecutive digits cannot be same. This is true for all remaining positions.

Thus, required number = 9.8𝑛−1.

265. No. of ways to fill first position is 26, because it has to be an alphabet. No. of ways to
fill next five positions is 36.

However, the identifier can be of up to six characters. Thus, total no. of identifiers
= 26 + 26.36 + 26.362 + ⋯ + 26.365 = 26. 36

6−1⁄
35 .
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266. First we compute total no. of five digit numbers. No. of ways to fill ten thousand's
position is 9. No. of ways to fill rest of positions is 10. ∴ Total no. of give digit numbers
is 9 × 104.

However, these numbers will include numbers without repetition. So we compute
numbers without repetition. No. of numbers without repetition is 9 × 9 × 8 × 7 × 6 =
27,216.

Thus, no. of numbers with repetition is 90,000 − 27,216 = 62,784.

267. Total no. of numbers between 2 × 104, and 6 × 104 is 4 × 104. Half of these would have
sum of digits as even, which is 20,000.

268. (a) Treating 𝐴1, and 𝐴2 as one entity, total no. of ways of arranging them is 9!.
However, 𝐴1, and 𝐴2 can be arranged among themselves in 2! ways. Thus, total no. of
ways in which 𝐴1, and 𝐴2 are next to each other is 9! 2!.

(b) Total no. of permutations is 10!. In half of these 𝐴1 will be above 𝐴2. Thus,
required numbers is 10!⁄2! .

269. Since no man can sit between two women, therefore all men have to sit together.
Treating all men as one man, no. of ways to seat them together is (𝑛+ 1)!. However, 𝑚
men can be arranged in 𝑚! ways among themselves.

Thus, total no. of ways of seating them together is (𝑛 + 1)!𝑚!.

270. There are two I’s, two T’s, three E’s, and rest of the characters come once each.
Because vowels cannot come between two consonants, the vowels have to come together.
Treating all the vowels as one character, total no. of characters is 7.

No. of ways to arrange them is 7!⁄2!. Six vowels can be arranged among themselves in 6!
⁄

2!3!.

Thus, desired no. of words is 7!6!
⁄

2!2!3! = 151,200.

271. Total no. of arrangements = 18!
⁄

5!6!7!. Treating all balls of same color as one ball so that
they stay together, total no. of arrangements is 3!.

Thus, required numbers = 18!
⁄

5!6!7! − 3!.

272. No. of ways of seating men together = 7!. No. of ways of seating women together = 3!.
No. of ways of seating two men together = 2!.

No. of arrangements when three ladies, and two men are together = 7! 3! 2!.

Treating all ladies as one we have 8 people, and ladies can be seated in 3! ways among
themselves.

No. of arrangements with ladies together, and no condition on seating men = 8! 3!.

∴ Desired no. of arrangements = 8! 3! − 7! 3! 2!.
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273. Total no. of permutations = 𝑛!. Treating 𝑝 things as one thing we have 𝑛 − 𝑝 + 1
things. No. of arrangements when 𝑝 things are together is (𝑛− 𝑝 + 1)!. 𝑝 things can be
arranged among themselves in 𝑝! ways.

∴ No. of ways in which 𝑝 things are together = 𝑛! − (𝑛 − 𝑝 + 1)! 𝑝!.

274. Consider -+-+-+-+-+-+-+-, where ‘+’ denotes the positions of +, and ‘-’ denotes
the positions of −. There are 7 positions for −, which have to be filled by 4.

Thus, required no. of arrangements = 𝐶7
4 = 35.

275. Let gentlemen be ‘G’, and ladies be ‘L’. They can be seated as GLGGLGLG.

Gentlemen can exchange places in 5! ways, and ladies can exchange places in 3! ways.
So total no. of ways = 5! 3! = 720.

276. There are three S’, two C’s, and one U and E each.

(a) Treating two C’s as one character. SXSXSXS can be a way where S is position of S
and X is position of other characters.

No. of ways to fill S = 𝐶4
3 = 4

However, rest of 3 characters can be arranged in 3! ways. Thus, total no. of ways
= 4.3! = 24.

(b) Total no. of permutations of letters(T) = 7!
⁄

2!3!

With two C together(A) = 6!⁄
2!

With three S together(B) = 6!⁄
2! −

5!⁄
2!

With both S and C together = 5! − 4!

∴ Desired answer = 𝑇 − 𝐴−𝐵 +𝐶 = 96.

277. No. of words beginning with E = 5!

No. of words beginning with H = 5!

No. of words beginning with ME = 4!

No. of words beginning with MH = 4!

No. of words begining with MOE = 3!

No. of words begining with MOH = 3!

No. of words begining with MOR = 3!

No. of words beginning with MOTE = 2!

There are two words which begin with MOTH and MOTHER is first of them.

∴ Rank of MOTHER = 309.
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278. There are 7 destinations, and Delhi is the final destination. Thus, there are 8 places,
where passengers can go to. Let the intermediate stations be 𝑆1, 𝑆2, … , 𝑆7.

People starting at Kolkata will have 8 destinations. People starting at 𝑆1 will have 7
destinations, and so on.

Thus, total no. of possible tickets = 8 + 7 + ⋯+ 1 = 36.

Thus, total no. of sets possible is 𝐶36
5 .

279. There are 10 destinations, and London is the final destination. Thus, there are 10
places, where passengers can go to. Let the intermediate stations be 𝑆1, 𝑆2, … , 𝑆9.

People starting at Cambridge will have 10 destinations. People starting at 𝑆1 will
have 9 destinations, and so on.

No. of selections of two out of ten is 𝐶10
2 = 45.

Thus, no. of sets of tickets is 𝐶45
6 .

280. A day can be either clear or overcast. Thus, we have two possibilities. Total no. of
possibilities for 7 days = 27 = 128.

281. No. of ways of selecting 1 book = 𝐶2𝑛+1
1

No. of ways of selecting 2 books = 𝐶2𝑛+1
2

⋯

No. of ways of selecting 𝑛 book = 𝐶2𝑛+1
𝑛

Let 𝑆 = 𝐶2𝑛+1
1 + 𝐶2𝑛+1

2 + ⋯ + 𝐶2𝑛+1
𝑛 = 63

We know that, 𝐶2𝑛+1
0 + 𝐶2𝑛+1

1 + 𝐶2𝑛+1
2 + ⋯ + 𝐶2𝑛+1

𝑛 + ⋯+ 𝐶2𝑛+1
2𝑛+1 = 22𝑛+1

We also know that 𝐶𝑛
𝑟 = 𝐶𝑛

𝑛−𝑟 ⇒ 1 + 2𝑆 + 1 = 22𝑛+1 ⇒ 1 + 𝑆 = 22𝑛 = 64 ⇒ 𝑛 = 3.

282. 𝑘 flowers can be chosen from the first bag in 𝐶𝑘
𝑘 ways.

𝑘 flowers can be chosen from the second bag in 𝐶𝑘+1
𝑘 ways.

⋯

𝑘 flowers can be chosen from the 𝑚th bag in 𝐶𝑘+𝑚−1
𝑘 ways.

Total no. of ways is 𝐶𝑘
𝑘 + 𝐶𝑘+1

𝑘 + ⋯+ 𝐶𝑘+𝑚−1
𝑘 = 𝑆(let).

We know that, 𝐶𝑛
𝑟 = 𝐶𝑛

𝑛−𝑟, applying this, we have

𝑆 = 𝐶𝑘
0 + 𝐶𝑘+1

1 + ⋯ + 𝐶𝑘+𝑚−1
𝑚−1 = 𝐶𝑘+1

0 + 𝐶𝑘+1
1 + ⋯ + 𝐶𝑘+𝑚−1

𝑚−1

Now repeatedly applying 𝐶𝑛
𝑟 + 𝐶𝑛

𝑟+1 = 𝐶𝑛+1
𝑟+1

⇒ 𝑆 = 𝐶𝑘+𝑚
𝑚−1 = 𝐶𝑘+𝑚

𝑘+1 .
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283. No. of ways of selecting 11 persons out of 50 = 𝐶50
11.

Treating 𝐴, 𝐵, 𝐶 as one person, no. of ways of choosing 11 when all three are part
of the committee = 𝐶47

8 .

Thus, desired answer = 𝐶50
11 − 𝐶47

8 .

284. Let 𝑆1, 𝑆2, 𝑆3 be the three intermediate stations where the train stops.
𝑃, 𝑎, 𝑆1, 𝑏, 𝑆2, 𝑐, 𝑆3, 𝑑, 𝑄 be the stations. Let 𝑎, 𝑏, 𝑐, 𝑑 be the no. off stations be
tween 𝑃 and 𝑆1, 𝑆1 and 𝑆2, 𝑆2 and 𝑆3, and 𝑆−3 and 𝑄

𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑆1 + 𝑆2 + 𝑆3 = 𝑚, where 𝑎 ≥ 0, 𝑏 ≥ 1, 𝑐 ≥ 1, 𝑑 ≥ 0, 𝑆1 = 𝑆2 = 𝑆3 = 1

Thus, the equation i.e. no. of stations = 𝑚− 2 when no two of the stations where
train stops are consecutive.

∴ No. of ways to choose 3 out of 𝑚− 2 is 𝐶𝑚−2
3 .

285. Let 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}. For each element 𝑎𝑖 there are four possibilities: (i) 𝑎𝑖 ∈ 𝑃 and
𝑎𝑖 ∈ 𝑄, (ii) 𝑎𝑖 ∉ 𝑃 and 𝑎𝑖 ∈ 𝑄, (iii) 𝑎𝑖 ∈ 𝑃 and 𝑎𝑖 ∉ 𝑄, and (iv) 𝑎𝑖 ∉ 𝑃 and 𝑎𝑖 ∉ 𝑄

(a) For 𝑃 ∩ 𝑄 to contain exactly two elements, we have to choose 2 elements out
of 𝑛 i.e. we have 𝐶𝑛

2 ways. Remaining 𝑛 − 2 elements can choose one of three states
i.e. 3𝑛−2 ways.

Thus, no. of ways in which 𝑃 ∩ 𝑄 will contain exactly 2 elements is 𝐶𝑛
2 .3

𝑛−2.

(b) Since 𝑃 ∩ 𝑄 = 𝜙, all 𝑛 elements can choose one of three states. Thus, total no.
of ways is 3𝑛.

286. Let 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}. For element 𝑎1, and one subset 𝑃1 there are two possibilities,
either 𝑎1 ∈ 𝑃1 or 𝑎1 ∉ 𝑃1.

Total no. of ways for one element 𝑎1 of 𝐴, and one subset 𝑃1 = 2.

No. of ways in which 𝑎1 does not belong to 𝑃1 = 1.

Total no. of ways for 𝑎1, and 𝑚 subsets = 2𝑚.

Total no. of ways for 𝑎1 to belong to 𝑚 subsets = 1𝑚

Total no. of ways for 𝑎1 does not belong to 𝑚 subsets = 1𝑚

∴𝑎1 ∈ (𝑃1 ∩ 𝑃2 ∩ … ∩ 𝑃𝑚) = 1𝑚, 𝑎1 ∉ (𝑃1 ∩ 𝑃2 ∩ … ∩ 𝑃𝑚) = 2𝑚 − 1𝑚, and 𝑎1 ∈
(𝑃1 ∪ 𝑃2 ∪ … ∪ 𝑃𝑚) = 2𝑚− 1𝑚

i. We have to choose one element out of 𝑛 i.e. we have 𝑛 ways. Remaining 𝑛 − 1
elements are in 𝑃1 ∪ 𝑃2 ∪ … ∪ 𝑃𝑚 i.e (2𝑚 − 1𝑚)𝑛−1. Thus, total no. of ways is
𝑛(2𝑚 − 1𝑚)𝑛−1.

ii. All 𝑛 elements are in 𝑃1 ∪ 𝑃2 ∪ … ∪ 𝑃𝑚 i.e. no. of ways is (2𝑚 − 1𝑚)𝑛.

iii. All 𝑛 elements are not in 𝑃1 ∩ 𝑃2 ∩ … ∩ 𝑃𝑚 i.e. no. of ways is (2𝑚 − 1𝑚)𝑛.



Answers of Combinatorics 615

287. No. of possible choices are (3,1,1) ,(1,3,1) ,(1,1,3) ,(2,2,1) ,(2,1,2) ,(1,2,2) where each
number represents no. of choices from a paper.

For (3, 1, 1) no. of choices = 𝐶5
3 × 𝐶5

1 × 𝐶5
1 = 250.

For three such sets no. of choices = 750.

For (2, 1, 2) no. of choices = 𝐶5
2 × 𝐶5

2 × 𝐶5
1 = 500.

For three such sets no. of choices = 1,500.

∴ Total no. of choices in which the questions can answered = 2,250.

288. The product will be divisible by 3 if one of the numbers is divisible by 3.

Case I: When one of the numbers is divisible by 3.

Total no. of ways = 33 × 67 = 2,211

Case II: When both the numbers are divisible by 3.

Total no. of ways = 𝐶33
2 = 528.

Thus, total no. of ways of selecting two numbers is 2,211 + 528 = 2,739.

289. No. of ways of choosing two husbands = 𝐶5
2 = 10. After selecting two husbands, we

have 3 wives to choose from. No. of ways of choosing two wives out of three is 𝐶3
2 = 3.

However, wives can be part of either side, thus, total no. of ways = 10 × 3 × 2 = 60.

290. The line which is parallel to nn concurrent line has to be part of all triangles. Also,
the line which is parallel to it will be part of no triangle. Thus, total no. of possible
triangles = 𝐶𝑛−1

2 .

291. Total no. of points of intersection = 𝐶𝑛
2 = 𝑚(say). If these points are not collinear

then total no. of triangles formed = 𝐶𝑚
3 .

One line will have 𝑛 − 1 collinear points. These lines will not form any triangle among
themselves. Thus, no. of ways to select 3 out of them 𝐶𝑛−1

2 .

However, there are 𝑛 such lines, therefore, no. of triangles, which will not be formed is
𝑛.𝐶𝑛−1

2 .

Thus, required answer = 𝐶𝑚
3 − 𝑛.𝐶𝑛−1

3 .

292. There can be 3, 4 or 5 bowlers in the team.

Thus, total no. of ways of selecting team = 𝐶5
3 × 𝐶10

8 + 𝐶5
4 × 𝐶10

7 + 𝐶5
5 × 𝐶10

6 .

293. From each bag 1, 2, 3, … , 𝑚 balls can be selected.

No. of ways selecting 1 ball from both the bags = 𝐶𝑚
1 × 𝐶𝑚

1 = (𝐶𝑚
1 )2.

No. of ways selecting 2 ball from both the bags = 𝐶𝑚
2 × 𝐶𝑚

2 = (𝐶𝑚
2 )2.
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⋯

No. of ways selecting 𝑚 ball from both the bags = 𝐶𝑚
𝑚 ×𝐶𝑚

𝑚 = (𝐶𝑚
𝑚 )2.

∴ Total no. of ways = (𝐶𝑚
1 )2 + (𝐶𝑚

2 )2 + (𝐶𝑚
3 )2 + ⋯ + (𝐶𝑚

𝑚 )2 = 𝐶2𝑚
𝑚 − 1.

294. There can be 5, 6, 7 or 8 men in the committee. So no. of ways to form the committee
is 𝐶8

5 × 𝐶9
7 + 𝐶8

6 × 𝐶9
6 + 𝐶8

7 × 𝐶9
5 + 𝐶8

8 × 𝐶9
4.

For women to be in majority there must be at least 7 women, which means 5 men, and
only one such committee is possible. No. of such committees is 85×𝐶

9
7.

For men to be in majority there must be at least 7 men. No. of such committees is
𝐶8
7 × 𝐶9

5 + 𝐶8
8 × 𝐶9

4.

295. Let the distance between lines be 1 unit. For squares with side 1 unit: Along 𝑚
horizontal lines 𝑚− 1 squares can be formed, and along 𝑛 vertical lines 𝑛 − 1 squares
can be formed. Thus, total no. of such squares is (𝑚− 1)(𝑛 − 1).

For squares of 2 units, no. of such squares is (𝑚− 2)(𝑛 − 2).

Since 𝑚 < 𝑛, total no. of squares is =
𝑚−1
∑
𝑖=1

(𝑚− 𝑖) (𝑛− 𝑖) =
𝑚−1
∑
𝑖=1

[𝑚𝑛− (𝑚+𝑛)𝑖 + 𝑖2]

= 𝑚𝑛(𝑚− 1) − (𝑚+ 𝑛)𝑚(𝑚−1)⁄
2 + 𝑚(𝑚−1)(2𝑚−1)
⁄

6 = 1
⁄

6𝑚(𝑚− 1)[6𝑛 − 3(𝑚+ 𝑛) +

2𝑚− 1] = 1
⁄

6𝑚(𝑚− 1)(2𝑛 −𝑚− 1).

296. This problem is same as previous problem, and has same answer.

297. Total no. of ways of dividing 3𝑛 elements in three groups which contain equal no.
of elements = 3𝑛!
⁄

3!(𝑛!)3.

298. No. of ways in which 50 different things can be divided 5 sets three of them having 12
things and two of them having 7 things each = 50!

⁄

(12!)3(7!)2 3!2!.

299. No. of ways of distributing 𝑛 things in groups such that they contain 𝑎, 𝑏, 𝑐, … , 𝑘
things is 𝑛!
⁄

𝑎!𝑏!𝑐!…𝑘!, which is an integer.

300. (𝑛2!)⁄
(𝑛!)𝑛+1 can be rewritten as (𝑛2)!

⁄

𝑛!(𝑛!)𝑛, which is distributing 𝑛2 different things in 𝑛 groups
such that each group contains 𝑛 things.

301. No. of ways of dividing 𝑛 different things 𝑎 groups each containing 𝑏 things = 𝑛!
⁄

(𝑏!)𝑎𝑎!,
which is an integer. Thus, (𝑛 − 1)! is divisible by both 𝑎 and 𝑏.

302. No. of ways dividing 𝑘𝑛 different things in 𝑘 groups each containing 𝑛 things is (𝑘𝑛)!⁄𝑘!(𝑛!)𝑘,
which is an integer.

303. Let 𝑟 = 20, 𝑛 = 5, then required number = 𝐶𝑛+𝑟−1
𝑟 = 𝐶24

20.
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304. 𝐶𝑛+𝑟−1
𝑟 .

305. Given, 𝑥, 𝑦, 𝑧 ≥ 1, and 𝑥 + 𝑦 + 𝑧 = 𝑛. Let 𝑎 = 𝑥 − 1, 𝑏 = 𝑦 − 1, 𝑐 = 𝑧 − 1, then
𝑎 + 𝑏 + 𝑐 = 𝑛 − 3, where 𝑎, 𝑏, 𝑐 ≥ 0.

No. of solutions of the equation 𝑎 + 𝑏 + 𝑐 = 𝑛 − 3 is 𝐶𝑛+3−1
𝑛 = 𝐶𝑛+2

𝑛 = 𝐶𝑛+2
2 .

306. 𝑥 + 𝑦 + 𝑧 = 0 ∀𝑥, 𝑦, 𝑧 ≥ −5 can be rewritten as 𝑎 + 𝑏 + 𝑐 = 15 ∀𝑎, 𝑏, 𝑐 ≥ 0. Thus, no.
of solutions of the above equation 𝐶15+3−1

2 = 136.

307. Required answer is coeff. of 𝑥3𝑛 in (1 + 𝑥 + 𝑥2 + ⋯+ 𝑥𝑛)3(1 + 𝑥 + 𝑥2 + ⋯+ 𝑥2𝑛)

= (1 − 𝑥𝑛+1)3(1 − 𝑥2𝑛+1)(1 − 𝑥)−4 = (1 − 3𝑥𝑛+1 + 3𝑥2𝑛+2 − 𝑥3𝑛+3)(1 −
𝑥2𝑛+1)(1 + 𝐶4

1𝑥 + 𝐶5
2𝑥

2 + ⋯+ 𝐶𝑛+3
3 + ⋯∞)

= 𝐶3𝑛+3
3 − 3.𝐶2𝑛+2

3 + 3.𝐶𝑛+1
3 − 𝐶𝑛+2

3 = 𝑛+1
⁄

6 .(5𝑛2 + 10𝑛 + 6).

308. Here 𝑛 = 10, 𝑟 = 3 so no. of non-negative solutions is 𝐶9
2 = 36.

309. Clearly, 0 ≤ 𝑥 ≤ 8. If 𝑥 = 𝑘, then 𝑦 + 𝑧 = 24 − 3𝑘.

No. non-negative integral solutions of the above equation = 𝐶2+24−3𝑘−1
24−3𝑘 = 𝐶25−3𝑘

1 =
25 − 3𝑘.

∴ Required number =
8
∑
𝑘=0

(25 − 3𝑘) = 225 − 108 = 117

310. Given, 𝑤 + 𝑥 + 𝑦 + 𝑧 = 29, where 𝑥 ≥ 1, 𝑦 ≥ 2, 𝑧 ≥ 3, 𝑤 ≥ 0. Let 𝑎 = 𝑥 − 1, 𝑏 =
𝑦 − 2, 𝑐 = 𝑧 − 3

⇒ 𝑤+ 𝑎 + 𝑏 + 𝑐 = 23. Hence, total no. of solutions = 𝐶23+4−1
4−1 = 2,600.

311. No. of non-negative solutions of the equation 𝑎 + 𝑏 + 𝑐 + 𝑑 = 20 is 𝐶20+4−1
4−1 = 𝐶23

3 =
1,771.

312. Possible equations are 𝑥1 + 𝑥2 + ⋯+ 𝑥𝑘 = 0, 1, 2, 3, … , 𝑛, which has no. of solutions
1 = 𝐶𝑘−1

0 = 𝐶𝑘
0, 𝑘 = 𝐶𝑘

1, 𝐶
𝑘+1
2 … , 𝐶𝑛+𝑘−1

𝑛 .

Now, applying 𝐶𝑛
𝑟 + 𝐶𝑛

𝑟+1 = 𝐶𝑛+1
𝑟+1 , repeatedly, we have 𝐶𝑛+𝑘

𝑛 as the answer.

313. 𝑥 + 𝑦 = 10−𝑧
⁄

2 ∴ 𝑥 + 𝑦 ≤ 10. Let 𝑥 + 𝑦 + 𝑡 = 10, then 𝑥, 𝑦, 𝑡 ≥ 0

∴ Required numbers = 𝐶12
10 = 𝐶12

2 = 66.

314. Case I: We consider set of 2 numbers. Let the numbers be 𝑎 and 𝑏.

Given, 𝑎+𝑏⁄2 = 60 ⇒ 𝑎 + 𝑏 = 120. Both 𝑎 and 𝑏 cannot be 60, because 60 cannot be
used twice. Let 0 ≤ 𝑎 ≤ 59, and 61 ≤ 𝑏 ≤ 120.
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Total no. of ways in which 𝑎 can be chosen = 60. Value of 𝑏 depends on chosen value
of 𝑎. Thus, total no. of ways of choosing two numbers is 60.

Case II: We consider set of 3 numbers. Let the numbers be 𝑎, 𝑏 and 𝑐. Given,
𝑎+𝑏+𝑐
⁄

3 = 60 ⇒ 𝑎 + 𝑏 + 𝑐 = 180

Case a: Let 0 ≤ 𝑎 ≤ 59, 0 ≤ 𝑏 ≤ 59, and 𝑐 ≥ 60.

𝑎 can be chosen in 60 ways, and 𝑏 can be chosen in 59 remaining ways. Value of 𝑐 will
depend on values of 𝑎 and 𝑏. No. of ways of choosing 𝑎, 𝑏, 𝑐 = 60 × 59 = 3,540.

Case b: 𝑎 = 60, 𝑏 + 𝑐 = 120. Like case I, the no. of ways to select 𝑎, 𝑏, 𝑐 is 60.

Case c: 61 ≤ 𝑎 ≤ 90, 61 ≤ 𝑏 ≤ 90 and 𝑐 < 60.

𝑎 and 𝑏 can be selected in 30 × 29 = 870 ways. 𝑐 depends on 𝑎, and 𝑏.

∴ Total no. of ways of making selection is 4,530.

315. There are 11 letters, ‘S’ comes twice, and others once. Since we have to select ‘T’,
we have 4 letters to select.

Case I: 2 S, and 2 others. No. of ways to select is 𝐶2
2 .𝐶8

2 = 28.

Case II: No. of ways of selecting 1 S, and 3 others is 𝐶8
3 = 56.

Case III: No. of ways of selecting no 𝑆 is 𝐶8
4 = 70.

Thus, total no. of ways of making the required word is 154.

316. There are 3 O’s, 2 P’s, and R’s, one each of T, I and N.

Case I: When all four letters are distinct. We have four letters to be selected out
of six. So no. of selections is 𝐶6

4, and no. of arrangements is 𝑃6
4 .

Case II: With one letter repeated. P, R, and O are repeated, and we can choose
one, which can be done in 𝐶3

1, other letters can be selected in 𝐶5
2 ways. Thus, no.

of selections is 30. Total no. of such words is 30 × 4!⁄
2! = 360.

Case III: Two letter repeated. No. of ways to select 2 out of P, R, and O is 𝐶3
2. These

letters can be arranged in 4!
⁄

2!2! = 6. Therefore, total no. of arrangements is 3 × 6 = 18.

Case IV: 3 O’s at a time. No. of ways of selecting remaining one letter is 𝐶5
1. No.

of arrangements is 4!⁄3!. Total no. of such words is 5 × 4 = 20.

Now total can be computed trivially.

317. Three odd places in the five letter word can be filled by five non-repeated letters C, E,
H, I, and S. No. of permutations is 𝑃5

3 = 60. For two even places we have six repeating
letters, two each of M, A, and T. This leads to two cases:
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Case I: Both are different. This can be done in 𝑃3
2 = 6 ways.

Case II: Both are same. This can be done in 𝐶3
1 = 3 ways.

Thus, even places can be filled in 9 ways. And thus, total no. of words that can be
formed is 60 × 9 = 540.

318. No. of selections of three letters from Box 1 is 𝐶6
3 = 20. No. of selections of two letters

from Box 2 is 𝐶4
2 = 6. Total no. of selections is 20 × 6 = 120.

No. of ways to arrange five letters is 5! = 120. Thus, total no. of codewords that can be
formed is 120 × 120 = 14,400.

319. No. of ways of arranging 𝑟 out of 𝑚 on one side is 𝑃𝑚
𝑟 . Similarly, no. of ways of

arranging 𝑠 out of 𝑚 on the other side is 𝑃𝑚
𝑠 . No. of ways of arranging remaining

is (2𝑚 − 𝑟 − 𝑠)!.

Thus, total no. of ways of seating them is 𝑃𝑚
𝑟 𝑃𝑚

𝑠 .(2𝑚 − 𝑟 − 𝑠)!.

320. No. of ways of selecting 4 or 6 out of 10 is 𝐶10
6 = 𝐶10

4 = 210.

6 people can be seated around a round table in 5! = 120 ways. Similarly, 4 people can
be seated around a round table in 3! = 6 ways.

Thus, total no. of ways of seating people is 210 × 120 × 6 = 151,200.

321. There are a total of 2𝑛 +𝑚+ 1 seats, 2𝑛 grandchildren occupy 2𝑛 seats at the end in
2𝑛! ways. Since the grandfather does not wish to have a grandchild at either end so he
can occupy one of 𝑚− 1 seats in the middle. 𝑚 sons and daughters can occupy 𝑚
seats in 𝑚! ways.

Thus, total no. of ways is (2𝑛)!𝑚!(𝑚− 1).

322. Let 𝑆1, 𝑆2, 𝑆3, … , 𝑆2𝑛 be the seats. The table has 𝑛 seats on two sides i.e. 2𝑛 seats.
The master, and the mistress always sit opposite to each other. Let the two guests,
which must not be placed to each other are called 𝑋 and 𝑌 .

There are 4 special positions for 𝑋. These are 𝑆1, 𝑆𝑛, 𝑆𝑛+1, and 𝑆2𝑛. When 𝑋 seats at
these positions, then remaining 2𝑛 − 2 guests can be seated in (2𝑛 − 2)! ways. Hence
total no. of arrangements is 4(2𝑛 − 2)(2𝑛 − 2)! because 𝑌 can sit at 2𝑛 − 2 positions.

For other positions of 𝑋 there will be 2𝑛 − 3 positions for 𝑌 . Now total no. of ways in
this case will be (2𝑛 − 3)(2𝑛 − 4)(2𝑛 − 2)! [2𝑛 − 4 positions for 𝑋, and (2𝑛 − 2)! no.
of arrangements for remaining guests].

Thus, total no. of ways is (2𝑛 − 2)![4(2𝑛 − 2)+ (2𝑛 − 3)(2𝑛 − 4)] = (2𝑛 − 2)!(4𝑛2 −
6𝑛 + 4).

323. We have to choose 𝑛 objects out of 3𝑛 because 𝑛 like objects are always there in the
selection. No. of ways of making these selections is 𝐶3𝑛

𝑛 .

Total no. of arrangements is 𝐶3𝑛
𝑛 × 2𝑛!
⁄

𝑛! =
3𝑛!
⁄

(𝑛!)2.
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324. There are four pairs whose sum is 9, and then there is 9. We know that for a number
to be divisible by 9, the sum of digits of that number must be divisible by 9. So we can
pick three pairs out of these four, and one nine to construct a 7-digit number.

No. of ways of making this selection is 𝐶4
3 × 𝐶1

1 = 4. No. of ways to arrange these 7
digits is 7!. Thus, no. of such numbers is 4 × 7!.

325. Following like previous problems we have 4 such pairs. The 9th digit can be 9 or 0.

Case I: When 9th digit is 0.

No. of ways of making selection is 𝐶4
4 × 𝐶1

1 = 1. The 0 cannot be most significant
digit. No. of ways of filling most significant position is 8. No. of ways to fill remaining
positions is 8!. Thus, total no. of numbers is 8 × 8!.

Case II: When 9th digit is 9. Total no. of possible numbers in this case is 9!.

Thus, total no. of numbers is 17 × 8!.

326. For the product of five consecutive digits to be divisible by 7, the five digits must
contain 7. Thus, 7 is fixed. No. of ways of arranging remaining 8 digits is 8!, which is
the answer.

327. Total no. of outcomes is 63 = 216. Total no. of outcomes in which no 5 comes is
53 = 125. Thus, no. of outcomes in which at least one 5 shows is 91.

328. No. of outcomes of a single throw of a dice is 6. No. of outcomes of 𝑛 dice throw is 6𝑛.
Now, we consider the cases where only even no. are the outcome. No. of even numbers
is 2, 4, 6. Thus, no. of even only outcomes is 3𝑛.

Thus, no. of outcomes where at least one odd outcome has come is 6𝑛 − 3𝑛.

329. A no. from 1 to 1000 will have three digits. Thus, 5 can come once, twice or thrice.
There is only one no. 555 where it comes thrice. So we have to calculate the other two
cases.

Case I: When 5 comes once in the number.

We can choose one place out of three in 𝐶3
1 ways, and remaining two places in 92 ways.

Thus, no. of times 5 will be written is 3 × 92 = 243.

Case II: When 5 comes twice in the number.

We can choose two places out of three in 𝐶3
2 ways, and remaining one place can be

filled in 9 ways. Thus, 5 will be written 2 × 3 × 9 = 54 times.

Thus, total no. of times 5 will be written is 243 + 54 + 3 = 300.

330. For prime number 𝑝, and 𝑘 the highest power of 𝑝 that can divide the 𝑛! is given by
∑⌊ 𝑛⁄

𝑝𝑘
⌋.

Given 𝑛 = 33, and 𝑝 = 2. Thus, required no. = ⌊33⁄2 ⌋+ ⌊
33
⁄

22⌋+ ⌊
33
⁄

23⌋+ ⌊
33
⁄

24⌋+ ⌊
33
⁄

25⌋ = 31.
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331. Since 1⁄3 = 0.33… so up to 1⁄3 +
33
⁄

50 the terms will be 0. So 𝐸 = 17. Then we proceed like

previous problem, required answer is ⌊17⁄2 ⌋+ ⌊17⁄22⌋+ ⌊17⁄23⌋+ ⌊17⁄24⌋ = 8+ 4 + 2 + 1 = 15.

332. The set of unit’s place is {0, 1, 2, … , 9}, the set of ten’s place is {1, 4, 9}, and the set
of hundred’s place is {1, 2, … , 9}.

There will be a total of 9 × 3 × 10 = 270. For each possible choice of ten’s place there
will be 90 numbers, for each choice of unit’s place there will be 27 number, and for
each choice of hundred’s place there will be 30 numbers.

Thus, sum of these numbers is 27 × 100 × (1 + 2 + ⋯+ 9)+ 90 × 10 × (1 + 4 + 9)+
30 × (1 + 2 + ⋯+ 9) = 135,450.

333. In the first round numbers marked will be 1, 16, 31, … , 991. The second round will
begin with 991 + 15 − 1000 = 6. So the numbers marked in the second round will be
6, 21, 36, … , 996. The third round will begin with 996 + 15 − 1000 = 11. So numbers
marked will be 11, 26, 41, … , 986. In the next round next number marked will be
986 + 15 − 1000 = 1, and the cycle will repeat.

Thus, marked numbers are 1, 6, 11, 16, 21, … i.e. numbers which leave remainder 1
when divided by 5. So no. of marked numbers is 1000⁄5 = 200. So no. of marked numbers
is 800.

334. Partitioning 𝑆 according to given condition we have following for 𝐴, {1, 2, 4, 8}, {3, 6} ,
{5, 10}, {7}, {9}. Now for each of these we have 𝑛+ 1 choices if 𝑛 is the no. of elements
because once we include a no. the larger one must be included. Thus, total no. of
subsets is 5.3.3.2.2 = 180.

335. Each card can be dealt to two persons in two ways. Thus, 𝑛 cards can be dealt in 2𝑛
ways. However, in two of the ways each person will receive no card. Thus, total no. of
ways of dealing cards in required manner is 2𝑛 − 2 = 2(2𝑛−1 − 1).

336. We can choose 0 𝐴 to 4 𝐴 i.e. in 5 ways. Similarly, we can choose 𝐵 in 4 ways, 𝐶, 𝐷, 𝐸
in 2 ways. Thus, total no. of ways is 5 × 4 × 23 = 160.

However, in one of these ways no letter is selected. Thus, required answer is 160 − 1 =
159.

337. We can have a factor by picking zero ‘a’, and up to seven ‘a’ i.e. in 8 ways. Similarly, 𝑏
can be chosen in 5 ways, and so on.

Thus, total no. of ways is 8 × 5 × 4 × 23 = 1,280. However, in one way all are selected,
and in another none(factor is 1 in this case). Thus, required answer is 1,280−2 = 1,278.

338. Following like previous problem, 𝑏𝑖 can be chosen in 𝑝𝑖 + 1 ways. Thus, total no. of

positive divisors is 
𝑛
∏
𝑖=1

(𝑝𝑖 + 1).

339. First square can be selected in 64 ways. Once we have selected a square we cannot
choose from same row and column. Thus, the second square can be chosen from
remaining seven rows and seven columns i.e. from 49 squares.
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Thus, total no. of ways chosing squares is 64 × 49 = 3,136. However, in choosing these
squares there are duplicates in the sense that squares are chosen twice. Thus, required
answer is 3,136⁄2 = 1,568.

340. Let 𝐴 = {1, 2, 3, … , 2𝑛− 1, 2𝑛}. If we pick 1 as one of the elements of the pair then the
second can be obtained in 2𝑛 − 1 ways. Similarly, if we pick 2 as one of the elements of
the pair then second can be obtained in 2𝑛 − 3 ways because 2 elements have been
already chosen for first pair, and so on.

Thus, number of pairings is (2𝑛 − 1)(2𝑛 − 3)⋯3.1.

341. Let 𝐴 be a onsisting of 5 concyclic points, and 𝐵 be the set consisting of 7 points.

Case I: Circle passes through 3 points of 𝐵. Number of circles is 𝐶7
3.

Case II: Circle passes through 2 points of 𝐵, and 1 point of 𝐴. Number of circles
is 𝐶7

2 .𝐶
5
1.

Case III: Circle passes through 1 point of 𝐵, and 2 points of 𝐴. Number of circles is
𝐶7
1 .𝐶

5
2.

Case IV: Circle passes through no points of 𝐵. Number of circles is 1.

Thus, total no. of circles is 211.

342. From 37 lines we get no. of intersections as 𝐶37
2 . However, for 13 lines we get one

point 𝐴 instead of 𝐶13
2 , and similarly for 𝐵, we get one point instead of 𝐶11

2 .

Hence, total no. of points of intersection is 𝐶37
2 − 𝐶13

2 − 𝐶11
2 + 2 = 535.

343. If we pick 2 points from 𝑚 points then third can be picked in 𝑛 ways giving us 𝐶𝑚
2 × 𝑛

triangles. If we pick 2 points from 𝑛 points then third can be picked in 𝑚 ways giving
us 𝐶𝑛

2 ×𝑚 triangles.

Thus, total no. of triangles is 𝑛.𝐶𝑚
2 +𝑚.𝐶𝑛

2 = 𝑚2𝑛−𝑚𝑛+𝑚𝑛2−𝑚𝑛
⁄

2 = 𝑚𝑛(𝑚+𝑛−2)
⁄

2 .

344. Since this is a regular polygon with odd no. of vertices no two of the vertices are
places diagonally opposite, so there are no right-angled triangles. Let 𝐴 be the no. of
acute angled triangles, and 𝑂 be the no. of obtuse angled triangles. To form a triangle
we need to choose 3 vertices out of 21 which can be done in 𝐶21

3 = 1330 ways. Since
the triangles are either actue or obtuse, we have 𝐴 + 𝑂 = 1330. Draw a diameter
through point 𝑃 − 1. Now we consider point only on one side of diameter including 𝑃1.
So we need to select 2 out of 10. All these will be obtuse-angled triangles. No. of
such triangles on both side is 21 ∗ 𝐶10

2 = 945. Thus, no. of acute-angled triangels is
𝐴 = 1330 − 945 = 385.
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𝑃1𝑃2
𝑃3

𝑃4
𝑃5
𝑃6
𝑃7
𝑃8

𝑃9 𝑃10𝑃11𝑃12
𝑃13
𝑃14

𝑃15

𝑃16

𝑃17
𝑃18

𝑃19
𝑃20𝑃21

𝑂

A triangle 𝑃𝑖𝑃𝑗𝑃𝑘 is equilateral if these points are
equispaced. Out of 21 points we have 7 such triplets.
Thus, we have only 7 equilateral triangles.

Consider the diameter 𝑃1𝑂𝐵, where 𝐵 is the point,
where 𝑃1𝑂 meets the polygon. If we have an isosceles
triangle at 𝑃1 as its vertex then 𝑃1𝐵 is the altitude, and
the base is bisected by 𝑃1𝐵. This means that other two
vertices are equally spaces from 𝐵. Clearly, there are 10
such pairs of vertices giving us 10 isosceles triangles
for each vertes. But one of these is equilateral so we
have 9 such triangles. For 21 points we will have 189

such isosceles triangles. Since we can consider equilateral triangles as isosceles triangles,
total no. of isosceles triangles is 189 + 7 = 196.

345. 𝑆 ∪ 𝑇 has 𝑟 elements. This means that out of 𝑛 elements 𝑟 elements are present in
either of 𝑆 and 𝑇 or in both. Thus, each element has 3 choices. No. of ways to select
elements for 𝑆 and 𝑇 = 3𝑟.

Remaining 𝑛 − 𝑟 elements have only 1 choice, and that is to be not in either of 𝑆
and 𝑇 . Total no. of ways of selecting 𝑛 − 𝑟 elements is 1𝑛−𝑟 = 1.

The 𝑟 elements can be selected from 𝑛 elements in 𝐶𝑛
𝑟 ways.

Thus, total no. of ways is 𝐶𝑛
𝑟 .3𝑟.

346. Given, 𝑆 = 𝑇 . This means an element is present in either 𝑃 or 𝑄. Thus, for each
element we have 2 choices. Hence, total no. of ways to select is 2𝑛.

347. Let 𝑈 = {𝑎1, 𝑎2, … , 𝑎𝑛} be a set of 𝑛 elements. Let 𝑆 be the set of all subsets and 𝐵
be the set of all binary sequences of 𝑛 elements.

Let 𝐴 ∈ 𝑆. Let 𝑓 : 𝑆 → 𝐵 be a function that associates a binary sequence with 𝐵 as
follows: 𝑎𝑖 ∈ 𝐵, iff 𝑖th term of sequence is 1.

For example, subset {𝑎2, 𝑎4, … , 𝑎𝑛−1} corresponds to binary sequence 010101…10.

Observe that for every subset 𝐵, there is a binary sequence of 𝑛 terms, and for every
binary sequence of 𝑛 terms as stated above, there is a subset 𝐵 of 𝑈 . Therefore, 𝑓 is a
bijection between 𝑆 and 𝐵. Hence, no. of subsets = no. of binary sequences = 2𝑛.

348. Assign ℎ for horizontal movement and 𝑣 for vertical movement of 1 unit. One such
path would be ℎ, ℎ, ℎ, 𝑣, 𝑣, 𝑣, ℎ, ℎ, 𝑣, ℎ.

Note that there are 7 horizontal, and 6 vertical line segments, of one unit each, from 𝐴
to 𝐵.

Since for every path between 𝐴, and 𝐵, there is a sequence of 7ℎ's and 6𝑣's, and for
every sequence we have corresponding one path made up of horizontal and vertical
lines. Therefore, there is a bijection between the set of all paths from 𝐴 to 𝐵, and the
set of all sequences of 7ℎ's, and 6𝑣's. Thus, number of paths from 𝐴 to 𝐵 = Number of
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sequences = Number of ways to select 7 places to put ℎ out of 13 different places
= 𝐶13

7 = 13!
⁄

7!6!.

Number of path through 𝐶 = Number of paths from 𝐴 to 𝐶 × Number of paths
from 𝐶 to 𝐵 = Number of ways to select 4 placces to put ℎ out of 8 different places
× Number of ways to select 3 places to put 3 out of 5 dfferent places = 𝐶8

4 × 𝐶5
3.

Similarly, number of paths from 𝐷 to 𝐵 = 4!
⁄

2!2!. Number of paths including 𝐶𝐷 =
8!
⁄

4!4! .
4!
⁄

2!2!.

349. A square chessboard is an 8 × 8 board as shown.

1 2
3 4

For two sides to be common first we have 𝐿 shaped possibilities.
Consider the 2 × 2 square shown. In this case if we take 1, 2, 4
or 2, 4, 3 or 4, 3, 1 or 3, 1, 2 then we will have one square whose
two sides are common with others i.e. we will have 4 such
squares. Now if we fit this square block along two rows we will
have 7 such blocks, and then 7 along columns. Thus, total no.
of required squares would be 4 × 7 × = 196.

Now, the other possibility is a continuous block of three squares
either horizontally or vertically as shown. We will get one
required square in the middle of the blocks. Along the rows and
columns we can fit 6 such blocks. Thus, no. of required squares
= 2 × 6 × 8 = 96.

Thus, total no. of required squares is 292.

350. We will prove this by negation. Since we have to make 10 exact predictions this implies
that we have to make 10 wrong predictions. No. of ways to select 10 matches out of
20 is 𝐶20

10. Now we can make mistake in 2 ways. Thus, total no. of ways of making
mistakes is 210.

Thus, total no. of ways of making 10 exact correct predictions is 𝐶20
10 .2

10.

351. A forecast for a match can be done in 3 ways. So for five matches total no. of forecasts
is 35 = 243. Following like previous problem total no. of making 0, 1, 2, 3, 4 and 5
errors is 𝐶5

0 .2
0, 𝐶5

1 .2, 𝐶
5
2 .2

2, 𝐶5
3 .2

3, 𝐶5
4 .2

4 and 𝐶5
5 .2

5.

352. The votes has to vote for at least 1 candidate and at most 𝑛 − 1 candidates. Here, 𝑛 is
the number of candidates. For each candidate, the votes has 2 options: either vote for
the candidate or not vote for the candidate. So number of ways = 2𝑛. But we have to
subtract 2 for two cases: one when the voter does not vote for any candidate, and
one when the voter votes for every candidate.

Hence, 2𝑛 − 2 = 62 ⇒ 𝑛 = 6.

353. Every lamp can have two states: on or off. Thus, total no. of states is 210 = 1024.
However, in one of these cases all the lapms will be off, and the hall will not be
illuminated.
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Thus, no. of ways of illuminating the hall is = 1024 − 1 = 1013.

354. We observe that last when India wins the last match the series is over. So first case is
when India wins all 5 matches, and there is only one way this can happen. Second
case is when India loses one match. In this case we exclude last match to get total
no. of matches as 5. Now we can choose to make India win remaining 4 in 𝐶4

5 = 1 way.
Similarly, for remaining cases it would be 𝐶6

4, 𝐶
7
4, 𝐶 − 48.

Adding these, we get 126 as desired answer.

355. For each book 0 or more copies can be selected. So there are 𝑝 + 1 ways for each book.
Thus, for 𝑛 books we have 𝑝 + 1^n ways. But in one of these ways no book is selected.

Thus, total no. of selecting books is (𝑝 + 1)𝑛 − 1.

356. We have to have at least 2 students and at most we can have 𝑛 − 2 students in the
team.

Thus, total no. of ways of selecting them is 𝐶𝑛
2 + 𝐶𝑛

3 + 𝐶𝑛
4 + ⋯+ 𝐶𝑛

𝑛−2.

We know that 𝐶𝑛
0 +𝐶𝑛

1 +𝐶𝑛
2 +⋯+𝐶𝑛

𝑛 = 2𝑛, and thus, 𝐶𝑛
2 +𝐶𝑛

3 +𝐶𝑛
4 +⋯+𝐶𝑛

𝑛−2 =
2𝑛 − 𝐶𝑛

0 − 𝐶𝑛
1 − 𝐶𝑛

𝑛−1 − 𝐶𝑛
𝑛 = 2𝑛 − 2𝑛 − 2.

357. No. of elements in 𝑎2, 𝑎3, … , 𝑎𝑛+1 = 𝑛. We can choose 𝑎10 or more times up to 𝑚
times. Thus, no. of ways of choosing 𝑎1 is 𝑚+ 1.

We can pick a combination of 𝑎1 with all others in 0 to 𝑛 numbers, giving us a total
of 2𝑛.

Thus, total no. of prime factors is (𝑚+ 1)2𝑛. However, one of these factors is 1. Thus,
required no. of factors is (𝑚+ 1)2𝑛 − 1.

358. In a polygon 4 points make 2 sides and produce one point of intersection of 2 diagonals.
Thus, no. of points is 𝐶𝑛

4 = 70 ⇒ 𝑛 = 8.

Thus, no. of diagonals is 𝐶8
2 − 8 = 20(8 is subtracted because that is the no. of sides

formed when two points are joined).

359. The plot of given lines is shown below:
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y =
 xy =

 x+
1

y =
 x+

2y =
 x+

3
y =

 x+
4

y = -x

y = -x+1

y = -x+2

y = -x+3

y = -x+4

If you observe carefully, you will find
that side of one square in the diagram
is √


0.52 + 0.52 = 1⁄
√


2. So the diago
nal would be 1. However, we want
squares with diagonal 2. So we have
to combine four squares into 1. No.
of such squares is 9.

360. Total no. of triangles formed is 𝐶8
3 =

56. When two sides are common with octagon the no. of triangles formed will be 8
as you can find by choosing any two adjacent sides of octagon and then shifting them
around octagon. When we pick one side with octagon we cannot choose the third
vertex of triangle with adjacent sides, thus, we will have only four points to choose
from, and there are 8 sides. So no. of such triangles is 8 × 4 = 32.

Thus, required no. of triangles is 56 − 8 − 32 = 16.

361. An intersection point requires four points on the circle. Thus, total no. of such points
is 𝐶9

4 = 126.

362. For each element of set 𝐴 we can have 𝑛 elements in set 𝐵. Thus, total no. of functions
would be 𝑛𝑚.

363. The set is 𝐴 = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29} i.e. having 10 elements. We can form
a rational number of the form 𝑝⁄𝑞. Thus, we can choose these numbers in 𝐶10

2 ways.

But the rational number can be also of the form 𝑞⁄𝑝. Thus, no. of rational numbers is
𝐶10
2 × 2 = 90. One of the rational numbers will be 1 when 𝑝 = 𝑞.

Thus, total no. of rational numbers is 91.

364. In the subset we put 𝑎3 so now we have to choose 2 more elements out of remaining
𝑛 − 1 elements of the given set.

This can be done in 𝐶𝑛−1
2 ways.

365. Clearly, no. of 𝑚 element subsets is 𝐶𝑛
𝑚. Now if we follow previous problem then no. of

subsets containing 𝑎4 is 𝐶𝑛−1
𝑚−1.

Given, 𝐶𝑛
𝑚 = 𝑘.𝐶𝑛−1

𝑚−1 ⇒
𝑛!
⁄

𝑚!(𝑛−𝑚)! = 𝑘. (𝑛−1)!
⁄

(𝑛−1)!(𝑚−𝑛)! ⇒ 𝑛 = 𝑚𝑘.
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366. Let no. of subsets is 𝐶2𝑛+1
0 + 𝐶 − 12𝑛+1 + 𝐶2𝑛+2

2 + ⋯ + 𝐶2𝑛+1
𝑛 = 𝑁 .

From binomial theorem we know that 𝐶2𝑛+1
0 + 𝐶 − 12𝑛+1 + 𝐶2𝑛+2

2 + ⋯ + 𝐶2𝑛+1
2𝑛+ =

22𝑛+1. We also know that 𝐶𝑛
𝑟 = 𝐶𝑛

𝑛−𝑟.

∴ 2𝑁 = 22𝑛+1 ⇒ 𝑁 = 22𝑛.

367. Total no. of subsets is 2𝑛. Half of these will contain even no. of elements i.e. 2𝑛−1.

368. When 𝑥 = 𝑛 + 1; 𝑥, 𝑦 can be chosen in 𝑛2 ways. When 𝑧 = 𝑛; 𝑥, 𝑦 can be chosen in
(𝑛 − 1)2 ways and so on.

Thus, total no. of ways is 12 + 22 + ⋯+ 𝑛2 = 𝑛(𝑛+1)(2𝑛+1)⁄
6 .

369. This is same as selecting 6 numbers from 1 to 9 (0 is excluded because if zero is
selected, that makes it the least and should be paced at the first place that makes it a
5 digit number) i.e. 𝐶9

6 = 84.

370. If 𝑦 = 𝑛 then 𝑥 can take 𝑛 − 1 values from 1 to 𝑛 − 1 and 𝑧 can take 𝑛 + 1 values
from 0 to 𝑛 + 1. 𝑦 can vary between 2 to 9.

Hence, required answer is 
9
∑
2
(𝑛 −) (𝑛 + 1) = 276.

371. 𝑥1 < 𝑥2 ≤ 𝑥3 < 𝑥4 < 𝑥5 ≤ 𝑥6 can be broken into four cases. These are 𝑥1 < 𝑥2 <
𝑥3 < 𝑥4 < 𝑥5 < 𝑥6, 𝑥1 < 𝑥2 = 𝑥3 < 𝑥4 < 𝑥5 < 𝑥6, 𝑥1 < 𝑥2 < 𝑥3 < 𝑥4 < 𝑥5 = 𝑥6, and
𝑥1 < 𝑥2 = 𝑥3 < 𝑥4 < 𝑥5 = 𝑥6.

Thus, required no. of numbers is 𝐶9
6 + 𝐶9

5 + 𝐶9
5 + 𝐶9

4 = 𝐶11
6 .

372. First we consider numbers starting with 12. Rest of the 4 positions can be filled in
𝐶7
4 = 35 ways. Next we consider 13. In this case we can fill remaining places in 𝐶6

4 = 15
ways. Next we consider 14, which gives us 𝐶5

4 = 5 numbers. Next we choose 15, which
gives us 𝐶4

4 = 1 number. Next we have 23, which gives us 𝐶6
4 = 15. Till now we have

71 numbers.

So 72nd number will be 245678 and the sum of the digits is 32.

373. For a radical center 3 circles are required. The total no. of radical centers is 𝐶𝑛
3 . The

total no. of radical axes is 𝐶𝑛
2 .

Thus, 𝐶𝑛
2 = 𝐶𝑛

3 ⇒ 𝑛 = 5.

374. No. of ways = No. of one-to-one mappings + No. of mappings in which 0 and 1 map
to the same element and 2 maps to a different element + 0 maps to a different element
and 1 and 2 maps to same element + No. of constant functions

= 𝐶8
3 + 𝐶8

2 + 𝐶8
2 + 𝐶8

1 = 𝐶10
3 .

375. We can choose 0 to 𝑛 objects from 𝑛 identical objects in 1 way. However, we can choose
from 0 to 𝑛 objects from 2𝑛 different objects in 𝐶2𝑛

0 , 𝐶2𝑛
1 , … , 𝐶2𝑛

𝑛 .
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We know that 𝐶2𝑛
0 + 𝐶2𝑛

1 + ⋯+ 𝐶2𝑛
𝑛 + 𝐶𝑛+1 + ⋯+ 𝐶2𝑛

2𝑛 = 22𝑛

⇒ 𝐶2𝑛
0 + 𝐶2𝑛

1 + ⋯+ 𝐶2𝑛
𝑛 = 22𝑛−1 + 𝐶2𝑛

𝑛 .

376. Let the no. of players be 𝑛. For 𝑛 − 2 participants no. of games would be 𝐶𝑛−2
2 .

The two players played 3 games each, therefore, 𝐶𝑛−2
2 + 6 = 84 ⇒ (𝑛−2)(𝑛−3)
⁄

2 = 78 ⇒
𝑛2 − 5𝑛 − 150 = 0 ⇒ 𝑛 = 15

377. For 1 digit no. we have 𝐶 − 19 numbers. For 2 digits, we have 𝐶9
2 and so on. So the

total no. of numbers is 29 − 1.

378. There is a total of 8! ways possible. For each legal way we can reorder within each
column in 3!, 2! and 3! ways to obtain any of the 8! orderings (legal or illegal). Thus,
the number of ways to shoot the targets is 8!

⁄

3!3!2! = 560.

379. Consider a vertex 𝐴. Suppose 𝐴 is not a vertex of hexagon. Arrange nine balls in
the form of a circle of which one is 𝐴. We choose six out of nine gaps in which to place
a green ball(a vertex of hexagon) to ensure that no two green balls are adjacent(this
ensures that no side of hexagon coincides with quindecagon). Now we label the vertics
in alphabetical order as we go clockwise around the circle. There are 𝐶9

6 ways to do
this.

Now suppose 𝐴 is a vertex of hexagon. We color it green. We arrange nine blue balls
around 𝐴 for form a circle which includes this ball. Doing this creates 10 gaps in which
to place green balls but two of them are adjacent to 𝐴, leaving 8 gaps. We can choose 5
out of the remaining 8 in 𝐶8

5 ways.

Thus, total no. of hexagons possible is 𝐶9
6 + 𝐶8

5.

380. Required no. of triplets = No. of triplets without repetition − No. of triplets with
repetition = 𝑛3 − 𝑛(𝑛 − 1)(𝑛 − 2) = 3𝑛2 − 2𝑛.

381. Maximum can be chosen in 𝑚 ways, and minimum can be chosen in 𝑚− 1 ways or
vice-versa. Then we havev 𝑛 − 5 no. remaining of which 𝑚− 2 are to be chosen with
repetition, which can be done in (𝑛 − 5)𝑚−2.

Thus, required answer is 𝑚(𝑚− 1)(𝑛 − 5)𝑚−2.

382. First rook can be places in 82 ways. Then second can be places in 72 and so on.
However, the rooks are identical so no. of ways is (8!)

2
⁄

8! = 40,320.

383. First position can be filled in 3 ways, and rest in 2. Thus, no. of words is 3.26 = 192.

384. Since we have to find numbers, which are not equivalent we need to consider com
binations and not permutations because permutations will give equivalent numbers.

When all digits are different; no. of numbers is 𝐶10
5 . When 3 digits are different, and 2

digits are identical; no. of numbers is 𝐶10
1 × 𝐶9

3. When 2 digits are different, and 3
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digits are identical; no. of number is 𝐶10
1 × 𝐶9

2. Similarly, when 4 digits are identical,
and fifth is different; no. of numbers is 𝐶10

1 ×𝐶9
1. When 2 pairs of 2 digits are identical,

and fifth is different; no. of numbers is 𝐶10
1 × 𝐶9

1 × 𝐶8
1. When 3 digits are identical,

and 2 digits are also identical but a different digit; no. of numbers is 𝐶10
1 × 𝐶9

1.

Adding these we get desired answer.

385. Let the 𝑛 objects be 𝑜1, 𝑜2, 𝑜3, … , 𝑜𝑛.

Total no. of ways of selecting three objects so that no two of them are consecutive =
Total no. of ways of selecting three objects − No. of ways of selecting three consecutive
objects − No. of ways of selecting three objects in which two are consecutive and one
is separate

Total no. of ways of selecting 3 objects out of 𝑛 is 𝐶𝑛
3 .

The three consecutive objects can be selected in the pattern: 𝑜1𝑜2𝑜3,𝑜2𝑜3𝑜4,… ,𝑜𝑛−1𝑜𝑛𝑜1,𝑜𝑛𝑜1𝑜2.
So no. of ways in which three consecutive objects can be selected is 𝑛.

Now we select two consecutive objects and one separated. We can pick 𝑜1𝑜2 and third
can be 𝑜4 to 𝑜𝑛−1. Now there can be 𝑛 such pairs. So no. of ways is 𝑛(𝑛 − 4).

Thus, required no. is 𝐶𝑛
3 − 𝑛 − 𝑛(𝑛 − 4) = 𝑛
⁄

6 (𝑛 − 4)(𝑛 − 5).

386. Let us seat the 18 persons in 17! ways. Now we seat the two brothers around a person
in 2! ways. Now there are 18 persons around which the two brothers can be seated.
Thus, total no. of ways is 2.18!.

387. A cube can be rotated into 6 × 4 = 24 configurations (i.e. the one face can be any one
of the 6, and then there are 4 ways to rotate it that keeps that face red)

So number of ways of painting the cube is 6!⁄24 = 30.

388. 𝑛 things can be arranged in circular fashion in (𝑛 − 1)! ways. However, 𝑟 things are
alike so like linear permutations we have required answer as (𝑛−1)!⁄

𝑟! .

389. 52 cards among 4 players is a distribution problem. The answer according to formula is
52!
⁄

(13!)4.

52 cards in 4 groups is a division problem. The answer according to formula is 52!
⁄

(13!)4 4!.

390. There are two mutually exclusive cases. In first case, 2 children get none, one child gets
three and remaining get one each. In second case, 2 chidlren get none, two get two toys
each and remaining get one each.

In first case, no. of ways is 10!
⁄

2!3!7! .10!, and in second case it is 10!
⁄

2!(2!)2 2!6! 10!.
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391. There are three possible distributions. When divided in 4, 2, 1 way; the no. of ways
is 7!
⁄

4!2!1! .3! = 630. When divided in 2, 2, 3 way; the no. of ways is 7!
⁄

2!2!3! .
1⁄
2! .3! = 630.

When divided in 3, 3, 1 way; the no. of ways is 7!
⁄

(3!)2 .
1⁄
2! .3! = 420.

Thus, total no. of ways is 1680.

392. No. of ways of distributing 15 things in groups of 8, 4 and 3 is 15!
⁄

8!4!3!.

393. Required no. of ways according to formula is 8!
⁄

3!3!2!2!2! .2! =
8!
⁄

(3!)2 .2!.

394. 3𝑛 things can be distributed among 3 persons in 3𝑛!
⁄

(𝑛!)3 = 𝑘 ways. These can be put in 3

groups in 3𝑛!
⁄

(𝑛!)3 .3! =
𝑘⁄
3! ways.

395. No. of ways of giving all prizes to one person is 𝐶𝑚
1 . Total no. of ways giving prizes

is 𝑚𝑛. Thus, required answer is 𝑚𝑛−𝑚 = 𝑚𝑛−1(𝑚− 1).

396. Clearly, one child out of 𝑛 − 1 will get 2 toys. 1 child can be left out in 𝑛 ways. The
extra toy can be chosen in 𝑛 ways. Remaining 𝑛 − 1 toys can be distributed among
𝑛 − 1 children in (𝑛 − 1)! ways. However, if the child getting 2 toys gets toy 𝐴 as
the ‘extra’ toy and toy 𝐵 as the ‘ordinary’ toy, this is the same as if this child gets
toy 𝐵 as the extra toy and toy 𝐴 as the ordinary toy. So we have counted 2𝑥 as many
combinations as we need.

So number of ways is 𝑛 × 𝑛 × (𝑛 − 1)× (𝑛−1)!⁄
2 = 𝑛!𝐶𝑛

2 .

397. Any of the 𝑥𝑖s can have a value of 0 through 8 to satisfy the sum i.e. if one of these
have the value of 8 remaining four will have a value of 0. Thus, it is an arrangement of
12 objects, 8 of which are of one type, and 4 of which are of another type.

Total no. of such arrangements is 12!⁄8!4! = 495.

398. Following like previous problem 𝑥𝑖s can occupy value from 1 to 4 i.e. if one of these
have the value of 4 remaining four will have value of 1. Thus, it is an arrangement of 7
objects, 4 of which are of one type, and 3 of another type.

Total no. of such arrangements is 7!
⁄

4!3! = 35.

399. Let 𝑥1 = −2 + 𝑥′1, 𝑥2 = 1 + 𝑥′2, 𝑥3 = 2 + 𝑥′3. Then, we can rewrite the given equation
as 𝑥′1 + 𝑥′2 + 𝑥′3 + 𝑥4 = 13, where 𝑥′1, 𝑥′2, 𝑥′3, 𝑥4 ≥ 0.

Thus, no. of integral solutions is 16!
⁄

13!3! = 560.

400. Let 𝑢 = 𝑥 − 1, 𝑣 = 𝑦 − 2, 𝑤 = 𝑧 − 3, then 𝑢, 𝑣, 𝑤 ≥ 0.

Thus, we have 𝑢+𝑣+𝑤+𝑡 = 23. Thus, total no. of solutions is 𝐶23+4−1
4−1 = 𝐶26

3 = 2600.

401. We can write the given equations as 𝑥1 + 𝑥2 + 𝑥3 = 5, and 𝑥4 + 𝑥5 = 15.
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The no. of solutions of the given system of equations is combinaiton of the solutions of
these two equations, which is 𝐶16

1 × 𝐶7
2 = 336.

402. Let 𝑥 − 1, 𝑥2, 𝑥3, 𝑥4 be the no. of red, black, white, and yellow balls selected by the
child respectively. No. of ways to select 4 balls is equal to number of integeral solutions
of 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 4. Clearly, max(𝑥𝑖) = 5 − 𝑖.

Number of ways to select balls is coeff. of 𝑥4 in (1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4)(1 + 𝑥 + 𝑥2 +
𝑥3)(1 + 𝑥+ 𝑥2)(1 + 𝑥) = coeff. of 𝑥4 in (1 − 𝑥5)(1 − 𝑥4)(1 − 𝑥3)(1 − 𝑥2)(1 − 𝑥)−4

= coeff. of 𝑥4 in (1 − 𝑥2 − 𝑥3 − 𝑥4)(1 − 𝑥)−4 = coeff. of 𝑥4 in (1 − 𝑥)−4− coeff. of 𝑥2
in (1 − 𝑥)−4− coeff. of 𝑥 in (1 − 𝑥)−4− constant term in (1 − 𝑥)−4

= 𝐶7
4 − 𝐶5

2 − 𝐶4
1 − 𝐶3

0 = 20.

403. If the student gets 60% marks in two papers then he needs to score only 30% in the
third to fulfill the criterion of 150 marks.

Thus, the equaiton becomes 𝑥1 + 𝑥2 + 𝑥3 = 150, where 60 ≤ 𝑥1 ≤ 100, marks scored
in first paper, 60 ≤ 𝑥2 ≤ 100, marks scored in second paper, and 0 ≤ 𝑥3 ≤ 30, marks
scored in third paper.

Thus, no. of ways of scoring 150 marks is coeff. of 𝑥150 in (𝑥60 + 𝑥61+⋯+𝑥100)2(1+
𝑥 + 𝑥2 + ⋯+ 𝑥30)

= coeff. of 𝑥30 in (1 + 𝑥 + 𝑥2 + ⋯ + 𝑥40)2(1 + 𝑥 + 𝑥2 + ⋯ + 𝑥30) = coeff. of 𝑥30 in
(1 − 𝑥)−3 = 𝐶30+3−1

3−1 = 𝐶32
2 .

However, the two papers can be selected in 𝐶3
2 ways. Thus, reuqired answer is 𝐶3

2 ×𝐶32
2 .

404. The equation is 𝑥1 + 𝑥2+⋯+𝑥8 = 30, where 𝑥𝑖 is the marks allotted in the 𝑖th paper.
Also, from question 2 ≤ 𝑥𝑖 ≤ 16.

No. of ways is coeff. of 𝑥30 in (𝑥2 + 𝑥3 + ⋯+ 𝑥16)8 = Coeff. of 𝑥14 in (1−𝑥
15⁄

1−𝑥 )
8

= coeff. of 𝑥14 in (1 − 𝑥)−8 = 𝐶21
14 = 116,280.

405. Let 𝑥1, 𝑥2, 𝑥3, and 𝑥4 be the marks obtained in paper 1, 2, 3, and 4 respectively. Given
that the cadidate needs 3𝑛 marks.

Thus, 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 3𝑛. Thus, no. of ways to get 3𝑛 marks is

= coeff. of 𝑥3𝑛 in (1 + 𝑥 + 𝑥2 + ⋯+ 𝑥𝑛)3(1 + 𝑥 + 𝑥2 + ⋯+ 𝑥2𝑛)

= coeff. of 𝑥3𝑛 in (1 − 𝑥𝑛+1)3(1 − 𝑥2𝑛+1)(1 − 𝑥)−4

= coeff. of 𝑥3𝑛 in (1 − 𝑥)−4 − 3. coeff. of 𝑥2𝑛−1 in (1 − 𝑥)−4− coeff. of 𝑥𝑛−1 in
(1 − 𝑥)−4 + 3. coeff. of 𝑥𝑛−2 in (1 − 𝑥)−4

= 𝐶3𝑛+3
3 − 3𝐶2𝑛+2

3 − 𝐶𝑛+2
3 + 3𝐶𝑛+1

3 = (𝑛+1)(5𝑛2+10𝑛+6)
⁄

2 .
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406. Let 𝑥1, 𝑥2, 𝑥3, … , 𝑥7 be the scores scored in seven shots. Clearly, 𝑥𝑖 is an integer
between 0 and 5, where 1 ≤ 𝑖 ≤ 7, and 𝑖 ∈ ℕ. Thus,

𝑥1 + 𝑥2 + ⋯+ 𝑥7 = 30, and hence we have following as answer

Coeff. of 𝑥30 in (1 + 𝑥 + 𝑥2 + ⋯+ 𝑥5)7 = 420.

407. Number of non-negative integral solutions of the given equation = Coeff. of 𝑥20 in
(1 − 𝑥)−3(1 − 𝑥4)−1 = 536.

408. No. of ways of distributing 𝑛 things among 𝑟 people, where anyone can get any number
of thigs is 𝐶𝑛+𝑟−1

𝑟−1 .

Hence, the answer is 𝐶13
3 = 286.

409. Given, 𝑥 + 𝑦 + 𝑧 = 100, where 𝑥, 𝑦, 𝑧 are positive integers i.e. 𝑥, 𝑦, 𝑧 ≥ 1.

Let 𝑎 = 𝑥 − 1, 𝑏 = 𝑦 − 1, 𝑐 = 𝑧 − 1, then 𝑎 + 𝑏 + 𝑐 = 97. Now following like previous
problem, no. of solutions is 𝐶97+3−1

3−1 = 4851.

410. Let 𝑎 = 𝑥1 + 5, 𝑏 = 𝑥2 + 5, 𝑐 = 𝑥3 + 5, then 𝑎 + 𝑏 + 𝑐 = 15. No. of solutions of this
solution is 𝐶15+3−1

3−1 = 𝐶17
2 = 136.

411. Let 𝑎 = 𝑥+ 1, 𝑏 = 𝑦 + 1, 𝑐 = 𝑧 + 1, 𝑑 = 𝑡 + 1 ⇒ 𝑎+ 𝑏 + 𝑐 + 𝑑 = 24, where 𝑎, 𝑏, 𝑐, 𝑑 ≥ 0.
No. of solutions of this is 𝐶24+4−1

4−1 = 𝐶27
3 .

412. Let 𝑥 = 𝑎+ 3, 𝑦 = 𝑏 − 1, then 𝑥, 𝑦 ≥ 0. Thus, 𝑥 + 𝑦 + 𝑐 + 𝑑 + 𝑒 = 24, and hence, no. of
solutions of this equation is 𝐶28

4 .

413. Let 𝑑 be the c.d. of the A.P., then 𝑎 = 𝑏 − 𝑑, 𝑐 = 𝑏 + 𝑑 ⇒ 𝑏 = 7 ⇒ 𝑎 + 𝑐 = 14, where
𝑎, 𝑏 ≥ 1.

Let 𝑥 = 𝑎 − 1, 𝑦 = 𝑐 − 1 ⇒ 𝑥 + 𝑦 = 12, where 𝑥, 𝑦 ≥ 0.

No. of solutions of this equation is 𝐶12+2−1
2−1 = 𝐶13

1 = 13.

414. Let 𝑎 = 2𝑘 + 1, 𝑏 = 2𝑙 + 1, 𝑐 = 2𝑚 + 1, 𝑑 = 2𝑛 + 1, where 𝑘, 𝑙, 𝑚, 𝑛 ∈ ℕ. Then,
𝑘 + 𝑙 +𝑚+ 𝑛 = 8.

No. of solutions of this equation is 𝐶11
3 .

415. Given, 𝑥 + 𝑦 + 3𝑧 = 33 ⇒ 𝑥 = 𝑦 = 33 − 3𝑧.

If 𝑧 = 0, 𝑥 + 𝑦 = 33, then no. of solutions is 𝐶33+2−1
2−1 = 𝐶34

1 = 34.

If 𝑧 = 1, 𝑥 + 𝑦 = 30, then no. of solutions is 𝐶30+2−1
2−1 = 𝐶31

1 = 31.

If 𝑧 = 2, 𝑥 + 𝑦 = 27, then no. of solutions is 𝐶27+2−1
2−1 = 𝐶28

1 = 28.

…

If 𝑧 = 11, 𝑥 + 𝑦 = 0, then no. of solutions is 𝐶2−1
2−1 = 𝐶1

1 = 1.

Thus, total no. of solutions is 1 + 4 + 7 + ⋯+ 28 + 31 + 34 = 210.
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416. Let 𝑎 = 𝑥 − 1, 𝑏 = 𝑦 − 1, 𝑐 = 𝑧 − 1, then 3𝑎 + 𝑏 + 𝑐 = 22 ⇒ 𝑏 + 𝑧 = 22 − 3𝑎.

If 𝑎 = 0, 𝑏 + 𝑐 = 22, then no. of solutions is 𝐶22+2−1
2−1 = 𝐶23

1 .

If 𝑎 = 1, 𝑏 + 𝑐 = 19, then no. of solutions is 𝐶19+2−1
2−1 = 𝐶20

1 .

If 𝑎 = 2, 𝑏 + 𝑐 = 16, then no. of solutions is 𝐶16+2−1
2−1 = 𝐶17

1 .

…

If 𝑎 = 7, 𝑦 + 𝑧 = 1, then no. of solutions is 𝐶1+2−1
2−1 = 𝐶2

1.

Thus, total no. of solutions is 2 + 5 + 8 + ⋯+ 23 = 100.

417. Given, 𝑎+𝑏+𝑐 ≤ 8, where 𝑎, 𝑏, 𝑐 ≥ 1. Let 𝑥 = 𝑎+1, 𝑦 = 𝑏+1, 𝑧 = 𝑐+1 ⇒ 𝑥+𝑦+𝑧 ≤ 5,
where 𝑥, 𝑦, 𝑧 ≥ 0.

No. of solutions of this equation is 
5
∑
𝑖=0

𝐶𝑖+3−1
3−1 = 𝐶7

2 + 𝐶6
2 + 𝐶5

2 + 𝐶4
2 + 𝐶3

2 + 𝐶2
2 =

21 + 15 + 10 + 6 + 3 + 1 = 56.

418. Given, 𝑥 + 𝑦 + 𝑧 + 𝑤 ≤ 7. No. of solutions of this equation is 
7
∑
𝑖=0

𝐶𝑖+4−1
4−1

= 𝐶3
3 +𝐶4

3 +𝐶5
3 +𝐶6

3 +𝐶7
3 +𝐶8

3 +𝐶9
3 +𝐶10

3 = 1+4+10+20+35+56+84+120 = 330.

419. Given, 𝑥 + 𝑦 + 𝑧 = 100. Since we have to find non-negative even integral we assume
𝑥 = 2𝑎, 𝑦 = 2𝑏, 𝑧 = 2𝑐, where 𝑎, 𝑏, 𝑐 ∈ ℕ.

Therefore, 𝑎 + 𝑏 + 𝑐 = 50. No. of solutions of this equation is 𝐶52
2 .

420. Proceeding like previous to previous problem, no. of solutions of this equation is
2
∑
𝑖=0

3𝐶𝑖+2
3 = 𝐶27

4 .

421. We have 15 < 𝑎 + 𝑏 + 𝑐 ≤ 20, where 𝑎, 𝑏, 𝑐 > 0. Let 𝑥 = 𝑎 − 1, 𝑦 = 𝑏 − 1, 𝑧 = 𝑐 − 1,
therefore, 18 < 𝑥 + 𝑦 + 𝑧 ≤ 23, where 𝑥, 𝑦, 𝑧 ≥ 0.

No. of solutions of this equation is 
23
∑
𝑖=18

𝐶𝑖+2
2 = 685.

422. Given, (𝑎 + 𝑏 + 𝑐)(𝑝 + 𝑞 + 𝑟 + 𝑠) = 21. 21 can be factored in 4 ways. (1, 21) and
(3, 7). So we have four combinations. 𝑎 + 𝑏 + 𝑐 = 1, 𝑝 + 𝑞 + 𝑟 + 𝑠 = 21 is first pair;
𝑎 + 𝑏 + 𝑐 = 21, 𝑝 + 𝑞 + 𝑟 + 𝑠 = 1 is second pair; 𝑎 + 𝑏 + 𝑐 = 3, 𝑝 + 𝑞 + 𝑟 + 𝑠 = 7 is third
pair; and 𝑎 + 𝑏 + 𝑐 = 7, 𝑝 + 𝑞 + 𝑟 + 𝑠 = 3 is final and fourth pair.

Now, the no. of solutions of individual equations when multiplied with its counterpart
will give the soluion, which is 𝐶5

2 .𝐶
10
3 + 𝐶9

2 .𝐶
6
3 + 𝐶23

2 .𝐶4
1 + 𝐶24

3 .𝐶3
1.

423. Clearly, 𝑥 + 𝑦 + 𝑧 = 𝑛, and the no. of solutions in this case is 𝐶𝑛+2
2 = (𝑛+1)(𝑛+2)
⁄

2 .
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424. Let 𝐴, 𝐵, 𝐶 donate 𝑎, 𝑏, 𝑐 coins. Then 𝑎 + 𝑏 + 𝑐 = 10, where 𝑎, 𝑏, 𝑐 > 0, and 𝑎 ≤ 6, 𝑏 ≤
7, 𝑐 ≤ 8.

Thus, required no. of ways = coeff. of 𝑥10 in (𝑥+ 𝑥2 +⋯+𝑥6)(𝑥+ 𝑥2 +⋯+𝑥7)(𝑥+
𝑥2 + ⋯+ 𝑥8)

= coeff. of 𝑥7 in (1 + 𝑥 + ⋯+ 𝑥5)(1 + 𝑥 + ⋯+ 𝑥6)(1 + 𝑥 + ⋯+ 𝑥7)

= coeff. of 𝑥7 in (1−𝑥6)(1−𝑥7)(1−𝑥8)(1−𝑥)−3 = coeff. of 𝑥7 in (1−𝑥6−𝑥7)(1+
𝐶3
1𝑥 + 𝐶4

2𝑥2 + 𝐶5
2𝑥

3 + ⋯+ 𝐶9
2𝑥

7)

= 𝐶9
2 − 1 = 35.

If 𝑎, 𝑏, 𝑐 ≥ 0 the solution is coeff. of 𝑥10 in (1 + 𝑥+⋯+ 𝑥6)(1 + 𝑥+⋯+ 𝑥7)(1 + 𝑥+
⋯+ 𝑥8)

= coeff. of 𝑥10 in (1− 𝑥7)(1− 𝑥8)(1− 𝑥9)(1− 𝑥)−3 = coeff. of 𝑥10 in (1− 𝑥7− 𝑥8−
𝑥9)(1 + 𝐶3

1𝑥 + 𝐶4
2𝑥2 + 𝐶5

2𝑥
3 + ⋯+ 𝐶12

1 𝑥10)

= 𝐶12
2 − 𝐶5

3 − 𝐶4
2 − 𝐶3

1 = 47.

Similarly, coeff. of 𝑥15 will give us 𝐶8
2 as the answer.

425. Total marks is 250. The student must score 60% i.e. 150 marks.

Thus, required answers = coeff. of 𝑥150 in (1 + 𝑥 + ⋯+ 𝑥50)3(1 + 𝑥 + ⋯+ 𝑥100)

= coeff. of 𝑥150 in (1 − 𝑥51)3(1 − 𝑥101)(1 − 𝑥)−4 = coeff. of 𝑥150 in (1 − 𝑥)−4 - 3.
coeff. of 𝑥99 in (1 − 𝑥)−4 + 3. coeff. of 𝑥48 in (1 − 𝑥)−4− coeff. of 𝑥49 in (1 − 𝑥)−4

= 𝐶153
150 − 3.𝐶102

99 + 3.𝐶51
48 − 𝐶52

49 = 110,551.

426. Clearly, 210 ≤ 𝑥 + 𝑦 + 𝑧 ≤ 300, where 𝑥, 𝑦, 𝑧 are marks scored in Physics, Chemistry,
and Mathematics.

If 𝑥 + 𝑦 + 𝑧 = 210, then no. of solutions is 𝐶211
2 and so on.

So the answer is 
302
∑
𝑖=211

𝐶𝑖
2.

427. Given, 𝑎 + 𝑏 + 𝑐 + 𝑑 = 6, where 𝑎, 𝑏, 𝑐, 𝑑 are the values of the up face of the four dices.

Clearly, 1 ≤ 𝑎, 𝑏, 𝑐, 𝑑 ≤ 6. Let 𝑥 = 𝑎 − 1, 𝑦 = 𝑏 − 1, 𝑧 = 𝑐 − 1, 𝑡 = 𝑑 − 1, then

𝑥 + 𝑦 + 𝑧 + 𝑡 = 2, where 𝑥, 𝑦, 𝑧, 𝑡 ≥ 0.

No. of solutions of the above equation is 𝐶4+2−1
3 = 10.

428. Let the digits be 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , then clearly 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ≥ 0. From quesiton

𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 = 5, which has 𝐶10
5 = 252 solutions. However, this also includes

numbers from 1 to 99. Then, 𝑎 + 𝑏 = 5, then solution of this euqation is 𝐶6
1 = 6.

Thus, required answer is 246.
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429. Let the scores be 𝑎, 𝑏, 𝑐 in three throws of the dice. According to question, 𝑎+𝑏+𝑐 = 14,
where 1 ≤ 𝑎, 𝑏, 𝑐 ≤ 6.

Let 𝑥 = 𝑎 − 1, 𝑦 = 𝑏 − 1, 𝑧 = 𝑐 − 1, then 𝑥 + 𝑦 + 𝑧 = 11.

Thus, required answer is coeff. of 𝑥11 in (1 + 𝑥+ 𝑥2 +⋯+ 𝑥5)3 = (1 − 𝑥6)3(1 − 𝑥)−3

= 𝐶13
2 − 3.𝐶7

2 = 15.

430. The possible triplets are (1, 3, 10), (1, 2, 15), (2, 3, 5), (1, 5, 6), (1, 1, 30). Taking
permutations, we have 3! + 3! + 3! + 3! + 3!⁄

2! = 27.

431. The factors are 2, 3, 7, 5, 5. Now, 2, 3, 5 can belong to one of 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, thus we have 5
ways to put these. Both the fives can belong to one of five variables in 5 ways, and to
two of five variabbles in 𝐶5

2 = 10 ways.

Thus, total no. of ways of distributing the factors is 5 × 5 × 5 × (5 + 10) = 1875.

432. For 𝑦 = 1, there is only one solution. For 𝑦 = 2, 3, 5 there is only one factor, which can
be put in 3 ways to one of 𝑥1, 𝑥2, 𝑥3. For 𝑦 = 6, 10, 15, there are two factors, which
can be put in 3 × 3 ways to the three variables. For 𝑦 = 30 there are three factors,
which can be put in 33 ways to three variables.

Adding these, we get 64 as desired answer.

433. The factors 𝑥𝑖 can be positive or negative, which gives us a factor of 210 for number of
solutions.

1080000 = 26 × 33 × 54. Let the powers of 2 among 𝑥𝑖s be 𝑎𝑖, then 
10
∑
𝑖=0

𝑎𝑖 = 6, which

gives us 𝐶15
9 = 𝐶15

6 solutions.

Let the powers of 3 among 𝑥𝑖s be 𝑏𝑖, then 
10
∑
𝑖=0

𝑏𝑖 = 3, which gives us 𝐶12
9 = 𝐶12

3

solutions.

Similarly, for powers of 5, we have 𝐶13
4 solutions.

Thus, total no. of solutions is 210𝐶15
6 𝐶12

3 𝐶13
4 .

434. Let 𝑟 be the number of zeros in 𝑥1, 𝑥2, … , 𝑥10, where 0 ≤ 𝑟 ≤ 9. There are 𝐶10
𝑟 ways

to choose zeros. Thus, the number of non-zero 𝑥𝑖 is 10 − 𝑟. When a positive integer 𝑎
is given, there are two non-zero 𝑥𝑖, which satisfy |𝑥𝑖| = 𝑎(one 𝑎 and another −𝑎).

The no. of solutions of 𝑎1 + 𝑎2 +…+ 𝑎10 = 100, where 𝑎𝑖 > 0 is given by 𝐶99
9−𝑟.

Thus, the answer is ∑9
𝑟=0 2

10−𝑟𝐶10
𝑟 𝐶99

9−𝑟.

435. Let 𝑟𝑛 denote the number of regions made by 𝑛 lines. Then, 𝑟0 = 1, 𝑟1 = 2, 𝑟2 = 4.
Consider that there are 𝑛 − 1 lines none of which are horizontal. Now we draw a
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horizontal line. The 𝑛 − 1 lines will cut the horizontal line in 𝑛 parts which will divide
the old regions in two parts generating 𝑛 new regions.

Thus, we can write 𝑟𝑛 = 𝑟𝑛−1 + 𝑛 ⇒ 𝑟𝑛 − 𝑟1 =
𝑛
∑
𝑛=2

𝑛 ⇒ 𝑟𝑛 = 1 + 𝑛(𝑛+1)
⁄

2 .

436. Let 𝑟𝑛 denote the number of regions made by 𝑛 circles. Then, 𝑟0 = 1, 𝑟1 = 2, 𝑟2 =
4, 𝑟3 = 8. Let 𝑛 − 1 circles create 𝑟𝑛−1 regions.

𝑛the circle will intersect with these 𝑛 − 1 circles at 2 points i.e. a total of 2(𝑛 − 1)
points dividing 𝑛th circle in 2(𝑛 − 1) arcs. Each arc will fall in some old region and
divide those regions in 2 parts, and thus generate 2(𝑛 − 1) new regions.

⇒ 𝑟𝑛 = 𝑟𝑛−1 + 2(𝑛 − 1), where 𝑛 ≥ 2 ⇒ 𝑟𝑛 = 𝑟1 +
𝑛
∑
𝑖=2

2(𝑖 − 1)⇒ 𝑟𝑛 = 𝑛2 − 𝑛 + 2.

437. The diagram is given below:

n
n - 21

1
2
2

2

n
n - 1

2
1

Let no. of ways be 𝑤𝑛, then 𝑤0 = 1, 𝑤1 = 1, 𝑤2 = 2. Let
𝑛 ≥ 2. We divide the board in two parts 𝐴 and 𝐵 depending
upon the domino placed at first place.

𝐴 : Those perfect covers in which there is a vertical domino
at first place as shown in figure.

𝐵 : Those perfect covers in which there are two horizontal
dominos at first place as shown in figure.

Now perfect covers in 𝐴 = perfect covers in 2(𝑛 − 1) board. ⇒ |𝐴| = 𝑤𝑛−1. Similarly,
|𝐵| = 𝑤𝑛−2.

⇒ 𝑤𝑛 = 𝑤𝑛−1 + 𝑤𝑛−2, which is Fibonacci sequence.

Now we will find the general solution using analysis which is a bit advanced, under
graduate math.

A power series of type ∑𝑎𝑛𝑥𝑛 has a radius of convergence 𝑅 ≥ 0 such that the series
is convergent if |𝑥| < 𝑅, and divergent if |𝑥| > 𝑅. If two power series ∑𝑎𝑛𝑥𝑛 and
∑𝑏𝑛𝑥𝑛 are such that they are equal for all values of 𝑥 in some interval (−𝑅, 𝑅) then
𝑎𝑛 = 𝑏𝑛.

Let 𝑎𝑛 denote the 𝑛the Fibonacci number and consider the power series 𝐹 (𝑥) =
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛. If this series converges in certain intereval (−𝑅, 𝑅) then we have following

relations for |𝑥| < 𝑅:

𝐹 (𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯

𝑥𝐹 (𝑥) = 𝑎0𝑥 + 𝑎1𝑥2 + 𝑎2𝑥3 + ⋯

𝑥2𝐹 (𝑥) = 𝑎0𝑥2 + 𝑎1𝑥3 + 𝑎2𝑥4 + ⋯
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Now this gives us 𝐹 (𝑥)− 𝑥𝐹 (𝑥)− 𝑥2𝐹 (𝑥) = 𝑎0 + (𝑎1 − 𝑎0)𝑥 ⇒ 𝐹 (𝑥) = 1
⁄

1−𝑥−𝑥2

Roots of the equation 𝑥2 − 𝑥 − 1 = 0 are 𝛼,𝛽 = 1±√


5⁄
2 , and hence

𝐹 (𝑥) = 1
⁄

𝛼 − 𝛽 (
𝛼
⁄

1 − 𝛼𝑥 −
𝛽
⁄

1 − 𝛽𝑥)

We also make use of another power series 𝑥
⁄

1−𝑥 = 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ for |𝑥| < 1

and we see that 𝑎𝑛 = 𝛼𝑛+1−𝛽𝑛+1
⁄

𝛼−𝛽 and hence we have general solution for Fibonacci
series.

438. Let 𝑚𝑛 be the minimum no. of moves that will transfer from one peg to the other peg
under given restrictions. By basic enumeration, we see that 𝑚1 = 1 and 𝑚2 = 3.

We first transfer 𝑛 − 1 smaller disks to peg 3 in 𝑚𝑛−1 moves. Then move the largest
disk to peg 2, and finally transfer 𝑛 − 1 disks from peg 3 to peg 2 using same 𝑚𝑛−1
moves.

Thus, 𝑚𝑛 = 2𝑚𝑛−1+1⇒𝑚𝑛+1 = 2(𝑚𝑛−1+1)= 2𝑛−1(𝑎1+1)= 2𝑛⇒𝑚𝑛 = 2𝑛−1.

439. Using the formulal for derangements 𝐷5 = 5![1 − 1⁄
1! +

1⁄
2! −

1⁄
3! +

1⁄
4! −

1⁄
5!] = 44.

440. Let 𝐴𝑘 be the set of integers from 1 to 1000, which are divisible by 𝑘. We have to find
𝑛(𝐴2 ∪ 𝐴3 ∪ 𝐴5).

𝑛(𝐴2) = ⌊1000⁄2 ⌋ = 500, 𝑛(𝐴3) = ⌊1000⁄3 ⌋ = 333, 𝑛(𝐴5) = ⌊1000⁄5 ⌋ = 200.

𝑛(𝐴2 ∩ 𝐴3) = ⌊1000⁄6 ⌋ = 166. Similarly, 𝑛(𝐴3 ∩ 𝐴5) = 66, 𝑛(𝐴1 ∩ 𝐴5) = 100, 𝑛(𝐴2 ∩
𝐴3 ∩ 𝐴5) = 33.

Hence, 𝑛(𝐴2 ∪ 𝐴3 ∪ 𝐴5) = 500 + 333 + 200 − 166 − 66 − 100 + 33 = 734.

Hence, numbers not divisible by given numbers is 1000 − 734 = 266.

441. There are seven persons altogether. No. of ways of arranging them around the table is
6!.

𝑛(𝐴) = when two Americans are together = 5! 2! = 240, 𝑛(𝐵) = when two Britishers
are together = 240.

⇒ 𝑛(𝐴 ∩ 𝐵) = 𝑛(𝐴)+ 𝑛(𝐵)− 𝑛(𝐴 ∩ 𝐵) = 384

Hence 𝑛( ̅𝐴 ∩ �̅�) = Total −𝑛(𝐴 ∪ 𝐵) = 336.

442. Let 𝐶 denote the selection of cards in which clubs are absent; 𝐷 denote the selection
of cards in which diamonds are absent; 𝐻 denote the selection of cards in which hearts
are absent; and, 𝑆 denote the selection of cards in which spades are absent. Then,

|𝐶| = |𝐷| = |𝐻| = |𝑆| = 𝐶39
5 , |𝐶 ∩ 𝐷| = … = 𝐶26

5 , |𝐶 ∩ 𝐷 ∩ 𝐻| = … = 𝐶13
5 and

|𝐶 ∩𝐷 ∩𝐻 ∩ 𝑆| = 0.
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∴ |𝐶 ∪𝐷 ∪𝐻 ∪ 𝑆| = 4.𝐶39
5 − 6.𝐶26

5 + 4.𝐶13
5 .

Hence, required answer is 𝐶52
5 − 4.𝐶39

5 + 6.𝐶26
5 − 4.𝐶13

5 .

443. Total no. of distributions when there are no conditions is 46. No. of distributions when
one box is empty is 𝐶4

1 .36; no. of distributions when two boxes are empty is 𝐶4
2 .26;

and, no. of distributions when three boxes are empty is 𝐶4
3 .16.

Thus, required no. is 46 − 𝐶4
1 .36 + 𝐶4

2 .26 − 𝐶4
3 = 2260.

Similarly, when exactly one box is empty is 𝐶4
1(36 − 𝐶3

1 .2
6 + 𝐶3

2 ) = 2160.

444. Total no. of ways without any condition is 102 = 100. Let 𝑏 − 𝑎 ≥ 6 ⇒ 1 ≤ 𝑎 < 𝑏 ≤
10 ⇒ 1 ≤ 𝑎 < 𝑏 − 5 ≤ 5 ⇒ 𝐶5

2 = 10.

Similarly, 𝑎 − 𝑏 ≥ 6 will give 10 ways. Thus, required answer is 100 − 10 − 10 = 80.

445. Let 𝐻, 𝐼 and 𝐷 represent the set of people who read The Hindu, Indian Express and
Deccan Herald, respectively.

According to question, |𝐻 ∩ 𝐼 ∩ 𝐷| ≤ 150, |𝐻| = 70, |𝐼 | = 80, |𝐷| = 50, |𝐻 ∩ 𝐼 | =
30, |𝐻 ∩𝐷| = 20, |𝐼 ∩ 𝐷| = 25.

|𝐻 ∩ 𝐼 ∩ 𝐷| = |𝐻|+ |𝐼 |+ |𝐷|− |𝐻 ∩ 𝐼 |− |𝐼 ∩ 𝐷|− |𝐻 ∩𝐷|+ |𝐻 ∩ 𝐼 ∩ 𝐷|

In order to maximize |𝐻 ∩ 𝐼 ∩ 𝐷| we have to maximize |𝐻 ∪ 𝐼 ∪ 𝐷| i.e. 150.

Hence, |𝐻 ∩ 𝐼 ∩ 𝐷| = 25.

446. Let 𝑛(𝑆) be 100. ∴𝑛(𝑆) ≥ 𝑛(𝐸 ∪𝐻) = 𝑛(𝐸)+𝑛(𝐻)−𝑛(𝐸 ∩𝐻)⇒ 𝑛(𝐸 ∩𝐻) ≥ 45.

Similarly, 𝑛(𝑆) ≥ 𝑛(𝐿 ∪ 𝐴) = 𝑛(𝐿)+ 𝑛(𝐴)− 𝑛(𝐿 ∩ 𝐴)⇒ 𝑛(𝐿 ∩ 𝐴) ≥ 65.

𝑛(𝑆) = 100 ≥ 𝑛[(𝐸 ∩𝐻 ) ∪ (𝐿 ∩ 𝐴)]⇒ 𝑛(𝐸 ∩𝐻 ∩ 𝐿 ∩ 𝐴) ≥ 10.

That is there is at least 10% of the people must have lost all four.

447. 𝐴∩𝐵 ⊂ 𝐴⇒ 𝑛(𝐴∩𝐵) ≤ 𝑛(𝐴)⇒ 𝑑 ≤ 𝑎. Also, 𝑛(𝐴∩𝐵) ≤ 𝐵 ⇒ 𝑛(𝐴∩𝐵) ≤ 𝑛(𝐵)⇒
𝑑 ≤ 𝑏.

𝑛(𝐴 ∪ 𝐵) = 𝑛(𝐴)+ 𝑛(𝐵)− 𝑛(𝐴 ∩ 𝐵)⇒ 𝑐 + 𝑑 = 𝑎 + 𝑏.

448. When there is no restriction and repetition allowed, each of 𝑛 digits can be filled in 3
ways using one of 1, 2 or 3.

Thus, no. of ways is 3𝑛.

The number of 𝑛-digit numbers all of whose digits are 1, 2 or 3 is 3𝑛. The number
of 𝑛-digit all of whose digits are 1 and 2, each occurring at least once is 2𝑛 − 2.

Thus, total no. of digits is 3𝑛 − 3(2𝑛 − 2)− 3 = 3𝑛 − 3.2𝑛 + 3.
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449. 1060 = 260×560, therefore, 𝑛(𝐴) = 612. 2050 = 2100×550, therefore, 𝑛(𝐵) = 101×51,
and similarly, 𝑛(𝐶) = 413.

Clearly, 𝑛(𝐴∩𝐵) = 61× 51, where 61 is the no. of ways of selecting 2 and 51 is the no.
of ways of selecting 5. Similarly, 𝑛(𝐵∩𝐶) = 𝑛(𝐴∩𝐶) = 412 and 𝑛(𝐴∩𝐵∩𝐶) = 412.

∴𝑛(𝐴 ∩ 𝐵 ∩ 𝐶) = 𝑛(𝐴) + 𝑛(𝐵) + 𝑛(𝐶) − 𝑛(𝐴 ∩ 𝐵) − 𝑛(𝐴 ∩ 𝐵) − 𝑛(𝐵 ∩ 𝐶) +
𝑛(𝐴 ∩ 𝐵 ∩ 𝐶) = 73,001.

450. First we assign 3 for 𝑥1, and 7 for 𝑥3. Now the problem remains of assigning remaining
18 among 𝑥1, 𝑥2, and 𝑥3 such that 𝑥1 has at most 6, 𝑥2 at most 8, and 𝑥3 at most 10.

The number of ways of distributing 18 to these three is 𝐶18+3−1
3−1 = 𝐶20

2 = 190.

Let 𝑑1 be the set of distributions, where 𝑥1 gets at least 7; 𝑑2 be the set of distributions,
where 𝑥2 gets at least 9, and 𝑑3 be the set of distributions, where 𝑥3 gets at least 11.

|𝑑1| = 𝐶18−7+3−1
3−1 = 𝐶13

2 = 78, |𝑑2| = 𝐶18−9+3−1
3−1 = 𝐶11

2 = 55, and |𝑑3| =
𝐶18−11+3−1
3−1 = 𝐶9

2 = 36.

|𝑑1 ∩ 𝑑2| = 𝐶18−7−9+3−1
3−1 = 6, |𝑑2 ∩ 𝑑3| = 𝐶18−9−11+3−1

2 = 𝐶0
2 = 0, and |𝑑1 ∩ 𝑑3| = 1.

Also, |𝑑1 ∩ 𝑑2 ∩ 𝑑3| = 0 ⇒ |𝑑1 ∪ 𝑑2 ∪ 𝑑3| = 162.

So required no. of solutions is 190 − 162 = 28.

451. Let 𝐴𝑖 be the set of days on which 𝑖th friend is present, where 𝑖 = 1, 2, 3, … , 6.

Given, 𝑛(𝐴𝑖) = 7, and 𝑛(𝐴′𝑖) = 7. Also given, |𝐴𝑖 ∩ 𝐴𝑗| = 5, |𝐴𝑖 ∩ 𝐴𝑗 ∩ 𝐴𝑘| = 4, |𝐴𝑖 ∩
𝐴𝑗∩𝐴𝑘∩𝐴𝑙| = 3, |𝐴𝑖∩𝐴𝑗∩𝐴𝑘∩𝐴𝑙∩𝐴𝑚| = 2, and |𝐴1∩𝐴2∩𝐴3∩𝐴4∩𝐴5∩𝐴6| = 1,
where 𝑖, 𝑗, 𝑘, 𝑙, 𝑚 are distinct between 1 and 6.

∴ |𝐴1 ∪ 𝐴2 ∪ … ∪ 𝐴6| = 13. This is total no. of dinners, where at least one friend is
present.

Total no. of dinners is |𝐴𝑖|+ |𝐴′𝑖| = 14. Therefore, total no. of dinners, where I was
along is 1.

452. Let 𝑀𝑟 denote the set of morning rainy days, and 𝐴𝑟 be the set of afternoon rainy
days. Then 𝑀′𝑟 will represet clear mornings, and 𝐴′𝑟 will represnet clear afternoons.

Given, 𝑀𝑟 ∩ 𝐴𝑟 = 𝜙, 𝑀′𝑟 = 6, 𝐴′𝑟 = 5, and 𝑀𝑟 ∪ 𝐴𝑟 = 7. Also, given that 𝑀𝑟 and 𝐴𝑟
are disjoint sets, and 𝑛(𝑀𝑟) = 𝑑 − 6, 𝑛(𝐴𝑟) = 𝑑 − 5.

Applying PIE, we get 𝑛(𝑀𝑟 ∪ 𝐴𝑟) = 𝑛(𝑀𝑟)+ 𝑛(𝐴𝑟)− 𝑛(𝑀𝑟 ∩ 𝐴𝑟)⇒ 𝑑 = 9.

453. This is a straight problem of derangements. Applying the formula, we get

𝐷𝑛 = 𝑛![1 − 1⁄
1! +

1⁄
2! −

1⁄
3! + ⋯ + (−1)𝑛⁄

𝑛! ].

454. We can choose one number in 𝐶5
1 = 5 ways. Rest 4 numbers are a case of derangements,

which is 𝐷4 = 9.



Answers of Combinatorics 640

Thus, total no. of ways is 45.

455. First part is direct application of derangements. Using derangement formula, we have

𝐷5 = 5![1 − 1⁄
1! +

1⁄
2! −

1⁄
3! +

1⁄
4! −

1⁄
5!] = 44.

No. of ways to place 2 balls in correct box = Total no. of ways − No. of ways to place
all balls in wrong boxes − No. of ways to place 1 ball in correct box

= 5! − 44− No. of ways to place 1 ball in correct box

To put one ball in correct box we can choose the ball in 𝐶5
1 ways, and then apply

derangement formula for remaining 4 i.e. 𝐷4 = 9. So no. of ways to put one ball
correctly is same as previous problem i.e. 9 × 𝐶5

1 = 45.

Thus, required answer is 120 − 44 − 45 = 31.

456. First part is a direct derangement question. 𝐷6 = 6![1 − 1⁄
1! +

1⁄
2! − … + 1⁄

6!] = 265.

No. of ways to place at least 4 letters correctly = 4 letters placed correctly +5 letters
placed correctly +6 letters placed correctly = 𝐶6

4 × 1 + 0 + 1 = 16.

No. of ways to place at most 3 letters correctly = 6 letters placed correctly + 5 letters
placed correctly +4 letters placed correctly +3 letters placed correctly

= 1 + 0 + 𝐶6
4 + 𝐶6

3 .3![1 −
1⁄
1! +

1⁄
2! −

1⁄
3!] = 56.

457. Let 𝐴 denote the set of no. divisible by 2, 𝐵 by 3, and 𝐶 by 7.

𝑛(𝐴) = 50, 𝑛(𝐵) = 33, 𝑛(𝐶) = 14, 𝑛(𝐴 ∩ 𝐵) = 16, 𝑛(𝐴 ∩ 𝐶) = 7, 𝑛(𝐵 ∩ 𝐶) =
4, 𝑛(𝐴 ∩ 𝐵 ∩ 𝐶) = 2.

𝑛(𝐴 ∪ 𝐵 ∪ 𝐶) = 𝑛(𝐴)+ 𝑛(𝐵)+ 𝑛(𝐶)− 𝑛(𝐴 ∩ 𝐵)− 𝑛(𝐴 ∩ 𝐶)− 𝑛(𝐵 ∩ 𝐶)+ 𝑛(𝐴 ∩
𝐵 ∩ 𝐶) = 50 + 33 + 14 − 16 − 7 − 4 + 2 = 72.

∴ |𝐴 ∪ 𝐵 ∪ 𝐶| = 100 − 72 = 28.

458. Let 𝐴 denote the set of no. divisible by 2, 𝐵 by 3, and 𝐶 by 5.

𝑛(𝐴) = 250, 𝑛(𝐵) = 166, 𝑛(𝐶) = 100, 𝑛(𝐴 ∩ 𝐵) = 83, 𝑛(𝐴 ∩ 𝐶) = 50, 𝑛(𝐵 ∩ 𝐶) =
33, 𝑛(𝐴 ∩ 𝐵 ∩ 𝐶) = 16.

𝑛(𝐴 ∪ 𝐵 ∪ 𝐶) = 𝑛(𝐴)+ 𝑛(𝐵)+ 𝑛(𝐶)− 𝑛(𝐴 ∩ 𝐵)− 𝑛(𝐴 ∩ 𝐶)− 𝑛(𝐵 ∩ 𝐶)+ 𝑛(𝐴 ∩
𝐵 ∩ 𝐶) = 250 + 166 + 100 − 83 − 50 − 33 + 16 = 366

∴ |𝐴 ∪ 𝐵 ∪ 𝐶| = 500 − 366 = 134.

459. When least element is 3, remaining 2 can be chosen from 7 in 𝐶7
2 ways. When 7 is

greatest then remaining 2 can be chosen from 6 in 𝐶6
2 ways. No. of subsets satisfying

both conditions is 3 because elements remaining are 4, 5, 6.

Then from PIE, the answer is 𝐶6
2 + 𝐶7

2 − 3 = 33.
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460. Optional digits are 3, 4, 5, 6. Number of 𝑛-digit numbers made from 2, 3, 4, 5, 6, 7 is 6𝑛.

Number of 𝑛-digit numbers containing 3, 4, 5, 6, 7 is 5𝑛, and similarly for 2, 3, 4, 5, 6.

Number of 𝑛-digit numbers containing only 3, 4, 5, 6 is 4𝑛.

Thus, required answer is 6𝑛 − 2 × 5𝑛 − 4𝑛.

461. If the integer is of one digit then there are no repeated digits. If the integer is of two
digits then we can fill first position in 9 ways excluding 0, and second position in 9
ways excluding first digit; this gives us 81 integers. Similarly, for 3 digit integer we
have 648 digits wiithout repetition.

Thus, we have 738 integers without repetition.

462. No. of perfect squares is 104. No. of perfect cubes is 464. No. of fifth powers is 39.
Squares, which are also cubes is 21. Fifth powers, which are also squares is 6. Fifth
powers, which are also cubes is 2(excluding 15, which is already accounted for).

Thus, no. of such powers is 104 + 464 + 39 − 21 − 6 − 2 = 10474.

Thus, required answer is 108 − 10474 = 99,989,526

463. Zero letters can be chosen in 1 way. One letter can be chosen in 26 ways. Two
letters can be chosen in 262, and three in 263 ways. Similarly, digits can be chosen
in (1 + 10 + 102 + 103 + 104) ways.

Thus, no. of licenses which can be produced is (1+26+262+263).(1+10+102+103+
104). However, one of these contain neither a digits nor a letter i.e. it is empty, which is
not allowed. Hence, the answer is (1 + 26 + 262 + 263) .(1 + 10 + 102 + 103 + 104)− 1.

If 85 combinations of letters is not allowed then the answer would be (1 + 26 + 262 +
263 − 85) .(1 + 10 + 102 + 103 + 104).

464. 𝑀𝐴𝑇 caannot be spelled if only one of the letters or two of them is chosen. No. of
ways of chossing one letter is 𝐶3

1 = 3.

No. of ways in which any two can be chosen is 𝐶3
2(2

𝑘 − 2). Thus, 3 + 𝐶3
2(2

𝑘 − 2) =
93 ⇒ 𝐾 = 5.

465. 1040 = 240.540. Thus, it has 41 × 41 − 1 = 1680 factors. Factors of 2030 = 260.530 not
dividing 1040 have the form 2𝑚5𝑛 with 41 ≤ 𝑚 ≤ 60, and 0 ≤ 𝑛 ≤ 30 i.e. no. of such
numbers is 20.31 = 620.

466. Total no. of permutations is 7! = 5040. Let 𝐴 be the set of words in which ‘𝑏𝑒𝑔’ appear.
Treating it as one letter we have 𝑛(𝐴) = 5! = 120, and we have same for ‘𝑐𝑎𝑑’ i.e.
𝑛(𝐵) = 120, where 𝐵 is the set of words where ‘𝑐𝑎𝑑’ appears.

However, both can also come together, which is 𝑛(𝐴∩𝐵) = 3! = 6 by treating both of
them as one letter.

Thus, 𝑛(𝐴 ∪ 𝐵) = 120 + 120 − 6 = 234, and hence, 𝑛(𝐴 ∪ 𝐵) = 5040 − 234 = 4806.
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467. Total no. of permutations is 9!⁄2! = 181,440.

Let 𝐴 represent the set of words in which ‘𝐻𝐼𝑁’ comes together. Treating ‘𝐻𝐼𝑁’
as one letter, we have 𝑛(𝐴) = 7! permutations. Similarly, if we ‘𝐷𝑈𝑆’ treat as one,
and 𝐵 is the set in which it comes together,we have 𝑛(𝐵) = 7!⁄

2! permutations as 𝑁
comes twice. If 𝐶 is the corresponding set for ‘𝑇𝐴𝑁’ then 𝑛(𝐶) = 7!.

∴𝑛(𝐴 ∩ 𝐵) = 𝑛(𝐴 ∩ 𝐶) = 𝑛(𝐵 ∩ 𝐶) = 5! = 120, 𝑛(𝐴 ∩ 𝐵 ∩ 𝐶) = 3! = 6.

⇒ 𝑛(𝐴 ∪ 𝐵 ∪ 𝐶) = 𝑛(𝐴) + 𝑛(𝐵) + 𝑛(𝐶) − 𝑛(𝐴 ∩ 𝐵) − 𝑛(𝐴 ∩ 𝐶) − 𝑛(𝐵 ∩ 𝐶) +
𝑛(𝐴 ∩ 𝐵 ∩ 𝐶) = 5040 + 5040 + 2520 − 120 − 120 − 120 + 6.

Hence, 𝑛(𝐴 ∪ 𝐵 ∪ 𝐶)= 181440−(5040+5040+2520−120−120−120+6)= 169,194.

468. Total no. of permutatiosn is 𝑁 = 8!
⁄

2!2!2!2! = 2520.

Let 𝛼 represent the sets, where one of the letters come toegther then 𝑛(𝛼)= 7!
⁄

2!2!2! = 630.

Let 𝛼𝛽 represent the sets, where two of the letters come together then 𝑛(𝛼𝛽) = 6!
⁄

2!2! =
180.

Similarly, 𝑛(𝛼𝛽𝛾) = 5!⁄
2! = 60, and 𝑛(𝛼𝛽𝛾𝛿) = 4! = 24.

Applying PIE, we get the desired result as 𝑁 −4𝑛(𝛼)+6(𝛼𝛽)−4(𝛼𝛽𝛾)+𝑛(𝛼𝛽𝛾𝛿) =
864.

469. Since we have to find non-negative values, it implies that values can be zero also.

No. of ways of distributing 15 among three variables is 𝐶17
2 = 136.

Let 𝑑1 be the no. of distributions, where 𝑥1 gets at least 6; 𝑑2 be the set of distributions,
where 𝑥2 gets at least 7; and 𝑑3 be the set of distributions, where 𝑥3 gets at least 8.

|𝑑1| = 𝐶15−6+3−1
3−1 = 𝐶11

2 , |𝑑2| = 𝐶10
2 , and |𝑑3| = 𝐶9

2.

|𝑑1 ∩ 𝑑2| = 𝐶15−6−7+3−1
3−1 = 𝐶4

2, |𝑑1 ∩ 𝑑3| = 𝐶3
2 , and | 2̣ ∩ 𝑑3| = 𝐶2

2.

Also, |𝑑1 ∩ 𝑑2 ∩ 𝑑3| = 0 ⇒ |𝑑1 ∪ 𝑑2 ∪ 𝑑3| = 55 + 45 + 36 − 6 − 3 − 1 = 126.

⇒ |𝑑1 ∪ 𝑑2 ∪ 𝑑3| = 136 − 126 = 10.

470. No. of years divisible by 4 between 1000 and 3000(both inclusive) is 501. No. of years
divisible by 100 between 100 between given range is 21, and no. of years divisible by
400 is 5.

Thus applying PIE, we have 501 − 21 + 5 = 485 as the answer.

471. Let 𝑆 denote all the onto functions. Total no. of ways of mapping elements is |𝑆| = 36.
For 𝑖 = 1, 2, 3 let 𝑆𝑖 ⊂ 𝑆 denote the functions that have 𝑖 not in their image.
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So the answer is |𝑆|− |𝑆1 ∪ 𝑆2 ∪ 𝑆3| = 36 − |𝑆1 ∪ 𝑆2 ∪ 𝑆3|. Now |𝑆1 ∪ 𝑆2 ∪ 𝑆3| can be
found using PIE, to be equal to 𝐶3

1 |𝑆1|−𝐶3
2 |𝑆1 ∩ 𝑆2| = 3.26 − 3.16.

Thus, answer is 36 − 3.26 + 3.

472. There are two possible ways to construct these 6-digit numbers.

First, three digts of one kind, and remaining three of different kind. No. of such
numbers is 𝐶10

1 .𝐶9
3 .

6!⁄
3! = 100,800.

Second, two digits of one kind and remaining two of different kind. No. of such numbers
is 𝐶10

2 .𝐶8
2 .

6!
⁄

2!2! = 226,800.

However, one-tenth of these numbers will start with 0. So the answer is
9(100800+226800)
⁄

10 = 294,840.

473. R.H.S. = (𝑛−1)(𝐷𝑛1+𝐷𝑛−2) = (𝑛−1)(𝑛−2)![(𝑛−1)(1− 1⁄
1!+

1⁄
2!−⋯+ (−1)𝑛−1
⁄

(𝑛−1)! )+

(1 − 1⁄
1! +

1⁄
2! − ⋯ + (−1)𝑛−2
⁄

(𝑛−2)! )]

= (𝑛 − 1)![𝑛 − 1 + 1 − 1⁄
1! (𝑛 − 1 + 1) + 1⁄

2! (𝑛 − 1 + 1) − ⋯ + (−1)𝑛−2
⁄

(𝑛−2)! (𝑛 − 1 + 1) +
(−1)𝑛−1(𝑛−1)
⁄

(𝑛−1)! ]

= 𝑛![1 − 1⁄
1! +

1
⁄

21 − ⋯ + (−1)𝑛⁄
𝑛! ] = 𝐷𝑛 = L.H.S.

474. lim
𝑥→∞

𝐷𝑛⁄
𝑛! = 1 − 1⁄

1! +
1⁄
2! − ⋯.

We know that 𝑒𝑥 = 1 + 𝑥⁄
1! +

𝑥2
⁄

2! +
𝑥3
⁄

3! + ⋯, and hence,

1
⁄

𝑒 = 1 − 1⁄
1! +

1⁄
2! − ⋯ = L.H.S.

475. We can pick a glove either left or right in 5 ways, and a person in 5 ways as well.
Thus, no. of ways to give a glove is 25. Once we have given a glove our choice for the
matching pair is only one because one person has to get a correct pair of gloves.

Now we have to distribute remaining gloves in such a way that no one gets a correct
pair. We pick all left gloves and distribute them in 4! ways. Now distributing the right
gloves is a derangement problem, which is equal to 4![1 − 1⁄

1! +
1⁄
2! −

1⁄
3! +

1⁄
4!] = 9.

Thus, total no. of ways is 25 × 4! × 9 = 5400.

476. L.H.S. =
𝑛
∑
𝑟=1

𝑟! 𝑟 =
𝑛
∑
𝑟=1

[(𝑟 + 1)! − 𝑟!] = 2! − 1! + 3! − 2! + ⋯ + (𝑛 + 1)! − 𝑛! =

(𝑛 + 1)! − 1 = R.H.S.

477. When all matches are correct the condition is satisfied, which can be done in 1 way.
There is no way to answer with 5 correct matches and 1 incorrect match because if 5
are correct then 6th is automatically correct.
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When 4 are correct, and 2 are incorrect. 4 can be selected in 𝐶6
4 ways. 2 incorrect

matches can be done in 1 way. Thus, total is 𝐶6
4 = 15.

Finally, we can have 3 correct, and 3 incorrect matches. This can be done in 𝐶6
3 ×2 = 40

ways.

Thus, total no. of ways to pass is 56.

478. Let 𝑅(𝑛) be the number of regions formed by 𝑛 parabolas. When there are 𝑛 − 1
parabolas, 𝑛th parabola will be intersected at 2(𝑛 − 1) points, so it will be divided
into 2𝑛 − 1 arcs. Each arc adds a region. So 𝑅(𝑛) = 𝑅(𝑛 − 1)+ 2𝑛 − 1. We have base
case as 𝑅(1) = 2.

Hence, 𝑅(𝑛) = 𝑛2 + 1 ⇒ 𝑅(10) = 101.

479. Let there be 𝑛 staircases. We can reach 𝑛th stair from (𝑛 − 1)th or (𝑛 − 2)th stair.
Thus, 𝑓(𝑛) = 𝑓(𝑛 − 1)+ 𝑓(𝑛 − 2).

Our base case is 𝑓(1) = 1, 𝑓(2) = 2, and hence 𝑓(12) = 233.

480. Like previous problem the recurrence relation is same, and hence, 𝑓(10) = 144.

481. Every paving of 1 × 𝑛 is paving of 1 × (𝑛 − 1) with 1 × 1 at the end or 1 × (𝑛 − 2)
with 1 × 2 at the end or 1 × (𝑛 − 3) with 1 × 3 at the end.

Hence, the recurrence relation is 𝑓(𝑛) = 𝑓(𝑛 − 1)+ 𝑓(𝑛 − 2)+ 𝑓(𝑛 − 3)∀𝑛 ≥ 3.

The base cases are 𝑓(0) = 1, 𝑓(1) = 1, 𝑓(2) = 2, and hence, 𝑓(7) = 44.

482. For first part, the no. of ways are 35 = 243. For second part, the no. of ways are
𝑟𝑛 − 𝐶𝑟

1(𝑟 − 1)𝑛 + 𝐶𝑟
2(𝑟 − 2)𝑛 − ⋯

Putting 𝑛 = 5, and 𝑟 = 3 in the above equation, we get

No. of ways = 35 − 𝐶3
12

5 + 𝐶3
1 .1

5 = 150.

483. The terms of the exxpansion (𝑎 + 𝑏 + 𝑐 + 𝑑)24 will have the form 𝑘.𝑎𝑒1𝑏𝑒2𝑐𝑒3𝑑𝑒4,
where 𝑘 is a constant, and 𝑒𝑖, 0 ≤ 𝑒𝑖 ≤ 24 are integers such that 𝑒1 + 𝑒2 + 𝑒3 + 𝑒4 = 24.

The problem is equivalent to ditributing 24 identical balls in 4 distinguishable boxes,
where empty boxes are allowed. The no. is 𝐶24+4−1

24 = 𝐶27
24.

484. The number of ways of dividing 𝑛 identical balls into 𝑟 boxes so that no box remains
empty is 𝐶𝑛−1

𝑟−1 = 𝐶4
2 = 6.

485. No. of ways of distributing balls is equal to no. of integral solutions of the equation
𝑥1 + 𝑥2 + 𝑥3 = 10, where 2 ≤ 𝑥𝑖 ≤ 4, 𝑖 = 1, 2, 3.

No. of ways is coeff. of 𝑥10 in (𝑥2 + 𝑥3 + 𝑥4)3 = coeff. of 𝑥4 in (1 − 𝑥3)3(1 − 𝑥)−3 =
𝐶4+3−1
4 − 3.𝐶3+1−1

1 = 6.

486. Let the boys get 𝑎, 𝑎 + 𝑏, 𝑎 + 𝑏 + 𝑐 toys respectively such that 𝑎, 𝑏, 𝑐 ≥ 1. Thus, we
have 3𝑎 + 2𝑏 + 𝑐 = 14.
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Therefore, no. of solutions = coeff. of 𝑥14 in (𝑥3 + 𝑥6 + 𝑥9 + ⋯)(𝑥2 + 𝑥4 + ⋯)(𝑥 +
𝑥2 + 𝑥3 + ⋯)

= coeff. of 𝑥8 in (1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 2𝑥6 + 𝑥7 + 2𝑥8)(1 + 𝑥+ 𝑥2 +⋯+ 𝑥8) = 10.

Since these numbers can be assigned in 3! ways, so, total no. of ways is 60.

487. Required answer is 𝑆(5, 1)+ 𝑆(5, 2)+ 𝑆(5, 3) .𝑆(5, 1) = 1, 𝑆(5, 2) = 25−1 − 1 = 15.

𝑆(5, 3) = 𝑆(4, 2)+ 3𝑆(4, 3) = 25. So the answer is 41.

488. The answer is 𝑃3(6𝑛)+ 𝑃2(6𝑛)+ 𝑃1(6𝑛).

We know that 𝑃𝑘(𝑏)−𝑃𝑘(𝑛−𝑘)= 𝑃𝑘−1(𝑛−1)⇒𝑃3(6𝑛)−𝑃3(6𝑛−3)= 𝑃2(6𝑛−1)=
⌊6𝑛−1⁄2 ⌋ = 3𝑛 − 1

and 𝑃3(6𝑛 − 3)− 𝑃3(6𝑛 − 6) = 𝑃2(6𝑛 − 4) = ⌊6𝑛−4⁄2 ⌋ = 3𝑛 − 2

⇒ 𝑃3(6𝑛)− 𝑃3(6(𝑛 − 1)) = 3(2𝑛 − 1)⇒ 𝑃3(6𝑛)− 𝑃3(6) = 3(𝑛2 − 1)

As 𝑃3(6) = 3 ⇒ 𝑃3(6𝑛) = 3𝑛2 ⇒ 𝑃2(6𝑛) = 3𝑛 and 𝑃1(6𝑛) = 1.

Hence, answer is 3𝑛2 + 3𝑛 + 1.

489. Total no. of ways is 2𝑛. However, in 2 of the ways all the balls go in each box but the
question says that boxes cannot remain empty.

Thus, answer is 2𝑛 − 2.

490. 𝑆(𝑛, 2) = 2𝑛−1 − 1.

491. Case I: When no box is empty. No. of ways of distributing the balls is 𝐶9
4 = 126.

Case II: When one box is empty. No. of ways = Selection of one box × Distribution
of 10 balls into 4 boxes = 𝐶5

1 × 𝐶9
3 = 420.

Case III: When two boxes are empty. No. of ways = (Selection of two boxes −
Adjacent boxes)𝑡𝑖𝑚𝑒𝑠 Distribution of 10 balls into 3 boxes = (𝐶5

2 − 4)×𝐶9
2 = 216.

Case IV: When three boxes are empty. There is only one way to select three boxes
when adjacent boxes are not empty. No. of ways is 1 × 𝐶9

1 = 9.

Thus, total no. of ways is 126 + 420 + 216 + 9 = 771.

492. The answer is equivalent to integral solution of 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 = 12 such
that 1 ≤ 𝑥𝑖 ≤ 3, 𝑖 = 1, 2, 3, 4, 5, 6.

No. of integral solutions is coeff. of 𝑥12 in (𝑥+𝑥2+𝑥3)6 = coeff. of 𝑥6 in (1+𝑥+𝑥2)6

= coeff. of 𝑥6 in (1 − 𝑥3)6(1 − 𝑥)−6 = coeff. of 𝑥6 in (1 − 6𝑥3 + 15𝑥6 −…)(1 + 6𝑥 +
𝐶7
2𝑥

2 + 𝐶8
3𝑥

3 + 𝐶9
4𝑥

4 + 𝐶10
5 𝑥5 + 𝐶11

6 𝑥6 + ⋯)

= 𝐶11
6 − 6.𝐶8

3 + 3 = 141.
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493. Following like previous problem, maximum a person can get is 10 rupees when five
others get the minimum of 4 rupees.

Thus, the answer is coeff. of 𝑥30 in (𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 + 𝑥9 + 𝑥10)6 = coeff. of 𝑥6
in (1 − 𝑥7)6(1 − 𝑥)−6 = 𝐶11

6 = 462.

494. Consider following: 𝑟𝑟|𝑟𝑟|𝑟𝑟|𝑟|𝑟, where 𝑟 represents the rings and | represents the empty
space. We have 8 rings(different) and 4 empty space(same), which can be arranged in
12!
⁄

4! ways.

495. This is equivalent to no. of integeral solutions of the equation 𝑥1 + 𝑥2 + 𝑥3 + 𝑥5 = 15
such that 𝑥𝑖 ≥ 2, 𝑖 = 1, 2, 3, 4, 5.

⇒ 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 = 5, where 𝑦𝑖 ≥ 0.

No. of integral solution of this equation is 𝐶9
4.

496. No. of ways of distributing 𝑛 identical objects into 𝑟 different groups is 𝐶𝑛+𝑟−1
𝑟−1 .

So no. of ways to distribute 3 blue balls is 𝐶6
3 = 20. No. of ways to distribute 4 red

balls is 𝐶7
3 = 35. No. of ways to distribure 2 red balls is 𝐶5

3 = 10.

Thus, total no. of ways is 7000.

497. First we give Manya 2 candy bars, which will leave us with 13 of those. No. of ways to
distribute 13 candy bars among 4 people is 𝐶13

3 = 560.

These include the cases where Tanya gets more than 5. Let us calculate the cases where
Tanya gets at least 6. In this case we give 8 candy bars to Tanya and Manya, which
will leave us with 7 of those. No. of ways to distribute 7 candy bars is 𝐶10

3 = 120.

Thus, required answer is 560 − 120 = 440.

498. Total no. of such sequences is 4𝑛. No. of sequences where 2 does not appear is 3𝑛 and
same is the case when 3 dpes not appear. However, these include cases where both do
not appear and those are 2𝑛.

Hence, the answer is 4𝑛 − 2.3𝑛 + 2𝑛.

499. This is the case of putting 𝑛 distinguishable balls into 𝑟 boxes, which is 315 − 𝐶3
12

15 +
𝐶3
2 .1

15.

He can choose in two ways 3, 1, 1 and 2, 21, which are 𝐶5
3 × 𝐶5

1 × 𝐶5
1 = 250 and 500.

However, for the first case there are 3 ways to choose the box from which 3 balls can
be chosen so it becomes 750 and same for second case which is 1500.

Thus, total no. of ways is 2250.

500. No. of ways of selecting boxes will remain constant 3!.

Case I: The balls are distributed in 5 ~ 2 ~ 2. No. ways of selecting balls is 𝐶9
5 × 𝐶4

2 ×
𝐶2
2 = 378.
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Case II: The balls are distributed in 4 ~ 2 ~ 3. No. of ways is 𝐶9
4 × 𝐶5

2 × 𝐶3
3 = 1260.

Case III: The balls are distributed in 3 ~ 3 ~ 3. No. of ways is 𝐶6
3 × 𝐶6

3 × 𝐶3
3 = 280.

Thus, total no. of ways is (378 + 1260 + 280)6 = 11508.

501. 5 balls can be selected out of 12 in 𝐶12
5 ways. Remaining balls can be put into two

boxes in 27 ways.

Thus, total no. of ways is 𝐶12
5 .27.

502. Let the daughters get 𝑥, 𝑦 and 𝑧 coins. Then, 𝑥 + 𝑦 + 𝑧 = 101 and 𝑥 ≤ 𝑦 + 𝑧 =
101 − 𝑥 ⇒ 𝑥 ≤ 50.

Thus, 𝑥, 𝑦, 𝑧 ≤ 50 because any daughter can have this larger share. This is equivalent
to coeff. of 𝑥101 in (1 + 𝑥 + ⋯+ 𝑥50)3

= 𝐶103
2 − 3.𝐶52

50.

503. Let the two sets be 𝐴 and 𝐵. 2 cannot be in the same set as 1 and 4. Because if 2
and 1 are in the same set then the difference 2 − 1 = 1 violates the given condition.
Same is true for 2 and 4. Let 2 be in set 𝐴 and 1, 4 in set 𝐵.

Clearly, 3 has to be in set 𝐴 as 4 − 3 = 1. So the sets now are 𝐴 = {2, 3, } and
𝐵 = {1, 4, }. Now we cannot put 5 in either of these sets, and hence, the result.

504. We divide the square into 9 unit squares. Out of the 10 points distributed in the
big square at least one of the small squares must have at least two points by the
Pigeonhole principle. Since these two points lie in the same unit square maximum
distance between them can be √



2 units.

Figure 5.1

505. Let 𝐴𝐵𝐶𝐷𝐸𝐹 represet the hexagon and 𝐺, 𝐻, 𝐼, 𝐽, 𝐾, 𝐿 be midpoints of the sides,
each side being 2cm. Join midpoints and sides as shown which will yield 24 equilateral
triangles, each of side 1𝑐𝑚.

A G B

H

C

J

DKE

L

F

M
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We have to place 25 points in these 24 triangles so as to violate the required condition,
which is not possible. Hence, the result.

506. Draw the circle and divide it into six equal parts as shown.

We have to place 7 points in these 6 equal parts so as to violate the required condition,
which is not possible. Hence, the result.

507. Draw the equilateral triangle and join the mid-points of every side.

We have initial triangle of side 1 cm. Upon joining mid-points we get 4 equilateral
triangles of side 1⁄2 cm futher reduced by same factor on further joining of mid-points of
reulting triangles.

Now as we can see that we cannot place 5 = 41 + 1 points without violating the
required condition it propagates to smaller triangles as well. Hence, the result.

508. There are 34 integers in the progression. We consider the pairs whose sum is 104 i.e.
(4, 100), (7, 97), (10, 94), … , (49, 55). Thus we have 16 pairs. In these pairings we
leave out 1 and 52 as they do not have a correpoding pairing element.

Thus, we can pick 1 element out of 16 pairs along with 1 and 52, which will not have a
sum of 104. However, the moment we pick 19th number it will form at least one pair
with one of the 16 chosen numbers from pairs. Hence, the result is proven.

509. Since 𝑛(𝑋) = 10, the number of non-empty, proper subsets of 𝑋 is 210 − 2 = 1022.

The sum of the elements of the proper subsets of 𝑋 can possibly range from 1 to
9
∑
𝑖=1

(90 + 𝑖) i.e. 1 to 855.

Thus, the 1022 subsets can have sums from 1 to 855. Thus, by Piegonhole principle, at
least two subsets 𝐵 and 𝐶 will have the same sum. If 𝐵 and 𝐶 are not disjoint, then let
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𝑋 = 𝐵 − (𝐵 ∩ 𝐶) and 𝑌 = 𝐶 − (𝐵 ∩ 𝐶).

Clearly, 𝑋 and 𝑌 are disjoint, non-empty, and have the same sum of their elements.

We define 𝑠(𝐴) = sum of the elements 𝐴. We have 𝐵 and 𝐶 not necessarily disjoint
such that 𝑠(𝐵) = 𝑠(𝐶).

Clealrly, 𝑠(𝑋)= 𝑠(𝐵)−𝑠(𝐵∩𝐶) and 𝑠(𝑌 )= 𝑠(𝐶)−𝑠(𝐵∩𝐶). However, 𝑠(𝐵)= 𝑠(𝐶),
and hence 𝑠(𝑋) = 𝑠(𝑌 ).

510. In base-10 or decimal number system we have 10 digits; 0 through 9. For 3 numbers
of 4-digits not to have common numbers we need 12 digits. Thus, by Pigeonhole
principle at least two must have a common digit.

Similarly, in base-7 we have 7 digits(not a correct word for base-7 symbols, possible
word is heptit); 0 through 7. For 2 numbers of 4-digit we need at least 8-digits for no
repetition which is not possible as we have only 7 available for use. Hence, the result.

511. To represent 3 numbers of 𝑘-digits such that there is no common digit between them
and without repetition we need 3𝑘 digits. However, we have only 2𝑘 available to us.
Now 𝑘 ≥ 1 so 3𝑘 − 2𝑘 ≥ 1, and hence, the result.

Similarly, for 3𝑘 + 1 digit numbers will have 3𝑘 + 3 digits in all, but we have only
2𝑘 + 1 base i.e. 2𝑘 + 1 different digits. And hence, the result.

512. Pairs which have the sum 2𝑛 + 2𝑛𝑑 are [𝑎, 𝑎 + 2𝑛𝑑], [𝑎 + 𝑑, 𝑎 + (2𝑛 − 1)𝑑], … , [𝑎 +
(𝑛 − 1)𝑑, 𝑎 + (𝑛 + 1)𝑑].

Now since, we cannot have sum equal to 2𝑎 + 2𝑛𝑑 so we drop one element from each
pair leaving us 𝑛 terms and we also include 𝑎 + 𝑛𝑑 to this giving us 𝑛+ 1 terms, giving
us the required result for part one.

In the second part of the problem 𝑆 = {𝑎, 𝑎 + 𝑑, ⋯ + 𝑎 + (2𝑛 + 1)𝑑}. Pairs which give
2𝑎+ (2𝑛+1)𝑑 as sum are [𝑎, 𝑎+ (2𝑛+1)𝑑], [𝑎+𝑑, 𝑎+2𝑛𝑑],… , [𝑎+𝑛𝑑, 𝑎+ (𝑛+1)𝑑].
Thus, we have 𝑛 + 1 pairs. If we pick one from each pair we get 𝑛 + 1 terms of 𝐴,
which satisfy required condition.

513. Let 𝑎 = tan𝐴 in (−𝜋
⁄

2 ,
𝜋
⁄

2). The reason for choosing this is because in the given range
the tan function is strictly increasing and covers the complete ℝ.

We divide the interval into four equal intervals, each of length 𝜋⁄4. Now using Pigeonhole
principle we find that at least two of the values lie in one interval such that it falls in
one of these. Let us call these 𝑥 and 𝑦 then 0 < tan−1 𝑥− tan−1 𝑦 < 𝜋

⁄

4 ⇒ 0 < 𝑥−𝑦⁄
1+𝑥𝑦 < 1.

514. Let the two numbers be 𝑥 and 𝑦. According to question 𝑥2 − 𝑦2 = 100𝑘, such that
𝑘 ∈ ℕ and 𝑥, 𝑦 ∈ {0, 1, 2, … , 100}.

Clearly, (𝑥 + 𝑦)(𝑥 − 𝑦) = 100𝑘. Since numbers are between 0 and 100 so the sum is
going to be divisible by 100. Let us pick these pairs (0, 0), (1, 99), … , (49, 51), which
is 50 pairs. So we can pick one of these 50 and the extra 50, which is not part of any
pair.
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The moment we choose 52nd number it has to be part of a pair, whose other member
is already chosen. Hence, the result.

515. Case I: When each person has at least one acquaintance. In this case a person can have
1, 2, 3, … , 6 acquaintances, but we have 7 people. Hence, the result from Pigeonhole
principle.

Case II: When a person can have zero acquaintances. Assume that one person has
zero acquaintances. So effectively we can remove him from group. Thus, we are left
with 6 and like case I, from Pigeonhole principle we have the same result.

516. This problem is similar to the square problem of 3 units, which we solves earlier and
can be solved similarly.

517. If we try to add smallest differences 11 times then we have (1+2+3+4)×11+5×6 =
140 The difference 5 occurs only six times because we have takes 44 differences already.
Thus, if we pick 51st number then one of the differences, which we have already taken
will reappear making it 12th one from Pigeonhole principle. Hence, result.

518. Let the sticks be 𝑠1, 𝑠2, … , 𝑠10. According to question, 1 < 𝑠1 ≤ 𝑠2 ≤ 𝑠3 ≤ ⋯𝑠10 < 55.

Let us assume that triangles are not possible, then 2 + 2 ≤ 𝑠1 + 𝑠2 ≤ 𝑠3 ⇒ 𝑠3 ≥ 4.
Similarly, we find 𝑠4, 𝑠5,… , 𝑆10. We find that 𝑠10 > 55, which is a contradiction. Hence,
the result.

519. The sums are that of three row, columns, and two diagonals. Minimum value of these
sums is 1 + 1 + 1 = 3 and maximum is 3 + 3 + 3 = 9. Thus, we have only 7 values
for 8 sums.

Hence, from Pigeonhole principle at least two sums must be equal.

520. Consider a lattice point (𝑥, 𝑦, 𝑧). Classify it according to the parity (oddness or
evenness) of its entries. There are exactly eight different ordered triples of even and
odd. Thus two of the nine given points must have the same parity. Suppose that
(𝑥, 𝑦, 𝑧) and (𝑎, 𝑏, 𝑐) are two points such that each coordinate has the same parity.
Then 𝑥+𝑎⁄2 , 𝑦+𝑏⁄2 , 𝑧+𝑐⁄2 are all integers and are the coordinates of the midpoint of the line
joining (𝑥, 𝑦, 𝑧) and xm (a, b, c). This midpoint is a lattice point on the interior of the
line segment joining (𝑥, 𝑦, 𝑧) and (𝑎, 𝑏, 𝑐).

521. Let us assume that first two numbers are 1 and 2. Then, we apply the rule 𝑥 → 𝑥 − 1,
which gives next numbers as 7, 21, 107, 427, 1707. If this is the case then triplets cannot
found but such is not the case, and hence, the result.

522. We draw a ring of given radii around every points. These rings can be contained within
a circle of radius 19 and area 192𝜋. The sum of all the rings is 650.(32 − 22)𝜋, which
is more than 9.192𝜋.

Hence, from Pigeonhole principle, the result.

523. Proceeding like previous problem we put the cyclinder around all of 14001 marbles,
giving us a total area of 14001 × 25

⁄

4 𝜋.
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These would be contained in a rectangle of 125 × 155 which is more than 12 times the
area covered by cyclinders. Hence, the result.

524. Consider any 12 points on the line. Since we have only 11 colors, at least two points
must be of the same color, whose distance apart is integral.

525. mod 11 will divide the difference into 11 equivalence classes. Two number are of same
equialence 𝑎 ≡ 𝑏 = 𝑚 ⇒ 𝑚|(𝑎 − 𝑛). So when we will choose 12 numbers two of them
will fall in the same equivalence class.

In other words, the remainder can be 0, 1, 2, 3, … , 10. Out of these only 10 remainders
will satisfy the criterion, which we can get by using 11 numbers. 12th will always fall
in one of these 11 classes, and thus, difference will be divisible by 11.
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Answers of Chapter 6
Mathematical Induction

1. Let 𝑃 (𝑛) = 12 + 22 + ⋯+ 𝑛2 = 𝑛(𝑛+1)(2𝑛+1)⁄
6 .

Putting 𝑛 = 1, we see 𝑃 (1) = 1 = 1.2.3
⁄

6 = 1. So 𝑃 (1) is true.

Let it be true for 𝑛 = 𝑘. Now for 𝑛 = 𝑘 + 1,

𝑃 (𝑘 + 1) = 12 + 22 + ⋯+ 𝑘2 + (𝑘 + 1)2 = 𝑘(𝑘+1)(2𝑘+1)
⁄

6 + (𝑘 + 1)2

= (𝑘+1)(2𝑘2+𝑘+6𝑘+6)
⁄

6 = (𝑘+1)(𝑘+2)(2𝑘+3)
⁄

6 = 𝑃 (𝑘 + 1).

Thus, by mathematical induction, the result.

2. Let 𝑃 (𝑛) = 1
⁄

1.2 +
1
⁄

2.3 + ⋯ + 1
⁄

𝑛(𝑛+1) =
𝑛
⁄

𝑛+1.

𝑃 (1) = 1
⁄

1.2 =
1
⁄

1+1 = 𝑃 (1), which is true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘

⇒ 𝑃 (𝑘) = 1
⁄

1.2 +
1
⁄

2.3 + ⋯ + 1⁄
𝑘(𝑘+1) =

𝑘⁄
𝑘+1.

Adding 1⁄
(𝑘+1)(𝑘+2), on both sides, we get

𝑃 (𝑘 + 1) = 1
⁄

1.2 +
1
⁄

2.3 + ⋯ + 1⁄
𝑘(𝑘+1)+

1⁄
(𝑘+1)(𝑘+2)

= 𝑘
⁄

(𝑘+1)+
1⁄

(𝑘+1)(𝑘+2) =
𝑘2+2𝑘+1⁄

(𝑘+1)(𝑘+2) =
𝑘+1⁄
𝑘+2 = 𝑃 (𝑘 + 1).

Hence, by mathematical induction, the result.

3. Let 𝑃 (𝑛) = 13 + 23 + ⋯+ 𝑛3 = [𝑛(𝑛+1)⁄2 ]
2

𝑃 (1) = 13 = 1 = (1.2⁄2 )
3
= 1, which is true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘.

⇒ 𝑃 (𝑘) = 13 + 23 + ⋯+ 𝑘3 = [𝑘(𝑘+1)⁄
2 ]

2

Adding (𝑘 + 1)3 to both sides, we get

𝑃 (𝑘 + 1) = 13 + 23 + ⋯+ 𝑘3 + (𝑘 + 1)3 = [𝑘(𝑘+1)⁄
2 ]

2
+ (𝑘 + 1)3

= (𝑘+1)2[𝑘2+4𝑘+4]
⁄

4 = ((𝑘+1)(𝑘+2)⁄2 )
2
= 𝑃 (𝑘 + 1).

Hence, by mathematical induction, the result.
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4. Let 𝑃 (𝑛) = 1⁄
𝑎+𝑑 +

𝑎⁄
(𝑎+𝑑)(𝑎+2𝑑)+⋯+ 𝑎⁄

[𝑎+(𝑛−1)𝑑](𝑎+𝑛𝑑) =
𝑛⁄

𝑎+𝑛𝑑

𝑃 (1) = 1⁄
𝑎+𝑑 =R.H.S., which is true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘

⇒ 𝑃 (𝑘) = 1⁄
𝑎+𝑑 +

𝑎⁄
(𝑎+𝑑)(𝑎+2𝑑)+⋯+ 𝑎
⁄

[𝑎+(𝑘−1)𝑑](𝑎+𝑘𝑑) =
𝑘
⁄

𝑎+𝑘𝑑.

Adding 𝑎
⁄

[𝑎+𝑘𝑑][𝑎+(𝑘+1)𝑑] to both sides, we get

𝑃 (𝑘 + 1) = 1⁄
𝑎+𝑑 +

𝑎⁄
(𝑎+𝑑)(𝑎+2𝑑)+⋯+ 𝑎
⁄

[𝑎+(𝑘−1)𝑑](𝑎+𝑘𝑑)+
𝑎
⁄

[𝑎+𝑘𝑑][𝑎+(𝑘+1)𝑑]

= 𝑘
⁄

𝑎+𝑘𝑑 +
𝑎
⁄

[𝑎+𝑘𝑑][𝑎+(𝑘+1)𝑑] =
𝑘𝑎+𝑘(𝑘+1)𝑑+𝑎
⁄

[𝑎+𝑘𝑑][𝑎+(𝑘+1)𝑑] =
(𝑘+1)(𝑎+𝑘𝑑)
⁄

[𝑎+𝑘𝑑][𝑎+(𝑘+1)𝑑] =
𝑘+1
⁄

𝑎+(𝑘+1)𝑑 =
𝑃 (𝑘 + 1)

Hence, by mathematical induction, the result.

5. Let 𝑃 (𝑛) = 1
⁄

1.2.3 +
1
⁄

2.3.4 + ⋯ + 1⁄
𝑛(𝑛+1)(𝑛+2) =

𝑛(𝑛+3)
⁄

4(𝑛+1)(𝑛+2)∀𝑛 ∈ ℕ

𝑃 (1) = 1
⁄

1.2.3 =
1.4
⁄

4.2.3 =
1
⁄

2.3, which is true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘.

⇒ 𝑃 (𝑘) = 1
⁄

1.2.3 +
1
⁄

2.3.4 + ⋯ + 1
⁄

𝑘(𝑘+1)(𝑘+2) =
𝑘(𝑘+3)
⁄

4(𝑘+1)(𝑘+2)

Adding 1
⁄

(𝑘+1)(𝑘+2)(𝑘+3) to both sides, we get

𝑃 (𝑘 + 1) = 1
⁄

1.2.3 +
1
⁄

2.3.4 + ⋯ + 1
⁄

𝑘(𝑘+1)(𝑘+2)+
1
⁄

(𝑘+1)(𝑘+2)(𝑘+3)

= 𝑘(𝑘+3)
⁄

4(𝑘+1)(𝑘+2)+
1
⁄

(𝑘+1)(𝑘+2)(𝑘+3)

= 𝑘(𝑘+3)2+4
⁄

4(𝑘+1)(𝑘+2)(𝑘++3) =
(𝑘+1)2(𝑘+4)
⁄

4(𝑘+1)(𝑘+2)(𝑘+3)

= (𝑘+1)(𝑘+4)
⁄

4(𝑘+2)(𝑘++3) = 𝑃 (𝑘 + 1).

Hence, by mathematical induction, the result.

6. Let 𝑃 (𝑛) = 1.3 + 2.32 + 3.33 + ⋯ + 𝑛.3𝑛 = (2𝑛−1)3𝑛+1+3⁄
4

𝑃 (1) = 1.3 = 3 = (2−1) .32+3
⁄

4 = 3, which is true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘.

Adding (𝑘 + 1)3𝑘+1 to both sides, we get

⇒ 𝑃 (𝑘 + 1) = 1.3 + 2.32 + 3.33 + ⋯ + 𝑘.3𝑘 + (𝑘 + 1) .3𝑘+1 = (2𝑘−1)3𝑘+1+3
⁄

4

+(𝑘 + 1) .3𝑘+1 = (2𝑘−1) .3𝑘+1+3+(4𝑘+4) .3𝑘+1
⁄

4

= (6𝑘+3) .3𝑘+1
⁄

4 = [2(𝑘+2)−3] .3𝑘+1
⁄

4 = 𝑃 (𝑘 + 1).

Hence, by mathematical induction, the result.
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7. Let 𝑃 (𝑛) = 1 + 4 + 7 + ⋯+ 3𝑛 − 2 = 𝑛(3𝑛−1)⁄
2 .

𝑃 (1) = 1 = 1.(3−1)
⁄

2 = 1, which is true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘.

𝑃 (𝑘) = 1 = 4 + 7 + ⋯+ 3𝑘 − 2 = 𝑘(3𝑘−1)
⁄

2

Adding 3𝑘 + 1 to both sides, we get

⇒ 𝑃 (𝑘 + 1) = 1 + 4 + 7 + ⋯+ 3𝑘 − 2 + 3𝑘 + 1 = 𝑘(3𝑘−1)
⁄

2 + 3𝑘 + 1

= 3𝑘2−𝑘+6𝑘+2
⁄

2 = 3𝑘2+5𝑘+2
⁄

2 = (𝑘+1)(3𝑘+2)
⁄

2 = (𝑘+1)[3(𝑘+1)−1]
⁄

2 = 𝑃 (𝑘 + 1).

Hence, by mathematical induction, the result.

8. Let 𝑃 (𝑛) = 12 + 32 + 52 + ⋯+ (2𝑛 − 1)2 = 𝑛(2𝑛−1)(2𝑛+1)⁄
3 .

𝑃 (1) = 12 = 1 = (12−1)(2+1)
⁄

3 = 1, which is true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘

𝑃 (𝑘) = 12 + 32 + 52 + ⋯+ (2𝑘 − 1)2 = 𝑘(2𝑘−1)(2𝑘+1)
⁄

3 .

Adding (2𝑘 + 1)2 to both sides, we get

⇒ 𝑃 (𝑘 + 1) = 12 + 32 + 52 + ⋯+ (2𝑘 − 1)2 + (2𝑘 + 1)2 = 𝑘(4𝑘2−1)
⁄

3 + (2𝑘 + 1)2

= 4𝑘3−𝑘+12𝑘2+12𝑘+3
⁄

3 = 4𝑘3+122𝑘2+11𝑘+3
⁄

3 = (𝑘+1)(2𝑘+1)(2𝑘+3)
⁄

3 = 𝑃 (𝑘 + 1).

Hence, by mathematical induction, the result.

9. Let 𝑃 (𝑛) = 1 − 32 + 52 − 72 + ⋯+ (4𝑛 − 3)2 − (4𝑛 − 1)2 = −8𝑛2

𝑃 (1) = 1 − 32 = −8 = −8.12, which is true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘.

𝑃 (𝑘) = 1 − 32 + 52 − 72 + ⋯+ (4𝑘 − 3)2 − (4𝑘 − 1)2 = −8𝑘2

Adding (4𝑘 + 1)2 − (4𝑘 + 2)2 to both sides, we get

𝑃 (𝑘 + 1) = 1 − 32 + 52 − 72 + ⋯+ (4𝑘 − 3)2 − (4𝑘 − 1)2 + (4𝑘 + 1)2 − (4𝑘 − 3)2

= −8𝑘2 + (4𝑘 + 1)2 − (4𝑘 + 3)2 = −8𝑘2 − 16𝑘 − 8 = −8(𝑘 + 1)2.

Hence, by mathematical induction, the result.

10. Let 𝑃 (𝑛) = 3.6 + 6.9 + 9.12 + ⋯ + 3𝑛(3𝑛 + 3) = 3𝑛(𝑛 + 1)(𝑛 + 2).

𝑃 (1) = 3.6 = 3.1(1 + 1)(1 + 2) = 3.6, which is true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘

𝑃 (𝑘) = 3.6 + 6.9 + 9.12 + ⋯ + 3𝑘(3𝑘 + 3) = 3𝑘(𝑘 + 1)(𝑘 + 2)

Adding 3(𝑘 + 1)[3(𝑘 + 1)+ 3] to both sides, we get
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𝑃 (𝑘 + 1) = 3.6 + 6.9 + 9.12 + ⋯ + 3𝑘(3𝑘 + 3)+ 3(𝑘 + 1)[3(𝑘 + 1)+ 3]

= 3𝑘(𝑘 + 1)(𝑘 + 2)+ 3(𝑘 + 1) .3(𝑘 + 2) = 3(𝑘 + 1)(𝑘 + 2)(𝑘 + 3) = 𝑃 (𝑘 + 1).

Hence, by mathematical induction, the result.

11. We have to prove that 13 = 1, 23 = 3 + 5, 33 = 7 + 9 + 11, 43 = 13 + 15 + 17 + 19.

First term contains one term, second terms contains two terms and so on. Hence, 𝑘th
term will contain 𝑘 terms.

Sum of no. of terms till 𝑘th term is 1 + 2 + ⋯+ 𝑘 = 𝑘(𝑘+1)⁄
2 .

And, hence (𝑘 + 1)th term will begin with 1+ (𝑘(𝑘+1)⁄
2 )2 = 𝑘2+ 𝑘+ 1 and will contain

𝑘 + 1 terms with a c.d. of 2. Let it be true for 𝑃 (𝑘) i.e. 𝑡𝑘 = 𝑘3.

Thus, 𝑡𝑘+1 =
𝑘+1⁄
2 [2(𝑘2 + 𝑘 + 1)+ (𝑘 + 1 − 1)2] = 𝑘+1⁄

2 [2𝑘2 + 4𝑘 + 2] = (𝑘 + 1)3.

Hence, by mathematical induction, the result.

12. Let 𝑃 (𝑛) =
𝑛
∑
𝑟=1

𝑟.𝐶𝑛
𝑟 = 𝑛.2𝑛−1.

𝑃 (1) = 1.𝐶1
0 = 1 = 1.21−1 = 1. Hence, it is true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘.

⇒ 𝐶𝑘
1 + 2.𝐶𝑘

2 + ⋯ + 𝑘.𝐶𝑘
𝑘 = 𝑘.2𝑘−1

𝑃 (𝑘 + 1) = 𝐶𝑘+1
1 + 2.𝐶𝑘+1

2 + ⋯ + (𝑘 + 1) .𝐶𝑘+1
𝑘+1

= (𝐶𝑘
0 + 𝐶𝑘

1 )+ 2(𝐶𝑘
1 + 𝐶𝑘

2 )+⋯+ (𝑘 + 1)(𝐶𝑘
𝑘 + 0)

= (𝐶𝑘
0 + 2𝐶𝑘

1 + ⋯+ (𝑘 + 1)𝐶𝑘
𝑘 )+ (𝐶𝑘

1 + 2.𝐶𝑘
2 + ⋯ + 𝑘.𝐶𝑘

𝑘 )

= 2𝑘 + 𝑘.2𝑘−1 + 𝑘.2𝑘−1 = (𝑘 + 1) .2𝑘 = 𝑃 (𝑘 + 1).

Hence, by mathematical induction, the result.

13. Let 𝑃 (𝑛) =
𝑛
∑
𝑟=1

𝑟(2𝑟 + 1) = 𝑛(𝑛+1)(4𝑛+5)⁄
6 .

𝑃 (1) = 1.(2 + 1) = 3 = 1.2.9
⁄

6 = 3. Hence, it it true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘.

⇒
𝑘
∑
𝑟=1

𝑟(2𝑟 + 1) = 𝑘(𝑘+1)(4𝑘+5)
⁄

6 .

𝑃 (𝑘 + 1) =
𝑘+1
∑
𝑟=1

𝑟(2𝑟 + 1) = 𝑘(𝑘+1)(4𝑘+5)
⁄

6 + (𝑘 + 1) (2𝑘 + 3)

= (𝑘+1)
⁄

6 [4𝑘
2+5𝑘+12𝑘+18
⁄] = (𝑘+1)(𝑘+2)[4(𝑘+1)+5]
⁄

6 .

Hence, by mathematical induction, the result.
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14. Let 𝑃 (𝑛) = 1.2.3 + 2.3.4 + 3.4.5 + ⋯ + 𝑛(𝑛 + 1)(𝑛 + 2) = 𝑛(𝑛+1)(𝑛+2)(𝑛+3)⁄
4 .

𝑃 (1) = 1.2.3 = 6 = 1.2.3.4⁄
4 = 6, which is true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘.

⇒ 1.2.3 + 2.3.4 + 3.4.5 + ⋯ + 𝑘(𝑘 + 1)(𝑘 + 2) = 𝑘(𝑘+1)(𝑘+2)(𝑘+3)
⁄

4

Adding (𝑘 + 1)(𝑘 + 2)(𝑘 + 3) to both sides, we get

𝑃 (𝑘 + 1) = 1.2.3 + 2.3.4 + 3.4.5 + ⋯ + 𝑘(𝑘 + 1)(𝑘 + 2)+ (𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

= 𝑘(𝑘+1)(𝑘+2)(𝑘+3)
⁄

4 + (𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

= (𝑘+1)(𝑘+2)(𝑘+3)(𝑘+4)
⁄

4 .

Hence, by mathematical induction, the result.

15. Let 𝑃 (𝑛) = 1
⁄

1.4 +
1
⁄

4.7 +
1⁄

7.10 + ⋯ + 1
⁄

(3𝑛−2)(3𝑛+1) =
𝑛
⁄

3𝑛+1

𝑃 (1) = 1
⁄

4 =
1
⁄

3+1 =
1
⁄

4, which is true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘

⇒ 𝑃 (𝑘) = 1
⁄

1.4 +
1
⁄

4.7 +
1⁄

7.10 + ⋯ + 1
⁄

(3𝑘−2)(3𝑘+1) =
𝑘⁄

3𝑘+1

Adding 1
⁄

(3𝑘+1)(3𝑘+4) to both sides, we get

𝑃 (𝑘 + 1) = 1
⁄

1.4 +
1
⁄

4.7 +
1⁄

7.10 + ⋯ + 1
⁄

(3𝑛−2)(3𝑛+1)+
1
⁄

(3𝑘+1)(3𝑘+4)

= 𝑘⁄
3𝑘+1 +

1
⁄

(3𝑘+1)(3𝑘+4) =
3𝑘2+4𝑘+1
⁄

(3𝑘+1)(3𝑘+4) =
𝑘+1⁄
3𝑘+4 = 𝑃 (𝑘 + 1)

Hence, by mathematical induction, the result.

16. Let 𝑃 (𝑛) = 7 + 77 + 777 + ⋯+ 7…77⏟
𝑛 digits

= 7
⁄

81 (10
𝑛+1 − 9𝑛 − 10)

𝑃 (1) = 7 = 7
⁄

81 (10
2 − 9 − 10) = 7, which is true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘

⇒ 7 + 77 + 777 + ⋯+ 7…77⏟
𝑘 digits

= 7
⁄

81 (10
𝑘+1 − 9𝑘 − 10)

Adding 7…77⏟
𝑘+1~digits 

to both sides, we get

𝑃 (𝑘 + 1) = 7 + 77 + 777 + ⋯+ 7…77⏟
𝑘 digits

+ 7…77⏟
𝑘+1 digits

= 7
⁄

81 (10
𝑘+1 − 9𝑘 − 10)+ 7…77⏟

𝑘+1 digits
= 7
⁄

81 (10
𝑘+1(10𝑘+1 − 9𝑘 − 10))+ 7
⁄

9 (10
𝑘+1 − 1)

= 7
⁄

9 [
10𝑘+1−9𝑘−10+9.10𝑘+1−9
⁄

9 ] = 7
⁄

81 [10
𝑘+2 − 9(𝑘 + 1)− 10].
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Hence, by mathematical induction, the result.

17. Let 𝑃 (𝑛) = 1 + 1
⁄

1+2 +
1
⁄

1+2+3 + ⋯+ 1⁄
1+2+3+⋯+𝑛 =

2𝑛
⁄

𝑛+1

𝑃 (1) = 1 = 2.1
⁄

1+1 = 1, which is true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘

⇒ 𝑃 (𝑘) = 1 + 1
⁄

1+2 +
1
⁄

1+2+3 + ⋯+ 1
⁄

1+2+3+⋯+𝑘 =
2𝑘⁄
𝑘+1

Adding 1
⁄

1+2+3+⋯+(𝑘+1) to both sides,we get

𝑃 (𝑘 + 1) = 1 + 1
⁄

1+2 + 1
⁄

1+2+3 + ⋯ + 1⁄
1+2+3+⋯+𝑛 + 1
⁄

1+2+3+⋯+(𝑘+1) = 2𝑘⁄
𝑘+1 +

1
⁄

1+2+3⋯+(𝑘+1)

= 2𝑘⁄
𝑘+1 +

2⁄
(𝑘+1)(𝑘+2) =

2⁄
𝑘+1 .

𝑘2+2𝑘+1
⁄

𝑘+2 = 2(𝑘+1)
⁄

𝑘+2 .

Hence, by mathematical induction, the result.

18. Let 𝑃 (𝑛) = (1 − 1
⁄

22)(1 −
1
⁄

32)⋯(1 −
1⁄

(𝑛+1)2) =
𝑛+2
⁄

2𝑛+2

𝑃 (1) = 1 − 1
⁄

22 =
3
⁄

4 =
1+2
⁄

2.1+2 =
3
⁄

4, which is true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘

⇒ 𝑃 (𝑘) = (1 − 1
⁄

22)(1 −
1
⁄

32)⋯(1 −
1
⁄

(𝑘+1)2) =
𝑘+2⁄
2𝑘+2

Multiplying both sides with 1 − 1
⁄

(𝑘+2)2, we get

𝑃 (𝑘 + 1) = (1 − 1
⁄

22)(1 −
1
⁄

32)⋯(1 −
1
⁄

(𝑘+1)2)(1 −
1
⁄

(𝑘+2)2) =
𝑘+2⁄
2𝑘+2(1 −

1
⁄

(𝑘+2)2)

= 𝑘+2⁄
2𝑘+2 .

𝑘2+4𝑘+3
⁄

(𝑘+2)2 = 𝑘+3⁄
2𝑘+4.

Hence, by mathematical induction, the result.

19. Let 𝑃 (𝑛) = 1.3 + 2.32 + ⋯ + 𝑛.3𝑛 = (2𝑛−1)3𝑛+1+3⁄
4 .

𝑃 (1) = 3 = (2.1−1) .31+1+3
⁄

4 = 12
⁄

4 = 3, which is true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘

⇒ 𝑃 (𝑘) = 1.3 + 2.32 + ⋯ + 𝑘.3𝑘 = (2𝑘−1)3𝑘+1+3
⁄

4

Adding (𝑘 + 1) .3𝑘+1, to both sides, we get

𝑃 (𝑘 + 1) = 1.3 + 2.32 + ⋯ + 𝑘.3𝑘 + (𝑘 + 1) .3𝑘+1 = (2𝑘−1)3𝑘+1+3
⁄

4 + (𝑘 + 1) .3𝑘+1

= (2𝑘−1) .3𝑘+1+3+(4𝑘+4) .3𝑘+1
⁄

4 = (6𝑘+3) .3𝑘+1=3
⁄

4 = [2(𝑘+1)−1] .3𝑘+2+3
⁄

4

Hence, by mathematical induction, the result.
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20. Let 𝑃 (𝑛) = cos𝛼 + cos 2𝛼 + ⋯+ cos 𝑛𝛼 = sin 𝑛𝛼⁄
2 csc 𝛼⁄2 cos (𝑛+1)𝛼⁄

2 .

𝑃 (1) = cos𝛼 = sin 𝛼⁄
2 csc

𝛼⁄
2 cos

1+1
⁄

2 𝛼 = cos 𝛼, which is true for 𝑛 = 1. Let it be true for
𝑛 = 𝑘.

⇒ 𝑃 (𝑘) = cos𝛼 + cos 2𝛼 + ⋯+ cos 𝑘𝛼 = sin 𝑘𝛼
⁄

2 csc 𝛼⁄2 cos (𝑘+1)𝛼⁄2
Adding cos(𝑘 + 1)𝛼, to both sides, we get

𝑃 (𝑘 + 1) == cos𝛼 + cos 2𝛼 + ⋯ + cos 𝑘𝛼 + cos(𝑘 + 1)𝛼 = sin 𝑘𝛼
⁄

2 csc 𝛼⁄2 cos (𝑘+1)𝛼⁄2 +
cos(𝑘 + 1)𝛼

= 1
⁄

2 csc
𝛼⁄
2 [2 sin

𝑘𝛼
⁄

2 cos (𝑘+1)𝛼⁄2 + 2 sin 𝛼⁄
2 cos(𝑘 + 1)𝛼]

= 1
⁄

2 csc
𝛼⁄
2 [sin

(2𝑘+1)𝛼
⁄

2 − sin 𝛼⁄
2 + sin (2𝑘+3)𝛼⁄2 − sin (2𝑘+1)𝛼⁄2 ]

= csc 𝛼⁄2 cos (𝑘+2)𝛼⁄2 sin (𝑘+1)𝛼⁄2

Hence, by mathematical induction, the result.

21. Let 𝑃 (𝑛) = tan𝛼 + 2 tan 2𝛼 + 22 tan 22𝛼 +⋯+ 2𝑛−1 tan 2𝑛−1𝛼 = cot 𝛼 − 2𝑛 cot 2𝑛𝛼

𝑃 (1) = tan𝛼 = cot 𝛼 − 2 cot 2𝛼 = 1
⁄

tan𝛼 −
2
⁄

tan2𝛼 = 1
⁄

tan𝛼 −
1−tan2 𝛼
⁄

tan𝛼 = tan𝛼,

which is true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘

⇒ 𝑃 (𝑘) = tan𝛼 + 2 tan 2𝛼 + 22 tan 22𝛼 + ⋯+ 2𝑘−1 tan 2𝑘−1𝛼 = cot 𝛼 − 2𝑘 cot 2𝑘𝛼

Adding 2𝑘 tan 2𝑘𝛼, to both sides, we get

𝑃 (𝑘 + 1) = tan𝛼 + 2 tan 2𝛼 + 22 tan 22𝛼 + ⋯+ 2𝑘−1 tan 2𝑘−1𝛼 + 2𝑘 tan 2𝑘𝛼

= cot 𝛼 − 2𝑘 cot 2𝑘𝛼 + 2𝑘 tan 2𝑘𝛼 = cot 𝛼 − 2𝑘(cot 2𝑘𝛼 − tan 2𝑘𝛼)

= cot𝛼 − 2𝑘+1(1−tan2
𝑘+1𝛼
⁄

2 tan2𝑘𝛼 ) = cot𝛼 − 2𝑘+1 cot 2𝑘+1𝛼.

Hence, by mathematical induction, the result.

22. Let 𝑃 (𝑛) = tan−1 1⁄3 + tan−1 1⁄7 + ⋯ + tan−1 1⁄
𝑛2+𝑛+1 = tan−1 𝑛
⁄

𝑛+2

𝑃 (1) = tan−1 1⁄3 = tan−1 1
⁄

1+2 = tan−1 1⁄3, which is true for n = 1. Let it be true for 𝑛 = 𝑘

⇒ 𝑃 (𝑘) = tan−1 1⁄3 + tan−1 1⁄7 + ⋯ + tan−1 1
⁄

𝑘2+𝑘+1 = tan−1 𝑘⁄
𝑘+2

Adding tan−1 1
⁄

𝑘2+3𝑘+3, to both sides, we get

𝑃 (𝑘 + 1) = tan−1 1⁄3 + tan−1 1⁄7 + ⋯ + tan−1 1
⁄

𝑘2+𝑘+1 + tan−1 1
⁄

𝑘2+3𝑘+3
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= tan−1 𝑘⁄
𝑘+2 + tan−1 1
⁄

𝑘2+3𝑘+3 = tan−1
𝑘
⁄

𝑘+2+
1
⁄

𝑘2+3𝑘+3
⁄

1− 𝑘
⁄

𝑘+2.
1
⁄

𝑘2+3𝑘+3

= tan−1 𝑘
3+3𝑘2+3𝑘+𝑘+2
⁄

𝑘3+5𝑘2+9𝑘+6−𝑘

= tan−1 𝑘
3+3𝑘2+4𝑘+2
⁄

𝑘3+5𝑘2+8𝑘+6 = tan−1 𝑘+1⁄
𝑘+3.

Hence, by mathematical induction, the result.

23. 𝑢3 = 𝑢2 + 𝑢1. Substituting 𝑛 = 3 in the given formula 𝑢3 = 1⁄
√


5 [(
1+√


5⁄
2 )

3
− (1−√


5⁄
2 )

3
]

= 1⁄
√


5 [
1+3√


5+15+5√


5
⁄

8 − 1−3√


5+15−5√


5
⁄

8 ] = 1⁄
√


5
16√


5
⁄

8 2 = 𝑢1 + 𝑢2.

Thus, the relation holds for 𝑛 = 3. Similarly, we can prove that it holds for 𝑚 = 1, 2.
Let it hold for 𝑛 = 𝑘 and 𝑘 + 1.

⇒ 𝑢𝑘 =
1⁄
√


5 [(
1+√


5⁄
2 )

𝑘
− (1−√


5⁄
2 )

𝑘
] and 𝑢𝑘+1 =

1⁄
√


5 [(
1+√


5⁄
2 )

𝑘+1
− (1−√


5⁄
2 )

𝑘+1
].

𝑢𝑘+2 = 𝑢𝑘 + 𝑢𝑘+1 =
1⁄
√


5 [(
1+√


5⁄
2 )

𝑘
(1 + 1+√


5⁄
2 )− (1+√


5⁄
2 )

𝑘
(1 − 1−√


5⁄
2 )]

= 1⁄
√


5 [(
1+√


5⁄
2 )

𝑘
(1+√


5⁄
2 )

2
− (1−√


5⁄
2

𝑘
)(1−√


5⁄
2 )

2
] = 𝑢𝑘+2.

Hence, by mathematical induction, the result.

24. Let 𝑃 (𝑛) = 𝑝𝑛+1 + (𝑝 + 1)2𝑛−1.

𝑃 (1) = 𝑝2 + 𝑝 + 1, which is divisible by 𝑝2 + 𝑝 + 1, and hence, our statement is true
for 𝑛 = 1. Let it be true for 𝑛 = 𝑘.

⇒ 𝑃 (𝑘) = 𝑝𝑘+1 + (𝑝 + 1)2𝑘−1 is divisible by 𝑝2 + 𝑝 + 1 i.e. 𝑝𝑘+1 + (𝑝 + 1)2𝑘+1 =
(𝑝2 + 𝑝 + 1)𝑄(𝑝), where 𝑄(𝑝), is a polynomial of 𝑝.

𝑃 (𝑘 + 1) = 𝑝𝑘+2 + (𝑝 + 1)2𝑘+1 = 𝑝.𝑝𝑘+1 + (𝑝 + 1)2(𝑝 + 1)2𝑘−1

∴𝑃 (𝑘) = (𝑝2 + 𝑝 + 1)2𝑄(𝑘), making it divisible by 𝑝2 + 𝑝 + 1.

Hence, by mathematical induction, the result.

25. Let 𝑃 (𝑛) = 2𝑛 > 2𝑛 + 1, where 𝑛 > 2

𝑃 (3) = 23 = 8 > 2.3 + 1 = 7, hence, it is true for 𝑛 = 3. Let it be true for 𝑛 = 𝑘.

⇒ 𝑃 (𝑘) = 2𝑘 > 2𝑘 + 1, where 𝑘 > 2.

𝑃 (𝑘 + 1) = 2𝑘+1 = 2.2𝑘 = 4𝑘 + 2 = 2𝑘 + 2𝑘 + 2 ∵ 𝑘 ≥ 3 ∴ 2𝑘 + 2 > 3, making our
statement true for 𝑛 = 𝑘 + 1.

hence, by mathematical induction, the result.
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26. Let 𝑃 (𝑛) = 2𝑛 > 𝑛3, where 𝑛 ≥ 10.

𝑃 (10) = 210 = 1024 > 103 = 1000, hence, it is true for 𝑛 = 3. Let it be true for 𝑛 = 𝑘.

⇒ 𝑃 (𝑘) = 2𝑘 > 𝑘3

𝑃 (𝑘 + 1) = 2𝑘+1 > 2.𝑘3 > (𝑘 + 1)3 ⇒ 𝑘3 − 3𝑘2 − 3𝑘 − 1 > 0 ⇒ (𝑘 − 1)3 − 6𝑘 > 0

Let 𝑘 = 10 + 𝑎, where 𝑎 ≥ 0, hence, (9 + 𝑎)3 − 60 − 6𝑎 = 669 + 183𝑎 + 27𝑎2 + 𝑎3 > 0

hence, by mathematical induction, the result.

27. Given, 𝑛 > 1, so we start with 𝑛 = 2. ⇒ tan 2𝛼 = 2tan𝛼
⁄

1−tan2 𝛼 > 2 tan𝛼 ∵ 1 − tan2 𝛼 < 1,

which is true for 𝑛 = 2. Let the statement for 𝑛 = 𝑘

⇒ tan 𝑘𝛼 > 𝑘 tan𝛼. For 𝑛 = 𝑘 + 1

tan(𝑘 + 1)𝛼 = tan𝛼+tan𝑘𝛼
⁄

1−tan𝛼. tan𝑘𝛼 > 𝑘tan𝛼+tan𝛼
⁄

1−tan𝑘𝛼tan𝛼 > (𝑘 + 1) tan 𝛼 ∵ 1 − tan𝛼 tan 𝑘𝛼 < 1

Hence, by mathematical induction, the result.

28. Let 𝑃 (𝑛) = 𝑛4 < 10𝑛 ∀ 𝑛 ≥ 2

For 𝑛 = 1, 𝑃 (2) = 24 < 102 ⇒ 16 < 100, which is true for 𝑛 = 2. Let 𝑃 (𝑘) be true i.e.
𝑘4 < 10𝑘.

We have to prove that 𝑃 (𝑘 + 1) is true i.e. (𝑘 + 1)4 < 10𝑘+1.

Clearly, 10𝑘+1 > 10𝑘4. Now, 10𝑘4
⁄

(𝑘+1)4 = 10( 𝑘⁄
𝑘+1)

4

∵ 𝑘 ≥ 2 ⇒ ( 𝑘⁄
𝑘+1)

4
≥ 24
⁄

34 ⇒ 10( 𝑘⁄
𝑘+1)

4
≥ 10. 16⁄81 > 1.

Thus, 10𝑘+1 > (𝑘 + 1)4. Hence, by mathematical induction, the result.

29. Let 𝑃 (𝑛) = 13 + 33 + ⋯+ (2𝑛 − 1)3 = 𝑛2(2𝑛2 − 1).

𝑃 (1) = 13 = 1 = 12(2.11 − 1) = 1, which is true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘.

𝑃 (𝑘) = 13 + 33 + ⋯+ (2𝑘 − 1)3 = 𝑘2(2𝑘2 − 1)

Adding (2𝑘 + 1)3, to both sides, we get

𝑃 (𝑘 + 1) = 13 + 33 + ⋯+ (2𝑘 − 1)3 + (2𝑘 + 1)3 = 𝑘2(2𝑘2 − 1)+ (2𝑘 + 1)3

= 2𝑘4 − 𝑘2 + 8𝑘2 + 12𝑘2 + 6𝑘 + 1 = (𝑘 + 1)2 [2(𝑘 + 1)2 − 1].

Hence, by mathematical induction, the result.

30. Let 𝑃 (𝑛) = 3.22 + 33.23 + ⋯ + 3𝑛.2𝑛+1 = 12
⁄

5 (6
𝑛 − 1).

𝑃 (1) = 3.22 = 12 = 12
⁄

5 (6
1 − 1) = 12, which is true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘.
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⇒ 𝑃 (𝑘) = 3.22 + 33.23 + ⋯ + 3𝑘.2𝑘+1 = 12
⁄

5 (6
𝑘 − 1).

Adding 3𝑘+1.2𝑘+2, to both sides, we get

𝑃 (𝑘 + 1) = 3.22 + 33.23 + ⋯ + 3𝑘.2𝑘+1 + 3𝑘+1.2𝑘+2 = 12
⁄

5 (6
𝑘 − 1)+ 3𝑘+1.2𝑘+2

= 12
⁄

5 (6
𝑘 − 1)+ 2.6𝑘+1 = (2.6𝑘+1−12+10.6𝑘+1)
⁄

5 = 12
⁄

5 (6
𝑘+1 − 6).

Hence, by mathematical induction, the result.

31. Let 𝑃 (𝑛) = 1
⁄

1.4 +
1
⁄

4.7 + ⋯ + 1
⁄

(3𝑛−2)(3𝑛+1) =
𝑛
⁄

3𝑛+1.

𝑃 (1) = 1
⁄

4 =
1
⁄

3.1+1 =
1
⁄

4, which is true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘.

⇒ 𝑃 (𝑘) = 1
⁄

1.4 +
1
⁄

4.7 + ⋯ + 1
⁄

(3𝑘−2)(3𝑘+1) =
𝑘⁄

3𝑘+1

Adding 1
⁄

(3𝑘+1)(3𝑘+4), to both sides we get

𝑃 (𝑘 + 1) = 1
⁄

1.4 +
1
⁄

4.7 + ⋯ + 1
⁄

(3𝑘−2)(3𝑘+1)+
1
⁄

(3𝑘+1)(3𝑘+4)

= 𝑘⁄
3𝑘+1 +

1
⁄

(3𝑘+1)(3𝑘+4) =
3𝑘2+4𝑘+1
⁄

(3𝑘+1)(3𝑘+4) =
𝑘+1
⁄

3(𝑘+1)+1.

Hence, by mathematical induction, the result.

32. Let 𝑃 (𝑛) = (cos 𝜃 + 𝑖 sin 𝜃)𝑛 = cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃.

Clearly, it is true for 𝑛 = 1. Let it be true for 𝑛 = 𝑘, i.e.

𝑃 (𝑘) = (cos 𝜃 + 𝑖 sin 𝜃)𝑘 = cos 𝑘𝜃 + 𝑖 sin 𝑘𝜃.

𝑃 (𝑘 + 1) = (cos 𝜃 + 𝑖 sin 𝜃)𝑘+1 = (cos 𝑘𝜃 + 𝑖 sin 𝑘𝜃)(cos 𝜃 + 𝑖 sin 𝜃)

= [cos 𝑘𝜃 cos 𝜃 − sin 𝑘𝜃 sin 𝜃 + 𝑖(cos 𝜃 sin 𝑘𝜃 + cos 𝑘𝜃 sin 𝜃)]

= cos(𝑘 + 1)𝜃 + 𝑖 sin(𝑘 + 1)𝜃.

Hence, by mathematical induction, the result.

33. Let 𝑃 (𝑛) = cos 𝜃. cos 2𝜃… cos 2𝑛−1𝜃 = sin2𝑛𝜃⁄
2𝑛 sin 𝜃.

𝑃 (1) = cos 𝜃 = sin2𝜃
⁄

2 sin 𝜃 =
2sin 𝜃 cos 𝜃
⁄

2 sin 𝜃 = cos 𝜃, which is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑘.

⇒ 𝑃 (𝑘) = cos 𝜃. cos 2𝜃… cos 2𝑘−1𝜃 = sin2𝑘𝜃
⁄

2𝑘 sin 𝜃

Multiplying both sides with 𝑐𝑜𝑠2𝑘𝜃, we get

𝑃 (𝑘 + 1) = cos 𝜃. cos 2𝜃… cos 2𝑘𝜃 = sin2𝑘𝜃
⁄

2𝑘 sin 𝜃 . cos 2
𝑘𝜃 = 2sin 2𝑘𝜃 cos 2𝑘𝜃
⁄

2𝑘+1 sin 𝜃 = sin2𝑘+1𝜃
⁄

2𝑘+1 sin 𝜃

Hence, by mathematical induction, the result.
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34. Let 𝑃 (𝑛) = sin 𝛼 + sin 2𝛼 + ⋯+ sin 𝑛𝛼 =
sin𝑛𝛼⁄

2⁄
sin𝛼⁄

2
sin 𝑛+1
⁄

2 𝛼

𝑃 (1) = sin 𝛼 =
sin𝛼⁄

2
⁄

sin𝛼⁄
2
sin 1+1
⁄

2 𝛼 = sin 𝛼, which is true for 𝑛 = 1.

Let it be true for 𝑛 = 1

⇒ 𝑃 (𝑘) = sin 𝛼 + sin 2𝛼 + ⋯+ sin 𝑘𝛼 =
sin𝑘𝛼
⁄

2
⁄

sin𝛼⁄
2
sin 𝑘+1⁄

2 𝛼

Adding sin(𝑘 + 1)𝛼, to both sides, we get

𝑃 (𝑘 + 1) = sin 𝛼 + sin 2𝛼 +⋯+ sin 𝑘𝛼 + sin(𝑘 + 1)𝛼 =
sin𝑘𝛼
⁄

2
⁄

sin𝛼⁄
2
sin 𝑘+1⁄

2 𝛼 + sin(𝑘 + 1)𝛼

=
sin𝑘𝛼
⁄

2
⁄

sin𝛼⁄
2
sin 𝑘+1⁄

2 + 2 sin 𝑘+1⁄
2 𝛼 cos 𝑘+1⁄

2 𝛼

= sin 𝑘+1⁄
2 𝛼[

sin𝑘𝛼
⁄

2
⁄

sin𝛼⁄
2
+ 2 cos 𝑘+1⁄

2 𝛼] = sin 𝑘+1⁄
2 𝛼[

sin𝑘𝛼
⁄

2 +2 cos𝑘+1⁄2 𝛼 sin𝛼⁄
2
⁄

sin𝛼⁄
2

]

= sin 𝑘+1⁄
2 𝛼[

sin𝑘𝛼
⁄

2 +sin𝑘+2
⁄

2 𝛼−sin𝑘𝛼
⁄

2
⁄

sin𝛼⁄
2

]

=
sin(𝑘+1)𝛼⁄2
⁄

sin𝛼⁄
2

sin 𝑘+1⁄
2 𝛼

Hence, by mathematical induction, the result.

35. Given, 𝑎1 = 1 and 𝑎𝑛+1 = 𝑎𝑛
⁄

𝑛+1 , 𝑛 ≥ 1. Clearly, 𝑎2 = 𝑎1
⁄

1+1 =
1
⁄

2 =
1⁄
2!, which means it

holds true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑘 ⇒ 𝑎𝑘+1 =
1
⁄

𝑘!.

𝑃 (𝑘 + 1) = 𝑎𝑘⁄
𝑘+1 =

1
⁄

𝑘!(𝑘+1) =
1
⁄

(𝑘+1)!.

Hence, by mathematical induction, the result.

36. Given, 𝑎1 = 1, 𝑎2 = 5 and 𝑎𝑛+2 = 5𝑎𝑛+1 − 6𝑎𝑛, 𝑛 ≥ 1

⇒ 𝑎3 = 5𝑎2 − 6𝑎1 = 25 − 6 = 19 = 33 − 23 = 19, which is true for 𝑛 = 3.

Let it be true for 𝑛 = 𝑘 and 𝑛 = 𝑘 + 1

⇒ 𝑎𝑘 = 3𝑘 − 2𝑘 and 𝑎𝑘+1 = 3𝑘+1 − 2𝑘+1

𝑎𝑘+2 = 5𝑎𝑘+1 − 6𝑎𝑘 = 5.3𝑘+1 − 5.2𝑘+1 − 6.3𝑘 + 6.2𝑘 = 9.3𝑘 − 4.2𝑘 = 3𝑘+2 − 2𝑘+2.

Hence, by mathematical induction, the result.
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37. Given, 𝑢0 = 2, 𝑢1 = 3 and 𝑢𝑛+1 = 3𝑢𝑛 − 2𝑢𝑛−1 and 𝑢𝑛 = 2𝑛 + 1.

𝑢2 = 3𝑢1 − 2𝑢0 = 3.3 − 2.2 = 5 = 22 + 1, which is true for 𝑛 = 2.

Let it be true for 𝑛 = 𝑘 and 𝑛 = 𝑘 + 1

⇒ 𝑢𝑘 = 2𝑘 − 1 and 𝑢𝑘+1 = 2𝑘+1 − 1

𝑢𝑘+2 = 3.𝑢𝑘+1 − 2.𝑢𝑘 = 3.2𝑘+1 − 3 − 2.2𝑘 + 2 = 4.2𝑘 + 1 = 2𝑘+2 + 1.

Hence, by mathematical induction, the result.

38. Given, 𝑎0 = 0, 𝑎1 = 1 and 𝑎𝑛+1 = 3𝑎𝑛 − 2𝑎𝑛−1, and 𝑎𝑛 = 2𝑛 − 1.

𝑎2 = 3𝑎1 − 2𝑎0 = 3 = 22 − 1, which is true for 𝑛 = 2.

Let it be true for 𝑛 = 𝑘 and 𝑛 = 𝑘 + 1

⇒ 𝑎𝑘 = 2𝑘 − 1 and 𝑎𝑘+1 = 2𝑘+1 − 1

⇒ 𝑎𝑘+2 = 3.2𝑘+1 − 3 − 2.2𝑘 + 2 = 4.2𝑘 − 1 = 2𝑘+2 − 1.

Hence, by mathematical induction, the result.

39. Given, 𝐴1 = cos 𝜃, 𝐴2 = cos 2𝜃, and for every natural number 𝑚 > 2, 𝐴𝑚 =
2𝐴𝑚−1 cos 𝜃 − 𝐴𝑚−2.

𝐴3 = 2𝐴2 cos 𝜃 − 𝐴1 = 2 cos 𝜃 cos 2𝜃 − cos 𝜃 = cos 3𝜃 + cos 𝜃 − cos 𝜃 = cos 3𝜃, which is
true for 𝑛 = 3.

Let it be true for 𝑛 = 𝑘 and 𝑛 = 𝑘 + 1

⇒ 𝐴𝑘 = cos 𝑘𝜃 and 𝐴𝑘+1 = cos(𝑘 + 1)𝜃

𝐴𝑘+2 = 2 cos(𝑘 + 1)𝜃 cos 𝜃 − cos 𝑘𝜃 = cos(𝑘 + 2)𝜃 + cos 𝑘𝜃 − cos 𝑘𝜃 = cos(𝑘 + 2)𝜃

Hence, by mathematical induction, the result.

40. Let 𝑃 (𝑛) = (2 cos 𝜃 − 1)(2 cos 2𝜃 − 1)⋯ (2 cos 2𝑛−1𝜃 − 1) = 2cos 2𝑛𝜃+1⁄
2 cos 𝜃+1

𝑃 (1) = 2 cos 𝜃 − 1 = 2cos 2𝜃+1
⁄

2 cos 𝜃+1 = 4cos2 𝜃−1
⁄

2 cos 𝜃+1 = 2 cos 𝜃 − 1, which is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚

⇒ 𝑃 (𝑚) = (2 cos 𝜃 − 1)(2 cos 2𝜃 − 1)⋯ (2 cos 2𝑚−1𝜃 − 1) = 2cos 2𝑚𝜃+1
⁄

2 cos 𝜃+1

Multiplying both sides by 2 cos 2𝑚𝜃 − 1, we get

𝑃 (𝑚 + 1) = (2 cos 𝜃 − 1)(2 cos 2𝜃 − 1)⋯ (2 cos 2𝑚−1𝜃 − 1)(2 cos 2𝑚𝜃 − 1) =
2cos 2𝑚𝜃+1
⁄

2 cos 𝜃+1 (2 cos 2𝑚𝜃 − 1)

= 4cos 2𝑚𝜃−1
⁄

2 cos 𝜃 = 2cos 2𝑚+1𝜃+1
⁄

2 cos 𝜃

Hence, by mathematical induction, the result.
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41. Let 𝑃 (𝑛) = tan−1 𝑥⁄
1.2+𝑥2 + tan−1 𝑥⁄

2.3+𝑥2 + ⋯ + tan−1 𝑥⁄
𝑛(𝑛+1)+𝑥2 = tan−1 𝑥 −

tan−1 𝑥
⁄

𝑛+1 , 𝑥 ∈ ℝ.

𝑃 (1) = tan−1 𝑥⁄
1.2+𝑥2 = tan−1 𝑥 − tan−1 𝑥
⁄

1+1 = tan−1 2𝑥−𝑥
⁄

2+𝑥2 = tan−1 𝑥⁄
1.2+𝑥2, which is

true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚

⇒ 𝑃 (𝑛) = tan−1 𝑥⁄
1.2+𝑥2+tan−1 𝑥⁄

2.3+𝑥2+⋯+tan−1 𝑥
⁄

𝑚(𝑚+1)+𝑥2 = tan−1 𝑥−tan−1 𝑥⁄
𝑚+1

Adding tan−1 𝑥
⁄

(𝑚+1)(𝑚+2)+𝑥2, to both sides, we get

𝑃 (𝑚 + 1) = tan−1 𝑥⁄
1.2+𝑥2 + tan−1 𝑥⁄

2.3+𝑥2 + ⋯ + tan−1 𝑥
⁄

𝑚(𝑚+1)+𝑥2 +

tan−1 𝑥
⁄

(𝑚+1)(𝑚+2)+𝑥2 = tan−1 𝑥 − tan−1 𝑥⁄
𝑚+1 + tan−1 𝑥
⁄

(𝑚+1)(𝑚+2)+𝑥2

= tan−1 𝑥 − tan−1 𝑥⁄
𝑚+1 + tan−1 𝑥⁄

𝑚+1 − tan−1 𝑥⁄
𝑚+2 = tan−1 𝑥 − tan−1 𝑥⁄

𝑚+2.

Hence, by mathematical induction, the result.

42. Let 𝑃 (𝑛) = 3 + 33 + ⋯+ 33…3⏟
𝑛 digits

= 10𝑛+1−9𝑛−10⁄
27 .

𝑃 (1) = 3 = 102−9−19
⁄

27 = 81
⁄

27 = 3, which is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚

𝑃 (𝑛) = 3 + 33 + ⋯+ 33…3⏟
𝑚 digits

= 10𝑚+1−9𝑛−10
⁄

27

Adding 3…33⏟
𝑚+1 digits

, to both sides, we get

𝑃 (𝑚+ 1) = 3 + 33 + ⋯+ 33…3⏟
𝑚 digits

+ 33…3⏟
𝑚+1 digits

= 10𝑚+1−9𝑛−10
⁄

27 + 33…3⏟
𝑚+1 digits

= 10𝑚+1−9𝑚−10
⁄

27 + +3
⁄

9 (10
𝑚+1 − 1) = 10𝑚+1−9𝑚−10+9.10𝑚+1−9
⁄

27

= 10𝑚+2−9𝑚−19
⁄

243 = 10𝑚+2−9(𝑚+1)−10
⁄

27 .

Hence, by mathematical induction, the result.

43. Let 𝑃 (𝑛) = ∫
𝜋

0

sin(2𝑛+1)𝑥
⁄

sin𝑥 𝑑𝑥 = 𝜋.

𝑃 (1) = ∫
𝜋

0

sin3𝑥
⁄

sin𝑥 𝑑𝑥 = ∫
𝜋

0

3 sin𝑥−4 sin3 𝑥
⁄

sin𝑥 𝑑𝑥

= 3∫
𝜋

0
𝑑𝑥 − 4∫

𝜋

0
sin2 𝑥𝑑𝑥 = [3𝑥]𝜋0 − 2∫

𝜋

0
(1 − cos 2𝑥)𝑑𝑥
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= 3𝜋 − [2𝑥]𝜋0 + [sin 2𝑥]𝜋0 = 𝜋 + 0 = 𝜋, which is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚

⇒ 𝑃 (𝑚) = ∫
𝜋

0

sin(2𝑚+1)𝑥
⁄

sin𝑥 𝑑𝑥 = 𝜋

Now 𝑃 (𝑚+ 1)− 𝑃 (𝑚) = ∫
𝜋

0

sin(2𝑚+3)𝑥−sin(2𝑚+1)𝑑
⁄

sin𝑥 𝑑𝑥 = ∫
𝜋

0

2cos(2𝑚+2)𝑥 sin𝑥
⁄

sin𝑥 𝑑𝑥

= ∫
𝜋

0
cos(2𝑚 + 2)𝑥𝑑𝑥 = 0 ⇒ 𝑃 (𝑚+ 1) = 𝑃 (𝑚) = 𝜋.

Hence, by mathematical induction, the result.

44. Let 𝑃 (𝑛) = ∫
𝜋

0

sin2 𝑛𝑥
⁄

sin2 𝑥 𝑑𝑥 = 𝑛𝜋.

𝑃 (1) = ∫
0

sin2 𝑥
⁄

sin2 𝑥 𝑑𝑥 = [𝑥]𝜋0 = 𝜋, which is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚

⇒ 𝑃 (𝑚) = ∫
𝜋

0

sin2𝑚𝑥
⁄

sin2 𝑥 𝑑𝑥 = 𝑚𝜋

𝑃 (𝑚+ 1)− 𝑃 (𝑚) = ∫
𝜋

0

sin2(𝑚+1)𝑥−sin2𝑚𝑥
⁄

sin2 𝑥 𝑑𝑥 = ∫
𝜋

0

cos 2𝑚𝑥−cos(2𝑚+2)𝑥
⁄

sin2 𝑥 𝑑𝑥

= ∫
𝜋

0

2 sin(2𝑚+1) sin𝑥
⁄

sin2 𝑥 𝑑𝑥 = 𝜋(we have proved this in previous problem)

⇒ 𝑃 (𝑚+ 1) = (𝑚+ 1)𝜋(because 𝑃 (𝑚) = 𝑚𝜋).

Hence, by mathematical induction, the result.

45. Let 𝑃 (𝑛) = tan−1 1⁄
1+1+12 + tan−1 1⁄

1+2+22 + ⋯ + tan−1 1⁄
1+𝑛+𝑛2 = tan−1(𝑛 + 1)− 𝜋
⁄

4.

𝑃 (1) = tan−1 1
⁄

1+2 = tan−1 2 − tan−1 1 = tan−1(1 + 1)− 𝜋
⁄

4, which is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚

⇒ 𝑃 (𝑚) = tan−1 1⁄
1+1+12 + tan−1 1⁄

1+2+22 + ⋯+ tan−1 1
⁄

1+𝑚+𝑚2 = tan−1(𝑚+ 1)− 𝜋
⁄

4.

Adding tan−1 1
⁄

1+(𝑚+1)+(𝑚+1)2, to both sides, we get

𝑃 (𝑚 + 1) = tan−1 1⁄
1+1+12 + tan−1 1⁄

1+2+22 + ⋯ + tan−1 1
⁄

1+𝑚+𝑚2 +

tan−1 1
⁄

1+(𝑚+1)+(𝑚+1)2 = tan−1(𝑚+ 1)− 𝜋
⁄

4 + tan−1 1
⁄

1+(𝑚+1)+(𝑚+1)2

= tan−1(𝑚+ 1)− 𝜋
⁄

4 + tan−1(𝑚+ 2)− tan−1(𝑚+ 1) = tan−1(𝑚+ 1)− 𝜋
⁄

4.

Hence, by mathematical induction, the result.
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46. Let 𝑃 (𝑛) = 𝑛(𝑛 + 1)(𝑛 + 5). 𝑃 (1) = 1.2.6 = 12, which is divisible by 6 i.e. the
statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 𝑚(𝑚+ 1)(𝑚+ 5) = 𝑚3 + 6𝑚2 + 5𝑚 = 6𝑘,where 𝑘 ∈ ℕ.

𝑃 (𝑚+1) = (𝑚+1)(𝑚+2)(𝑚+6) =𝑚3+9𝑚2+15𝑚+12 = 6𝑘+3𝑚2+15𝑚+12 =
6𝑘 + 3(𝑚+ 1)(𝑚+ 4)

Clearly, 3(𝑚+ 1)(𝑚+ 4) = 6𝑞, where 𝑞 ∈ ℕ.

Hence, by mathematical induction, the result.

47. Let 𝑃 (𝑛) = 𝑛3 + (𝑛 + 1)3 + (𝑛 + 2)3 .𝑃 (1) = 13 + 23 + 33 = 36, which is divisible
by 9 i.e. the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚

⇒ 𝑃 (𝑚) = 𝑚3 + (𝑚+ 1)3 + (𝑚+ 2)3 = 9𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚+ 1) = (𝑚+ 1)3 + (𝑚+ 2)3 + (𝑚+ 3)3 = 9𝑘 + 9𝑚2 + 27𝑚+ 27 = 9(𝑘 +𝑚2 +
3𝑚+ 3).

Hence, by mathematical induction, the result.

48. Let 𝑃 (𝑛) = 𝑛(𝑛2 + 20), where 𝑛 is even where 𝑛 ∈ ℙ.

𝑃 (2) = 2.24 = 48, which is divisible by 48 i.e. the statement is true for 𝑛 = 2.

Let it be true for 𝑛 = 2𝑚

⇒ 𝑃 (2𝑚) = 2𝑚(4𝑚2 + 20) = 8𝑚(𝑚2 + 5) = 48𝑘, where 𝑘 ∈ ℙ.

𝑃 (2𝑚+ 2) = (2𝑚+ 2)[4𝑚2 + 8𝑚+ 24] = 8(𝑚+ 1)(𝑚2+ 2𝑚+ 6) = 8(𝑚3+ 2𝑚2+
6𝑚+𝑚2 + 2𝑚+ 6)

= 8(𝑚3 + 3𝑚2 + 8𝑚+ 6) = 8(48𝑘 + 3𝑚2 + 3𝑚+ 6) = 24(16𝑘 +𝑚2 +𝑚+ 2).

Now, we have to prove that 𝑚2 +𝑚+ 2 is divisible by 2.

Let 𝑄(𝑚) = 𝑚2 +𝑚+ 2. 𝑄(1) = 4, which is divisible by 2. Let it be true for 𝑚 = 𝑡.

⇒ 𝑄(𝑡) = 𝑡2 + 𝑡 + 2 = 2𝑥, where 𝑥 ∈ 𝕩.

𝑄(𝑡 + 1) = 𝑡2 + 2𝑡 + 𝑡 + 4 = 2𝑥 + 2𝑡 + 2, which is divisible by 2.

Hence, by mathematical induction, the result.

49. Let 𝑃 (𝑛) = 4𝑛− 3𝑛− 1. 𝑃 (1) = 4− 3− 1 = 0, which is divisible by 9, so it is true for
𝑛 = 1.

Let it be true for 𝑛 = 𝑚
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⇒ 𝑃 (𝑚) = 4𝑚− 3𝑚− 1 = 9𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚 + 1) = 4𝑚+1 − 3(𝑚 + 1) − 1 = 4.4𝑚 − 3𝑚 − 4 = 4(9𝑘 + 3𝑚 + 1) − 3𝑚 − 4 =
36𝑘 + 9𝑚, which is divisible by 9.

Hence, by mathematical induction, the result.

50. Let 𝑃 (𝑛) = 32𝑛 − 1. 𝑃 (1) = 32 − 1 = 8, which is divisible by 8. So the statement is
true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚

⇒ 𝑃 (𝑚) = 32𝑚 − 1 = 8𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚+1) = 32𝑚+2− 1 = 9.32𝑚− 1 = 9(8𝑘 + 1)−1 = 72𝑘 + 8, which is divisible by 8.

Hence, by mathematical induction, the result.

51. Let 𝑃 (𝑛) = 5.23𝑛−2 + 33𝑛−1. 𝑃 (1) = 5.2 + 32 = 19, which is divisible by 19, so the
statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚

⇒ 𝑃 (𝑚) = 5.23𝑚−2 + 33𝑚−1 = 19𝑘, where 𝑘 ∈ ℕ

𝑃 (𝑚 + 1) = 5.23𝑚+1 + 33𝑚+2 = 40.23𝑚−2 + 27.33𝑚−1 = 8(5.23𝑚−2 + 33𝑚−1) +
19.33𝑚−1 = 8.19𝑘 + 19.33𝑚−1,

which is divisible by 19.

Hence, by mathematical induction, the result.

52. Let 𝑃 (𝑛) = 72𝑛+ 23𝑛−3.3𝑛−1. 𝑃 (1) = 72+ 2030 = 50, which is divisible by 25, so the
statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚

⇒ 𝑃 (𝑚) = 72𝑚 + 23𝑚−3.3𝑚−1 = 25𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚+ 1) = 72𝑚+2 + 23𝑚.3𝑚 = 49.72𝑚 + 24.23𝑚−3.3𝑚−1 = 25.72𝑚 + 24.25𝑘, which
is divisible by 25.

Hence, by mathematical induction, the result.

53. Let 𝑃 (𝑛) = 10𝑛 + 3.4𝑛+2 + 5. 𝑃 (1) = 10 + 3.43 + 5 = 207, which is divisible by 9, so
the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚

⇒ 𝑃 (𝑚) = 10𝑚 + 3.4𝑚+2 + 5 = 9𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚+1) = 10𝑚+1+ 3.4𝑚+3+ 5 = 10.10𝑚+ 12.4𝑚+2+ 5 = 10.9𝑘 + 9.10𝑚+ 9.4𝑚+2,
which is divisible by 9.

Hence, by mathematical induction, the result.
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54. Let 𝑃 (𝑛) = 34𝑛+2 + 52𝑛+1. 𝑃 (1) = 36 + 53 = 729 + 125 = 854, which is divisible by
14, so the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚

⇒ 𝑃 (𝑚) = 34𝑚+2 + 52𝑚+1 = 14𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚+ 1) = 34𝑚+6 + 52𝑚+3 = 81.34𝑚+2 + 25.52𝑚+1 = 25.14𝑘 + 56.34𝑚+2, which is
divisible by 14.

Hence, by mathematical induction, the result.

55. Let 𝑃 (𝑛) = 32𝑛+2 − 8𝑛 − 9. 𝑃 (1) = 34 − 8.1 − 9 = 64, which is divisible by 64, so the
statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚

⇒ 𝑃 (𝑚) = 32𝑚+2 − 8𝑚− 9 = 9𝑚+1 − 8𝑚− 9 = 9.9𝑚 − 8𝑚− 9 = 64𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚+ 1) = 32𝑚+4 − 8(𝑚+ 1) − 9 = 9𝑚+2 − 8𝑚 − 17 = 81.9𝑚 − 8𝑚 − 17 = 64𝑘 +
72.9𝑚 − 8 = 64𝑘 + 8(9𝑚+1 − 1).

Now we will prove that 9𝑚+1 − 1 is divisible by 8. Let 𝑄(𝑛) = 9𝑛+1 − 1. 𝑄(1) = 80,
which is divisible by 8.

Let it be true for 𝑛 = 𝑟.

𝑄(𝑟) = 9𝑟+1 − 1 = 8𝑠, where 𝑠 ∈ ℕ.

𝑄(𝑟 + 1) = 9.9𝑟+1 − 1 = 8.8𝑟+1 + 8𝑠, which is divisible by 8.

Hence, by mathematical induction, the result.

56. Let 𝑃 (𝑛) = 𝑛7 − 𝑛. 𝑃 (1) = 17 − 1 = 0, which is divisible by 7, so the statement is
true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚

⇒ 𝑃 (𝑚) = 𝑚7 −𝑚 = 7𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚+ 1) = (𝑚+ 1)7 − (𝑚+ 1) = 𝑚7 + 𝐶7
1𝑚

6 + 𝐶7
2𝑚

5 + 𝐶7
3𝑚

4 + 𝐶7
4𝑚

3 + 𝐶7
5𝑚

2 +
𝐶7
6𝑚 + 1 −𝑚− 1

= 𝑚7−𝑚+𝐶7
1𝑚

6+𝐶7
2𝑚

5+𝐶7
3𝑚

4+𝐶7
4𝑚

3+𝐶7
5𝑚

2++𝐶7
6𝑚 = 7𝑘+7𝑠, where 𝑠 ∈ ℕ,

which is divisible by 7.

Hence, by mathematical induction, the result.

57. Let 𝑃 (𝑛) = 11𝑛+2+122𝑛+1. 𝑃 (1) = 113+123 = 1331+1728 = 3059, which is divisible
by 133, so the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚

⇒ 𝑃 (𝑚) = 11𝑚+2 + 122𝑚+1 = 133𝑘, where 𝑘 ∈ ℕ.
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𝑃 (𝑚+ 1) = 11.11𝑚+2 + 144.122𝑚+1 = 11.133𝑘 + 133.122𝑚+1, which is divisible by
133.

Hence, by mathematical induction, the result.

58. Let 𝑃 (𝑛) = 102𝑛−1 + 1. 𝑃 (1) = 102−1 + 1 = 11, which is divisible by 11, so the
statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚

⇒ 𝑃 (𝑚) = 102𝑚−1 + 1 = 11𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚+ 1) = 102𝑚+1 + 1 = 100.102𝑚−1 + 1 = 99.102𝑚−1 + 11𝑘, which is divisible by
11.

Hence, by mathematical induction, the result.

59. Let 𝑃 (𝑛) = 7𝑛 − 3𝑛. 𝑃 (1) = 7 − 3 = 4, which is divisible by 4, so the statement is
true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 7𝑚− 3𝑚 = 4𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚+ 1) = 7𝑚+1 − 3𝑚+1 = 7.7𝑚 − 3.3𝑚 = 4.7𝑚 + 3.4𝑘, which is divisible by 4.

Hence, by mathematical induction, the result.

60. Let 𝑃 (𝑛) = 2.7𝑛 + 3.5𝑛 − 5. 𝑃 (1) = 2.7 + 3.5 − 5 = 24, which is divisible by 24, so
the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

𝑃 (𝑚) = 2.7𝑚 + 3.5𝑚 − 5 = 24𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚 + 1) = 2.7𝑚+1 + 3.5𝑚+1 − 5 = 14.7𝑚 + 15.5𝑚 − 5 = 4.7𝑚 + 5.24𝑘 + 20 =
4(7𝑚 + 5)+ 120𝑘.

Now we will prove that 7𝑚 + 5 is divisible by 6.

𝑄(𝑛) = 7𝑛 + 5. 𝑄(1) = 7 + 5 = 12, which is divisible by 6, so the statement is true
for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑄(𝑚) = 7𝑚+ 5 = 6𝑠, where 𝑠 ∈ ℕ.

𝑄(𝑚+ 1) = 7𝑚+1 + 5 = 6.7𝑚 + 6𝑠, which is divisible by 6.

Hence, by mathematical induction, the result.

61. Let 𝑃 (𝑛) = 32𝑛 − 1. 𝑃 (1) = 32 − 1 = 8, which is divisible by 8, so the statement is
true for 𝑛 = 1.
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Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 32𝑚 − 1 = 8𝑘, where 𝑘 ∈ ℕ

𝑃 (𝑚+ 1) = 32𝑚+2 − 1 = 9.32𝑚 − 1 = 8.32𝑚 + 8𝑘, which is divisible by 8.

Hence, by mathematical induction, the result.

62. Let 𝑃 (𝑛) = 10𝑛 + 3.4𝑛+2 + 5. 𝑃 (1) = 10 + 3.43 + 5 = 297, which is divisible by 9, so
the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 10𝑚 + 3.4𝑚+2 + 5 = 9𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚+ 1) = 10𝑚+1 + 3.4𝑚+3 + 5 = 9.10𝑚 + 9.4𝑚+3 + 9𝑘, which is divisible by 9.

Hence, by mathematical induction, the result.

63. Let 𝑃 (𝑛) = 52𝑛+1 + 2𝑛+4 + 2𝑛+1. 𝑃 (1) = 53 + 25 + 22 = 125 + 32 + 4 = 161, which
is divisible by 23, so the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 52𝑚+1 + 2𝑚+4 + 2𝑚+1 = 23𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚 + 1) = 52𝑚+3 + 2𝑚+5 + 2𝑚+2 = 25.52𝑚+1 + 2.2𝑚+4 + 2.2𝑚+1 = 23.52𝑚+1 +
2.23𝑘, which is divisible by 23.

Hence, by mathematical induction, the result.

64. Let 𝑃 (𝑛) = 72𝑛 − 1. 𝑃 (1) = 72 − 1 = 48, which is divisible by 8, so the statement is
true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 72𝑚 − 1 = 8𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚+ 1) = 72𝑚+2 − 1 = 49.72𝑚 − 1 = 48.72𝑚 + 48𝑘, which is divisible by 8.

Hence, by mathematical induction, the result.

65. Let 𝑃 (𝑛) = 32𝑛+2 − 8𝑛 − 9. 𝑃 (1) = 34 − 8 − 9 = 64, which is divisible by 8, so the
statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 32𝑚+2 − 8𝑚− 9 = 8𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚+ 1) = 32𝑚+4 − 8(𝑚+ 1)− 9 = 8.32𝑚+2 + 8𝑘 − 8, which is divisible by 8.

Hence, by mathematical induction, the result.



Answers of Mathematical Induction 671

66. Let 𝑃 (𝑛) = 41𝑛− 14𝑛. 𝑃 (1) = 41− 14 = 27, which is divisible by 27, so the statement
is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 41𝑚 − 14𝑚 = 27𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚+ 1) = 41𝑚+1 − 14𝑚+1 = 27.41𝑚 + 27𝑘, which is divisible by 27.

Hence, by mathematical induction, the result.

67. Let 𝑃 (𝑛) = 152𝑛−1+ 1. 𝑃 (1) = 15+ 1 = 16, which is divisible by 16, so the statement
is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 152𝑚−1 + 1 = 16𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚+ 1) = 152𝑚+1 + 1 = 225.152𝑚−1 + 1 = 224.152𝑚−1 + 16, which is divisible by
16.

Hence, by mathematical induction, the result.

68. Let 𝑃 (𝑛) = 52𝑛+1+3𝑛+2.2𝑛−1. 𝑃 (1) = 53+33.20 = 125+27 = 152, which is divisible
by 19, so the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 52𝑚+1 + 3𝑚+2.2𝑚−1 = 19𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚 + 1) = 52𝑚+3 + 3𝑚+3.2𝑚 = 25.52𝑚+1 + 6.3𝑚+2.2𝑚−1 = 19.52𝑚−1 + 6.19𝑘,
which is divisible by 19.

Hence, by mathematical induction, the result.

69. Let 𝑃 (𝑛) = 10𝑛 + 3.4𝑛+2 + 5. 𝑃 (1) = 10 + 3.43 + 5 = 10 + 192 + 5 = 207, which is
divisible by 9, so the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 10𝑚 + 3.4𝑚+2 + 5 = 9𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚 + 1) = 10𝑚+1 + 3.4𝑚+3 + 5 = 10.10𝑚 + 12.4𝑚+2 + 5 = 6.10𝑚 + 4.9𝑘 − 15 =
3(2.10𝑚 − 5)+ 4.9𝑘.

Now we will prove that 2.10𝑚 − 5 is divisible by 3.

Let 𝑄(𝑛) = 2.10𝑛 − 5. 𝑄(1) = 20 − 5 = 15, which is divisible by 3, so the statement is
true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑄(𝑚) = 2.10𝑚 − 5 = 3𝑠, where 𝑠 ∈ ℕ.
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𝑄(𝑚+ 1) = 2.10𝑚+1 − 5 = 20.10𝑚 − 5 = 18.10𝑚 + 3𝑠, which is divisible by 3.

Hence, by mathematical induction, the result.

70. Let 𝑃 (𝑛) = 9𝑛−8𝑛−1. 𝑃 (1) = 9−8−1 = 0, which is divisible by 64, so the statement
is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 9𝑚− 8𝑚− 1 = 64𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚 + 1) = 9𝑚+1 − 8(𝑚 + 1) − 1 = 9.9𝑚 − 8𝑚 − 9 = 9(9𝑚 − 8𝑚 − 1) + 64𝑚 =
9.64𝑘 + 64𝑚, which is divisible by 64.

Hence, by mathematical induction, the result.

71. Let 𝑃 (𝑛) = 𝑛3 + 3𝑛2 + 5𝑛 + 3. 𝑃 (1) = 1 + 3 + 5 + 3 = 12, which is divisible by 3, so
the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 𝑚3 + 3𝑚2 + 5𝑚+ 3 = 3𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚 + 1) = (𝑚 + 1)3 + 3(𝑚 + 1)2 + 5(𝑚 + 1) + 3 = 𝑚3 + 3𝑚2 + 5𝑚 + 3 + 3𝑚2 +
3𝑚+ 1 + 6𝑚+ 3𝑚+ 5 = 3𝑘 + 3𝑚2 + 9𝑚+ 6, which is divisible by 3.

Hence, by mathematical induction, the result.

72. 𝑃 (𝑛) = (𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)(𝑛 + 5). 𝑃 (1) = 2.3.4.5.6 = 720, which is
divisible by 120, so the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = (𝑚+ 1)(𝑚+ 2)(𝑚+ 3)(𝑚+ 4)(𝑚+ 5) = 120𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚+ 1)− 𝑃 (𝑚) = 5(𝑚+ 2)(𝑚+ 3)(𝑚+ 4)(𝑚+ 5)

Among the four consecutive numbers (𝑚+ 2)(𝑚+ 3)(𝑚+ 4)(𝑚+ 5), there has to
be at least one multiples of 2, 3 and 4 each. Thus, 𝑃 (𝑚+ 1) is divisible by 120.

Hence, by mathematical induction, the result.

73. Let 𝑃 (𝑛) = 𝑛5 − 𝑛. 𝑃 (1) = 1− 1 = 0, which is divisible by 5, so the statement is true
for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 𝑚5 −𝑚 = 5𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚+ 1) = (𝑚+ 1)5 − (𝑚+ 1) = 𝑚5−𝑚+𝐶𝑚
1
4 + 𝐶5

2𝑚
3 +𝐶5

3𝑚
2 +𝐶5

4𝑚, which is
divisible by 5.

Hence, by mathematical induction, the result.
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74. Let 𝑃 (𝑛) = (1 + 𝑥)𝑛 − 𝑛𝑥 − 1. 𝑃 (1) = 1 + 𝑥 − 𝑥 − 1 = 0, which is divisible by 𝑥2, so
the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = (1 + 𝑥)𝑚−𝑚𝑥 − 1 = 𝑄(𝑥)𝑥2, where 𝑄(𝑥) is a polynomial in 𝑥.

𝑃 (𝑚+1) = (1+𝑥)𝑚+1− (𝑚+1)𝑥−1 = (1+𝑥)(1+𝑥)𝑚−𝑚𝑥−𝑥−1 = 𝑄(𝑥)𝑥2+
𝑥(1 + 𝑥)𝑚− 𝑥

= 𝑄(𝑥)𝑥2 + 𝑥[𝐶𝑚
0 + 𝐶𝑚

1 𝑥 + ⋯+ 𝐶𝑚
𝑚𝑥𝑚 ]− 𝑥, which is divisible by 𝑥2.

Hence, by mathematical induction, the result.

75. Let 𝑃 (𝑛) = 𝑛(𝑛2 − 1). 𝑃 (1) = 0, which is divisible by 24, so the statement is true for
𝑛 = 1.

Llet it be true for 𝑛 = 𝑚, where 𝑚 = 2𝑘 + 1, ∀𝑘 ∈ 𝑁 .

⇒ 𝑃 (𝑚) = (2𝑘 + 1)(4𝑘2 + 4𝑘) = 4𝑘(2𝑘 + 1)(𝑘 + 1) = 4𝑘(2𝑘2 + 3𝑘 + 1) = 24𝑠, where
𝑠 ∈ ℕ.

𝑃 (𝑚+2) = (2𝑘+3)(4𝑘2+12𝑘+8) = 8𝑘3+36𝑘2+52𝑘+24 = 24𝑠+24𝑘2+48𝑘+24,
which is divisible by 24.

Hence, by mathematical induction, the result.

76. Let 𝑃 (𝑛) = 𝑛(𝑛2 + 20). 𝑃 (2) = 2.24 = 48, which is divisible by 48, so the statement
is true for 𝑛 = 1.

Let it be true for 𝑛 = 2𝑚, where 𝑚 ∈ ℕ.

⇒ 𝑃 (2𝑚) = 8𝑚(𝑚2 + 5) = 48𝑠, where 𝑠 ∈ ℕ.

𝑃 (2𝑚 + 2) = 8(𝑚 + 1)(𝑚2 + 2𝑚 + 6) = 8(𝑚3 + 3𝑚2 + 8𝑚 + 6) = 48𝑠 + 24𝑚2 +
24𝑚+ 48.

Now we will prove that 𝑄(𝑛) = 𝑛2 + 𝑛 = 𝑛(𝑛 + 1) is divisible by 2. We can prove
this by induction or by just simple observation product of two consecutive integers is
always divisible by 2.

Hence, by mathematical induction, the result.

77. Let 𝑃 (𝑛) = 22𝑛 + 1 and 𝑄(𝑛) = 22𝑛 − 1. 𝑃 (1) = 22 + 1 = 5 and 𝑄(2) = 24 − 1 = 15.
Both are divisible by 5. So statements are true for 𝑛 = 1, 2 respectively.

Let they are true for 𝑛 = 2𝑚, 2𝑚 + 1 where ∈ ℕ.

⇒ 𝑃 (2𝑚 + 1) = 24𝑚+2 + 1 = 5𝑘 and 𝑄(2𝑚) = 24𝑚 − 1 = 5𝑙, where 𝑙, 𝑚 ∈ ℕ.

𝑃 (2𝑚 + 3) = 24𝑚+6 + 1 = 15.24𝑚+2 + 5𝑘, which is divisible by 5.

𝑄(2𝑚 + 2) = 24𝑚+4 − 1 = 15.24𝑚 + 5𝑙, which is also divisible by 5.

Hence, by mathematical induction, the result.
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78. Let 𝑃 (𝑛) = 52𝑛 + 1. 𝑃 (1) = 52 + 1 = 26, which is divisible by 13, so the statement is
true for 𝑛 = 1.

Let it be true for 𝑛 = 2𝑚+ 1, where 𝑚 ∈ ℕ.

⇒ 𝑃 (2𝑚 + 1) = 54𝑚+2 + 1 = 13𝑘, where 𝑘 ∈ ℕ.

𝑃 (2𝑚 + 3) = 54𝑚+6 + 1 = 625.54𝑚+2 + 1 = 624.54𝑚+2 + 13𝑘, which is divisible by
13.

Hence, by mathematical induction, the result.

599 = 5.598 = 5.52.49 = 5(598 + 1)− 5. This will leave the remainder 13 − 5 = 8, when
divided by 13.

79. Let 𝑃 (𝑛) = 4.6𝑛+ 5𝑛+1. 𝑃 (1) = 4.6+ 52 = 49, which leaves remainder 9 when divided
by 20, so the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 4.6𝑚 + 5𝑚+1 = 20𝑘 + 9, where 𝑘 ∈ ℕ.

𝑃 (𝑚+ 1) = 4.6𝑚+1 + 5𝑚+2 = 24.6𝑚 + 5.5𝑚+1 = 4.6𝑚 + 5.20𝑘 + 45.

Now we will prove that 4.6𝑚 + 45 will leave remainder 9 when divided by 20.

Let 𝑄(𝑛) = 4.6𝑛 + 45. 𝑄(1) = 49, which leaves remainder 9 when divided by 20, so
the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑟.

𝑄(𝑟) = 4.6𝑚 + 45 = 20𝑠 + 9, where 𝑠 ∈ ℕ.

𝑄(𝑟+ 1) = 4.6𝑚+1+45 = 24.6𝑚+45 = 20.6𝑚+20𝑠+9, which will leave remainder 9,
when divided by 20.

Hence, by mathematical induction, the result.

80. Let 𝑃 (𝑛) = 3𝑛 + 8𝑛. 𝑃 (1) = 3 + 8 = 11, which is not divisiible by 8, so the statement
is true for 𝑛 = 1. Quick observation tells us that 3𝑚 will be odd, while 8𝑛 will be even
so sum would be odd, which will not be divisible by 8. We will prove this by induction.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 3𝑚+ 8𝑚 = 8𝑘 + 𝑠, where 𝑘,𝑠 ∈ ℕ such that 𝑠 ∈ {1,2,3, … , 7}.

𝑃 (𝑚+ 1) = 3.3𝑚 + 8.8𝑚 = 8𝑘 + 𝑠 + 5.8𝑚, which will leave remainder 𝑠 when divided
by 8.

Hence, by mathematical induction, the result.

81. Let 𝑃 (𝑛) = 22
𝑛
+ 1. If this has last digit as 7 then it will leave remainder 7 when

divided by 10. 𝑃 (2) = 24 + 1 = 17, which leaves remainder 7, so the statement is true
for 𝑛 = 2.
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Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 22
𝑚
+ 1 = 10𝑘 + 7, where 𝑘 ∈ ℕ.

𝑃 (𝑚+1) = 22
𝑚+1

+ 1 = 22.2
𝑚
+ 1 = (10𝑘+ 6)2+ 1 = 100𝑘2+ 120𝑘+ 37, which leaves

remainder 7, when divided by 10.

Hence, by mathematical induction, the result.

82. Let 𝑃 (𝑛) = 𝑛3
⁄

3 + 𝑛2 + 5
⁄

3 𝑛 + 1. 𝑃 (1) = 1
⁄

3 + 1 + 5
⁄

3 + 1 = 4, which is a natural number,
so the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 𝑚3
⁄

3 +𝑚2 + 5𝑚
⁄

3 + 1 = 𝑘, where 𝑘 ∈ ℕ.

⇒ 𝑃 (𝑚+ 1) = (𝑚+1)3
⁄

3 + (𝑚+ 1)2 + 5𝑚+5
⁄

3 + 1 = 𝑚3
⁄

3 + 𝑚2 + 5𝑚
⁄

3 + 1 +𝑚2 +𝑚+ 1
⁄

3 +

2𝑚+ 1 + 5
⁄

3 + 1

= 𝑘 +𝑚2 + 3𝑚+ 4, which is a ntural number.

Hence, by mathematical induction, the result.

83. Let 𝑃 (𝑛) = 𝑥𝑛 + 𝑦𝑛. 𝑃 (1) = 𝑥 + 𝑦, which is divisible by 𝑥 + 𝑦, so the statement is
true for 𝑛 = 1. Similarly, 𝑥3 + 𝑦3 is divisible by 𝑥 + 𝑦.

Let it be true for 𝑛 = 2𝑚− 1, 2𝑚 + 1, where 𝑚 ∈ ℕ

⇒ 𝑃 (2𝑚 − 1) = 𝑥2𝑚−1 + 𝑦2𝑚−1 = 𝑓(𝑥, 𝑦)(𝑥 + 𝑦), where 𝑓(𝑥, 𝑦) is a polynomial in
𝑥, 𝑦.

⇒ 𝑃 (2𝑚 + 1) = 𝑥2𝑚+1 + 𝑦2𝑚+1 = 𝑔(𝑥, 𝑦)(𝑥 + 𝑦), where 𝑔(𝑥, 𝑦) is a polynomial in
𝑥, 𝑦.

𝑃 (2𝑚 + 3) = 𝑥2𝑚+3 + 𝑦2𝑚+3 = (𝑥2 + 𝑦2)(𝑥2𝑚+1 + 𝑦2𝑚+1) − 𝑥2𝑦2(𝑥2𝑚−1 +
𝑦2𝑚−1) = (𝑥2 + 𝑦2)(𝑥 + 𝑦)𝑔(𝑥, 𝑦)− 𝑥2𝑦2(𝑥 + 𝑦)𝑓(𝑥, 𝑦), which is divisible by 𝑥 + 𝑦.

Hence, by mathematical induction, the result.

84. Let 𝑃 (𝑛) = 𝑥𝑛 − 𝑦𝑛. 𝑃 (1) = 𝑥 − 𝑦, which is divisible by 𝑥 − 𝑦, so the statement is
true for 𝑛 = 1. Similarly, it is true for 𝑛 = 2.

Let it be true for 𝑛 = 𝑚, 𝑚− 1.

𝑃 (𝑚−1) = 𝑥𝑚−1− 𝑦𝑚−1 = 𝑓(𝑥, 𝑦)(𝑥− 𝑦), where 𝑓(𝑥, 𝑦) is a polynomial in 𝑥 and 𝑦.

⇒ 𝑃 (𝑚) = 𝑥𝑚− 𝑦𝑚 = 𝑔(𝑥, 𝑦)(𝑥 − 𝑦), where 𝑔(𝑥, 𝑦) is a polynomial in 𝑥 and 𝑦.

𝑃 (𝑚+1) = 𝑥𝑚+1−𝑦𝑚+1 = (𝑥𝑚−𝑦𝑚)(𝑥+𝑦)−𝑥𝑦(𝑥𝑚−1−𝑦𝑚−1), which is divisible
by 𝑥 − 𝑦.

Hence, by mathematical induction, the result.
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85. Let 𝑃 (𝑛) = 𝑥(𝑥𝑛−1 − 𝑛𝑎𝑛−1)+𝑎𝑛(𝑛− 1). 𝑃 (2) = 𝑥(𝑥− 2𝑎)+𝑎2 = (𝑥− 𝑎)2, which
is divisible by (𝑥 − 𝑎)2, so the statement is true for 𝑛 = 2.

Let it be true for 𝑛 = 𝑚

⇒ 𝑃 (𝑚) = 𝑥(𝑥𝑚−1 − 𝑚𝑎𝑚−1) + 𝑎𝑚(𝑚− 1) = 𝑓(𝑥, 𝑦)(𝑥 − 𝑎)2, where 𝑓(𝑥, 𝑦) is a
polynomial in 𝑥, 𝑦.

𝑃 (𝑚+ 1) = 𝑥(𝑥𝑚 − (𝑚+ 1)𝑎𝑚)+𝑚𝑎𝑚+1 = 𝑥.𝑓(𝑥, 𝑦)(𝑥 − 𝑎)2 + 𝑚𝑎𝑚−1(𝑥 − 𝑎)2,
which is divisible by (𝑥 − 𝑎)2.

Hence, by mathematical induction, the result.

86. Let 𝑃 (𝑛) = 𝑛5
⁄

5 + 𝑛3
⁄

3 + 7𝑛⁄
15. 𝑃 (1) =

1
⁄

5 +
1
⁄

3 +
7
⁄

15 = 1, which is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 𝑚5
⁄

5 + 𝑚3
⁄

3 + 7𝑚
⁄

15 = 𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚+1) = (𝑚+1)5
⁄

5 + (𝑚+1)3
⁄

3 + 7𝑚+7
⁄

15 = 𝑚5
⁄

5 +𝑚3
⁄

3 + 7𝑚
⁄

15 +𝑚4+ 2𝑚3+ 2𝑚2+𝑚+𝑚2+

𝑚+ 1
⁄

5 +
1
⁄

3 +
1
⁄

15 = 𝑘 + 1 +𝑚4 + 2𝑚3 + 3𝑚2 + 2𝑚, which is a natural number.

Hence, by mathematical induction, the result.

87. Let 𝑃 (𝑛) = 𝑛7
⁄

7 + 𝑛5
⁄

5 + 2𝑛3⁄
3 − 𝑛
⁄

105. 𝑃 (1) =
1
⁄

7 +
1
⁄

5 +
2
⁄

3 −
1
⁄

105 = 1, so the statement is true
for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 𝑚7
⁄

7 + 𝑚5
⁄

5 + 2𝑚3
⁄

3 − 𝑚
⁄

105 = 𝑘, where 𝑘 ∈ ℕ.

𝑃 (𝑚+1)= (𝑚+1)7
⁄

7 + (𝑚+1)5
⁄

5 +2(𝑚+1)3
⁄

3 −𝑚+1⁄
105 = 𝑚7
⁄

7 +𝑚5
⁄

5 +2𝑚3
⁄

3 − 𝑚
⁄

105+
1
⁄

7+
1
⁄

5+
2
⁄

3−
1
⁄

105+
𝐶7
1𝑚6+𝐶7

2𝑚5+𝐶7
3𝑚4+𝐶7

4𝑚3+𝐶7
5𝑚2+𝐶7

6𝑚
⁄

7 + 𝐶5
1𝑚4+𝐶5

2𝑚3+𝐶5
3𝑚2+𝐶5

4𝑚
⁄

5 + 2𝐶3
1𝑚2+2𝐶3

2𝑚
⁄

3

= 𝑘 + 1 + 𝐶7
1𝑚6+𝐶7

2𝑚5+𝐶7
3𝑚4+𝐶7

4𝑚3+𝐶7
5𝑚2+𝐶7

6𝑚
⁄

7 + 𝐶5
1𝑚4+𝐶5

2𝑚3+𝐶5
3𝑚2+𝐶5

4𝑚
⁄

5 +
2𝐶3

1𝑚2+2𝐶3
2𝑚
⁄

3 , which is a natural numebr.

Hence, by mathematical induction, the result.

88. Let 𝑃 (𝑛) = 2𝑛 > 𝑛2, 𝑛 ≥ 5. 𝑃 (5) = 32 > 25, so the statement is true for 𝑛 = 5.

Let it be true for 𝑛 = 𝑚, where 𝑚 ∈ ℕ, and 𝑚 ≥ 5.

⇒ 𝑃 (𝑚) = 2𝑚 > 𝑚2.

𝑃 (𝑚+ 1) = 2𝑚+1 > (𝑚+ 1)2 ⇒ 2.2𝑚 > 𝑚2 + 2𝑚+ 1.

Now, 2𝑚2 − (𝑚2 + 2𝑚 + 1) = 𝑚2 − 2𝑚 − 1 = (𝑚 − 1)2 − 2. Let 𝑘 = 5 + 𝑎, where
𝑎 ≥ 0.
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(4 + 𝑎)2 − 2 = 𝑎2 + 8𝑎 + 14 ≥ 0

⇒ 2𝑚2 > (𝑚+ 1)2 ⇒ 2(𝑚+ 1)2 > (𝑚+ 1)2.

Hence, by mathematical induction, the result.

89. Let 𝑃 (𝑛) = 1 + 2 + ⋯+ 𝑛 ≤ 1
⁄

8 (2𝑛 + 1)2. 𝑃 (1) = 1 ≤ 9
⁄

8, so the statement is true for
𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 1 + 2 + ⋯+𝑚 ≤ 1
⁄

8 (2𝑚 + 1)2

𝑃 (𝑚+ 1) = 1+ 2 +⋯+𝑚+ (𝑚+ 1) ≤ 1
⁄

8 (2𝑚+ 1)2 +𝑚+ 1 = 1
⁄

8 (2𝑚+ 3)2, which is
true.

Hence, by mathematical induction, the result.

90. Let 𝑃 (𝑛) = 𝑛𝑛 < (𝑛!)2 , 𝑛 > 2. 𝑃 (3) = 33 < (3!)2 = 27 < 36, so the statement is true
for 𝑛 = 3.

Let it be true for 𝑛 = 𝑚, where 𝑚 ∈ ℕ, and 𝑚 > 2.

⇒ 𝑃 (𝑚) = 𝑚𝑚 < (𝑚!)2.

𝑃 (𝑚+ 1) = (𝑚+ 1)𝑚+1 < [(𝑚+ 1)!]2. Dividing 𝑃 (𝑚+ 1) by 𝑃 (𝑚), we get

((𝑚+1)𝑚+1
⁄

𝑚𝑚 ) < ((𝑚+1)!⁄
𝑚! )

2
= 𝑚
⁄

(𝑚+1)2 (
𝑚+1⁄
𝑚 )

𝑚+1
< 1 ⇒ (𝑚+ 1)𝑚+1 < [(𝑚+ 1)!]2.

Hence, by mathematical induction, the result.

91. Let 𝑃 (𝑛) = 𝑛! > 2𝑛, 𝑛 > 3. 𝑃 (4) = 24 > 16, so the statement is true for 𝑛 = 4.

Let it be true for 𝑛 = 𝑚, sich that 𝑚 > 3, and 𝑚 ∈ ℕ.

⇒ 𝑃 (𝑚) = 𝑚! > 2𝑚.

𝑃 (𝑚+ 1) = (𝑚+ 1)! > 2𝑚+1. Dividing 𝑃 (𝑚+ 1) by 𝑃 (𝑚), we get

𝑚+ 1 > 2, which is true.

Hence, by mathematical induction, the result.

92. Let 𝑃 (𝑛) = 𝑛! < (𝑛+1⁄2 )
𝑛
, 𝑛 > 1. 𝑃 (2) = 2! < (3⁄2)

2
= 9
⁄

4, so the statement is true for
𝑛 = 2.

Let it be true for 𝑛 = 𝑚.

Also, let 𝐹 (𝑚) = (𝑚+1⁄
2 )

2
and 𝐺(𝑚) = 𝑚!.

So 𝐹 (𝑚) > 𝐺(𝑚). 𝐹(𝑚+1)
⁄

𝐹(𝑚) . 𝐺(𝑚)
⁄

𝐺(𝑚+1) =
1
⁄

2 .
(𝑚+2)𝑚+1
⁄

(𝑚+1)𝑚 . 𝑚!⁄
(𝑚+1)!
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= 1
⁄

2(𝑛+2⁄
𝑛+1)

𝑛+1
> 1 ⇒ 𝐹 (𝑚+ 1) > 𝐺(𝑚+ 1).

Hence, by mathematical induction, the result.

93. Let 𝑃 (𝑛) = 1
⁄

𝑛+1+
1
⁄

𝑛+2+⋯+ 1⁄
2𝑛 >

13
⁄

24 , 𝑛 > 1. 𝑃 (2) = 1
⁄

3 +
1
⁄

4 =
7
⁄

12 >
13
⁄

24, so the statement
is true for 𝑛 = 2.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 1⁄
𝑚+1 +

1⁄
𝑚+2 +

1⁄
𝑚+3 + ⋯+ 1
⁄

2𝑚 > 13
⁄

24.

Adding 1
⁄

2𝑚+2 +
1
⁄

2𝑚+1 −
1⁄

𝑚+1 to both sides

𝑃 (𝑚+ 1) = 1⁄
𝑚+2 +

1⁄
𝑚+3 + ⋯+ 1
⁄

2𝑚 + 1
⁄

2𝑚+1 +
1
⁄

2𝑚+2 >
13
⁄

24.

Now 1
⁄

2𝑚+2 +
1
⁄

2𝑚+1 −
1⁄

𝑚+1 =
2𝑚+1+2𝑚+2−4𝑚−2
⁄

(2𝑚+1)(2𝑚+2) = 1
⁄

(2𝑚+1)(2𝑚+2) > 0.

Thus, 𝑃 (𝑚+ 1) is also true.

Hence, by mathematical induction, the result.

94. Let 𝑃 (𝑛) = 1
⁄

𝑛+1 +
1
⁄

𝑛+2 + ⋯ + 1
⁄

3𝑛+1 > 1∀𝑛 ∈ ℕ. 𝑃 (1) = 1
⁄

2 +
1
⁄

3 +
1
⁄

4 =
13
⁄

12 > 2, so the
statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 1⁄
𝑚+1 +

1⁄
𝑚+2 + ⋯+ 1
⁄

3𝑚+1 > 1.

Adding 1
⁄

3𝑚+2 +
1
⁄

3𝑚+3 +
1
⁄

3𝑚+4 −
1⁄

𝑚+1, to L.H.S., we get

𝑃 (𝑚+ 1) = 1⁄
𝑚+1 +

1⁄
𝑚+2 +

1⁄
𝑚+3 +

1
⁄

3𝑚+2 +
1
⁄

3𝑚+3 +
1
⁄

3𝑚+4 −
1⁄

𝑚+1

Now, 1
⁄

3𝑚+2 +
1
⁄

3𝑚+3 +
1
⁄

3𝑚+4 −
1⁄

𝑚+1

= (3𝑚+4)(3𝑚+3)+(3𝑚+2)(2𝑚+4)+(3𝑚+2)(3𝑚+3)−3(3𝑚+2)(3𝑚+4)
⁄

(3𝑚+2)(3𝑚+3)(3𝑚+4) > 0

Thus, 𝑃 (𝑚+ 1) > 1.

Hence, by mathematical induction, the result.

95. Let 𝑃 (𝑛) = 1+ 1
⁄

4 + ⋯+ 1
⁄

𝑛2 < 2 − 1
⁄

𝑛. 𝑃 (2) = 5
⁄

4 < 2 − 1
⁄

2 =
3
⁄

2, so the statement is true for
𝑛 = 2.

Let it be true for 𝑛 = 𝑚.

𝑃 (𝑚) = 1 + 1
⁄

4 + ⋯ + 1
⁄

𝑚2 < 2 − 1
⁄

𝑚.

𝑃 (𝑚+ 1) = 1 + 1
⁄

4 + ⋯ + 1
⁄

(𝑚+1)2 < 2 − 1
⁄

𝑚+ 1
⁄

(𝑚+1)2.
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Now 1
⁄

(𝑚+1)2 −
1
⁄

𝑚 = 𝑚−𝑚2−2𝑚−1
⁄

𝑚(𝑚+1)2 < 1⁄
𝑚+1.

Thus, 𝑃 (𝑚+ 1) < 2 − 1⁄
𝑚+1.

Hence, by mathematical induction, the result.

96. Let 𝑃 (𝑛) = (2𝑛 + 7) < (𝑛 + 3)2. 𝑃 (1) = 8 < 16, so the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 2𝑚+ 7 < (𝑚+ 3)2.

𝑃 (𝑚+ 1) = 2𝑚+ 9 < (𝑚+ 4)2. Subtracting 𝑃 (𝑚+ 1)− 𝑃 (𝑚), we get

2 < 2𝑚+ 7, which is true for 𝑚 ∈ ℕ.

Hence, by mathematical induction, the result.

97. Let 𝑃 (𝑛) = 2𝑛 > 𝑛∀𝑛 ∈ ℕ. 𝑃 (1) = 2 > 1, so the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 2𝑚 > 𝑚.

𝑃 (𝑚+ 1) = 2𝑚+1 > 𝑚+ 1. Dividing 𝑃 (𝑚+ 1) by 𝑃 (𝑚), we get

2 > 𝑚+1⁄
𝑚 , which is true for 𝑚 ∈ ℕ.

Thus, 𝑃 (𝑚+ 1) is true if 𝑃 (𝑚) is true.

Hence, by mathematical induction, the result.

98. Let 𝑃 (𝑛) = 1 + 2 + 3 + ⋯+ 𝑛 < (2𝑛+1)2⁄
8 ⇒ 𝑛(𝑛+1)
⁄

2 < (2𝑛+1)2⁄
8 ⇒ 𝑛(𝑛 + 1) < (2𝑛+1)2⁄

4 .

𝑃 (1) = 2 < 9
⁄

4, so the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

𝑃 (𝑚) = 𝑚(𝑚+ 1) < (2𝑚+1)2
⁄

4 , where 𝑚 ∈ ℕ.

Adding 𝑚+ 1 to both sides we get

𝑃 (𝑚+ 1) = 1 + 2 + ⋯+𝑚+𝑚+ 1 < (2𝑚+1)2
⁄

8 + (𝑚+ 1)

= 4𝑚2+4𝑚+1+8𝑚+8
⁄

8 = (2𝑚+3)2
⁄

8 .

Hence, by mathematical induction, the result.

99. Let 𝑃 (𝑛) = 12 + 22 + ⋯+ 𝑛2 > 𝑛3
⁄

3 . 𝑃 (1) = 1 > 1
⁄

3, so the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.
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⇒ 𝑃 (𝑚) = 12 + 22 + ⋯+𝑚2 > 𝑚3
⁄

3 , where 𝑚 ∈ ℕ.

Adding (𝑚+ 1)2 to both sides

𝑃 (𝑚+1) = 12+22+⋯+𝑚2+ (𝑚+1)2 > 𝑚3
⁄

3 + (𝑚+1)2 = 𝑚3+3𝑚2+6𝑚+3
⁄

3 > (𝑚+1)3
⁄

3 .

Hence, by mathematical induction, the result.

100. Let 𝑃 (𝑛) = 2𝑛 > 𝑛2, where 𝑛 ≥ 5. 𝑃 (5) = 25 > 52 = 32 > 25, so the statement is true
for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚, where 𝑚 ≥ 5.

𝑃 (𝑚) = 2𝑚 > 𝑚2.

𝑃 (𝑚+ 1) = 2𝑚+1 > (𝑚+ 1)2 = 2.𝑚2 > (𝑚+ 1)2 ⇒ 𝑚2 − 2𝑚− 1 > 0, which is true
for 𝑚 > 5.

Hence, by mathematical induction, the result.

101. Let 𝑃 (𝑛) = (2𝑛)!⁄
(𝑛!)2 >

4𝑛
⁄

𝑛+1, where 𝑛 > 1. 𝑃 (2) = 12 > 16
⁄

3 , so the statement is true for
𝑛 = 2.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) = 2𝑚!⁄
(𝑚!)2 >

4𝑚⁄
𝑚+1.

𝑃 (𝑚+ 1) = (2𝑚+2)!
⁄

[(𝑚+1)!]2 >
4𝑚+1
⁄

𝑚+2 =
(2𝑚+2)(2𝑚+1)
⁄

(𝑚+1)2 . 4𝑚⁄
𝑚+1 >

4𝑚+1
⁄

𝑚+2

= 2(2𝑚+1)
⁄

(𝑚+1) > 4⁄
𝑚+2, which is true for 𝑚 > 1.

It is trivial to prove that (2𝑚+1)(𝑚+2)
⁄

𝑚+1 > 2 as (2𝑚+1)(𝑚+2)
⁄

𝑚+1 = (√


2𝑚+√


2)2+𝑚
⁄

𝑚+1 .

Hence, by mathematical induction, the result.

102. Let 𝑃 (𝑛) = (1+𝑥)𝑛 > 1+𝑛𝑥. 𝑃 (2) = 1+2𝑥+𝑥2 > 1+ 2𝑥, which is true for 𝑥 > −1.

Let it be true for 𝑛 = 𝑚

⇒ 𝑃 (𝑚) = (1 + 𝑥)𝑚 > 1 +𝑚𝑥

𝑃 (𝑚+1)= (1+𝑥)𝑚+1 > 1+ (𝑚+1)𝑥 = (1+𝑥)(1+𝑚𝑥)> 1+ (𝑚+1)𝑥 =𝑚𝑥2 > 0,
which is true for 𝑛 > 1, 𝑥 > −1.

Hence, by mathematical induction, the result.

103. 𝑡𝑛 = 2𝑡𝑛−1 + 2𝑡𝑛−2. 𝑡3 = 8 + 2 = 10, and 𝑡𝑛 = 1
⁄

2 [(1 +√


3)3 + (1 −√


3)3]

= 1
⁄

2 [1+ 3√


3+ 9+ 3√


3+ 1− 3√


3+ 9− 3√


3] = 10, so the statement is true for 𝑛 = 3.

Let it be true for 𝑛 = 𝑚, 𝑚+ 1.
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𝑡𝑚 = 1
⁄

2 [(1 +√


3)𝑚+ (1 −√


3)𝑚 ], 𝑡𝑚+1 = 1
⁄

2 [(1 +√


3)𝑚+1 + (1 −√


3)𝑚+1 ].

𝑡𝑚+2 = 2𝑡𝑚+1 + 2𝑡𝑚 = (1 +√


3)𝑚 [1 + 1 +√


3]+ (1 −√


3)𝑚 [1 + 1 −√


3]

= 1
⁄

2 (1+√


3)𝑚(4+ 2√


3)+1
⁄

2 (1−√


3)𝑚(4− 2√


3) = 1
⁄

2 [(1+√


3)𝑚+2+ (1−√


3)𝑚+2]

(∵ 4 + 2√


3 = 1 +√


32 + 2√


3)

Hence, by mathematical induction, the result.

104. Let 𝑃 (𝑛) ≡ 𝑥𝑛 + 𝑦𝑛 = 𝑎𝑛 + 𝑏𝑛, whihc is true for 𝑛 = 1, 2 as given. Let it be true for
𝑛 = 𝑚, 𝑚+ 1. Also, from these statements 𝑥𝑦 = 𝑎𝑏

⇒ 𝑃 (𝑚) ≡ 𝑥𝑚+ 𝑦𝑚 = 𝑎𝑚+ 𝑏𝑚, 𝑃 (𝑚+ 1) ≡ 𝑥𝑚+1 + 𝑦𝑚+1 = 𝑎𝑚+1 + 𝑏𝑚+1.

𝑃 (𝑚+ 2) ≡ 𝑥𝑚+2 + 𝑦𝑚+2 = 𝑥(𝑎𝑚+1 + 𝑏𝑚+1 − 𝑦𝑚+1)+ 𝑦(𝑎𝑚+1 + 𝑏𝑚+1 − 𝑥𝑚+1)

= (𝑎𝑚+1+ 𝑏𝑚+1)(𝑥+𝑦)−𝑥𝑦(𝑥𝑚+𝑦𝑚) = (𝑎𝑚+1+ 𝑏𝑚+1)(𝑎+ 𝑏)−𝑎𝑏(𝑎𝑚+𝑏𝑚) =
𝑎𝑚+2 + 𝑏𝑚+2.

Hence, by mathematical induction, the result.

105. Let 𝑃 (𝑛) ≡ 1
⁄

2 .
3
⁄

4 .⋯ . 2𝑛−1⁄2𝑛 ≤ 1⁄
√

3𝑛+1. 𝑃 (1) ≡

1
⁄

2 ≤
1⁄
√


4, so the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) ≡ 1
⁄

2 .
3
⁄

4 .⋯ . 2𝑚−1
⁄

2𝑚 ≤ 1⁄
√

3𝑚+1.

Multiplying both sides with 2𝑚+1
⁄

2𝑚+2, we get

𝑃 (𝑚+ 1) ≡ 1
⁄

2 .
3
⁄

4 .⋯ . 2𝑚+1
⁄

2𝑚+2 ≤
2𝑚+1
⁄

2𝑚+2 .
1⁄

√

3𝑚+1 =

2𝑚+1
⁄

2𝑚+2 .
1⁄

√

3𝑚+1.

2𝑛+1
⁄

2𝑛+2
1⁄

√

3𝑛+1 <

1⁄
√

3𝑛+4 ⇒ 12𝑛2 + 19𝑛 ≤ 24𝑛2 + 20𝑛.

Hence, by mathematical induction, the result.

106. Let 𝑃 (𝑛) ≡ 1
⁄

𝑛+1 +
1
⁄

𝑛+2 + ⋯ + 1⁄
2𝑛 < 25
⁄

36. 𝑃 (1) ≡
1
⁄

2 <
25
⁄

36, so the statement is true for
𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) ≡ 1⁄
𝑚+1 +

1⁄
𝑚+2 + ⋯+ 1
⁄

2𝑚 < 25
⁄

36.

Adding 1
⁄

2𝑚+1 +
1
⁄

2𝑚+2 −
1⁄

𝑚+1, to both sides

𝑃 (𝑚+ 1) ≡ 1⁄
𝑚+2 +

1⁄
𝑚+3 + ⋯+ 1
⁄

2𝑚+1 +
1
⁄

2𝑚+2 <
25
⁄

36
1
⁄

2𝑚+1 +
1
⁄

2𝑚+2 −
1⁄

𝑚+1

= 25
⁄

36 +
1
⁄

(2𝑛+1)(2𝑛+2) <
25
⁄

36 +
1⁄

4𝑛(𝑛−1) <
25
⁄

36 −
1⁄
4𝑛.

Hence, by mathematical induction, the result.
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107. Let 𝑃 (𝑛) ≡√

𝑎 +√


𝑎 +√


𝑎 + ⋯𝑛 ~ terms ≤ 1+√


4𝑎+1⁄
2 . 𝑃 (1) ≡ √


𝑎 ≤ 1+√

4𝑎+1⁄
2 , so the

statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) ≡√


𝑎 +√


𝑎 +√


𝑎 + ⋯𝑚 ~ terms ≤ 1+√

4𝑎+1⁄
2

𝑃 (𝑚 + 1) ≡ √


𝑎 +√


𝑎 +√


𝑎 + ⋯ (𝑚+ 1) ~ terms ≤ 1+√

4𝑎+1⁄
2 ≡ √


𝑎 + 1+√

4𝑎+1⁄
2 ≤

1+√

4𝑎+1⁄
2

⇒ 2𝑎+√

4𝑎+1
⁄

2 < (1+√

4𝑎+1)2
⁄

4 , which is true.

Hence, by mathematical induction, the result.

108. Let 𝑃 (𝑛) ≡√

2√


3√


4…√


𝑛 < 3, where 𝑛 ≥ 2,𝑛 ∈ ℕ. 𝑃 (2) ≡√



2 < 3, so the statement
is true for 𝑛 = 2.

Let it be true for 𝑛 = 𝑚.

𝑃 (𝑚) =√

2√


3√


4…√


𝑛 < 3. Taking log of both sides, we get

⇒ 1
⁄

2 log 2 +
1
⁄

4 log 3 +
1
⁄

8 log 4 + ⋯ + 1
⁄

2𝑚−1 log𝑚 < log 3 − 1
⁄

2𝑛−2 log𝑚

Now it is trivial to show it for 𝑛 = 𝑚+ 1.

Hence, by mathematical induction, the result.

109. We have 𝑥3𝑛 = 𝑎𝑛𝑥 + 𝑏𝑛 + 𝑐𝑛𝑥−1∀𝑛 ∈ ℕ. For 𝑛 = 1, 𝑥3 = 𝑎1𝑥 + 𝑏1 + 𝑐1𝑥−1 =
(𝑎0+ 𝑏0)𝑥+ (𝑎0+ 𝑏0+ 𝑐0)+ (𝑎0+ 𝑐0)𝑥−1 = 𝑥+ 1, so the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑥3𝑚 = 𝑎𝑚𝑥 + 𝑏𝑚 + 𝑐𝑚𝑥−1.

𝑥3𝑚+3 = (𝑎𝑚𝑥 + 𝑏𝑚 + 𝑐𝑚𝑥−1)𝑥3 = (𝑎𝑚𝑥 + 𝑏𝑚 + 𝑐𝑚𝑥−1)(𝑥 + 1)[∵ 𝑥3 = 𝑥 + 1]

= 𝑎𝑚𝑥+𝑎𝑚𝑥2+𝑏𝑚+𝑏𝑚𝑥+𝑐𝑚𝑥−1+𝑐𝑚 = 𝑥(𝑎𝑚+𝑏𝑚)+𝑎𝑚𝑥−1𝑥3+𝑏𝑚+𝑐𝑚+𝑐𝑚𝑥−1

= 𝑥(𝑎𝑚+ 𝑏𝑚)+𝑎𝑚𝑥−1(1+ 𝑥)+ 𝑏𝑚+ 𝑐𝑚𝑥−1+ 𝑐𝑚 = 𝑥(𝑎𝑚+ 𝑏𝑚)+𝑎𝑚𝑥−1+ 𝑎𝑚𝑥+
𝑏𝑚 + 𝑐𝑚 + 𝑐𝑚𝑥−1

= 𝑎𝑚+1𝑥 + 𝑏𝑚+1 + 𝑐𝑚+1𝑥−1.

Hence, by mathematical induction, the result.

110. Let 𝑃𝑛 = (3 +√


5)𝑛 + (3 −√


5)𝑛. 𝑃1 = 6, which is divisible by 2, so the statement is
true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.
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⇒ 𝑃𝑚 = (3 +√


5)𝑚+ (3 −√


5)𝑚 = 2𝑘, where 𝑘 ∈ ℕ.

We observe that 𝑟1𝑟2 = 6 and 𝑟1𝑟2 = 4, where 𝑟1 = 3 +√


5 and 𝑟2 = 3 −√


5, where 𝑟1
and 𝑟2 are roots of the equation 𝑟2 − 6𝑟 + 4 = 0.

Thus, 𝑃𝑚 satisfied the recurrence relation 𝑃𝑚+2 − 6𝑃𝑚+1 + 4𝑃𝑚 = 0.

Hence, by mathematical induction, the result.

111. Let 𝑃 (𝑛) ≡ 𝑥21 + 3𝑥22 + 5𝑥23 + ⋯ + (2𝑛 − 1)𝑥2𝑛 ≤ (𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛)2, where 𝑥1 ≥
𝑥2 ≥ ⋯ ≥ 𝑥𝑛 ≥ 0.

𝑃 (1) ≡ 𝑥21 + 3𝑥22 ≤ 𝑥21 + 𝑥22 + 2𝑥1𝑥2 ⇒ 𝑥2 ≤ 𝑥1, so the statement is true for 𝑛 = 1. Let
it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) ≡ 𝑥21 + 3𝑥22 + 5𝑥23 + ⋯ + (2𝑚 − 1)𝑥2𝑚 ≤ (𝑥1 + 𝑥2 + ⋯+ 𝑥𝑚)2.

𝑃 (𝑚+ 1) ≡ 𝑥21 + 3𝑥22 + 5𝑥23 + ⋯+ (2𝑚− 1)2 𝑥2𝑚 + (2𝑚+ 1)𝑥2𝑚+1 ≤ (𝑥1 + 𝑥2 + ⋯+
𝑥𝑚+1)2 = (𝑥1 + 𝑥2 + ⋯+ 𝑥𝑚)2 + 2𝑥𝑚+1(𝑥1 + 𝑥2 + ⋯+ 𝑥𝑚)+ 𝑥2𝑚+1

⇒ 𝑚𝑥𝑚+1 ≤ 𝑥1 + 𝑥2 + ⋯+ 𝑥𝑚, which is true.

Hence, by mathematical induction, the result.

112. Let 𝑃 (𝑛) ≡ | sin(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛) | ≤ | sin 𝑥1| + | sin 𝑥2| + ⋯ + | sin 𝑥𝑛|, where
𝑥1, 𝑥2, … , 𝑥𝑛 ∈ [0, 𝜋].

𝑃 (1) ≡ | sin 𝑥1| ≤ | sin 𝑥1|, so the statement is true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) ≡ | sin(𝑥1 + 𝑥2 + ⋯+ 𝑥𝑚) | ≤ | sin 𝑥1|+ | sin 𝑥2|+⋯+ | sin 𝑥𝑚|.

𝑃 (𝑚+ 1) ≡ | sin(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑚 + 𝑥𝑚+1) | ≤ | sin 𝑥1|+ | sin 𝑥2|+⋯+ | sin 𝑥𝑚|+
| sin 𝑥𝑚+1|

= | sin(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑚) cos 𝑥𝑚+1 + cos(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑚) sin 𝑥𝑚+1| ≤ | sin 𝑥1|+
| sin 𝑥2|+⋯+ | sin 𝑥𝑚|+ | sin 𝑥𝑚+1|

≤ | sin(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑚) | + | sin 𝑥𝑚+1| ≤ | sin 𝑥1| + | sin 𝑥2| + ⋯ + | sin 𝑥𝑚| +
| sin 𝑥𝑚+1|, which is true.

Hence, by mathematical induction, the result.

113. Let 𝑃 (𝑛) ≡ tan 𝑥1− tan 𝑥2+⋯+ (−1)𝑛 tan 𝑥𝑛 ≥ tan(𝑥1−𝑥2+⋯+ (−1)𝑛𝑥𝑛), where
𝜋
⁄

2 > 𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑛 ≥ 0.

For 𝑛 = 1, tan 𝑥1 = tan 𝑥1, so the statement is true for 𝑛 = 1. For 𝑛 = 2, tan 𝑥1 −
tan 𝑥2 ≥ tan(𝑥1 − 𝑥2) = tan𝑥1−tan𝑥2
⁄

1+tan𝑥1 tan𝑥2 ⇒ 1 + tan 𝑥1 tan 𝑥2 ≥ 1, so the statement is
also true for 𝑛 = 2.

Let it be true for 𝑛 = 𝑚.
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⇒ tan 𝑥1 − tan 𝑥2 + ⋯+ (−1)𝑚 tan 𝑥𝑚 ≥ tan(𝑥1 − 𝑥2 + ⋯+ (−1)𝑚𝑥𝑚)

𝑃 (𝑚 + 1) ≡ tan 𝑥1 − tan 𝑥2 + ⋯ + (−1)𝑚+1 tan 𝑥𝑚+1 ≥ tan(𝑥1 − 𝑥2 + ⋯ +
(−1)𝑛 tan𝑚+1) = tan(𝑥1−𝑥2+⋯+(−1)𝑚𝑥𝑚)−(−1)𝑚+1 tan𝑥𝑚+1
⁄

1+tan(𝑥1−𝑥2+⋯+(−1)𝑚𝑥𝑚) tan𝑥𝑚+1
≤ tan(𝑥1 − 𝑥2 + ⋯ +

(−1)𝑚𝑥𝑚)

Hence, by mathematical induction, the result.

114. Let 𝑃 (𝑛) ≡ 𝑎𝑟1 − 𝑎𝑟2 + ⋯ + (−1)𝑛 𝑎𝑟𝑛 ≥ (𝑎1 − 𝑎2 + ⋯ + (−1)𝑛 𝑎𝑛)𝑟, where 𝑎1 ≥ 𝑎2 ≥
⋯ ≥ 𝑎𝑛 ≥ 0, 𝑟 ≥ 1.

For 𝑛 = 1, 𝑎𝑟1 = 𝑎𝑟1, so the statement is true for 𝑛 = 1. For 𝑛 = 2, 𝑟 = 2, 𝑎21 − 𝑎22 ≥
𝑎21 + 𝑎22 − 2𝑎1𝑎2 ⇒ 2𝑎1𝑎2 − 2𝑎22 ≥ 0, so the statement is also true for 𝑛 = 2, 𝑟 = 2.

Let it be true for 𝑛 = 𝑚.

⇒ 𝑃 (𝑚) ≡ 𝑎𝑟1 − 𝑎𝑟2 + ⋯ + (−1)𝑚𝑎𝑟𝑚 ≥ (𝑎1 − 𝑎2 + ⋯+ (−1)𝑚𝑎𝑚)𝑟

𝑃 (𝑚+1) ≡ 𝑎𝑟1− 𝑎𝑟2+⋯+ (−1)𝑚𝑎𝑟𝑚+ (−1)𝑚+1𝑎𝑚+1 ≥ (𝑎1− 𝑎2+⋯+ (−1)𝑚𝑎𝑚+
(−1)𝑚+1 𝑎𝑚+1)𝑟.

This can be proven by mathematical induction by varying 𝑟 trivially.

Hence, by mathematical induction, the result.
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Answers of Chapter 7
Binomials, Multinomials and Expan

sions

1. Using binomial theorem, (𝑥 + 1
⁄

𝑥)
5
= 𝐶5

0𝑥
5 + 𝐶5

1𝑥
4. 1⁄𝑥 +𝐶5

2𝑥.
1
⁄

𝑥2 + 𝐶5
3𝑥

2. 1⁄𝑥3 + 𝐶5
4𝑥.

1
⁄

𝑥4 +

𝐶5
5 .

1
⁄

𝑥5

= 𝐶0𝑥5 + 𝐶5
1𝑥

3 + 𝐶5
2𝑥 + 𝐶5

3 .
1
⁄

𝑥 + 𝐶5
4 .

1
⁄

𝑥3 + 𝐶5
5 .

1
⁄

𝑥5.

2. (10.1)5 = (10 + 0.1)5, so we proceed like previous problem to get

(10.1)5 = 𝐶5
010000 + 𝐶5

11000 + 𝐶5
210 + 𝐶5

3
1
⁄

10 + 𝐶5
4

1⁄
1000 + 𝐶5

5
1
⁄

100000

= 100000 + 5000 + 100 + 1 + .005 + .00001 = 15101.00501.

3. (𝑥 + √


𝑥 − 1)6 + (𝑥 − √


𝑥 − 1)6 = 𝐶6
0𝑥

6 + 𝐶6
1𝑥

5√


𝑥 − 1 + 𝐶6
2𝑥

4√


(𝑥 − 1)2 +
𝐶6
3𝑥

3√


(𝑥 − 1)3 + 𝐶6
4𝑥

2√


(𝑥 − 1)4 + 𝐶6
5𝑥√


(𝑥 − 1)5 + 𝐶6
6√


(𝑥 − 1)6 +
𝐶6
0𝑥

6 − 𝐶6
1𝑥

5√


𝑥 − 1 + 𝐶6
2𝑥

4√


(𝑥 − 1)2 − 𝐶6
3𝑥

3√


(𝑥 − 1)3 + 𝐶6
4𝑥

2√


(𝑥 − 1)4 −
𝐶6
5𝑥√


(𝑥 − 1)5 + 𝐶6
6√


(𝑥 − 1)6

= 2𝑥6 + 30𝑥4(𝑥 − 1)+ 30𝑥2(𝑥 − 1)2 + 2(𝑥 − 1)3.

4. Consider the expansion of (𝑥 + 𝑎)𝑛 and (𝑥 − 𝑎)𝑛. The sum of real terms will be 𝐴
and the sum of imaginary terms will be 𝐵.

(𝑥 + 𝑎)𝑛 = 𝐶𝑛
0 𝑥

𝑛 + 𝐶𝑛
1 𝑥

𝑛−1.𝑎 + 𝐶𝑛
2 𝑥

𝑛−2𝑎2 + ⋯ + 𝐶𝑛
𝑛𝑎𝑛 = 𝐴 + 𝐵, and (𝑥 − 𝑎)𝑛 =

𝐶𝑛
0 𝑥

𝑛 − 𝐶𝑛
1 𝑥

𝑛−1.𝑎 + 𝐶𝑛
2 𝑥

𝑛−2𝑎2 + ⋯ + 𝐶𝑛
𝑛(−𝑎)𝑛 = 𝐴−𝐵

Multiplying, we get

(𝑥2 − 𝑎2)𝑛 = 𝐴2 − 𝐵2.

5. Let (7 + 4√


3)𝑛 = 𝛼 + 𝛽, where 𝛼 is a positive integer and 𝛽 is a proper fraction.

Cleaerly, 0 < 7 − 4√


3 < 1[∵ 7 − 4√


3 = 49−48
⁄

7+4√


3 =
1
⁄

7+4√


3]

∴ 0 < (7 − 4√


3)𝑛 < 1 = 𝛽1(let), then 0 < 𝛽1 < 1.

𝛼 + 𝛽 + 𝛽1 = 2[7𝑛 + 𝐶𝑛
2 7

𝑛−2.48 + ⋯] = an even number.

⇒ 𝛽 + 𝛽1 = an even number −𝛼 = an integer.

∵ 0 < 𝛽 < 1 and 0 < 𝛽1 < 1 ∴ 0 < 𝛽 + 𝛽1 < 2. Thus, 𝛽 + 𝛽1 = 1.

∴𝛼 + 1 = an even number ⇒ 𝛼 = an odd number.
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6. Proceeding from previous problem, (𝛼 + 𝛽)(1 − 𝛽) = (𝛼 + 𝛽)𝛽1 = (7 + 4√


3)𝑛(7 −
4√


3)𝑛 = 1.

7. 𝑡𝑟 = 𝐶10
𝑟 𝑦10−𝑟.(𝑐

3⁄
𝑦2)

𝑟
. We have to find coefficient of 1⁄𝑦2, hence, 10−𝑟−2𝑟 = −2⇒ 𝑟 = 4.

Thus, coefficient is 𝐶10
4 .𝑐12.

8. We have to find coefficient of 𝑥9 in (1 + 3𝑥 + 3𝑥2 + 𝑥3)15 = (1 + 𝑥)45. Therefore,
coefficient is 𝐶45

9 .

9. We have to find term independent of 𝑥 in (3⁄2 𝑥
2 − 1
⁄

3𝑥)
9
. The general term will be

𝑡𝑟 = 𝐶9
𝑟−1.(

3
⁄

2 𝑥
2)

9−𝑟+1
(− 1
⁄

3𝑥)
𝑟−1

.

⇒ 21 − 3𝑟 = 0 ⇒ 𝑟 = 7. So coefficient is (−1)6 .𝐶9
6(

3
⁄

2)
10−7

. 1⁄36 =
7
⁄

18.

10. (1 + 𝑥)𝑚(1 + 1
⁄

𝑥)
𝑛
= 𝑥−𝑛(1 + 𝑥)𝑚+𝑛. We have to find term independent of 𝑥 in the

expansion, which is coefficient of 𝑥𝑛 in (1 + 𝑥)𝑚+𝑛.

Coeff. is 𝐶𝑚+𝑛
𝑛 = (𝑚+𝑛)!
⁄

𝑚!𝑛! .

11. Coeff. of 𝑥−1 in (1 + 3𝑥2 + 𝑥4)(1 + 1
⁄

𝑥)
8
= coeff. of 𝑥−1 in (1 + 1
⁄

𝑥)
8
+ coeff. of 𝑥−1 in

3𝑥2(1 + 1
⁄

𝑥)
8
+ coeff. of 𝑥−1 in 𝑥4(1 + 1
⁄

𝑥)
8

= coeff. of 𝑥−1 in (1 + 1
⁄

𝑥)
8

+ coeff. of 𝑥−3 in 3(1 + 1
⁄

𝑥)
8
+ coeff. of 𝑥−5 in (1 + 1
⁄

𝑥)
8

General term is given by 𝑡𝑟 = 𝐶𝑛
𝑟−1(

1
⁄

𝑥)
𝑟−1

= 𝐶𝑛
𝑟−1𝑥

1−𝑟.

When 𝑟 − 1 = 1 ⇒ 𝑟 = 2, we have coeff. as 𝐶8
1. When 𝑟 − 1 = 3 ⇒ 𝑟 = 4, we have

coeff. as 𝐶8
3, and similarly coeff. of 𝑥−5 is 𝐶8

5.

Thus, required coeff. of 𝑥−1 is 𝐶8
1 + 3.𝐶8

3 + 𝐶8
5 = 232.

12. 𝑟th term in the expansion of (1 − 𝑥)𝑛 is 𝐶2𝑛−1
𝑟−1 (−1)𝑟−1 𝑥𝑟−1, so (𝑟 + 1)th term will

have the term 𝑥𝑟.

⇒ 𝑎𝑟−1 = (−1)𝑟−1𝐶2𝑛−1
𝑟−1 and 𝑎2𝑛−𝑟 = (−1)2𝑛−𝑟𝐶2𝑛−1

2𝑛−𝑟 .

We know that 𝐶𝑛
𝑟 = 𝐶𝑛

𝑛−𝑟 and (−1)2𝑛 = 1. Hence, 𝑎2𝑛−𝑟 = (−1)−𝑟𝐶2𝑛−1
𝑟− .

Thus, 𝑎𝑟−1 + 𝑎2𝑛−𝑟 = 0.

13. Let the 𝑟th term be independent of 𝑥. 𝑡𝑟 = 𝐶10
𝑟−1(√


𝑥)10−𝑟+1( 𝑘
⁄

𝑥2)
𝑟−1

=

𝐶10
𝑟−1𝑥

11−𝑟
⁄

2 −2𝑟+2𝑘𝑟−1.

Since the term is independent of 𝑥 ⇒ 15 − 5𝑟 = 0 ⇒ 𝑟 = 3.
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So the term is 𝐶10
2 𝑘2 = 405 ⇒ 𝑘 = ±3.

14. 𝑘th term in the expansion is given by 𝑡𝑘 = 𝐶𝑛−3
𝑘−1 𝑥

𝑛−3−𝑘+1(𝑥−2)𝑘−1

= 𝐶𝑛−3
𝑘−1 𝑥

𝑛−3𝑘. Let this term contain 𝑥2𝑟 ⇒ 2𝑟 = 𝑛 − 3𝑘 ⇒ 𝑘 = 𝑛−2𝑟
⁄

3 .

Since 𝑛− 2𝑟 is not a multiple of 3, 𝑘 cannot be an integer. So no term will contain 𝑥2𝑟.

15. Let 𝑟th term be independent of 𝑥. 𝑡𝑟 = 𝐶𝑛
𝑟−1(𝑥

𝑎)𝑛−𝑟+1(𝑥−𝑏)𝑟−1.

This will be independent of 𝑥 if 𝑎𝑛 − 𝑎𝑟 + 𝑎 − 𝑏𝑟 + 𝑏 = 0 ⇒ 𝑎𝑛 = (𝑎 + 𝑏)(𝑟 − 1)⇒
𝑟 = 1 + 𝑎𝑛
⁄

𝑎+𝑏.

Clearly, 𝑟 will be an integer only if 𝑎𝑛 is a multiple of 𝑎 + 𝑏.

16. (𝑥 + 1
⁄

𝑥)
7
= 𝐶7

0𝑥
7 + 𝐶7

1𝑥
6. 1⁄𝑥 + 𝐶7

2𝑥
5. 1⁄𝑥2 + 𝐶7

3𝑥
4. 1⁄𝑥3 + 𝐶7

4𝑥
3. 1⁄𝑥4 + 𝐶7

5𝑥
2. 1⁄𝑥5 + 𝐶7

6𝑥.
1
⁄

𝑥6 +

𝐶7
7 .

1
⁄

𝑥7

= 𝐶7
0𝑥

7 + 𝐶7
1𝑥

5 + 𝐶7
2𝑥

3 + 𝐶7
3𝑥 + 𝐶7

4 .
1
⁄

𝑥 + 𝐶7
5 .

1
⁄

𝑥3 + 𝐶7
6 .

1
⁄

𝑥5 + 𝐶7
7 .

1
⁄

𝑥7

= 𝑥7 + 7𝑥5 + 21𝑥3 + 35𝑥 + 35
⁄

𝑥 + 21
⁄

𝑥3 +
7
⁄

𝑥5 +
1
⁄

𝑥7.

17. (2𝑥⁄3 − 3
⁄

2𝑥)
6
= 𝐶6

0(
2𝑥
⁄

3 )
6
+ 𝐶6

1(
2𝑥
⁄

3 )
5
.(− 3
⁄

2𝑥) + 𝐶6
2(

2𝑥
⁄

3 )
4
(− 3
⁄

2𝑥)
2
+ 𝐶6

3(
2𝑥
⁄

3 )
3
(− 3
⁄

2𝑥)
3
+

𝐶6
4(

2𝑥
⁄

3 )
2
(− 3
⁄

2𝑥)
4
+ 𝐶6

5(
2𝑥
⁄

3 )(−
3
⁄

2𝑥)
5
+ 𝐶6

6(−
3
⁄

2𝑥)
6

= 64⁄
729 𝑥

6 − 32
⁄

2𝑥 𝑥
4 + 20
⁄

3 𝑥
2 − 20 + 135
⁄

4 𝑥2 − 243
⁄

8 𝑥4 + 729⁄
64 𝑥

6.

18. Given, (1+𝑎𝑥)𝑛 = 1+8𝑥+24𝑥2+⋯⇒ 1+𝑛𝑎𝑥+𝑛(𝑛−1)
⁄

2 𝑎2𝑥2+⋯ = 1+8𝑥+24𝑥2+⋯

Comparing coefficients of powers of 𝑥

𝑎𝑛 = 8, 𝑛(𝑛−1)⁄2 𝑎2 = 24 ⇒ 32𝑛2 − 32𝑛 = 24𝑛2 ⇒ 𝑛 = 4 ⇒ 𝑎 = 2.

19. 7th term in the expansion of (4𝑥⁄5 − 5
⁄

2𝑥)
9

is 𝐶9
6(

4𝑥
⁄

5 )
3
(− 5
⁄

2𝑥)
6
= 10500
⁄

𝑥3 .

20. (√


2 + 1)6 + (√


2 − 1)6 = 𝐶6
02

3 + 𝐶6
14√


2 + 𝐶6
22

2 + 𝐶6
32√


2 + 𝐶6
42 + 𝐶6

5√


2 + 𝐶6
6 +

𝐶6
02

3 − 𝐶6
14√


2 + 𝐶6
22

2 − 𝐶6
32√


2 + 𝐶6
42 − 𝐶6

5√


2 + 𝐶6
6

= 2.𝐶6
02

3 + 2.𝐶6
22

2 + 2.𝐶6
42 + 2.𝐶6

6 = 198.

21. According to questions (𝑥 + 𝑎)𝑛 = 𝐴+𝐵, because 𝐴 is the sum of odd terms and 𝐵 is
the sum of even terms. From Binomial theorem (𝑥 − 𝑎)𝑛 = 𝐴−𝐵.

⇒ (𝑥 + 𝑎)2𝑛 = 𝐴2 + 𝐵2 + 2𝐴𝐵 and (𝑥 − 𝑎)2𝑛 = 𝐴2 + 𝐵2 − 2𝐴𝐵.

Subtracting, we get (𝑥 + 𝑎)2𝑛 − (𝑥 − 𝑎)2𝑛 = 4𝐴𝐵.
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22. Let (5 + 2√


6)𝑛 = 𝛼 + 𝛽, where 𝛼 is a positive integer and 𝛽 is a proper fraction.

Cleaerly, 0 < 5 − 2√


6 < 1[∵ 5 − 2√


6 = 25−24
⁄

5+2√


6 =
1
⁄

5+2√


6]

∴ 0 < (5 − 2√


6)𝑛 < 1 = 𝛽1(let), then 0 < 𝛽1 < 1.

𝛼 + 𝛽 + 𝛽1 = 2[5𝑛 + 𝐶𝑛
2 5

𝑛−2.24 + ⋯] = an even number.

⇒ 𝛽 + 𝛽1 = an even number −𝛼 = an integer.

∵ 0 < 𝛽 < 1 and 0 < 𝛽1 < 1 ∴ 0 < 𝛽 + 𝛽1 < 2. Thus, 𝛽 + 𝛽1 = 1.

∴𝛼 + 1 = an even number ⇒ 𝛼 = an odd number.

23. Proceeding from previous problem, (𝛼 + 𝛽)(1 − 𝛽) = (𝛼 + 𝛽)𝛽1 = (3 +√


8)𝑛(3 −
√


8)𝑛 = 1.

24. Let 𝑟th term contains the term 𝑥. Then 𝑡𝑟 = 𝐶9
𝑟−1(2𝑥)

10−𝑟(− 3
⁄

𝑥)
𝑟−1

Since the term contains 𝑥, therefore 10 − 𝑟 − 𝑟 + 1 = 1 ⇒ 𝑟 = 5.

Thus, coefficient is 𝐶9
42

5.34 = 2592.𝐶9
4.

25. Let 𝑟th term contain 𝑥7 in the expansion of (3𝑥2 + (5𝑥)−1)11. 𝑡𝑟 =
𝐶11
𝑟−1(3𝑥2)12−𝑟 .(5𝑥−1)𝑟−1.

Since the term contains 𝑥7, therefore 24 − 2𝑟 − 𝑟 + 1 = 7 ⇒ 𝑟 = 6.

Thus, coefficient is 𝐶11
5 . 3

6
⁄

55.

26. Let 𝑟th term contain 𝑥9 in the expansion of (2𝑥2 − 𝑥−1)20. Then 𝑡𝑟 =
𝐶20
𝑟−1(2𝑥

2)21−𝑟(−𝑥−1)𝑟−1.

Since the term contains 𝑥9, therefore 42 − 2𝑟 − 𝑟 + 1 = 9, which does not yield an
integral value for 𝑟. Therefore, coefficient is 0.

27. Let 𝑟th term contain 𝑥24 in the expansion of (𝑥2 + 3𝑎𝑥−1)15. Then 𝑡𝑟 =
𝐶15
𝑟−1(𝑥

2)16−𝑟(3𝑎𝑥−1)𝑟−1.

Since the term contains 𝑥24, therefore 32 − 2𝑟 − 𝑟 + 1 = 24 ⇒ 𝑟 = 3.

Therefore, the coefficient is 𝐶16
2 9𝑎2.

28. Let 𝑟th term contain 𝑥9 in the expansion of (𝑥2 − (3𝑥)−1)9. Then 𝑡𝑟 =
𝐶9
𝑟−1(𝑥

2)10−𝑟(− 1
⁄

3𝑥)
𝑟−1

.

Since the term contains 𝑥9, therefore 20 − 2𝑟 − 𝑟 + 1 = 9 ⇒ 𝑟 = 4.

Therefore, the coefficient is 𝐶9
3 .

−1⁄
33 = −28
⁄

9 .
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29. Let 𝑟th term contain 𝑥−7 in the expansion of (2𝑥 − 1⁄
3𝑥2)

11
. Then 𝑡𝑟 =

𝐶11
𝑟−1(2𝑥)12−𝑟(−

1⁄
3𝑥2)

𝑟−1
.

Since the term contains 𝑥−7, therefore, 12 − 𝑟 − 2𝑟 + 2 = −7 ⇒ 𝑟 = 7.

Therefore, coefficient is 𝐶11
6

25
⁄

36.

30. Let 𝑟th term contain 𝑥7 in the expansion of (𝑎𝑥2+ 1⁄
𝑏𝑥)

11
. 𝑡𝑟 = 𝐶11

𝑟−1(𝑎𝑥2)12−𝑟 .(
1⁄
𝑏𝑥)

𝑟−1
.

Since the term contains 𝑥7, therefore 24 − 2𝑟 − 𝑟 + 1 = 7 ⇒ 𝑟 = 6.

Therefore, coefficient is 𝐶11
5 𝑎6𝑏−5. Let 𝑠th term contain 𝑥−7 in the expansion of

(𝑎𝑥 − 1
⁄

𝑏𝑥2)
11

. Then 𝑡𝑟 = 𝐶11
𝑟−1(𝑎𝑥)12−𝑟(−

1
⁄

𝑏𝑥2)
𝑟−1

.

Since the term contains 𝑥−7, therefore 12 − 𝑟 − 2𝑟 + 2 = −7 ⇒ 𝑟 = 7.

Therefore, the coefficient is 𝐶11
6 𝑎5𝑏−6.

Since the coefficients are equal 𝑎𝑏 = 1[∵𝐶11
5 = 𝐶11

6 ].

31. Let 𝑟th term contain 𝑥𝑝 in the expansion of (𝑥2 + 1
⁄

𝑥)
2𝑛

. Then 𝑡𝑟 =

𝐶2𝑛
𝑟−1(𝑥

2)2𝑛+1−𝑟 1
⁄

𝑥𝑟−1.

Since the term contains 𝑥𝑝, therefore 4𝑛 + 2 − 2𝑟 − 𝑟 + 1 = 𝑝 ⇒ 𝑟 = 4𝑛−𝑝
⁄

3 + 1.

Therefore, the coefficient is 2𝑛!⁄
(4𝑛−𝑝⁄

3 )!(2𝑛+𝑝⁄
3 )!

.

32. The problems are solved below:

i. Let 𝑟th term be indnependent of 𝑥 in the expansion of (𝑥 + 1
⁄

𝑥)
2𝑛

. Then 𝑡𝑟 =

𝐶2𝑛
𝑟−1𝑥

2𝑛+1−𝑟. 1
⁄

𝑥𝑟−1

Since the term is independent of 𝑥, therefore 2𝑛 + 1 − 𝑟 − 𝑟 + 1 = 0 ⇒ 𝑟 = 𝑛 + 1.

Therefore, the coefficient is 𝐶2𝑛
𝑛 = (2𝑛)!⁄

𝑛!𝑛! .

ii. Let 𝑟th term be independent of 𝑥 in the expansion of (2𝑥2 + 1
⁄

𝑥)
15

. Then 𝑡𝑟 =

𝐶15
𝑟−1(2𝑥

2)16−𝑟(1⁄𝑥)
𝑟−1

.

Since the term is independent of 𝑥, therefore 32 − 2𝑟 − 𝑟 + 1 = 0 ⇒ 𝑟 = 11.

Therefore, the coefficient is 𝐶15
10 .2

5 = 32.𝐶15
10.
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iii. Let 𝑟th term be independent of 𝑥 in the expansion of (√


𝑥
⁄

3 +
3⁄
2𝑥2)

10
. Then

𝑡𝑟 = 𝐶10
𝑟−1(√


𝑥
⁄

3)
11−𝑟

( 3⁄
2𝑥2)

𝑟−1
.

Since the term is independent of 𝑥, therefore 11−𝑟⁄2 − 2𝑟 + 2 = 0 ⇒ 𝑟 = 3.

Therefore, the coefficient is 𝐶10
2 .( 1
⁄

34) .(
32
⁄

22) =
5
⁄

4.

iv. Let 𝑟th term be independent of 𝑥 in the expansion of (2𝑥2 − 1
⁄

𝑥)
12

. Then 𝑡𝑟 =

𝐶12
𝑟−1(2𝑥2)13−𝑟(

1
⁄

𝑥)
𝑟−1

.

Since the term is independent of 𝑥, therefore 26 − 2𝑟 − 𝑟 + 1 = 0 ⇒ 𝑟 = 9.

Therefore, the coefficient is 𝐶12
8 .24 = 7920.

v. Let 𝑟th term be independent of 𝑥 in the expansion of (2𝑥2 − 3
⁄

𝑥3)
25

. Then

𝑡𝑟 = 𝐶25
𝑟−1(2𝑥

2)26−𝑟(− 3
⁄

𝑥3)
𝑟−1

.

Since the term is independent of 𝑥, therefore 52 − 2𝑟 − 3𝑟 + 3 = 0 ⇒ 𝑟 = 11.

Therefore, the coefficient is 𝐶25
10 .2

15310.

vi. Let 𝑟th term be independent of 𝑥 in the expansion of (𝑥3 − 3
⁄

𝑥2)
15

. Then 𝑡𝑟 =

𝐶15
𝑟−1(𝑥

3)16−𝑟(− 3
⁄

𝑥2)
𝑟−1

.

Since the term is independent of 𝑥, therefore 48 − 3𝑟 − 2𝑟 + 2 = 0 ⇒ 𝑟 = 10.

Therefore, the coefficient is 𝐶15
9 (−3)9 = −39.𝐶15

0 .

vii. Let 𝑟th term be independent of 𝑥 in the expansion of (𝑥2 − 3
⁄

𝑥3)
10

. Then 𝑡𝑟 =

𝐶10
𝑟−1(𝑥

2)11−𝑟(− 3
⁄

𝑥3)
𝑟−1

.

Since the term is independent of 𝑥, therefore 22 − 𝑟 − 3𝑟 + 3 = 0 ⇒ 𝑟 = 5.

Therefore, the coefficient is 𝐶10
4 .(−3)4 = 34.𝐶10

4 .

viii. Let 𝑟th term be independent of 𝑥 in the expansion of (1⁄2 𝑥
1/3 + 𝑥−1/3)

8
. Then

𝑡𝑟 = 𝐶8
𝑟−1(

1
⁄

2 𝑥
1/3)

9−𝑟
(𝑥−1/3)𝑟−1.

Since the term is independent of 𝑥, therefore 9 − 𝑟 − 𝑟 + 1 = 0 ⇒ 𝑟 = 5.

Therefore, the coefficient is 𝐶8
4 .

1
⁄

24 =
35
⁄

8 .
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33. Let 𝑟th term be independent of 𝑥 in the expansion of (𝑥 + 1
⁄

𝑥2)
𝑛
. Then 𝑡𝑟 =

𝐶𝑛
𝑟−1𝑥

𝑛+1−𝑟 1
⁄

(𝑥2)𝑟−1.

Since the term is independent of 𝑥, therefore 𝑛 + 1 − 𝑟 − 2𝑟 + 2 = 0 ⇒ 𝑟 = 𝑛
⁄

3 + 1.

Therefore, the coefficient is 𝐶𝑛
𝑛
⁄

3
= 𝑛!⁄

(𝑛⁄3)!(
2𝑛⁄
3 )!

.

34. First we will find coefficient of 𝑥𝑚 and then of 𝑥𝑛 in the expansion of (1 + 𝑥)𝑚+𝑛.
Let 𝑝th term contain 𝑥𝑚.

Then 𝑡𝑃 = 𝐶𝑚+𝑛
𝑝−1 𝑥𝑝−1. Since it contains 𝑥𝑚, therefore 𝑝 = 𝑚+ 1.

Thus coefficient is 𝐶𝑚+𝑛
𝑚 . Similarly, we find the coefficient of term containing 𝑥𝑛

as 𝐶𝑚+𝑛
𝑛 . We know that 𝐶𝑛

𝑟 = 𝐶𝑛
𝑛−𝑟.

Therefore, 𝐶𝑚+𝑛
𝑚 = 𝐶𝑚+𝑛

𝑛 . Hence, proved.

35. 4th term in the expansion of (𝑝𝑥 + 1
⁄

𝑥)
𝑛

is given by 𝑡4 = 𝐶𝑛
3 (𝑝𝑥)

𝑛+1−4 1
⁄

𝑥3.

Since the term is independent of 𝑥, therefore 𝑛 − 3 − 3 = 0 ⇒ 𝑛 = 6.

So the term is 𝐶6
3 𝑝

3 = 5
⁄

2 ⇒ 𝑝 = 1
⁄

2.

36. There are 13 terms in the expansion of (𝑥 − 1
⁄

2𝑥)
12

. So 7th term will be the middle
term.

𝑡7 = 𝐶12
6 .𝑥6(− 1
⁄

2𝑥)
6
= 𝐶12

6 . 1⁄26 =
231
⁄

16 .

37. There are 8 terms in the expansion of (2𝑥2 − 1
⁄

𝑥)
7
. These are 4th and 5th terms.

𝑡4 = 𝐶7
3(2𝑥

2)4(− 1
⁄

𝑥)
3
= −560𝑥5, 𝑡5 = 𝐶7

4(2𝑥
2)3(− 1
⁄

𝑥)
4
= 280𝑥2.

38. There are 2𝑛 + 1 terms in the expansion of (𝑥+ 1
⁄

𝑥)
2𝑛

. So the middle term is (𝑛+ 1)th
term.

𝑡𝑛+1 = 𝐶2𝑛
𝑛 𝑥2𝑛−𝑛. 1⁄

𝑥𝑛 = 𝐶2𝑛
𝑛 = 2𝑛!
⁄

𝑛!𝑛! =
1.3.5…(2𝑛−1) .2𝑛
⁄

𝑛! .

39. There are 2𝑛 + 1 terms in the expansion of (1 + 𝑥)2𝑛. So the middle term is (𝑛 + 1)th
term.

𝑡𝑛+1 = 𝐶2𝑛
𝑛 𝑥𝑛. So the ccoefficient is 𝐶2𝑛

𝑛 .

There are 2𝑛 temrs in the expansion of (1 + 𝑥)2𝑛−1. So the middle terms are 𝑛th and
(𝑛 + 1)th terms.

Coefficients are 𝐶2𝑛−1
𝑛−1 and 𝐶2𝑛−1

𝑛 .

Clearly, 𝐶2𝑛−1
𝑛−1 + 𝐶2𝑛−1

𝑛 = 𝐶2𝑛
𝑛 . Hence, proved.
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40. The solutions are given below:

i. There will be 21 terms in the expansions of (2𝑥⁄3 − 3𝑦⁄
2 )

20
. So 11th term will be the

middle term.

𝑡11 = 𝐶20
10(

2𝑥
⁄

3 )
21−10

.(−3𝑦⁄
2 )

10
= 𝐶20

10𝑥
10𝑦10.

ii. There will be 7 terms in the expansions of (2𝑥⁄3 − 3
⁄

2𝑥)
6
. So 4th term will be the

middle term.

𝑡4 = 𝐶6
3(

2𝑥
⁄

3 )
3
(− 3
⁄

2𝑥)
3
= −20.

iii. There will be 8 terms in the expansion of (𝑥⁄𝑦 −
𝑦
⁄

𝑥)
7
. So 4th and 5th termss will be

the middle terms.

𝑡4 = 𝐶7
3 .(

𝑥
⁄

𝑦)
4
(− 𝑦
⁄

𝑥)
3
= −35𝑥
⁄

𝑦 , 𝑡5 = 𝐶7
4(

𝑥
⁄

𝑦)
3
(− 𝑦
⁄

𝑥)
3
= 35𝑦
⁄

𝑥 .

iv. The middle term of the expansion (1 + 𝑥)2𝑛 will be the (𝑛 + 1)th term.

𝑡𝑛+1 = 𝐶2𝑛
𝑛 𝑥𝑛 = 2𝑛!
⁄

𝑛!𝑛! 𝑥
𝑛.

v. (1 − 2𝑥 + 𝑥2)𝑛 = (1 − 𝑥)2𝑛 so (𝑛 + 1)th term will be the middle term.

𝑡𝑛+1 = 𝐶2𝑛
𝑛 (−𝑥𝑛) = (−1)𝑛 2𝑛!

⁄

𝑛!𝑛! 𝑥
𝑛

41. The general 𝑟th term will be given by 𝑡𝑟 = 𝐶2𝑛+1
𝑟−1 (𝑥⁄𝑦)

2𝑛+1+1−𝑟
.(𝑦⁄𝑥)

𝑟−1
.

Since it will 2𝑛 + 2 terms there will be two middle terms. (𝑛 + 1)th and (𝑛 + 2)th
terms will be middle terms. Since the powers of 𝑥 and 𝑦 are symmetric if any term has
to be free of 𝑥 and 𝑦 then it has to be middle terms.

𝑡𝑛+1 = 𝐶2𝑛+1
𝑛 (𝑥⁄𝑦)

2𝑛+1+1−𝑛−1
(𝑦⁄𝑥)

𝑛
= 𝐶2𝑛+1

𝑛
𝑥
⁄

𝑦

𝑡𝑛+2 = 𝐶2𝑛+1
𝑛+1

𝑦
⁄

𝑥. Both of these terms are not free of 𝑥 and 𝑦.

We also prove that no term is free of 𝑥 and 𝑦 by considering general term. Since the
term has to be independent of 𝑥 and 𝑦, we consider the general term.

2𝑛 + 2 − 𝑟 − −𝑟 + 1 ==⇒ 𝑟 = 2𝑛+1
⁄

2 , which cannot be an integer. So no terms is free
of both 𝑥 and 𝑦.

42. There will be 2𝑛 + 1 terms in the expansion of (𝑥 − 1
⁄

𝑥)
2𝑛

. So the middle term would
be (𝑛 + 1)th term.

𝑡𝑛+1 = 𝐶2𝑛
𝑛 𝑥2𝑛+1−𝑛−1−1

𝑛
⁄

𝑥𝑛 = (−1)𝑛 2𝑛!
⁄

𝑛!𝑛! =
1.3.5…(2𝑛−1)⁄

𝑛! .(−2)𝑛.
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43. 𝑡2𝑟+1 = 𝐶43
2𝑟 𝑥

2𝑟 and 𝑡𝑟+2 = 𝐶43
𝑟+1𝑥

𝑟+1.

Given that coefficients are equal. ∴𝐶43
2𝑟 = 𝐶4

𝑟+13 ⇒ 2𝑟 + 𝑟 + 1 = 43 ⇒ 𝑟 = 14.

44. Coefficient of 𝑟th term in the expansion of (1 + 𝑥)20 is 𝐶2
𝑟−10, and the coefficient of

(𝑟 + 4)th term is 𝐶20
𝑟+3.

Clearly, for coefficients to be equal 𝑟 − 1 + 𝑟 + 3 = 20 ⇒ 𝑟 = 9.

45. Following like previous problem, 𝑟 − 3 + 2𝑟 + 3 = 18 ⇒ 𝑟 = 6.

46. Following like previous problem, 2𝑟 + 4 + 𝑟 − 7 = 39 ⇒ 𝑟 = 14. So 𝐶𝑟
12 = 91.

47. Following like previous problem, 3𝑟 − 1 + 𝑟 + 1 = 2𝑛 ⇒ 𝑟 = 𝑛
⁄

2.

48. Following like previous problem, 𝑝 + 𝑝 + 2 = 2𝑛 ⇒ 𝑝 = 𝑛 − 1.

49. Coefficient of (𝑟 + 1)th term in the expansion of (1 + 𝑥)𝑛+1 is 𝐶𝑛+1
𝑟 . Coefficients

of 𝑟th and (𝑟 + 1)th terms in the expansion of (1 + 𝑥)𝑛 are 𝐶𝑛
𝑟−1 and 𝐶𝑛

𝑟 respectively.

Clearly, 𝐶𝑛
𝑟−1 + 𝐶𝑛

𝑟 = 𝐶𝑛+1
𝑟 . Hence, proved.

50. Since we have to find numerically greatets term we can replaced − sign with +. Let 𝑟th
term be the greatest term in the expansion of (7 + 10

⁄

3 )
11

. 𝑡𝑟 = 𝐶11
𝑟−1712−𝑟(

10
⁄

3 )
𝑟−1

.

We consider (𝑟 + 1)th term as well. 𝑡𝑟+1 = 𝐶11
𝑟 711−𝑟(10⁄3 )

𝑟

𝑡𝑟
⁄

𝑡𝑟+1 =
21𝑟
⁄

(12−𝑟)10 ≥ 1 ⇒ 𝑟 ≥ 3 27⁄31.

Replacing 𝑟 with 𝑟 − 1, 𝑡𝑟−1⁄𝑡𝑟 = 21𝑟−21
⁄

130−10𝑟 ⇒ 𝑟 ≤ 4 27⁄31 ∴ 𝑟 = 4.

So the greatest term will be 𝐶11
3 78 10

3
⁄

33 = 440
⁄

9 7853.

51. In any binomial expansion, the middle terms have the greatest coefficient. Therefore,
(𝑛 + 1)th term will have greatest coefficient.

𝑡𝑛 = 𝐶2𝑛
𝑛−1𝑥

𝑛−1, 𝑡𝑛+1 = 𝐶2𝑛
𝑛 𝑥𝑛, 𝑡𝑛+2 = 𝐶2𝑛

𝑛+1𝑥
𝑛+1

∴ 𝑡𝑛+1
⁄

𝑡𝑛+2
= 𝑛+1
⁄

𝑛 . 1⁄𝑥. Since 𝑡𝑛+1 is the greatest term 𝑡𝑛+1
⁄

𝑡𝑛+2
> 1 ⇒ 𝑥 < 𝑛+1
⁄

𝑛 .

Similarly, considering 𝑡𝑛 and 𝑡𝑛+1, 𝑥 > 𝑛
⁄

𝑛+1.

52. The greatest terms are calculated below:

i. (2 + 9
⁄

5)
10

will have 6th term as the middle term, which will be greatest.

𝑡6 = 𝐶10
5 .25.(9⁄5)

5
= 𝐶10

5 (18⁄5 )
5
.

ii. For (4 − 2)7 let 𝑡𝑟 is the greatest term. Then 𝑡𝑟
⁄

𝑡𝑟+1 > 1 and 𝑡𝑟
⁄

𝑡𝑟−1 > 1. Substituting
and evaluating, we find 𝑟 = 3.
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𝑡3 = 𝐶7
2 .4

5.22 = 86016.

iii. For (5 + 2)10 let 𝑡𝑟 is the greatest term. Then 𝑡𝑟
⁄

𝑡𝑟+1 > 1 and 𝑡𝑟
⁄

𝑡𝑟−1 > 1. Substituting
and evaluating, we find 𝑟 = 4.

𝑡4 = 𝐶13
3 51023.

53. In any binomial expansion, the middle terms have the greatest coefficient. Therefore,
(15 + 1)th term will have greatest coefficient.

𝑡15 = 𝐶30
14𝑥

14, 𝑡16 = 𝐶30
15𝑥

15, 𝑡17 = 𝐶30
16𝑥

16

∴ 𝑡16⁄𝑡17 =
16
⁄

15 .
1
⁄

𝑥. Since 𝑡16 is the greatest term 𝑡16⁄𝑡17 > 1 ⇒ 𝑥 < 16
⁄

15.

Similarly, considering 𝑡15 and 𝑡16, 𝑥 > 15
⁄

16.

54. Given, 62𝑛− 35𝑛− 1 = 36𝑛− 35𝑛− 1 = (1+ 35)𝑛− 35𝑛− 1 = 352[𝐶𝑛
2 + 35.𝐶𝑛

3 +⋯+
35𝑛−2 ]

= 1225[𝐶𝑛
2 + 35.𝐶𝑛

3 + ⋯+ 35𝑛−2 ] = 1225× a positive integer if 𝑛 ≥ 2.

If 𝑛 = 1, given expression becomes 0. Hence, for all positive integral values of 𝑛,
62𝑛 − 35𝑛 − 1 is divisible by 1225.

55. 24𝑛 − 2𝑛(7𝑛 + 1) = 16𝑛 − 2𝑛(7𝑛 + 1) = (2 + 14)𝑛 − 2𝑛(7𝑛 + 1) = 142[𝐶𝑛
2 .2

𝑛−2 +
𝐶𝑛
3 .2

𝑛−3.14 + ⋯ + 14𝑛−2 ], which is divisible by 196 for all positive values of 𝑛. If
𝑛 = 1, given expression becomes 0, which is also divisible by 196.

56. 34𝑛+1 + 16𝑛 − 3 = 3(34𝑛 − 1)+ 16𝑛 = 3[81𝑛 − 1]+ 16𝑛 = 3[(1 + 80)𝑛 − 1]+ 16𝑛

= 3[80𝑛+𝐶𝑛
2 80

2+𝐶𝑛
3 80

3+⋯+80𝑛]+16𝑛 = 256[𝑛+75(𝐶𝑛
2 +𝐶𝑛

3 .80+⋯+80𝑛−2)],

which is divisible by 256 for all 𝑛 ∈ ℕ.

57. The problems are solved below:

i. 4𝑛 − 3𝑛 − 1 = (1 + 3)𝑛 − 3𝑛 − 1 = 𝐶𝑛
2 3

2 + 𝐶𝑛
3 3

3 + ⋯ + 3𝑛

= 9[𝐶𝑛
2 + 𝐶𝑛

3 .3 + ⋯ + 3𝑛−2 ],

which is divisible by 9 for 𝑛 ≥ 2. When 𝑛 = 1, the given expression becomes 0,
and hence divisible by 9. Thus, given expression is divisible by 9 for all 𝑛 ∈ ℙ.

ii. 25𝑛 − 31𝑛 − 1 = (1 + 31)𝑛 − 31𝑛 − 1 = 𝐶𝑛
2 31

2 + 𝐶𝑛
3 31

3 + ⋯ + 31𝑛

= 961[𝐶𝑛
2 + 𝐶𝑛

3 .31 + ⋯ + 31𝑛−2 ],

which is divisible by 961 for 𝑛 ≥ 2. When 𝑛 = 1, the given expression becomes 0,
and hence divisible by 961. Thus, given expression is divisible by 961 for all 𝑛 ∈ ℙ.
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iii. 32𝑛+2 − 8𝑛 − 9 = 9(1 + 8)𝑛 − 8𝑛 − 9 = 9[1 + 8𝑛 + 𝐶𝑛
2 .8

2 + 𝐶𝑛
3 .8

3 + ⋯ + 8𝑛 ] −
8𝑛 − 9 = 64[𝑛 + 9(𝐶𝑛

2 + 𝐶𝑛
3 8 + ⋯+ 8𝑛−2)],

which is divisible by 64 for 𝑛 ≥ 2.

iv. 25𝑛+5 − 31𝑛 − 32 = 32(1 + 31)𝑛 − 31𝑛 − 32 = 32[1 + 31𝑛 + 𝐶𝑛
2 .31

2 + 𝐶𝑛
3 .31

3 +
⋯ + 31𝑛 ]− 31𝑛 − 32 = 961[𝑛 + 32(𝐶𝑛

2 + 𝐶𝑛
3 31 + ⋯+ 31𝑛−2)],

which is divisible by 961 for 𝑛 > 1.

v. 32𝑛 − 1 + 24𝑛 − 32𝑛2 = (1 + 8)𝑛 − 1 + 24𝑛 − 32𝑛2 = 1 + 8𝑛 + 32𝑛2 − 32𝑛 +
83(𝐶𝑛

3 + 𝐶𝑛
4 .8 + ⋯ + 8𝑛−3)− 1 + 24𝑛 − 32𝑛2 = 83(𝐶𝑛

3 + 𝐶𝑛
4 .8 + ⋯ + 8𝑛−3),

which is divisible by 512 for 𝑛 > 2.

58. Let the three consecutive coefficients in the expansion of (1+ 𝑥)𝑛 be the 𝑟th, (𝑟 + 1)th
and (𝑟 + 2)th, which are given to be 165, 330 and 462 respectively.

∴𝐶𝑛
𝑟−1 = 165 ⇒ 𝑛!
⁄

(𝑟−1)!(𝑛−𝑟+1)! = 165

𝐶𝑛
𝑟 = 330 ⇒ 𝑛!
⁄

𝑟!(𝑛−𝑟)! = 330, and 𝐶𝑛
𝑟+1 =

𝑛!
⁄

(𝑟+1)!(𝑛−𝑟−1)! = 462.

From first two, we have 𝑟⁄
𝑛−𝑟+1 =

1
⁄

2 ⇒ 3𝑟 = 𝑛 + 1.

From last two, we have 𝑟+1⁄𝑛−𝑟 =
5
⁄

7 ⇒ 12𝑟 = 5𝑛 − 7

Thus, 𝑛 = 11, 𝑟 = 4. So positions of coefficients are the 4th, 5th and 6th respectively.

59. Let 𝑎1, 𝑎2, 𝑎3 and 𝑎4 be the coefficients of the 𝑟th, (𝑟 + 1)th, (𝑟 + 2)th and (𝑟 + 3)th
terms respectively in the expansion of (1 + 𝑥)𝑛.

∴ 𝑎1 = 𝐶𝑛
𝑟−1, 𝑎2 = 𝐶𝑛

𝑟 , 𝑎3 = 𝐶𝑛
𝑟+1, and 𝑎4 = 𝐶𝑛

𝑟+2.

𝑎2
⁄

𝑎1 =
𝑛−𝑟+1⁄

𝑟 ⇒ 𝑎1+𝑎2
⁄

𝑎1 = 𝑛+1
⁄

𝑟 ⇒ 𝑎1
⁄

𝑎1+𝑎2 =
𝑟
⁄

𝑛+1.

Similarly, 𝑎2
⁄

𝑎2+𝑎3 =
𝑟+1
⁄

𝑛+1, and 𝑎3
⁄

𝑎3+𝑎4 =
𝑟+2
⁄

𝑛+1.

Clearly, 𝑎1
⁄

𝑎1+𝑎2 +
𝑎3
⁄

𝑎3+𝑎4 =
2𝑎2
⁄

𝑎2+𝑎3.

60. 2nd terms = 𝐶𝑛
1 𝑥

𝑛−1𝑦 = 240, 3rd term = 𝐶𝑛
2 𝑥

𝑛−2𝑦2 = 720, and 4th term =
𝐶𝑛
3 𝑥

𝑛−3𝑦3 = 1080.

From first two, we have 240⁄720 = 2
⁄

𝑛−1 .
𝑥
⁄

𝑦.

From last two, we have 720⁄1080 = 3
⁄

𝑛−2 .
𝑥
⁄

𝑦

From these two equations 1⁄2 =
2(𝑛−2)⁄
3(𝑛−1) ⇒ 𝑛 = 5.
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⇒ 𝑦 = 3𝑥
⁄

2 .

⇒ 240 = 𝐶𝑛
1 𝑥

𝑛−1𝑦 ⇒ 𝑥5 = 32 ⇒ 𝑥 = 2 ⇒ 𝑦 = 3.

61. Let the index of the power be 𝑛. And let 𝑎, 𝑏, 𝑐 be the 𝑟th, (𝑟 + 1)th, (𝑟 + 2)th
coefficients respectively in the expansion of (1 + 𝑥)𝑛.

𝑎 = 𝐶𝑛
𝑟−1, 𝑏 = 𝐶𝑛

𝑟 , and 𝑐 = 𝐶𝑛
𝑟+1.

𝑎
⁄

𝑏 =
𝑟⁄

𝑛−𝑟+1 ⇒ 𝑎𝑛 + 𝑎 = 𝑟(𝑎 + 𝑏), 𝑏⁄𝑐 = 𝑟+1
⁄

𝑛−𝑟 ⇒ 𝑏𝑛 − 𝑏𝑟 = 𝑐𝑟 + 𝑐 ⇒ 𝑏𝑛 − 𝑐 = 𝑟(𝑏 + 𝑐)

⇒ 𝑛 = 2𝑎𝑐+𝑎𝑏+𝑏𝑐⁄
𝑏2−𝑎𝑐 .

62. The coefficient of 14th, 15th and 16th terms in the expansion of (1 + 𝑥)𝑛 will be
𝐶𝑛
13, 𝐶

𝑛
14 and 𝐶𝑛

15 respectively. Given that these are in A.P. ⇒ 2𝐶𝑛
14 = 𝐶𝑛

13 + 𝐶𝑛
15.

⇒ 2. 𝑛!
⁄

14!(𝑛−14)! =
𝑛!
⁄

13!(𝑛−13)! +
𝑛!
⁄

15!(𝑛−15)!

⇒ 2.15(𝑛 − 13) = 15.14 + (𝑛 − 13)(𝑛 − 14)⇒ 𝑛 = 23, 34.

63. Let the three consecutive terms are 𝑟th, (𝑟 + 1)th and (𝑟 + 2)th. Then, 𝐶𝑛
𝑟−1 =

56, 𝐶𝑛
𝑟 = 70, 𝐶𝑟+1 = 56.

From first two, we have 𝑟⁄
𝑛−𝑟+1 =

4
⁄

5, and from last two, we have 𝑟+1⁄𝑛−𝑟 =
5
⁄

4.

Solving these gives us 𝑛 = 8, 𝑟 = 4.

64. Let the three consecutive terms are 𝑟th, (𝑟 + 1)th and (𝑟 + 2)th. Then, 𝐶𝑛
𝑟−1 =

220, 𝐶𝑛
𝑟 = 495, 𝐶𝑟+1 = 792.

From first two, we have 𝑟⁄
𝑛−𝑟+1 =

4
⁄

9, and from last two, we have 𝑟+1⁄𝑛−𝑟 =
5
⁄

8.

Solving these gives us 𝑛 = 12.

65. 𝑡3 = 𝐶𝑛
2 𝑎

𝑛−2𝑥2 = 84, 𝑡4 = 𝐶𝑛
3 𝑎

𝑛−3𝑥3 = 280, and 𝑡5 = 𝐶𝑛
4 𝑎

𝑛−4𝑥4 = 560.

From first two, we have 3
⁄

𝑛−2 .
𝑎
⁄

𝑥 =
3
⁄

10, and from last two we have 4
⁄

𝑛−3 .
𝑎
⁄

𝑥 =
1
⁄

2.

⇒ 3(𝑛−3)⁄
4(𝑛−2) =

3
⁄

5 ⇒ 𝑛 = 7, ⇒ 𝑥 = 2, 𝑎 = 1.

66. 𝑡6 = 𝐶𝑛
5 𝑥

𝑛−5𝑦5 = 112, 𝑡6 = 𝐶𝑛
6 𝑥

𝑛−6𝑦6 = 7, and 𝑡8 = 𝐶𝑛
7 𝑥

𝑛−7𝑦7 = 1
⁄

4.

From first two, we have 6
⁄

𝑛−5 .
𝑥
⁄

𝑦 = 16, and from last two we have 7
⁄

𝑛−6 .
𝑥
⁄

𝑦 = 28

⇒ 6(𝑛−6)
⁄

7(𝑛−5) =
4
⁄

7 ⇒ 𝑛 = 7, 𝑥 = 4, 𝑦 = 1
⁄

2.

67. Let the binomial expansion be (𝑥+𝑦)𝑛. 𝑎 = 𝐶𝑛
5 𝑥

𝑛−5𝑦5, 𝑏 = 𝐶𝑛
6 𝑥

𝑛−6𝑦6, 𝑐 = 𝐶𝑛
7 𝑥

𝑛−7𝑥7,
and 𝑑 = 𝐶𝑛

8 𝑥
𝑛−8𝑦8.
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From first two, we have 𝑏⁄𝑎 =
𝑛−5
⁄

6 . 𝑦⁄𝑥, from second and third, we have 𝑐⁄𝑏 = 𝑛−6
⁄

7 . 𝑦⁄𝑥, and

from kast two we gace 𝑑⁄𝑐 = 𝑛−7
⁄

8 . 𝑦⁄𝑥.

Now from first two we have, 𝑏
2
⁄

𝑎𝑐 =
7(𝑛−5)
⁄

6(𝑛−6) and 𝑐
2
⁄

𝑏𝑑 =
8(𝑛−6)
⁄

7(𝑛−7)

Subtracting 1 from both of these, we have 𝑏
2−𝑎𝑐⁄
𝑎𝑐 = 7(𝑛−5)−6(𝑛−6)
⁄

6(𝑛−6) , and 𝑐
2−𝑏𝑑
⁄

𝑏𝑑 =
8(𝑛−6)−7(𝑛−7)
⁄

7(𝑛−7)

Dividing, we get 𝑏
2−𝑎𝑐⁄
𝑐2−𝑏𝑑 =

4𝑎⁄
3𝑐.

68. (a) Let 𝑎, 𝑏, 𝑐 and 𝑑 be the 𝑟th, (𝑟 + 1)th, (𝑟 + 2)th, and (𝑟 + 3)th term of the binomial
expansion (𝑥 + 𝑦)𝑛.

𝑎 = 𝐶𝑛
𝑟−1, 𝑏 = 𝐶𝑛

𝑟 , 𝑐 = 𝐶𝑛
𝑟+1, and 𝑑 = 𝐶𝑛

𝑟+2.

𝑏
⁄

𝑎 =
𝑛−𝑟+1⁄

𝑟 . ⇒ 𝑎+𝑏
⁄

𝑎 = 𝑛+1
⁄

𝑟 , 𝑐⁄𝑏 = 𝑛−𝑟
⁄

𝑟+1 ⇒
𝑐+𝑏
⁄

𝑏 = 𝑛+1
⁄

𝑟+1

𝑑⁄
𝑐 =

𝑛−𝑟−1⁄
𝑟+2 ⇒ 𝑐+𝑑⁄

𝑐 = 𝑛+1
⁄

𝑟+2. Clearly, 𝑎+𝑏⁄𝑎 , 𝑏+𝑐⁄𝑏 , 𝑐+𝑑⁄
𝑐 are in H.P.

(b) (𝑏𝑐 + 𝑎𝑑)(𝑏 − 𝑐) = (𝑛!)3
⁄

[(𝑟−1)!]3[(𝑛−𝑟−2)!]3 (
1
⁄

𝑟(𝑛−𝑟)(𝑛−𝑟−1) .
1
⁄

𝑟(𝑟+1)(𝑛−𝑟−1) −
1
⁄

(𝑛−𝑟+1)(𝑛−𝑟)(𝑛−𝑟−1) .
1
⁄

𝑟(𝑟+1)(𝑟+2))(
1
⁄

𝑟(𝑛−𝑟)(𝑛−𝑟−1)−
1
⁄

𝑟(𝑟+1)(𝑛−𝑟−1))

Now it is trivial to prove that (𝑏𝑐 + 𝑎𝑑)(𝑏 − 𝑐) = 2(𝑎𝑐2 − 𝑏2𝑑).

69. The coefficients of 5th, 6th and 7th terms in the expansion of (1 + 𝑥)𝑛 are 𝐶𝑛
4 , 𝐶

𝑛
5

and 𝐶𝑛
6 . Given that these are in A.P., therefore

2𝐶𝑛
5 = 𝐶𝑛

4 + 𝐶𝑛
6 ⇒ 2⁄

5(𝑛−5) =
1
⁄

(𝑛−4)(𝑛−5)+
1
⁄

5.6 ⇒ 𝑛 = 7, 14.

70. The coefficients of second, third and fourth terms in the expansion of (1 + 𝑥)2𝑛 are in
A.P.

⇒ 2𝐶2𝑛
2 = 𝐶2𝑛

1 + 𝐶2𝑛
3 ⇒ 2
⁄

2(2𝑛−2) =
1
⁄

(2𝑛−1)(2𝑛−2)+
1
⁄

2.3

⇒ 2𝑛2 − 9𝑛 + 7 = 0.

71. The coefficients of 𝑟th, (𝑟 + 1)th and (𝑟 + 2)th terms in the expansion of (1 + 𝑥)𝑛 are
in A.P.

⇒ 2𝐶𝑛
𝑟 = 𝐶𝑛

𝑟−1 +𝐶𝑛
𝑟+1 ⇒

2
⁄

𝑟(𝑛−𝑟) =
1
⁄

(𝑛−𝑟)(𝑛−𝑟+1)+
1
⁄

𝑟(𝑟+1)⇒ 𝑛2− 𝑛(4𝑟 + 1)+ 4𝑟2 −
2 = 0.

72. Let the coefficients of 𝑟th, (𝑟 + 1)th and (𝑟 + 2)th terms in the expansion of (1 + 𝑥)𝑛
are in the ratio of 182 : 84 : 30.

𝑡𝑟 = 𝐶𝑛
𝑟−1, 𝑡𝑟+1 = 𝐶𝑛

𝑟 and 𝑡𝑟+2 = 𝐶𝑛
𝑟+1
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From first two, we have 𝑟⁄
𝑛−𝑟+1 =

13
⁄

6 , and from last two we have 𝑟+1⁄𝑛−𝑟 =
14
⁄

5

From these two equations we have 𝑛 = 18.

73. Given series is 𝐶1+2.𝐶2+3.𝐶3+⋯+𝑛.𝐶𝑛. Its 𝑟th term 𝑡𝑟 = 𝑟.𝐶𝑛
𝑟 = 𝑛.𝐶𝑛−1

𝑟−1 [∵ 𝑟.𝐶
𝑛
𝑟 =

𝑛.𝐶𝑛−1
𝑟−1 ]

Now 𝐶1 + 2.𝐶2 + 3.𝐶3 + ⋯+ 𝑛.𝐶𝑛 =
𝑛
∑
𝑟=1

𝑟.𝐶𝑛
𝑟 =

𝑛
∑
𝑟=1

𝑛.𝐶𝑛−1
𝑟−1

= 𝑛[𝐶𝑛−1
0 + 𝐶𝑛−1

1 + 𝐶𝑛−1
2 + ⋯+ 𝐶𝑛−1

𝑛−1 ] = 𝑛(1 + 1)𝑛−1 = 𝑛.2𝑛−1.

Calculus Method: (1 + 𝑥)𝑛 = 𝐶0 + 𝐶1.𝑥 + 𝐶2.𝑥2 + ⋯ + 𝐶𝑛.𝑥𝑛

Differentiating w.r.t. 𝑥, we get 𝑛(1 + 𝑥)𝑛−1 = 𝐶1 + 2𝐶2.𝑥 + ⋯+ 𝑛𝐶𝑛.𝑥𝑛−1

Putting 𝑥 = 1, we get 𝑛.2𝑛−1 = 𝐶1 + 2.𝐶2 + 3.𝐶3 + ⋯+ 𝑛.𝐶𝑛.

74. Given series is 𝐶0 + 2.𝐶1 + 3.𝐶2 + ⋯+ (𝑛 + 1) .𝐶𝑛.

Its 𝑟th term is 𝑡𝑟 = 𝑟.𝐶𝑛
𝑟−1 = (𝑟−1).𝐶𝑛

𝑟−1+𝐶𝑛
𝑟−1 = 𝑛.𝐶𝑛−1

𝑟−2 +𝐶𝑛
𝑟−1[∵ (𝑟−1).𝐶𝑛

𝑟−1 =
𝑛.𝐶𝑛−1

𝑟−2 ]

Now, 𝐶0 + 2.𝐶1 + 3.𝐶2 + ⋯+ (𝑛 + 1) .𝐶𝑛 =
𝑛+1
∑
𝑟=1

𝑡𝑟 =
𝑛+1
∑
𝑟=1

𝑛.𝐶𝑛−1
𝑟−2 +

𝑛+1
∑
𝑟=1

𝐶𝑛
𝑟−1

= 𝑛[𝐶𝑛−1
0 + 𝐶𝑛−1

1 + ⋯+ 𝐶𝑛−1
𝑛−1 ]+ (𝐶𝑛

0 + 𝐶𝑛
1 + ⋯+ 𝐶𝑛

𝑛 )

= 𝑛.2𝑛−1 + 2𝑛 = 2𝑛−1(𝑛 + 2).

Calculus Method: (1 + 𝑥)𝑛 = 𝐶0 + 𝐶1.𝑥 + 𝐶2.𝑥2 + ⋯ + 𝐶𝑛.𝑥𝑛

Multiplying with 𝑥, we get 𝑥(1 + 𝑥)𝑛 = 𝐶0.𝑥 + 𝐶1.𝑥2 + 𝐶2.𝑥3 + ⋯ + 𝐶𝑛.𝑥𝑛+1

Differentiating w.r.t. 𝑥, we get (1 + 𝑥)𝑛 + 𝑛𝑥(1 + 𝑥)𝑛−1 = 𝐶0 + 2𝐶1.𝑥 + 3𝐶2.𝑥2 +
⋯ + (𝑛 + 1)𝐶𝑛.𝑥𝑛

Putting 𝑥 = 1, we get 𝐶0 + 2.𝐶1 + 3.𝐶2 + ⋯+ (𝑛 + 1) .𝐶𝑛 = 2𝑛−1(𝑛 + 2).

75. Given series is 𝐶0 + 3.𝐶1 + 5.𝐶2 + ⋯+ (2𝑛 + 1) .𝐶𝑛.

Its 𝑟th term is 𝑡𝑟 = (2𝑟 − 1)𝐶𝑟−1 = [2(𝑟 − 1)+ 1]𝐶𝑟−1 = 2(𝑟 − 1)𝐶𝑟−1 + 𝐶𝑟−1

= 2.𝑛𝐶𝑛−1
𝑟−2 + 𝐶𝑟−1[∵ (𝑟 − 1)𝐶𝑟−2 = 𝑛.𝐶𝑛−1

𝑟−2 ]

Now, 𝐶0 + 3.𝐶1 + 5.𝐶2 + ⋯+ (2𝑛 + 1) .𝐶𝑛 =
𝑛+1
∑
𝑟=1

𝑡𝑟 = 2𝑛
𝑛+1
∑
𝑟=1

𝐶𝑛−1
𝑟−2 +

𝑛+1
∑
𝑟=1

𝐶𝑟−1

= 2𝑛(𝐶𝑛−1
0 + 𝐶𝑛−1

1 + ⋯+ 𝐶𝑛−1
𝑛−1 )+ (𝐶0 + 𝐶1 + ⋯+ 𝐶𝑛)

= 2𝑛.2𝑛−1 + 2𝑛 = 2𝑛(𝑛 + 1).
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Calculus Method: (1 + 𝑥)𝑛 = 𝐶0 + 𝐶1.𝑥 + 𝐶2.𝑥2 + ⋯ + 𝐶𝑛.𝑥𝑛

Putting 𝑥 = 𝑥2 and multiplying with 𝑥, we get

𝑥(1 + 𝑥2)𝑛 = 𝐶0.𝑥 + 𝐶1.𝑥3 + 𝐶2.𝑥5 + ⋯ + 𝐶𝑛.𝑥2𝑛+1

Differentiating both sides w.r.t. 𝑥, we get

(1 + 𝑥2)𝑛 + 2𝑥2.𝑛(1 + 𝑥2)𝑛−1 = 𝐶0 + 𝐶1.3𝑥2 + 𝐶2.5𝑥4 + ⋯ + 𝐶𝑛.(2𝑛 + 1)𝑥2𝑛+1

Putting 𝑥 = 1, we get

𝐶0 + 3.𝐶1 + 5.𝐶2 + ⋯+ (2𝑛 + 1) .𝐶𝑛 = 2𝑛.2𝑛−1 + 2𝑛 = 2𝑛(𝑛 + 1).

76. We have to prove that 𝐶1 − 2.𝐶2 + 3.𝐶3 − 4.𝐶4 + ⋯+ (−1)𝑛−1𝑛.𝐶𝑛 = 0.

𝑟th term 𝑡𝑟 = (−1)𝑟−1 𝑟.𝐶𝑛
𝑟 = (−1)𝑟−1 .𝑛𝐶𝑛−1

𝑟−1
𝑛
∑
𝑟=1

𝑡𝑟 =
𝑛
∑
𝑟=1

(−1)𝑟−1 𝑛.𝐶𝑟−1 = 𝑛.
𝑛
∑
𝑟=1

(−1)𝑟−1𝐶𝑟−1

= 𝑛(𝐶𝑛−1
0 − 𝐶𝑛−1

1 + 𝐶𝑛−1
2 − 𝐶𝑛−1

3 + ⋯+ (−1)𝑛−1𝐶𝑛−1
𝑛−1 )

= 𝑛(1 − 1)𝑛−1 = 0.

Calculus Method: (1 + 𝑥)𝑛 = 𝐶0 + 𝐶1.𝑥 + 𝐶2.𝑥2 + ⋯ + 𝐶𝑛.𝑥𝑛.

Differentiating both sides w.r.t. 𝑥, we get

𝑛(1 + 𝑥)𝑛−1 = 𝐶1 + 2𝑥.𝐶2 + 3𝑥2𝐶3 + ⋯+ 𝑛𝑥𝑛−1𝐶𝑛

Putting 𝑥 = −1, we get

𝑛(1 − 1)𝑛−1 = 𝐶1 − 2𝐶2 + 3𝐶3 − ⋯+ (−1)𝑛−1 .𝑛𝐶𝑛 = 0.

77. Given series is 𝐶0 + 𝐶1⁄
2 + 𝐶3⁄

3 + ⋯ + 𝐶𝑛
⁄

𝑛+1.

Its 𝑟th term is 𝑡𝑟 =
𝐶𝑛
𝑟−1⁄
𝑟 .

𝐶0 + 𝐶1⁄
2 + 𝐶2⁄

3 + ⋯ + 𝐶𝑛
⁄

𝑛+1 =
𝑛+1
∑
𝑟=1

𝐶𝑛
𝑟−1⁄
𝑟 =

𝑛+1
∑
𝑟=1

𝐶𝑛+1
𝑟
⁄

𝑛+1 [∵
𝐶𝑛
𝑟−1⁄
𝑟 = 𝐶𝑛+1

𝑟
⁄

𝑛+1 ]

= 1
⁄

𝑛+1 (𝐶
𝑛+1
1 + 𝐶𝑛+2

2 + ⋯+ 𝐶𝑛+1
𝑛+1 ) =

2𝑛+1−1⁄
𝑛+1 [∵ we add and subtract 𝐶𝑛+1

0 ].

Calculus Method: (1 + 𝑥)𝑛 = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + ⋯+ 𝐶𝑛𝑥𝑛

Integrating within limits 0 and 1, we have

[(1+𝑥)
𝑛⁄

𝑛 ]
1
0 = [𝐶0𝑥 + 𝐶1

𝑥2
⁄

2 + 𝐶3
𝑥3
⁄

3 + ⋯ + 𝐶𝑛
𝑥𝑛+1
⁄

𝑛+1 ]
1

0

⇒ 2𝑛+1−1⁄
𝑛+1 = 𝐶0 + 𝐶1⁄

2 + 𝐶2⁄
3 + ⋯ + 𝐶𝑛
⁄

𝑛+1.
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78. Given series is 𝐶0 − 𝐶1⁄
2 + 𝐶2⁄

3 − ⋯ + (−1)𝑛 𝐶𝑛
⁄

𝑛+1 =
1
⁄

𝑛+1.

Its 𝑟th term 𝑡𝑟 = (−1)𝑟 𝐶
𝑛
𝑟−1⁄
𝑟

Now 𝐶0 − 𝐶1⁄
2 + 𝐶2⁄

3 − ⋯ + (−1)𝑛 𝐶𝑛
⁄

𝑛+1 =
𝑛+1
∑
𝑟=1

(−1)𝑟−1𝐶
𝑛
𝑟−1⁄
𝑟

=
𝑛+1
∑
𝑟=1

(−1)𝑟−1𝐶
𝑛+1
𝑟
⁄

𝑛+1 [∵
𝐶𝑛
𝑟−1⁄
𝑟 = 𝐶𝑛+1

𝑟
⁄

𝑛+1 ]

= 1
⁄

𝑛+1 [𝐶
𝑛+1
1 − 𝐶𝑛+1

2 + 𝐶𝑛+1
3 − ⋯+ (−1)𝑛𝐶𝑛+1

𝑛+1 ]

= 1
⁄

𝑛+1 [−(1 − 1)𝑛+1 + 𝐶𝑛+1
0 ] = 1
⁄

𝑛+1.

Calculus Method: (1 + 𝑥)𝑛 = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + ⋯+ 𝐶𝑛𝑥𝑛

Integrating within limits 0 and −1, we have

[(1+𝑥)
𝑛⁄

𝑛 ]
−1
0 = [𝐶0𝑥 + 𝐶1

𝑥2
⁄

2 + 𝐶3
𝑥3
⁄

3 + ⋯ + 𝐶𝑛
𝑥𝑛+1
⁄

𝑛+1 ]
−1

0

⇒ − 1
⁄

𝑛+1 = −[𝐶0 − 𝐶1⁄
2 + 𝐶2⁄

3 − ⋯ + (−1)𝑛 𝐶𝑛
⁄

𝑛+1]

⇒ 𝐶0 − 𝐶1⁄
2 + 𝐶2⁄

3 − ⋯ + (−1)𝑛 𝐶𝑛
⁄

𝑛+1 =
1
⁄

𝑛+1.

79. Given series is 𝐶1⁄
2 + 𝐶3⁄

4 + 𝐶5⁄
6 + ⋯

𝑡𝑟 =
𝐶𝑛
2𝑟−1
⁄

2𝑟 = 𝐶𝑛+1
2𝑟
⁄

𝑛+1

Now, 𝐶1⁄
2 + 𝐶3⁄

4 + 𝐶5⁄
6 + ⋯ = 1
⁄

𝑛+1 ∑
𝑟=1

𝐶𝑛+1
2𝑟 = 1
⁄

𝑛+1 [𝐶
𝑛+1
2 + 𝐶𝑛+1

4 + 𝐶𝑛+1
6 + ⋯]

= 2𝑛−1⁄
𝑛+1 [∵𝐶

𝑛
0 + 𝐶𝑛

2 + 𝐶𝑛
4 + ⋯ = 2𝑛−1 ].

Calculus Method: Adding the results of last two problems, we have

2[𝐶1⁄
2 + 𝐶3⁄

4 + 𝐶5⁄
6 + ⋯] = 2𝑛+1−1−1
⁄

𝑛+1 = 2(2𝑛−1)
⁄

𝑛+1

⇒ 𝐶1⁄
2 + 𝐶3⁄

4 + 𝐶5⁄
6 + ⋯ = 2𝑛−1⁄

𝑛+1 .

80. Given series is 2.𝐶0 + 22. 𝐶1⁄
2 + 23. 𝐶2⁄

3 + ⋯ + 2𝑛+1. 𝐶𝑛
⁄

𝑛+1

𝑡𝑟 = 2𝑟. 𝐶
𝑛
𝑟−1⁄
𝑟 = 2𝑟. 𝐶

𝑛+1
𝑟
⁄

𝑛+1 .

Now, 2.𝐶0 + 22. 𝐶1⁄
2 + 23. 𝐶2⁄

3 + ⋯ + 2𝑛+1. 𝐶𝑛
⁄

𝑛+1 =
1
⁄

𝑛+1

𝑛+1
∑
𝑟=1

𝐶𝑛+1
𝑟 .2𝑟
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= 1
⁄

𝑛+1 [𝐶
𝑛+1
1 .2 + 𝐶𝑛+1

2 .22 + 𝐶𝑛+1
3 .23 + ⋯ + 𝐶𝑛+1

𝑛+1 .2
𝑛+1 ]

= 1
⁄

𝑛+1 [(1 + 2)𝑛+1 − 1] = 3𝑛+1−1⁄
𝑛+1 .

Calculus Method: (1 + 𝑥)𝑛 = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + ⋯+ 𝐶𝑛𝑥𝑛

Integrating within the limits of 0 and 2, we have

[𝐶0𝑥 + 𝐶1. 𝑥
2
⁄

2 + 𝐶2. 𝑥
3
⁄

3 + ⋯ + 𝐶𝑛.. 𝑥
𝑛+1
⁄

𝑛+1 ]
2

0
= [(1+𝑥)

𝑛+1
⁄

𝑛+1 ]
2

0

⇒ 𝐶0.2 + 𝐶1⁄
2 .22 + 𝐶2⁄

3 .23 + ⋯ + 𝐶𝑛
⁄

𝑛+1 .2
𝑛+1 = 3𝑛+1−1⁄

𝑛+1 .

81. (1+𝑥)𝑛 = 𝐶0+𝐶1𝑥+𝐶2𝑥2+⋯+𝐶𝑛𝑥𝑛, and (𝑥+1)𝑛 = 𝐶0𝑥𝑛+𝐶1𝑥𝑛−1+𝐶2𝑥𝑛−2+
⋯+ 𝐶𝑛

Multiplying these two, we have (1 + 𝑥)2𝑛 = (𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 +⋯+𝐶𝑛𝑥𝑛)(𝐶0𝑥𝑛 +
𝐶1𝑥𝑛−1 + 𝐶2𝑥𝑛−2 + ⋯+ 𝐶𝑛)

Coeff. of 𝑥𝑛+𝑟 on R.H.S. = 𝐶0𝑐𝑟 + 𝐶1𝐶𝑟+1 + ⋯+ 𝐶𝑛−𝑟𝐶𝑛, and on L.H.S. = 𝐶2𝑛
𝑛+𝑟 =

(2𝑛)!⁄
(𝑛+𝑟)!(𝑛−𝑟)!.

82. (1 + 𝑥)2𝑛 = (𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + ⋯+ 𝐶𝑛𝑥𝑛)(𝐶0𝑥𝑛 + 𝐶1𝑥𝑛−1 + 𝐶2𝑥𝑛−2 + ⋯+ 𝐶𝑛)

Equating the coeff. of 𝑥𝑛, we have

𝐶2
0 + 𝐶2

1 + 𝐶2
2 + ⋯+ 𝐶2

𝑛 = 𝐶2𝑛
𝑛 = 2𝑛!
⁄

𝑛!𝑛!.

83. 𝑡𝑟 = 𝑟. 𝐶𝑛
𝑟⁄

𝐶𝑛
𝑟−1

= 𝑛 − 𝑟 + 1

L.H.S. = 𝑡1 + 𝑡2 + 𝑡3 + ⋯ + 𝑡𝑛 = 𝑛 + (𝑛 − 1)+ (𝑛 − 2)+⋯+ 1 = 𝑛(𝑛+1)
⁄

2 .

84. [(1 + 𝑥)𝑛 ]2 = (𝐶0 + 𝐶1.𝑥 + 𝐶2.𝑥2 + ⋯+ 𝐶𝑛.𝑥𝑛)2, and (1 + 𝑥)2𝑛 = (𝐶2𝑛
0 + 𝐶2𝑛

1 .𝑥 +
𝐶2𝑛
2 .𝑥2 + ⋯ + 𝐶2𝑛

2𝑛 .𝑥
2𝑛)

Putting 𝑥 = 1, it is trivial to see that

(1 + 𝐶1 + 𝐶2 + ⋯+ 𝐶𝑛)2 = 1 + 𝐶2𝑛
1 + 𝐶2𝑛

2 + ⋯+ 𝐶2𝑛
2𝑛.

85. [(1 + 𝑥)𝑛 ]5 = (𝐶0 + 𝐶1.𝑥 + 𝐶2.𝑥2 + ⋯+ 𝐶𝑛.𝑥𝑛)5, and (1 + 𝑥)5𝑛 = (𝐶5𝑛
0 + 𝐶5𝑛

1 .𝑥 +
𝐶5𝑛
2 .𝑥2 + ⋯ + 𝐶5𝑛

5𝑛 .𝑥
5𝑛)

Putting 𝑥 = 1, it is trivial to see that

(1 + 𝐶1 + 𝐶2 + ⋯+ 𝐶𝑛)5 = 1 + 𝐶5𝑛
1 + 𝐶5𝑛

2 + ⋯+ 𝐶5𝑛
5𝑛.

86. We have to prove that 𝐶0 + 5.𝐶1 + 9.𝐶2 + ⋯+ (4𝑛 + 1) .𝐶𝑛 = (2𝑛 + 1)2𝑛.

L.H.S. = 4.0.𝐶0 + 4.1.𝐶1 + 4.2.𝐶2 + ⋯+ 4𝑛𝐶𝑛 + 𝐶0 + 𝐶1 + 𝐶2 + ⋯+ 𝐶𝑛
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We know that 𝐶0 + 𝐶1 + 𝐶2 + ⋯+ 𝐶𝑛 = 2𝑛.

𝐶1 + 2.𝐶2 + 3.𝐶3 + ⋯+ 𝑛.𝐶𝑛. Its 𝑟th term 𝑡𝑟 = 𝑟.𝐶𝑛
𝑟 = 𝑛.𝐶𝑛−1

𝑟−1 [∵ 𝑟.𝐶
𝑛
𝑟 = 𝑛.𝐶𝑛−1

𝑟−1 ]

Now 𝐶1 + 2.𝐶2 + 3.𝐶3 + ⋯+ 𝑛.𝐶𝑛 =
𝑛
∑
𝑟=1

𝑟.𝐶𝑛
𝑟 =

𝑛
∑
𝑟=1

𝑛.𝐶𝑛−1
𝑟−1

= 𝑛[𝐶𝑛−1
0 + 𝐶𝑛−1

1 + 𝐶𝑛−1
2 + ⋯+ 𝐶𝑛−1

𝑛−1 ] = 𝑛(1 + 1)𝑛−1 = 𝑛.2𝑛−1

Multiplying with 4, we have

4.0.𝐶0 + 4.1.𝐶1 + 4.2.𝐶2 + ⋯+ 4𝑛𝐶𝑛 = 2𝑛.2𝑛.

Thus, 𝐶0 + 5.𝐶1 + 9.𝐶2 + ⋯+ (4𝑛 + 1) .𝐶𝑛 = (2𝑛 + 1)2𝑛.

87. We have to prove that 1 − (1 + 𝑥)𝐶1 + (1 + 2𝑥)𝐶2 − (1 + 3𝑥)𝐶3 + ⋯ = 0.

⇒ 1− 1 + 1 − 1 + ⋯− 𝑥[𝐶1 − 2.𝐶2 + 3.𝐶3 − ⋯] = 0

That is we have to prove that 𝐶1− 2.𝐶2+ 3.𝐶3−⋯ = 0, which has been proven earlier.

88. We have to prove that 3.𝐶1 + 7.𝐶2 + ⋯+ (4𝑛 − 1) .𝐶𝑛 = (2𝑛 − 1)2𝑛.

L.H.S. = 4.0.𝐶0 + 4.1.𝐶1 + 4.2.𝐶2 + ⋯+ 4𝑛𝐶𝑛 − [𝐶0 + 𝐶1 + 𝐶2 + ⋯+ 𝐶𝑛 ]

We know that 𝐶0 + 𝐶1 + 𝐶2 + ⋯+ 𝐶𝑛 = 2𝑛.

𝐶1 + 2.𝐶2 + 3.𝐶3 + ⋯+ 𝑛.𝐶𝑛. Its 𝑟th term 𝑡𝑟 = 𝑟.𝐶𝑛
𝑟 = 𝑛.𝐶𝑛−1

𝑟−1 [∵ 𝑟.𝐶
𝑛
𝑟 = 𝑛.𝐶𝑛−1

𝑟−1 ]

Now 𝐶1 + 2.𝐶2 + 3.𝐶3 + ⋯+ 𝑛.𝐶𝑛 =
𝑛
∑
𝑟=1

𝑟.𝐶𝑛
𝑟 =

𝑛
∑
𝑟=1

𝑛.𝐶𝑛−1
𝑟−1

= 𝑛[𝐶𝑛−1
0 + 𝐶𝑛−1

1 + 𝐶𝑛−1
2 + ⋯+ 𝐶𝑛−1

𝑛−1 ] = 𝑛(1 + 1)𝑛−1 = 𝑛.2𝑛−1

Multiplying with 4, we have

4.0.𝐶0 + 4.1.𝐶1 + 4.2.𝐶2 + ⋯+ 4𝑛𝐶𝑛 = 2𝑛.2𝑛.

Thus, 3.𝐶1 + 7.𝐶2 + ⋯+ (4𝑛 − 1) .𝐶𝑛 = (2𝑛 − 1)2𝑛.

89. We have to prove that 𝐶0 + 𝐶2⁄
3 + 𝐶4⁄

5 + ⋯ = 2𝑛
⁄

𝑛+1.

𝑡𝑟 =
𝐶𝑛
2𝑟−2
⁄

2𝑟−1 = 𝐶𝑛+1
2𝑟−1
⁄

𝑛+1

Now 𝐶0 + 𝐶2⁄
3 + 𝐶4⁄

5 + ⋯ = 2𝑛
⁄

𝑛+1 =
1
⁄

𝑛+1 [𝐶
𝑛+1
0 + 𝐶𝑛+1

3 + 𝐶𝑛+1
5 + ⋯]

= 2𝑛
⁄

𝑛+1.

90. We know that (1 + 𝑥)𝑛 = 𝐶𝑛
0 + 𝐶𝑛

1 𝑥 + 𝐶𝑛
2 𝑥

2 + ⋯+𝐶𝑛
𝑛𝑥𝑛 and (1 + 𝑥)𝑛+1 = 𝐶𝑛+1

0 +
𝐶𝑛+1
1 𝑥 + 𝐶𝑛+2

2 𝑥2 + ⋯+ 𝐶𝑛+1
𝑛+1𝑥

𝑛+1.
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Multiplying equations above and equating coeff. of 𝑥𝑛+1, we get

𝐶𝑛
0 𝐶

𝑛+1
1 + 𝐶𝑛

1 𝐶
𝑛+1
2 + ⋯ + 𝐶𝑛

𝑛𝐶𝑛+1
𝑛+1 = 𝐶2𝑛+1

𝑛+1 = (2𝑛+1)!⁄
(𝑛+1)!𝑛!.

91. Given series is 𝐶0 − 2.𝐶1 + 3.𝐶2 − ⋯+ (−1)𝑛(𝑛 + 1)𝐶𝑛 = 0.

𝑡𝑟 = (−1)𝑟−1 .𝑟𝐶𝑛
𝑟−1 = (−1)𝑟(𝑟 − 1)𝐶𝑛

𝑟−1 + (−1)𝑟−1𝐶𝑛
𝑟−1 = (−1)𝑟−1 .𝑛𝐶𝑛−1

𝑟−2 +
(−1)𝑟−1𝐶𝑛

𝑟−1.

𝐶0− 2.𝐶1 + 3.𝐶2 −⋯+ (−1)𝑛(𝑛+ 1)𝐶𝑛 =
𝑛+1
∑
𝑟=1

(−1)𝑟−1 .𝑛𝐶𝑛−1
𝑟−2 +

𝑛+1
∑
𝑟=1

(−1)𝑟−1𝐶𝑛
𝑟−1

= −𝑛(𝐶𝑛−1
0 − 𝐶𝑛−1

1 + ⋯+ (−1)𝑛−1𝐶𝑛−1
𝑛− )+ (𝐶𝑛

0 − 𝐶𝑛
1 + 𝐶𝑛

2 + ⋯+ (−1)𝑛−1𝐶𝑛
𝑛 )

= −𝑛(1 − 1)𝑛−1 + (1 − 1)𝑛 = 0.

Calculus Method: Given (1 + 𝑥)𝑛 = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + ⋯+ 𝐶𝑛𝑥𝑛

Multiplying with 𝑥, and differentiating w.r.t. 𝑥, we get

1.(1 + 𝑥)𝑛 + 𝑥.𝑛(1 + 𝑥)𝑛−1 = 𝐶0 + 𝐶1.2𝑥 + 𝐶2.3𝑥2 + ⋯ + (𝑛 + 1)𝐶𝑛.𝑥𝑛

Putting 𝑥 = −1, we get

𝐶0 − 2.𝐶1 + 3.𝐶2 − ⋯+ (−1)𝑛(𝑛 + 1)𝐶𝑛 = 0.

92. Given series is 𝐶0 − 3.𝐶1 + 5.𝐶2 − ⋯+ (−1)𝑛(2𝑛 + 1)𝐶𝑛 = 0.

𝑡𝑟 = (−1)𝑟−1(2𝑟 − 1)𝐶𝑟−1 = (−1)𝑟−1 [2(𝑟 − 1) + 1]𝐶𝑟−1 = 2(−1)𝑟−1𝐶𝑛
𝑟−1 +

(−1)𝑟−1𝐶𝑛
𝑟−1 = 2(−1)𝑟−1 .𝑛𝐶𝑛−1

𝑟−2 + (−1)𝑟−1 .𝐶𝑛
𝑟−1

𝐶0 − 3.𝐶1 + 5.𝐶2 − ⋯+ (−1)𝑛(2𝑛 + 1)𝐶𝑛 = 2𝑛
𝑛+1
∑
𝑟=1

(−1)𝑟−1𝐶𝑛−1
𝑟−2 +

𝑛+1
∑
𝑟=1

𝐶𝑛
𝑟−1

= −2𝑛[𝐶𝑛−1
0 − 𝐶𝑛−1

1 + ⋯+ (−1)𝑛𝐶𝑛−1
𝑛−1 ]+ [𝐶0 − 𝐶1 + 𝐶2 − ⋯+ (−1)𝑛𝐶𝑛 ]

= −2𝑛(1 − 1)𝑛− + (1 − 1)𝑛 = 0.

Calculus Method: We know that (1 + 𝑥2)𝑛 = 𝐶0 + 𝐶1𝑥2 + 𝐶2𝑥4 + ⋯+ 𝐶𝑛𝑥2𝑛

Multiplying both sides with 𝑥, and differentiating w.r.t. 𝑥, we get

𝐶0 + 3𝐶1𝑥2 + 5.𝐶2𝑥4 + ⋯+ (2𝑛 + 1)𝐶𝑛𝑥2𝑛 = (1 + 𝑥2)𝑛 + 𝑛𝑥.2𝑥(1 + 𝑥2)𝑛

Putting 𝑥 = −1, we have

𝐶0 − 3.𝐶1 + 5.𝐶2 − ⋯+ (−1)𝑛(2𝑛 + 1)𝐶𝑛 = 0.

93. Given series is 𝑎 − (𝑎 − 1)𝐶1 + (𝑎 − 2)𝐶2 − (𝑎 − 3)𝐶3 + ⋯+ (−1)𝑛(𝑎 − 𝑛)𝐶𝑛 = 0.

𝑡𝑟 = (−1)𝑟−1 [𝑎 + 1 − 𝑟]𝐶𝑛
𝑟−1 = (−1)𝑟−1 [𝑎 − (𝑟 − 1)]𝐶𝑟−1 = 𝑎(−1)𝑟−1𝐶𝑟−1 −

(−1)𝑟−1 𝑛.𝐶𝑛−1
𝑟−2 .
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𝑎− (𝑎−1)𝐶1+ (𝑎−2)𝐶2− (𝑎−3)𝐶3+⋯+ (−1)𝑛(𝑎−𝑛)𝐶𝑛 = 𝑎
𝑛+1
∑
𝑟=1

(−1)𝑟−1𝐶𝑟−1−

𝑛
𝑛+1
∑
𝑟=1

.𝐶𝑛+1
𝑟−2

= 𝑎[𝐶0 − 𝐶1 + 𝐶2 − ⋯+ (−1)𝑛𝐶𝑛 ]− 𝑛[𝐶𝑛−1
0 − 𝐶𝑛−1

1 + 𝐶𝑛−1
2 − ⋯+ (−1)𝑛𝐶𝑛−1

𝑛−1 ]

= 𝑎(1 − 1)𝑛 − 𝑛(1 − 1)𝑛−1 = 0.

Calculus Method: L.H.S. = 𝑎− (𝑎−1)𝐶1+ (𝑎−2)𝐶2− (𝑎−3)𝐶3+⋯+ (−1)𝑛(𝑎−
𝑛)𝐶𝑛

= 𝑎[𝐶0 − 𝐶1 + 𝐶2 − ⋯+ (−1)𝑛𝐶𝑛 ]+ 1[𝐶1 − 2.𝐶2 + 3.𝐶3 − ⋯+ (−1)𝑛(−𝑛)𝐶𝑛 ]

We have shown both the series in brackets equal to zero earlier.

94. Given series is 12.𝐶1 + 22.𝐶2 + 32𝐶3 + ⋯+ 𝑛2.𝐶𝑛 = 𝑛(𝑛 + 1)2𝑛−2.

𝑡𝑟 = 𝑟2.𝐶𝑟 = 𝑟.𝑛.𝐶𝑛−1
𝑟−1 = 𝑛.[𝑟 − 1 + 1]𝐶𝑛−1

𝑟−1 = 𝑛(𝑛 − 1) .𝐶𝑛−2
𝑟−2 + 𝑛.𝐶𝑛−2

𝑟−2 .

12.𝐶1+22.𝐶2+32𝐶3+⋯+𝑛2.𝐶𝑛 = 𝑛(𝑛−1)[𝐶𝑛−2
0 +𝐶𝑛−2

1 +⋯+𝐶𝑛−2
𝑛−2 ]+𝑛[𝐶𝑛−1

0 +
𝐶𝑛−1
1 + 𝐶𝑛−2

2 + ⋯+ 𝐶𝑛−1
𝑛−1 ]

= 𝑛(𝑛 − 1) .2𝑛−2 + 𝑛.2𝑛−1 = 2𝑛−2[𝑛(𝑛 − 1)+ 2𝑛] = 𝑛(𝑛 + 1) .2𝑛−2.

Calculus Method: (1 + 𝑥)𝑛 = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + ⋯+ 𝐶𝑛𝑥𝑛

Differentiating w.r.t. 𝑥, we have

𝑛(1 + 𝑥)𝑛−1 = 𝐶1 + 2.𝐶1𝑥 + 3.𝐶2𝑥2 + ⋯+ 𝑛.𝐶𝑛𝑥𝑛−1

Multiplying both sides w.r.t. 𝑥, and differentiating again, we have

𝑛[(1 + 𝑥)𝑛−1 + (𝑛 − 1)𝑥(1 + 𝑥)𝑛−2 ] = 12.𝐶1 + 22.𝐶1𝑥 + 32𝐶2𝑥2 + ⋯+ 𝑛2.𝐶𝑛𝑥𝑛−1

Putting 𝑥 = 1, we arrive at

12.𝐶1 + 22.𝐶2 + 32𝐶3 + ⋯+ 𝑛2.𝐶𝑛 = 𝑛[2𝑛−1 + (𝑛 − 1)2𝑛−2 ] = 𝑛(𝑛 + 1)2𝑛−2.

95. Given series is 𝐶0 − 22.𝐶1 + 32.𝐶2 − ⋯+ (−1)𝑛(𝑛 + 1)2𝐶𝑛 = 0, 𝑛 > 2.

𝑡𝑟+1 = (−1)𝑟 𝑟2𝐶𝑟 = (−1)𝑟 [𝑟2 + 2𝑟 + 1]𝐶𝑟

𝑛
∑
𝑟=0

(−1)𝑟 .𝐶𝑛
𝑟 = 𝐶0 − 𝐶1 + 𝐶2 − ⋯+ (−1)𝑛 .𝐶𝑛 = 0

𝑛
∑
𝑟=0

(−1)𝑟 .𝑟𝐶𝑟 =
𝑛
∑
𝑟=0

(−1)𝑟 .𝑛𝐶𝑛−1
𝑟−1 = −𝑛[𝐶𝑛−1

0 − 𝐶𝑛−1
1 + 𝐶 − 2𝑛−1 − ⋯ +

(−1)𝑛−1𝐶𝑛−1
𝑛−1 ]

= −𝑛(1 − 1)𝑛−1 = 0.
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𝑛
∑
𝑟=0

(−1)𝑟 .𝑟2𝐶𝑛
𝑟 =

𝑛
∑
𝑟=0

(−1)𝑟 .𝑟.𝑛𝐶𝑛−1
𝑟−1 = 𝑛

𝑛
∑
𝑟=0

(−1)𝑟 (𝑟 − 1)𝐶𝑛−1
𝑟−1 + 𝑛

𝑛
∑
𝑟=0

𝐶𝑛−1
𝑟−1

= 𝑛(𝑛 − 1)
𝑛
∑
𝑟=0

(−1)𝑟 .𝐶𝑛−2
𝑟−2 + 𝑛.0 = 0.

Thus, 
𝑛
∑
𝑟=0

𝑡𝑟 = 0.

96. Given series is 𝐶0.𝑎𝑏𝑐 − 𝐶1(𝑎 − 1)(𝑏 − 1)(𝑐 − 1) + 𝐶2(𝑎 − 2)(𝑏 − 2)(𝑐 − 2) − ⋯ +
(−1)𝑛 .𝐶𝑛(𝑎 − 𝑛)(𝑏 − 𝑛)(𝑐 − 𝑛) = 0.

𝑡𝑟+1 = (−1)𝑟 [𝑎𝑏𝑐 + (𝑎 + 𝑏 + 𝑐)𝑟2 − (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)𝑟 − 𝑟3 ]𝐶𝑛
𝑟 .

𝑛
∑
𝑟=0

(−1)𝑟 .𝐶𝑛
𝑟 = 𝐶0 − 𝐶1 + 𝐶2 − ⋯+ (−1)𝑛 .𝐶𝑛 = 0

𝑛
∑
𝑟=0

(−1)𝑟 .𝑟𝐶𝑟 =
𝑛
∑
𝑟=0

(−1)𝑟 .𝑛𝐶𝑛−1
𝑟−1 = −𝑛[𝐶𝑛−1

0 − 𝐶𝑛−1
1 + 𝐶 − 2𝑛−1 − ⋯ +

(−1)𝑛−1𝐶𝑛−1
𝑛−1 ]

= −𝑛(1 − 1)𝑛−1 = 0.
𝑛
∑
𝑟=0

(−1)𝑟 .𝑟2𝐶𝑛
𝑟 =

𝑛
∑
𝑟=0

(−1)𝑟 .𝑟.𝑛𝐶𝑛−1
𝑟−1 = 𝑛

𝑛
∑
𝑟=0

(−1)𝑟 (𝑟 − 1)𝐶𝑛−1
𝑟−1 + 𝑛

𝑛
∑
𝑟=0

𝐶𝑛−1
𝑟−1

= 𝑛(𝑛 − 1)
𝑛
∑
𝑟=0

(−1)𝑟 .𝐶𝑛−2
𝑟−2 + 𝑛.0 = 0.

Similarly, 
𝑛
∑
𝑟=0

(−1)𝑟 .𝑟3.𝐶𝑛
𝑟 = 0. And thus 

𝑛
∑
𝑟=0

𝑡𝑟 = 0.

97. 𝑡𝑟+1 = 𝑟2.𝐶𝑟𝑝𝑟𝑞𝑛−𝑟 = 𝑟.𝑛.𝐶𝑛−1
𝑟−1 𝑝

𝑟𝑞𝑛−𝑟 = 𝑛.(𝑟 − 1 + 1)𝐶𝑛−1
𝑟−1 𝑝

𝑟𝑞𝑛−𝑟

= 𝑛[(𝑛 − 1)𝐶𝑛−2
𝑟−2 + 𝐶𝑛−1

𝑟−1 ]𝑝
𝑟𝑞𝑛−𝑟 = 𝑛(𝑛 − 1)𝑝2𝐶𝑛−2

𝑟−2 𝑝
𝑟−2𝑞𝑛−2−(𝑟−2) +

𝑛𝑝𝑛−1.𝐶𝑛−1
𝑟−1 𝑝

𝑟−1𝑞𝑛−1−(𝑟−1)

∴
𝑛
∑
𝑟=0

𝑡𝑟+1 = 𝑛(𝑛− 1)𝑝2(𝑝 + 𝑞)𝑛−2+𝑛𝑝(𝑝 + 𝑞)𝑛−1 = 𝑛(𝑛− 1)𝑝2+𝑛𝑝 = 𝑛2𝑝2+𝑛𝑝𝑞.

98. (1 + 𝑥)10 = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + ⋯+ 𝐶10𝑥10

Integrating between limits of 0 and 2, we have

[𝐶0𝑥 + 𝐶1
𝑥2
⁄

2 + 𝐶2
𝑥3
⁄

3 + ⋯ + 𝐶10
𝑥11⁄
11 ]

2

0
= [(1+𝑥)

11
⁄

11 ]
2

0

⇒ 2.𝐶0 + 22
⁄

2 .𝐶1 + 23
⁄

3 .𝐶2 + ⋯+ 211⁄
11 .𝐶11 = 311−1
⁄

11 .
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99. Given series is 2
2
⁄

1.2𝐶0 + 23
⁄

2.3𝐶2 + 24
⁄

3.4𝐶2 + ⋯+ 2𝑛+2
⁄

(𝑛+1)(𝑛+2)𝐶𝑛 = 3𝑛+2−2𝑛−5
⁄

(𝑛+1)(𝑛+2).

𝑡𝑟 = 2𝑟+1
⁄

𝑟(𝑟+1)𝐶
𝑛
𝑟−1 =

2𝑟+1
⁄

𝑟+1 .
𝐶𝑛+1
𝑟
⁄

𝑛+1 = 2𝑟+1
⁄

𝑟(𝑟+1) .
𝐶𝑛+1
𝑟
⁄

𝑟+1 = 2𝑟+1
⁄

𝑛+1
𝐶𝑛+2
𝑟+1
⁄

𝑛+2

⇒ 22
⁄

1.2𝐶0 + 23
⁄

2.3𝐶2 + 24
⁄

3.4𝐶2 + ⋯+ 2𝑛+2
⁄

(𝑛+1)(𝑛+2)𝐶𝑛 = 1
⁄

(𝑛+1)(𝑛+2)

𝑛+1
∑
𝑟=1

2𝑟+1.𝐶𝑛+2
𝑟+1

= 1
⁄

(𝑛+1)(𝑛+2) [2
2.𝐶𝑛+2

2 + 23.𝐶𝑛+2
3 + ⋯ + 2𝑛+2.𝐶𝑛+2

𝑛+2 ]

1
⁄

(𝑛+1)(𝑛+2) [(1 + 2)𝑛+2 − 𝐶𝑛+2
0 − 𝐶𝑛+2

1 ]

= 3𝑛+2−2𝑛−5
⁄

(𝑛+1)(𝑛+2).

Calculus Method: (1 + 𝑥)𝑛 = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + ⋯+ 𝐶𝑛𝑥𝑛.

Integrating within the limits of 0 and 𝑥, we have

[𝐶0𝑥 + 𝐶1
𝑥2
⁄

2 + 𝐶2
𝑥3
⁄

3 + ⋯ + 𝐶𝑛
𝑥𝑛+1
⁄

𝑛+1 ]
𝑥

0
= [(1+𝑥)

𝑛+1
⁄

𝑛+1 ]
𝑥

0

⇒ [𝐶0𝑥 + 𝐶1
𝑥2
⁄

2 + 𝐶2
𝑥3
⁄

3 + ⋯ + 𝐶𝑛
𝑥𝑛+1
⁄

𝑛+1 ]
𝑥

0
= (1+𝑥)𝑛+1
⁄

𝑛+1 − 1
⁄

𝑛+1

Integrating again within the limits of 0 and 2, we arrive at

22
⁄

1.2𝐶0 + 23
⁄

2.3𝐶2 + 24
⁄

3.4𝐶2 + ⋯+ 2𝑛+2
⁄

(𝑛+1)(𝑛+2)𝐶𝑛 = [ (1+𝑥)𝑛+2
⁄

(𝑛+1)(𝑛+2)−
𝑥
⁄

𝑛+1]
2

0

= 3𝑛+2
⁄

(𝑛+1)(𝑛+2)−
2
⁄

𝑛+1 −
1
⁄

(𝑛+2)(𝑛+2) =
3𝑛+2−2𝑛−5
⁄

(𝑛+1)(𝑛+2).

100. Let 𝑆𝑛 = 𝐶1 − 𝐶2⁄
2 + 𝐶3⁄

3 − ⋯ + (−1)𝑛𝐶𝑛
⁄

𝑛 = 𝑛 − 1
⁄

2 .
𝑛(𝑛−1)
⁄

2! + 1
⁄

3 .
𝑛(𝑛−1)(𝑛−2)⁄

3! − ⋯

= (𝑛 − 1 + 1)− 1
⁄

2 .
(𝑛−1)(𝑛−2+2)
⁄

2! + 1
⁄

3 .
(𝑛−1)(𝑛−2)(𝑛−3+3)
⁄

3! − ⋯

= [(𝑛− 1)− 1
⁄

2 .
(𝑛−1)(𝑛−2)
⁄

2! + 1
⁄

3 .
(𝑛−1)(𝑛−2)(𝑛−3)⁄

3! −⋯]+ [1− 𝑛−1
⁄

2! + (𝑛−1)(𝑛−2)
⁄

3! −⋯]

= 𝑆𝑛−1 + 1
⁄

𝑛 [𝐶1 − 𝐶2 + 𝐶3 − ⋯] = 𝑆𝑛−1 + 1
⁄

𝑛 ⇒ 𝑆𝑛 − 𝑆𝑛−1 = 1
⁄

𝑛

And thus, 𝑆𝑛−1 − 𝑆𝑛−2 = 1
⁄

𝑛−1, 𝑆𝑛−2 − 𝑆𝑛−3 = 1
⁄

𝑛−2, … , 𝑆2 − 𝑆1 = 1
⁄

2 , 𝑆1 = 1.

Adding, we get 𝑆𝑛 = 1 + 1
⁄

2 +
1
⁄

3 + ⋯ + 1
⁄

𝑛.

Calculus Method: 1 − 𝐶1𝑥 + 𝐶2𝑥2 − 𝐶3𝑥3 + ⋯+ (−1)𝑛𝐶𝑛𝑥𝑛 = (1 − 𝑥)𝑛

⇒ 𝐶1 − 𝐶2𝑥 + 𝐶3𝑥2 − ⋯+ (−1)𝑛−1𝐶𝑛𝑥𝑛−1 = 1−(1−𝑥)𝑛
⁄

𝑥

Integrating between the limits of 0 and 1, we arrive at
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[𝐶1𝑥 − 𝐶2. 𝑥
2
⁄

2 + 𝐶3. 𝑥
3
⁄

3 − ⋯ + (−1)𝑛−1𝐶𝑛. 𝑥
𝑛⁄
𝑛 ]

1

0
= ∫

1

0

1−(1−𝑥)𝑛
⁄

𝑥 𝑑𝑥

Now ∫
1

0

1−(1−𝑥)𝑛
⁄

𝑥 𝑑𝑥 = ∫
1

0

1−𝑧𝑛⁄
1−𝑧 𝑑𝑧, where 𝑧 = 1 − 𝑥

= ∫
1

0
(1 + 𝑧 + 𝑧2 + ⋯+ 𝑧𝑛)𝑑𝑧 = 1 + 1

⁄

2 +
1
⁄

3 + ⋯ + 1
⁄

𝑛.

101. (1 − 𝑥)𝑛 = 𝐶0 − 𝐶1𝑥 + 𝐶2𝑥2 − ⋯+ (−1)𝑛𝐶𝑛𝑥𝑛

Substituting 𝑥 = 𝑥4, we have

(1 − 𝑥4)𝑛 = 𝐶0 − 𝐶1𝑥4 + 𝐶2𝑥8 − ⋯+ (−1)𝑛𝐶𝑛𝑥4𝑛

Integrating within the limits of 0 and 1, we deduce

[𝐶0𝑥 − 𝐶1
𝑥5
⁄

5 + 𝐶2. 𝑥
9
⁄

9 − ⋯ + (−1)𝑛𝐶𝑛
𝑥4𝑛+1
⁄

4𝑛+1] = ∫
1

0
(1 − 𝑥4)𝑛 𝑑𝑥

Now we will evaluate the R.H.S. Let 𝐼𝑛 =∫
𝑛

0
(1−𝑥4)𝑛𝑑𝑥 = [𝑥(1−𝑥4)𝑛]10−∫

1

0
𝑥.𝑛(1−

𝑥4)𝑛−1 .(−4𝑥3)𝑑𝑥

= −4𝑛∫
1

0
(1 − 𝑥4)𝑛−1 (1 − 𝑥4 − 1)𝑑𝑥 = −4𝑛𝐼𝑛 + 4𝑛𝐼𝑛−1 ⇒

𝐼𝑛⁄
𝐼𝑛−1

= 4𝑛
⁄

4𝑛+1

Now, 𝐼𝑛⁄𝐼0 =
𝐼𝑛⁄
𝐼𝑛−1

. 𝐼𝑛−1⁄
𝐼𝑛−1

⋯ 𝐼3
⁄

𝐼2 .
𝐼2
⁄

𝐼1 .
𝐼1
⁄

𝐼0

= 4𝑛
⁄

4𝑛+1 .
4𝑛−4
⁄

4𝑛−3 .
4𝑛−8
⁄

4𝑛−7⋯
4
⁄

5 =
4𝑛.𝑛!
⁄

5.9.⋯(4𝑛+1).

Aliter: Putting 𝑥2 = sin 𝜃, 2𝑥𝑑𝑥 = cos 𝜃𝑑𝜃 ∴ 𝑑𝑥 = cos 𝜃𝑑𝜃
⁄

√


sin 𝜃

When 𝑥 = 0, 𝜃 = 0 and when 𝑥 = 1, 𝜃 = 𝜋
⁄

2.

𝐼𝑛 = ∫
𝜋
⁄

2

0

cos2𝑛+1 𝜃
⁄

2√


sin 𝜃
𝑑𝜃 = ∫

𝜋
⁄

2

0
cos2𝑛 𝜃. cos 𝜃
⁄

2√


sin 𝜃
𝑑𝜃

= [cos2𝑛 𝜃.√


sin 𝜃]
𝜋
⁄

2
0 − 2𝑛∫

𝜋
⁄

2

0
cos2𝑛−1 𝜃(−sin 𝜃)√


sin 𝜃𝑑𝜃

= 0 + 2𝑛∫
𝜋
⁄

2

0

cos2𝑛−1 𝜃. sin2 𝜃
⁄

√


sin 𝜃
𝑑𝜃 = 4𝑛∫

𝜋
⁄

2

0
cos2𝑛−2 𝜃(1 − cos2 𝜃) . cos 𝜃
⁄

2√


sin 𝜃
𝑑𝜃

= 4𝑛∫
𝜋
⁄

2

0
cos2𝑛−2 𝜃. cos 𝜃
⁄

2√


sin 𝜃
𝑑𝜃 − 4𝑛∫

𝜋
⁄

2

0
cos2𝑛 𝜃. cos 𝜃
⁄

2√


sin 𝜃
𝑑𝜃

= 4𝐼𝑛−1 − 4𝑛𝐼𝑛 ⇒ 𝐼𝑛⁄
𝐼𝑛−1

= 4𝑛
⁄

4𝑛+1
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And now we can proceed like earlier.

102. (1 − 𝑥)𝑛 = 𝐶0 − 𝐶1𝑥 + 𝐶2𝑥2 − ⋯+ 𝐶𝑛𝑥𝑛

Multiply both sides with 𝑥𝑛−1 to get

𝑥𝑛−1(1 − 𝑥)𝑛 = 𝐶0𝑥𝑛−1 − 𝐶1𝑥𝑛 + 𝐶2𝑥𝑛+1 − ⋯+ (−1)𝑛𝐶𝑛𝑥2𝑛−1

Integrate both sides between limits 0 and 1 to get

∫
1

0
𝑥𝑛−1(1 − 𝑥)𝑛 𝑑𝑥 = [𝐶0.

𝑥𝑛⁄
𝑛 − 𝐶1.

𝑥𝑛+1
⁄

𝑛+1 + 𝐶2.
𝑥𝑛+2
⁄

𝑛+2 − ⋯+ 𝐶𝑛
𝑥2𝑛
⁄

2𝑛 ]
1

0

⇒ 𝐶0⁄
𝑛 − 𝐶1
⁄

𝑛+1 +
𝐶2
⁄

𝑛+2 − ⋯+ (−1)𝑛𝐶𝑛⁄
2𝑛 = ∫

1

0
𝑥𝑛−1(1 − 𝑥)𝑛 𝑑𝑥

Now we evaluate ∫
1

0
𝑥𝑛−1(1 − 𝑥)𝑛 𝑑𝑥.

Let 𝐼𝑛−1,𝑛 = ∫
1

0
𝑥𝑛−1(1−𝑥)𝑛𝑑𝑥 = [𝑥𝑛−1. (1−𝑥)

𝑛+1
⁄

−(𝑛+1) ]
1

0
−∫

1

0
(𝑛−1)𝑥𝑛−2 (1−𝑥)

𝑛+1
⁄

−((𝑛+1) 𝑑𝑥

= 0 + 𝑛−1
⁄

𝑛+1∫
1

0
𝑥𝑛−1(1 − 𝑥)𝑛+1 𝑑𝑥 = 𝑛−1
⁄

𝑛+1 𝐼𝑛−2,𝑛+1

= 𝑛−1
⁄

𝑛+1 .
𝑛−2
⁄

𝑛+2 𝐼𝑛−3,𝑛+2 =
𝑛−1
⁄

𝑛+1 .
𝑛−2
⁄

𝑛+2 .
𝑛−3
⁄

𝑛+3 𝐼𝑛−4,𝑛+3 = ⋯= 𝑛−1
⁄

𝑛+1 .
𝑛−2
⁄

𝑛+2 .
𝑛−3
⁄

𝑛+3⋯
1
⁄

2𝑛−1 𝐼0,2𝑛−1

= 𝑛−1
⁄

𝑛+1 .
𝑛−2
⁄

𝑛+2 .
𝑛−3
⁄

𝑛+3⋯
1
⁄

2𝑛−1𝑖𝑛𝑡
1
0𝑥0(1 − 𝑥)2𝑛−1 𝑑𝑥 = 𝑛−1
⁄

𝑛+1 .
𝑛−2
⁄

𝑛+2 .
𝑛−3
⁄

𝑛+3⋯
1
⁄

2𝑛−1 .
1⁄
2𝑛

= 𝑛!(𝑛−1)!⁄
2𝑛! .

103. L.H.S. = (𝐶0⁄
𝑛 − 𝐶0
⁄

𝑛+1)− ( 𝐶1
⁄

𝑛+1 −
𝐶1
⁄

𝑛+2)+⋯+ (−1)𝑛(𝐶𝑛⁄
2𝑛 − 𝐶𝑛
⁄

2𝑛+1)

= 𝐶0⁄
𝑛 − 𝐶1
⁄

𝑛+1 +
𝐶2
⁄

𝑛+2 − ⋯+ (−1)𝑛𝐶𝑛⁄
2𝑛 − [ 𝐶0
⁄

𝑛+1 −
𝐶1
⁄

𝑛+2 + ⋯+ (−1)𝑛 𝐶𝑛
⁄

2𝑛+2]

Now the problem is similar to previous one and we proceed similarly to arrive at the
answer.

104. (1 − 𝑥)𝑛 = 𝐶0 − 𝐶1𝑥 + 𝐶2𝑥2 − ⋯+ (−1)𝑛𝐶𝑛𝑥𝑛

Multiply both sides by 𝑥𝑗𝑘−1 to get

𝐶0𝑥𝑘−1 − 𝐶 −1 𝑥𝑘 + 𝐶2𝑥𝑘+1 − ⋯+ (−1)𝑛𝐶𝑛𝑥𝑛+𝑘−1 = 𝑥𝑘−1(1 − 𝑥)𝑛

Integrate both sides with limts 0 and 1 to get

[𝐶0
𝑥𝑘
⁄

𝑘 − 𝐶1
𝑥𝑘+1
⁄

𝑘+1 + 𝐶2
𝑥𝑘+2
⁄

𝑘+2 − ⋯+ (−1)𝑛𝐶𝑛
𝑥𝑛+𝑘
⁄

𝑛+𝑘 ]
1

0
= ∫

1

0
𝑥𝑘−1(1 − 𝑥)𝑛 𝑑𝑥



Answers of Binomials, Multinomials and Expansions 709

⇒ 𝐶0⁄
𝑘 − 𝐶1⁄

𝑘+1 +
𝐶2⁄
𝑘+2 − ⋯+ (−1)𝑛 𝐶𝑛⁄

𝑘+𝑛 = ∫
1

0
𝑥𝑘−1(1 − 𝑥)𝑛 𝑑𝑥.

Now we evaluate ∫
1

0
𝑥𝑘−1(1 − 𝑥)𝑛 𝑑𝑥.

𝐼𝑘−1,𝑛 = ∫
1

0
𝑥𝑘−1(1 − 𝑥)𝑛 𝑑𝑥 = [𝑥𝑘−1. (1−𝑥)

𝑛+1
⁄

−(𝑛+1) ]
1

0
+ 𝑘−1
⁄

𝑛+1∫
1

0
𝑥𝑘−2(1 − 𝑥)𝑛+1 𝑑𝑥

= 0 + 𝑘−1
⁄

𝑛+1 𝐼𝑘−2,𝑛+1.

Now we proceed like previous problem we obtain the answer as 𝑛!
⁄

𝑘(𝑘+1)(𝑘+2)⋯(𝑛+𝑘).

105. (1 − 𝑥)𝑛 = 𝐶0 − 𝐶1𝑥 + 𝐶2𝑥2 − ⋯ + (−1)𝑛𝐶𝑛𝑥𝑛 and (𝑥 + 1)𝑛 = 𝐶0𝑥𝑛 + 𝐶1𝑥𝑛−1 +
𝐶2𝑥𝑛−2 + ⋯+ 𝐶𝑛

Multiply both of above equation we arrive at

(𝐶0 − 𝐶1𝑥 + 𝐶2𝑥2 − ⋯ + (−1)𝑛𝐶𝑛𝑥𝑛)(𝐶0𝑥𝑛 + 𝐶1𝑥𝑛−1 + 𝐶2𝑥𝑛−2 + ⋯ + 𝐶𝑛) =
(1 − 𝑥2)𝑛

Coeff. of 𝑥𝑛 on L.H.S. = 𝐶2
0 − 𝐶2

1 + 𝐶2
2 − ⋯+ (−1)𝑛𝐶2

𝑛

R.H.S. = 𝐶0 − 𝐶1𝑥2 + 𝐶2𝑥4 + ⋯

We observe that power of 𝑥 are even on right hand side. So if 𝑛 is odd then coeff. is 0.

If 𝑛 is even then coeff. of 𝑥𝑛 on R.H.S. = (−1)
𝑛
⁄

2 𝐶𝑛/2 = (−1)
𝑛
⁄

2 𝑛!⁄
(𝑛!⁄
2 )

2.

106. (1 + 𝑥)𝑛 = 𝐶𝑛
0 + 𝐶𝑛

1 + 𝐶𝑛
2 𝑥

2 + ⋯ + 𝐶𝑛
𝑟−1𝑥

𝑟−1 + 𝐶𝑛
𝑟 𝑥𝑟 + ⋯ + 𝐶𝑛

𝑛𝑥𝑛 and (1 + 𝑥)𝑚 =
𝐶𝑚
0 + 𝐶𝑚

1 + 𝐶𝑚
2 𝑥2 + ⋯+ 𝐶𝑚

𝑟−1𝑥
𝑟−1 + 𝐶𝑚

𝑟 𝑥𝑟 + ⋯+ 𝐶𝑛
𝑚𝑥𝑚.

Multiply these two and equating the coeff. of 𝑥𝑟 we get

𝐶𝑚
𝑟 𝐶𝑛

0 + 𝐶𝑚
𝑟−1𝐶

𝑛
1 + 𝐶𝑚

𝑟−2𝐶
𝑛
2 + ⋯+ 𝐶𝑚

0 𝐶𝑛
𝑟 = 𝐶𝑚+𝑛

𝑟 .

107. (1 − 𝑥)2𝑛 = 𝐶2𝑛
0 − 𝐶2𝑛

1 𝑥 + 𝐶2𝑛
2 𝑥2 − ⋯ + (−1)2𝑛𝐶2

2𝑛𝑛 and (𝑥 + 1)2𝑛 = 𝐶2𝑛
0 𝑥2𝑛 +

𝐶2𝑛
1 𝑥2𝑛−1 + ⋯+ 𝐶2𝑛

2𝑛.

We multiply these two and equate the coeff. of 𝑥2𝑛 to arrive at

(𝐶2𝑛
0 )2 − (𝐶2𝑛

1 )2 + ⋯ + (−1)2𝑛(𝐶2𝑛
2𝑛 )

2 = (−1)𝑛𝐶2𝑛
𝑛 .

108. (1 + 𝑥)𝑛 = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + ⋯+ 𝐶𝑛𝑥𝑛

Differentiating both sides w.r.t. 𝑥 we deduce

𝑛(1 + 𝑥)𝑛−1 = 𝐶1 + 2.𝐶2𝑥 + 3.𝐶3𝑥2 + ⋯+ 𝑛.𝐶𝑛𝑥𝑛−1

Also, (𝑥 + 1)𝑛 = 𝐶0𝑥𝑛 + 𝐶1𝑥𝑛−1 + 𝐶2𝑥𝑛−2 + ⋯+ 𝐶𝑛
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Multiply last two equations to arrive at

𝑛(1+𝑥)2𝑛−1 = (𝐶1+2.𝐶2𝑥+3.𝐶3𝑥2+⋯+𝑛.𝐶𝑛𝑥𝑛−1)(𝐶0𝑥𝑛+𝐶1𝑥𝑛−1+𝐶2𝑥𝑛−2+
⋯+ 𝐶𝑛)

Equating coeff. of 𝑥𝑛−1, we get

𝐶2
1 + 2.𝐶2

2 + 3.𝐶2
3 + ⋯ + 𝑛.𝐶2

𝑛 = 𝑛.𝐶2𝑛−1
𝑛−1 = (2𝑛−1)!⁄

[(𝑛−1)!]2.

109. (1 + 𝑥)𝑛 = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + ⋯+ 𝐶𝑛𝑥𝑛

Integrating within limits 0 and 𝑥, we get

[(1+𝑥)
𝑛+1
⁄

𝑛+1 ]
𝑥

0
= [𝐶0𝑥 + 𝐶1. 𝑥

2
⁄

2 + 𝐶2. 𝑥
3
⁄

3 + ⋯ + 𝐶𝑛. 𝑥
𝑛+1
⁄

𝑛+1 ]
𝑥

0

⇒ (1+𝑥)𝑛+1−1
⁄

𝑛+1 = 𝐶0𝑥 + 𝐶1. 𝑥
2
⁄

2 + 𝐶2. 𝑥
3
⁄

3 + ⋯ + 𝐶𝑛. 𝑥
𝑛+1
⁄

𝑛+1

Also, (𝑥 + 1)𝑛 = 𝐶0𝑥𝑛 + 𝐶1𝑥𝑛−1 + 𝐶2𝑥𝑛−2 + ⋯+ 𝐶𝑛

Multiplying last two equations and equating coeff. of 𝑥𝑛+1 we get desired reqult.

110. (1 − 𝑥)𝑛 = 𝐶0 − 𝐶1𝑥 + 𝐶2𝑥2 − ⋯+ (−1)𝑛𝐶𝑛𝑥𝑛

Multiply with 𝑥 to get

𝑥(1 − 𝑥)𝑛 = 𝐶0𝑥 − 𝐶1𝑥2 + 𝐶2𝑥3 − ⋯+ (−1)𝑛𝐶𝑛𝑥𝑛+1

Differentiating w.r.t. 𝑥 gives us

(1 − 𝑥)𝑛 − 𝑛𝑥(1 − 𝑥)𝑛−1 = 𝐶0 − 2.𝐶1𝑥 + 3.𝐶2𝑥2 − ⋯+ (−1)𝑛 .(𝑛 + 1) .𝐶𝑛𝑥𝑛

We multiply again with 𝑥 and differentiate again w.r.t. 𝑥 to get

(1 − 𝑥)𝑛− 𝑛𝑥(1 − 𝑥)𝑛−1− 2𝑛𝑥(1 − 𝑥)𝑛−1+ 𝑛(𝑛− 1)𝑥2(1 − 𝑥)𝑛−2 = 𝐶0− 22.𝐶1𝑥+
32.𝐶2𝑥2 − ⋯+ (−1)𝑛 .(𝑛 + 1)2 .𝐶𝑛𝑥𝑛

Putting 𝑥 = 1 gives us

𝐶0 − 22𝐶1 + 32𝐶2 − ⋯+ (−1)𝑛(𝑛 + 1)2𝐶𝑛 = 0.

111. (1 − 𝑥)𝑛 = 𝐶0 − 𝐶1𝑥 + 𝐶2𝑥2 − ⋯+ (−1)𝑛𝐶𝑛𝑥𝑛

Integrating within the limits 0 and 𝑥 gives us

− (1−𝑥)𝑛+1
⁄

𝑛+1 + 1
⁄

𝑛+1 = 𝐶0𝑥 − 𝐶1. 𝑥
2
⁄

2 + 𝐶2. 𝑥
3
⁄

3 − ⋯ + (−1)𝑛𝐶𝑛. 𝑥
𝑛+1
⁄

𝑛+1

Integrating again within the limits 0 and 1 we arrive at

[ (1−𝑥)𝑛+2
⁄

(𝑛+1)(𝑛+1)+
𝑥
⁄

𝑛+1]
1

0
= 𝐶0
⁄

1.2 −
𝐶1
⁄

2.3 +
𝐶2
⁄

3.4 − ⋯ + (−1)𝑛 𝐶𝑛
⁄

(𝑛+1)(𝑛+2)

𝐶0
⁄

1.2 −
𝐶1
⁄

2.3 +
𝐶2
⁄

3.4 − ⋯ + (−1)𝑛 𝐶𝑛
⁄

(𝑛+1)(𝑛+2) =
1
⁄

𝑛+2.
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112. (1 − 𝑥)𝑛 = 𝐶0 − 𝐶1𝑥 + 𝐶2𝑥2 − ⋯+ (−1)𝑛𝐶𝑛𝑥𝑛

Multiplying with 𝑥 gives us

𝑥(1 − 𝑥)𝑛 = 𝐶0𝑥 − 𝐶1𝑥2 + 𝐶2𝑥3 − ⋯+ (−1)𝑛𝐶𝑛𝑥𝑛+1

Integrating within limits 0 and 1 yields

[−𝑥(1−𝑥)𝑛+1
⁄

𝑛+1 ]
1

0
+∫

1

0

(1−𝑥)𝑛+1
⁄

𝑛+1 𝑑𝑥 = 𝐶0
⁄

1.2 −
𝐶1
⁄

2.3 +
𝐶2
⁄

3.4 − ⋯ + (−1)𝑛 𝐶𝑛
⁄

(𝑛+1)(𝑛+2)

⇒ [− (1−𝑥)𝑛+2
⁄

(𝑛+1)(𝑛+2)]
1

0
= 𝐶0
⁄

1.2 −
𝐶1
⁄

2.3 +
𝐶2
⁄

3.4 − ⋯ + (−1)𝑛 𝐶𝑛
⁄

(𝑛+1)(𝑛+2)

⇒ 𝐶0
⁄

1.2 −
𝐶1
⁄

2.3 +
𝐶2
⁄

3.4 − ⋯ + (−1)𝑛 𝐶𝑛
⁄

(𝑛+1)(𝑛+2) =
1
⁄

(𝑛+1)(𝑛+2).

113. (1 − 𝑥)𝑛 = 𝐶0 − 𝐶1𝑥 + 𝐶2𝑥2 − ⋯+ (−1)𝑛𝐶𝑛𝑥𝑛

Multiplying with 𝑥2 gives us

𝑥2(1 − 𝑥)𝑛 = 𝐶0𝑥2 − 𝐶1𝑥3 + 𝐶2𝑥4 − ⋯+ (−1)𝑛𝐶𝑛𝑥𝑛+2

Integrating within limits 0 and 1 yields

[𝐶0. 𝑥
3
⁄

3 − 𝐶1. 𝑥
4
⁄

4 + 𝐶2. 𝑥
5
⁄

5 − ⋯ + (−1)𝑛𝐶𝑛. 𝑥
𝑛+3
⁄

𝑛+3 ]
1

0
= ∫

1

0
𝑥2(1 − 𝑥)𝑛 𝑑𝑥

Now we evaluate ∫
1

0
𝑥2(1 − 𝑥)𝑛 𝑑𝑥

∫
1

0
𝑥2(1 − 𝑥)𝑛 𝑑𝑥 = [−𝑥2(1−𝑥)𝑛+1
⁄

𝑛+1 ]
1

0
+∫

1

0

2𝑥(1−𝑥)𝑛+1⁄
(𝑛+1) 𝑑𝑥

= 0 − [ 2𝑥(1−𝑥)
𝑛+2
⁄

(𝑛+1)(𝑛+2)]
1

0
+ 2
⁄

(𝑛+1)(𝑛+2)∫
1

0
(1 − 𝑥)𝑛+2 𝑑𝑥

= −0 − 2
⁄

(𝑛+1)(𝑛+2) [
(1−𝑥)𝑛+3
⁄

𝑛+3 ]
1

0
= 2⁄

(𝑛+1)(𝑛+2)(𝑛+3).

114. (1 + 𝑥)𝑛 = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + ⋯+ 𝐶𝑛𝑥𝑛

Integrating within limits 0 and 3 we get the desired result.

115. (1 − 𝑥)𝑛 = 𝐶0 − 𝐶1𝑥 + 𝐶2𝑥2 − ⋯+ (−1)𝑛𝐶𝑛𝑥𝑛

Multiply with 𝑥 to get

𝑥(1 − 𝑥)𝑛 = 𝐶0𝑥 − 𝐶1𝑥2 + 𝐶2𝑥3 − ⋯+ (−1)𝑛𝐶𝑛𝑥𝑛+1

Differentiating w.r.t. 𝑥 leads us to

[(1 − 𝑥)𝑛 − 𝑛𝑥(1 − 𝑥)𝑛−1 ] = 𝐶0 − 2.𝐶1𝑥 + 3.𝐶2𝑥2 − ⋯+ (−1)𝑛 .(𝑛 + 1) .𝐶𝑛𝑥𝑛
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Also, (𝑥 + 1)𝑛 = 𝐶0𝑥𝑛 + 𝐶1𝑥𝑛−1 + 𝐶2𝑥𝑛−2 + ⋯+ 𝐶𝑛

Multiplying last two equations gives us

(1 − 𝑥2)𝑛 − 𝑛𝑥(1 + 𝑥)(1 − 𝑥2)𝑛−1 = (𝐶0 − 2.𝐶1𝑥 + 3.𝐶2𝑥2 − ⋯ + (−1)𝑛 .(𝑛 +
1) .𝐶𝑛𝑥𝑛)(𝐶0𝑥𝑛 + 𝐶1𝑥𝑛−1 + 𝐶2𝑥𝑛−2 + ⋯+ 𝐶𝑛)

Equating the coeff. of 𝑥𝑛 gives us

𝐶2
0 − 2.𝐶2

1 + 3.𝐶2
2 − ⋯ + (−1)𝑛(𝑛 + 1)𝐶2

𝑛 = (−1)
1
⁄

2 𝐶𝑛
⁄

2
.𝑛𝐶𝑛−1

𝑛
⁄

2−1

= (−1)
𝑛
⁄

2 [𝐶𝑛
⁄

2
+ 𝑛.𝐶𝑛−1

𝑛
⁄

2−1
]

⇒ 2.
(𝑛!⁄
2 )

2⁄
𝑛! [𝐶2

0 − 2.𝐶2
1 + 3.𝐶2

2 − ⋯+ (−1)𝑛 .(𝑛 + 1)𝐶2
𝑛 ] = (−1)𝑛/2(2 + 𝑛).

116. 2 ∑
0≤𝑖≤𝑛

∑
𝑖<𝑗≤𝑛

𝐶𝑖𝐶𝑗 = (𝐶0 + 𝐶1 + 𝐶2 + ⋯ + 𝐶𝑛)2 − (𝐶2
0 + 𝐶2

1 + 𝐶2
2 + ⋯ + 𝐶2

𝑛) =

(2𝑛)2 − 𝐶2𝑛
𝑛 = 22𝑛 − 2𝑛!
⁄

(𝑛!)2

⇒ ∑
0≤𝑖≤𝑛

∑
𝑖<𝑗≤𝑛

𝐶𝑖𝐶𝑗 = 22𝑛−1 − 2𝑛!⁄
2(𝑛!)2.

117. (1 + 𝑥)𝑛 = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + ⋯+𝐶𝑛𝑥𝑛, (1 + 𝑦)𝑛 = 𝐶0 + 𝐶1𝑦 + 𝐶2𝑦2 + ⋯+𝐶𝑛𝑦𝑛,
and (𝑥 + 𝑦)𝑛 = 𝐶0𝑥𝑛 + 𝐶1𝑥𝑛−1𝑦 + 𝐶2𝑥𝑛−2𝑦2 + ⋯ + 𝐶𝑛𝑦𝑛

We multiply all three and equate the coeff. of 𝑥𝑛𝑦𝑛 which is equal to 𝐶3
0 + 𝐶3

1 + 𝐶3
2 +

⋯+ 𝐶3
𝑛.

118. Let (1 + 𝑥 − 3𝑥2)2163 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯+ 𝑎6489𝑥6489.

Putting 𝑥 = 1, we get sum of coefficients as

𝑎0 + 𝑎1 + 𝑎2 + ⋯+ 𝑎6489 = (1 + 1 − 3)2163 = (−1)2163 = −1.

119. Putting 𝑥 = 1, 𝜔, 𝜔2 in the given equation, and adding we get the desired result.

120. (𝑟 + 1)th term in the given expression is given by 𝑡𝑟+1 = 𝐶10
𝑟 2

10−𝑟
⁄

2 3
𝑟
⁄

5.

For rational terms 𝑟 has to a multiple of 5 for 3 and 10−𝑟⁄2 has to be a multiple of 2.
In the given series for the first condition 𝑟 = 0, 5, 10, and for the second condition
𝑟 = 0, 2, 4, 6, 8, 10.

So common values of 𝑟 are 0 and 10.

∴ Sum of rational terms = 𝑡1 + 𝑡11 = 𝐶0(√


2)10 + 𝐶10
10(3

1/5)10 = 41.

121. 24𝑛⁄
15 = 16𝑛⁄

15 = (1+15)𝑛
⁄

15 = 1+𝐶1.15+𝐶2.152+⋯+𝐶𝑛.15𝑛
⁄

15 .

It is clear from above that the fractional part would be 1⁄15.
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122. Let (√


3 + 1)2𝑛 = 𝑝 + 𝑓 , where 𝑝 is the integral part and 0 < 𝑓 < 1.

(√


3 + 1)2𝑛 = [(√


3 + 1)2 ]𝑛 = (4 + 2√


3)𝑛 = 2𝑛(2 +√


3)𝑛

Thus, 𝑝 + 𝑓 = 2𝑛(2 +√


3)𝑛. Also, 0 < √

3 − 1 < 1 ∴ 0 < (√


3 − 1)2𝑛 < 1

Let 𝑓1 = (√


3 − 1)2𝑛 = 2𝑛(2 −√


3)𝑛

𝑝 + 𝑓 + 𝑓1 = 2𝑛.2[2𝑛 + 𝐶2.2𝑛(√


3)2 + ⋯] = 2𝑛+1. an integer = an integer.

𝑓 + 𝑓1 = even number −𝑝 = an integer. Also, 0 < 𝑓 + 𝑓1 < 2 and thus, 𝑓 + 𝑓1 = 1.

Hence, integer just above (√


3 + 1)2𝑛 i.e. 𝑝 + 1 is divisible by 2𝑛+1.

123. Clearly 0 < 𝑓 < 1. 𝑅 = (5√


5 + 11)2𝑛+1

Let 𝑓′ = (5√


5 − 11)2𝑛+1. ∵ 0 < 5√


5 − 11 < 1 ∴ 0 < (5√


5 − 11)2𝑛+1 < 1.

𝑅 − 𝑓′ = 2[𝐶2𝑛+1
1 .(5√


5)2𝑛 .11 + 𝐶2𝑛+1
3 (5√


5)2𝑛−2 .113 + ⋯] = an even number

𝑓 − 𝑓′ = an even number −[𝑅] = an integer. But −1 < 𝑓 − 𝑓′ < 1.

Thus, 𝑓 − 𝑓′ = 0 ⇒ 𝑓 = 𝑓′. ⇒𝑅𝑓′ = ((5√


5+ 11)2𝑛+1)((5√


5− 11)2𝑛+1) = 42𝑛+1 =
𝑅𝑓[∵ 𝑓 = 𝑓′ ].

124. 10150 − 9950 = (100 + 1)50 − (100 − 1)50

= 2[𝐶50
1 .10049 + 𝐶50

3 10047 + ⋯ + 𝐶50
49100]

= 10050 + 2[𝐶50
3 10047 + ⋯ + 𝐶50

49100]

∴ 10150 − 9950 > 10050 ⇒ 10150 > 10050 + 9950.

125. 𝑡1 =
𝑛
∑
𝑟=0

𝐶𝑟(
1
⁄

2)
𝑟
= (1 − 1
⁄

2)
𝑟
= 1⁄

2𝑛, 𝑡2 =
𝑛
∑
𝑟=0

𝐶𝑟(
3
⁄

4)
𝑟
= (1 − 3
⁄

4)
𝑟
= 1⁄

22𝑛 , … and so on.

Therefore, required sum = 1⁄
2𝑛 +

1⁄
22𝑛 + ⋯ + 1
⁄

2𝑚𝑛 = 1⁄
2𝑛 [

1−( 1⁄
2𝑛)

𝑚

⁄

1− 1⁄
2𝑛

] =
1− 1
⁄

2𝑚𝑛
⁄

2𝑛−1 .

126. 3232 = (2 + 3 × 10)32 = 232 + 10𝑘, where 𝑘 ∈ ℕ. Therefore last digit in 3232 is same
as last digit in 232.

232 = (25)6 .22 = 326.4 = (2 + 10)6 .4 = 4.(26 + 10𝑟), where 𝑟 ∈ ℕ.

Therefore, last digit in 232 is same as last digit in 4.26 = last digit in 16 = 6.

127. Let 𝑛 = 2𝑚, where 𝑚 ∈ ℙ, then 𝑘 = 3𝑛.

Now, L.H.S. =
3𝑚
∑
𝑟=1

(−3)𝑟−1𝐶6𝑚
2𝑟−1 = 𝐶6𝑚

1 − 𝐶6𝑚
3 .3 + 𝐶6𝑚

5 .32 − ⋯ +

(−1)3𝑚−1𝐶6𝑚
6𝑚−13

3𝑚−1
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= 1⁄
√


3 [𝐶
6𝑚
1 √


3 − 𝐶6𝑚
3 (√


3)3 + 𝐶6𝑚
5 (√


3)5 − ⋯ + (−1)3𝑚−1𝐶6𝑚
6𝑚−1(√


3)6𝑚−1 ]

We observe that (−1)3𝑚−1 = 𝑖6𝑚−2 = −𝑖.𝑖6𝑚−1.

Now (1 + √


3𝑖)6𝑚 = 1 + 𝐶6𝑚
1 √


3𝑖 + 𝐶6𝑚
2 (√


3𝑖)2 + 𝐶6𝑚
3 (√


3𝑖)3 + ⋯ +
𝐶6𝑚
6𝑚−1(√


3𝑖)6𝑚−1 + 𝐶6𝑚
6𝑚(√


3𝑖)6𝑚

= [1−𝐶6𝑚
2 .3+𝐶6𝑚

4 .32−⋯]+𝑖[𝐶6𝑚
1 √


3−𝐶6𝑚
3 (√


3)3+⋯+𝐶6𝑚
6𝑚−1.𝑖

6𝑚−2(√


3)6𝑚−1]

However, (1 +√


3𝑖)6𝑚 = [2(cos 𝜋⁄3 + 𝑖 sin 𝜋
⁄

3)]
6𝑚

= 26𝑚.

Equating coeff. of imaginary parts yields

𝐶6𝑚
1 √


3 − 𝐶6𝑚
3 (√


3)3 + ⋯ + 𝐶6𝑚
6𝑚−1.𝑖

6𝑚−2(√


3)6𝑚−1 = 0.

128. (𝑎 + 𝑥)𝑛 = 𝑎𝑛 + 𝐶𝑛
1 𝑎

𝑛−1𝑥 + 𝐶𝑛
2 𝑎

𝑛−2𝑥2 + ⋯+ 𝑥𝑛

Thus, 𝑡0 = 𝑎𝑛, 𝑡1 = 𝐶𝑛
1 𝑎

𝑛−1𝑥, 𝑡2 = 𝐶𝑛
2 𝑎

𝑛−2𝑥2, …

Now we replace 𝑥 with 𝑖𝑥 to get

(𝑎 + 𝑖𝑥)𝑛 = 𝑎𝑛 + 𝐶𝑛
1 𝑎

𝑛−1𝑖𝑥 − 𝐶𝑛
2 𝑎

𝑛−2𝑥2 + ⋯+ (𝑖𝑥)𝑛

= (𝑎𝑛 − 𝐶𝑛
2 𝑎

𝑛−2𝑥2 + ⋯)+ 𝑖(𝐶𝑛
1 𝑎

𝑛−1𝑥 − 𝐶𝑛
3 𝑎

𝑛−3𝑥3 + ⋯)

= (𝑡0 − 𝑡2 + 𝑡4 − ⋯)+ 𝑖(𝑡1 − 𝑡3 + 𝑡5 − ⋯)

Taking modulus and squaring yields

(𝑎2 + 𝑥2)𝑛 = (𝑡0 − 𝑡2 + 𝑡4 − ⋯)2 + 𝑖(𝑡1 − 𝑡3 + 𝑡5 − ⋯)2.

129. Given, (1 + 𝑥 + 𝑥2)𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯+ 𝑎2𝑛𝑥2𝑛.

Putting 𝑥 = 1 yields

𝑎0 + 𝑎1 + 𝑎2 + ⋯+ 𝑎2𝑛 = 3𝑛.

130. Putting 𝑥 = −1 yields

𝑎0 − 𝑎1 + 𝑎2 − ⋯+ 𝑎2𝑛 = 1.

131. Putting 𝑥 = 1, 𝜔, 𝜔2 yields

𝑎0 + 𝑎1 + 𝑎2 + ⋯+ 𝑎2𝑛 = 3𝑛,

𝑎0 + 𝑎1𝜔 + 𝑎2𝜔2 + ⋯+ 𝑎2𝑛𝜔2𝑛 = 0, and

𝑎0 + 𝑎1𝜔2 + 𝑎2𝜔4 + ⋯+ 𝑎2𝑛𝜔4𝑛 = 0.

Adding we get 3(𝑎0 + 𝑎3 + 𝑎6 + ⋯) = 3𝑛

⇒ 𝑎0 + 𝑎3 + 𝑎6 + ⋯ = 3𝑛−1.
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132. 𝑆𝑛 = 1 + 𝑞 + 𝑞2 + ⋯ + 𝑞𝑛 = 1−𝑞𝑛+1
⁄

1−𝑞 and 𝑆′𝑛 = 1 + (𝑞+1⁄
2 ) + (𝑞+1⁄

2 )
2
+ ⋯ + (𝑞+1⁄

2 )
𝑛
=

1−(𝑞+1⁄2 )
𝑛+1

⁄

1−𝑞+1
⁄

2
= 2𝑛+1−(𝑞+1)𝑛+1
⁄

(1−𝑞) .2𝑛 .

Now 𝐶𝑛+1
1 + 𝐶𝑛+1

2 .𝑆1 + 𝐶𝑛+1
3 .𝑆2 + ⋯ + 𝐶𝑛+1

𝑛+1 .𝑆𝑛 = 𝐶𝑛+1
1 (1−𝑞⁄

1−𝑞) + 𝐶𝑛+1
2 (1−𝑞

2
⁄

1−𝑞 ) +

𝐶𝑛+1
3 (1−𝑞

3
⁄

1−𝑞 )+⋯+𝐶𝑛+1
𝑛+1(

1−𝑞𝑛+1
⁄

1−𝑞 )

= 1⁄
1−𝑞 [(𝐶

𝑛+1
1 + 𝐶𝑛+1

2 + 𝐶𝑛+1
3 + ⋯ + 𝐶𝑛+1

𝑛+1 ) − (𝐶𝑛+1
1 𝑞 + 𝐶𝑛+1

2 𝑞2 + 𝐶𝑛+1
3 𝑞3 + ⋯ +

𝐶𝑛+1
𝑛+1𝑞

𝑛+1)]

= 1⁄
1−𝑞 [2

𝑛+1 − 1 − {(1 + 𝑞)𝑛+1 − 1}] = 1⁄
1−𝑞 [2

𝑛+1 − (1 + 𝑞)𝑛+1 ] = 2𝑛𝑆′𝑛.

133. (𝑟 + 1)th term in the given expansion is given by 𝑡𝑟+1 = 𝐶1000
𝑟 9

1000−𝑟
⁄

4 .8
𝑟
⁄

6, where
𝑟 = 0, 1, 2, … , 1000.

For rational terms 𝑟 has to be a multile of 6 = 0, 6, 12, 18, … , 996 and 1000 − 𝑟 = a
multiple of 4 = 0, 4, 8, 12, … , 1000.

From both of these the common values are multiple of 12, which is L.C.M. of 4 and 6.
Thus, sum of rational terms would be 84.

134. (𝑟 + 1)th term in the given expansion is given by 𝑡𝑟+1 = 𝐶15
𝑟 2

15−𝑟
⁄

3 3
𝑟
⁄

5, where 𝑟 =
0, 1, 2, … , 15.

For rational terms 𝑟 has to be a multiple of 5 = 0, 5, 10, 15 and 15 − 𝑟 = a multiple of
3 = 0, 3, 6, 9, 12, 15.

The common values will depend on the L.C.M. of 3 and 5 which is 15. So there are two
terms which will satisfy the criteria; first terms and last term.

Sum would be = 𝐶15
0 25 + 𝐶15

153
3 = 32 + 27 = 59.

135. 𝑡3 in the expansion of (𝑥 + 𝑥 log10 𝑥)5 is 𝐶5
2𝑥

3.𝑥2(log10 𝑥)2 = 1,000,000

⇒ 𝑥5(log10 𝑥)2 = 100,000 ⇒ 𝑥 = 10.

136. Replacing 𝑥 − 1
⁄

𝑥 = 𝑦 we have (1 + 𝑦)3 = 1 + 3𝑦 + 3𝑦2 + 𝑦3. Substituting back we get

(𝑥 + 1 − 1
⁄

𝑥)
3
= 1 + 3(𝑥 − 1
⁄

𝑥)+ 3(𝑥2 + 1
⁄

𝑥2 − 2)+ (𝑥 − 1
⁄

𝑥)
3
= 1 + 3𝑥 − 3
⁄

𝑥 + 3𝑥2 + 3
⁄

𝑥2 −

6 + 𝑥3 − 3𝑥 + 3
⁄

𝑥 −
1
⁄

𝑥3

= 𝑥3 + 3𝑥2 − 5 + 3
⁄

𝑥2 −
1
⁄

𝑥3.

137. It is given that coefficients of second, third and fourth terms are the first, third and
fifth terms of an A.P. i.e. they are in A.P.



Answers of Binomials, Multinomials and Expansions 716

∴ 2.𝐶𝑚
2 = 𝐶𝑚

1 + 𝐶𝑚
3 ⇒ 2.𝑚(𝑚−1)⁄

2 = 𝑚+𝑚(𝑚−1)(𝑚−2)⁄
6

⇒ 𝑚− 1 = 1 + (𝑚−1)(𝑚−2)
⁄

6 ⇒ 𝑚2 − 9𝑚+ 14 = 0

⇒ 𝑚 = 2, 7 but it cannot be 2 as we have more than 3 terms, so 𝑚 = 7.

𝑡6 = 𝐶7
5[2

log(10−3𝑥)+(𝑥−2) log 3 ] = 21 ⇒ 2log(10−3
𝑥)+log 3𝑥−2 = 1 = 20

⇒ log(10 − 3𝑥)+ log 3𝑥−2 = 0 ⇒ (10 − 3𝑥)3𝑥−2 = 1

⇒ 32𝑥 − 10.3𝑥 + 9 = 0 ⇒ 3𝑥 = 9, 1 ⇒ 𝑥 = 2, 0.

138. Sixth term of the expansion [2log2
√

9𝑥−1+7 + 1⁄

2
1⁄
5log2(3

𝑥−1+1)]
7

is given by 𝑡6 =

𝐶7
5(√


9𝑥−1 + 7)2 . 1
⁄

(3𝑥−1+1) = 84

⇒ 9𝑥−1+7
⁄

3𝑥−1+1 = 4 ⇒ 𝑥 = 1, 2.

139. We have to prove that 1⁄
(81)𝑛 −

10⁄
(81)𝑛 .𝐶

2𝑛
1 + 102⁄

(81)𝑛 .𝐶
2𝑛
2 − 103⁄

(81)𝑛 .𝐶
2𝑛
3 + ⋯ + 102𝑛⁄

(81)𝑛 = 1.

⇒ 1⁄
81𝑛 [𝐶

2𝑛
0 − 𝐶2𝑛

1 10 + 𝐶2𝑛
2 102 − 𝐶2𝑛

3 103 + ⋯ + 𝐶2𝑛
2𝑛10

2𝑛 ] = 1

⇒ 1⁄
81𝑛 (1 − 10)2𝑛 = 1⁄

81𝑛 .(−9)
2𝑛 = 1.

140. We know that 𝐶𝑟 = 𝐶𝑛−𝑟. Thus we can rewrite the given series as

lim
𝑛→∞

= 𝐶0 − 𝐶1.
2
⁄

3 + 𝐶2.(
2
⁄

3)
2
− 𝐶3.(

2
⁄

3)
3
+ ⋯ + (−1)𝑛𝐶𝑛.(

2
⁄

3)
𝑛

= (1 − 2
⁄

3)
𝑛
= 1⁄

3𝑛 = 0.

141. Given, 𝐸 = (6√


6 + 14)2𝑛+1 = [𝐸 ]+ 𝐹 . Let 𝐹′ = (6√


6 − 14)2𝑛+1 = 202𝑛+1
⁄

(6√


6+14)2𝑛+1

𝐸 − 𝐹′ = 𝐶2𝑛+1
1 (6√


6)2𝑛 .14 + 𝐶2𝑛+1
3 (6√


6)2𝑛−2 .143 + … = an even number.

𝐹 − 𝐹′ = an even number −[𝐸 ] = an integer. But 0 < 𝐹 < 1 and 0 < 𝐹′ < 1 ⇒ −1 <
𝐹 − 𝐹′ < 1

⇒ 𝐹 − 𝐹′ = 0 ⇒ 𝐹 = 𝐹′.

∴𝐸𝐹 = 𝐸𝐹′ = 202𝑛+1.

142. (17)256 = (289)128 = (290 − 1)128 = 𝐶0.290128 − 𝐶1.290127 + ⋯ + (−1)128𝐶128

Clearly, all the terms except last term would be multiple of 10. So at unit's place last
term will occur which is 1.
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Similarly for ten's place only second last term will matter which is −𝐶127.290 =
−128 × 290 = −37120. This is a negative term and the highest term is positive and
multiple of 100 so the tens place unit will be 10 − 2 = 8.

Similarly for hundred's place third last term will matter which is 𝐶126.2902 = 683564800
and thus the digit will be 6 after adjusting with second last term.

143. We have to prove that for 𝑛 ≥ 3, 𝑛𝑛+1 > (𝑛 + 1)𝑛 , 𝑓𝑜𝑟𝑎𝑙𝑙 𝑛 ∈ ℙ.

Rewriting ⇒ 𝑛 > (1 + 1
⁄

𝑛)
𝑛
.

Now (1+ 1
⁄

𝑛)
𝑛
= 1+𝑛. 1⁄𝑛+

𝑛(𝑛−1)
⁄

2! . 1⁄𝑛2+
𝑛(𝑛−1)(𝑛−2)⁄

3! . 1⁄𝑛3+
𝑛(𝑛−1)(𝑛−2)⋯[𝑛−(𝑛−1)]
⁄

𝑛! . 1
⁄

𝑛𝑛

= 1 + 1 + 1⁄
2! (1 −

1
⁄

𝑛)+
1⁄
3! (1 −

1
⁄

𝑛)(1 −
2
⁄

𝑛)+⋯+ 1⁄
𝑛! (1 −

1
⁄

𝑛)(1 −
2
⁄

𝑛)⋯ (1 −
𝑛−1
⁄

𝑛 )

< 1 + 1 + 1⁄
2! +

1⁄
3! + ⋯ + 1⁄

𝑛! < 1 + 1 + 1
⁄

2 +
1
⁄

22 + ⋯ + 1
⁄

2𝑛−1

= 1 + 2[1 − 1⁄
2𝑛] = 3 − 1
⁄

2𝑛−1 < 3.

Now we have been given that 𝑛 ≥ 3 and hence 𝑛𝑛+1 > (𝑛 + 1)𝑛.

144. We have to prove that 2 < (1 + 1
⁄

𝑛)
𝑛
< 3 ∀ 𝑛 ∈ ℕ.

Proceeding like previous problem we obtain 2 ≤ (1 + 1
⁄

𝑛)
𝑛
< 3.

145. We have to prove that 19921998 − 19551998 − 19381998 + 19011998 is divisible by 1998.

Rewriting as (19921998 − 19551998)− (19381998 − 19011998). We know that 𝑎𝑛 − 𝑏𝑛
is divisible by 𝑎 − 𝑏. Thus given expression is divisible by 37.

Rewriting again as (19921998 − 19381998)− (19551998 − 19011998), which is divisible
by 54.

Since 37 is a prime number there will be no common factor with 54. Hence, given
expression is divisible by 37 × 54 = 1998.

146. 5353 = (50 + 3)53 = 50𝑘 + 353 and 3333 = (30 + 3)33 = 30𝑘 + 333.

So if the difference 353 − 333 is divisible by 10 then our proof will be complete.

We observe the powers of 3. 31 = 3, 32 = 9, 33 = 27, 34 = 81, 35 = 243, …. Thus we see
that it repeats in the fashion of 3, 9, 7, 1, 3, 9, 7, 1, … as far as last digits are concerned.

53 = 4 ∗ 13 + 1 and 33 = 4 ∗ 8 + 1 so the last digits of both will be same i.e. 9. Hence,
the given difference is divisible by 10.

147. (1 + 𝑥)𝑚+1 = 𝐶𝑚+1
0 + 𝐶𝑚+1

1 𝑥 + 𝐶𝑚+1
2 𝑥2 + ⋯+ 𝐶𝑚+1

𝑚+1𝑥
𝑚+1

⇒ [(1 + 𝑥)𝑚+1 − 1 − 𝑥𝑚+1 ] = 𝐶𝑚+1
1 𝑥 + 𝐶𝑚+1

2 𝑥2 + ⋯+ 𝐶𝑚+1
𝑚 𝑥𝑚+1.

Putting 𝑥 = 1, 2, 3, … , 𝑛 and adding we get the desired result.
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148.
𝑘
∑
𝑖=1

𝑛
∑
𝑘=1

𝐶𝑛
𝑘 𝐶

𝑘
𝑖 =

𝑛
∑
𝑘=1

(𝐶𝑛
𝑘 𝐶

𝑘
1 + 𝐶𝑛

𝑘 𝐶
𝑘
2 + 𝐶𝑛

𝑘 𝐶
𝑘
3 + ⋯+ 𝐶𝑛

𝑘 𝐶
𝑘
𝑘 )

= (𝐶𝑛
1 𝐶

1
1 +𝐶𝑛

2 𝐶
2
1 +𝐶𝑛

3 𝐶
3
1 +⋯+𝐶𝑛

𝑛𝐶𝑛
1 )+ (𝐶

𝑛
2 𝐶

2
2 +𝐶𝑛

3 𝐶
3
2 +⋯+𝐶𝑛

𝑛𝐶𝑛
2 )+ (𝐶

𝑛
3 𝐶

3
3 +

⋯+ 𝐶𝑛
𝑛𝐶𝑛

𝑛𝐶𝑛
3 )+⋯+𝐶𝑛

𝑛𝐶𝑛
𝑛

= 𝐶𝑛
1 (𝐶

1
1 + 𝐶1

0 )−𝐶𝑛
1 𝐶

1
0 + 𝐶𝑛

2 (𝐶
2
0 + 𝐶2

1 + 𝐶2
2 )−𝐶𝑛

2 𝐶
2
0 + 𝐶𝑛

3 (𝐶
3
0 + 𝐶3

1 + 𝐶3
2 + 𝐶3

3 )−
𝐶𝑛
3 𝐶

3
0 + ⋯

= 𝐶𝑛
1 2+𝐶𝑛

2 2
2+𝐶𝑛

3 2
3+⋯+𝐶𝑛

𝑛2𝑛− 1− [𝐶𝑛
0 +𝐶𝑛

1 +𝐶𝑛
2 +⋯+𝐶𝑛

𝑛 − 1] = (1+ 2)𝑛−
(1 + 1)𝑛 = 3𝑛 − 2𝑛.

149. We have to prove that 
𝑛
∑
𝑟=0

(−1)𝑟 .𝑛𝐶𝑟
1+𝑟 log𝑒 10⁄

(1+log𝑒 10𝑛)𝑟
= 0. Note that this equality will

hold for positive 𝑛 but not for 𝑛 = 0 for which L.H.S. is equal to 1.
𝑛
∑
𝑟=0

(−1)𝑟 .𝑛𝐶𝑟
1+𝑟 log𝑒 10⁄

(1+log𝑒 10𝑛)𝑟
=

𝑛
∑
𝑟=0

(−1)𝑟 𝐶𝑛
𝑟

1
⁄

(1+log 10𝑛)𝑟 +
𝑛
∑
𝑟=0

(−1)𝑟 𝐶𝑛−1
𝑟−1

𝑛 log 10
⁄

(1+log 10𝑛)𝑟

= 1+
𝑛−1
∑
𝑟=1

(𝐶𝑛−1
𝑟 +𝐶𝑛−1

𝑟−1 )
1
⁄

(1+log 10𝑛)𝑟+(−1)
𝑛 1
⁄

(1+log 10𝑛)𝑟−
𝑛−1
∑
𝑟=0

(−1)𝑟𝐶𝑛−1
𝑟

log 10𝑛
⁄

(1+log 10𝑛)𝑟+1

= 1+
𝑛−1
∑
𝑟=1

(−1)𝑟𝐶𝑛−1
𝑟

1
⁄

(1+log 10𝑛)𝑟−
𝑛−2
∑
𝑟=0

(−1)𝑟𝐶𝑛−1
𝑟

1
⁄

(1+log 10𝑛)𝑟+1
+(−1)𝑛 1
⁄

(1+log 10𝑛)𝑟−

𝑛−1
∑
𝑟=0

(−1)𝑟 𝐶𝑛−1
𝑟

log 10𝑛
⁄

(1+log 10𝑛)𝑟+1

= 1+
𝑛−1
∑
𝑟=1

(−1)𝑟𝐶𝑛−1
𝑟

1
⁄

(1+log 10𝑛)𝑟+(−1)
𝑛 1
⁄

(1+log 10𝑛)𝑟−
𝑛−2
∑
𝑟=0

(−1)𝑟𝐶𝑛−1
𝑟

1
⁄

(1+log 10𝑛)𝑟+

(−1)𝑛 log 10𝑛
⁄

(1+log 10𝑛)𝑛

= 1 + (−1)𝑛−1 1
⁄

(1+log 10𝑛)𝑛−1 + (−1)𝑛 1
⁄

(1+log 10𝑛)𝑛−1 − 1 + (−1)𝑛 log 10
⁄

(1+log 10𝑛)𝑛 = 0.

150. 3232 = 2160 = (3 − 1)160 = 3𝑚+ 1, where 𝑚 ∈ ℕ.

3232
32
= 323𝑚+1 = 23(5𝑚+1).22 = 23(85𝑚) = 32(1 + 7)5𝑚

= 32(1 + 7𝑘), 𝑘 ∈ ℕ = 4 + 28 + 7(32𝑘) = 4 + 7𝑟, where 𝑟 ∈ ℕ.

Thus, remainder would be 4.

151. Let 𝑡 = 𝑥 − 3, then 𝑥 − 2 = 1 + 𝑡. Now 
2𝑛
∑
𝑟=0

𝑎𝑟(𝑥 − 2)𝑟 =
2𝑛
∑
𝑟=0

𝑏𝑟(𝑥 − 3)𝑟

⇒
2𝑛
∑
𝑟=0

𝑎𝑟(1 + 𝑡)𝑟 =
2𝑛
∑
𝑟=0

𝑏𝑟𝑡𝑟
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⇒ 𝑎0+𝑎1(1+ 𝑡)+⋯+𝑎𝑛−1(1+ 𝑡)𝑛−1+1.(1+ 𝑡)𝑛+1.(1+ 𝑡)𝑛+1+⋯+1.(1+ 𝑡)2𝑛 =
𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2 + ⋯ + 𝑏2𝑛𝑡2𝑛

Equating the coefficients of 𝑡𝑛 gives us

𝑏𝑛 = 𝐶𝑛
𝑛 + 𝐶𝑛+1

𝑛 + 𝐶𝑛+2
𝑛 + ⋯+ 𝐶2𝑛

𝑛 = 𝐶𝑛+2
𝑛+1 + 𝐶𝑛+2

𝑛 + ⋯+ 𝐶2𝑛
𝑛 [∵𝐶𝑛

𝑛 = 𝐶𝑛+1
𝑛+1 = 1]

⋯

= 𝐶2𝑛+1
𝑛+1 .

152. Given, 𝑥50 in (1 + 𝑥)1000 + 2𝑥(1 + 𝑥)999 + 3𝑥2(1 + 𝑥)998 + ⋯ + 1001𝑥1000.

Rewriting, (1 + 𝑥)1000[1 + 2 𝑥
⁄

1+𝑥 + 3( 𝑥
⁄

1+𝑥)
2
+ ⋯ + 1001( 𝑥
⁄

1+𝑥)
1000

]

= (1 + 𝑥)1000 [1 + 2𝑘 + 3𝑘2 + ⋯+ 1001𝑘1000 ], where 𝑘 = 𝑥
⁄

1+𝑥

𝑆 = 1 + 2𝑘 + 3𝑘2 + ⋯+ 1001𝑘1000

𝑘𝑆 = 𝑘 + 2𝑘2 + ⋯+ 1000𝑘1000 + 1001𝑘1001

Subtracting (1 − 𝑘)𝑆 = 1 + 𝑘 + 𝑘2 + ⋯+ 𝑘1000 − 1001𝑘1001 = 1−𝑘1001
⁄

1−𝑘 − 1001𝑘1001

𝑆 = (1 + 𝑥)2[1 − 𝑥1001
⁄

(1+𝑥)1001]− 1001. 𝑥1001
⁄

(1+𝑥)1000

So given expression becomes (1 + 𝑥)1002 − 𝑥1001(1 + 𝑥) − 1001𝑥1001, and hence,
coefficient of 𝑥50 is 𝐶1002

50 .

153. L.H.S. = coeff. of 𝑥𝑛 in (1 + 𝑥)𝑛 + (1 + 𝑥)𝑛+1 + (1 + 𝑥)𝑛+2 + ⋯+ (1 + 𝑥)𝑛+𝑘

Now, (1 + 𝑥)𝑛+ (1 + 𝑥)𝑛+1+ (1 + 𝑥)𝑛+2+⋯+ (1 + 𝑥)𝑛+𝑘 = (1 + 𝑥)𝑛[(1+𝑥)
𝑘+1−1
⁄

𝑥 ]

= 1
⁄

𝑥 (1 + 𝑥)𝑛+𝑘+1 − 1
⁄

𝑥 (1 + 𝑥)𝑛

Equating coefficient of 𝑥𝑛 gives us

𝐶𝑛
𝑛 + 𝐶𝑛+1

𝑛 + 𝐶𝑛+2
𝑛 + ⋯+ 𝐶𝑛+1

𝑛 = 𝐶𝑛+𝑘+1
𝑛+1 (there is no power of 𝑥𝑛 in second term).

154. Let 𝑆 = 𝑥 + 2𝑥2 + 3𝑥3 + ⋯+ 𝑛𝑥𝑛 then 𝑥𝑆 = 𝑥2 + 2𝑥3 + ⋯+ (𝑛 − 1)𝑥𝑛 + 𝑛𝑥𝑛+1

Subtracting yields (1 − 𝑥)𝑆 = 𝑥+ 𝑥2+ 𝑥3+⋯+𝑥𝑛− 𝑛𝑥𝑛+1 ⇒ 𝑆 = 𝑥 (1−𝑥
𝑛)
⁄

(1−𝑥)2 −
𝑛𝑥𝑛+1
⁄

1−𝑥

⇒ (1 + 𝑥 + 2𝑥2 + 3𝑥3 + ⋯+ 𝑛𝑥𝑛)2 = [1 + 𝑥 (1−𝑥
𝑛)
⁄

(1−𝑥)2 −
𝑛𝑥𝑛+1
⁄

1−𝑥 ]
2

Coefficient of 𝑥𝑛 = coefficient of 𝑥𝑛 in [1 + 𝑥
⁄

(1−𝑥)2]
2
(leaving terms containing powers

of 𝑥 greater than 𝑛)

= coefficient of 𝑥𝑛 in 2𝑥(1 − 𝑥)−2 + 𝑥2(1 − 𝑥)−4 = 2.𝐶𝑛
𝑛−1 + 𝐶𝑛+1

𝑛−2 = 2.𝐶𝑛
1 + 𝐶𝑛+1

3



Answers of Binomials, Multinomials and Expansions 720

= 𝑛(𝑛2+11)
⁄

6 .

155. 1 + (1 + 𝑥)+ (1 + 𝑥)2 + ⋯ + (1 + 𝑥)𝑛 = (1+𝑥)𝑛+1−1
⁄

𝑥 .

Clearly, coefficient of 𝑥𝑘 in (1+𝑥)
𝑛+1−1
⁄

𝑥 is equal to the coefficient of 𝑥𝑘+1 in (1+𝑥)𝑛+1 =
𝐶𝑛+1
𝑘+1 .

156. (𝑥 + 1)𝑛 + (𝑥 + 1)𝑛−1(𝑥 + 2) + (𝑥 + 1)𝑛−2(𝑥 + 2)2 + ⋯ + (𝑥 + 2)𝑛 is a G.P. with
first term (𝑥 + 1)𝑛 and common ratio 𝑥+2⁄𝑥+1.

Thus, sum of the series is 
(𝑥+1)𝑛[(𝑥+2)

𝑛
⁄

(𝑥+1)𝑛−1]
⁄

𝑥+2
⁄

𝑥+1−1
= (𝑥+2)𝑛−(𝑥+1)𝑛
⁄

1
⁄

𝑥+1
= (𝑥 + 1)[(𝑥 + 2)𝑛 −

(𝑥 + 1)𝑛 ].

Thus, coefficient of 𝑥3 in (𝑥 + 1)[(𝑥 + 2)𝑛 − (𝑥 + 1)𝑛 ] is equal to coefficient of 𝑥2 in
(𝑥 + 2)𝑛 − (𝑥 + 1)𝑛+ coefficient of 𝑥3 in [(𝑥 + 2)𝑛 − (𝑥 + 1)𝑛 ]

= 𝐶𝑛
𝑛−2.2

𝑛−2 − 𝐶𝑛
𝑛−2 + 𝐶𝑛

𝑛−3.2
𝑛−3 − 𝐶𝑛

𝑛−3 = 𝐶𝑛+1
3 (2𝑛−2 − 1).

157. ( 𝑎+1⁄
𝑎2/3−𝑎1/3+1 −

𝑎−1⁄
𝑎−𝑎1/2)

10
= (𝑎1/3 + 1 − √


𝑎+1
⁄

√


𝑎 )
10

= (𝑎1/3 − 𝑎−1/2)10.

Let (𝑟 + 1)th term be independent of 𝑎, then 𝑡𝑟+1 = 𝐶10
𝑟 𝑎(10−𝑟)/3(−𝑎)−𝑟/2.

For this term to be independent of 𝑎, 10−𝑟⁄3 − 𝑟
⁄

2 = 0 ⇒ 20 − 5𝑟 = 0 ⇒ 𝑟 = 4.

So 5th term is independent of 𝑎. 𝑡5 = 𝐶10
4 = 210.

158. Coefficient of 𝑥2 in (𝑥+ 1
⁄

𝑥)
10
(1−𝑥+2𝑥2) = coefficient of 𝑥2 in (𝑥+ 1

⁄

𝑥)
10
− coefficient

of 𝑥 in (𝑥 + 1
⁄

𝑥)
10
+ 2. coefficient of term independeng of 𝑥 in (𝑥 + 1

⁄

𝑥)
10

.

Consider (𝑟 + 1)th term in the expansion of (𝑥 + 1
⁄

𝑥)
10

.

𝑡𝑟+1 = 𝐶10
𝑟 .𝑥10−𝑟.𝑥−𝑟 so power of 𝑥 is 10 − 2𝑟.

If 10 − 2𝑟 = 2 ⇒ 𝑟 = 4; for 10 − 2𝑟 = 1 we do not have an integral 𝑟; and for
10 − 2𝑟 = 0 ⇒ 𝑟 = 5.

So final answer is 𝐶10
4 + 2.𝐶10

5 = 714.

159. (1 + 𝑥 − 2𝑥)6 = (1 − 𝑥)6(1 + 2𝑥)6 = (1 − 6𝑥 + 15𝑥2 − 20𝑥3 + 15𝑥4 − 6𝑥5 + 𝑥6)(1 +
12𝑥 + 60𝑥2 + 160𝑥3 + 140𝑥4 + 192𝑥5 + 64𝑥6)

Hence, coefficient of 𝑥4 is 240 − 6 × 160 + 15 × 60 − 20 × 12 + 15 = −45.

160. We have to find the term independent of 𝑥 in (1 + 𝑥 + 2𝑥3)(3⁄2 𝑥
2 − 1
⁄

3𝑥)
9
.
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We consider (𝑟 + 1)th term in the expansion of (3⁄2 𝑥
2 − 1
⁄

3𝑥)
9
.

𝑡𝑟+1 = 𝐶9
𝑟(

3
⁄

2 𝑥
2)

9−𝑟
(− 1
⁄

3𝑥)
𝑟

So the power of 𝑥 would be 18 − 3𝑟. This term is multiplied with 1 + 𝑥 + 2𝑥3 so for 1
the value of 18 − 3𝑟 = 0 for the term to be independent of 𝑥 i.e. 𝑟 = 6. For 𝑥 there will
be no such term because 18 − 3𝑟 = −1 does not give an integral 𝑟. For 2𝑥3 the term
would be 18 − 3𝑟 = −3 ⇒ 𝑟 = 7.

So the final term would be 𝐶9
6(

3
⁄

2 𝑥
2)

3
(− 1
⁄

3𝑥)
6
+ 2𝑥3.𝐶9

7(
3
⁄

2 𝑥
2)

2
(− 1
⁄

3𝑥)
7

= 17
⁄

54.

161. We have to find the term independent of 𝑥 in (𝑥2 + 1
⁄

𝑥3)
7
(2 − 𝑥)10.

The terms in (2 − 𝑥)10 will have terms in which powers of 𝑥 will vary from 0 to 10
increasing by 1.

We consider (𝑟 + 1)th term in (𝑥2 + 1
⁄

𝑥3)
7
.

𝑡𝑟+1 = 𝐶7
𝑟(𝑥2)7−𝑟 .(

1
⁄

𝑥3)
𝑟
. So the power of 𝑥 would be 14 − 5𝑟. We vary 𝑟 which gives

us 14, 9, 4, −1, −6, −11 for 𝑟 = 0, 1, 2, 3, 4, 5 and so on. Out of these only powers of
−1 and −6 can be neutralized by the second expansion. Thus, 𝑟 = 3, 4.

Corresponding terms in the expansion of (2 − 𝑥)10 are −𝐶10
1 29𝑥 and 𝐶10

6 24𝑥6.

Corresponding terms in the expansion of (𝑥2 + 1
⁄

𝑥3)
7

are 𝐶7
3𝑥

−1 and 𝐶7
4𝑥

−6. Now it is
trivial to obtain the final answer.

162. We have to find the term independent of 𝑥 in (1 + 𝑥 + 𝑥−2 + 𝑥−3)10. Rewriting

(1 + 𝑥 + 𝑥−2 + 𝑥−3)10 = 1⁄
𝑥30 (𝑥

3 + 𝑥4 + 𝑥 + 1) = 1⁄
𝑥30 [(1 + 𝑥)(1 + 𝑥3)]10.

Powers of 𝑥 in first expansion are 0, 1, 2, 3, … , 10 and in the second expansion are
0, 3, 6, 9, … , 30. We need to add powers such that the sum is 30. Such powers are
(0, 30), (3, 27), (6, 24), (9, 21).

Thus, the term is 𝐶10
0 𝐶10

10 + 𝐶10
3 𝐶10

9 + 𝐶10
6 𝐶10

8 + 𝐶10
9 𝐶10

7 .

163. Powers of 𝑥 would be 1, 2, 3 for 𝑎1, 𝑎2, 𝑎3 respectively as we observe from the given
series.

Now we consider (𝑟 + 1)th term of (1 + 𝑥2)2(1 + 𝑥)𝑛 = (1 + 2𝑥2 + 𝑥4)(1 + 𝑥)𝑛.

Coeff. of term containing 𝑥 would be 𝑐1 = 𝐶𝑛
1 . Coeff. of term containing 𝑥2 would

be 𝑐2 = 𝐶𝑛
2 + 2.𝐶𝑛

0 and coeff. of term containing 𝑥3 would ve 𝑐3 = 𝐶𝑛
3 + 2.𝐶𝑛

1 .
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Given that 𝑐1, 𝑐2, 𝑐3 are in A.P. ⇒ 𝐶𝑛
3 + 3𝐶𝑛

1 = 2𝐶𝑛
2 + 4

⇒ 𝑛(𝑛−1)(𝑛−2)⁄
3! + 3𝑛 = 𝑛(𝑛 − 1)+ 4 ⇒ 𝑛 = 2, 3, 4.

164. We have to show that 𝐶𝑚
1 + 𝐶𝑚+1

2 + 𝐶𝑚+2
3 + ⋯+𝐶𝑚+𝑛−1

𝑛 = 𝐶𝑛
1 + 𝐶𝑛+1

2 + 𝐶𝑛+2
3 +

⋯+ 𝐶𝑚+𝑛−1
𝑛 .

L.H.S. = 𝐶𝑚
1 + 𝐶𝑚+1

2 + 𝐶𝑚+2
3 + ⋯+ 𝐶𝑚+𝑛−1

𝑛

Adding and subtracting 𝐶𝑚
0 and applying 𝐶𝑛

𝑟 + 𝐶𝑛
𝑟+1 = 𝐶𝑛+1

𝑟+1 repeatedly

⇒ 𝐶𝑚
0 + 𝐶𝑚

1 + 𝐶𝑚+1
2 + 𝐶𝑚+2

3 + ⋯+ 𝐶𝑚+𝑛−1
𝑛

= 𝐶𝑚+1
1 + 𝐶𝑚+1

2 + 𝐶𝑚+2
3 + ⋯+ 𝐶𝑚+𝑛−1

𝑛 = 𝐶𝑚+2
2 + 𝐶𝑚+2

3 + ⋯+ 𝐶𝑚+𝑛−1
𝑛

…

= 𝐶𝑚+𝑛−1
𝑛−1 + 𝐶𝑚+𝑛−1

𝑛 = 𝐶𝑚+𝑛
𝑛

Doing similar steps, R.H.S. = 𝐶𝑚+𝑛
𝑚 and thus, L.H.S. = R.H.S.

165. We have (1 + 𝑥 + 𝑥2)𝑛 =
2𝑛
∑
𝑟=0

𝑎𝑟𝑥𝑟.

(a) Putting 𝑥 = 1
⁄

𝑥, we have (1 + 1
⁄

𝑥 +
1
⁄

𝑥2)
𝑛
=

𝑛
∑
𝑟=0

𝑎𝑟
1
⁄

𝑥𝑟

⇒ (1 + 𝑥 + 𝑥2)𝑛 =
𝑛
∑
𝑟=0

𝑎𝑟𝑥2𝑛−𝑟.

Putting 𝑟 = 2𝑛 − 𝑟 we see that 𝑎𝑟 = 𝑎2𝑛−𝑟.

(b) Putting 𝑥 = 1 gives us 3𝑛 = 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 + ⋯+ 𝑎𝑛−1 + 𝑎𝑛 + 𝑎𝑛+1 + ⋯+ 𝑎2𝑛

Using the result obtained in first section we see that 𝑎0 = 𝑎2𝑛, 𝑎1 = 𝑎2𝑛−1, … , 𝑎𝑛−1 =
𝑎𝑛+1, and thus,

2(𝑎0 + 𝑎1 + ⋯+ 𝑎𝑛1)+ 𝑎𝑛 = 3𝑛 ⇒ 𝑎0 + 𝑎1 + ⋯+ 𝑎𝑛1 =
1
⁄

2 (3
𝑛 − 𝑎𝑛)

(c) Given, (1 + 𝑥 + 𝑥2)𝑛 =
2𝑛
∑
𝑟=0

𝑎𝑟𝑥𝑟

Difference w.r.t. 𝑥 yields 𝑛(1 + 2𝑥)(1 + 𝑥 + 𝑥2)𝑛−1 =
2𝑛
∑
𝑟=0

𝑟𝑎𝑟𝑥𝑟−1

Multiplying both sides by (1 + 𝑥 + 𝑥2) yields

𝑛(1 + 2𝑥)(1 + 𝑥 + 𝑥2)𝑛 = 𝑛(1 + 2𝑥)
2𝑛
∑
𝑟=0

𝑎𝑟𝑥𝑟 = (1 + 𝑥 + 𝑥2)
2𝑛
∑
𝑟=0

𝑟𝑎𝑟𝑥𝑟−1
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Equating coefficients of 𝑥𝑟(0 < 𝑟 < 2𝑛) gives us

𝑛𝑎𝑟 + 2𝑛𝑎𝑟−1 = (𝑟 + 1)𝑎𝑟+1 + 𝑟𝑎𝑟 + (𝑟 − 1)𝑎𝑟−1 ⇒ (𝑟 + 1)𝑎𝑟+1 = (𝑛 − 𝑟)𝑎𝑟 +
(2𝑛 − 𝑟 + 1)𝑎𝑟−1.

166. Given, (1 − 𝑥3)𝑛 =
𝑛
∑
𝑟=0

𝑎𝑟.𝑥𝑟.(1 − 𝑥)3𝑛−2𝑟.

Rewriting (1−𝑥
3)𝑛
⁄

(1−𝑥)3𝑛 =
𝑛
∑
𝑟=0

𝑎𝑟.
𝑥𝑟
⁄

(1−𝑥)2𝑟

⇒ (1+𝑥+𝑥
2
⁄

(1−𝑥)2 )
𝑛
=

𝑛
∑
𝑟=0

𝑎𝑟𝛼2, where 𝛼 = 𝑥
⁄

(1−𝑥)2

⇒ (1 + 3𝛼)𝑛 =
𝑛
∑
𝑟=0

𝑎𝑟𝛼𝑟

Equating the coefficient of 𝛼𝑟 yields 𝑎𝑟 = 𝐶𝑛
𝑟 3𝑟.

167. No. of terms in the expansion of (1 + 𝑥)2𝑛 is 2𝑛 + 1, so middle term would be 𝑛 + 1.
Coefficient of this term would be 𝐶2𝑛

𝑛 .

Coefficient of 𝑥𝑛 in the expansion of (1 + 𝑥)2𝑛−1 is 𝐶2𝑛−1
𝑛 .

2.𝐶2𝑛−1
𝑛 = 2 (2𝑛−1)!⁄

𝑛!(𝑛−1)! =
2𝑛.(2𝑛−1)!
⁄

𝑛!𝑛! = (2𝑛)!⁄
𝑛!𝑛! = 𝐶2𝑛

𝑛 .

168. The middle term has the greatest coefficient. In 𝐶200
𝑟 the middle term would be 101st

term. Coefficient of 101st term is 𝐶200
100.

169. Let 𝑟 be the no. of people needed for making maximum no. of committees. So no. of
committees is 𝐶20

𝑟 . Since the middle term has the largest coefficient so 11th term willl
have largest no. of committees. Thus, no. persons chosen should be 10.

170. Let there be 𝑎 and 𝑏 permutations then 𝑎 + 𝑏 = 2𝑛. Thus, no. of permutations is 𝐶2𝑛
𝑎

and 𝐶2𝑛
2𝑛−𝑎 which are greatest when 𝑎 = 𝑏 because those will be middle terms.

171. We consider the general (𝑟 + 1)th term's coefficient, which is, 𝐶3
𝑟
7−𝑟2𝑟.

This ciefficient shoul be equal to (𝑟 + 2)th term's coefficient, which is, 𝐶7
𝑟+13

6−𝑟2𝑟+1.

Equating and solving gives us 𝑟 = 3, so 4th and 5th terms have equal coefficients.

172. Let (1 + 5𝑥2 − 7𝑥3)2000 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯+ 𝑎60006000.

Putting 𝑥 = −1, we get

𝑎0 + 𝑎1 + 𝑎2 + ⋯+ 𝑎6000 = (1 + 5 − 7)2000 = 1.

173. Given that sum of the binomial coefficients of the expansion (3
−𝑥⁄4 + 3

5𝑥⁄
4 )

𝑛

is 64.
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(1 + 1)𝑛 = 64 ⇒ 𝑛 = 6[We put 3−
𝑥
⁄

4 = 3
5𝑥
⁄

4 = 1]

Here middle term will be greatest term, which is 4th term.

According to question 𝑡4 = (𝑛 − 1)+ 𝑡3 = 5 + 𝑡3.

⇒ 𝐶6
3(3

−𝑥
⁄

4)
3
(3

5𝑥
⁄

4 )
3
= 5 + 𝐶6

2(3
−𝑥
⁄

4)
4
(3

5𝑥
⁄

4 )
2

⇒ 20.33𝑥 = 5 + 15.3
3𝑥
⁄

2 ⇒ 20𝑦2 − 15𝑦 − 5 = 0, where 𝑦 = 3
3𝑥
⁄

2

4𝑦2 − 3𝑦 − 1 = 0 ⇒ 𝑦 = 1, − 1
⁄

4 ⇒ 𝑦 = 1[∵ 𝑦 = 3
3𝑥
⁄

2 > 0]

⇒ 𝑥 = 0 ⇒ [𝛼] = 0 ⇒ 0 ≤ 𝛼 < 1.

174. Let (5𝑝 − 4𝑞)𝑛 = 𝑎0𝑝𝑛 + 𝑎1𝑝𝑛−1𝑞 + 𝑎2𝑝𝑛−2𝑞2 + ⋯ + 𝑎𝑛𝑞𝑛

Putting 𝑝 = 1, 𝑞 = 1 gives us

𝑎0 + 𝑎1 + 𝑎2 + ⋯+ 𝑎𝑛 = (5 − 4)𝑛 = 1.

175. Let (1 − 3𝑥 + 𝑥3)201 .(1 + 5𝑥 − 5𝑥2)503 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯+ 𝑎2112𝑥3520

Putting 𝑥 = 1 gives us

𝑎0 + 𝑎1 + 𝑎2 + ⋯+ 𝑎2112 = (−1)201 .1503 = −1.

176. Putting 𝑥 = 1 in (𝑡𝑥2 − 2𝑥 + 1)𝑛 we have sum of coefficients as (𝑡 − 1)𝑛. Similarly
putting 𝑥 = 1, 𝑦 = 1 in (𝑥 − 𝑡𝑦)𝑛 we have sum of coefficients as (1 − 𝑡)𝑛.

Given that sum of coefficients is equal so (𝑡 − 1)𝑛 = (−1)𝑛(𝑡 − 1)𝑛.

Consider 𝑛 to be odd; then (−1)𝑛 = −1 so there is no way these will be equal if 𝑡 − 1
is not zero. So the only possible value of (𝑡 − 1)𝑛 = 0, which gives 𝑡 = 1.

Similarly, if 𝑛 is even; then (𝑡 − 1)𝑛 = (1 − 𝑡)𝑛 for all values of 𝑛.

177. Given, (1 + 𝑥)𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯+ 𝑎𝑛𝑥𝑛

Putting 𝑥 = 1 gives us 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 + ⋯+ 𝑎𝑛 = 2𝑛

Putting 𝑥 = 𝑖 gives us (1 + 𝑖)𝑛 = 𝑎0 + 𝑎1𝑖 − 𝑎2 − 𝑎3𝑖 + ⋯ + 𝑎𝑛𝑖𝑛

Taking modulus and squaring yields

2𝑛 = (𝑎0 − 𝑎2 + 𝑎4 −…)2 + (𝑎1 − 𝑎3 + 𝑎5 −…)2.

Q.E.D.

178. Let 𝑟th term be the greatest term, which is given by 𝑡𝑟 =√


3[𝐶20
𝑟−1(

1⁄
√


3)
𝑟−1

]. Similarly

𝑡𝑟+1 = √


3[𝐶20
𝑟 ( 1⁄

√


3)
𝑟
]
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𝑡𝑟
⁄

𝑡𝑟+1 =
𝐶2
𝑟−10
⁄

𝐶20
𝑟

√


3 = 𝑟
⁄

21−𝑟√


3 ≥ 1

⇒ √


3𝑟𝑔𝑒𝑞21 − 𝑟 ⇒ 𝑟 ≥= 7.69(approximately).

Similarly 𝑡𝑟
⁄

𝑡𝑟−1 ≥ 1 ⇒ 𝑟 ≤ 8.5(approximately).

The only integer between these limits is 8. Hence, 𝑡8 = 25840
⁄

9 is the greatest term.

179. Let 𝑡𝑟 represent the 𝑟th term of the expansion of (𝑥 + 𝑎)15.

Now, 𝑡11 = 𝐶15
10𝑥

5𝑎10, 𝑡8 = 𝐶15
7 𝑥8𝑎7, and 𝑡12 = 𝐶15

11𝑥
4𝑎11

Given, that 𝑡11 is G.M. of 𝑡8 and 𝑡12, thus

(𝐶15
10𝑥

5𝑎10)2 = 𝐶15
7 𝑥8𝑎7.𝐶15

11𝑥
4𝑎11

Solving this gives us, 𝑥⁄𝑎 =√


77
⁄

75.

Let 𝑡𝑟 be the greatest term. Then 𝑡𝑟
⁄

𝑡𝑟+1 =
𝑟
⁄

16−𝑟 .
𝑥
⁄

𝑎 ≥ 1

⇒ 𝑟 ≥ 7.947 ⇒ 𝑟 = 8.

⇒ 𝑡8 = 15!
⁄

7!8! (
77
⁄

75)
4
𝑎15.

180. 𝑡𝑛+1 = 𝐶2𝑛
𝑛 𝑥𝑛, 𝑡𝑛+2 = 𝐶2𝑛

𝑛+1𝑥
𝑛+1, and 𝑡𝑛 = 𝐶2𝑛

𝑛−1𝑥
𝑛−1.

𝑡𝑛+1
⁄

𝑡𝑛+2
= 𝑛+1
⁄

𝑛 . 1⁄𝑥, and 𝑛+1⁄𝑛 𝑥.

Since 𝑡𝑛+1 is the only greatest term popssible here.

⇒ 𝑡𝑛+1
⁄

𝑡𝑛+2
> 1 ⇒ 𝑥 < 𝑛+1
⁄

𝑛 , and similarly 𝑡𝑛+1
⁄

𝑡𝑛 > 1 ⇒ 𝑥 > 𝑛
⁄

𝑛+1.

Thus, 𝑥 ∈ ( 𝑛
⁄

𝑛+1,
𝑛+1
⁄

𝑛 ), which is given as 𝑥 ∈ (10⁄11 ,
11
⁄

10), and thus 𝑛 = 10.

Given that 𝑡4 in the expansion of (𝑘𝑥 + 1
⁄

𝑥)
𝑚

is 𝑛⁄4.

𝑡4 =
𝑛
⁄

4 =
5
⁄

2 = 𝐶𝑚
3 (𝑘𝑥)

𝑚−3 . 1⁄𝑥3 ⇒ 𝐶𝑚
3 𝑘𝑚−3𝑥𝑚−6 = 5
⁄

2

Since the term is independent of 𝑥 ⇒ 𝑚 = 6 ⇒ 𝐶6
3𝑘

3 = 5
⁄

2 ⇒ 𝑘 = 1
⁄

2 ⇒ 𝑚𝑘 = 3.

181. 𝑡4 = 𝐶10
3 27(3⁄8 𝑥)

3
, 𝑡3 = 𝐶10

2 28(3⁄8 𝑥)
2
, and 𝑡5 = 𝐶10

4 26(3⁄8 𝑥)
4
.

Given that 4th term has greatest numerical value, so 𝑡4⁄𝑡3 > 1 ⇒ 2!8!
⁄

3!7!
3
⁄

16 𝑥 > 1 ⇒ 𝑥
⁄

2 > 1,
and
𝑡4
⁄

𝑡5 > 1 ⇒ 4!6!
⁄

3!7!
16
⁄

3𝑥 > 1 ⇒ 𝑥 < 64
⁄

21

⇒ 2 < 𝑥 < 64
⁄

21.
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182. Let the binomial expansion be (𝑥 + 𝑦)𝑛 and 𝑎, 𝑏, and 𝑐 be the coefficients of 𝑟th,
(𝑟 + 1)th, and (𝑟 + 2)th terms respectively. Then,

𝑎 = 𝐶𝑛
𝑟−1, 𝑏 = 𝐶𝑛

𝑟 , 𝑐 = 𝐶𝑛
𝑟+1.

Discriminant of the quadratic equation 𝑎𝑥2 + 2𝑏𝑥 + 𝑐 = 0 is 𝐷 = 4𝑏2 − 4𝑎𝑐 = 4𝑏2(1 −
𝑎
⁄

𝑏 .
𝑐⁄
𝑏)

= 4(𝐶𝑛
𝑟 )2(1 −

𝐶𝑛
𝑟−1⁄
𝐶𝑛
𝑟
. 𝐶

𝑛
𝑟+1⁄
𝐶𝑛
𝑟
) = 4(𝐶𝑛

𝑟 )2(1 −
𝑟⁄

𝑛−𝑟+1 .
𝑛−𝑟
⁄

𝑟+1)

= 4(𝐶𝑛
𝑟 )2 .

𝑛+1
⁄

(𝑛−𝑟+1)(𝑟+1) > 0.

Hence, roots of the quadratic equation are real and unequal.

183. 9𝑛 + 7 = (1 + 8)𝑛 + 7 = 𝐶𝑛
0 + 𝐶𝑛

1 .8 + 𝐶𝑛
2 .8

2 + ⋯ + 𝐶𝑛
𝑛.8𝑛 + 7

= 8(1 + 𝐶𝑛
1 + 𝐶𝑛

2 .8 + 𝐶𝑛
3 .8

2 + ⋯ + 𝐶𝑛
𝑛.8𝑛−1)

= 8.an integer.

Thus, 9𝑛 + 7 is divisible by 8.

184. For 𝑛 = 1, 32𝑛+1 + 2𝑛+2 = 33 + 23 = 27 + 8 = 35, which is divisible by 7.

Let it be true for 𝑛 = 𝑚 i.e. 32𝑚+1 + 2𝑚+2 = 7𝑘, where 𝑘 ∈ ℕ.

For 𝑛 = 𝑚 + 1, 9.32𝑚+1 + 2.2𝑚+2 = 7.32𝑚+1 + 2(32𝑚+1 + 2𝑚+2) = 7.32𝑚+1 + 7𝑘,
which is divisible by 7.

Q.E.D.

185. Let 𝐶𝑛
𝑟−1, 𝐶

𝑛
𝑟 , 𝐶𝑛

𝑟+1 be in G.P. ∴ 𝐶𝑛
𝑟⁄

𝐶𝑛
𝑟−1

= 𝐶𝑛
𝑟+1⁄
𝐶𝑛
𝑟

⇒ 𝑛−𝑟+1⁄
𝑟 = 𝑛−(𝑟+1)+1
⁄

𝑟+1 ⇒ 𝑛 = −1, which is not possible.

Let 𝐶𝑛
𝑟−1, 𝐶

𝑛
𝑟 , 𝐶𝑛

𝑟+1 be in H.P. ⇒ 2
⁄

𝐶𝑛
𝑟
= 1⁄

𝐶𝑛
𝑟−1

+ 1⁄
𝐶𝑛
𝑟+1

⇒ 2 = 𝑛−𝑟+1⁄
𝑟 + 𝑟+1
⁄

𝑛−𝑟 ⇒ (𝑛 − 2𝑟)2 + 𝑛 = 0, whihc is not possible.

186. 𝑎𝑛 = coefficient of 𝑥𝑛 in (1 + 𝑥 + 𝑥2)𝑛 = coefficient of 𝑦𝑛 in (1 + 𝑦 + 𝑦2)𝑛.

Given, (1 + 𝑥 + 𝑥2)𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯+ 𝑎2𝑛𝑥2𝑛.

Putting 𝑥 = − 1
⁄

𝑥, we get (𝑥2 − 𝑥 + 1)𝑛 = 𝑎0𝑥2𝑛 − 𝑎1𝑥2𝑛−1 + 𝑎2𝑥2𝑛−2 − ⋯+ 𝑎2𝑛

∴ 𝑎20−𝑎21+𝑎22−⋯+𝑎22𝑛 = coefficient of 𝑥2𝑛 in (1+𝑥+𝑥2)𝑛(𝑥2−𝑥+1)= (𝑥4+𝑥2+1)

= coefficient of 𝑦𝑛 in (1 + 𝑦 + 𝑦2)𝑛, where 𝑦 = 𝑥2

= 𝑎𝑛.
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187. We have (1 + 𝑥 + 𝑥2)𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯+ 𝑎2𝑛𝑥2𝑛 and we have proved
that

𝑎20 − 𝑎21 + 𝑎22 − ⋯ + 𝑎22𝑛 = 𝑎𝑛.

Putting 𝑥 = 1
⁄

𝑥, we have

(𝑥2 + 𝑥 + 1) = 𝑎0𝑥2𝑛 + 𝑎1𝑥2𝑛−1 + ⋯+ 𝑎2𝑛.

Equating the coefficients of same powers of 𝑥 gives us 𝑎0 = 𝑎2𝑛, 𝑎1 = 𝑎2𝑛−1, ⋯. This
also follows from earlier result where we proved 𝑎𝑟 = 𝑎2𝑛−𝑟.

Thus, 𝑎20 − 𝑎21 + 𝑎22 − ⋯ + (−1)𝑛−1 𝑎2𝑛−1 + (−1)𝑛 𝑎2𝑛 + (−1)𝑛+1 𝑎2𝑛+1 + ⋯+ 𝑎22𝑛 = 0

⇒ 𝑎20 − 𝑎21 + 𝑎22 − ⋯ + (−1)𝑛 𝑎2𝑛−1 =
1
⁄

2 𝑎𝑛[1 − (−1)𝑛 𝑎𝑛 ].

Q.E.D.

188. Let 𝐸 = ∑
0≤𝑖<𝑗

∑
0≤𝑗≤𝑛

(𝐶𝑖 + 𝐶𝑗)2, where 𝑖 = 0, 1, 2, … , (𝑛 − 1), and 𝑗 = 1, 2, 3, … , 𝑛

and 𝑖 < 𝑗.

𝐸 = 𝑛(𝐶2
0 + 𝐶2

1 + ⋯+ 𝐶2
𝑛)+ 2 ∑

0≤𝑖<𝑗
∑

0≤𝑗≤𝑛
𝐶𝑖𝐶𝑗

= 𝑛.𝐶2𝑛
𝑛 + [(𝐶0 + 𝐶1 + 𝐶2 +…+𝐶𝑛)2 − (𝐶2

0 + 𝐶2
1 + ⋯+ 𝐶2

𝑛)]

= 𝑛.𝐶2𝑛
𝑛 + (2𝑛)2 − 𝐶2𝑛

𝑛 = (𝑛 − 1)𝐶2𝑛
𝑛 + 22𝑛.

189. Let 𝐸 = ∑
0≤𝑖<𝑗

∑
0≤𝑗≤𝑛

(𝑖 + 𝑗)𝐶𝑖𝐶𝑗, where 𝑖 = 0, 1, 2, … , (𝑛 − 1), and 𝑗 = 1, 2, 3, … , 𝑛

and 𝑖 < 𝑗. Clearly, 𝑛 − 𝑖 = 𝑛, (𝑛 − 1), (𝑛 − 2), … , 3, 2, 1 and 𝑛 − 𝑗 = 𝑛 − 1, 𝑛 − 2, 𝑛 −
3, … , 2, 1, 0.

Thus, we see that 𝑛 − 𝑗 behaves as 𝑖 and 𝑛 − 𝑖 behaves as 𝑗.

⇒𝐸 = ∑
0≤𝑖<𝑗

∑
0≤𝑗≤𝑛

(𝑛−𝑗+𝑛−𝑖)𝐶𝑛−𝑗𝐶𝑛−𝑖 = ∑
0≤𝑖<𝑗

∑
0≤𝑗≤𝑛

[2𝑛− (𝑖+ 𝑗)]𝐶𝑖𝐶𝑗[∵𝐶𝑟 =

𝐶𝑛−𝑟 ]

= 2𝑛. ∑
0≤𝑖<𝑗

∑
0≤𝑗≤𝑛

𝐶𝑖𝐶𝑗 − 𝐸 ⇒ 2𝐸 = 2𝑛 ∑
0≤𝑖<𝑗

∑
0≤𝑗≤𝑛

𝐶𝑖𝐶𝑗

𝐸 = 𝑛
⁄

2 [(𝐶0 + 𝐶1 + ⋯+ 𝐶𝑛)2 − (𝐶2
0 + 𝐶2

1 + ⋯+ 𝐶2
𝑛)] =

𝑛
⁄

2 (2
2𝑛 − 𝐶2𝑛

𝑛 ).

190. L.H.S. = 𝑛!
⁄

(𝑚+𝑛)! [
(𝑚+𝑛)!
⁄

𝑚!𝑛! 𝐶0 + 𝑛(𝑚+𝑛)!
⁄

(𝑚+1)!𝑛! 𝐶1 + ⋯ + 𝑛!(𝑚+𝑛)!
⁄

(𝑚+𝑛)!𝑛! 𝐶𝑛]

= 𝑛!
⁄

(𝑚+𝑛)! [𝐶
𝑚+𝑛
𝑛 𝐶𝑛

0 + 𝐶𝑚+𝑛
𝑛−1 𝐶𝑛

1 + ⋯+ 𝐶𝑚+𝑛
0 𝐶𝑛

𝑛 ]

We know that (1 + 𝑥)𝑚+𝑛 = 𝐶𝑚+𝑛
0 + 𝐶𝑚+𝑛

1 𝑥 + 𝐶𝑚+𝑛
2 𝑥2 + ⋯+ 𝐶𝑚+𝑛

𝑚+𝑛𝑥𝑚+𝑛

and (1 + 𝑥)𝑛 = 𝐶𝑛
0 + 𝐶𝑛

1 𝑥 + 𝐶𝑛
2 𝑥

2 + ⋯+ 𝐶𝑛
𝑛𝑥𝑛
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Coefficient of 𝑥𝑛 in (1 + 𝑥)𝑚+𝑛(1 + 𝑥)𝑛 = 𝐶𝑚+𝑛
𝑛 𝐶𝑛

0 + 𝐶𝑚+𝑛
𝑛−1 𝐶𝑛

1 + ⋯+ 𝐶𝑚+𝑛
0 𝐶𝑛

𝑛 =
𝐶𝑚+2𝑛
𝑛

∴ L.H.S. = 𝑛!
⁄

(𝑚+𝑛)! 𝐶
𝑚+2𝑛
𝑛 = (𝑚+2𝑛)!
⁄

(𝑚+𝑛)!(𝑚+𝑛)! = R.H.S.

191. 𝑟th factor of (𝐶0 + 𝐶1)(𝐶1 + 𝐶2)(𝐶2 + 𝐶3)⋯ (𝐶𝑛−1 + 𝐶𝑛) is given by

𝑡𝑟 = 𝐶𝑟−1 + 𝐶𝑟 = 𝐶𝑛+1
𝑟 = 𝑛+1
⁄

𝑟 .𝐶𝑟−1.

Now, (𝐶0 + 𝐶1)(𝐶1 + 𝐶2)(𝐶2 + 𝐶3)⋯ (𝐶𝑛−1 + 𝐶𝑛) = 𝑡1.𝑡2.𝑡3 … 𝑡𝑛

= (𝑛+1⁄1 𝐶0)(𝑛+1⁄2 𝐶1)(𝑛+1⁄3 𝐶2)⋯ (𝑛+1⁄𝑛 𝐶𝑛−1)

= (𝑛+1)𝑛⁄
𝑛! 𝐶1𝐶2 …𝐶𝑛.

192. L.H.S. = 1⁄
𝑛! [

𝑛!⁄
1!(𝑛−1)! +

𝑛!⁄
3!(𝑛−3)! +

𝑛!⁄
5!(𝑛−5)! + ⋯ + 𝑛!⁄

(𝑛−1)!1!]

= 1⁄
𝑛! (𝐶1 + 𝐶3 + 𝐶5 + ⋯+ 𝐶𝑛−1) = 2𝑛−1

⁄

𝑛! .

193. R.H.S. =
𝑛
∑
𝑟=0

(−1)𝑟 𝐶𝑛
𝑟⁄

𝐶𝑟+3
𝑟

=
𝑛
∑
𝑟=0

(−1)𝑟 𝑛!
⁄

𝑟!(𝑛−𝑟)! .
𝑟!3!
⁄

(𝑟+3)!

= 3!
𝑛
∑
𝑟=0

(−1)𝑟 𝑛!
⁄

(𝑛−𝑟)!(𝑟+3)! =
3!⁄

(𝑛+1)(𝑛+2)(𝑛+3)

𝑛
∑
𝑟=0

(−1)𝑟 (𝑛+3)!
⁄

(𝑟+3)!(𝑛−𝑟)!

= 3!⁄
(𝑛+1)(𝑛+2)(𝑛+3)

𝑛
∑
𝑟=0

(−1)𝑟 𝐶𝑛+3
𝑟+3

= 3!⁄
(𝑛+1)(𝑛+2)(𝑛+3) [𝐶

𝑛+3
3 − 𝐶𝑛+3

4 + 𝐶𝑛+3
5 − ⋯+ (−1)𝑛𝐶𝑛+3

𝑟+3 ]

∵𝐶𝑛+3
0 − 𝐶𝑛+3

1 + 𝐶𝑛+3
2 − 𝐶𝑛+3

3 + ⋯+ (−1)𝑛+3𝐶𝑛+3
𝑛+3 = (1 − 1)𝑛+3 = 0

⇒ 𝐶𝑛+3
3 − 𝐶𝑛+3

4 + 𝐶𝑛+3
5 − ⋯+ (−1)𝑛𝐶𝑛+3

𝑟+3 = 𝐶𝑛+3
0 − 𝐶𝑛+3

1 + 𝐶𝑛+3
2 .

⇒ 3!⁄
(𝑛+1)(𝑛+2)(𝑛+3) [𝐶

𝑛+3
3 −𝐶𝑛+3

4 +𝐶𝑛+3
5 −⋯+(−1)𝑛𝐶𝑛+3

𝑟+3 ]=
3!⁄

(𝑛+1)(𝑛+2)(𝑛+3) [1−

(𝑛 + 3)+ (𝑛+3)(𝑛+2)
⁄

2 ] = 3!⁄
2(𝑛+3).

194. 𝐶𝑛
0 = 𝐶𝑛−1

0 , −𝐶𝑛
1 = −𝐶𝑛−1

0 − 𝐶𝑛−1
1 , 𝐶𝑛

2 = 𝐶𝑛−1
1 + 𝐶𝑛−1

2 , … , (−1)𝑚−1𝐶𝑛
𝑚−1 =

(−1)𝑚−1𝐶𝑛−1
𝑚−2 + (−1)𝑚−1𝐶𝑛−1

𝑚−1

Adding gives us

𝐶0 − 𝐶1 + 𝐶2 − ⋯ + (−1)𝑚−1𝐶𝑚−1 = (−1)𝑚−1𝐶𝑛−1
𝑚−1 = (−1)𝑚−1 (𝑛−1)!
⁄

(𝑚−1)!(𝑛−𝑚)! =

(−1)𝑚−1 (𝑛−1)(𝑛−2)⋯(𝑛−𝑚+1)
⁄

(𝑚−1)! .
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195. Let 𝑑 be the common divisor of 𝐶2𝑛
1 , 𝐶2𝑛

3 , 𝐶2𝑛
5 , … , 𝐶2𝑛

2𝑛−1.

We know that 𝐶2𝑛
1 + 𝐶2𝑛

3 + 𝐶2𝑛
5 + ⋯+ 𝐶2𝑛

2𝑛−1 = 22𝑛−1.

Thus, because 𝑑 is a common divisor so it will have a form of 2𝑘 because it has to
divide 22𝑛−1. Thus, 0 < 𝑘 ≤ 2𝑛 − 1.

Let 𝑛 = 2𝑚.𝑟, where 𝑟 is an odd positive integer. ⇒ 2𝑛 = 2𝑚+1.𝑟 ⇒ 𝐶2𝑛
1 = 2𝑛 = 2𝑚+1.𝑟

Thus, common divisor ≤ 2𝑚+1. We claim that 2𝑚+1 divides all of
𝐶2𝑛
1 , 𝐶2𝑛

3 , 𝐶2𝑛
5 , … , 𝐶2𝑛

2𝑛−1.

For odd positive integer 𝑝, 𝐶2𝑛
𝑝 = 2𝑛⁄

𝑝 𝐶2𝑛−1
𝑝−1 = 2𝑚+1𝑟
⁄

𝑝 𝐶2𝑛−1
𝑝−1 = 2𝑚+1(𝑟.𝐶

2𝑛−1
𝑝−1
⁄

𝑝 ).

196. 2
𝑛
∑
𝑟=0

𝐶𝑛
𝑟 . sin 𝑟𝑥 cos(𝑛−𝑟)𝑥 = (𝐶𝑛

0 sin 0𝑥 cos 𝑛𝑥+𝐶𝑛
𝑛 sin 𝑛𝑥 cos 0𝑥)+(𝐶𝑛

1 sin 𝑥 cos(𝑛−

1)𝑥 + 𝐶𝑛
𝑛−1 sin(𝑛 − 1)𝑥 cos 𝑥)+⋯+ (𝐶𝑛

𝑛 sin 𝑛𝑥 cos 0𝑥 + 𝐶𝑛
0 sin 0𝑥 cos 𝑛𝑥)

= (𝐶0 + 𝐶1 + 𝐶2 + ⋯+ 𝐶𝑛) sin 𝑛𝑥 = 2𝑛 sin 𝑛𝑥

⇒
𝑛
∑
𝑟=0

𝐶𝑛
𝑟 . sin 𝑟𝑥 cos(𝑛 − 𝑟)𝑥 = 2𝑛−1 sin 𝑛𝑥.

197. We have proven earlier that 𝐶1 + 2𝐶2 + 3𝐶3 + ⋯+ 𝑛𝐶𝑛 = 𝑛.2𝑛−1.

Rewriting 𝑎.𝐶0 + (𝑎 − 𝑏) .𝐶1 + (𝑎 − 2𝑏) .𝐶2 + ⋯ + (𝑎 − 𝑛𝑏) .𝐶𝑛 = 𝑎(𝐶0 + 𝐶1 + 𝐶2 +
⋯+ 𝐶𝑛)− 𝑏(𝐶1 + 2𝐶2 + 3𝐶3 + ⋯+ 𝑛𝐶𝑛)

= 𝑎.2𝑛 − 𝑏𝑛2𝑛−1 = 2𝑛−1(2𝑎 − 𝑛𝑏).

198. Given, 𝑎2.𝐶0 − (𝑎 − 1)2 .𝐶1 + (𝑎 − 2)2 .𝐶2 − ⋯+ (−1)𝑛(𝑎 − 𝑛)2 .𝐶𝑛 = 0, 𝑛 > 3.

= 𝑎2[𝐶0 − 𝐶1 + 𝐶2 −⋯+ (−1)𝑛𝐶𝑛 ]+ 2𝑎[𝐶1 − 2𝐶2 + 3𝐶3 −⋯+ (−1)𝑛𝐶𝑛 ]− [𝐶1 −
22𝐶2 + 32𝐶3 − ⋯]

All three series' have been proven equal to zero earlier, and thus, sum is zero.

199. Given that 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛 form an A.P. Let 𝑑 be the common difference of this A.P.
Then

𝑎1 = 𝑎0 + 𝑑, 𝑎2 = 𝑎0 + 2𝑑, … , 𝑎𝑛 = 𝑎0 + 𝑛𝑑.

We have to prove that 𝑎0 − 𝑎1.𝐶1 + 𝑎2𝐶2 − ⋯+ (−1)𝑛 𝑎𝑛𝐶𝑛 = 0

L.H.S. = 𝑎0 − (𝑎0 + 𝑑)𝐶1 + (𝑎0 + 2𝑑)𝐶2 − ⋯+ (−1)𝑛(𝑎0 + 𝑛𝑑)𝐶𝑛

= 𝑎0(𝐶0 − 𝐶1 + 𝐶2 − ⋯+ (−1)𝑛𝐶𝑛)− 𝑑(𝐶1 − 2𝐶2 + ⋯− (−1)𝑛𝑛𝐶𝑛)

We have proven the two series in question equal to be zero. Q.E.D.

200. We have to prove that 
𝑛
∑
𝑟=0

(−1)𝑟 (𝑎 − 𝑟) (𝑏 − 𝑟)𝐶𝑟 = 0.
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𝑛
∑
𝑟=0

(−1)𝑟 (𝑎 − 𝑟) (𝑏 − 𝑟)𝐶𝑟 =
𝑛
∑
𝑟=0

(−1)𝑟 [𝑎𝑏 − (𝑎 + 𝑏)𝑟 + 𝑟2 ]𝐶𝑟

This will lead to three series [𝐶0 − 𝐶1 + 𝐶2 − ⋯ + (−1)𝑛𝐶𝑛], [𝐶1 − 2𝐶2 − ⋯ +
(−1)𝑛𝑛𝐶𝑛 ] and [𝐶1 − 22𝐶2 + 32𝐶3 − ⋯+ (−1)𝑛𝑛2𝐶𝑛 ].

We have proven the three series in question equal to be zero. Q.E.D.

201. We have to prove that 
𝑛
∑
𝑟=0

(−1)𝑟 (𝑎 − 𝑟) (𝑏 − 𝑟) (𝑐 − 𝑟)𝐶𝑟 = 0.

⇒
𝑛
∑
𝑟=0

(−1)𝑟 (𝑎 − 𝑟) (𝑏 − 𝑟) (𝑐 − 𝑟)𝐶𝑟 = 0 =
𝑛
∑
𝑟=0

(−1)𝑟 [𝑎𝑏𝑐 − (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)𝑟 + (𝑎2 +

𝑏2 + 𝑐2)𝑟2 − 𝑟3 ]𝐶𝑟 = 0.

Out of these four series first three have been proven to be equal to zero. Now we will

prove that 
𝑛
∑
𝑟=0

(−1)𝑟 𝑟3𝐶𝑟 = 0.

Consider (1 − 𝑥)𝑛 = 𝐶0 − 𝐶1𝑥 + 𝐶2𝑥2 − ⋯+ (−1)𝑛𝐶𝑛𝑥𝑛

Differentiating w.r.t. 𝑥 gives us

−𝑛(1 − 𝑥)𝑛−1 = −𝐶1 + 2𝐶2𝑥 − 3𝐶3𝑥2 + ⋯+ (−1)𝑛𝑛𝐶𝑛𝑥𝑛−1

Now we multiply with 𝑥 and differentiate again to get

−𝑛(1 − 𝑥)𝑛−1 + 𝑛(𝑛 − 1)𝑥(1 − 𝑥)𝑛−2 = −𝐶1 + 22𝐶2𝑥 − 32𝐶3𝑥2 + ⋯ +
(−1)𝑛𝑛2𝐶𝑛𝑥𝑛−1

Repeating previous step and putting 𝑥 = 1 gives us

−𝐶1 + 23𝐶2 − 33𝐶3 + ⋯+ (−1)𝑛𝑛3𝐶𝑛 = 0. Q.E.D.

202. We have to prove that 𝐶0⁄
2𝑛 +

2.𝐶1⁄
2𝑛 + ⋯ + (𝑛+1)𝐶𝑛⁄

2𝑛 = 16.

Earlier we have proven that 𝐶0 + 2𝐶1 + 3𝐶2 + ⋯+ (𝑛 + 1)𝐶𝑛 = (𝑛 + 2)2𝑛−1

Substituting this result gives us

𝑛+2
⁄

2 = 16 ⇒ 𝑛 = 30.

203. Clearly, 𝑎2 = 𝑎1+𝑑, 𝑎3 = 𝑎1+2𝑑,… , 𝑎𝑛+1 = 𝑎1+𝑛𝑑, where 𝑑 is the common difference
of the A.P.

We have to prove that 
𝑛
∑
𝑘=0

𝑎𝑘+1𝐶𝑘 = 2𝑛−1(𝑎1 + 𝑎𝑛+1).

L.H.S. = 𝑎1𝐶0 + 𝑎2𝐶1 + 𝑎3𝐶2 + ⋯ + 𝑎𝑛+1𝐶𝑛 = 𝑎1(𝐶0 + 𝐶1 + 𝐶2 + ⋯ + 𝐶𝑛) +
𝑑(𝐶1 + 2𝐶2 + ⋯+ 𝑛𝐶𝑛) = 𝑎1.2𝑛 + 𝑑.𝑛.2𝑛−1

= 2𝑛−1(2𝑎1 + 𝑛𝑑) = 2𝑛−1(𝑎1 + 𝑎𝑛+1) = R.H.S.
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204. 𝑆 = 𝑎 + (𝑎 + 𝑑)𝐶1 + (𝑎 + 2𝑑)𝐶2 + ⋯+ (𝑎 + 𝑛𝑑)𝐶𝑛 = 𝑎(𝐶0 + 𝐶1 + 𝐶2 + ⋯+ 𝐶𝑛)+
𝑑(𝐶1 + 2𝐶2 + ⋯+ 𝑛𝐶𝑛) = 𝑎.2𝑛 + 𝑑.𝑛.2𝑛−1 = 2𝑛−1[2𝑎 + 𝑛𝑑] = 2𝑛 2𝑎+𝑛𝑑

⁄

2 = 2𝑛. 𝑠
⁄

𝑛+1

⇒ (𝑛 + 1)𝑆 = 2𝑛.𝑠

205. Given that (1 + 𝑥 + 𝑥2 + ⋯+ 𝑥𝑝)𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯+ 𝑎𝑛𝑝𝑥𝑛𝑝

Differentiating w.r.t. 𝑥 and putting 𝑥 = 1 gives us

𝑛(1 + 2 + 3 + ⋯+ 𝑝)(𝑝 + 1)𝑛−1 = 𝑎1 + 2𝑎2 + 3𝑎3 + ⋯+ 𝑛𝑝𝑎𝑛𝑝

⇒ 1
⁄

2 𝑛𝑝(𝑝 + 1)𝑛 = 𝑎1 + 2𝑎2 + 3𝑎3 + ⋯+ 𝑛𝑝𝑎𝑛𝑝.

206. We have to prove that 
15
∑
𝑘=0

𝐶15
𝑘⁄

(𝑘+1)(𝑘+2) =
217−18⁄
16.17 .

Consider (1 + 𝑥)15 = 𝐶15
0 + 𝐶15

1 𝑥 + 𝐶15
2 𝑥2 + ⋯ + 𝐶15

15𝑥
15

Integrating w.r.t. 𝑥 with limits 0 and 𝑥 gives us

[(1+𝑥)
16
⁄

16 ]
𝑥

0
= [𝐶15

0 + 𝐶15
1
⁄

2 𝑥2 + ⋯ + 𝐶15
15𝑥16
⁄

16 ]
𝑥

0

⇒ (1+𝑥)16
⁄

16 − 1
⁄

16 = 𝐶15
0 + 𝐶15

1
⁄

2 𝑥2 + ⋯ + 𝐶15
15𝑥16
⁄

16

Integrating again w.r.t. 𝑥 with limits 0 and 1 we get
15
∑
𝑘=0

𝐶15
𝑘⁄

(𝑘+1)(𝑘+2) = [(1+𝑥)
17
⁄

16.17 − 𝑥
⁄

16]
1

0

= 217
⁄

16.17 −
1
⁄

16.17 −
1
⁄

16 =
217−18⁄
16.17 .

Q.E.D.

207. (1 − 𝑥)𝑛 = 𝐶0 − 𝐶1𝑥 + 𝐶2𝑥2 − ⋯+ (−1)𝑛𝐶𝑛𝑥𝑛

Substituting 𝑥 = 𝑥3, we have

(1 − 𝑥3)𝑛 = 𝐶0 − 𝐶1𝑥3 + 𝐶2𝑥6 − ⋯+ (−1)𝑛𝐶𝑛𝑥3𝑛

Integrating within the limits of 0 and 1, we deduce

[𝐶0𝑥 − 𝐶1
𝑥4
⁄

4 + 𝐶2. 𝑥
7
⁄

7 − ⋯ + (−1)𝑛𝐶𝑛
𝑥3𝑛+1
⁄

3𝑛+1] = ∫
1

0
(1 − 𝑥3)𝑛 𝑑𝑥

Now we will evaluate the R.H.S. Let 𝐼𝑛 =∫
𝑛

0
(1−𝑥3)𝑛𝑑𝑥 = [𝑥(1−𝑥3)𝑛]10−∫

1

0
𝑥.𝑛(1−

𝑥3)𝑛−1 .(−3𝑥2)𝑑𝑥

= −3𝑛∫
1

0
(1 − 𝑥3)𝑛−1 (1 − 𝑥3 − 1)𝑑𝑥 = −3𝑛𝐼𝑛 + 3𝑛𝐼𝑛−1 ⇒

𝐼𝑛⁄
𝐼𝑛−1

= 3𝑛
⁄

3𝑛+1
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Now, 𝐼𝑛⁄𝐼0 =
𝐼𝑛⁄
𝐼𝑛−1

. 𝐼𝑛−1⁄
𝐼𝑛−1

⋯ 𝐼3
⁄

𝐼2 .
𝐼2
⁄

𝐼1 .
𝐼1
⁄

𝐼0

= 3𝑛
⁄

3𝑛+1 .
3𝑛−3
⁄

3𝑛−2 .
3𝑛−6
⁄

3𝑛−5⋯
3
⁄

4 =
3𝑛.𝑛!
⁄

4.7.⋯(3𝑛+1).

208. We have proven earlier that 𝐶0
⁄

1.2 −
𝐶1
⁄

2.3 +
𝐶2
⁄

3.4 − ⋯ + (−1)𝑛 𝐶𝑛
⁄

(𝑛+1)(𝑛+2) =
1
⁄

𝑛+2.

Thus, 
𝑛
∑
𝑟=0

(−1)𝑟𝐶𝑟⁄
(𝑟+1)(𝑟+2) =

1
⁄

𝑛+2.

209. We have to prove that 
𝑛
∑
𝑟=0

𝐶𝑟.3𝑟+3⁄
(𝑟+1)(𝑟+2)(𝑟+3) =

4𝑛+3−1−3
⁄

2(𝑛+3)(3𝑛+8)⁄
(𝑛+1)(𝑛+2)(𝑛+3) .

(1 + 𝑥)𝑛 = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + ⋯+ 𝐶𝑛𝑥𝑛

Integrating within limits 0 and 𝑥 gives us

(1+𝑥)𝑛+1
⁄

𝑛+1 − 1
⁄

𝑛+1 = 𝐶0𝑥 + 𝐶1⁄
2 𝑥2 + 𝐶2⁄

3 𝑥3 + ⋯ + 𝐶𝑛
⁄

𝑛+1 𝑥
𝑛+1

Integrating again with limits 0 and 𝑥 gives us

(1+𝑥)𝑛+2
⁄

(𝑛+1)(𝑛+2)−
1
⁄

(𝑛+1)(𝑛+2)−
𝑥
⁄

𝑛+1 =
𝐶0⁄
2 𝑥2 + 𝐶1
⁄

2.3 𝑥
3 + 𝐶2
⁄

3.4 𝑥
4 + ⋯ + 𝐶𝑛
⁄

(𝑛+1)(𝑛+2)𝑥
𝑛+2

Integrating again with limits 0 and 3 gives us

4𝑛+3⁄
(𝑛+1)(𝑛+2)(𝑛+3)−

1⁄
(𝑛+1)(𝑛+2)(𝑛+3)−

3
⁄

(𝑛+1)(𝑛+2)−
9⁄

2(𝑛+1) =
𝑛
∑
𝑟=0

𝐶𝑟.3𝑟+3⁄
(𝑟+1)(𝑟+2)(𝑟+3)

𝑛
∑
𝑟=0

𝐶𝑟.3𝑟+3⁄
(𝑟+1)(𝑟+2)(𝑟+3) =

4𝑛+3−1−3
⁄

2(𝑛+3)(3𝑛+8)⁄
(𝑛+1)(𝑛+2)(𝑛+3) .

210. (1 + 𝑥)𝑛 = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + ⋯+ 𝐶𝑛𝑥𝑛

Integrating within limits 0 and 𝑥 gives us

(1+𝑥)𝑛+1
⁄

𝑛+1 − 1
⁄

𝑛+1 = 𝐶0𝑥 + 𝐶1⁄
2 𝑥2 + 𝐶2⁄

3 𝑥3 + ⋯ + 𝐶𝑛
⁄

𝑛+1 𝑥
𝑛+1

Multiplying with 𝑥 and differentiang w.r.t. 𝑥 gives us

(1+𝑥)𝑛+1+(𝑛+1)𝑥(1+𝑥)𝑛
⁄

𝑛+1 − 1
⁄

𝑛+1 = 2𝐶0𝑥 + 3
⁄

2𝐶1𝑥2 + 4
⁄

3𝐶2𝑥3 + ⋯+ 𝑛+2
⁄

𝑛+1𝐶𝑛𝑥𝑛+1

Putting 𝑥 = 1 gives us
𝑛
∑
𝑟=0

𝑟+2
⁄

𝑟+1𝐶𝑟 =
2𝑛(𝑛+3)−1⁄

𝑛+1 .

211. Proceeding like previous to previous problem and adjusting last step with integration
between 0 and 𝑥 and integrating once more for the fourth time and putting 𝑥 = 3
we get the desired result.
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212. (1+𝑥)𝑛 = 𝐶0+𝐶1𝑥+𝐶2𝑥2+⋯+𝐶𝑛𝑥𝑛 and (𝑥+1)𝑛 = 𝐶0𝑥𝑛+𝐶1𝑥𝑛−1+𝐶2𝑥𝑛−2+
⋯+ 𝐶𝑛

Multiplying and equating the power of 𝑥𝑛−3 gives us

𝐶0𝐶3 + 𝐶1𝐶4 + 𝐶2𝐶5 + ⋯+ 𝐶𝑛−3𝐶𝑛 = coefficient of 𝑥𝑛−3 in (1 + 𝑥)2𝑛

⇒
𝑛−3
∑
𝑟=0

𝐶𝑟𝐶𝑟+3 =
(2𝑛)!⁄

(𝑛+3)!(𝑛−3)!.

213. We have to find ∑
0≤𝑖<𝑗

∑
0≤𝑗≤𝑛

𝐶𝑖𝐶𝑗.

(∑𝐶𝑘)
2
=∑𝐶2

𝑘 + 2 ∑
0≤𝑖<𝑗

∑
0≤𝑗≤𝑛

𝐶𝑖𝐶𝑗.

We know that (∑𝐶𝑘)
2 = (2𝑛)2 = 22𝑛 and ∑𝐶2

𝑘 =
2𝑛!
⁄

𝑛!𝑛!

∴ ∑
0≤𝑖<𝑗

∑
0≤𝑗≤𝑛

𝐶𝑖𝐶𝑗 = 22𝑛−1 − (2𝑛−1)!⁄
𝑛!(𝑛−1)!.

214. Given that 𝑆𝑛 = 𝐶0𝐶1 + 𝐶1𝐶2 + ⋯+ 𝐶𝑛−1𝐶𝑛.

(1+𝑥)𝑛 = 𝐶0+𝐶1𝑥+𝐶2𝑥2+⋯+𝐶𝑛𝑥𝑛 and (𝑥+1)𝑛 = 𝐶0𝑥𝑛+𝐶1𝑥𝑛−1+𝐶2𝑥𝑛−2+
⋯+ 𝐶𝑛

Multiplying and equating power of 𝑥𝑛−1 gives us

𝑆𝑛 = 𝐶0𝐶1 + 𝐶1𝐶2 + ⋯+ 𝐶𝑛−1𝐶𝑛 = coefficient of 𝑥𝑛−1 in (1 + 𝑥)2𝑛 = 𝐶2𝑛
𝑛−1

⇒ 𝑆𝑛+1⁄
𝑆𝑛

= (2𝑛+2)!⁄
𝑛!(𝑛+2)! .

(𝑛−1)!(𝑛+1)!⁄
(2𝑛)! = (2𝑛+2)(2𝑛+1)
⁄

𝑛(𝑛+2) = 15
⁄

4 ⇒ 𝑛 = 2, 4.

215. (1+𝑥)𝑛 = 𝐶0+𝐶1𝑥+𝐶2𝑥2+⋯+𝐶𝑛𝑥𝑛 and (𝑥+1)𝑛 = 𝐶0𝑥𝑛+𝐶1𝑥𝑛−1+𝐶2𝑥𝑛−2+
⋯+ 𝐶𝑛.

Multiplying first equation with 𝑥 and differentiating first equation w.r.t. 𝑥 gives us

(1 + 𝑥)𝑛 + 𝑛𝑥(1 + 𝑥)𝑛−1 = 𝐶0 + 2𝐶1𝑥 + 3𝐶2𝑥2 + ⋯+ (𝑛 + 1)𝐶𝑛𝑥𝑛.

Multiplying this with second equation and then equating coefficient of 𝑥𝑛 gives us

𝐶2
0 + 2.𝐶2

1 + 3.𝐶2
2 + ⋯+ (𝑛 + 1)𝐶2

𝑛 = coefficient of 𝑥𝑛 in (1 + 𝑥)2𝑛 + 𝑛𝑥(1 + 𝑥)2𝑛−1

= 𝐶2𝑛
𝑛 + 𝑛.𝐶2𝑛−1

𝑛−1 = (𝑛+2)(2𝑛−1)!⁄
𝑛!(𝑛−1)! .

216. We have 𝑥𝑛(2 + 𝑥)𝑛 = (2𝑥 + 𝑥2)𝑛 = [(𝑥 + 1)2 − 1]𝑛

⇒ 𝑥𝑛(2𝑛+𝐶𝑛
1 .2

𝑛−1+⋯+𝐶𝑛
𝑛𝑥𝑛)= 𝐶𝑛

0 (𝑥+1)2𝑛−𝐶𝑛
1 (𝑥+1)2𝑛−2+𝐶𝑛

2 (𝑥+1)2𝑛−4−
⋯

Equating coefficients of 𝑥𝑛 gives us
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𝐶0.𝐶2𝑛
𝑛 − 𝐶1.𝐶2𝑛−2

𝑛 + 𝐶2.𝐶2𝑛−4
𝑛 − ⋯ = 2𝑛.

217. We have to find ∑
0≤𝑖≤𝑗

∑
0≤𝑗≤𝑛

(𝑖 + 𝑗) (𝐶𝑖 + 𝐶𝑗 + 𝐶𝑖𝐶𝑗).

Earlier we have proven that ∑
0≤𝑖≤𝑗

∑
0≤𝑗≤𝑛

(𝑖 + 𝑗) (𝐶𝑖𝐶𝑗) =
𝑛
⁄

2 (2
2𝑛1 − 2𝑛!
⁄

(𝑛!)2)

Now ∑
0≤𝑖≤𝑗

∑
0≤𝑗≤𝑛

(𝑖 + 𝑗) (𝐶𝑖 + 𝐶𝑗) we proceed similarly to get

∑
0≤𝑖≤𝑗

∑
0≤𝑗≤𝑛

(𝑖 + 𝑗) (𝐶𝑖 + 𝐶𝑗) = ∑
0≤𝑖≤𝑗

∑
0≤𝑗≤𝑛

(2𝑛 − 𝑖 − 𝑗) (𝐶𝑖 + 𝐶𝑗) = 𝐸

⇒ 2𝐸 = ∑0≤𝑖≤𝑗∑0≤𝑗≤𝑛 2𝑛(𝐶𝑖 + 𝐶𝑗) = 2𝑛∑0≤𝑗≤𝑛[(𝐶0 + 𝐶𝑗)+ (𝐶1 + 𝐶𝑗)+⋯+
(𝐶𝑗−1 + 𝐶𝑗)]

= 2𝑛[(2𝐶0 +𝐶1 +𝐶2+⋯+𝐶𝑛)+ (𝐶0+ 2𝐶1 +𝐶2 +⋯+𝐶𝑛)+⋯+ (𝐶0+𝐶1+⋯+
2𝐶𝑛−1)+𝐶𝑛 ]

= 2𝑛2[𝐶0 + 𝐶1 + 𝐶2 + ⋯+ 𝐶𝑛 ]⇒ 𝐸 = 𝑛2.2𝑛

218. Given that (1 + 𝑥 + 𝑥2)𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯+ 𝑎2𝑛𝑥2𝑛.

Putting 𝑥 = −𝑥 gives us (1 − 𝑥 + 𝑥2)𝑛 = 𝑎0𝑥2𝑛 − 𝑎1𝑥2𝑛−1 + 𝑎2𝑥2𝑛−2 − ⋯+ 𝑎2𝑛

Multiplying and equating coefficients of 𝑥2𝑛−2𝑟 gives us

𝑎0𝑎2𝑟 − 𝑎1𝑎2𝑟+1+ 𝑎2𝑎2𝑟+2−⋯+𝑎2𝑛−2𝑟𝑎2𝑛 = coefficient of 𝑥2𝑛−2𝑟 in (𝑥4+𝑥2+ 1)𝑛

Putting 𝑥2 = 𝑦 it is coefficient of 𝑦𝑛−2 in (1 + 𝑦 + 𝑦2) = 𝑎𝑛−𝑟.

Earlier we have proven that for the given series 𝑎𝑟 = 𝑎2𝑛−𝑟 ⇒ 𝑎𝑛−𝑟 = 𝑎𝑛+𝑟.

219. 𝑃𝑛+1⁄
𝑃𝑛

= 𝐶𝑛+1
0 .𝐶𝑛+1

1 …𝐶𝑛+1
𝑛+1
⁄

𝐶𝑛
0 .𝐶𝑛

1 …𝐶𝑛
𝑛

= 𝐶𝑛+1
0
⁄

𝐶𝑛
0
. 𝐶

𝑛+1
1
⁄

𝐶𝑛
1
.⋯𝐶𝑛+1

𝑛
⁄

𝐶𝑛
𝑛
.𝐶𝑛+1

𝑛+1

= (𝑛+1)𝑛⁄
𝑛! .

220. We have to prove that 
𝑛
∑
𝑟=1

𝑟3( 𝐶𝑟⁄
𝐶𝑟−1

)
2
= 1
⁄

12 𝑛(𝑛 + 1)2 (𝑛 + 2).

=
𝑛
∑
𝑟=1

𝑟(𝑛 + 1 − 𝑟)2 [∵ 𝐶𝑟⁄
𝐶𝑟−1

= (𝑛+1−𝑟)
⁄

𝑟 ]

which is now a trivial matter of applying summation rules.

221. We know that (1 + 𝑥)𝑛 = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + ⋯+ 𝐶𝑛. Putting 𝑥 = 1, −1 gives us

𝐶0 + 𝐶1 + 𝐶2 + ⋯+ 𝐶𝑛 = 2𝑛, and 𝐶0 − 𝐶1 + 𝐶2 − ⋯+ (−1)𝑛𝐶𝑛 = 0
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Adding and subtracting previous two equations gives us

𝐶0 + 𝐶2 + 𝐶4 + ⋯ = 2𝑛−1, and 𝐶1 + 𝐶3 + 𝐶5 + ⋯ = 2𝑛−1.

Putting 𝑥 = 𝑖 gives us

(𝐶0 − 𝐶2 + 𝐶4 − 𝐶6 + ⋯)+ 𝑖(𝐶1 − 𝐶3 + 𝐶5 − 𝐶7 + ⋯) = 2𝑛/2(cos 𝑛𝜋⁄4 + 𝑖 sin 𝑛𝜋⁄
4 )

Equating imaginary parts gives us

𝐶1 − 𝐶3 + 𝐶5 − 𝐶7 + ⋯ = 2𝑛/2 sin 𝑛𝜋⁄
4

⇒ 𝐶3 + 𝐶7 + 𝐶11 + … = 1
⁄

2 [2
𝑛−1 − 2𝑛/2 sin 𝑛𝜋⁄

4 ].

222. We have (1 + 𝑥 + 𝑥2)20 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ = 𝑎40𝑥40.

Putting 𝑥 = 1 gives us

𝑎0 + 𝑎1 + 𝑎2 + ⋯+ 𝑎40 = 420 = 240

Putting 𝑥 = −1 gives us

𝑎0 − 𝑎1 + 𝑎2 − 𝑎3 + ⋯+ 𝑎40 = 220

Adding gives us

𝑎0 + 𝑎2 + 𝑎4 + ⋯+ 𝑎40 = 239 + 219

Clearly, 𝑎40 = 220 ⇒ 𝑎0 + 𝑎2 + 𝑎4 + ⋯+ 𝑎38 = 239 + 219 − 220 = 219(220 − 1)

223. We have (1 + 𝑥 + 𝑥2)20 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ = 𝑎40𝑥40.

Putting 𝑥 = 1 gives us

𝑎0 + 𝑎1 + 𝑎2 + ⋯+ 𝑎40 = 420 = 240

Putting 𝑥 = −1 gives us

𝑎0 − 𝑎1 + 𝑎2 − 𝑎3 + ⋯+ 𝑎40 = 220

Subtracting gives us

𝑎1 + 𝑎3 + 𝑎5 + ⋯+ 𝑎39 = 240 − 220

Now 𝑎39 = coefficient of 𝑥39 in (1 + 𝑥 + 2𝑥2)20

= coefficient of 𝑥39 in [1 + 𝑥(1 + 2𝑥)]20 = 𝐶20
20𝑥

20(1 + 2𝑥)20

= coefficient of 𝑥19 in (1 + 2𝑥)20 = 20 × 219

⇒ 𝑎1 + 𝑎3 + 𝑎5 + ⋯+ 𝑎37 = 219(220 − 21).
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224. 1 − 𝐶1𝑥 + 𝐶2𝑥2 − 𝐶3𝑥3 + ⋯+ (−1)𝑛𝐶𝑛𝑥𝑛 = (1 − 𝑥)𝑛

⇒ 𝐶1 − 𝐶2𝑥 + 𝐶3𝑥2 − ⋯+ (−1)𝑛−1𝐶𝑛𝑥𝑛−1 = 1−(1−𝑥)𝑛
⁄

𝑥

Integrating between the limits of 0 and 1, we arrive at

[𝐶1𝑥 − 𝐶2. 𝑥
2
⁄

2 + 𝐶3. 𝑥
3
⁄

3 − ⋯ + (−1)𝑛−1𝐶𝑛. 𝑥
𝑛⁄
𝑛 ]

1

0
= ∫

1

0

1−(1−𝑥)𝑛
⁄

𝑥 𝑑𝑥

Now ∫
1

0

1−(1−𝑥)𝑛
⁄

𝑥 𝑑𝑥 = ∫
1

0

1−𝑧𝑛⁄
1−𝑧 𝑑𝑧, where 𝑧 = 1 − 𝑥

= ∫
1

0
(1 + 𝑧 + 𝑧2 + ⋯+ 𝑧𝑛)𝑑𝑧 = 1 + 1

⁄

2 +
1
⁄

3 + ⋯ + 1
⁄

𝑛.

Now 1
⁄

𝑛(𝑛−1)+
1
⁄

𝑛 =
𝑛
⁄

𝑛(𝑛−1) ,
2
⁄

(𝑛−1)(𝑛−2)+
1
⁄

𝑛−1 =
𝑛
⁄

(𝑛−1)(𝑛−2) and so on till 𝑛−2⁄2.3 + 1
⁄

3 =
𝑛
⁄

2.3(we will have 1 and 1⁄2 left)

and 𝑛
⁄

𝑛(𝑛−1) = 𝑛[ 1
⁄

𝑛−1 −
1
⁄

𝑛],
𝑛
⁄

(𝑛−1)(𝑛−2) = 𝑛[ 1
⁄

𝑛−2 −
1
⁄

𝑛−1] and so on.

So sum would be 𝑛⁄2 −
𝑛
⁄

𝑛 + 1 + 1
⁄

2 =
𝑛+1
⁄

2 .

225. We have to prove that ∑
0≤𝑖<𝑗

∑
0≤𝑗≤𝑛

𝑖⁄
𝐶𝑖
+ 𝑗⁄

𝐶𝑗
= 𝑛2
⁄

2

𝑛
∑
𝑟=0

1⁄
𝐶𝑟

[0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛].

Let 𝑆 = ∑
0≤𝑖<𝑗

∑
0≤𝑗≤𝑛

𝑖⁄
𝐶𝑖
+ 𝑗⁄

𝐶𝑗

Replacing 𝑖 by 𝑛 − 𝑖 and 𝑗 by 𝑛 − 𝑗

𝑆 = ∑
0≤𝑖<𝑗

∑
0≤𝑗≤𝑛

𝑛−𝑖⁄
𝐶𝑛−𝑖

+ 𝑛−𝑗⁄
𝐶𝑛−𝑗

= ∑
0≤𝑖<𝑗

∑
0≤𝑗≤𝑛

𝑛−𝑖⁄
𝐶𝑖

+ 𝑛−𝑗⁄
𝐶𝑗

2𝑆 = 𝑛 ∑
0≤𝑖<𝑗

∑
0≤𝑗≤𝑛

( 1⁄
𝐶𝑖
+ 1⁄

𝐶𝑗
)

𝑆 = 𝑛
⁄

2

𝑛−1
∑
𝑟=0

𝑛−𝑟
⁄

𝐶𝑟
+

𝑛
∑
𝑟=1

𝑟⁄
𝐶𝑟

= 𝑛
⁄

2

𝑛
∑
𝑟=0

𝑛⁄
𝐶𝑟

= 𝑛2
⁄

2

𝑛
∑
𝑟=0

1⁄
𝐶𝑟

.

226. ∑
0≤𝑖<𝑗

∑
0≤𝑗≤𝑛

𝑖.𝑗.𝐶𝑖.𝐶𝑗 = ∑
0≤𝑖<𝑗

∑
0≤𝑗≤𝑛

(𝑖. 𝑛⁄𝑖 .𝐶
𝑛−1
𝑖−1 )(𝑗.

𝑛
⁄

𝑗 .𝐶
𝑛−1
𝑗−1 )

= 𝑛2
⁄

2 [2
2𝑛−1 − 𝐶2𝑛−1

𝑛−1 ] (using result obtained earlier)

= 𝑛2(22𝑛−3 − 1
⁄

2𝐶
2𝑛−1
𝑛−1 ).

227. 𝑡𝑟 = (−1)𝑟−1(1 + 1
⁄

2 +
1
⁄

3 + ⋯ + 1
⁄

𝑟) .𝐶
𝑛
𝑟 .
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Now (−1)𝑟(1 + 𝑥 + 𝑥2 + ⋯+ 𝑥𝑟−1) .𝐶𝑛
𝑟 = (1−𝑥𝑟)⁄

1−𝑥 (−1)𝑟−1 .𝐶𝑛
𝑟

= 1
⁄

1−𝑥

𝑛
∑
𝑟=1

(−1)𝑟−1𝐶𝑟− (−1)𝑟−1𝑥𝑟.𝐶𝑛
𝑟 = 1
⁄

1−𝑥 [(−1) {(1− 1)𝑛− 1}+ (1−𝑥)𝑛− 1] =

(1 − 𝑥)𝑛−1

⇒
𝑛
∑
𝑟=1

(−1)𝑟−1 (1 + 𝑥 + 𝑥2 + ⋯+ 𝑥𝑟−1) .𝐶𝑛
𝑟 = (1 − 𝑥)𝑛−1

Integrating w.r.t. 𝑥 between limits 0 and 1 gives us
𝑛
∑
𝑟−1

(−1)𝑟−1 .𝐶𝑛
𝑟 ∫

1

0
(1 + 𝑥 + 𝑥2 + ⋯+ 𝑥𝑟−1)𝑑𝑥 = [− (1−𝑥)𝑛⁄

𝑛 ]
1

0

⇒
𝑛
∑
𝑟=1

𝑡𝑟 =
1
⁄

𝑛.

228. The general term of the expansion of (1 + 2𝑥 + 3𝑥2)4 4!⁄
𝛼1!𝛼2!𝛼3! 1

𝛼1(2𝑥)𝛼2(3𝑥2)𝛼3

= 4!⁄
𝛼1!𝛼2!𝛼3! (2𝑥)

𝛼2(3𝑥2)𝛼3, where 𝛼1, 𝛼2, 𝛼3 are non-negative integers satisfying the
condition

𝛼1 + 𝛼2 + 𝛼3 = 4.

For coefficient of 𝑥5, 𝛼2 + 2𝛼3 = 5.

Thus, if 𝛼2 = 1, then 𝛼3 = 2 making 𝛼1 = 1 and if 𝛼2 = 3, then ]𝑎𝑙𝑝ℎ𝑎3 = 1 making
𝛼1 = 0.

Thus, required coefficient of 𝑥5 = 4!
⁄

1!1!2! 2.3
2 + 4!
⁄

0!3!1! 2
3.3 = 312.

229. General term in the expansion of (2𝑥 − 3𝑦 + 4𝑧)9 is 9!⁄
𝑎!𝑏!𝑐! (2𝑥)

𝑎(−3𝑦)𝑏(4𝑧)𝑐.

Coefficient of 𝑥3𝑦4𝑧2 means 𝑎 = 3, 𝑏 = 4, and 𝑐 = 2.

Thus, coefficient is 9!
⁄

3!4!2! 2
3.(−3)4 .42 = 13063600.

230. General term in the expansion of (2𝑥 − 3𝑦 + 4𝑧)100 is 9!⁄
𝑎!𝑏!𝑐! (2𝑥)

𝑎(−3𝑦)𝑏(4𝑧)𝑐

where 𝑎 + 𝑏 + 𝑐 = 100 is the required condition.

No. of terms in the expansion of (2𝑥 − 3𝑦 + 4𝑧)100 is = no. of non-negative integral
solutions of the above condition

= 𝐶𝑛+𝑟−1
𝑟 = 𝐶102

100 = 5151.

231. General term in the expansion of (1 + 𝑥 + 𝑥2)3 is 3!⁄
𝑎!𝑏!𝑐! 1

𝑎.𝑥𝑏.𝑥2𝑐 where 𝑎 + 𝑏 + 𝑐 = 3.
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For coefficient of 𝑥4, 𝑏 + 2𝑐 = 4. If 𝑏 = 2 ⇒ 𝑐 = 1 making 𝑎 = 0 and if 𝑏 = 0 ⇒ 𝑐 = 2
amking 𝑎 = 1.

Thus, coefficient of 𝑥4 is 3!⁄2! + 3!⁄
2! = 6.

232. General term in the expansion of (7 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5)3 is
3!⁄

𝑎!𝑏!𝑐!𝑑!𝑒!𝑓! 7
𝑎𝑥𝑏𝑥2𝑐𝑥3𝑑𝑥4𝑒𝑥5𝑓, where 𝑎+𝑏+𝑐+𝑑+𝑒+𝑓 = 3 and 𝑏+2𝑐+3𝑑+4𝑒+5𝑓 =

10

If 𝑓 = 2 and 𝑎 = 1 making 𝑏 = 𝑐 = 𝑑 = 𝑒 = 0 is one solution. If 𝑓 = 1 then 𝑏 = 1, 𝑒 = 1
is another solution making 𝑎 = 𝑐 = 𝑑 = 0; 𝑐 = 1, 𝑑 = 1 is another solution making
𝑎 = 𝑏 = 𝑒 = 0. If 𝑐 = 1 and 𝑒 = 2 then 𝑎 = 𝑏 = 𝑑 = 𝑓 = 0 and 𝑑 = 2, 𝑒 = 1 then
𝑎 = 𝑏 = 𝑐 = 𝑓 = 0 are two other solutions.

Thus coefficient is 3!⁄2! 7 + 3! + 3! + 3!⁄
2! +

3!⁄
2! = 39.

233. General term in the expansion of (1 + 3𝑥 − 2𝑥3)10 is 10!⁄
𝑎!𝑏!𝑐! 1

𝑎.(3𝑥)𝑏(−2𝑥3)𝑐, where
𝑎 + 𝑏 + 𝑐 = 10.

For coefficient of 𝑥7 we have 𝑏 + 3𝑐 = 7. If 𝑏 = 1 then 𝑐 = 2 making 𝑎 = 7. If 𝑏 = 4
then 𝑐 = 1 making 𝑎 = 5 If 𝑏 = 7 then 𝑐 = 0 making 𝑎 = 3.

Thus, coefficient is 10!
⁄

7!1!2! 3
1.(−2)2 + 10!
⁄

5!4!1! 3
4.(−2)1 + 10!
⁄

3!7! 3
7 = 62640.

234. General term in the expansion of (𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥)6 is 6!⁄
𝑎!𝑏!𝑐! (𝑥𝑦)

𝑎 .(𝑦𝑧)𝑏 .(𝑧𝑥)𝑐, where
𝑎 + 𝑏 + 𝑐 = 6.

For coefficient of 𝑥3𝑦4𝑧5 we have 𝑎 + 𝑐 = 3, 𝑎 + 𝑏 = 4, 𝑏 + 𝑐 = 5.

⇒ 𝑏 − 𝑐 = 1, 𝑐 − 𝑎 = 1, 𝑏 − 𝑎 = 2. If 𝑎 = 1, ⇒ 𝑏 = 3, 𝑐 = 2 is one solution.

Thus, coefficient is 6!
⁄

1!3!2! = 60.

235. The coefficient will be greatest when maximum no. of terms will have equal power
which is 4 for three terms and 3 for 4th term.

The greatest coefficient is 15!⁄
3!(4!)3.

236. Following like problem solved earlier no. of terms is 𝐶100+5−1
100 = 𝐶104

4 .

237. We know that if 𝑛 is a negative integer or a fraction and |𝑥| < 1 then

(1 + 𝑥)𝑛 = 1 + 𝑛⁄
1! 𝑥 +

𝑛(𝑛−1)
⁄

2! 𝑥2 + 𝑛(𝑛−1)(𝑛−2)⁄
3! 𝑥3 + ⋯ to ∞

Putting 𝑥 = −𝑥 and 𝑛 = −2 gives us

(1 − 𝑥)−2 = 1 + −2⁄
1! (−𝑥)+

−2(−2−1)⁄
2! 𝑥2 + (−2)(−2−1)(−2−2)⁄

3! (−𝑥)3 + ⋯ to ∞

= 1 + 2𝑥 + 3𝑥2 + 4𝑥3 + ⋯ to ∞.
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238. 𝑎+𝑏𝑥
⁄

(1−𝑥)2 = (𝑎+𝑏𝑥)(1−𝑥)−2 = (𝑎+𝑏𝑥)(1+2𝑥+3𝑥2+4𝑥3+⋯+𝑛𝑥𝑛−1+ (𝑛+1)𝑥𝑛+
⋯)

Coefficient of 𝑥𝑛 = 𝑛𝑏 + (𝑛 + 1)𝑎 = (𝑎 + 𝑏)𝑛 + 𝑎. Given that (𝑎 + 𝑏)𝑛 + 𝑎 = 2𝑛 + 1.

Equating the coefficient we have 𝑎 + 𝑏 = 2, 𝑎 = 1 ⇒ 𝑏 = 1.

Substituting back gives us 1+𝑥
⁄

(1−𝑥)2 = (1 + 𝑥)(1 + 2𝑥 + 3𝑥2 + 4𝑥3 + ⋯)

= 1 + 3𝑥 + 5𝑥 + 7𝑥3 + ⋯

Putting 𝑥 = 1
⁄

2 gives us 1 + 3. 1⁄2 + 5. 1⁄22 + 7. 1⁄23 + ⋯.

239. (1 + 𝑥)𝑛 = 1 + 𝑛⁄
1! 𝑥 +

𝑛(𝑛−1)
⁄

2! 𝑥2 + ⋯ to ∞.

Comparing first two terms we have 𝑛𝑥 = 1
⁄

3 ,
𝑛(𝑛−1)𝑥2⁄

2! = 1.3
⁄

3.6

⇒ 𝑛2𝑥2
⁄

𝑛(𝑛−1) .
2!
⁄

𝑥2 =
1
⁄

9 .
3.6
⁄

1.3

⇒ 2𝑛
⁄

𝑛−1 =
2
⁄

3 ⇒ 𝑛 = −1
⁄

2 ⇒ 𝑥 = −2
⁄

3.

Hence, sum of the given series is (1 + 𝑥)𝑛 = (1 − 2
⁄

3)
−1
⁄

2 = √


3.

240. We know that if 𝑛 is a negative integer or a fraction and |𝑥| < 1 then

(1 + 𝑥)𝑛 = 1 + 𝑛⁄
1! 𝑥 +

𝑛(𝑛−1)
⁄

2! 𝑥2 + 𝑛(𝑛−1)(𝑛−2)⁄
3! 𝑥3 + ⋯ to ∞

Putting 𝑥 = −𝑥 and 𝑛 = −1 gives us

(1 − 𝑥)−1 = 1 + −1⁄
1! (−𝑥)+

−1(−1−1)⁄
2! 𝑥2 + −1(−1−1)(−1−2)⁄

3! (−𝑥)3 + ⋯ to ∞

= 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ to ∞.

241. Following like previous problem; we put 𝑛 = −1 to get

(1 + 𝑥)−1 = 1 + −1⁄
1! 𝑥 +

−1(−1−1)⁄
2! 𝑥2 + −1(−1−1)(−1−2)⁄

3! 𝑥3 + ⋯ to ∞

= 1 − 𝑥 + 𝑥2 − 𝑥3 + ⋯ to ∞.

242. Following like previous problem; we put 𝑛 = −2 to get

(1 + 𝑥)−2 = 1 + −2⁄
1! 𝑥 +

−2(−2−1)⁄
2! 𝑥2 + −2(−2−1)(−2−2)⁄

3! 𝑥3 + ⋯ to ∞

= 1 − 2𝑥 + 3𝑥2 − 4𝑥3 + ⋯ to ∞.

243. Following like previous problem; we put 𝑛 = −3 and 𝑥 = −𝑥 to get

(1 − 𝑥)−3 = 1 + −3⁄
1! (−𝑥)+

−3(−3−1)⁄
2! (−𝑥)2 + −3(−3−1)(−3−2)⁄

3! (−𝑥)3 + ⋯ to ∞
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= 1 + 3𝑥 + 6𝑥2 + 10𝑥3 + ⋯ to ∞.

244. Following like previous problem; we put 𝑛 = −3 to get

(1 + 𝑥)−3 = 1 + −3⁄
1! 𝑥 +

−3(−3−1)⁄
2! 𝑥2 + −3(−3−1)(−3−2)⁄

3! 𝑥3 + ⋯ to ∞

= 1 − 3𝑥 + 6𝑥2 − 10𝑥3 + ⋯ to ∞.

245. Following like previous problem; we put 𝑛 = −1
⁄

5 to get

(1+𝑥)−
1
⁄

5 = 1+− 1⁄
5.1! 𝑥+

−1⁄
5 .(−1
⁄

5− 1) . 1⁄2! 𝑥2+−1⁄
5 .(−1
⁄

5− 1) .(−1
⁄

5− 2) . 1⁄3! 𝑥3+⋯ to ∞

= 1 − 𝑥
⁄

5 +
3𝑥2⁄
25 − 11𝑥3⁄

125 + ⋯ to ∞.

246. (2𝑥⁄3 − 3
⁄

2𝑥)
−3/2

= ( 3
⁄

2𝑥)
3
⁄

2(1 − 9⁄
4𝑥2)

−3
⁄

2

= ( 3
⁄

2𝑥)
3
⁄

2[1 + −3⁄
2 .(− 9⁄

4𝑥2) + −3⁄
2 .(−3
⁄

2 − 1) . 1⁄2! .(− 9⁄
4𝑥2)

2
+ −3⁄

2 (−
3
⁄

2 − 1)(−3
⁄

2 −

2) . 1⁄3! .(− 9⁄
4𝑥2)

3
+ ⋯]

= ( 3
⁄

2𝑥)
3
⁄

2[1 + 3
⁄

2 .
9⁄
4𝑥2 +

3.5⁄
4.2!

81⁄
16𝑥4 +

3.5.7⁄
8.3! .

729⁄
64𝑥6 + ⋯].

247. (1 − 𝑥
⁄

2)
−2

= 1 + −2⁄
1! . −

𝑥
⁄

2 +
−2(−2−1)⁄

2! (−𝑥
⁄

2)
2
+ ⋯

= 1 + 𝑥 + 3
⁄

4 𝑥
2 are the first three terms.

248. Coefficient of 𝑥6 is −5
⁄

2 .(−
5
⁄

2 − 1)(−5
⁄

2 − 2)(−5
⁄

2 − 3)(−5
⁄

2 − 4) . 1⁄5! (−2)5 = 15015
⁄

16 .

249. 𝑡𝑟+1 = −1
⁄

2 .(−
1
⁄

2 − 1) .(−1
⁄

2 − 2)⋯ (−1
⁄

2 − 𝑟 + 1) . 1⁄𝑟! .(−2𝑥)𝑟
= 1.3.5⋯(2𝑟−1)⁄

𝑟! 𝑥𝑟 and the coefficient is 1.3.5.⋯(2𝑟−1)⁄
𝑟! .

250. (1 + 2𝑥 + 3𝑥2 + 4𝑥3 + … to ∞)3/2 = (1 − 𝑥)−3 = 1 + 3𝑥 + 6𝑥2 + 10𝑥3 + ⋯ to ∞.

251. (1 + 𝑥)𝑛 = 1 + 𝑛𝑥⁄
1! +

𝑛(𝑛−1)
⁄

2! 𝑥2 + ⋯ = 1 + 1
⁄

4 +
1.3
⁄

4.8 + ⋯ to ∞

Comparing the series gives us

𝑛𝑥 = 1
⁄

4 and 𝑛(𝑛−1)⁄2! 𝑥2 = 1.3
⁄

4.8

⇒ 𝑛2𝑥2
⁄

𝑛(𝑛−1) .
2!
⁄

𝑥2 =
1
⁄

16 .
4.8
⁄

1.3 =
2
⁄

3

⇒ 2𝑛
⁄

𝑛−1 =
2
⁄

3 ⇒ 6𝑛 = 2𝑛 − 2 ⇒ 𝑛 = −1
⁄

2
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⇒ 𝑥 = −1
⁄

2 ⇒ (1 + 𝑥)𝑛 = (1 − 1
⁄

2)
−1
⁄

2 = 1⁄
√

1
⁄

2

= √


2.

252. Similar to previous problem 𝑛𝑥 = 2
⁄

6 and 𝑛(𝑛−1)⁄2! 𝑥2 = 2.5
⁄

6.12

⇒ 𝑛2𝑥2
⁄

𝑛(𝑛−1) .
2!
⁄

𝑥2 =
1
⁄

9 .
6.12
⁄

2.5 = 4
⁄

5

⇒ 2𝑛
⁄

𝑛−1 =
4
⁄

5 ⇒ 10𝑛 = 4𝑛 − 4 ⇒ 𝑛 = −2
⁄

3

𝑥 = 1
⁄

3 . −
3
⁄

2 = −1
⁄

2

(1 + 𝑥)𝑛 = (1 − 1
⁄

2)
−2
⁄

3 = 41/3.

253. GIven 𝑦 = 𝑥 − 𝑥2 + 𝑥3 − 𝑥4 + ⋯ to ∞⇒ 1− 𝑦 = 1 − 𝑥 + 𝑥2 − 𝑥3 + ⋯ to ∞

⇒ 1− 𝑦 = (1 + 𝑥)−1 = 1
⁄

1+𝑥 ⇒ 1 + 𝑥 = (1 − 𝑦)−1

⇒ 𝑥 = 𝑦 + 𝑦2 + 𝑦3 + ⋯ to ∞.

254. 1
⁄

1+𝑥+𝑥2 =
1−𝑥
⁄

1−𝑥3 = (1 − 𝑥)(1 − 𝑥3)−1.

Now is it trivial to prove the required condition.

255. 𝑡𝑛 = 2𝑛⁄
(𝑛+1)! =

2𝑛+1
⁄

(2𝑛+1)! −
1
⁄

(2𝑛+1)! =
1
⁄

2𝑛! −
1
⁄

(2𝑛+1)!

⇒ 𝑡1 = 1⁄
2! −

1⁄
3! , 𝑡𝑟 =

1⁄
4! −

1⁄
5!

Sum of given series is 1 − 1⁄
1! +

1⁄
2! −

1⁄
3! +

1⁄
4! −

1⁄
5! + ⋯

= 𝑒−1 = 1
⁄

𝑒.

256. 𝑡𝑛 = 𝑛2
⁄

𝑛! =
𝑛⁄

(𝑛−1)! =
𝑛−1+1⁄
(𝑛−1)! =

1⁄
(𝑛−2)! +

1⁄
(𝑛−1)!

𝑡10 + 1⁄
0! = 1, 𝑡2 = 1⁄

0! +
1⁄
1! , 𝑡3 =

1⁄
1! +

1⁄
2!

Sum of given series is ( 1⁄0! + 1⁄
1! +

1⁄
2! + ⋯)+ ( 1⁄0! + 1⁄

1! +
1⁄
2! + ⋯) = 𝑒 + 𝑒 = 2𝑒.

257. log(1 + 𝑥) = 𝑥 − 𝑥2
⁄

2 + 𝑥3
⁄

3 − 𝑥4
⁄

4 + 𝑥5
⁄

5 − 𝑥6
⁄

6 + ⋯

log(1 + 1) = 1 − 1
⁄

2 +
1
⁄

3 −
1
⁄

4 +
1
⁄

5 −
1
⁄

6 + ⋯

= 1
⁄

1.2 +
1
⁄

3.4 +
1
⁄

5.6 + ⋯
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258. 𝑦 = 𝑥 − 𝑥2
⁄

2 + 𝑥3
⁄

3 − 𝑥4
⁄

4 + ⋯ = log(1 + 𝑥)⇒ 1+ 𝑥 = 𝑒𝑦 = 1 + 𝑦 + 𝑦2⁄
2! +

𝑦3⁄
3! + ⋯

⇒ 𝑥 = 𝑦 + 𝑦2⁄
2! +

𝑦3⁄
3! + ⋯

259. Since 𝛼, 𝛽 are the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 ∴𝛼 + 𝛽 = − 𝑏
⁄

𝑎 and 𝛼𝛽 = 𝑐
⁄

𝑎.

log(𝑎−𝑏𝑐+𝑐𝑥2) = log[𝑎(1− 𝑏
⁄

𝑎 𝑥+
𝑐
⁄

𝑎 𝑥
2)] = log[𝑎(1+ (𝛼+𝛽)𝑥+𝛼𝛽𝑥2)] = log[𝑎(1+

𝛼𝑥 + 𝛽𝑥)] = log 𝑎 + log(1 + 𝛼𝑥)+ log(1 + 𝛽𝑥)

= log 𝑎 + [𝛼𝑥 − (𝛼𝑥)2⁄
2 + (𝛼𝑥)2⁄

3 − ⋯]+ [𝛽𝑥 − (𝛽𝑥)2⁄
2 + (𝛽𝑥)3⁄

3 − ⋯]

= log 𝑎 + (𝛼 + 𝛽)𝑥 − (𝛼2+𝛽2)⁄
2 𝑥2 + … to ∞

260. 𝑡𝑛 = 𝑛
⁄

(2𝑛+1)! =
1
⁄

2 [
2𝑛
⁄

(2𝑛+1)!]

We have proven earlier that if 𝑡𝑛 = 2𝑛
⁄

(2𝑛+1)! then sum of the series is 1⁄𝑒, thus, in this

case sum of the series would be 1⁄2𝑒.
261. 𝑡𝑛 = 2𝑛−1
⁄

2𝑛! = 1
⁄

(2𝑛−1)! −
1
⁄

2𝑛!

𝑡1 = 1⁄
1! −

1⁄
2! , 𝑡2 =

1⁄
3! −

1⁄
4! , 𝑡3 =

1⁄
5! −

1⁄
6!

Sum = 1 − 𝑒−1

262. 𝑡𝑛 = 1+2+⋯+𝑛⁄
(𝑛+1)! = 𝑛⁄

2.𝑛! =
1
⁄

2 .
1⁄

(𝑛−1)!

∴ Sum = 𝑒
⁄

2

263. 𝑡𝑛 = 𝑛3
⁄

𝑛! =
𝑛2⁄

(𝑛−1)! =
𝑛2−1+1
⁄

(𝑛−1)! =
𝑛+1⁄
(𝑛−2)! +

1⁄
(𝑛−1)!

Now 𝑛+1⁄
(𝑛−2)! =

𝑛−2+3⁄
(𝑛−2)! =

1⁄
(𝑛−3)! +

3⁄
(𝑛−2)!

∴ Sum = 5𝑒.

264. 1
⁄

2.3 +
1
⁄

4.5 +
1
⁄

6.7 + ⋯ = 1
⁄

2 −
1
⁄

3 +
1
⁄

4 −
1
⁄

5 +
1
⁄

6 −
1
⁄

7 + ⋯

log 2 = 1 − 1
⁄

2 +
1
⁄

3 −
1
⁄

4 +
1
⁄

5 −
1
⁄

6 + ⋯

Thus, 1 − log 2 = 1
⁄

2.3 +
1
⁄

4.5 +
1
⁄

6.7 + ⋯

265. log(1+𝑥)−log(𝑥−1)= log(1+𝑥)−log 𝑥+log 𝑥−log(𝑥−1)= log(1+1
⁄

𝑥)−log(1−1
⁄

𝑥)

= 2[1⁄𝑥 +
1⁄
3𝑥3 +

1⁄
5𝑥5 + ⋯]
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266. 2 log 𝑥 − log(𝑥 + 1)− log(𝑥 − 1) = −[log(1 + 1
⁄

𝑥)− log(1 − 1
⁄

𝑥)]

= 1
⁄

𝑥2 +
1⁄
2𝑥4 +

1⁄
3𝑥5 + ⋯ to ∞.

267. log[(1 + 𝑥)1+𝑥 log(1 − 𝑥)1−𝑥 ] = (1 + 𝑥) log(1 + 𝑥)+ (1 − 𝑥) log(1 − 𝑥)

= (1 + 𝑥)(𝑥 − 𝑥2
⁄

2 + 𝑥3
⁄

3 − 𝑥4
⁄

4 + ⋯)+ (1 − 𝑥)(−𝑥 − 𝑥2
⁄

2 − 𝑥3
⁄

3 − 𝑥4
⁄

4 − ⋯)

= −2(𝑥
2
⁄

2 + 𝑥4
⁄

4 )+ 2𝑥(𝑥 + 𝑥3
⁄

3 + 𝑥5
⁄

5 + ⋯)

= 2( 𝑥2
⁄

1.2 +
𝑥4
⁄

3.4 +
𝑥4
⁄

5.6 + ⋯).
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Answers of Chapter 8
Determinants

1. Let Δ = ∣
4 9 7
3 5 7
5 4 5 ∣

Δ = ∣
1 4 0
3 5 7
5 4 5 ∣ [𝑅1 → 𝑅1 − 𝑅2 ] = ∣

1 4 0
0 −7 7
0 −16 5 ∣ [𝑅2 → 𝑅2 − 3𝑅1 and 𝑅3 → 𝑅3 − 5𝑅1 ]

= 1(−35 + 112) = 77.

2. Let Δ = ∣
1 𝑎 𝑎2

1 𝑏 𝑏2

1 𝑐 𝑐2 ∣
= ∣

0 𝑎 − 𝑏 𝑎2 − 𝑏2

0 𝑏 − 𝑐 𝑏2 − 𝑐2

1 𝑐 𝑐2 ∣ [𝑅1 → 𝑅1 − 𝑅2; 𝑅2 → 𝑅2 − 𝑅3 ]

= (𝑎− 𝑏)(𝑏 − 𝑐)∣ 0 1 𝑎 + 𝑏
0 1 𝑏 + 𝑐
1 𝑐 𝑐2 ∣ = (𝑎− 𝑏)(𝑏 − 𝑐)(𝑏 + 𝑐 − 𝑎− 𝑏) = (𝑎− 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎).

3. Let 𝑎 = 2, 𝑏 = 3, 𝑐 = 4 then Δ = ∣
1 2 4
1 3 9
1 4 16 ∣ = ∣

1 𝑎 𝑎2

1 𝑏 𝑏2

1 𝑐 𝑐2 ∣
We can solve this like previous problem which gives us Δ = (2 − 3)(3 − 4)(4 − 2) = 2.

4. Let Δ = ∣
4 9 2
3 5 7
8 1 6 ∣ = ∣

1 4 −5
3 5 7
8 1 6 ∣ [𝑅1 → 𝑅1 − 𝑅2 ]

= ∣
1 4 −5
0 −7 22
0 −31 46 ∣ [𝑅2 → 𝑅2 − 3𝑅1; 𝑅3 → 𝑅3 − 5𝑅1 ]

= (−322 + 682) = 360.

5. Let Δ = ∣
18 1 17
22 3 19
26 5 21 ∣ = ∣

18 1 17
4 2 2
4 2 2 ∣ [𝑅3 → 𝑅3 − 𝑅2; 𝑅2 → 𝑅2 − 𝑅1 ]

= 0(bceuase two rows are identical).



Answers of Determinants 745

6. Let Δ = ∣
4 9 7
3 5 7
5 4 5 ∣ = ∣

1 4 0
3 5 7
5 4 5 ∣ [𝑅1 → 𝑅2 − 𝑅1 ]

= ∣
1 4 0
0 −7 7
0 −16 5 ∣ [𝑅2 → 𝑅2 − 3𝑅1; 𝑅3 → 𝑅3 − 𝑅1 ]

= (−35 + 112) = 77.

7. Δ = ∣
1 4 9
3 5 7
5 7 9 ∣ [𝑅3 → 𝑅3 − 𝑅2; 𝑅2 → 𝑅2 − 𝑅1 ] = ∣

1 4 9
3 5 7
2 2 2 ∣ [𝑅3 → 𝑅3 − 𝑅2 ]

= ∣
1 3 5
3 2 2
2 0 0 ∣ [𝐶3 → 𝐶3 − 𝐶2; 𝐶2 → 𝐶2 − 𝐶1 ] = 2(6 − 10) = −8.

8. Let Δ = ∣
𝑎 𝑏 𝑐
𝑏 𝑐 𝑎
𝑐 𝑎 𝑏 ∣ = ∣

𝑎 + 𝑏 + 𝑐 𝑏 𝑐
𝑏 + 𝑐 + 𝑎 𝑐 𝑎
𝑐 + 𝑎 + 𝑏 𝑎 𝑏 ∣ [𝐶1 → 𝐶1 + 𝐶2 + 𝐶3 ]

= (𝑎 + 𝑏 + 𝑐) ∣
1 𝑏 𝑐
1 𝑐 𝑎
1 𝑎 𝑏 ∣ = (𝑎 + 𝑏 + 𝑐) ∣

1 𝑏 𝑐
0 𝑐 − 𝑏 𝑎 − 𝑐
0 𝑎 − 𝑏 𝑏 − 𝑐 ∣ [𝑅2 → 𝑅2 − 𝑅1; 𝑅3 → 𝑅3 − 𝑅1 ]

= (𝑎+𝑏+𝑐)[(𝑐−𝑏)(𝑏−𝑐)−(𝑎−𝑏)(𝑎−𝑐)]= (𝑎+𝑏+𝑐)(𝑎𝑏+𝑏𝑐+𝑐𝑎−𝑎2−𝑏2−𝑐2)=
−1
⁄

2 (𝑎 + 𝑏 + 𝑐)[(𝑎 − 𝑏)2 + (𝑏 − 𝑐)2 + (𝑐 − 𝑎)2 ]

Given that 𝑎, 𝑏, 𝑐 are positive so 𝑎 + 𝑏 + 𝑐 > 0 and since 𝑎, 𝑏, 𝑐 are unequal so
(𝑎 − 𝑏)2 + (𝑏 − 𝑐)2 + (𝑐 − 𝑎)2 > 0. Thus, Δ < 0.

9. Let Δ = ∣
𝑏 + 𝑐 𝑎 + 𝑏 𝑎
𝑐 + 𝑎 𝑏 + 𝑐 𝑏
𝑎 + 𝑏 𝑐 + 𝑎 𝑐 ∣ = ∣

𝑎 + 𝑏 + 𝑐 𝑎 + 𝑏 𝑎
𝑏 + 𝑐 + 𝑎 𝑏 + 𝑐 𝑏
𝑎 + 𝑏 + 𝑐 𝑐 + 𝑎 𝑐 ∣ [𝐶1 → 𝐶1 + 𝐶3 ]

= (𝑎+𝑏+𝑐)∣
1 𝑎 + 𝑏 𝑎
1 𝑏 + 𝑐 𝑏
1 𝑐 + 𝑎 𝑐 ∣ = (𝑎+𝑏+𝑐)∣

1 𝑎 + 𝑏 𝑎
0 𝑐 − 𝑎 𝑏 − 𝑎
0 𝑐 − 𝑏 𝑐 − 𝑎 ∣[𝑅2→ 𝑅2−𝑅1;𝑅3 → 𝑅3−𝑅1]

= (𝑎 + 𝑏 + 𝑐)[(𝑐 − 𝑎)2 − (𝑐 − 𝑏)(𝑏 − 𝑎)] = (𝑎 + 𝑏 + 𝑐)(𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑏𝑐 − 𝑐𝑎) =
𝑎3 + 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐.

10. Δ = ∣
1 + 𝑎1 + 𝑎2 + 𝑎3 𝑎2 𝑎3
1 + 𝑎1 + 𝑎2 + 𝑎3 1 + 𝑎2 𝑎3
1 + 𝑎1 + 𝑎2 + 𝑎3 𝑎2 1 + 𝑎3 ∣ [𝐶1 → 𝐶1 + 𝐶2 + 𝐶3 ]

= (1 + 𝑎1 + 𝑎2 + 𝑎3) ∣
1 𝑎2 𝑎3
1 1 + 𝑎2 𝑎3
1 𝑎2 1 + 𝑎3 ∣ = (1 + 𝑎1 + 𝑎2 + 𝑎3) ∣

0 −1 0
0 1 −1
1 𝑎2 1 + 𝑎3 ∣ [𝑅1 →

𝑅1 − 𝑅2; 𝑅2 → 𝑅2 − 𝑅3 ]
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= (1 + 𝑎1 + 𝑎2 + 𝑎3)∣
−1 0
1 −1 ∣ = 1 + 𝑎1 + 𝑎2 + 𝑎3.

11. Δ = ∣
2𝑎 + 2𝑏 + 2𝑐 𝑎 𝑏
2𝑎 + 2𝑏 + 2𝑐 𝑏 + 𝑐 + 2𝑎 𝑏
2𝑎 + 2𝑏 + 2𝑐 𝑎 𝑐 + 𝑎 + 2𝑏 ∣ [𝐶1 → 𝐶1 + 𝐶2 + 𝐶3 ]

= 2(𝑎 + 𝑏 + 𝑐) ∣
1 𝑎 𝑏
1 𝑏 + 𝑐 + 2𝑎 𝑏
1 𝑎 𝑐 + 𝑎 + 2𝑏 ∣

= 2(𝑎 + 𝑏 + 𝑐) ∣
0 −(𝑎 + 𝑏 + 𝑐) 0
0 𝑏 + 𝑐 + 𝑎 −(𝑎 + 𝑏 + 𝑐)
1 𝑎 𝑐 + 𝑎 + 2𝑏 ∣ [𝑅1 → 𝑅1 − 𝑅2; 𝑅2 → 𝑅2 − 𝑅3 ]

= 2(𝑎 + 𝑏 + 𝑐)3 ∣
0 −1 0
0 1 −1
1 𝑎 𝑐 + 𝑎 + 2𝑏 ∣(taking 𝑎 + 𝑏 + 𝑐 common from first and second

row)

= 2(𝑎 + 𝑏 + 𝑐)3 [−1. − 1 − 1.0] = 2(𝑎 + 𝑏 + 𝑐)3.

12. Δ = ∣
2𝑎 2𝑏 𝑎 − 𝑏 − 𝑐
2𝑏 2𝑐 𝑏 − 𝑐 − 𝑎
2𝑐 2𝑎 𝑐 − 𝑎 − 𝑏 ∣ [𝐶1 → 𝐶1 + 𝐶2; 𝐶2 → 𝐶2 − 𝐶3 ]

= 4∣
𝑎 𝑏 𝑎 − 𝑏 − 𝑐
𝑏 𝑐 𝑏 − 𝑐 − 𝑎
𝑐 𝑎 𝑐 − 𝑎 − 𝑏 ∣

= 4∣
𝑎 𝑏 𝑐
𝑏 𝑐 𝑎
𝑐 𝑎 𝑏 ∣ = 4(𝑎 + 𝑏 + 𝑐)(𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑏𝑐 − 𝑐𝑎) = 4(𝑎3 + 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐).

13. Δ = ∣
𝑎 + 𝑏 + 𝑐 𝑎 + 𝑏 + 𝑐 𝑎 + 𝑏 + 𝑐

2𝑏 𝑏 − 𝑐 − 𝑎
2𝑐 2𝑐 𝑐 − 𝑎 − 𝑏 ∣ [𝑅1 → 𝑅1 + 𝑅2 + 𝑅3 ]

= (𝑎 + 𝑏 + 𝑐) ∣
1 1 1
2𝑏 𝑏 − 𝑐 − 𝑎 2𝑏
2𝑐 2𝑐 𝑐 − 𝑎 − 𝑏 ∣

= (𝑎 + 𝑏 + 𝑐) ∣
1 0 0
2𝑏 −𝑏 − 𝑐 − 𝑎 0
2𝑐 0 −𝑐 − 𝑎 − 𝑏 ∣ [𝐶1 → 𝐶2 − 𝐶1; 𝐶3 → 𝐶3 − 𝐶1 ]

= (𝑎 + 𝑏 + 𝑐)∣−𝑏 − 𝑐 − 𝑎 0
0 −𝑐 − 𝑎 − 𝑏 ∣ = (𝑎 + 𝑏 + 𝑐)3.
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14. Δ = 1⁄
𝑥.𝑦.𝑧 ∣ 𝑥

2 𝑦2 𝑧2

𝑥3 𝑦3 𝑧3
𝑥𝑦𝑧 𝑥𝑦𝑧 𝑥𝑦𝑧 ∣ [𝐶1 → 𝑥𝐶1; 𝐶2 → 𝑦𝐶2; 𝐶3 → 𝑧𝐶3 ]

= 𝑥𝑦𝑧⁄
𝑥𝑦𝑧 ∣𝑥

2 𝑦2 𝑧2

𝑥3 𝑦3 𝑧3
1 1 1 ∣ = ∣ 1 1 1

𝑥2 𝑦2 𝑧2

𝑥3 𝑦3 𝑧3 ∣(exchanging rows twice)

= ∣ 1 0
𝑥2 𝑦2 − 𝑥2 𝑧2 − 𝑥2

𝑥3 𝑦3 − 𝑥3 𝑧3 − 𝑥3 ∣ [𝐶2 → 𝐶2 − 𝐶1; 𝐶3 → 𝐶3 − 𝐶1 ]

= ∣ (𝑦 − 𝑥)(𝑦 + 𝑥) (𝑧 − 𝑥)(𝑧 + 𝑥)
(𝑦 − 𝑥)(𝑦2 + 𝑥𝑦 + 𝑥2) (𝑧 − 𝑥)(𝑧2 + 𝑧𝑥 + 𝑥2)

∣

= (𝑦 − 𝑥)(𝑧 − 𝑥)∣ 𝑦 + 𝑥 𝑧 + 𝑥
𝑦2 + 𝑥𝑦 + 𝑦2 𝑧2 + 𝑧𝑥 + 𝑥2

∣

= (𝑦 − 𝑥)(𝑧 − 𝑥)∣ 𝑦 + 𝑥 𝑧 − 𝑦
𝑦2 + 𝑦𝑥 + 𝑥2 (𝑧2 − 𝑦2)+ 𝑧𝑥 − 𝑧𝑦

∣ [𝐶2 → 𝐶2 − 𝐶1 ]

= (𝑦 − 𝑥)(𝑧 − 𝑥)(𝑧 − 𝑦)∣ 𝑦 + 𝑧 1
𝑦2 + 𝑥𝑦 + 𝑥2 𝑥 + 𝑦 + 𝑧

∣

= (𝑦 − 𝑥)(𝑧 − 𝑥)(𝑧 − 𝑦)[(𝑦 + 𝑥)(𝑥 + 𝑦 + 𝑧)− 𝑦2 − 𝑥𝑦 − 𝑥2 ] = (𝑥 − 𝑦)(𝑦 − 𝑧)(𝑧 −
𝑥)(𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥).

15. Δ = 1⁄
𝑎𝑏𝑐 ∣

𝑎(𝑎2 + 1) 𝑎𝑏2 𝑎𝑐2

𝑎2𝑏 𝑏(𝑏2 + 1) 𝑏𝑐2

𝑎2𝑐 𝑏2𝑐 𝑐(𝑐2 + 1) ∣ [𝐶1 → 𝑎𝐶1; 𝐶2 → 𝑏𝐶2; 𝐶3 → 𝑐𝐶3 ]

= 𝑎𝑏𝑐⁄
𝑎𝑏𝑐 ∣

𝑎2 + 1 𝑏2 𝑐2

𝑎2 𝑏2 + 1 𝑐2

𝑎2 𝑏2 𝑐2 + 1 ∣
= ∣

1 + 𝑎2 + 𝑏2 + 𝑐2 𝑏2 𝑐2

1 + 𝑎2 + 𝑏2 + 𝑐2 𝑏2 + 1 𝑐2

1 + 𝑎2 + 𝑏2 + 𝑐2 𝑏2 𝑐2 + 1 ∣ [𝐶1 → 𝐶1 + 𝐶2 + 𝐶3 ]

= (1 + 𝑎2 + 𝑏2 + 𝑐2) ∣
1 𝑏2 𝑐2

1 𝑏2 + 1 𝑐2

1 𝑏2 𝑐2 + 1 ∣
= (1 + 𝑎2 + 𝑏2 + 𝑐2) ∣ 1 𝑏2 𝑐2

0 1 0
0 0 1 ∣ [𝑅2 → 𝑅2 − 𝑅1; 𝑅3 → 𝑅3 − 𝑅1 ]

= (1 + 𝑎2 + 𝑏2 + 𝑐2)∣ 1 0
0 1 ∣ = 1 + 𝑎2 + 𝑏2 + 𝑐2.
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16. Δ = 𝑎1𝑎2𝑎3∣
1
⁄

𝑎1 + 1 1
⁄

𝑎2
1
⁄

𝑎3
1
⁄

𝑎1
1
⁄

𝑎2 + 1 1
⁄

𝑎3
1
⁄

𝑎1
1
⁄

𝑎2
1
⁄

𝑎3 + 1 ∣ [𝐶1 → 𝐶1⁄
𝑎1 ; 𝐶2 → 𝐶2⁄

𝑎2 ; 𝐶3 → 𝐶3⁄
𝑎3 ]

= 𝑎1𝑎2𝑎2∣
1 + 1
⁄

𝑎1 +
1
⁄

𝑎2 +
1
⁄

𝑎3
1
⁄

𝑎2
1
⁄

𝑎3
1 + 1
⁄

𝑎1 +
1
⁄

𝑎2 +
1
⁄

𝑎3
1
⁄

𝑎2 + 1 1
⁄

𝑎3
1 + 1
⁄

𝑎1 +
1
⁄

𝑎2 +
1
⁄

𝑎3
1
⁄

𝑎2
1
⁄

𝑎3 + 1 ∣ [𝐶1 → 𝐶1 + 𝐶2 + 𝐶3 ]

= 𝑎1𝑎2𝑎3(1 + 1
⁄

𝑎1 +
1
⁄

𝑎2 +
1
⁄

𝑎3) ∣
1 1
⁄

𝑎2
1
⁄

𝑎3
1 1
⁄

𝑎2 + 1 1
⁄

𝑎3
1 1
⁄

𝑎2
1
⁄

𝑎3 + 1 ∣
= 𝑎1𝑎2𝑎3(1 + 1
⁄

𝑎1 +
1
⁄

𝑎2 +
1
⁄

𝑎3) ∣ 1 1
⁄

𝑎2
1
⁄

𝑎3
0 1 0
0 0 1 ∣ [𝑅2 → 𝑅2 − 𝑅1; 𝑅3 → 𝑅3 − 𝑅1 ]

= 𝑎1𝑎2𝑎3(1 + 1
⁄

𝑎1 +
1
⁄

𝑎2 +
1
⁄

𝑎3).

17. Δ = ∣
𝑥 𝑥2 1 + 𝑥3

𝑦 𝑦2 1 + 𝑦3

𝑧 𝑧2 1 + 𝑧3 ∣ = ∣
𝑥 𝑥2 𝑥3

𝑦 𝑦2 𝑦3

𝑧 𝑧2 𝑧3 ∣+ ∣
𝑥 𝑥2 1
𝑦 𝑦2 1
𝑧 𝑧2 1 ∣

= 𝑥𝑦𝑧∣
1 𝑥 𝑥2

1 𝑦 𝑦2

1 𝑧 𝑧2 ∣+ ∣
1 𝑥 𝑥2

1 𝑦 𝑦2

1 𝑧 𝑧2 ∣(by exchanging two columns)

= (1 + 𝑥𝑦𝑧)∣
1 𝑥 𝑥2

1 𝑦 𝑦2

1 𝑧 𝑧2 ∣ = (1 + 𝑥𝑦𝑧)(𝑥 − 𝑦)(𝑦 − 𝑧)(𝑧 − 𝑥)(from the value of a circular

determinant)

Δ = 0 ⇒ 1 + 𝑥𝑦𝑧 = 0[∵ 𝑥 ≠ 𝑦; 𝑦 ≠ 𝑧; 𝑧 ≠ 𝑥]⇒ 𝑥𝑦𝑧 = −1.

18. Δ = ∣
0 −2𝑐 −2𝑏
𝑏 𝑐 + 𝑎 𝑏
𝑎 𝑐 𝑎 + 𝑏 ∣ [𝑅1 → 𝑅1 − 𝑅2 − 𝑅3 ]

= 1
⁄

𝑐 ∣
0 −2𝑐 −2𝑏
0 𝑐(𝑐 + 𝑎 − 𝑏) 𝑏(𝑐 − 𝑎 − 𝑏)
𝑐 𝑐 𝑎 + 𝑏 ∣ [𝑅2 → 𝑐𝑅2 − 𝑏𝑅3 ]

= 1
⁄

𝑐 𝑐(−2𝑏𝑐)[𝑐 − 𝑎 − 𝑏 − (𝑐 + 𝑎 − 𝑏)] = −2𝑏𝑐. − 2𝑎 = 4𝑎𝑏𝑐.
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19. Δ = ∣
(𝑏 + 𝑐)2 − 𝑎2 0 𝑎2

𝑏2 − (𝑐 + 𝑎)2 (𝑐 + 𝑎)2 − 𝑏2 𝑏2

0 𝑐2 − (𝑎 + 𝑏)2 (𝑎 + 𝑏)2 ∣ [𝐶1 → 𝐶1 − 𝐶2; 𝐶2 → 𝐶2 − 𝐶3 ]

= (𝑎 + 𝑏 + 𝑐)2 ∣
𝑏 + 𝑐 − 𝑎 0 𝑎2

𝑏 + 𝑐 − 𝑎 𝑐 + 𝑎 − 𝑏 𝑏2

0 𝑐 − 𝑎 − 𝑏 (𝑎 + 𝑏)2 ∣
= (𝑎 + 𝑏 + 𝑐)2 ∣ 𝑏 + 𝑐 − 𝑎 0 𝑎2

𝑏 + 𝑐 − 𝑎 𝑐 + 𝑎 − 𝑏 𝑏2
2𝑎 − 2𝑏 −2𝑎 2𝑎𝑏 ∣ [𝑅3 → 𝑅3 − 𝑅1 − 𝑅2 ]

= (𝑎 + 𝑏 + 𝑐)2 ∣ 𝑏 + 𝑐 − 𝑎 0 𝑎2

0 𝑐 + 𝑎 − 𝑏 𝑏2
−2𝑏 −2𝑎 2𝑎𝑏 ∣ [𝐶1 → 𝐶1 + 𝐶2 ]

= (𝑎+𝑏+𝑐)2
⁄

𝑎𝑏 ∣ 𝑎(𝑏 + 𝑐) 𝑎2 𝑎2

𝑏2 𝑏(𝑐 + 𝑎) 𝑏2
0 0 2𝑎𝑏 ∣ [𝐶1 → 𝑎𝐶1 + 𝐶3; 𝐶2 → 𝑏𝐶2 + 𝐶3 ]

= (𝑎+𝑏+𝑐)2
⁄

𝑎𝑏 .𝑎𝑏.2𝑎𝑏∣
𝑏 + 𝑐 𝑎 𝑎
𝑏 𝑐 + 𝑎 𝑏
0 0 1 ∣

= 2𝑎𝑏(𝑎 + 𝑏 + 𝑐)2 [(𝑏 + 𝑐)(𝑐 + 𝑎)− 𝑎𝑏] = 2𝑎𝑏𝑐(𝑎 + 𝑏 + 𝑐)3.

20. Δ = ∣
15 − 𝑥 1 10
−4 − 2𝑥 0 6
−8 0 3 ∣ = 0[𝑅2 → 𝑅2 − 𝑅1; 𝑅3 → 𝑅3 − 𝑅1 ]

⇒ (12 + 6𝑥 − 48) = 0 ⇒ 𝑥 = 6.

21. Δ = ∣
𝑎 + 𝑏 + 𝑐 − 𝑥 𝑐 𝑏
𝑎 + 𝑏 + 𝑐 − 𝑥 𝑏 − 𝑥 𝑎
𝑎 + 𝑏 + 𝑐 − 𝑥 𝑎 𝑐 − 𝑥 ∣ = 0[𝐶1 → 𝐶1 + 𝐶2 + 𝐶3 ]

⇒ ∣
−𝑥 𝑐 𝑏
−𝑥 𝑏 − 𝑥 𝑎
−𝑥 𝑎 𝑐 − 𝑥 ∣ = 0[∵ 𝑎 + 𝑏 + 𝑐 = 0]

⇒ (−𝑥) ∣
1 𝑐 𝑏
1 𝑏 − 𝑥 𝑎
1 𝑎 𝑐 − 𝑥 ∣ = 0

⇒ ∣
1 𝑐 𝑏
0 𝑏 − 𝑐 − 𝑥 𝑎 − 𝑏
0 𝑎 − 𝑐 𝑐 − 𝑏 − 𝑥 ∣ = 0[𝑅2 → 𝑅2 − 𝑅1; 𝑅3 → 𝑅3 − 𝑅1 ]

⇒𝑥[(𝑏−𝑐−𝑥)(𝑐−𝑏−𝑥)−(𝑎−𝑐)(𝑎−𝑏)]= 0⇒ 𝑥(𝑥2−𝑎2−𝑏2−𝑐2+𝑎𝑏+𝑏𝑐+𝑐𝑎)= 0
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⇒ 𝑥 = 0; 𝑥2 = (𝑎2+ 𝑏2+ 𝑐2)−1
⁄

2 [(𝑎+𝑏+𝑐)2− (𝑎2+ 𝑏2+ 𝑐2)] = 3
⁄

2 (𝑎
2+ 𝑏2+ 𝑐2)[∵ 𝑎+

𝑏 + 𝑐 = 0]⇒ 𝑥 = ±√

3
⁄

2 (𝑎
2 + 𝑏2 + 𝑐2).

22. 𝐷1 = ∣
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑘 ∣ = ∣

𝑎 𝑏 𝑐
𝑡𝑥 𝑡𝑦 𝑡𝑐
𝑔 ℎ 𝑘 ∣

= 𝑡∣
𝑎 𝑏 𝑐
𝑥 𝑦 𝑧
𝑔 ℎ 𝑘 ∣ = 𝑡∣

𝑎 𝑥 𝑔
𝑏 𝑦 ℎ
𝑐 𝑧 𝑘 ∣(changing rows into corresponding columns)

= −𝑡∣
𝑎 𝑔 𝑥
𝑏 ℎ 𝑦
𝑐 𝑘 𝑧 ∣ = −𝑡𝐷2.

23. ∣
𝑎 𝑏𝑐 𝑎𝑏𝑐
𝑏 𝑐𝑎 𝑎𝑏𝑐
𝑐 𝑎𝑏 𝑎𝑏𝑐 ∣ = 1⁄

𝑎2𝑏2𝑐2 ∣
𝑎3 𝑎2𝑏𝑐 𝑎3𝑏𝑐
𝑏3 𝑎𝑏2𝑐 𝑎𝑏3𝑐
𝑐3 𝑎𝑏𝑐2 𝑎𝑏𝑐3 ∣ [𝑅1 → 𝑎2𝑅1; 𝑅2 → 𝑏2𝑅2; 𝑅3 → 𝑐2𝑅3 ]

= 𝑎𝑏𝑐.𝑎𝑏𝑐⁄
𝑎2𝑏2𝑐2 ∣

𝑎3 𝑎 𝑎2

𝑏3 𝑏 𝑏2

𝑐3 𝑐 𝑐2 ∣
= ∣

𝑎 𝑎2 𝑎3

𝑏 𝑏2 𝑏3

𝑐 𝑐2 𝑐3 ∣(exchanging columns twice).

24. Let 𝑥 be the first term and 𝑦 the common ratio of the G.P. then

𝑎 = 𝑥𝑦𝑝−1 ⇒ log 𝑎 = log 𝑥+ (𝑝−1) log 𝑦; 𝑏 = 𝑥𝑦𝑞−1 ⇒ log 𝑏 = log 𝑥+ (𝑞 −1) log 𝑦; 𝑐 =
𝑥𝑦𝑟−1 ⇒ log 𝑐 = log 𝑥 + (𝑟 − 1) log(𝑟 − 1)

⇒ ∣
log 𝑎 𝑝 1
log 𝑏 𝑞 1
log 𝑐 𝑟 1 ∣ = ∣

log 𝑥 + (𝑝 − 1) log 𝑦 𝑝 1
log 𝑥 + (𝑞 − 1) log 𝑦 𝑞 1
log 𝑥 + (𝑟 − 1) log 𝑦 𝑟 1 ∣

= ∣
(𝑝 − 1) log 𝑦 𝑝 1
(𝑞 − 1) log 𝑦 𝑞 1
(𝑟 − 1) log 𝑦 𝑟 1 ∣ [𝐶1 → 𝐶1 − log 𝑥.𝐶3 ]

= log 𝑦∣
𝑝 − 1 𝑝 1
𝑞 − 1 𝑞 1
𝑟 − 1 𝑟 1 ∣ = log 𝑦∣

𝑝 𝑝 1
𝑞 𝑞 1
𝑟 𝑟 1 ∣ = 0[𝐶1 → 𝐶1 + 𝐶3 ].

25. Δ = ∣
1 0 0
1 𝑥 0
1 0 𝑦 ∣ [𝐶2 → 𝐶2 − 𝐶1; 𝐶3 → 𝐶3 − 𝐶1 ]

= 𝑥𝑦.
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26. Δ = ∣ 0 0 1
𝑎 − 𝑏 𝑏 − 𝑐 𝑐
𝑎3 − 𝑏3 𝑏3 − 𝑐3 𝑐3 ∣ [𝐶1 → 𝐶1 − 𝐶2; 𝐶2 → 𝐶2 − 𝐶3 ]

= (𝑎 − 𝑏)(𝑏 − 𝑐) ∣ 0 0 1
1 1 𝑐

𝑎2 + 𝑎𝑏 + 𝑏2 𝑏2 + 𝑏𝑐 + 𝑐2 𝑐3 ∣
= (𝑎 − 𝑏)(𝑏 − 𝑐)[𝑏2 + 𝑏𝑐 + 𝑐2 − 𝑎2 − 𝑎𝑏 − 𝑏2 ] = (𝑎 − 𝑏)(𝑏 − 𝑐)[(𝑐 − 𝑎)(𝑎 + 𝑏 + 𝑐)].

27. Δ = ∣
0 𝑏 − 𝑎 𝑏2 − 𝑎2

0 𝑐 − 𝑏 𝑏2 − 𝑐2

1 𝑎 + 𝑏 𝑎2 + 𝑏2 ∣ [𝑅1 → 𝑅1 − 𝑅2; 𝑅2 → 𝑅2 − 𝑅3 ]

= (𝑏 − 𝑎)(𝑐 − 𝑏) ∣ 0 1 𝑏 + 𝑎
0 1 𝑐 + 𝑏
1 𝑎 + 𝑏 𝑎2 + 𝑏2 ∣

= (𝑏 − 𝑎)(𝑐 − 𝑏)(𝑐 + 𝑏 − 𝑏 − 𝑎) = (𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎).

28. Δ = ∣
0 𝑎 − 𝑏 𝑎2 − 𝑏2 + 𝑐𝑎 − 𝑏𝑐
0 𝑏 − 𝑐 𝑏2 − 𝑐2 + 𝑎𝑏 − 𝑐𝑎
1 𝑐 𝑐2 − 𝑎𝑏 ∣ [𝑅1 → 𝑅1 − 𝑅2; 𝑅2 → 𝑅2 − 𝑅3 ]

= (𝑎 − 𝑏)(𝑏 − 𝑐) ∣ 0 1 𝑎 + 𝑏 + 𝑐
0 1 𝑎 + 𝑏 + 𝑐
1 𝑐 𝑐2 − 𝑎𝑏 ∣

= 0(two rows are identical).

29. Δ = 1⁄
𝑎𝑏𝑐 ∣

𝑎 𝑎𝑏𝑐 𝑎𝑏𝑐(𝑏 + 𝑐)
𝑏 𝑎𝑏𝑐 𝑎𝑏𝑐(𝑐 + 𝑎)
𝑐 𝑎𝑏𝑐 𝑎𝑏𝑑(𝑎 + 𝑏) ∣ [𝑅1 → 𝑎𝑅1; 𝑅2 → 𝑏𝑅2; 𝑅3 → 𝑐𝑅3 ]

= 𝑎2𝑏2𝑐2⁄
𝑎𝑏𝑐 ∣

𝑎 1 𝑏 + 𝑐
𝑏 1 𝑐 + 𝑎
𝑐 1 𝑎 + 𝑏 ∣ = 𝑎𝑏𝑐∣

𝑎 − 𝑏 0 𝑏 − 𝑎
𝑏 − 𝑐 0 𝑐 − 𝑏
𝑐 1 𝑎 + 𝑏 ∣ [𝑅1 → 𝑅1 − 𝑅2; 𝑅2 → 𝑅2 − 𝑅3 ] = 0.

30. Check previous problem.

31. Let 𝑥 be the first term and 𝑑 be the common difference of the corresponding A.P.
Then4
1
⁄

𝑎 = 𝑥 + (𝑝 − 1)𝑑; 1⁄𝑏 = 𝑥 + (𝑞 − 1)𝑑; 1⁄𝑐 = 𝑥 + (𝑟 − 1)𝑑

⇒ 1
⁄

𝑎 −
1
⁄

𝑏 =
𝑏−𝑎
⁄

𝑎𝑏 = (𝑝 − 𝑞)𝑑; 𝑐−𝑏⁄𝑏𝑐 = (𝑞 − 𝑟)𝑑.

Δ = ∣
𝑐(𝑏 − 𝑎) 𝑝 − 𝑞 0
𝑎(𝑐 − 𝑏) 𝑞 − 𝑟 0

𝑎𝑏 𝑟 1 ∣ [𝑅1 → 𝑅1 − 𝑅2; 𝑅2 → 𝑅2 − 𝑅3 ]
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= ∣
𝑐(𝑏 − 𝑎) 𝑏−𝑎
⁄

𝑎𝑏𝑑 0

𝑎(𝑐 − 𝑏) 𝑐−𝑏
⁄

𝑏𝑐𝑑 0
𝑎𝑏 𝑟 1 ∣ = (𝑏 − 𝑎)(𝑐 − 𝑏) ∣

𝑐 1⁄
𝑎𝑏𝑑 0

𝑎 1⁄
𝑏𝑐𝑑 0

𝑎𝑏 𝑟 1 ∣ = 0

32. Δ = ∣
0 −1 3
1 1 −4
−2 4 0 ∣(putting 𝑥 = 0) = ∣

0 −1 0
1 1 −1
−2 4 12 ∣ [𝐶3 → 𝐶3 + 3𝐶2 ]

= 10 = 𝑡

33. Δ = 𝑎𝑏𝑐∣ 1 1 1
𝑎 𝑏 𝑐
𝑎2 𝑏2 𝑐2 ∣

We have evaluated this new determinant equal to (𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎) earlier and
thus our required result is proven.

34. We can write 𝑏 = 𝑎 + 𝑑 and 𝑐 = 𝑎 + 2𝑑, where 𝑑 is the common difference of the A.P.
Then,

Δ = ∣
𝑥 + 1 𝑥 + 2 𝑥 + 𝑎
1 1 𝑑
1 1 𝑑 ∣ [𝑅3 → 𝑅3 − 𝑅2; 𝑅2 → 𝑅2 − 𝑅1 ]

= 0(because two rows are equal).

35. Δ = ∣
1 + 𝜔 + 𝜔2 1 + 𝜔 + 𝜔2 1 + 𝜔 + 𝜔2

𝜔 𝜔2 1
𝜔 1 𝜔2 ∣ [𝑅1 → 𝑅1 + 𝑅2 + 𝑅3 ]

= 0(because 1 + 𝜔 + 𝜔2 = 0).

36. Δ = 𝑘∣
1 1 1
1 2 3
1 3 6 ∣ = ∣

1 1 1
0 1 2
0 1 3 ∣ [𝑅3 → 𝑅3 − 𝑅2; 𝑅2 → 𝑅2 − 𝑅1 ]

= 𝑘.

37. Δ = ∣
𝑎2 + 𝑏2 + 𝑐2 + 𝑥 𝑏2 𝑐2

𝑎2 + 𝑏2 + 𝑐2 + 𝑥 𝑏2 + 𝑥 𝑐2

𝑎2 + 𝑏2 + 𝑐2 + 𝑥 𝑏2 𝑐2 + 𝑥 ∣ [𝐶1 → 𝐶1 + 𝐶2 + 𝐶3 ]

= (𝑎2 + 𝑏2 + 𝑐2 + 𝑥) ∣
1 𝑏2 𝑐2

1 𝑏2 + 𝑥 𝑐2

1 𝑏2 𝑐2 + 𝑥 ∣ = ∣ 1 𝑏2 𝑐2
0 𝑥 0
0 0 𝑥 ∣ [𝑅3 → 𝑅3 − 𝑅1; 𝑅2 → 𝑅2 − 𝑅1 ]

= (𝑎2 + 𝑏2 + 𝑐2 + 𝑥)𝑥2.

38. Δ = ∣
𝑎 − 𝑏 𝑏 − 𝑐 𝑎2 − 𝑏2

𝑏 − 𝑐 𝑐 − 𝑏 𝑏2 − 𝑐2

𝑐 𝑎 + 𝑏 𝑐2 ∣ [𝑅1 → 𝑅1 − 𝑅2; 𝑅2 → 𝑅2 − 𝑅3 ]
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= (𝑎−𝑏)(𝑏− 𝑐)∣ 0 0 𝑎 − 𝑐
1 −1 𝑏 + 𝑐
𝑐 𝑎 + 𝑏 𝑐2 ∣[𝑅1 → 𝑅1−𝑅2] = −(𝑎−𝑏)(𝑏− 𝑐)(𝑐 −𝑎)(𝑎+𝑏+𝑐).

39. Δ = ∣
𝑎 + 𝑏 + 𝑐 𝑎 − 𝑏 𝑎
𝑏 + 𝑐 + 𝑎 𝑏 − 𝑐 𝑏
𝑐 + 𝑎 + 𝑏 𝑐 − 𝑎 𝑐 ∣ [𝐶1 → 𝐶1 + 𝐶3 ]

= (𝑎 + 𝑏 + 𝑐) ∣
0 𝑎 + 𝑐 − 2𝑏 𝑎 − 𝑏
0 𝑏 + 𝑎 − 2𝑐 𝑏 − 𝑐
1 𝑐 − 𝑎 𝑐 ∣ [𝑅1 → 𝑅1 − 𝑅2; 𝑅2 → 𝑅2 − 𝑅3 ]

= (𝑎 + 𝑏 + 𝑐)(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 − 𝑎2 − 𝑏2 − 𝑐2) = 3𝑎𝑏𝑐 − 𝑎3 − 𝑏3 − 𝑐3.

40. Δ = 2(𝑎 + 𝑏 + 𝑐) ∣
1 𝑏 + 𝑐 𝑐 + 𝑎
1 𝑐 + 𝑎 𝑎 + 𝑏
1 𝑎 + 𝑏 𝑏 + 𝑐 ∣ [𝐶1 → 𝐶1 + 𝐶2 + 𝐶3 ]

= 2(𝑎 + 𝑏 + 𝑐) ∣
0 𝑏 − 𝑎 𝑐 − 𝑏
0 𝑐 − 𝑏 𝑎 − 𝑐
1 𝑎 + 𝑏 𝑎 + 𝑐 ∣ [𝑅1 → 𝑅1 − 𝑅2; 𝑅2 → 𝑅2 − 𝑅3 ]

= 2(𝑎 + 𝑏 + 𝑐)(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 − 𝑎2 − 𝑏2 − 𝑐2) = −2(𝑎3 + 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐).

41. Δ = ∣
𝑎 − 𝑏 𝑏 − 𝑐 𝑥 + 𝑐
𝑎 − 𝑏 𝑏 − 𝑐 𝑥 + 𝑏
𝑎 − 𝑏 𝑏 − 𝑐 𝑥 + 𝑐 ∣ [𝐶1 → 𝐶1 − 𝐶2; 𝐶2 → 𝐶2 − 𝐶3 ]

= 0(because two columns are equal).

42. Multiplying each row with −1 gives us

Δ = −∣
0 𝑞 − 𝑝 𝑟 − 𝑝

𝑝 − 𝑞 0 𝑟 − 𝑞
𝑝 − 𝑟 𝑞 − 𝑟 0 ∣

Changing rows into corresponding columns

Δ = −∣
0 𝑝 − 𝑞 𝑝 − 𝑟

𝑞 − 𝑝 0 𝑞 − 𝑟
𝑟 − 𝑝 𝑟 − 𝑞 0 ∣ = −Δ ⇒ Δ = 0.

43. Let L.H.S. = Δ = (3𝑎 + 3𝑏) ∣
1 𝑎 + 𝑏 𝑎 + 2𝑏
1 𝑎 𝑎 + 𝑏

1𝑎 + 2𝑏 𝑎 ∣ [𝐶1 → 𝐶1 + 𝐶2 + 𝐶3 ]

= (3𝑎 + 3𝑏) ∣
0 𝑏 𝑏
0 −2𝑏 𝑏

1𝑎 + 2𝑏 𝑎 ∣ [𝑅1 → 𝑅1 − 𝑅2; 𝑅2 → 𝑅2 − 𝑅3 ]

= 9𝑏2(𝑎 + 𝑏) = R.H.S.



Answers of Determinants 754

44. Δ = 1
⁄

𝑎 ∣
𝑎2 + 𝑏2 + 𝑐2 𝑏 − 𝑐 𝑐 + 𝑏
𝑎2 + 𝑏2 + 𝑐2 𝑏 𝑐 − 𝑎
𝑎2 + 𝑏2 + 𝑐2 𝑏 + 𝑐 𝑐 ∣ [𝐶1 → 𝑎𝐶1 + 𝑏𝐶2 + 𝑐𝐶3 ]

= 𝑎2+𝑏2+𝑐2
⁄

𝑎 ∣
0 −𝑐 𝑎 + 𝑏
0 −𝑎 −𝑎
1 𝑏 + 𝑎 ∣ [𝑅1 → 𝑅1 − 𝑅2; 𝑅2 → 𝑅2 − 𝑅3 ]

= 𝑎2+𝑏2+𝑐2
⁄

𝑎 (𝑎𝑐 + 𝑎2 + 𝑎𝑏) = (𝑎2 + 𝑏2 + 𝑐2)(𝑎 + 𝑏 + 𝑐).

Thus, given determinant has the same sign as 𝑎 + 𝑏 + 𝑐 because 𝑎2 + 𝑏2 + 𝑐2 is always
positive for real values of 𝑎, 𝑏, 𝑐.

45. Δ = 1
⁄

𝑎𝑏 ∣
0 𝑎(𝑏𝑐′ + 𝑏′𝑐)− 𝑏(𝑐𝑎′ + 𝑐′𝑎) 𝑎𝑏′𝑐′ − 𝑏𝑐′𝑎′
0 𝑏(𝑐𝑎′ + 𝑐′𝑎)− 𝑐(𝑎𝑏′ − 𝑎𝑏) 𝑏𝑐′𝑎′ − 𝑐𝑎′𝑏′
𝑎𝑏 𝑎𝑏′ + 𝑎′𝑏 𝑎′𝑏′ ∣ [𝑅1 → 𝑎𝑅1 − 𝑏𝑅2; 𝑅2 → 𝑏𝑅2 −

𝑐𝑅3 ]

= 𝑎𝑏
⁄

𝑎𝑏 (𝑎𝑏
′ − 𝑎′𝑏)(𝑏′𝑐 − 𝑏𝑐′)(𝑎′𝑐 − 𝑐′𝑎) = (𝑎𝑏′ − 𝑎′𝑏)(𝑏′𝑐 − 𝑏𝑐′)(𝑎′𝑐 − 𝑐′𝑎).

46. Δ = 1⁄
𝑎𝑏𝑐 ∣

𝑎(𝑏2 + 𝑐2) 𝑎2𝑏 𝑎2𝑐
𝑎𝑏2 𝑏(𝑐2 + 𝑎2) 𝑏2𝑐
𝑎𝑐2 𝑐2𝑏 𝑐(𝑎2 + 𝑏2) ∣ [𝑅1 → 𝑎𝑅1; 𝑅2 → 𝑏𝑅2; 𝑅3 → 𝑐𝑅3 ]

= 𝑎𝑏𝑐⁄
𝑎𝑏𝑐 ∣

𝑏2 + 𝑐2 𝑎2 𝑎2

𝑏2 𝑐2 + 𝑎2 𝑏2

𝑐2 𝑐2 𝑎2 + 𝑏2 ∣
= ∣ 0 −2𝑐2 −2𝑏2

0 𝑐4 + 𝑐2𝑎2 − 𝑏2𝑐2 𝑏2𝑐2 − 𝑎2𝑏2 − 𝑏4

𝑐2 𝑐2 𝑎2 + 𝑏2 ∣ [𝑅1 → 𝑅1 − 𝑅2 − 𝑅3; 𝑅2 → 𝑐2𝑅2 − 𝑏2𝑅3 ]

= 4𝑎2𝑏2𝑐2.

47. Δ = 1⁄
𝑎2𝑏2𝑐2 ∣

(𝛼 + 𝛾)2 𝛽2 𝛽2

𝛾2 (𝛼 + 𝛽)2 𝛾2

𝛼2 𝛼2 (𝛽 + 𝛾)2 ∣ [𝐶1 → 𝑎2𝐶1; 𝐶2 → 𝑏2𝐶2; 𝐶3 → 𝑐2𝐶3 and

then applying 𝑎𝑏 = 𝛼, 𝑏𝑐 = 𝛽, 𝑐𝑎 = 𝛾 ]

We have evaluated this determinant earlier to be equal to 2𝛼𝛽𝛾(𝛼 + 𝛽 + 𝛾)3 and
𝛼𝛽𝛾 = 𝑎2𝑏2𝑐2.

Thus, Δ = 2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)3.

48. Δ = 1⁄
𝑎𝑏𝑐 ∣

𝑐(𝑎 + 𝑏)2 𝑐2𝑎 𝑏𝑐2

𝑐𝑎2 𝑎(𝑏 + 𝑐)2 𝑎2𝑏
𝑏2𝑐 𝑎𝑏2 𝑏(𝑐 + 𝑎)2 ∣ [𝑅1 → 𝑐𝑅1; 𝑅2 → 𝑎𝑅2; 𝑅3 → 𝑏𝑅3 ]
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= ∣
(𝑎 + 𝑏)2 𝑐2 𝑐2

𝑎2 (𝑏 + 𝑐)2 𝑎2

𝑏2 𝑏2 (𝑐 + 𝑎)2 ∣
We have evaluated this determinant to be equal to 2𝑎𝑏𝑐(𝑎 + 𝑏 + 𝑐)3 earlier.

∴Δ = 2𝑎𝑏𝑐(𝑎 + 𝑏 + 𝑐)3.

49. Δ = 1⁄
𝑎𝑏𝑐 ∣

𝑎2 + 𝑏2 𝑐2 𝑐2

𝑎2 𝑏2 + 𝑐2 𝑎2

𝑏2 𝑏2 𝑐2 + 𝑎2 ∣ [𝑅1 → 𝑐𝑅1; 𝑅2 → 𝑎𝑅2; 𝑅3 → 𝑏𝑅3 ]

We have evaluated this determinant to be equal to 4𝑎2𝑏2𝑐2.

∴Δ = 4𝑎𝑏𝑐.

50. Δ = ∣
0 0 𝑥 − 𝑎
𝑎 𝑎 𝑎
𝑏 𝑥 𝑏 ∣ [𝑅1 → 𝑅1 − 𝑅2 ]

= (𝑥 − 𝑎)(𝑎𝑥 − 𝑎𝑏) = 0 ⇒ 𝑥 = 𝑎, 𝑏.

51. Δ = ∣
𝑥 2 1
6 𝑥 + 4 −𝑥
7 8 𝑥 ∣ [𝐶3 → 𝐶3 − 𝐶2 ] = ∣

𝑥 2 1
13 𝑥 + 12 0
7 8 𝑥 ∣ [𝑅2 → 𝑅2 + 𝑅3 ]

= ∣ 0 0 1
13 𝑥 + 12 0

7 − 𝑥2 8 − 2𝑥 𝑥 ∣ [𝐶1 → 𝐶1 − 𝑥𝐶3; 𝐶2 → 𝐶2 − 2𝐶3 ]

= 𝑥3 + 12𝑥2 − 33𝑥 + 20 = 0

We observe that sum of coefficients is zero so 1 would be a factor. The other factor is
𝑥2 + 13𝑥 − 20 = 0; whose roots are −13±√


249⁄

2 .

52. Δ = ∣
𝑥 − 12 2 − 3𝑥 0
4 𝑥 1

𝑥 − 20 2 − 5𝑥 0 ∣ [𝑅1 → 𝑅1 − 3𝑅2; 𝑅3 → 𝑅3 − 5𝑅2 ]

= (𝑥 − 20)(3𝑥 − 2)− (𝑥 − 12)(5𝑥 − 2)⇒ 𝑥 = ±2√


2.

53. Δ = ∣
𝑥 + 𝑎 + 𝑏 + 𝑐 𝑏 𝑐
𝑥 + 𝑎 + 𝑏 + 𝑐 𝑥 + 𝑏 𝑐
𝑥 + 𝑎 + 𝑏 + 𝑐 𝑏 𝑥 + 𝑐 ∣ [𝐶1 → 𝐶1 + 𝐶2 + 𝐶3 ]

= (𝑥 + 𝑎 + 𝑏 + 𝑐) ∣
1 𝑏 𝑐
0 𝑥 0
0 0 𝑥 ∣ [𝑅2 → 𝑅2 − 𝑅1; 𝑅3 → 𝑅3 − 𝑅1 ] = (𝑥 + 𝑎 + 𝑏 + 𝑐)𝑥2

⇒ 𝑥 = −(𝑎 + 𝑏 + 𝑐), 0.
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54. Δ = ∣
𝑥 + 10 5 2
𝑥 + 10 7 + 𝑥 6
𝑥 + 10 5 3 + 𝑥 ∣ [𝐶1 → 𝐶1 + 𝐶2 + 𝐶3 ]

= ∣
0 0 −𝑥 − 1

𝑥 + 14 𝑥 + 7 6
𝑥 + 10 5 3 + 𝑥 ∣ [𝑅1 → 𝑅1 − 𝑅3 ] = (𝑥 + 1)(𝑥2 + 12𝑥)

⇒ 𝑥 = 0, −1, −12.

55. Δ = ∣
𝑎 𝑏 + 𝑐 𝑐 + 𝑎
𝑏 𝑐 + 𝑎 𝑎 + 𝑏
𝑐 𝑎 + 𝑏 𝑏 + 𝑐 ∣+ ∣

𝑏 𝑏 + 𝑐 𝑐 + 𝑎
𝑐 𝑐 + 𝑎 𝑎 + 𝑏
𝑎 𝑎 + 𝑏 𝑏 + 𝑐 ∣

= ∣
𝑎 𝑏 𝑐 + 𝑎
𝑏 𝑐 𝑎 + 𝑏
𝑐 𝑎 𝑏 + 𝑐 ∣+ ∣

𝑎 𝑐 𝑐 + 𝑎
𝑎 𝑐 𝑎 + 𝑏
𝑏 𝑎 𝑏 + 𝑐 ∣+ ∣

𝑏 𝑏 𝑐 + 𝑎
𝑐 𝑐 𝑎 + 𝑏
𝑎 𝑎 𝑏 + 𝑐 ∣ [= 0]+ ∣

𝑏 𝑐 𝑐 + 𝑎
𝑎 𝑐 𝑎 + 𝑏
𝑎 𝑏 𝑏 + 𝑐 ∣

= ∣
𝑎 𝑏 𝑐
𝑏 𝑐 𝑎
𝑐 𝑎 𝑏 ∣+ ∣

𝑎 𝑏 𝑎
𝑏 𝑐 𝑏
𝑐 𝑎 𝑐 ∣[= 0]+ ∣

𝑎 𝑐 𝑐
𝑏 𝑎 𝑎
𝑐 𝑏 𝑏 ∣[= 0]+ ∣

𝑎 𝑐 𝑎
𝑏 𝑎 𝑏
𝑐 𝑏 𝑐 ∣[= 0]+ ∣

𝑏 𝑐 𝑐
𝑐 𝑎 𝑎
𝑎 𝑏 𝑏 ∣[= 0]+ ∣

𝑏 𝑐 𝑎
𝑐 𝑎 𝑏
𝑎 𝑏 𝑐 ∣

= 2∣
𝑎 𝑏 𝑐
𝑏 𝑐 𝑎
𝑐 𝑎 𝑏 ∣(exchanging columns of second determinant twice).

56. This problem is similar to previous problem and can be solved similarly.

57. This problem is similar to previous problem and can be solved similarly.

58. Δ = ∣
−2𝑎 𝑎2 + 1 𝑎
−2𝑏 𝑏2 + 1 𝑏
−2𝑐 𝑐2 + 1 𝑐 ∣ [𝐶1 → 𝐶1 − 𝐶2 ]

Taking out −2 from 𝐶1 makes 𝐶1 and 𝐶3 equal, and thus, Δ = 0.

59. Multiplying all rows by −1 and changing rows intocorresponding columns we observe
that Δ = −Δ ⇒ Δ = 0.

60. Δ = 1⁄
𝑎𝑏𝑐 ∣

𝑎 𝑎2 𝑎𝑏𝑐
𝑏 𝑏2 𝑎𝑏𝑐
𝑐 𝑐2 𝑎𝑏𝑐 ∣ [𝑅1 → 𝑎𝑅1; 𝑅2 → 𝑏𝑅2; 𝑅3 → 𝑐𝑅3 ]

= 𝑎𝑏𝑐⁄
𝑎𝑏𝑐 ∣

1 𝑎 𝑎2

1 𝑏 𝑏2

1 𝑐 𝑐2 ∣(exchanging columns twice).

61. Δ = 1⁄
𝑥𝑦𝑧 ∣ 𝑎𝑥 𝑏𝑦 𝑐𝑧

𝑥2 𝑦2 𝑧2
𝑥𝑦𝑧 𝑦𝑧𝑥 𝑧𝑥𝑦 ∣ [𝐶1 → 𝑥𝐶1; 𝐶2 → 𝑦𝐶2; 𝐶3 → 𝑧𝐶3 ]
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= 𝑥𝑦𝑧⁄
𝑥𝑦𝑧 ∣ 𝑎𝑥 𝑏𝑦 𝑐𝑧

𝑥2 𝑦2 𝑧2
1 1 1 ∣.

62. Changing rows twice gives us third determinant from first determinant.

Δ = −∣
𝑥 𝑦 𝑧
𝑎 𝑏 𝑐
𝑝 𝑞 𝑟 ∣ [𝑅1 ↔ 𝑅2 ] = ∣

𝑦 𝑥 𝑧
𝑏 𝑎 𝑐
𝑞 𝑝 𝑟 ∣ [𝐶1 ↔ 𝐶2 ]

= ∣
𝑥 𝑦 𝑧
𝑝 𝑞 𝑟
𝑎 𝑏 𝑐 ∣(changing rows into corresponding columns).

63. Δ = 𝑚!(𝑚+ 1)!(𝑚+ 2)!∣
1 𝑚 + 1 (𝑚+ 1)(𝑚+ 2)
1 𝑚 + 2 (𝑚+ 2)(𝑚+ 3)
1 𝑚 + 3 (𝑚+ 3)(𝑚+ 4) ∣

= 𝑚!(𝑚+ 1)!(𝑚+ 2)!∣
1 𝑚 + 1 (𝑚+ 1)2

1 𝑚 + 2 (𝑚+ 2)2

1 𝑚 + 3 (𝑚+ 3)2 ∣ [𝐶3 → 𝐶3 − 𝐶2 ]

Using the result obtained earlier

= 𝑚!(𝑚+ 1)!(𝑚+ 2)!(−1) .(−1) .2.

Δ⁄
(𝑚!)3 = 2𝑚3 + 8𝑚2 + 10𝑚+ 4, and thus, divisibility condition is fulfilled.

64. Δ = ∣ 1 1
2 −3 ∣ = −3 − 2 = −5 ≠ 0.

Δ1 = ∣ 4 1
9 −3 ∣ = −21, Δ2 = ∣ 1 4

2 9 ∣ = 1

By Cramer's rule, 𝑥 = Δ1⁄
Δ = 21
⁄

5 , 𝑦 =
Δ2⁄
Δ = −1
⁄

5.

65. Δ = ∣
2 −1 3
1 1 1
1 −1 1 ∣ = 2(1 + 1)+ 1(1 − 1)+ 3(−1 − 1) = −2.

Δ1 = ∣
9 −1 3
6 1 1
2 −1 1 ∣ = 9(1 + 1)+ 1(6 − 2)+ 3(−6 − 2) = −2

Δ2 = ∣
2 9 3
1 6 1
2 −1 1 ∣ = 2(6 − 2)− 9(1 − 1)+ 3(2 − 6) = −4.

Δ3 = ∣
2 −1 9
1 1 6
1 −1 2 ∣ = 2(2 + 6)+ 1(2 − 6)+ 9(−1 − 1) = −6
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By Cramer's rule, 𝑥 = Δ1⁄
Δ = 1, 𝑦 = Δ2⁄

Δ = 2, 𝑧 = Δ3⁄
Δ = 3.

66. Δ = ∣ 2 3
4 6 ∣ = 0, Δ1 = ∣ 6 3

10 6 ∣ = 6 ≠ 0.

Hence, given system of equations is inconsistent and has no solution.

67. Δ = ∣
1 1 −1
2 3 1
4 3 1 ∣ = ∣

0 0 −1
3 4 1
5 4 1 ∣ [𝐶1 → 𝐶1 + 𝐶3; 𝐶2 → 𝐶2 + 𝐶3 ]

= −1(12 − 20) = 8 ≠ 0.

Hence, given system of equations is consistent and has unique solution.

68. Δ = ∣ 1 1
2 2 ∣ = 0, Δ1 = ∣ 2 1

4 2 ∣ = 0, Δ2 = ∣ 1 2
2 4 ∣ = 0.

Hence, given system of equations is consistent and has infinite number of solutions.

69. Δ = ∣
2 1 13
6 3 18
1 −1 −3 ∣ = 2(−9 + 18)− 1(−18 − 18)+ 13(−6 − 3) = −63 ≠ 0.

Thus, we have case of inconsistent solutions.

70. Δ = ∣
1 1 −6
3 −1 −2
1 −1 2 ∣ = 1(−2 − 2)− 1(6 + 2)− 6(−3 + 1) = 0

Hence, given system of equations has non-trivial solution.

71. Δ = ∣
1 1 −𝑘
3 −1 −2
1 −1 2 ∣ = 0(for non-trivial solution)⇒ 𝑘 = 6.

Solving the system of equation gives us 𝑧 = 𝑥
⁄

2 and 𝑦 = 2𝑥. Thus, solution is given by

𝑥 = 𝑡, 𝑦 = 2𝑡, 𝑧 = 𝑡
⁄

2, where 𝑡 is an arbitrary number.

72. Δ = ∣ 1 −2
7 6 ∣ = 6 + 14 = 20, Δ1 = ∣ 0 −2

40 6 ∣ = 80

Δ2 = ∣ 1 0
7 40 ∣ = 40 ⇒ 𝑥 = Δ1⁄

Δ = 4, 𝑦 = Δ2⁄
Δ = 2.

73. Δ = ∣
1 1 1
3 2 −3
−1 0 1 ∣ = 1(2)− 1(3 − 3)+ 1(2) = 4

Δ1 = ∣
9 1 1
0 2 −3
2 0 1 ∣ = 9(2)− 1(6)+ 1(−4) = 8
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Δ2 = ∣
1 9 1
3 0 −3
−1 2 1 ∣ = 1(6)− 9(3 − 3)+ 1(6) = 12

Δ3 = ∣
1 1 9
3 2 0
−1 0 2 ∣ = 1(4)− 1(6)+ 9(2) = 16

⇒ 𝑥 = Δ1⁄
Δ = 2, 𝑦 = Δ2⁄

Δ = 3, 𝑧 = Δ3⁄
Δ = 4.

74. Δ = ∣
1 −1 1
2 3 −5
3 −4 2 ∣ = 1(6 − 20)+ 1(4 + 15)+ 1(−17) = 12

Δ1 = ∣
0 −1 1
7 3 −5
−1 −4 2 ∣ = −1(9)+ 1(25) = 16

Δ2 = ∣
1 0 1
2 7 −5
3 −1 2 ∣ = 1(9)+ 1(−23) = −14

Δ3 = ∣
1 −1 0
2 3 7
3 −4 −1 ∣ = 1(25)+ 1(−23) = 2

⇒ 𝑥 = 4
⁄

3 , 𝑦 = −7
⁄

6 , 𝑧 =
1
⁄

6.

75. Δ = ∣
2 3 −3
5 −2 2
1 7 −5 ∣ = 2(−4)− 3(−25 − 2)− 3(37) = −38

Δ1 = ∣
0 3 −3
19 −2 2
5 7 −5 ∣ = −3(−105)− 3(143) = −114

Δ2 = ∣
2 0 −3
5 19 2
1 5 −5 ∣ = 2(−105)− 3(6) = −228

Δ3 = ∣
2 3 0
5 −2 19
1 7 5 ∣ = 2(−143)− 3(6) = −304

⇒ 𝑥 = 3, 𝑦 = 6, 𝑧 = 8.

76. Δ = ∣ 1 1 1
𝑎 𝑏 𝑐
𝑎2 𝑏2 𝑐2 ∣ = (𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎)
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Δ1 = ∣ 1 1 1
𝑘 𝑏 𝑐
𝑘2 𝑏2 𝑐2 ∣ = (𝑘 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑘)

Δ2 = ∣ 1 1 1
𝑎 𝑘 𝑐
𝑎2 𝑘2 𝑐2 ∣ = −(𝑎 − 𝑘)(𝑘 − 𝑐)(𝑐 − 𝑎)

Δ3 = ∣ 1 1 1
𝑎 𝑏 𝑘
𝑎2 𝑏2 𝑘2 ∣ = (𝑎 − 𝑏)(𝑏 − 𝑘)(𝑘 − 𝑎)

⇒ 𝑥 = (𝑘−𝑏)(𝑘−𝑐)⁄
(𝑎−𝑏)(𝑎−𝑐) , 𝑦 =

(𝑘−𝑎)(𝑘−𝑐)⁄
(𝑏−𝑎)(𝑏−𝑐) , 𝑧 =

(𝑘−𝑎)(𝑘−𝑏)⁄
(𝑐−𝑎)(𝑐−𝑏).

77. Δ = ∣ 3 9
9 27 ∣ = 0, Δ1 = ∣ 5 9

10 27 ∣ ≠ 0.

Hence, the given system of equations is inconsistent and has no solution.

78. Δ = ∣ 5 −3
1 1 ∣ ≠ 0, Δ1 = ∣ 3 −3

7 1 ∣ ≠ 0, Δ2 = ∣ 5 3
1 7 ∣ ≠ 0.

Hence, the given system of equations has unique solution.

79. Δ = ∣ 1 2
3 6 ∣ = 0, Δ1 = ∣ 5 2

15 2 ∣ = 0, Δ2 = ∣ 1 5
3 15 ∣ = 0.

Hence, the given system of equations has infinite solutions.

80. Δ = ∣
2 3 1
3 1 5
1 4 −2 ∣ = 2(−22)− 3(−11)+ 1(11) = 0.

Δ1 = ∣
5 3 1
7 1 5
3 4 −2 ∣ = 5(−22)− 3(−29)+ 1(25) = 2.

Hence, the given system of equations is inconsistent and has no solution.

81. Δ = ∣
1 1 −1
6 4 6
2 7 4 ∣ = 1(−26)− 1(12)− 1(34) = −72

Δ1 = ∣
−2 1 −1
26 4 6
31 7 4 ∣ = −2(−26)− 1(−82)− 1(38) ≠ 0

Δ2 = ∣
1 −2 −1
6 26 6
2 31 4 ∣ = 1(−82)+ 2(12)− 1(134) ≠ 0
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Δ3 = ∣
1 1 −2
6 4 26
2 7 31 ∣ = 1(−38)− 1(134)− 2(34) ≠ 0

Hence, the given system of equations has unique solution.

82. Δ = ∣
1 𝑘 3
3 𝑘 −2
2 3 −4 ∣ = 1(−4𝑘 + 6)− 𝑘(−8)+ 3(9 − 2𝑘) = 0 ⇒ 𝑘 = 33

⁄

2 .

Solving the system of equations for this value of 𝑘 gives us 2𝑥+15𝑦 = 0 and 𝑥+5𝑧 = 0.

Therefore, 𝑥 = 𝑡, 𝑦 = −2𝑡⁄
15 , 𝑧 =

−𝑡⁄
5 , where 𝑡 is an arbitrary number.

83. Δ = ∣
𝑎 𝑏 𝑐
𝑏 𝑐 𝑎
𝑐 𝑎 𝑏 ∣ = ∣

𝑎 + 𝑏 + 𝑐 𝑏 𝑐
𝑏 + 𝑐 + 𝑎 𝑐 𝑎
𝑐 + 𝑎 + 𝑏 𝑎 𝑏 ∣ [𝐶1 → 𝐶1 + 𝐶2 + 𝐶3 ]

= (𝑎 + 𝑏 + 𝑐) ∣
1 𝑏 𝑐
1 𝑐 𝑎
1 𝑎 𝑏 ∣ = (𝑎 + 𝑏 + 𝑐) ∣

1 𝑏 𝑐
0 𝑐 − 𝑏 𝑎 − 𝑐
0 𝑎 − 𝑏 𝑏 − 𝑐 ∣ [𝑅2 → 𝑅2 − 𝑅1; 𝑅3 → 𝑅3 − 𝑅1 ]

= (𝑎+𝑏+𝑐)[(𝑐−𝑏)(𝑏−𝑐)−(𝑎−𝑏)(𝑎−𝑐)]= (𝑎+𝑏+𝑐)(𝑎𝑏+𝑏𝑐+𝑐𝑎−𝑎2−𝑏2−𝑐2)=
−1
⁄

2 (𝑎 + 𝑏 + 𝑐)[(𝑎 − 𝑏)2 + (𝑏 − 𝑐)2 + (𝑐 − 𝑎)2 ]

Since 𝑎, 𝑏, 𝑐 are different Δ will acquire value zero only if 𝑎 + 𝑏 + 𝑐 = 0 for non-trivial
solution.

84. Δ = ∣
3 −1 4
1 2 −3
6 5 𝜆 ∣ = 3(2𝜆 + 15)+ 1(𝜆 + 18)+ 4(−7) = 0

⇒ 𝜆 = −5.

85. Let 𝐴28 = 𝐴 × 100 + 2 × 10 + 8 = 𝑝𝑘, 3𝐵9 = 3 × 100 + 𝐵 × 10 + 9 = 𝑞𝑘62𝐶 =
6 × 100 + 2 × 10 + 𝐶 = 𝑟𝑘 where 𝑝, 𝑞, 𝑟 are integers.

Δ = ∣
𝐴 3 6
𝑝𝑘 𝑞𝑘 𝑟𝑘
2 𝐵 2 ∣ [𝑅2 → 𝑅2 + 10𝑅3 + 100𝑅1 ]

= 𝑘∣
𝐴 3 6
𝑝 𝑞 𝑟
2 𝐵 2 ∣, which is divisible by 𝑘.

86. Δ = ∣
𝑥 𝑥(𝑥−1)⁄

2
𝑥(𝑥−1)(𝑥−2)⁄

6

𝑦 𝑦(𝑦−1)
⁄

2
𝑦(𝑦−1)(𝑦−2)⁄

6

𝑧 𝑧(𝑧−1)⁄
2

𝑧(𝑧−1)(𝑧−2)⁄
6 ∣ = 𝑥𝑦𝑧⁄

2.6 ∣
1 𝑥 − 1 (𝑥 − 1)(𝑥 − 2)
1 𝑦 − 1 (𝑦 − 1)(𝑦 − 2)
1 𝑧 − 1 (𝑧 − 1)(𝑧 − 2) ∣
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= 𝑥𝑦𝑧⁄
12 ∣

1 𝑥 − 1 (𝑥 − 1)2

1 𝑦 − 1 (𝑦 − 1)2

1 𝑧 − 1 (𝑧 − 1)2 ∣[𝐶3 → 𝐶3+𝐶2 ] = 𝑥𝑦𝑧⁄
12 (𝑥 − 𝑦)(𝑦 − 𝑧)(𝑧 − 𝑥)[∵ ∣

1 𝑎 𝑎2

1 𝑏 𝑏2

1 𝑐 𝑐2 ∣ =
(𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎)].

87. Δ = ∣
𝑝 − 𝑎 𝑏 − 𝑞 0
0 𝑞 − 𝑏 𝑐 − 𝑟
𝑎 𝑏 𝑟 ∣ [𝑅1 → 𝑅1 − 𝑅 − 2; 𝑅2 → 𝑅2 − 𝑅3 ] = 0

⇒ (𝑝 − 𝑎)[𝑟(𝑞 − 𝑏) − 𝑏(𝑐 − 𝑟)] − (𝑏 − 𝑞)[0 − 𝑎(𝑐 − 𝑟)] = 𝑟(𝑝 − 𝑎)(𝑞 − 𝑏) + 𝑏(𝑝 −
𝑎)(𝑟 − 𝑐)+ 𝑎(𝑞 − 𝑏)(𝑟 − 𝑐) = 0

⇒ 𝑟⁄
𝑟−𝑐 +

𝑏⁄
𝑞−𝑏 +

𝑎⁄
𝑝−𝑎 = 0 ⇒ 𝑟⁄

𝑟−𝑐 + ( 𝑏⁄
𝑞−𝑏 + 1)+ ( 𝑎⁄

𝑝−𝑎 + 1) = 0 + 1 + 1

⇒ 𝑝⁄
𝑝−𝑎 +

𝑞⁄
𝑞−𝑏 +

𝑟⁄
𝑟−𝑐 = 2

88. Δ = ∣𝑥(𝑥 − 2𝑎) 𝑥(2𝑏 − 𝑥) 0
0 −(𝑥 − 2𝑏) 𝑥(𝑎𝑐 − 𝑥)
𝑎2 𝑏2 (𝑥 − 𝑐)2 ∣ [𝑅1 → 𝑅1 − 𝑅2; 𝑅2 → 𝑅2 − 𝑅3 ]

= 𝑥2∣𝑥 − 2𝑎 −(𝑥 − 2𝑏) 0
0 𝑥 − 2𝑏 −(𝑥 − 2𝑐)
𝑎2 𝑏2 (𝑥 − 𝑐)2 ∣

= 𝑥2(𝑥 − 2𝑎)(𝑥 − 2𝑏)(𝑥 − 2𝑐) ∣ 1 −1 0
0 1 −1
𝑎2⁄

𝑥−2𝑎
𝑏2⁄

𝑥−2𝑏 𝑥 + 𝑐2⁄
𝑥−2𝑐 ∣

= 𝑥2(𝑥 − 2𝑎)(𝑥 − 2𝑏)(𝑥 − 2𝑐)(𝑥 + 𝑎2⁄
𝑥−2𝑎 +

𝑏2⁄
𝑥−2𝑏 +

𝑐2⁄
𝑥−2𝑐)∣ 1 −1 0

0 1 0
𝑎2⁄

𝑥−2𝑎
𝑏2⁄

𝑥−𝑎𝑐 1 ∣ [𝐶3 → 𝐶1+

𝐶2 + 𝐶3 ]

= 𝑥2(𝑥 − 2𝑎)(𝑥 − 2𝑏)(𝑥 − 2𝑐)(𝑥 + 𝑎2⁄
𝑥−2𝑎 +

𝑏2⁄
𝑥−2𝑏 +

𝑐2⁄
𝑥−2𝑐).

89. Δ = 1⁄
𝑎(𝑎+𝑑)2(𝑎+2𝑑)3(𝑎+3𝑑)2(𝑎+4𝑑) ∣

(𝑎 + 𝑑)(𝑎 + 2𝑑) 𝑎 + 2𝑑 𝑎
(𝑎 + 2𝑑)(𝑎 + 3𝑑) 𝑎 + 3𝑑 𝑎 + 𝑑
(𝑎 + 3𝑑)(𝑎 + 4𝑑) 𝑎 + 3𝑑 𝑎 + 2𝑑 ∣

= 1⁄
𝑎(𝑎+𝑑)2(𝑎+2𝑑)3(𝑎+3𝑑)2(𝑎+4𝑑) ∣

(𝑎 + 𝑑)(𝑎 + 2𝑑) 2𝑑 𝑎
(𝑎 + 2𝑑)(𝑎 + 3𝑑) 2𝑑 𝑎 + 𝑑
(𝑎 + 3𝑑)(𝑎 + 4𝑑) 2𝑑 𝑎 + 2𝑑 ∣ [𝐶2 → 𝐶2 − 𝐶3 ]

= 1⁄
𝑎(𝑎+𝑑)2(𝑎+2𝑑)3(𝑎+3𝑑)2(𝑎+4𝑑) ∣

(𝑎 + 𝑑)(𝑎 + 2𝑑) 2𝑑 𝑎
(𝑎 + 2𝑑)2𝑑 0 𝑑
(𝑎 + 3𝑑)2𝑑 0 𝑑 ∣ [𝑅2 → 𝑅2 − 𝑅1; 𝑅3 → 𝑅3 −

𝑅2 ]
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= 1⁄
𝑎(𝑎+𝑑)2(𝑎+2𝑑)3(𝑎+3𝑑)2(𝑎+4𝑑) . − 2𝑑[2𝑑2(𝑎 + 2𝑑 − 𝑎 − 3𝑑)]

= 4𝑑4⁄
𝑎(𝑎+𝑑)2(𝑎+2𝑑)3(𝑎+3𝑑)2(𝑎+4𝑑)

90. Δ = 1⁄
(𝑎+𝑥)(𝑏+𝑐)(𝑐+𝑥)(𝑎+𝑦)(𝑏+𝑦)(𝑐+𝑦)(𝑎+𝑧)(𝑏+𝑧)(𝑐+𝑧)Δ1,

where Δ1 = ∣
(𝑏 + 𝑥)(𝑐 + 𝑥) (𝑏 + 𝑦)(𝑐 + 𝑦) (𝑏 + 𝑧)(𝑐 + 𝑧)
(𝑐 + 𝑥)(𝑎 + 𝑥) (𝑐 + 𝑦)(𝑎 + 𝑦) (𝑐 + 𝑧)(𝑎 + 𝑧)
(𝑎 + 𝑥)(𝑏 + 𝑥) (𝑎 + 𝑦)(𝑏 + 𝑦) (𝑎 + 𝑧)(𝑏 + 𝑧) ∣

Δ1 = ∣
(𝑏 + 𝑥)(𝑐 + 𝑥) (𝑏 + 𝑦)(𝑐 + 𝑦) (𝑏 + 𝑧)(𝑐 + 𝑧)
(𝑐 + 𝑥)(𝑎 − 𝑏) (𝑐 + 𝑦)(𝑎 − 𝑏) (𝑐 − 𝑧)(𝑎 − 𝑏)
(𝑏 + 𝑥)(𝑎 − 𝑐) (𝑏 + 𝑦)(𝑎 − 𝑐) (𝑏 + 𝑧)(𝑎 − 𝑐) ∣[𝑅2 → 𝑅2−𝑅−1;𝑅3 → 𝑅3−

𝑅1 ]

= (𝑎 − 𝑏)(𝑎 − 𝑐) ∣
(𝑏 + 𝑥)(𝑐 + 𝑥) (𝑏 + 𝑦)(𝑐 + 𝑦) (𝑏 + 𝑧)(𝑐 + 𝑧)

𝑐 + 𝑥 𝑐 + 𝑦 𝑐 + 𝑧
𝑏 + 𝑥 𝑏 + 𝑦 𝑏 + 𝑧 ∣

= (𝑎 − 𝑏)(𝑎 − 𝑐) ∣
𝑥(𝑐 + 𝑥) 𝑦(𝑐 + 𝑦) 𝑧(𝑐 + 𝑧)
𝑐 + 𝑥 𝑐 + 𝑦 𝑐 + 𝑧
𝑏 − 𝑐 𝑏 − 𝑐 𝑏 − 𝑐 ∣ [𝑅1 → 𝑅1 − 𝑏𝑅2; 𝑅3 → 𝑅3 − 𝑅2 ]

= (𝑎−𝑏)(𝑏−𝑐)(𝑎−𝑐)∣
(𝑥 − 𝑧)(𝑐 + 𝑥 + 𝑧) (𝑦 − 𝑧)(𝑐 + 𝑦 + 𝑧) 𝑧(𝑐 + 𝑧)

𝑥 − 𝑧 𝑦 − 𝑧 𝑐 + 𝑧
0 0 1 ∣[𝐶1→ 𝐶1−

𝐶2; 𝐶2 → 𝐶2 − 𝐶3 ]

= (𝑎 − 𝑏)(𝑏 − 𝑐)(𝑎 − 𝑐)(𝑥 − 𝑧)(𝑦 − 𝑧) ∣
𝑐 + 𝑥 + 𝑧 𝑐 + 𝑦 + 𝑧 𝑧(𝑐 + 𝑧)

1 1 𝑐 + 𝑧
0 0 1 ∣

= (𝑎 − 𝑏)(𝑏 − 𝑐)(𝑎 − 𝑐)(𝑥 − 𝑧)(𝑦 − 𝑧)[𝑐 + 𝑥 + 𝑧 − 𝑐 − 𝑦 − 𝑧] = (𝑎 − 𝑏)(𝑏 − 𝑐)(𝑎 −
𝑐)(𝑥 − 𝑧)(𝑦 − 𝑧)(𝑥 − 𝑦)

⇒ Δ = (𝑎−𝑏)(𝑏−𝑐)(𝑐−𝑎)(𝑥−𝑦)(𝑦−𝑧)(𝑧−𝑥)⁄
(𝑎+𝑥)(𝑏+𝑥)(𝑐+𝑥)(𝑏+𝑥)(𝑏+𝑦)(𝑏+𝑧)(𝑐+𝑥)(𝑐+𝑦)(𝑐+𝑧).

91. Let 𝛼 = 𝑠 − 𝑎, 𝛽 = 𝑠 − 𝑏, 𝛾 = 𝑠 − 𝑐, then

𝛽+𝛾 = 2𝑠− (𝑏+𝑐) = 𝑎,𝛾 +𝛼 = 𝑏,𝛼+𝛽 = 𝑐,𝛼+𝛽+𝛾 = 3𝑠− (𝑎+𝑏+𝑐) = 3𝑠−2𝑠 = 𝑠

Δ = ∣
(𝛽 + 𝛾)2 𝛼2 𝛼2

𝛽2 (𝛾 + 𝛼)2 𝛽2

𝛾2 𝛾2 (𝛼 + 𝛽)2 ∣
Follwing like problem solved earlier

= 2𝛼𝛽𝛾(𝛼 + 𝛽 + 𝛾)3 = 2(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)𝑠3.
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92. Δ = 1
⁄

𝑎 (𝑎
2 + 𝑏2 + 𝑐2) ∣

𝑥 𝑎𝑦 + 𝑏𝑥 𝑐𝑥 + 𝑎𝑧
𝑦 𝑏𝑦 − 𝑐𝑧 − 𝑎𝑥 𝑏𝑧 + 𝑐𝑦
𝑧 𝑏𝑧 + 𝑐𝑦 𝑐𝑧 − 𝑎𝑥 − 𝑏𝑦 ∣ [𝐶1 → 𝑎𝐶1 + 𝑏𝐶2 + 𝑐𝐶3 ]

= 1⁄
𝑎𝑥 (𝑎

2 + 𝑏2 + 𝑐2) ∣𝑥2 + 𝑦2 + 𝑧2 𝑏(𝑥2 + 𝑦2 + 𝑧2) 𝑐(𝑥2 + 𝑦2 + 𝑧2)
𝑦 𝑏𝑦 − 𝑐𝑧 − 𝑎𝑥 𝑏𝑧 + 𝑐𝑦
𝑧 𝑏𝑧 + 𝑐𝑦 𝑐𝑧 − 𝑎𝑥 − 𝑏𝑦 ∣ [𝑅1 → 𝑥𝑅1 +

𝑦𝑅2 + 𝑧𝑅3 ]

= (𝑎2+𝑏2+𝑐2)(𝑥2+𝑦2+𝑧2)⁄
𝑎𝑥 ∣

1 𝑏 𝑐
𝑦 𝑏𝑦 − 𝑐𝑧 − 𝑎𝑥 𝑏𝑧 + 𝑐𝑦
𝑧 𝑏𝑧 + 𝑐𝑦 𝑐𝑧 − 𝑎𝑥 − 𝑏𝑦 ∣

= (𝑎2+𝑏2+𝑐2)(𝑥2+𝑦2+𝑧2)⁄
𝑎𝑥 ∣

1 𝑏 𝑐
0 −𝑐𝑧 − 𝑎𝑥 𝑏𝑧
0 𝑐𝑦 −𝑎𝑥 − 𝑏𝑦 ∣ [𝑅2 → 𝑅2 − 𝑦𝑅1; 𝑅3 → 𝑅3 − 𝑧𝑅1 ]

= (𝑎2+𝑏2+𝑐2)(𝑥2+𝑦2+𝑧2)⁄
𝑎𝑥 [(𝑐𝑧 + 𝑎𝑥)(𝑎𝑥 + 𝑏𝑦)− 𝑏𝑐𝑦𝑧]

= (𝑎2 + 𝑏2 + 𝑐2)(𝑥2 + 𝑦2 + 𝑧2)(𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧)

93. Δ = ∣
2 + 4 sin 4𝜃 sin2 𝜃 4 sin 𝜃
2 + 4 sin 4𝜃 1 + sin2 𝜃 4 sin 𝜃
2 + 4 sin 4𝜃 sin2 𝜃 1 + 4 sin 4𝜃 ∣ = 0[𝐶1 → 𝐶1 + 𝐶2 + 𝐶3 ]

= (2 + 4 sin 4𝜃) ∣ 1 sin2 𝜃 4 sin 4𝜃
0 1 0
0 0 1 ∣ = 0[𝑅2 → 𝑅2 − 𝑅1; 𝑅3 → 𝑅3 − 𝑅1 ]

⇒ 2(2 + 4 sin 4𝜃) = 0

sin 4𝜃 = −1
⁄

2 ⇒ 4𝜃 = 7𝜋⁄
6 ,

11𝜋⁄
6 ⇒ 𝜃 = 7𝜋⁄

24 ,
11𝜋⁄
24

94. Δ= 1⁄
𝑎𝑏𝑐 ∣

𝑎[𝑎2 + (𝑏2 + 𝑐2) cos 𝜙] 𝑏𝑎2[1 − cos 𝜙] 𝑐𝑎2(1 − 𝑐𝑜𝑠𝜙)
𝑎𝑏2(1 − cos 𝜙) 𝑏[𝑏2 + (𝑐2 + 𝑎2) cos 𝜙] 𝑐𝑏2(1 − cos 𝜙)
𝑎𝑐2(1 − cos 𝜙) 𝑏𝑐2(1 − cos 𝜙) 𝑐[𝑐2 + (𝑎2 + 𝑏2) cos 𝜙] ∣[𝑅1→

𝑎𝑅1 + 𝑏𝑅2 + 𝑐𝑅3 ]

= ∣
𝑎2 + (𝑏2 + 𝑐2) cos 𝜙 𝑎2(1 − cos 𝜙) 𝑎2(1 − cos 𝜙)

𝑏2(1 − cos 𝜙) 𝑏2 + (𝑐2 + 𝑎2) cos 𝜙 𝑏2(1 − cos 𝜙)
𝑐2(1 − cos 𝜙) 𝑐2(1 − cos 𝜙) 𝑐2 + (𝑎2 + 𝑏2) cos 𝜙 ∣

= (𝑎2+ 𝑏2+ 𝑐2)∣ 1 1 1

𝑏(1 − cos 𝜙) 𝑏2 + (𝑐2 + 𝑎2) cos 𝜙 𝑏2(1 − cos 𝜙)
𝑐2(1 − cos 𝜙) 𝑐2(1 − cos 𝜙) 𝑐2 + (𝑎2 + 𝑏2) cos 𝜙 ∣[𝑅1 → 𝑅1+

𝑅2 + 𝑅3 ]

Performing 𝐶1 → 𝐶1 − 𝐶2; 𝐶2 → 𝐶2 − 𝐶3, we get
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= (𝑎2 + 𝑏2 + 𝑐2) ∣ 0 0 1
−(𝑎2 + 𝑏2 + 𝑐2) cos 𝜙 (𝑎2 + 𝑏2 + 𝑐2) cos 𝜙 𝑏2(1 − cos 𝜙)

0 −(𝑎2 + 𝑏2 + 𝑐2) cos 𝜙 𝑐2 + (𝑎2 + 𝑏2) cos 𝜙 ∣
= (𝑎2 + 𝑏2 + 𝑐2)(𝑎2 + 𝑏2 + 𝑐2)2 cos2 𝜙 = cos2 𝜙

95. Δ = 1⁄
𝑎𝑏𝑐 ∣

−𝑎𝑏𝑐 𝑎𝑏2 + 𝑎𝑏𝑐 𝑎𝑐2 + 𝑎𝑏𝑐
𝑎2𝑏 −𝑎𝑏𝑐 𝑏𝑐2 + 𝑎𝑏𝑐

𝑎𝑐 + 𝑎𝑏𝑐 𝑏2𝑐 + 𝑎𝑏𝑐 −𝑎𝑏𝑐 ∣ [𝑅1 → 𝑎𝑅1; 𝑅 − 2 → 𝑏𝑅2; 𝑅3 → 𝑐𝑅3 ]

= ∣
−𝑏𝑐 𝑎𝑏 + 𝑎𝑐 𝑎𝑐 + 𝑎𝑏

𝑎𝑏 + 𝑏𝑐 −𝑎𝑐 𝑏𝑐 + 𝑎𝑏
𝑎𝑐 + 𝑏𝑐 𝑏𝑐 + 𝑎𝑐 𝑎𝑏 ∣

= (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) ∣
1 1 1

𝑎𝑏 + 𝑏𝑐 −𝑎𝑐 𝑏𝑐 + 𝑎𝑏
𝑎𝑐 + 𝑏𝑐 𝑏𝑐 + 𝑎𝑐 𝑎𝑏 ∣ [𝑅1 → 𝑅1 + 𝑅2 + 𝑅3 ]

= (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) ∣
1 0 0

𝑎𝑏 + 𝑏𝑐 −(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) 0
𝑎𝑐 + 𝑏𝑐 0 −(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) ∣ [𝐶2 → 𝐶2 − 𝐶1; 𝐶3 →

𝐶3 − 𝐶1 ]

= (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)3

96. Given 𝑦 = 𝑢⁄
𝑣 ,

𝑑𝑦⁄
𝑑𝑥 =

𝑣𝑢′−𝑢𝑣′⁄
𝑣2 ⇒ 𝑣2 𝑑𝑦⁄𝑑𝑥 = 𝑣𝑢′ − 𝑢𝑣′

= 𝑣3 𝑑𝑦⁄𝑑𝑥 = 𝑣2𝑢′ − 𝑢𝑣𝑣′

Again differentiating w.r.t. 𝑥, we get

𝑣3 𝑑
2𝑦⁄

𝑑𝑥2 + 3𝑣2𝑣′ 𝑑𝑦⁄𝑑𝑥 = 2𝑣𝑣′𝑢′ + 𝑣2𝑢″ − 𝑢𝑣𝑣″ − (𝑢𝑣′ + 𝑢′𝑣)𝑣′

𝑣3 𝑑𝑦
2⁄

𝑑𝑥2 = −2𝑢′𝑣𝑣′ + 2𝑢𝑣2′ + 𝑣2𝑢″ − 𝑢𝑣𝑣″ = Δ

97. Δ = ∣𝑥 𝑥 𝑥
𝑥 𝑥 + 𝑎 𝑥
𝑥 𝑥 𝑥 + 𝑎2 ∣+ ∣ 1 𝑥 𝑥

0 𝑥 + 𝑎 𝑥
0 𝑥 𝑥 + 𝑎2 ∣

= ∣𝑥 𝑥 𝑥
0 𝑎 0
0 0 𝑎2 ∣ [𝑅2 → 𝑅2 − 𝑅1; 𝑅3 → 𝑅3 − 𝑅1 ]+ (𝑥 + 𝑎)(𝑥 + 𝑎2)− 𝑥2

= 𝑥𝑎3 + 𝑥(𝑎 + 𝑎2)+ 𝑎3 = 𝑎3[1 + 𝑥(1 + 1
⁄

𝑎 +
1
⁄

𝑎2)]

= 𝑎3[1 + 𝑥(𝑎3−1)⁄
𝑎2(𝑎−1)]
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98. L.H.S. = 𝑝𝑎(𝑞𝑟𝑎2 − 𝑝2𝑏𝑐) − 𝑞𝑏(𝑞2𝑐𝑎 − 𝑝𝑟𝑏2) + 𝑟𝑐(𝑝𝑞𝑐2 − 𝑟2𝑎𝑏) = 𝑝𝑞𝑟𝑎3 − 𝑎𝑏𝑐𝑝3 −
𝑎𝑏𝑐𝑞3 + 𝑝𝑞𝑟𝑏3 + 𝑝𝑞𝑟𝑐3 − 𝑎𝑏𝑐𝑟3

= 𝑝𝑞𝑟(𝑎3 + 𝑏3 + 𝑐3)− 𝑎𝑏𝑐(𝑝3 + 𝑞3 + 𝑟3) = 𝑝𝑞𝑟(𝑎3 + 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐)− 𝑎𝑏𝑐(𝑝3 + 𝑞3 +
𝑟3 − 3𝑝𝑞𝑟)

= 𝑝𝑞𝑟(𝑎3 + 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐)− 0[∵ 𝑝 + 𝑞 + 𝑟 = 0]

R.H.S. = 𝑝𝑞𝑟∣
𝑎 𝑏 𝑐
𝑐 𝑎 𝑏
𝑏 𝑐 𝑎 ∣

= 𝑝𝑞𝑟(𝑎 + 𝑏 + 𝑐) ∣
1 𝑏 𝑐
1 𝑎 𝑏
1 𝑐 𝑎 ∣ [𝐶1 → 𝐶1 + 𝐶2 + 𝐶3 ]

= 𝑝𝑞𝑟(𝑎 + 𝑏 + 𝑐) ∣
𝑜 𝑏 − 𝑎 𝑐 − 𝑏
0 𝑎 − 𝑐 𝑏 − 𝑎
1 𝑐 𝑎 ∣ [𝑅1 → 𝑅1 − 𝑅2; 𝑅2 → 𝑅2 − 𝑅3 ]

= 𝑝𝑞𝑟(𝑎3 + 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐) = L.H.S

99. R.H.S. = 1⁄
𝑎𝑏𝑐 ∣

𝑎 𝑎𝑏𝑐 𝑎(𝑏 + 𝑐)
𝑏 𝑎𝑏𝑐 𝑏(𝑐 + 𝑎)
𝑐 𝑎𝑏𝑐 𝑐(𝑎 + 𝑏) ∣ [𝑅1 → 𝑎𝑅1; 𝑅2 → 𝑏𝑅2; 𝑅3 → 𝑐𝑅3 ]

= −𝑎𝑏𝑐⁄
𝑎𝑏𝑐 ∣

1 𝑎 𝑎𝑏 + 𝑎𝑐
1 𝑏 𝑏𝑐 + 𝑏𝑎
1 𝑐 𝑐𝑎 + 𝑐𝑏 ∣ Taking 𝑎𝑏𝑐 out and then applying 𝐶1 ↔ 𝐶2

= −∣
1 𝑎 −𝑏𝑐
1 𝑏 −𝑐𝑎
1 𝑐 −𝑎𝑏 ∣ [𝐶3 → 𝐶3 − (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)𝐶1 ]

= ∣
1 𝑎 𝑏𝑐
1 𝑏 𝑐𝑎
1 𝑐 𝑎𝑏 ∣ = 1⁄

𝑎𝑏𝑐 ∣
𝑎 𝑎2 𝑎𝑏𝑐
𝑏 𝑏2 𝑎𝑏𝑐
𝑐 𝑐2 𝑎𝑏𝑐 ∣ [𝑅1 → 𝑎𝑅1; 𝑅2 → 𝑏𝑅2; 𝑅3 → 𝑐𝑅3 ]

= 𝑎𝑏𝑐⁄
𝑎𝑏𝑐 ∣

𝑎 𝑎2 1
𝑏 𝑏2 1
𝑐 𝑐2 1 ∣ = ∣

1 𝑎 𝑎2

1 𝑏 𝑏2

1 𝑐 𝑐2 ∣ [𝐶2 ↔ 𝐶3; 𝐶1 ↔ 𝐶2 ]

100. Δ = ∣
𝑥2 𝑥 + 1 𝑥 − 2
2𝑥2 3𝑥 3𝑥 − 3
𝑥2 2𝑥 − 1 2𝑥 − 1 ∣+ ∣

𝑥 𝑥 + 1 𝑥 − 2
3𝑥 − 1 3𝑥 3𝑥 − 3
2𝑥 + 3 2𝑥 − 1 2𝑥 − 1 ∣

= ∣
2𝑥2 3𝑥 3𝑥 − 3
2𝑥2 3𝑥 3𝑥 − 3
𝑥2 2𝑥 − 1 2𝑥 − 1 ∣[𝑅1→𝑅1+𝑅3]+ ∣

2 3 𝑥 − 2
2 3 3𝑥 − 3
4 0 2𝑥 − 1 ∣[𝐶1→ 𝐶1−𝐶3;𝐶2 → 𝐶2−𝐶3]



Answers of Determinants 767

= 0 + ∣
2 3 𝑥
2 3 3𝑥
4 0 2𝑥 ∣+ ∣

2 3 −2
2 3 −3
4 0 −1 ∣

= 𝑥𝐴 + 𝐵, where 𝐴 = ∣
2 3 1
2 3 3
4 0 2 ∣ and 𝐵 = ∣

2 3 −2
2 3 −3
4 0 −1 ∣ which are determinants of 3rd

order independent of 𝑥.

101.
𝑛
∑
𝑟=1

𝐷𝑟 = 𝐷1 +𝐷2 + ⋯+𝐷𝑛

= ∣
𝑛
∑
𝑟=1

𝑟 𝑥 𝑛(𝑛+1)
⁄

2
𝑛
∑
𝑟=1

(2𝑟 − 1) 𝑦 𝑛2

𝑛
∑
𝑟=1

(3𝑟 − 2) 𝑧 𝑛(3𝑛−1)⁄
2 ∣ = ∣

𝑛(𝑛+1)
⁄

2 𝑥 𝑛(𝑛+1)
⁄

2
𝑛2 𝑦 𝑛2

𝑛(3𝑛−1)⁄
2 𝑧 𝑛(3𝑛−1)⁄

2 ∣
= 0 because first and third columns are identical.

102. Δ = ∣
−5 3 + 5𝑖 3
⁄

2 − 4𝑖
3 − 5𝑖 8 4 + 5𝑖
3
⁄

2 + 4𝑖 4 − 5𝑖 9 ∣
Δ = ∣

−5 3 − 5𝑖 3
⁄

2 + 4𝑖
3 + 5𝑖 8 4 − 5𝑖
3
⁄

2 − 4𝑖 4 + 5𝑖 9 ∣
Exchanging rows and columns

Δ = Δ. ∴Δ is purely real.

103. Putting 𝑏 = −𝑐, we have

Δ = ∣
−2𝑎 𝑎 − 𝑐 𝑎 + 𝑐

−𝑐 + 𝑎 2𝑐 0
𝑐 + 𝑎 0 −2𝑐 ∣

= ∣
𝑐 − 𝑎 𝑎 − 𝑐 𝑎 − 𝑐
𝑎 − 𝑐 2𝑐 0
𝑐 + 𝑎 0 −2𝑐 ∣ [𝑅1 → 𝑅1 + 𝑅3 ]

= ∣
𝑐 − 𝑎 0 0
𝑎 − 𝑐 𝑎 + 𝑐 𝑎 − 𝑐
𝑐 + 𝑎 𝑎 + 𝑐 𝑎 − 𝑐 ∣ [𝐶2 → 𝐶2 + 𝐶1; 𝐶3 → 𝐶3 + 𝐶1 ]

= (𝑐 − 𝑎)[(𝑎2 − 𝑐2)− (𝑎2 − 𝑐2)] = 0



Answers of Determinants 768

Hence, 𝑏 + 𝑐 is a factor of Δ. Similarly it can be proven that 𝑎+ 𝑏 and 𝑐 + 𝑎 are factors
of Δ.

We see that, upon expansion of determinant, each term of the L.H.S. and R.H.S. is a
homogeneous expression in 𝑎,𝑏,𝑐 of 3rd degree.

Let ∣
−2𝑎 𝑎 + 𝑏 𝑏 + 𝑐
𝑏 + 𝑎 −2𝑏 𝑏 + 𝑐
𝑐 + 𝑎 𝑐 + 𝑏 −2𝑐 ∣ = 𝑘(𝑏 + 𝑐)(𝑐 + 𝑎)(𝑎 + 𝑏), where 𝑘 is independent of 𝑎,𝑏,𝑐

Putting 𝑎 = 0, 𝑏 = 1, 𝑐 = 1 we get

∣
0 1 1
1 −2 2
1 2 −2 ∣ = 2𝑘

𝑘 = 4.

Thus, we have proven the required condition.

104. 𝐹′(𝑎) = ∣
𝑓′1(𝑎) 𝑓′2(𝑎) 𝑓′3(𝑥)
𝑔1(𝑎) 𝑔2(𝑥) 𝑔3(𝑎)
ℎ1(𝑎) ℎ2(𝑎) ℎ3(𝑎) ∣+ ∣

𝑓1(𝑎) 𝑓2(𝑎) 𝑓3(𝑥)
𝑔′1(𝑎) 𝑔′2(𝑥) 𝑔′3(𝑎)
ℎ1(𝑎) ℎ2(𝑎) ℎ3(𝑎) ∣+ ∣

𝑓1(𝑎) 𝑓2(𝑎) 𝑓3(𝑥)
𝑔1(𝑎) 𝑔2(𝑥) 𝑔3(𝑎)
ℎ′1(𝑎) ℎ′2(𝑎) ℎ′3(𝑎) ∣

= 0 + 0 + 0

∵ 𝑓𝑟(𝑎) = 𝑔𝑟(𝑎) = ℎ𝑟(𝑎), 𝑟 = 1,2,3 in the first determinant last two, in the second
determinant first and third, in the third determinant first two, rows are identical.
Therefore, all determinants are zero.

105. Since 𝑓(𝑥) = 0 is a quadratic equation with repeated root 𝛼, ∴ 𝑓(𝑥) = 𝑎𝑟(𝑥 − 𝛼)2,
where 𝑎𝑟 is a constant.

Clearly Δ(𝑥) is a polynomial of degree having a maximum value of 5.

Δ(𝛼) = ∣
𝐴(𝛼) 𝐵(𝛼) 𝐶(𝛼)
𝐴(𝛼) 𝐵(𝛼) 𝐶(𝛼)
𝐴′(𝛼) 𝐵′(𝛼) 𝐶′(𝛼) ∣

Δ(𝛼) = 0[∵𝑅1 and 𝑅2 are identical].

Δ′(𝛼) = ∣
𝐴′(𝛼) 𝐵′(𝛼) 𝐶′(𝛼)
𝐴(𝛼) 𝐵(𝛼) 𝐶(𝛼)
𝐴′(𝛼) 𝐵′(𝛼) 𝐶′(𝛼) ∣ = 0[∵𝑅1 and 𝑅3 are identical].

Thus, we can say that Δ(𝑥) = 0 has two roots equal to 𝛼.

⇒ Δ(𝑥) = (𝑥 − 𝛼)2 𝑔(𝑥), where 𝑔(𝑥) is a polynomial of degree 3 at most.

Δ(𝑥) = 𝑎(𝑥 − 𝛼)2 𝑔(𝑥)⁄𝑎 = 𝑎(𝑥 − 𝛼)2 .ℎ(𝑥), where ℎ(𝑥) = 𝑔(𝑥)⁄
𝑎1 .

Thus, Δ(𝑥) = 𝑓(𝑥) .ℎ(𝑥), where ℎ(𝑥) is a polynomial in 𝑥. Hence, Δ(𝑥) is divisible
by 𝑓(𝑥).
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106. Let Δ be the determinant. Then,

𝑑Δ⁄
𝑑𝜃 = ∣

−sin(𝜃 + 𝛼) −sin(𝜃 + 𝛽) −sin(𝜃 + 𝛾)
sin(𝜃 + 𝛼) sin(𝜃 + 𝛽) sin(𝜃 + 𝛾)
sin(𝛽 + 𝛾) sin(𝛾 − 𝛼) sin(𝛼 − 𝛽) ∣+ ∣

cos(𝜃 + 𝛼) 𝑐𝑜𝑠(𝜃 + 𝛽) cos(𝜃 + 𝛾)
cos(𝜃 + 𝛼) 𝑐𝑜𝑠(𝜃 + 𝛽) cos(𝜃 + 𝛾)
sin(𝛽 + 𝛾) sin(𝛾 − 𝛼) sin(𝛼 − 𝛽) ∣+

∣
cos(𝜃 + 𝛼) 𝑐𝑜𝑠(𝜃 + 𝛽) cos(𝜃 + 𝛾)
cos(𝜃 + 𝛼) 𝑐𝑜𝑠(𝜃 + 𝛽) cos(𝜃 + 𝛾)

0 0 0 ∣
= 0 + 0 + 0

Thus, Δ is a constant, which will be independent of 𝜃.

107. Δ = ∣ 𝑓 𝑔 ℎ
𝑥𝑓′ + 𝑓 𝑥𝑔′ + 𝑔 𝑥ℎ′ + ℎ

𝑥2𝑓″ + 4𝑥𝑓′ + 2𝑓 𝑥2𝑔″ + 4𝑥𝑔′ + 2𝑔 𝑥2ℎ″ + 4𝑥ℎ′ + 2ℎ ∣
= ∣ 𝑓 𝑔 ℎ

𝑥𝑓′ 𝑥𝑔′ 𝑥ℎ′

𝑥2𝑓″ + 4𝑥𝑓′ 𝑥2𝑔″ + 2𝑥𝑔′ 𝑥2ℎ″ + 2𝑥ℎ′ ∣ [𝑅2 → 𝑅2 − 𝑅1; 𝑅3 → 𝑅3 − 2𝑅1 ]

= ∣ 𝑓 𝑔 ℎ
𝑥𝑓′ 𝑥𝑔′ 𝑥ℎ′

𝑥2𝑓″ 𝑥2𝑔″ 𝑥2ℎ″ ∣ [𝑅3 → 𝑅3 − 4𝑅2 ]

= 𝑥3∣
𝑓 𝑔 ℎ
𝑓′ 𝑔′ ℎ′
𝑓″ 𝑔″ ℎ″ ∣

Δ′ = ∣ 𝑓
′ 𝑔′ ℎ′

𝑓′ 𝑔′ ℎ′

𝑥3𝑓″ 𝑥3𝑔″ 𝑥3ℎ″ ∣+ ∣ 𝑓 𝑔 ℎ
𝑓″ 𝑔″ ℎ″

𝑥3𝑓″ 𝑥3𝑔″ 𝑥3ℎ″ ∣+ ∣ 𝑓 𝑔 ℎ
𝑓′ 𝑔′ ℎ′

(𝑥2𝑓″)′ (𝑥2𝑔″)′ (𝑥2ℎ″)′ ∣
= 0 + 0 + ∣ 𝑓 𝑔 ℎ

𝑓′ 𝑔′ ℎ′

(𝑥2𝑓″)′ (𝑥2𝑔″)′ (𝑥2ℎ″)′ ∣ because two rows of first two determinants are

equal.

108. 𝑑𝑛{𝑓(𝑥)}⁄
𝑑𝑥𝑛 = ∣ 𝑑𝑛𝑥𝑛⁄𝑑𝑥𝑛 𝑑𝑛 sin𝑥⁄

𝑑𝑥𝑛
𝑑𝑛 cos𝑥⁄
𝑑𝑥𝑛

𝑛! sin 𝑛𝜋⁄
2 cos 𝑛𝜋⁄2

𝑎 𝑎2 𝑎2 ∣
𝑦 = 𝑥𝑛, 𝑦1 = 𝑑𝑦⁄

𝑑𝑥 = 𝑛𝑥𝑛−1, 𝑦2 = 𝑑2𝑦⁄
𝑑𝑦2 = 𝑛(𝑛 − 1)𝑥𝑛−1, … 𝑦𝑛 = 𝑛(𝑛 − 1)…3.2.1 = 𝑛!

𝑦 = sin 𝑥, 𝑦1 = cos 𝑥 = sin(𝜋⁄2 + 𝑥), 𝑦2 = cos(𝜋⁄2 + 𝑥) = sin(𝜋⁄2 +
𝜋
⁄

2 + 𝑥)

Proceeding in the same way 𝑦𝑛 = sin(𝑛𝜋⁄2 + 𝑥)
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Now 𝑦 = cos 𝑥, 𝑦1 = − sin 𝑥 = cos(𝜋⁄2 + 𝑥), 𝑦2 = −𝑠𝑖𝑛(𝜋⁄2 + 𝑥) = cos(2 𝜋⁄2 + 𝑥)

Proceeding in the same way 𝑦𝑛 = cos(𝑛𝜋
⁄

2 + 𝑥)

𝑑𝑛{𝑓(𝑥)}⁄
𝑑𝑥𝑛 = ∣𝑛! sin(𝑛𝜋⁄2 + 𝑥) cos(𝑛𝜋⁄2 + 𝑥)

𝑛! sin 𝑛𝜋⁄
2 cos 𝑛𝜋⁄2

𝑎 𝑎2 𝑎3 ∣
𝑓𝑛(0) = ∣𝑛! sin 𝑛𝜋⁄

2 cos 𝑛𝜋⁄2
𝑛! sin 𝑛𝜋⁄

2 cos 𝑛𝜋⁄2
𝑎 𝑎2 𝑎3 ∣ = 0 because first two rows are identical.

109. Δ = ∣
cos𝐴 cos 𝑃 + sin𝐴 sin 𝑃 cos𝐴 cos𝑄 + sin𝐴 sin𝑄 cos𝐴 cos𝑅 + sin𝐴 sin𝑅
cos𝐵 cos 𝑃 + sin𝐵 sin 𝑃 cos𝐵 cos𝑄 + sin𝐵 sin𝑄 cos𝐵 cos𝑅 + sin𝐵 sin𝑅
cos𝐶 cos 𝑃 + sin𝐶 sin 𝑃 cos𝐶 cos𝑄 + sin𝐶 sin𝑄 cos𝐶 cos𝑅 + sin𝐶 sin𝑅 ∣

= ∣
cos𝐴 sin𝐴 0
cos𝐵 sin𝐵 0
cos𝐶 sin𝐶 0 ∣+ ∣

cos 𝑃 sin 𝑃 0
cos𝑄 sin𝑄 0
cos𝑅 sin𝑅 0 ∣

= 0 + 0 = 0.

As an alternative we can expand the determinant along first column and then split the
addition taking cos 𝑃 and sin 𝑃 common and repeat it for others to get the desired
result.

110. We know that ∣
𝑎 𝑏 𝑐
𝑏 𝑐 𝑎
𝑐 𝑎 𝑏 ∣ = 3𝑎𝑏𝑐 − 𝑎3 − 𝑏3 − 𝑐3

⇒ (𝑎3 + 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐)2 = ∣
𝑎 𝑏 𝑐
𝑏 𝑐 𝑎
𝑐 𝑎 𝑏 ∣

2

= ∣
𝑎 𝑏 𝑐
𝑏 𝑐 𝑎
𝑐 𝑎 𝑏 ∣ ∣

−𝑎 𝑐 𝑏
−𝑏 𝑎 𝑐
−𝑐 𝑏 𝑎 ∣ [𝐶1 → −𝐶1; 𝐶2 ↔ 𝐶3 ] = ∣

2𝑏𝑐 − 𝑎2 𝑐2 𝑏2

𝑐2 2𝑏𝑐 − 𝑏2 𝑎2

𝑏2 𝑎2 2𝑏𝑐 − 𝑐2 ∣
111. L.H.S. = ∣

sin 𝛼 cos 𝛼 0
sin 𝛽 cos 𝛽 0
sin 𝛾 cos 𝛾 0 ∣ ∣

sin 𝛼 cos 𝛼 0
sin 𝛽 cos 𝛽 0
sin 𝛾 cos 𝛾 0 ∣

= 0.0 = 0.

112. Δ = ∣ 3 𝑚
2 −5 ∣ = −(15 + 2𝑚)

Case I: When Δ = 0, 𝑚 = −15
⁄

2
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Δ1 = ∣𝑚 𝑚
20 −5 ∣ = −25𝑚 ≠ 0

Hence, given system of equation has no solution when 𝑚 = −15
⁄

2

Case II: When 𝑚 ≠ −15
⁄

2

Δ2 = ∣ 2 𝑚
2 20 ∣ = 2(30 −𝑚)

𝑥 = Δ1⁄
Δ = 25𝑚⁄

15+2𝑚 > 0[∵ 𝑥 > 0]

⇒ −∞ < 𝑚 < −15
⁄

2 or 0 < 𝑚 < ∞

𝑦 = Δ2⁄
Δ = 2(𝑚−30)
⁄

15+2𝑚 > 0[∵ 𝑦 > 0]

⇒ −∞ < 𝑚 < −15
⁄

2 or 30 < 𝑚 < ∞

Combining both we get, −∞ < 𝑚 < −15
⁄

2 or 30 < 𝑚 < ∞.

113. Δ = ∣
3 −1 4
1 2 −3
6 5 𝜆 ∣ = 7(𝜆 + 5)

Case I: When 𝜆 ≠ 5 ⇒ Δ ≠ 0 which means the system of equations has unique
solution.

Case II: When 𝜆 = −5 ⇒ Δ = 0

Also, Δ1 = ∣
3 −1 4
−2 2 −3
3 5 −5 ∣ = 0, Δ2 = ∣

3 3 4
1 −2 −3
6 −3 −5 ∣ = 0

Δ3 = ∣
3 −1 3
1 2 −2
6 5 −3 ∣ = 0

Since all the determinants are zero, in this case we have infinite solutions for given
system of equations.

Putting the value of 𝜆 the set of equation becomes

3𝑥 − 𝑦 + 4𝑧 = 3; 𝑥 + 2𝑦 − 3𝑧 = −2; 6𝑥 + 5𝑦 − 5𝑧 = −3

From first two equations we get, 𝑧 = 4−7𝑥⁄
5

Substituting this in first we get 𝑦 = 1−13𝑥
⁄

5

Thus the set of solutions is 𝑥 = 𝑡, 𝑦 = 1−13𝑡⁄
5 , 𝑧 = 4−7𝑡⁄

5 .
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114. Δ = ∣
2 𝑝 6
1 2 𝑞
1 1 3 ∣ = (𝑝 − 2)(𝑞 − 3)

Δ1 = ∣
8 𝑝 8
5 2 𝑞
4 1 3 ∣ = (𝑝 − 2)(4𝑞 − 15)

Δ2 = ∣
2 8 6
1 5 1
1 4 3 ∣ = 0

Δ3 = ∣
2 𝑝 8
1 2 5
1 1 4 ∣ = 𝑝 − 2

Case I: When Δ ≠ 0 i.e. 𝑝 ≠ 2, 𝑞 ≠ 3, given system of equations has unique solution.

Case II: When Δ = 0, 𝑝 = 2, or 𝑞 = 3

When 𝑝 = 2 ⇒ Δ1 = 0, Δ2 = 0, Δ3 = 0

Thus, given system of equations has inifinite solutions.

When 𝑞 = 3 ⇒ Δ1 ≠ 0

Thus, given system of equations has no solutions.

115. For non-trivial solution

Δ = 0 or ∣
𝜆 sin 𝛼 cos 𝛼
1 cos 𝛼 sin 𝛼
−1 sin 𝛼 cos 𝛼 ∣ = 0

⇒ 𝜆 = sin 2𝛼 + cos 2𝛼

If 𝜆 = 1, sin 2𝛼 + cos 2𝛼 = 1

⇒ sin 2𝛼 = 1 − cos 2𝛼 = 2 sin2 𝛼

⇒ 2 sin 𝛼(cos 𝛼 − sin 𝛼) = 0

∴ sin 𝛼 = 0 or tan 𝛼 = 1

∴𝛼 = 𝑛𝜋 or 𝛼 = 𝑛𝜋 + 𝜋
⁄

4 , 𝑛 ∈ 𝐼 .

116. Δ = (𝑎 + 𝑏 + 𝑐) ∣
1 𝑏 + 𝑐 𝑎2

1 𝑐 + 𝑎 𝑏2

1 𝑎 + 𝑏 𝑐2 ∣ [𝐶1 → 𝐶1 + 𝐶2 ]

= (𝑎 + 𝑏 + 𝑐) ∣
1 𝑏 + 𝑎 𝑎2

0 𝑎 − 𝑏 𝑏2 − 𝑎2

0 𝑎 − 𝑐 𝑐2 − 𝑎2 ∣ [𝑅3 → 𝑅3 − 𝑅1; 𝑅2 → 𝑅2 − 𝑅1 ]
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= (𝑎 + 𝑏 + 𝑐)[(𝑎 − 𝑏)(𝑐2 − 𝑎2)− (𝑎 − 𝑐)(𝑏2 − 𝑎2)] = (𝑎 + 𝑏 + 𝑐)(𝑎 − 𝑏)(𝑐 − 𝑎)(𝑐 +
𝑎 − 𝑏 − 𝑎)

= −(𝑎 + 𝑏 + 𝑐)(𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎).

117. Δ = ∣
√

13 +√


3 2√


5 √


5
√

15 −√


6 5 − 2√

10 0

3 −√

15 √


15 − 10 0 ∣ [𝑅2 → 𝑅2 −√



2𝑅1; 𝑅3 → 𝑅3 −√


5𝑅1 ]

= 15√


2 − 25√


3.

118. Δ = ∣
𝑥 𝑥(𝑥2 + 1) 𝑥
𝑦 𝑦(𝑦2 + 1) 𝑦
𝑧 𝑧(𝑧2 + 1) 𝑧 ∣+ ∣

𝑥 𝑥(𝑥2 + 1) 1
𝑦 𝑦(𝑦2 + 1) 1
𝑧 𝑧(𝑧2 + 1) 1 ∣

Observe that first and third columns of first determinant are identical.

⇒ Δ = ∣
𝑥 𝑥(𝑥2 + 1) 1
𝑦 𝑦(𝑦2 + 1) 1
𝑧 𝑧(𝑧2 + 1) 1 ∣

= ∣
𝑥 𝑥3 1
𝑦 𝑦3 1
𝑧 𝑧3 1 ∣+ ∣

𝑥 𝑥3 𝑥
𝑦 𝑦3 𝑦
𝑧 𝑧3 𝑧 ∣

Again second and third columns are identical in second determinant.

Δ = ∣
𝑥 𝑥3 1
𝑦 𝑦3 1
𝑧 𝑧3 1 ∣

= (𝑥 − 𝑦)(𝑦 − 𝑧)(𝑧 − 𝑥)(𝑥 + 𝑦 + 𝑧).

119. Let 𝑎 and 𝑑 be the first term and common difference of corresponding A.P.

1
⁄

𝑥 = 𝑎 + (𝑙 − 1)𝑑, 1⁄𝑦 = 𝑎 + (2𝑚 − 1)𝑑, 1⁄𝑧 = 𝑎 + (3𝑛 − 1)𝑑

Δ = 1⁄
𝑥𝑦𝑧 ∣ 1⁄𝑥 1
⁄

𝑦
1
⁄

𝑧
𝑙 2𝑚 3𝑛
1 1 1 ∣

= 1⁄
𝑥𝑦𝑧 ∣

𝑎 + (𝑙 − 1)𝑑 𝑎 + (2𝑚 − 1)𝑑 𝑎 + (3𝑛 − 1)𝑑
𝑙 2𝑚 3𝑛
1 1 1 ∣

= 1⁄
𝑥𝑦𝑧 ∣

𝑙𝑑 − 𝑑 2𝑚𝑑 − 2𝑑 3𝑛𝑑 − 3𝑑
𝑙 2𝑚 3𝑛
1 1 1 ∣ [𝑅1 → 𝑅1 − 𝑎𝑅3 ]
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= 1⁄
𝑥𝑦𝑧 ∣

0 0 0
𝑙 2𝑚 3𝑛
1 1 1 ∣ [𝑅1 → 𝑅1 − (𝑅2 − 1)𝑑]

= 0.

120. Δ = ∣
1 𝑎2 𝑎3

0 𝑏2 − 𝑎2 𝑏3 − 𝑎3

0 𝑐2 − 𝑎2 𝑐3 − 𝑎3 ∣ [𝑅2 → 𝑅2 − 𝑅1; 𝑅3 → 𝑅3 − 𝑅1 ]

= (𝑏2 − 𝑎2)(𝑐3 − 𝑎3)− (𝑐2 − 𝑎2)(𝑏3 − 𝑎3)

= (𝑏 − 𝑎)(𝑐 − 𝑎)[(𝑏 + 𝑎)(𝑐2 + 𝑎𝑐 + 𝑎2)− (𝑐 + 𝑎)(𝑏2 + 𝑎𝑏 + 𝑎2)]

= (𝑏 − 𝑎)(𝑐 − 𝑎)(𝑏𝑐2 + 𝑎𝑏𝑐 + 𝑎2𝑏 + 𝑎𝑐2+ 𝑎2𝑐 + 𝑎3− 𝑏2𝑐 − 𝑎𝑏𝑐 − 𝑎2𝑐 − 𝑎𝑏2− 𝑎2𝑏 − 𝑎3)

= (𝑏 − 𝑎)(𝑐 − 𝑎)(𝑏𝑐2 + 𝑎𝑐2 − 𝑏2𝑐 − 𝑎𝑏2) = (𝑏 − 𝑎)(𝑐 − 𝑎)[𝑏𝑐(𝑐 − 𝑏)+ 𝑎(𝑐2 − 𝑏2)]

= (𝑏 − 𝑎)(𝑐 − 𝑎)(𝑐 − 𝑏)(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)

We know that ∣
1 𝑎 𝑎2

1 𝑏 𝑏2

1 𝑐 𝑐2 ∣ = (𝑏 − 𝑎)(𝑐 − 𝑎)(𝑐 − 𝑏)

Hence, L.H.S. = R.H.S.

121. Δ = ∣
𝑏2 + 𝑐2 𝑎2 𝑏𝑐
𝑐2 + 𝑎2 𝑏2 𝑐𝑎
𝑎2 + 𝑏2 𝑐2 𝑎𝑏 ∣ [𝐶1 → −2𝐶3 ]

= (𝑎2 + 𝑏2 + 𝑐2) ∣
1 𝑎2 𝑏𝑐
1 𝑏2 𝑐𝑎
1 𝑐2 𝑎𝑏 ∣ [𝐶1 → 𝐶1 + 𝐶2 + 𝐶3 ]

We know that ∣
1 𝑎2 𝑏𝑐
1 𝑏2 𝑐𝑎
1 𝑐2 𝑎𝑏 ∣ = (𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎)(𝑎 + 𝑏 + 𝑐)

Δ = (𝑎2 + 𝑏2 + 𝑐2)(𝑎 + 𝑏 + 𝑐)(𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎).

122. Perform 𝐶2 → 𝐶2 − 𝐶1, take out −1 common then 𝐶1 → 𝐶1 + 𝐶2 + 2𝐶3, take out
𝑥2 + 𝑦2 + 𝑧2 commong then 𝑅3 → 𝑅3 − 𝑅2 and 𝑅2 → 𝑅2 − 𝑅1 will give two zeroes in
first column which upon expansion gives the result.

123. Let 𝑎1𝑏1𝑐1 = 100 × 𝑎1 + 10 × 𝑏1 + 𝑐1 = 𝑝𝑘, where 𝑝 ∈ 𝐼

𝑎2𝑏2𝑐2 = 100 × 𝑎2 + 10 × 𝑏2 + 𝑐2 = 𝑞𝑘, where 𝑞 ∈ 𝐼

𝑎3𝑏3𝑐3 = 100 × 𝑎3 + 10 × 𝑏3 + 𝑐3 = 𝑟𝑘, where 𝑟 ∈ 𝐼
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Δ = ∣
𝑎1 𝑏1 𝑝𝑘
𝑎2 𝑏2 𝑞𝑘
𝑎3 𝑏3 𝑟𝑘 ∣ [𝐶3 → 100𝐶1 + 10𝐶2 + 𝐶3 ]

Thus, given determinant is divisible by 𝑘.

124. Δ = ∣
𝑎1 𝑎1𝑥 + 𝑏1 𝑐1
𝑎2 𝑎2𝑥 + 𝑏2 𝑐2
𝑎3 𝑎3𝑥 + 𝑏3 𝑐3 ∣+ ∣

𝑏1𝑥 𝑎1𝑥 + 𝑏1 𝑐1
𝑏2𝑥 𝑎2𝑥 + 𝑏2 𝑐2
𝑏3𝑥 𝑎3𝑥 + 𝑏3 𝑐3 ∣

= ∣
𝑎1 𝑎1𝑥 + 𝑏1 𝑐1
𝑎2 𝑎2𝑥 + 𝑏2 𝑐2
𝑎3 𝑎3𝑥 + 𝑏3 𝑐3 ∣+ 𝑥∣

𝑏1 𝑎1𝑥 + 𝑏1 𝑐1
𝑏2 𝑎2𝑥 + 𝑏2 𝑐2
𝑏3 𝑎3𝑥 + 𝑏3 𝑐3 ∣

= 𝑥∣
𝑎1 𝑎1 𝑐1
𝑎2 𝑎2 𝑐2
𝑎3 𝑎3 𝑐3 ∣+ ∣

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐3
𝑎3 𝑏3 𝑐3 ∣+ 𝑥∣

𝑏1 𝑎1𝑥 𝑐1
𝑏2 𝑎2𝑥 𝑐2
𝑏3 𝑎3𝑥 𝑐3 ∣+ ∣

𝑏1 𝑏1 𝑐1
𝑏2 𝑏2 𝑐2
𝑏3 𝑏3 𝑐3 ∣

Clearly, first and last determinants are zero as they have identical columns.

= ∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐3
𝑎3 𝑏3 𝑐3 ∣+ 𝑥2∣

𝑏1 𝑎1 𝑐1
𝑏2 𝑎2 𝑐2
𝑏3 𝑎3 𝑐3 ∣

Exchanging first two columns of second determinant

= (1 − 𝑥2) ∣
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3 ∣.

125. Δ = 𝑎𝑏𝑐∣
1
⁄

𝑎 + 1 1
⁄

𝑎
1
⁄

𝑎
1
⁄

𝑏
1
⁄

𝑏 + 1 1
⁄

𝑏
1
⁄

𝑐
1
⁄

𝑐
1
⁄

𝑐 + 1 ∣
= 𝑎𝑏𝑐(1⁄𝑎 +

1
⁄

𝑏 +
1
⁄

𝑐 + 1) ∣
1 1 1
1
⁄

𝑏
1
⁄

𝑏 + 1 1
⁄

𝑏
1
⁄

𝑐
1
⁄

𝑐
1
⁄

𝑐 + 1 ∣
= 𝑎𝑏𝑐(1⁄𝑎 +

1
⁄

𝑏 +
1
⁄

𝑐 + 1) ∣
1 0 0
1
⁄

𝑏 1 0
1
⁄

𝑐 0 1 ∣ [𝐶2 → 𝐶2 − 𝐶1; 𝐶3 → 𝐶3 − 𝐶1 ]

= 𝑎𝑏𝑐(1⁄𝑎 +
1
⁄

𝑏 +
1
⁄

𝑐 + 1)

Now since 𝑎, 𝑏, 𝑐 are roots of 𝑝𝑥3 + 𝑞𝑥2 + 𝑟𝑥 + 𝑠 = 0

∴ 𝑝𝑥3 + 𝑞𝑥2 + 𝑟𝑥 + 𝑠 = (𝑥 − 𝑎)(𝑥 − 𝑏)(𝑥 − 𝑐)
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Comparing coefficients, 𝑎 + 𝑏 + 𝑐 = −𝑞⁄
𝑝

𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 = 𝑟
⁄

𝑝 ; 𝑎𝑏𝑐 =
−𝑠⁄
𝑝

Thus, 𝑎𝑏𝑐(1⁄𝑎 +
1
⁄

𝑏 +
1
⁄

𝑐 + 1) = 𝑟−𝑠
⁄

𝑝 .

126. Δ = ∣ 1 𝑎 𝑎4

0 𝑏 − 𝑎 𝑏4 − 𝑎4

0 𝑐 − 𝑎 𝑐4 − 𝑎4 ∣ [𝑅2 → 𝑅2 − 𝑅1; 𝑅3 → 𝑅3 − 𝑅 − 1]

= (𝑏 − 𝑎)(𝑐4 − 𝑎4)− (𝑐 − 𝑎)(𝑏4 − 𝑎4)

= (𝑏 − 𝑎)(𝑐 − 𝑎)[(𝑐 + 𝑎)(𝑐2 + 𝑎2)− (𝑏 + 𝑎)(𝑏2 + 𝑎2)] > 0 ∀ 𝑎 < 𝑏 < 𝑐

127. Δ = ∣ 𝑎 𝑎3 𝑎4

𝑏 𝑏3 𝑏4

𝑐 𝑐3 𝑐4 ∣− ∣ 𝑎 𝑎3 1
𝑏 𝑏3 1
𝑐 𝑐3 1 ∣

= 𝑎𝑏𝑐∣
1 𝑎2 𝑎3

1 𝑏2 𝑏3

1 𝑐2 𝑐3 ∣− ∣
𝑎 𝑎3 1
𝑏 𝑏3 1
𝑐 𝑐3 1 ∣

= 𝑎𝑏𝑐∣
0 𝑎2 − 𝑏2 𝑎3 − 𝑏3

0 𝑏2 − 𝑐2 𝑏3 − 𝑐3

1 𝑐2 𝑐3 ∣− ∣
0 𝑎 − 𝑏 𝑎3 − 𝑏3

0 𝑏 − 𝑐 𝑏3 − 𝑐3

1 𝑐 𝑐3 ∣ [𝑅1 → 𝑅1 − 𝑅2; 𝑅2 → 𝑅2 − 𝑅3 ]

⇒ 𝑎𝑏𝑐[(𝑎2−𝑏2)(𝑏3−𝑐3)−(𝑏2−𝑐2)(𝑎3−𝑏3)]− [(𝑎−𝑏)(𝑏3−𝑐3)−(𝑏−𝑐)(𝑎3−𝑏3)]=
0

𝑎𝑏𝑐(𝑎− 𝑏)(𝑏− 𝑐)[(𝑎+ 𝑏)(𝑏2+ 𝑏𝑐 + 𝑐2)− (𝑏+ 𝑐)(𝑎2+𝑎𝑏+ 𝑏2)] = (𝑎− 𝑏)(𝑏− 𝑐)(𝑏2+
𝑏𝑐 + 𝑐2 − 𝑎2 − 𝑎𝑏 − 𝑏2)

Becasue 𝑎, 𝑏, 𝑐 are distinct we 𝑎 − 𝑏 ≠ 0; 𝑏 − 𝑐 ≠ 0; 𝑐 − 𝑎 ≠ 0

𝑎𝑏𝑐(𝑎 + 𝑏)(𝑏2 + 𝑏𝑐 + 𝑐2)− (𝑏 + 𝑐)(𝑎2 + 𝑎𝑏 + 𝑏2) = (𝑏2 + 𝑏𝑐 + 𝑐2 − 𝑎2 − 𝑎𝑏 − 𝑏2)

𝑎𝑏𝑐(𝑎𝑏2 + 𝑎𝑏𝑐 + 𝑎𝑐2 + 𝑏3 + 𝑏2𝑐 + 𝑏𝑐2 − 𝑎2𝑏 − 𝑎𝑏2 − 𝑏3 − 𝑎2𝑐 − 𝑎𝑏𝑐 − 𝑏2𝑐) = 𝑏𝑐 + 𝑐2 −
𝑎2 − 𝑎𝑏

𝑎𝑏𝑐(𝑎𝑐2 + 𝑏𝑐2 − 𝑎2𝑏 − 𝑎2𝑐) = 𝑏(𝑐 − 𝑎)+ (𝑐2 − 𝑎2)

𝑎𝑏𝑐[𝑎𝑐(𝑐 − 𝑎)+ 𝑏(𝑐2 − 𝑎2)] = (𝑐 − 𝑎)(𝑎 + 𝑏 + 𝑐)

𝑎𝑏𝑐(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) = 𝑎 + 𝑏 + 𝑐

128. Taking 𝑏1, 𝑏2, 𝑏3 common from columns and multiplying rows with them, we get

Δ = ∣
𝑥1 + 𝑎1𝑏1 𝑎1𝑏1 𝑎1𝑏1
𝑎2𝑏2 𝑥2 + 𝑎2𝑏2 𝑎2𝑏2
𝑎3𝑏3 𝑎3𝑏3 𝑥 + 𝑎3𝑏3 ∣
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Taking 𝑥1,𝑥2,𝑥3 common from rows

= 𝑥1𝑥2𝑥3∣
1 + 𝑎1𝑏1⁄

𝑥1
𝑎1𝑏1⁄
𝑥1

𝑎1𝑏1⁄
𝑥1

𝑎2𝑏2⁄
𝑥2 1 + 𝑎2𝑏2⁄

𝑥2
𝑎2𝑏2⁄
𝑥2

𝑎3𝑏3⁄
𝑥3

𝑎3𝑏3⁄
𝑥3 1 + 𝑎3𝑏3⁄

𝑥3 ∣
= 𝑥1𝑥2𝑥3(1 + 𝑎1𝑏1⁄

𝑥1 + 𝑎2𝑏2⁄
𝑥2 + 𝑎3𝑏3⁄

𝑐3 ) ∣
1 1 1

𝑎2𝑏2⁄
𝑥2 1 + 𝑎2𝑏2⁄

𝑥2
𝑎2𝑏2⁄
𝑥2

𝑎3𝑏3⁄
𝑥3

𝑎3𝑏3⁄
𝑥3 1 + 𝑎3𝑏3⁄

𝑥3 ∣ [𝑅1 → 𝑅1 + 𝑅2 + 𝑅3 ]

= 𝑥1𝑥2𝑥3(1 + 𝑎1𝑏1⁄
𝑥1 + 𝑎2𝑏2⁄

𝑥2 + 𝑎3𝑏3⁄
𝑐3 ) ∣

1 0 0
𝑎2𝑏2⁄
𝑥2 1 0
𝑎3𝑏3⁄
𝑥3 0 1 ∣ [𝐶2 → 𝐶2 − 𝐶1; 𝐶3 → 𝐶3 − 𝐶1 ]

= 𝑥1𝑥2𝑥3(1 + 𝑎1𝑏1⁄
𝑥1 + 𝑎2𝑏2⁄

𝑥2 + 𝑎3𝑏3⁄
𝑐3 ).

129. This problem is similar to problem 90 and can be solved similarly.

130. Δ = 𝑎𝑏𝑐∣
𝑎 𝑐 𝑎 + 𝑐

𝑎 + 𝑏 𝑏 𝑎
𝑏 𝑏 + 𝑐 𝑐 ∣

= 𝑎𝑏𝑐∣
−2𝑎 −2𝑏 0
𝑎 + 𝑏 𝑏 𝑎
𝑏 𝑏 + 𝑐 𝑐 ∣ [𝑅1 → 𝑅1 − 𝑅2 − 𝑅3 ]

= 4𝑎2𝑏2𝑐2.

131. Δ = ∣
1 + 𝑎2 + 𝑏2 0 −2𝑏

0 1 + 𝑎2 + 𝑏2 2𝑎
𝑏(1 + 𝑎2 + 𝑏2) −𝑎(1 + 𝑎2 + 𝑏2) 1 − 𝑎2 − 𝑏2 ∣ [𝐶1 → 𝐶1 − 𝑏𝐶3; 𝐶2 → 𝐶2 + 𝑎𝐶3 ]

= (1 + 𝑎2 + 𝑏2)2(1 − 𝑎2 − 𝑏2 + 2𝑎2)+ 2𝑏2(1 + 𝑎2 + 𝑏2)2

= (1 + 𝑎2 + 𝑏2)3.

132. We know that 𝑃 = 𝑎+𝑏+𝑐
⁄

𝑎 ; 𝐴 =√


𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)

After that this problem is same as 91, and we just need to substitute for the values
of 𝐴 and 𝑃 .

133. Taking 𝑎, 𝑏, 𝑐 common from rows and multiplying with columns gives is the same
determinant as in problem 88 and can be solved in same fashion.

134. Δ = ∣
𝑥3 6𝑥2𝑎 + 2𝑎3 (𝑥 − 𝑎)3

𝑦3 6𝑦2𝑎 + 2𝑎3 (𝑦 − 𝑎)3

𝑧3 6𝑧2𝑎 + 2𝑎3 (𝑧 − 𝑎)3 ∣ [𝐶2 → 𝐶2 − 𝐶3 ]
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= 2∣
𝑥3 3𝑥2𝑎 + 𝑎3 (𝑥 − 𝑎)3

𝑦3 3𝑦2𝑎 + 𝑎3 (𝑦 − 𝑎)3

𝑧3 3𝑧2𝑎 + 𝑎3 (𝑧 − 𝑎)3 ∣
= 2∣

𝑥3 3𝑥2𝑎 + 𝑎3 3𝑥𝑎2

𝑦3 3𝑦2𝑎 + 𝑎3 3𝑦𝑎2

𝑧3 3𝑧2𝑎 + 𝑎3 3𝑧𝑎2 ∣ [𝐶3 → 𝐶3 − 𝐶1 − 𝐶2 ]

= 2𝑎3∣
𝑥3 3𝑥2 + 𝑎2 3𝑥

𝑦3 − 𝑥3 3(𝑦2 − 𝑥2) 3(𝑦 − 𝑥)
𝑧3 − 𝑥3 3(𝑧2 − 𝑥2) 3(𝑧 − 𝑥) ∣ [𝑅2 → 𝑅2 − 𝑅1; 𝑅3 → 𝑅2 − 𝑅1 ]

Now we can take 𝑦 − 𝑥 and 𝑧 − 𝑥 common followed by expasion so that desired
condition can be proven easily.

135. Δ = ∣ 1 − 𝑥 𝑎 0
𝑎 𝑎2 − 𝑥 𝑥
𝑎2 𝑎3 −𝑥 ∣ [𝐶3 → 𝐶3 − 𝑎𝐶2 ]

= 𝑥∣ 1 − 𝑥 𝑎 0
𝑎 + 𝑎2 𝑎2 − 𝑥 + 𝑎3 0
𝑎2 𝑎3 −1 ∣ [𝑅2 → 𝑅2 + 𝑅3 ]

= 𝑥[𝑎(𝑎 + 𝑎2)− (1 − 𝑥)(𝑎2 + 𝑎3 − 𝑥)]

= 𝑥(𝑎2 + 𝑎3 − 𝑎2 − 𝑎3 + 𝑥 + 𝑥𝑎2 + 𝑥𝑎3 − 𝑥2)

= 𝑥2(1 + 𝑎2 + 𝑎3)− 𝑥3.

136. 𝑦1 = 𝑝 cos 𝑝𝑥, 𝑦2 = −𝑝2 sin 𝑝𝑥, 𝑦3 = −𝑝3 cos 𝑝𝑥, 𝑦4 = 𝑝4 sin 𝑝𝑥

𝑦5 = 𝑝5 cos 𝑝𝑥, 𝑦6 = −𝑝6 sin 𝑝𝑥, 𝑦7 = −𝑝7 cos 𝑝𝑥, 𝑦8 = 𝑝8 sin 𝑝𝑥

Δ = −𝑝6∣ sin 𝑝𝑥 𝑝 cos 𝑝𝑥 −𝑝2 sin 𝑝𝑥
−𝑝3 cos 𝑝𝑥 𝑝4 sin 𝑝𝑥 𝑝5 cos 𝑝𝑥
sin 𝑝𝑥 𝑝 cos 𝑝𝑥 −𝑝2 sin 𝑝𝑥 ∣

Clearly first and last rows are identical.

Δ = 0.

137. Δ = ∣
1 0 − sin 𝜃
0 1 cos 𝜃

sin 𝜃 − cos 𝜃 0 ∣ [𝐶1 → 𝐶1 − sin 𝜃𝐶3; 𝐶2 → 𝐶2 + cos 𝜃𝐶3 ]

= cos2 𝜃 + sin2 𝜃 = 1.

138. Δ = ∣ cos 𝛼 sin 𝛼 cos 𝛽 0
− sin 𝛼 cos 𝛼 cos 𝛽 0

0 − sin 𝛽 1⁄
cos𝛽 ∣ [𝐶3 → 𝐶3 − tan 𝛽𝐶2 ]
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= 1⁄
cos𝛽 [cos 𝛽(cos

2 𝛼 + sin2 𝛼)] = 1.

139. Multiplying columns with 𝑎, 𝑏, 𝑐, we get

Δ = 1⁄
𝑎𝑏𝑐 ∣

𝑎(𝑎2 + 𝑥) 𝑎𝑏2 𝑎𝑐2

𝑎2𝑏 𝑏(𝑏2 + 𝑥) 𝑏𝑐2

𝑎2𝑐 𝑏2𝑐 𝑐(𝑐2 + 𝑥) ∣
Now taking out 𝑎, 𝑏, 𝑐 from rows, we have

= ∣
𝑎2 + 𝑥 𝑏2 𝑐2

𝑎2 𝑏2 + 𝑥 𝑐2

𝑎2 𝑏2 𝑐2 + 𝑥 ∣
= ∣ 𝑥 0 −𝑥

0 𝑥 −𝑥
𝑎2 𝑏2 𝑐2 + 𝑥 ∣ [𝑅1 → 𝑅1 − 𝑅3; 𝑅2 → 𝑅2 − 𝑅3 ]

= ∣ 𝑥 0 0
0 𝑥 −𝑥
𝑎2 𝑏2 𝑎2 + 𝑐2 + 𝑥 ∣ [𝐶3 → 𝐶3 + 𝐶1 ]

⇒ 𝑥2(𝑎2 + 𝑏2 + 𝑐2 + 𝑥) = 0

⇒ 𝑥 = 0, −(𝑎2 + 𝑏2 + 𝑐2).

140. By observation if 𝑥 = 𝑛 − 1 then first two columns are same. Similarly, if 𝑥 = 𝑛 then
first column is equal to sum of two other columns. Thus, 𝑥 = 𝑛, 𝑛 − 1 are two possible
solutions.

If we take 𝑥!⁄
𝑟!(𝑥−𝑟)! common from first column and similarly for second and third, then

we get a quadratic equation which will have two roots and we have found both of them.

141. Δ = 1
⁄

𝑎2 ∣ 𝑢 + 𝑎2𝑥 𝑎𝑤′ − 𝑏𝑢 𝑎𝑣′ − 𝑐𝑢
𝑤′ + 𝑎𝑏𝑥 𝑎𝑣 − 𝑏𝑤′ 𝑎𝑢′ − 𝑐𝑤′

𝑣′ + 𝑎𝑐𝑥 𝑎𝑢′ − 𝑏𝑣′ 𝑎𝑤 − 𝑐𝑣′ ∣ [𝐶2 → 𝑎𝐶2 − 𝑏𝐶1; 𝐶3 → 𝑎𝐶3 − 𝑐𝐶1 ]

⇒ 𝑥 = −∣
𝑢 𝑎𝑤′ − 𝑏𝑢 𝑎𝑣′ − 𝑐𝑢
𝑤′ 𝑎𝑣 − 𝑏𝑤′ 𝑎𝑢′ − 𝑐𝑤′

𝑣′ 𝑎𝑢′ − 𝑏𝑣′ 𝑎𝑤 − 𝑐𝑣′ ∣÷ ∣ 𝑎2 𝑎𝑤′ − 𝑏𝑢 𝑎𝑣′ − 𝑐𝑢
𝑎𝑏 𝑎𝑣 − 𝑏𝑤′ 𝑎𝑢′ − 𝑐𝑤′

𝑎𝑐 𝑎𝑢′ − 𝑏𝑣′ 𝑎𝑤 − 𝑐𝑣′ ∣.
142. We know that value of the determinant in denominator is (𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎) = 𝑘

(say)

𝑓(𝑎, 𝑏, 𝑐) = ∣
𝑓(𝑎)− 𝑓(𝑏) 𝑓(𝑏)− 𝑓(𝑐) 𝑓(𝑐)

0 0 1
𝑎 − 𝑏 𝑏 − 𝑐 𝑐 ∣ [𝐶1 → 𝐶1 − 𝐶2; 𝐶2 → 𝐶2 − 𝐶3 ]÷ 𝑘

= −(𝑏 − 𝑐)(𝑓(𝑎)− 𝑓(𝑏))− (𝑎 − 𝑏)(𝑓(𝑏)− 𝑓(𝑐))÷ 𝑘
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= −(𝑎 − 𝑏)(𝑏 − 𝑐)[𝑓(𝑎)−𝑓(𝑏)⁄𝑎−𝑏 − 𝑓(𝑏)−𝑓(𝑐)⁄
(𝑏−𝑐) ]÷ 𝑘

= −(𝑎 − 𝑏)(𝑏 − 𝑐)(𝑓(𝑎, 𝑏)− 𝑓(𝑏, 𝑐))÷ 𝑘

= (𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎) 𝑓(𝑏,𝑐)−𝑓(𝑎,𝑏)⁄𝑐−𝑎 = (𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎)𝑓(𝑎, 𝑏, 𝑐)÷ (𝑎 − 𝑏)(𝑏 −
𝑐)(𝑐 − 𝑎)

= 𝑓(𝑎, 𝑏, 𝑐).

143. Becasue 𝐴, 𝐵, 𝐶 are angles of a triangle. 𝐴+𝐵 +𝐶 = 𝜋

Also, 𝑒𝑖𝜋 = cos 𝜋 + 𝑖 sin 𝜋 = −1

Taking 𝑒𝑖𝐴, 𝑒𝑖𝐵, 𝑒𝑖𝐶 common from 𝑅1, 𝑅2, 𝑅3, we get

Δ = 𝑒𝑖(𝐴+𝐵+𝐶)∣ 𝑒𝑖𝐴 𝑒−𝑖(𝐴+𝐶) 𝑒−𝑖(𝐴+𝐵)

𝑒−𝑖(𝐵+𝐶) 𝑒𝑖𝐵 𝑒−𝑖(𝐴+𝐵)

𝑒−𝑖(𝐵+𝐶) 𝑒−𝑖(𝐴+𝐶) 𝑒𝑖𝐶 ∣
= −∣

𝑒𝑖𝐴 −𝑒𝑖𝐵 −𝑒𝑖𝐶

−𝑒𝑖𝐴 𝑒𝑖𝐵 −𝑒𝑖𝐶

−𝑒𝑖𝐴 −𝑒𝑖𝐵 𝑒𝑖𝐶 ∣
Taking 𝑒𝑖𝐴, 𝑒𝑖𝐵, 𝑒𝑖𝐶 common from 𝐶1, 𝐶2, 𝐶3, we get

= ∣
1 −1 −1
−1 1 −1
−1 −1 1 ∣ = −4, which is purely real.

144. Δ = ∣
1 sin𝐴 cos𝐴 cos2 𝐴
1 sin𝐵 cos𝐵 cos2 𝐵
1 sin𝐶 cos𝐶 cos2 𝐶 ∣ [𝐶1 → 𝐶1 + 𝐶3 ]

Performing 𝑅3 → 𝑅3 − 𝑅1; 𝑅2 → 𝑅2 − 𝑅1, we get

= sin(𝐴−𝐵) sin(𝐵 −𝐶) sin(𝐶 −𝐴) ≥ 0.

Now it is trivial to prove the second part.

145. Performing 𝐶1 → 𝐶1 − 𝑎𝐶2; 𝐶2 → 𝐶2 − 𝑎𝐶3 ]

Δ = ∣
0 0 1

cos 𝑛𝑥 − 𝑎 cos(𝑛 + 1)𝑥 cos(𝑛 + 1)𝑥 − 𝑎 cos(𝑛 + 2)𝑥 cos(𝑛 + 2)𝑥
sin 𝑛𝑥 − 𝑎 sin(𝑛 + 1)𝑥 sin(𝑛 + 1)𝑥 − 𝑎 sin(𝑛 + 2)𝑥 sin(𝑛 + 2)𝑥 ∣

= sin(𝑛+ 1)𝑥 cos 𝑛𝑥 − 𝑎 sin(𝑛+ 1)𝑥 cos(𝑛+ 1)𝑥− 𝑎 sin(𝑛+ 2)𝑥 cos 𝑛𝑥 + 𝑎2 sin(𝑛+
2)𝑥 cos(𝑛 + 1)𝑥 − sin 𝑛𝑥 cos(𝑛 + 1)𝑥 + 𝑎 sin 𝑛𝑥 cos(𝑛 + 2)𝑥 + 𝑎 sin(𝑛 + 1)𝑥 cos(𝑛 +
1)𝑥 − 𝑎2 sin(𝑛 + 1)𝑥 cos(𝑛 + 2)𝑥

= sin(𝑛 + 1 − 𝑛)𝑥 − 𝑎 sin(𝑛 + 2 − 𝑛)𝑥 + 𝑎2 sin(𝑛 + 2 − 𝑛 − 1)𝑥
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= sin 𝑥 − 𝑎 sin 2𝑥 + 𝑎2 sin 𝑥

= (𝑎2 − 2𝑎 cos 𝑥 + 1) sin 𝑥.

146. Δ = ∣
2 cos2 𝑥 4 sin 2𝑥
2 1 + cos2 𝑥 4 sin 2𝑥
1 cos2 𝑥 1 + 4 sin 2𝑥 ∣ [𝐶1 → 𝐶1 + 𝐶2 ]

= ∣ 0 −1 0
2 1 + cos2 𝑥 4 sin 2𝑥
1 cos2 𝑥 1 + 4 sin 2𝑥 ∣ [𝑅1 → 𝑅1 − 𝑅2 ]

= 2 − 4 sin 2𝑥

The above expression has maximum value for 0 < 𝑥 < 𝜋
⁄

2 when 𝑥 = 𝜋
⁄

4.

147. Expanding the determinant we get Δ = −1 + 2 cos𝐴 cos𝐵 cos𝐶 + cos2 𝐴 + cos2 𝐵 +
cos2 𝐶

Consider the expression 2(cos2 𝐴 + cos2 𝐵 + cos2 𝐶)

= 1 + cos 2𝐴 + 1 + cos 2𝐵 + 1 + cos 2𝐶 = 2 + 2 cos(𝐴+𝐵) cos(𝐴−𝐵)+ 2 cos2 𝐶

= 2 + 2 cos(𝜋 − 𝐶) cos(𝐴−𝐵)+ 2 cos2 𝐶 = 2 − 2 cos𝐶[cos(𝐴−𝐵)− cos𝐶 ]

= 2 − 2 cos𝐶[cos(𝐴−𝐵)0 cos(𝜋 − (𝐴+𝐵))] = 2 − 4 cos𝐴 cos𝐵 cos𝐶

Thus, Δ = 0.

148. Since 𝐴, 𝐵, 𝐶 are angles of an isosceles triangle, let 𝐴 = 𝐵

Thus, first two columns become equal leading determinant to be zero.

149. Δ = ∣
1 log 𝑦
⁄

log𝑥
log 𝑧
⁄

log𝑥
log𝑥
⁄

log 𝑦 1 log 𝑧
⁄

log 𝑦
log𝑥
⁄

log 𝑧
log 𝑦
⁄

log 𝑧 1 ∣
= 1⁄

log𝑥 log 𝑦 log 𝑧 ∣
log 𝑥 log 𝑦 log 𝑧
log 𝑥 log 𝑦 log 𝑧
log 𝑥 log 𝑦 log 𝑥 ∣

= 0 because all three rows are identical.

150. Δ = ∣
𝑎2𝑥 + 𝑎−2𝑥 + 2 𝑎2𝑥 + 𝑎−2𝑥 − 2 1
𝑏2𝑥 + 𝑏−2𝑥 + 2 𝑏2𝑥 + 𝑏−2𝑥 − 2 1
𝑐2𝑥 + 𝑐−2𝑥 + 2 𝑐2𝑥 + 𝑐−2𝑥 − 2 1 ∣

= ∣
𝑎2𝑥 + 𝑎−2𝑥 𝑎2𝑥 + 𝑎−2𝑥 1
𝑏2𝑥 + 𝑏−2𝑥 𝑏2𝑥 + 𝑏−2𝑥 1
𝑐2𝑥 + 𝑐−2𝑥 𝑐2𝑥 + 𝑐−2𝑥 1 ∣ [𝐶1 → 𝐶1 − 2𝐶3; 𝐶2 → 𝐶2 + 2𝐶3 ]
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= 0 because first two columns are identical.

151. Considering first determinant only:

Δ = ∣
115 114 103
108 106 111
113 116 104 ∣ [𝐶1 ↔ 𝐶2; 𝐶2 ↔ 𝐶3 ]

Performing 𝑅1 ↔ 𝑅3

Δ = −∣
113 116 104
108 106 111
115 114 103 ∣

Thus, given condition is satisfied.

152.
𝑁
∑
𝑛=1

𝑈𝑛 = ∣
𝑁
∑
𝑛=1

𝑛 1 5

𝑁
∑
𝑛=1

𝑛2 2𝑁 + 1 2𝑁 + 1

𝑁
∑
𝑛=1

𝑛3 3𝑁2 3𝑁 ∣
= ∣ 𝑁(𝑁+1)⁄

2 1 5
𝑁(𝑁+1)(2𝑁+1)⁄

6 2𝑁 + 1 2𝑁 + 1

{𝑁(𝑁+1)⁄
2 }

2
3𝑁2 3𝑁 ∣

Taking 𝑁(𝑁+1)⁄
2 common from first column and then performing 𝐶1 → 𝐶1−1

⁄

6 (𝐶2+𝐶3)

= 𝑁(𝑁+1)⁄
2 ∣ 0 1 5

0 2𝑁 + 1 2𝑁 + 1
0 3𝑁2 3𝑁 ∣

Since first column has only 0 as element, therefore, the sum of determinants is zero.

153. ∵𝐴, 𝐵, 𝐶 are angles of a triangle, therefore 𝐴 + 𝐵 + 𝐶 = 𝜋; sin(𝐴 + 𝐵 + 𝐶) =
0; cos(𝐴+𝐵) = −cos𝐶

∴Δ = ∣
0 sin𝐵 cos𝐶

− sin𝐵 0 tan𝐴
−cos𝐶 − tan𝐴 0 ∣

Changing rows into corresponding columns

= ∣
0 − sin𝐵 −cos𝐶

sin𝐵 0 − tan𝐴
cos𝐶 tan𝐴 0 ∣

Taking −1 common from second and third columns, we have
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= ∣
0 sin𝐵 cos𝐶

sin𝐵 0 tan𝐴
cos𝐶 − tan𝐴 0 ∣ = −Δ

⇒ 2Δ = 0 ⇒ Δ = 0.

154. Taking 𝑏 − 𝑎 common from first and third columns

Δ = (𝑏 − 𝑎)2 ∣
𝑏 𝑏 − 𝑐 𝑐
𝑎 𝑎 − 𝑏 𝑏
𝑐 𝑐 − 𝑎 𝑎 ∣

= (𝑏 − 𝑎)2 ∣
𝑏 − 𝑐 𝑏 − 𝑐 𝑐
𝑎 − 𝑏 𝑎 − 𝑏 𝑏
𝑐 − 𝑎 𝑐 − 𝑎 𝑎 ∣ [𝐶1 → 𝐶1 − 𝐶3 ]

Since the first two columns are same; the determinant is zero.

155. We can rewrite it as 
𝑛−1
∑
𝑗=0

Δ𝑗 = ∣
𝑛−1
∑
𝑗=0

𝑗 𝑛 6

𝑛−1
∑
𝑗=0

𝑗2 2𝑛2 4𝑛 − 2

𝑛−1
∑
𝑗=0

𝑗3 3𝑛3 3𝑛2 − 3𝑛 ∣
= ∣ 𝑛(𝑛−1)
⁄

2 𝑛 6
𝑛(𝑛−1)(2𝑛−1)⁄

6 2𝑛2 4𝑛 − 2

{𝑛(𝑛−1)⁄2 }
2

3𝑛3 3𝑛2 − 3𝑛 ∣
= 𝑛(𝑛−1)
⁄

2 ∣
1 𝑛 6

2𝑛−1
⁄

3 2𝑛2 4𝑛 − 2
𝑛(𝑛−1)
⁄

2 3𝑛3 3𝑛2 − 3𝑛 ∣
= 𝑛(𝑛−1)
⁄

2 ∣ 0 𝑛 6
0 2𝑛2 4𝑛 − 2
0 3𝑛3 3𝑛2 − 3𝑛 ∣ [𝐶1 → 𝐶1 − 𝐶3⁄

6 ]

Since first column is entirely made up of zeros the value of determinant is zero, which
is a constant as desired.

156.
𝑚
∑
𝑟=0

(2𝑟 − 1) = 1
⁄

2 (𝑚+ 1) (2𝑚 − 1 − 1) = 𝑚2 − 1

𝑚
∑
𝑟=0

(𝑛𝐶𝑟) = 2𝑚
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𝑚
∑
𝑟=0

1 = 𝑚+ 1

Thus, first two rows of determinant become zero leading the desired sum to be 0.

157. Δ = ∣𝐶𝑥
𝑟 𝐶𝑥+1

𝑟+1 𝐶𝑥+1
𝑟+2

𝐶𝑦
𝑟 𝐶𝑦+1

𝑟+1 𝐶𝑦+1
𝑟+2

𝐶𝑧
𝑟 𝐶𝑧+1

𝑟+1 𝐶𝑧+1
𝑟+2 ∣ [𝐶3 → 𝐶3 + 𝐶2; 𝐶2 → 𝐶2 + 𝐶1 ]

Performing 𝐶3 → 𝐶3 + 𝐶2 we get the determinant on R.H.S.

158.
𝑛
∑
𝑟=1

Δ𝑟 = ∣
𝑛
∑
𝑟=1

𝑟 𝑛 + 1 1
𝑛
∑
𝑟=1

𝑟2 2𝑛 − 1 2𝑛+1
⁄

3
𝑛
∑
𝑟=1

𝑟3 3𝑛 + 2

𝑛(𝑛+1)
⁄

2 ∣
= ∣ 𝑛(𝑛+1)
⁄

2 𝑛 + 1 1
𝑛(𝑛+1)(2𝑛+1)⁄

6 2𝑛 − 1 2𝑛+1
⁄

3

{𝑛(𝑛+1)⁄2 }
2

3𝑛 + 2 𝑛(𝑛+1)
⁄

2 ∣
If we take 𝑛(𝑛+1)⁄2 common from first column then first and third column become same.
Thus, ∑𝑛

𝑟=1 Δ𝑟 = 0.

159.
𝑛
∑
𝑟=1

2𝑟−1 = 1 + 2 +…+ 2𝑛−1 = 2𝑛−1⁄
2−1 = 2𝑛 − 1

𝑛
∑
𝑟=1

2.3𝑟−1 = 2. 3
𝑛−1⁄
3−1 = 3𝑛 − 1

𝑛
∑
𝑟=1

4.5𝑟−1 = 4. 35
𝑛−1⁄
5−1 = 5𝑛 − 1

Thus, we see that first row and third rows are equal leading the sum of the determinants
to zero.

160. Δ = ∣
2𝑥 − 1 2𝑥 − 3 𝑥2 − 4𝑥 + 4
2𝑥 − 3 2𝑥 − 5 𝑥2 − 6𝑥 + 9
2𝑥 − 5 2𝑥 − 7 𝑥2 − 8𝑥 + 16 ∣ [𝐶1 → 𝐶1 − 𝐶1; 𝐶2 → 𝐶2 − 𝐶3 ]

= ∣
2𝑥 − 1 2𝑥 − 3 𝑥2

2𝑥 − 3 2𝑥 − 5 𝑥2

2𝑥 − 5 2𝑥 − 7 𝑥2 ∣+ ∣
2𝑥 − 1 2𝑥 − 3 −4𝑥
2𝑥 − 3 2𝑥 − 5 −6𝑥
2𝑥 − 5 2𝑥 − 7 −8𝑥 ∣+ ∣

2𝑥 − 1 2𝑥 − 3 4
2𝑥 − 3 2𝑥 − 5 9
2𝑥 − 5 2𝑥 − 7 16 ∣
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Clearly, if we perform 𝑅1 → 𝑅1−𝑅2; 𝑅2 → 𝑅2−𝑅3 will make 𝑅1 and 𝑅3 same in the
first determinant.

This is also true for second determinant.

= ∣
2 2 −5
2 2 −7

2𝑥 − 5 2𝑥 − 7 16 ∣
Clearly, the determinant is independent of 𝑥.

161. Δ = ∣
2 1 + 𝑖 3

1 − 𝑖 0 2 + 𝑖
3 2 − 𝑖 1 ∣

Taking complex conjugate and exchanging rows into corresponding columns

Δ = ∣
2 1 + 𝑖 3

1 − 𝑖 0 2 + 𝑖
3 2 − 𝑖 1 ∣ = Δ

Since Δ = Δ, the determinant is purely real.

162. Δ = ∣
𝑥 − 3 2𝑥 2
3𝑥 + 2 𝑥 1
5𝑥 + 1 5𝑥 5 ∣+ ∣

𝑥 − 3 1 2
3𝑥 + 2 2 1
5𝑥 + 1 4 5 ∣

If we take out 𝑥 common from second column of first determinant then second and
third columns are same, making it zero. Now expandng second determinant

= ∣
𝑥 1 2
3𝑥 2 1
5𝑥 4 5 ∣+ a determinant of constants(say 𝑘)

= 𝑥∣
0 1 2
1 2 1
1 4 5 ∣ [𝐶1 → 𝐶1 − 𝐶2 ]+ 𝑘

= 𝑥∣
0 1 2
1 2 1
0 2 4 ∣ [𝑅3 → 𝑅3 − 𝑅2 ]+ 𝑘

= 𝑥∣
0 1 2
1 2 1
0 0 0 ∣ [𝐶3 → 𝐶3 − 2𝐶1 ]+ 𝑘

= 𝑘.

163. Δ = ∣ 𝑎
𝑛 − 𝑥 𝑎𝑛+1 − 𝑥 𝑎𝑛+2 − 𝑥

𝑎𝑛+3 − 𝑎𝑛 𝑎𝑛+4 − 𝑎𝑛+1 𝑎𝑛+5 − 𝑎𝑛+2

𝑎𝑛+6 − 𝑎𝑛+3 𝑎𝑛+7 − 𝑎𝑛+4 𝑎𝑛+8 − 𝑎𝑛+5 ∣ [𝑅2 → 𝑅2 − 𝑅1; 𝑅3 → 𝑅3 − 𝑅2 ]
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= 𝑎𝑛(𝑛+3)∣ 𝑎𝑛 − 𝑥 𝑎𝑛+1 − 𝑥 𝑎𝑛+2 − 𝑥
𝑎3 − 1 𝑎4 − 𝑎 𝑎5 − 𝑎2

𝑎3 − 1 𝑎4 − 𝑎 𝑎5 − 𝑎2 ∣ = 0

Since second and third rows are same, the edterminant is zero.

164. Δ =
𝑛
∑
𝑟=2

(−2)𝑟 ∣𝐶
𝑛−2
𝑟 𝐶𝑛−2

𝑟−1 𝐶𝑛−2
𝑟

0 1 1
0 −1 9 ∣ [𝐶1 → 𝐶1 + 2𝐶2 + 𝐶3 ]

= ∑𝑛
𝑟=0(−2)

𝑟 𝐶𝑛
𝑟 − (𝐶𝑛

0 − 2𝐶𝑛
1 )

= 2𝑛 − 1 + (−1)𝑛.

165. Performing 𝑅1 → 𝑎𝑅1, 𝑅2 → 𝑏𝑅2, 𝑅3 → 𝑐𝑅3 and then taking out 𝑎𝑏𝑐 out from first
two columns,

Δ = 𝑎𝑏𝑐∣
𝑏𝑐 1 𝑎(𝑏 + 𝑐)
𝑐𝑎 1 𝑏(𝑐 + 𝑎)
𝑎𝑏 1 𝑐(𝑎 + 𝑏) ∣

Performing 𝐶3 → 𝐶3 + 𝐶1 and then taking 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 out

= 𝑎𝑏𝑐(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) ∣
𝑏𝑐 1 1
𝑐𝑎 1 1
𝑎𝑏 1 1 ∣

Since last two columns are same, the determinant is zero.

166. Putting 𝑏 = 𝑐, we see that the determinant reduces to 0. Similarly, 𝑐 = 𝑎 or 𝑎 = 𝑏 or
𝑎 = 𝑑 or 𝑏 = 𝑑 or 𝑐 = 𝑑 also reduces the determinant to zero.

We also see that the degree of polynomial of the determinant is six, and thus,

∣
𝑏 + 𝑐 − 𝑎 − 𝑑 𝑏𝑐 − 𝑎𝑑 𝑏𝑐(𝑎 + 𝑑)− 𝑎𝑑(𝑏 + 𝑑)
𝑐 + 𝑎 − 𝑏 − 𝑑 𝑐𝑎 − 𝑏𝑑 𝑐𝑎(𝑏 + 𝑑)− 𝑏𝑑(𝑐 + 𝑎)
𝑎 + 𝑏 − 𝑐 − 𝑑 𝑎𝑏 − 𝑐𝑑 𝑎𝑏(𝑐 + 𝑑)− 𝑐𝑑(𝑎 + 𝑏) ∣ = 𝑘(𝑏 − 𝑐)(𝑐 − 𝑎)(𝑎 − 𝑏)(𝑎 − 𝑑)(𝑏 −

𝑑)(𝑐 − 𝑑)

Putting 𝑎 = 0, 𝑏 = 1, 𝑐 = 2, 𝑑 = 3 we evaluate 𝑘 = −2, and thus, we have proven the
desired equality.

167. Putting 𝑏 = 𝑐, we see that the determinant reduces to zero. Similarly, 𝑐 = 𝑎 or 𝑎 = 𝑏
also reduced the determinant to zero. Also, putting 𝑎 = −𝑏 − 𝑐 or 𝑎𝑏 = −𝑏𝑐 − 𝑐𝑎 makes
the determinant zero.

We also see that the degree of polynomial of the determinant is six, and thus,

∣ 𝑏𝑐 − 𝑎2 𝑐𝑎 − 𝑏2 𝑎𝑏 − 𝑐2
𝑐𝑎 + 𝑎𝑏 − 𝑏𝑐 𝑏𝑐 + 𝑎𝑏 − 𝑐𝑎 𝑏𝑐 + 𝑐𝑎 − 𝑎𝑏
(𝑎 + 𝑏)(𝑎 + 𝑐) (𝑏 + 𝑐)(𝑏 + 𝑎) (𝑐 + 𝑎)(𝑐 + 𝑏) ∣ = 𝑘(𝑏 − 𝑐)(𝑐 − 𝑎)(𝑎 − 𝑏)(𝑎 + 𝑏 +

𝑐)(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)
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Putting 𝑎 = 0, 𝑏 = 1, 𝑐 = 2 we evaluate 𝑘 = 3.

168. Putting 𝑙 = 𝑚 we see that the determinant reduces to zero. Similarly 𝑙 = 𝑛, 𝑛 = 𝑝, 𝑚 =
𝑛, 𝑚 = 𝑝, 𝑛 = 𝑝 also reduce the determinant to zero.

We also see that the degree of polynomial of the determinant is six, and thus,

∣ 1 (𝑚+ 𝑛− 𝑙 − 𝑝)2 (𝑚+ 𝑛− 𝑙 − 𝑝)4

1 (𝑛 + 𝑙 −𝑚− 𝑝)2 (𝑛 + 𝑙 −𝑚− 𝑝)4

1 (𝑙 + 𝑚− 𝑛 − 𝑝)2 (𝑙 + 𝑚− 𝑛 − 𝑝)4 ∣ = 𝑘(𝑙−𝑚)(𝑙−𝑛)(𝑙− 𝑝)(𝑚−𝑛)(𝑚−𝑝)(𝑛−

𝑝)

Putting 𝑙 = 0,𝑚 = 1, 𝑛 = 2, 𝑝 = 3 we find that 𝑘 = 64, and hence we prove the required
equality.

169. 𝑑⁄
𝑑𝑡 ∣

𝑢1 𝑣1 𝑤1
𝑢2 𝑣2 𝑤2
𝑢3 𝑣3 𝑤3 ∣ = ∣

𝑢2 𝑣2 𝑤2
𝑢2 𝑣2 𝑤2
𝑢3 𝑣3 𝑤3 ∣+ ∣

𝑢1 𝑣1 𝑤1
𝑢3 𝑣3 𝑤3
𝑢3 𝑣3 𝑤3 ∣+ ∣

𝑢1 𝑣1 𝑤1
𝑢2 𝑣2 𝑤2
𝑢4 𝑣4 𝑤4 ∣

First two determinants are zero because two rows are identical. Hence,

𝑑⁄
𝑑𝑡 ∣

𝑢1 𝑣1 𝑤1
𝑢2 𝑣2 𝑤2
𝑢3 𝑣3 𝑤3 ∣ = ∣

𝑢1 𝑣1 𝑤1
𝑢2 𝑣2 𝑤2
𝑢4 𝑣4 𝑤4 ∣.

170. Given 𝑌 = 𝑠𝑋 ⇒ 𝑌1 = 𝑠1𝑋+𝑠𝑋1 ⇒ 𝑌2 = 𝑠2𝑋+𝑠1𝑋1+𝑠1𝑋1+𝑠𝑋2 = 𝑠𝑋2+2𝑠1𝑋1+
𝑠2𝑋, and similarly 𝑍 = 𝑡𝑋 ⇒ 𝑍1 = 𝑡1𝑋 + 𝑡𝑋1 ⇒ 𝑍2 = 𝑡𝑋2 + 2𝑡1𝑋1 + 𝑡2𝑋.

L.H.S. = ∣
𝑋 𝑌 𝑍
𝑋1 𝑌1 𝑍1
𝑋2 𝑌2 𝑍2 ∣ = ∣

𝑋 𝑠𝑋 𝑡𝑋
𝑋1 𝑠1𝑋 + 𝑠𝑋1 𝑡1𝑋 + 𝑡𝑋1
𝑋2 𝑠2𝑋 + 2𝑠1𝑋1 + 𝑠𝑋2 𝑡2𝑋 + 2𝑡1𝑋1 + 𝑡𝑋2 ∣

= 𝑋∣
1 𝑠 𝑡
𝑋1 𝑠1𝑋 + 𝑠𝑋1 𝑡1𝑋 + 𝑡𝑋1
𝑋2 𝑠2𝑋 + 2𝑠1𝑋1 + 𝑠𝑋2 𝑡2𝑋 + 2𝑡1𝑋1 + 𝑡𝑋2 ∣

= 𝑋∣
1 𝑠 𝑡
0 𝑠1𝑋 𝑡1𝑋
0 𝑠2𝑋 + 2𝑠1𝑋1 𝑡2𝑋 + 2𝑡1𝑥1 ∣ [𝑅2 → 𝑅2 − 𝑅1𝑋1; 𝑅3 → 𝑅3 − 𝑅1𝑋2 ]

= 𝑋3∣ 𝑠1 𝑡1
𝑠2 𝑡2

∣.

171. Let 𝐹 (𝑥) = ∣
𝑓(𝑥) 𝑔(𝑥) ℎ(𝑥)
𝑓(𝛼) 𝑔(𝛼) ℎ(𝛼)
𝑓(𝛽) 𝑔(𝛽) ℎ(𝛽) ∣

Clearly, 𝐹 (𝛼) = 0 because first two rows become equal. 𝐹′(𝑥) = ∣
𝑓′(𝑥) 𝑔′(𝑥) ℎ′(𝑥)
𝑓(𝛼) 𝑔(𝛼) ℎ(𝛼)
𝑓(𝛽) 𝑔(𝛽) ℎ(𝛽) ∣
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If 𝐹′(𝑥) = 0 then 𝐹′(𝛼) = 0 making 𝛼 a repeated root.

𝐹 (𝛽) = 0 because first and last rows are identical. Thus, (𝑥 − 𝛼)2(𝑥 − 𝛽) is a factor

of 𝐹 (𝑥) so the required condition is ∣
𝑓′(𝑥) 𝑔′(𝑥) ℎ′(𝑥)
𝑓(𝛼) 𝑔(𝛼) ℎ(𝛼)
𝑓(𝛽) 𝑔(𝛽) ℎ(𝛽) ∣ = 0

172. We see that 𝑑Δ⁄𝑑𝑥 = 0 and hence it is a constant, independent of 𝑥.

173. Applying 𝐶1 → 𝐶1 − 2 sin 𝑥𝐶3; 𝐶2 → 𝐶2 + 2 cos 𝑥𝐶3

Δ = ∣
2 0 − sin 𝑥
0 2 cos 𝑥

sin 𝑥 − cos 𝑥 0 ∣ = 2 sin2 𝑥 + 2 cos2 𝑥 = 2.

⇒ 𝑓′(𝑥) = 0.

∴∫
𝜋
⁄

2

0
[𝑓(𝑥)+ 𝑓′(𝑥)]𝑑𝑥 = ∫

𝜋
⁄

2

0
2𝑑𝑥 = 𝜋.

174. L.H.S. = ∣
𝑎1 𝑏1 0
𝑎2 𝑏2 0
𝑎3 𝑏3 0 ∣ ∣

𝛼1 𝛽1 0
𝛼2 𝛽2 0
𝛼3 𝛽3 0 ∣ = 0.

175. Let 𝑉𝑟 = 𝑙𝑟 ⃗𝚤 + 𝑚𝑟 ⃗𝚥 + 𝑛𝑟�⃗�. Then for 𝑟 = 1 let 𝑉1 = ± ⃗𝚤, for 𝑟 = 2, 𝑉2 = ± ⃗𝚥, and
𝑟 = 3, 𝑉3 = ±�⃗�.

Thus, we get determinant as ∣
1 0 0
0 1 0
0 0 1 ∣ or ∣

−1 0 0
0 −1 0
0 0 −1 ∣

Hence, Δ = ±1.

176. Let 𝐴 = [
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3]

Cofactor matrix 𝐶 = [
𝐴1 𝐵1 𝐶1
𝐴2 𝐵2 𝐶2
𝐴3 𝐵3 𝐶3]

adj(𝐴) = 𝐶𝑇 but 𝐴(adj(𝐴)) = |𝐴|𝐼 ⇒ |𝐴|| adj(𝐴) | = |𝐴|3 ⇒ | adj(𝐴) | = |𝐴|2

∴ |𝐶| = |𝐴|2 ⇒ [
𝐴1 𝐵1 𝐶1
𝐴2 𝐵2 𝐶2
𝐴3 𝐵3 𝐶3]

We can proceed similarly for second level of cofactors whose determinant will be Δ4.

Thus, ∣
𝐴1 𝐵1 𝐶1
𝐴2 𝐵2 𝐶2
𝐴3 𝐵3 𝐶3 ∣ ∣

𝛼1 𝛽1 𝛾1
𝛼2 𝛽2 𝛾2
𝛼3 𝛽3 𝛾3 ∣ = Δ6.
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177. Using Cramer's rule, Δ = ∣
1 2 3
2 4 1
3 2 9 ∣ = 34 − 20 − 24 = −20

Δ𝑥 = ∣
17 4 1
2 2 9
1 6 3 ∣ = 204 − 302 + 78 = −20

Δ𝑦 = ∣
1 6 3
2 17 1
3 2 9 ∣ = 151 − 90 − 141 = −80

Δ𝑧 = ∣
1 2 6
2 4 17
3 2 2 ∣ = −26 + 94 − 48 = 20

⇒ 𝑥 = Δ𝑥⁄
Δ = 1, 𝑦 = Δ𝑦⁄

Δ = 4, 𝑧 = Δ𝑧⁄
Δ = −1.

178. Δ = ∣ 𝑎 𝑏 𝑐
𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3 ∣ = 𝑎𝑏𝑐(𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎).

Similarly, Δ𝑥 = 𝑑𝑏𝑐(𝑑 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑑), Δ𝑦 = 𝑎𝑐𝑑(𝑎 − 𝑑)(𝑑 − 𝑐)(𝑐 − 𝑎), and
Δ𝑧 = 𝑎𝑏𝑑(𝑎 − 𝑏)(𝑏 − 𝑑)(𝑑 − 𝑎)

⇒ 𝑥 = 𝑑(𝑑−𝑏)(𝑐−𝑑)⁄
𝑎(𝑎−𝑏)(𝑐−𝑎) , 𝑦 =

𝑑(𝑎−𝑑)(𝑑−𝑐)⁄
𝑏(𝑎−𝑏)(𝑏−𝑐) , 𝑧 =

𝑑(𝑏−𝑑)(𝑑−𝑎)⁄
𝑐(𝑏−𝑐)(𝑐−𝑎) .

If only two of 𝑎, 𝑏, 𝑐 are zero the given system of equations has no solution. If 𝑎 = 𝑏 = 𝑐
and any of 𝑎, 𝑏, 𝑐 is zero then the system of equations has infinite number of solutions.

179. Given 𝑓(1) = 0 ⇒ 𝑎 + 𝑏 + 𝑐 = 0; 𝑓(2) = −2 ⇒ 4𝑎 + 2𝑏 + 𝑐 = −2; 𝑓(3) = −6 ⇒
9𝑎 + 3𝑏 + 𝑐 = −6

Δ = ∣
1 1 1
4 2 1
9 3 1 ∣ = −1 + 5 − 6 = −2

Δ𝑎 = ∣
0 1 1
−2 2 1
−6 3 1 ∣ = −4 + 6 = 2

Δ𝑏 = ∣
1 0 1
4 −2 1
9 −6 1 ∣ = 4 − 6 = −2

Δ𝑐 = ∣
1 1 0
4 2 −2
9 3 −6 ∣ = 0

⇒ 𝑎 = −1, 𝑏 = 1, 𝑐 = 0.
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180. 𝑓(0) = 6 ⇒ 𝑐 = 6, 𝑓(2) = 11 ⇒ 4𝑎 + 2𝑏 + 𝑐 = 11, 𝑓(−3) = 6 ⇒ 9𝑎 − 3𝑏 + 𝑐 = 6.

Δ = ∣
0 0 1
42 1
9 −3 1 ∣ = −30

Δ𝑎 = ∣
6 0 1
11 2 1
0 6 1 ∣ = −15

Δ𝑏 = ∣
0 6 1
4 11 1
9 6 1 ∣ = −45

⇒ 𝑎 = 1
⁄

2 , 𝑏 =
3
⁄

2 , 𝑐 = 6 ⇒ 𝑓(1) = 𝑎 + 𝑏 + 𝑐 = 8.

181. Δ = ∣
−𝑎 𝑏 + 𝑐 𝑏 + 𝑐
𝑐 + 𝑎 −𝑏 𝑐 + 𝑎
𝑎 + 𝑏 𝑎 + 𝑏 −𝑐 ∣ = ∣

𝑎 + 𝑏 + 𝑐 𝑎 + 𝑏 + 𝑐 𝑎 + 𝑏 + 𝑐
𝑐 + 𝑎 −𝑏 𝑐 + 𝑎
𝑎 + 𝑏 𝑎 + 𝑏 −𝑐 ∣ [𝑅1 → 𝑅1 + 𝑅2 + 𝑅3 ]

= (𝑎 + 𝑏 + 𝑐) ∣
0 1 1
0 −𝑏 𝑐 + 𝑎

𝑎 + 𝑏 + 𝑐 𝑎 + 𝑏 −𝑐 ∣ [𝐶1 → 𝐶1 − 𝐶3 ]

= (𝑎 + 𝑏 + 𝑐)3

Δ𝑥 = ∣
𝑏 − 𝑐 𝑏 + 𝑐 𝑏 + 𝑐
𝑐 − 𝑎 −𝑏 𝑐 + 𝑎
𝑎 − 𝑏 𝑎 + 𝑏 −𝑎 ∣ = ∣

𝑏 − 𝑐 0 𝑏 + 𝑐
𝑐 − 𝑎 −(𝑎 + 𝑏 + 𝑐) 𝑐 + 𝑎
𝑎 − 𝑏 𝑎 + 𝑏 + 𝑐 −𝑐 ∣ [𝐶2 → 𝐶2 − 𝐶3 ]

= (𝑎 + 𝑏 + 𝑐) ∣
𝑏 − 𝑐 0 𝑏 + 𝑐
𝑐 − 𝑏 0 𝑎
𝑎 − 𝑏 1 −𝑐 ∣ [𝑅2 → 𝑅2 + 𝑅3 ]

= (𝑐 − 𝑏)(𝑎 + 𝑏 + 𝑐)2

⇒ 𝑥 = 𝑐−𝑏
⁄

𝑎+𝑏+𝑐. Since the given system of equations is cyclic, therefore, 𝑦 = 𝑎−𝑐
⁄

𝑎+𝑏+𝑐 , 𝑧 =
𝑏−𝑎
⁄

𝑎+𝑏+𝑐.

182. Δ = ∣
7 −7 5
3 1 5
2 3 5 ∣ = −70 + 35 + 35 = 0

Δ𝑥 = ∣
3 −7 5
7 1 5
5 3 5 ∣ = −30 − 70 + 80 = −20

Therefore, the system of equations is inconsistent and has no solution.
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183. For system of equations to be consistent Δ = ∣
1 1 3

1 + 𝑘 2 + 𝑘 8
1 −(1 + 𝑘) −(2 + 𝑘) ∣ = 0

⇒ 3𝑘2 + 2𝑘 − 5 = 0 ⇒ 𝑘 = 1, − 5
⁄

3.

184. Δ = ∣ (𝑘 + 1)3 (𝑘 + 2)2 (𝑘 + 3)3
𝑘 + 1 𝑘 + 2 𝑘 + 3
1 1 1 ∣

⇒ 𝑘 = −2.
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Answers of Chapter 9
Matrices

1. The matrix will be any one of the following type 1× 12, 12× 1, 2× 6, 6× 2, 3× 4, 4× 3.
So the answer is 6.

2. 𝑎11 = 2.1 − 3.1 = −1, 𝑎12 = 2.1 − 3.2 = −4, 𝑎13 = 2.1 − 3.3 = −7

𝑎21 = 2.2 − 3.1 = 1, 𝑎22 = 2.2 − 3.2 = −2, 𝑎23 = 2.2 − 3.3 = −5

∴𝐴 = [−1 −4 −7
1 −2 −5 ].

3. 𝐴+𝐵 = [ 𝑎 − 𝑎 𝑏 + 𝑏
−𝑏 − 𝑏 𝑎 − 𝑎 ] = [ 0 2𝑏

−2𝑏 0 ].

4. 2𝑋 = (2𝑋 + 𝑌 )− 𝑌 = [ 1 0
−3 2 ]− [ 3 2

1 4 ] = [ 1 − 3 0 − 2
−3 − 1 2 − 4 ] = [−2 −2

−4 −2 ]

⇒ 𝑋 = [−1 −1
−2 −1 ].

5. 𝑥2 − 4𝑥 = −3 ⇒ 𝑥 = 1, 3. 𝑥2 = 1 ⇒ 𝑥 = ±1. 𝑥2 = −𝑥 + 2 ⇒ 𝑥 = −2, 1. 𝑥3 = 1 ⇒ 𝑥 =
1, 𝜔, 𝜔2.

Common value of 𝑥 is 1.

6. 𝑥 + 3 = 0 ⇒ 𝑥 = −3. 2𝑦 + 𝑥 = −7 ⇒ 2𝑦 = −4 ⇒ 𝑦 = −2. 𝑧 − 1 = 3 ⇒ 𝑧 = 4.
4𝑎 − 6 = 2𝑎 ⇒ 2𝑎 = 6 ⇒ 𝑎 = 3.

7. 4𝐴 − 3𝐵 = 4[
1 2 3
−1 0 2
1 −3 1]− 3[

4 5 6
−1 0 1
2 1 2] = [

4 8 12
−4 0 8
4 −12 4 ]− [

12 15 18
−3 0 3
6 3 6 ]

= [
−8 −7 −6
−1 0 5
−2 −15 −2].

8. 𝐴 is a 2 × 3 matrix and 𝐵 is a 3 × 2 matrix. 𝐴𝐵 is defined and will be a 2 × 2 matrix.

𝐴𝐵 = [ 1 −2 3
−4 2 5 ][

2 3
4 5
2 1] = [ 2 − 8 + 6 3 − 10 + 3

−8 + 8 + 10 −12 + 10 + 5 ]

= [ 0 −4
10 3 ].

𝐵𝐴 is also defined and will be a 3 × 3 matrix.
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𝐵𝐴 = [
2 3
4 5
2 1][ 1 −2 3

−4 2 5 ]

= [
2 − 12 −4 + 6 6 + 15
4 − 20 −8 + 10 12 + 25
2 − 4 −4 + 2 6 + 5 ] = [

−10 2 21
−16 2 37
−2 −2 11].

Clearly, 𝐴𝐵 ≠ 𝐵𝐴.

9. Because associative law holds for matrix multiplication, therefore, 𝐴(𝐵𝐶) = (𝐴𝐵)𝐶.

𝐵𝐶 = [
𝑎 ℎ 𝑔
ℎ 𝑏 𝑓
𝑔 𝑓 𝑐 ][

𝑥
𝑦
𝑧 ] = [ 𝑎𝑥 + 𝑏𝑦 + 𝑔𝑧

ℎ𝑥 + 𝑏𝑦 + 𝑓𝑧 𝑔𝑥 + 𝑓𝑦 + 𝑧𝑐 ]

𝐴𝐵𝐶 = [𝑥𝑦𝑧][
𝑎𝑥 + 𝑏𝑦 + 𝑔𝑧
ℎ𝑥 + 𝑏𝑦 + 𝑓𝑧
𝑔𝑥 + 𝑓𝑦 + 𝑧𝑐 ]

= 𝑥(𝑎𝑥 + 𝑏𝑦 + 𝑔𝑧)+ 𝑦(ℎ𝑥 + 𝑏𝑦 + 𝑓𝑧)+ 𝑧(𝑔𝑥 + 𝑓𝑦 + 𝑧𝑐) = 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 + 2ℎ𝑥𝑦 +
2𝑔𝑧𝑥 + 2𝑓𝑦𝑧.

10. 𝐴′ = [
1 0 2
2 5 4
3 0 3]

Let 𝐵 be the matrix whose elements are cofactors of the corresponding elements of the

matrix 𝐴. Then 𝐵 = [
15 0 −10
6 −3 0

−15 0 5 ]
∴ adj(𝐴) = 𝐵′ = [

15 6 −15
0 −3 0

−10 0 5 ].
11. Let 𝐵 be the matrix whose elements are cofactors of the corresponding elements of 𝐴.

Then

𝐵 = [
−1 8 5
1 −6 3
−1 2 −1] ∴ adj(𝐴) = 𝐵′ = [

−1 1 −1
8 −6 2
−5 3 −1]

|𝐴| = ∣
0 1 2
1 2 3
3 1 1 ∣ = −2∴𝐴−1 = adj(𝐴)⁄

|𝐴| = [ 1
⁄

2 − 1
⁄

2
1
⁄

2
−4 3 −1
5
⁄

2 − 3
⁄

2
1
⁄

2 ].
12. Let 𝐵 be the matrix whose elements are cofactors of the corresponding elements of 𝐴.

Then
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𝐵 = [
2 −3 5
3 6 −3

−13 9 −1] ∴ adj(𝐴) = 𝐵′ = [
2 3 −13
−3 6 9
5 −3 −1 ]

|𝐴| = ∣
1 2 5
2 3 1
−1 1 1 ∣ = 21 ∴𝐴−1 = adj(𝐴)⁄

|𝐴| = 1
⁄

21[
2 3 −13
−3 6 9
5 −3 −1 ].

𝐴−1𝐴 = 1
⁄

21[
2 + 6 + 13 4 + 9 − 13 10 + 3 − 13
−3 + 12 − 9 −6 + 18 + 9 −15 + 6 + 9
5 − 6 + 1 10 − 9 − 1 25 − 3 − 1 ] = [

1 0 0
0 1 0
0 0 1] = 𝐼

13. 𝐴2 = 𝐴.𝐴 = [
1 2 2
2 1 2
2 2 1][

1 2 2
2 1 2
2 2 1]

= [
1 + 4 + 4 2 + 2 + 4 2 + 4 + 2
2 + 2 + 4 4 + 1 + 4 4 + 2 + 2
2 + 4 + 2 4 + 2 + 2 4 + 4 + 1] = [

9 8 8
8 9 8
8 8 9]

𝐴2 − 4𝐴 − 5𝐼 = [
9 8 8
8 9 8
8 8 9]− [

4 8 8
8 4 8
8 8 4]− [

5 0 0
0 5 0
0 0 5]

= [
0 0 0
0 0 0
0 0 0] = 𝑂

𝐴2 − 4𝐴 − 5𝐼 = 𝑂 ⇒ 𝐴−1𝐴2 − 4𝐴−1𝐴 − 5𝐴−1𝐼 = 𝐴−1𝑂 = 𝑂

(𝐴−1𝐴)𝐴− 4(𝐴−1𝐴)− 5𝐴−1𝐼 = 𝑂 ⇒ 𝐼𝐴 − 4𝐼 − 5𝐴−1 = 𝑂

⇒ 5𝐴−1 = 𝐴− 4𝐼 = [
1 2 2
2 1 2
2 2 1]− [

4 0 0
0 4 0
0 0 4]

= [
−3 2 2
2 −3 2
2 2 −3]⇒ 𝐴−1 = 1
⁄

5[
−3 2 2
2 −3 2
2 2 −3].

14. Let 𝐴 = [
5 3 1
2 1 3
1 2 4], 𝑋 = [

𝑥
𝑦
𝑧 ] and 𝐵 = [

16
19
25].

Then the matrix equation of the gives system of equation becomes 𝐴𝑋 = 𝐵.

Now 𝐴 = ∣
1 2 2
2 1 2
2 2 1 ∣ = −22 ≠ 0

Hence, 𝐴 is non-singular. Therefore, the given system of equations will have the unique
solution given by 𝑋 = 𝐴−1𝐵.
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Let 𝐶 be the matrix whose elements are cofactors of the corresponding elements of 𝐴,
then

𝐶 = [
−2 −5 3
−10 19 −7
8 −13 −1] ∴ adj(𝐴) = 𝐶′ = [

−2 −10 8
−5 19 −13
3 −7 −1 ]

𝐴1− = adj(𝐴)⁄
|𝐴| = − 1
⁄

22[
−2 −10 8
−5 19 −13
3 −7 −1 ]

⇒ 𝑋 = 𝐴−1𝐵 = [
1
2
5] ∴ 𝑥 = 1, 𝑦 = 2, 𝑧 = 5.

15. 𝐴𝐵 = [
−5 1 3
7 1 −5
1 −1 1 ][

1 1 2
3 2 1
2 1 3]

= [
−5 + 3 + 6 −5 + 2 + 3 −10 + 1 + 9
7 + 3 − 10 7 + 2 − 5 14 + 1 − 15
1 − 3 + 2 1 − 2 + 1 2 − 1 + 3 ] = [

4 0 0
0 4 0
0 0 4] = 4𝐼3

Given system of equations in matrix form is 𝐵𝑋 = 𝐶, where 𝑥 = [
𝑥
𝑦
𝑧 ] and 𝐶 = [

1
7
2 ]

We have 𝐵𝑋 = 𝐶. Multiplying both sides with 𝐵−1, 𝐵−1𝐵𝑋 = 𝐵−1𝐶 ⇒ 𝐼𝑋 = 𝑋 =
𝐵−1𝐶.

However, 𝐴𝐵 = 4𝐼3 ⇒ 𝐴⁄
4 𝐵 = 𝐼3 ⇒ 𝐵−1 = 𝐴⁄

4 ⇒ 𝑋 = [
2
1
−1]

∴ 𝑥 = 2, 𝑦 = 1, 𝑧 = −1.

16. 𝑥 + 𝑦 = 3, 𝑥 − 𝑦 = 7 ⇒ 𝑥 = 5, 𝑦 = −2.

17. 𝑥− 𝑦 = −1, 2𝑥 − 𝑦 = 0 ⇒ 𝑥 = 1, 𝑦 = 2. 2𝑥+ 𝑥1 = 5 ⇒ 𝑥1 = 3, 3𝑥 + 𝑦1 = 13 ⇒ 𝑦1 = 10

So 𝑃 is (1, 2) and 𝑄 is (3, 10). 𝑃𝑄 =√

(1 − 3)2 + (2 − 10)2 = √


68 = 2√

17.

18. 2𝑋 = [ 10 0
2 8 ]⇒ 𝑋 = [ 5 0

1 4 ]

2𝑌 = [ 4 0
2 2 ]⇒ 𝑌 = [ 2 0

1 1 ].

19. 𝐶 = 𝐵 −𝐴 = [
3 −1 2
4 2 5
2 0 3]− [

1 2 −3
5 0 2
1 −1 1 ] = [

2 −3 5
−1 2 3
1 1 2].
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20. 𝑋 = 2𝐴 + 3𝐵 − 𝐶 = [ 4 6 8
−6 0 4 ]+ [ 9 −12 −15

3 6 3 ]− [ 5 −1 2
7 0 3 ]

= [ 8 −5 −9
−10 6 4 ].

21. 𝐴− 2𝐵 + 3𝐶 = [
1 2 3
−1 0 2
1 −3 1]− [

8 10 12
−2 0 2
4 2 4 ]+ [

−3 6 3
−3 6 9
−3 −6 6]

= [
−10 −14 −6
−2 6 9
−6 −11 3 ] .

22. 𝑃 (𝑥) .𝑃 (𝑦) = [ cos 𝑥 sin 𝑥
− sin 𝑥 cos 𝑥 ] .[

cos 𝑦 sin 𝑦
− sin 𝑦 cos 𝑦 ]

= [ cos 𝑥 cos 𝑦 − sin 𝑥 sin 𝑦 cos 𝑥 sin 𝑦 + sin 𝑥 cos 𝑦
− sin 𝑥 cos 𝑦 − 𝑐𝑜𝑠𝑥 sin 𝑦 − sin 𝑥 sin 𝑦 + cos 𝑥 cos 𝑦 ] = [ cos(𝑥 + 𝑦) sin(𝑥 + 𝑦)

−sin(𝑥 + 𝑦) cos(𝑥 + 𝑦) ].

Similarly, it can be proven to be equal to 𝑃 (𝑦) .𝑃 (𝑥).

23. 𝐴2 = [
1 0 0
0 1 0
𝑎 𝑏 −1] .[

1 0 0
0 1 0
𝑎 𝑏 −1]

= [
1 ∗ 1 + 0 ∗ 0 + 0 ∗ 𝑎 1 ∗ 0 + 0 ∗ 1 + 0 ∗ 𝑏 1 ∗ 0 + 0 ∗ 0 + 0 ∗ −1
0 ∗ 1 + 1 ∗ 0 + 0 ∗ 𝑎 0 ∗ 0 + 1 ∗ 1 + 0 ∗ 𝑏 0 ∗ 0 + 1 ∗ 0 + 0 ∗ −1
𝑎 ∗ 1 + 𝑏 ∗ 0 + −1 ∗ 𝑎 𝑎 ∗ 0 + 𝑏 ∗ 1 + −1 ∗ 𝑏 𝑎 ∗ 0 + 𝑏 ∗ 0 + −1 ∗ −1]

= [
1 0 0
0 1 0
0 0 1] = 𝐼3.

24. 𝐴2 = [
−1 1 −1
3 −3 3
5 −5 5 ][

−1 1 −1
3 −3 3
5 −5 5 ]

= [
−1 ∗ −1 + 1 ∗ 3 + −1 ∗ 5 −1 ∗ 1 + 1 ∗ −3 + −1 ∗ −5 −1 ∗ −1 + 1 ∗ 3 + −1 ∗ 5
3 ∗ −1 + −3 ∗ 3 + 3 ∗ 5 3 ∗ 1 + −3 ∗ −3 + 3 ∗ −5 3 ∗ −1 + −3 ∗ 3 + 3 ∗ 5
5 ∗ −1 + −5 ∗ 3 + 5 ∗ 5 5 ∗ 1 + −5 ∗ −3 + 5 ∗ −5 5 ∗ −1 + −5 ∗ 3 + 5 ∗ 5 ]

= [
−1 1 −1
3 −3 3
5 −5 5 ] = 𝐴

𝐵2 = [
0 4 3
1 −3 −3
−1 4 4 ][

0 4 3
1 −3 −3
−1 4 4 ]
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= [
0 ∗ 0 + 4 ∗ 1 + 3 ∗ −1 0 ∗ 4 + 4 ∗ −3 + 3 ∗ 4 0 ∗ 3 + 4 ∗ −3 + 3 ∗ 4

1 ∗ 0 + −3 ∗ 1 + −3 ∗ −1 1 ∗ 4 + −3 ∗ −3 + −3 ∗ 4 1 ∗ 3 + −3 ∗ −3 + −3 ∗ 4
−1 ∗ 0 + 4 ∗ 1 + 4 ∗ −1 −1 ∗ 4 + 4 ∗ −3 + 4 ∗ 4 −1 ∗ 3 + 4 ∗ −3 + 4 ∗ 4 ]

= [
1 0 0
0 1 0
0 0 1] = 𝐼

∴𝐴2𝐵2 = 𝐴

25. Given, 𝐴 = [
2 3 4
1 2 3
−1 1 2], 𝐵 = [

1 3 0
−1 2 1
0 0 2].

𝐴𝐵 = [
2 ∗ 1 + 3 ∗ −1 + 4 ∗ 0 2 ∗ 3 + 3 ∗ 2 + 4 ∗ 0 2 ∗ 0 + 3 ∗ 1 + 4 ∗ 2
1 ∗ 1 + 2 ∗ −1 + 3 ∗ 0 1 ∗ 3 + 2 ∗ 2 + 3 ∗ 0 1 ∗ 0 + 2 ∗ 1 + 3 ∗ 2
−1 ∗ 1 + 1 ∗ −1 + 2 ∗ 0 −1 ∗ 3 + 1 ∗ 2 + 2 ∗ 0 −1 ∗ 0 + 1 ∗ 1 + 2 ∗ 2]

= [
−1 12 11
−1 7 8
−2 −1 5 ]

= [
1 ∗ 2 + 3 ∗ 1 + 0 ∗ −1 1 ∗ 3 + 3 ∗ 2 + 0 ∗ 1 1 ∗ 4 + 3 ∗ 3 + 0 ∗ 2
−1 ∗ 2 + 2 ∗ 1 + 1 ∗ −1 −1 ∗ 3 + 2 ∗ 2 + 1 ∗ 1 −1 ∗ 4 + 2 ∗ 3 + 1 ∗ 2
0 ∗ 2 + 0 ∗ 1 + 2 ∗ −1 0 ∗ 3 + 0 ∗ 2 + 2 ∗ 1 0 ∗ 4 + 0 ∗ 3 + 2 ∗ 2 ]

= [
5 9 13
−1 2 4
−2 2 4 ].

Clearly, 𝐴𝐵 ≠ 𝐵𝐴.

26. Let 𝐴 = [
0 𝑐 −𝑏
−𝑐 0 𝑎
𝑏 −𝑎 0 ] and 𝐵 = [ 𝑎

2 𝑎𝑏 𝑎𝑐
𝑎𝑏 𝑏2 𝑏𝑐
𝑎𝑐 𝑏𝑐 𝑐2 ]

𝐴𝐵 = [ 0 ∗ 𝑎
2 + 𝑐 ∗ 𝑎𝑏 + −𝑏 ∗ 𝑎𝑐 0 ∗ 𝑎𝑏 + 𝑐 ∗ 𝑏2 + −𝑏 ∗ 𝑏𝑐 0 ∗ 𝑎𝑐 + 𝑐 ∗ 𝑏𝑐 + −𝑏 ∗ 𝑐2

−𝑐 ∗ 𝑎2 + 0 ∗ 𝑎𝑏 + 𝑎 ∗ 𝑎𝑐 −𝑐 ∗ 𝑎𝑏 + 0 ∗ 𝑏2 + 𝑎 ∗ 𝑏𝑐 −𝑐 ∗ 𝑎𝑐 + 0 ∗ 𝑏𝑐 + 𝑎 ∗ 𝑐2

𝑏 ∗ 𝑎2 + −𝑎 ∗ 𝑎𝑏 + 0 ∗ 𝑎𝑐 𝑏 ∗ 𝑎𝑏 + −𝑎 ∗ 𝑏2 + 0 ∗ 𝑏𝑐 𝑏 ∗ 𝑎𝑐 + −𝑎 ∗ 𝑏𝑐 + 0 ∗ 𝑐2 ]
= a zero matrix.

27. Given 𝐴 = [ 3 −5
−4 2 ] ∴𝐴2 = [ 3 ∗ 3 + −5 ∗ −4 3 ∗ −5 + −5 ∗ 2

−4 ∗ 3 + 2 ∗ −4 −4 ∗ −5 + 2 ∗ 2 ]

= [ 29 −25
−20 24 ]

∴𝐴2 − 5𝐴 − 14𝐼 = [ 0 0
0 0 ]
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28. Given 𝐴 = [ 2 3
1 2 ] ∴𝐴

2 = [ 2 ∗ 2 + 3 ∗ 1 2 ∗ 3 + 3 ∗ 2
1 ∗ 2 + 2 ∗ 1 1 ∗ 3 + 2 ∗ 2 ]

= [ 7 12
4 7 ]

∴𝐴3 = [ 7 ∗ 7 + 12 ∗ 4 7 ∗ 12 + 12 ∗ 7
4 ∗ 7 + 7 ∗ 4 4 ∗ 12 + 7 ∗ 7 ] = [ 97 168

56 97 ]

Clearly, 𝐴3 − 4𝐴2 + 𝐴 = [ 71 123
41 71 ], which can be easily shown to be an orthogonal

matrix.

29. 𝐴2 = [ 0.8 ∗ 0.8 + 0.6 ∗ −0.6 0.8 ∗ 0.6 + 0.6 ∗ 0.8
−0.6 ∗ 0.8 + 0.8 ∗ −0.6 −0.6 ∗ 0.6 + 0.8 ∗ 0.8 ]

Similarly we proceed for 𝐴3 which turns out to be [−0.352 0.936
−0.936 −0.352 ].

30. 𝑓(𝐴) = 𝐴2 − 5𝐴 + 7𝐼, where 𝐴 = [ 3 1
−1 2 ]

𝐴2 = [ 3 ∗ 3 + 1 ∗ −1 3 ∗ 1 + 1 ∗ 2
−1 ∗ 3 + 2 ∗ −1 −1 ∗ 1 + 2 ∗ 2 ] = [ 8 5

−5 3 ]

Thus, 𝐴2 − 5𝐴 + 7𝐼 is a 2 × 2 zero matrix, which is trivial to prove.

31. 𝐴𝐵 = [ cos 𝜃 ∗ cos 𝜙 + sin 𝜃 ∗ sin 𝜙 cos 𝜃 ∗ sin 𝜙 + sin 𝜃 ∗ cos 𝜙
sin 𝜃 ∗ cos 𝜙 + cos 𝜃 ∗ sin 𝜙 sin 𝜃 ∗ sin 𝜙 + cos 𝜃 ∗ cos 𝜙 ]

= [ cos(𝜃 − 𝜙) sin(𝜃 + 𝜙)
sin(𝜃 + 𝜙) cos(𝜃 − 𝜙) ]

Similarly 𝐵𝐴 = [ cos(𝜃 − 𝜙) sin(𝜃 + 𝜙)
sin(𝜃 + 𝜙) cos(𝜃 − 𝜙) ]

Thus, 𝐴𝐵 = 𝐵𝐴.

32. 𝑓(𝐴)=𝐴2−5𝐴+6, 𝐴2 = [
2 ∗ 2 + 0 ∗ 2 + 1 ∗ 1 2 ∗ 0 + 0 ∗ 1 + 1 ∗ −1 2 ∗ 1 + 0 ∗ 3 + 1 ∗ 0
2 ∗ 2 + 1 ∗ 2 + 3 ∗ 1 2 ∗ 0 + 1 ∗ 1 + 3 ∗ −1 2 ∗ 1 + 1 ∗ 3 + 3 ∗ 0
1 ∗ 2 + −1 ∗ 2 + 0 ∗ 1 1 ∗ 0 + −1 ∗ 1 + 0 ∗ −1 1 ∗ 1 + −1 ∗ 3 + 0 ∗ 0]

= [
5 −1 2
9 −2 5
0 −1 −2]

Thus, 𝐴2 − 5𝐴 + 6 = [
1 −1 −3
−1 −1 −10
−5 4 4 ].

33. Given 𝐴 = [ 5 3
12 7 ] ∴𝐴2 = [ 5 ∗ 5 + 3 ∗ 125 ∗ 3 + 3 ∗ 7

12 ∗ 5 + 7 ∗ 12 12 ∗ 3 + 7 ∗ 7 ]
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= [ 61 36
144 85 ]

∴𝐴2 − 12𝐴 − 𝐼 = 0

34. We have ([ 1 𝜔 𝜔2

𝜔 𝜔2 1
𝜔2 1 𝜔 ]+ [ 𝜔 𝜔2 1

𝜔2 1 𝜔
𝜔 𝜔2 1 ])[ 1𝜔𝜔2] = [ 1 + 𝜔 𝜔 + 𝜔2 𝜔2 + 1

𝜔 + 𝜔2 𝜔2 + 1 1 + 𝜔
𝜔2 + 𝜔 1 + 𝜔2 𝜔 + 1 ][ 1𝜔𝜔2]

= [ 1 + 𝜔 + 𝜔2 + 𝜔3 + 𝜔4 + 𝜔2

𝜔 + 𝜔2 + 𝜔3 + 𝜔 + 𝜔4 + 𝜔3

𝜔2 + 𝜔 + 𝜔 + 𝜔3 + 𝜔3 + 𝜔2] = 2[ 1 + 𝜔 + 𝜔2

1 + 𝜔 + 𝜔2

1 + 𝜔 + 𝜔2] = [ 000].
35. 𝐼 + 𝐴 = [

1 − tan 𝛼⁄
2

tan 𝛼⁄
2 1 ]

(𝐼 − 𝐴)[ cos 𝛼 − sin 𝛼
sin 𝛼 cos 𝛼 ] = [

1 tan 𝛼⁄
2

− tan 𝛼⁄
2 1 ][ cos 𝛼 − sin 𝛼

sin 𝛼 cos 𝛼 ]

= [
cos 𝛼 + tan 𝛼⁄

2 . sin 𝛼 tan 𝛼⁄
2 cos 𝛼 − sin 𝛼

sin 𝛼 − tan 𝛼⁄
2 cos 𝛼 tan 𝛼⁄

2 sin 𝛼 + cos 𝛼]
Substituting cos 𝛼 = cos2 𝛼⁄2 − sin2 𝛼⁄2 and sin 𝛼 = 2 sin 𝛼⁄

2 cos
𝛼⁄
2 we get the desired result.

36. If we multiply two matrices on left-hand side and compare the terms with right-hand
side then we will get four equations in 𝑥, 𝑦, 𝑧 and 𝑢. We also have four unknowns,
which is a solvable system of linear equations. The solution is left as an exercise.

37. We have [ 1 𝑥 1 ][
1 3 2
0 5 1
0 3 2][

1
1
𝑥] = 0

⇒ [ 1 3 + 5𝑥 + 3 2 + 𝑥 + 2 ][
1
1
𝑥] = 0

1 + 6 + 5𝑥 + 4𝑥 + 𝑥2 = 0 ⇒ 𝑥2 + 9𝑥 + 7 = 0 ⇒ 𝑥 = −9±√


53⁄
2 .

38. Product is [ cos
2 𝜃 cos2 𝜙 + sin 𝜃 cos 𝜃 cos 𝜙 sin 𝜙 cos2 𝜃 cos 𝜙 sin 𝜙 + sin 𝜃 cos 𝜃 sin2 𝜙

cos2 𝜃 sin 𝜃 cos 𝜃 + sin2 𝜃 cos 𝜙 sin 𝜙 cos 𝜃 sin 𝜃 cos 𝜙 sin 𝜙 + sin2 𝜃 sin2 𝜙
]

= [ cos 𝜃 cos 𝜙 cos(𝜃 − 𝜙) sin 𝜙 sin 𝜃 cos(𝜃 − 𝜙)
cos 𝜙 sin 𝜃 cos(𝜃 − 𝜙) sin 𝜃 sin 𝜙 cos(𝜃 − 𝜙) ]

Clearly the above matrix is a zero matrix of the difference of angles is an odd multiple
of 𝜋⁄2.
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39. This we will prove by mathematical induction. We have 𝐴 = [ cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ].

𝐴2 = [ cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ] .[ cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃 ]

= [ cos2 𝜃 − sin2 𝜃 − cos 𝜃 sin 𝜃 − sin 𝜃 cos 𝜃
sin 𝜃 cos 𝜃 + cos 𝜃 sin 𝜃 − sin2 𝜃 + cos2 𝜃

] = [ cos 2𝜃 − sin 2𝜃
sin 2𝜃 cos 2𝜃 ]

Thus, the result is true for 𝑛 = 2. Let it be true for 𝑛 = 𝑘 i.e. 𝐴𝑘 = [ cos 𝑘𝜃 − sin 𝑘𝜃
sin 𝑘𝜃 cos 𝑘𝜃 ].

𝐴𝑘+1 = [ cos 𝑘𝜃 cos 𝜃 − sin 𝑘𝜃 sin 𝜃 − cos 𝑘𝜃 sin 𝜃 − sin 𝑘𝜃 cos 𝜃
sin 𝑘𝜃 cos 𝜃 + cos 𝑘𝜃 sin 𝜃 − sin 𝑘𝜃 sin 𝜃 + cos 𝑘𝜃 cos 𝜃 ]

= [ cos(𝑘 + 1)𝜃 − sin(𝑘 + 1)𝜃
sin(𝑘 + 1)𝜃 cos(𝑘 + 1)𝜃 ], which is true for 𝑛 = 𝑘 + 1.

Thus, we have proven the required result by mathematical induction.

40. We have 𝐴 = [ 0 1
0 0 ]. We will prove this by mathematical induction like last problem.

𝐴2 = [ 3 ∗ 3 − 4 ∗ 1 3 ∗ −4 − 4 ∗ −1
1 ∗ 3 − 1 ∗ 1 1 ∗ −4 − 1 ∗ −1 ] = [ 1 + 2 ∗ 2 −4 ∗ 2

2 1 − 2 ∗ 2 ], which is true for 𝑛 = 2.

Let it be true for 𝑛 = 𝑘 i.e. 𝐴𝑘 = [ 1 + 2𝑘 −4𝑘
𝑘 1 − 2𝑘 ]

𝐴𝑘+1 = [ (1 + 2𝑘) ∗ 3 − 4𝑘 ∗ 1 (1 + 2𝑘) ∗ −4 − 4𝑘 ∗ −1
𝑘 ∗ 3 + (1 − 2𝑘) ∗ 1 𝑘 ∗ −4 + (1 − 2𝑘) ∗ −1 ]= [ 1 + 2(𝑘 + 1) −4(𝑘 + 1)

𝑘 + 1 1 − 2(𝑘 + 1) ],

which is true for 𝑛 = 𝑘 + 1.

Thus, we have proven the required result by mathematical induction.

41. (𝑎𝐼 + 𝑏𝐴)1 = 𝑎𝐼 + 1𝑎1−1𝑏𝐴 = 𝑎𝐼 + 𝑏𝐴, thus the statement holds true for 𝑛 = 1.

Let it be true for 𝑛 = 𝑘 i.e. (𝑎𝐼 + 𝑏𝐴)𝑘 = 𝑎𝑘𝐼 + 𝑘𝑎𝑘−1𝑏𝐴

For 𝑛 = 𝑘 + 1, (𝑎𝐼 + 𝑏𝐴)𝑘+1 = (𝑎𝑘𝐼 + 𝑘𝑎𝑘−1𝑏𝐴)(𝑎𝐼 + 𝑏𝐴) = 𝑎𝑘+1𝐼 + 𝑘𝑎𝑘−1𝑎𝑏𝐴 +
𝑎𝑘𝑏𝐴 + 𝑘𝑎𝑘−1𝑏𝐴 ∗ 𝑏𝐴

However, 𝐴2 = 0, so𝑎𝑘+1𝐼 + 𝑘𝑎𝑘𝑏𝐴 + 𝑎𝑘𝑏𝐴 = 𝑎𝑘+1𝐼 + (𝑘 + 1)𝑎𝑘𝑏𝐴.

Thus, the statement is true for 𝑛 = 𝑘 + 1, and, hence proved.

42. We know that for matrix multiplication it is not neccessary that 𝐴𝐵 = 𝐵𝐴. However,
(𝐴+𝐵)(𝐴−𝐵) = 𝐴2−𝐴𝐵+𝐵𝐴−𝐵2, which will be equal to 𝐴2−𝐵2 if 𝐴𝐵 = 𝐵𝐴.

43. We can represent quanitity bought using a row matrix, for example, 𝑄 = [ 8 10 4 ]

and rate as 𝑅 = [
18
9
6 ].
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Total cost would be product of these two matrices i.e. 8 ∗ 18 + 10 ∗ 9 + 4 ∗ 6 =
144 + 90 + 24 = 258.

44. Let the amount invested in first fund is USD 𝑥, and in second fund USD 30000 − 𝑥.
Then we can represent interest as

[𝑥 30000 − 𝑥 ] .[ 0.050.07 ] = 2000

⇒ 0.05𝑥 + 2100 − 0.07𝑥 = 2000 ⇒ 0.02𝑥 = 100 ⇒ 𝑥 = 5000. Thus, amount to be
invested in first fund is USD 5000, and in second fund USD 25000 should be invested.

45. The store owner has 240 shirts, 180 trousers and 300 pair of socks, which can be
represented by a row matrix, 𝐼 = [ 240 180 300 ] for example. The respective costs

can be represented by a column matrix, 𝑅 = [
50
90
12].

Thus, according to question, total amount receieved would be 𝐼𝑅 = 240 ∗ 50 + 180 ∗
90 + 300 ∗ 12 = $24600.

46. There are 120 physics books, 96 chemistry books, and 60 mathematics books. These
can be represented by a row matric,𝐵 = [ 120 96 60 ], for example. The respective

costs can be represented by a column matrix, 𝑅 = [
8.3
3.45
4.5 ].

Thus, total amount received by the store owner upon sell of all the books will be
𝐵𝑅 = 120 ∗ 8.3 + 96 ∗ 3.45 + 60 ∗ 4.5 = 1597.2

47. Given, 𝐴 = [ cos 𝛼 sin 𝛼
− sin 𝛼 cos 𝛼 ]. Therefore, 𝐴′ = [ cos 𝛼 − sin 𝛼

sin 𝛼 cos 𝛼 ]

𝐴𝐴′ = [ cos2 𝛼 + sin2 𝛼 cos 𝛼. − sin 𝛼 + sin 𝛼. cos 𝛼
− sin 𝛼. cos 𝛼 + cos 𝛼. sin 𝛼 − sin 𝛼. − sin 𝛼 + cos 𝛼. cos 𝛼 ] = [ 1 0

0 1 ] = 𝐼2

𝐴′𝐴 = [−sin 𝛼. − sin 𝛼 + cos 𝛼. cos 𝛼 cos 𝛼 sin 𝛼 − sin 𝛼 cos 𝛼
sin 𝛼 cos 𝛼 − cos 𝛼 sin 𝛼 sin2 𝛼 + cos2 𝛼

] = [ 1 0
0 1 ] = 𝐼2

Thus, 𝐴𝐴′ = 𝐴′𝐴 = 𝐼2.

48. We know that for a symmetric matrix its trnaspose is equal to original matrix i.e.
if 𝐴 is the matrix then 𝐴 = 𝐴𝑇 , while for a skew-symmetric matrix its transpose is
equal to neation of original matrix i.e. 𝐴 = −𝐴𝑇 .

Thus, any square matrix can be represented as sum of its symmetric matrix(say 𝑆) and
skew-symmetric matrix(say 𝐾) as 𝑆 = 1

⁄

2 (𝐴+𝐴𝑇 ) and 𝐾 = 1
⁄

2 (𝐴−𝐴𝑇 ).

Thus, 𝑆 = 1
⁄

2([ 1 2 4
6 8 1
3 5 7 ]+ [

1 6 3
2 8 5
4 1 7 ]) = [ 1 4 7
⁄

2
4 8 3
7
⁄

2 3 7 ]
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and 𝐾 = 1
⁄

2([ 1 2 4
6 8 1
3 5 7 ]− [

1 6 3
2 8 5
4 1 7 ]) = [ 0 −2 1
⁄

2
2 0 −2
−1
⁄

2 2 0 ].
49. We know that a matrix is orthogonal if its product with its transpose is yields an

identity matrix. We have already shown this in second last problem for the given
matrix.

50. The transpose of given matrix is equal to the original i.e. 𝐴 = 𝐴′.

𝐴𝐴′ = 1
⁄

9[
−1 2 2
2 −1 2
2 2 −1] .[

−1 2 2
2 −1 2
2 2 −1]

= [
−1 ∗ −1 + 2 ∗ 2 + 2 ∗ 2 −1 ∗ 2 + 2 ∗ −1 + 2 ∗ 2 −1 ∗ 2 + 2 ∗ 2 + 2 ∗ −1
2 ∗ −1 − 1 ∗ 2 + 2 ∗ 2 2 ∗ 2 − 1 ∗ −1 + 2 ∗ 2 2 ∗ 2 − 1 ∗ 2 + 2 ∗ −1
2 ∗ −1 + 2 ∗ 2 − 1 ∗ 2 2 ∗ 2 + 2 ∗ −1 + −1 ∗ 2 2 ∗ 2 + 2 ∗ 2 − 1 ∗ −1 ] = 𝐼3.

Thus, given matrix is orthogonal.

51. Given 𝐴 = [
1 2 3
2 3 2
3 3 4]. Let 𝐵 represent the matrix of cofactors of 𝐴, then

𝐵 = [
3 ∗ 4 − 3 ∗ 2 3 ∗ 2 − 4 ∗ 2 3 ∗ 2 − 3 ∗ 3
3 ∗ 3 − 4 ∗ 2 4 ∗ 1 − 3 ∗ 3 3 ∗ 2 − 3 ∗ 1
2 ∗ 2 − 3 ∗ 3 3 ∗ 2 − 2 ∗ 1 3 ∗ 1 − 2 ∗ 2] = [

6 −2 −3
1 −5 3
−5 4 1 ].

Thus, 𝑎𝑑𝑗(𝐴) = 𝐵′ = [
6 1 −5
−2 −5 4
−3 3 −1].

52. First we find the adjoint of the matrix for which we need to find cofactors. Let 𝐶𝑖𝑗
represent the cofactors, then,

𝐶11 = cos 𝛼 ∗ 1 − 0 ∗ 0 = cos 𝛼, 𝐶12 = −(sin 𝛼 ∗ 1 − 0 ∗ 0) = −sin 𝛼, 𝐶13 = sin 𝛼 ∗
0 − cos 𝛼 ∗ 0 = 0, 𝐶21 = −(sin 𝛼 ∗ 1 − 0 ∗ 0), 𝐶22 = cos 𝛼 ∗ 1 − 0 ∗ 0 = cos 𝛼, 𝐶23 =
−(cos 𝛼 ∗ 0− 0 ∗ 0) = 0, 𝐶31 = cos 𝛼 ∗ 0− 0 ∗ 0 = 0, 𝐶32 = −cos 𝛼 ∗ 0− 0 ∗ 0 = 0, 𝐶33 =
cos 𝛼 ∗ 1 − 0 ∗ 0 = cos 𝛼

Hence, 𝑎𝑑𝑗(𝐴) = [
cos 𝛼 − sin 𝛼 0
− sin 𝛼 cos 𝛼 0

0 0 cos 𝛼]
∴𝐴 ∗ 𝑎𝑑𝑗(𝐴) = [ cos2 𝛼 + sin2 𝛼 0 0

0 cos2 𝛼 + sin2 𝛼 0
0 0 1] = 𝐼

Now, |𝐴| = cos𝛼(cos 𝛼 ∗ 1 − 0 ∗ 0)− (−sin 𝛼)(sin 𝛼 ∗ 1 − 0 ∗ 0)+ 0 = 1

|𝐴|𝐼 = 𝐼 . Hence proven.
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53. We know that 𝐴(𝑎𝑑𝑗 𝐴) = |𝐴|𝐼 . Here |𝐴| = 1(3 ∗ 10− 2 ∗ 0)− (−1)(2 ∗ 10− 18 ∗ 0)+
1(2 ∗ 2 − 18 ∗ 3) = 0. Hence, 𝐴(𝑎𝑑𝑗 𝐴) = 0.

54. Let 𝐴 = [
1 3 3
1 4 3
1 3 4]

|𝐴| = 1(4 ∗ 4 − 3 ∗ 3)− 3(1. ∗ 4 − 4 ∗ 1)+ 3(1 ∗ 3 − 4 ∗ 1) = 1

Matrix of cofactos is [
(4 ∗ 4 − 3 ∗ 3) (1 ∗ 4 − 3 ∗ 1) (1 ∗ 3 − 4 ∗ 1)
(3 ∗ 4 − 3 ∗ 3) (1 ∗ 4 − 3 ∗ 1) (1 ∗ 3 − 3 ∗ 1)
(3 ∗ 3 − 4 ∗ 3) (1 ∗ 3 − 3 ∗ 1) (1 ∗ 4 − 3 ∗ 1)]

Hence, 𝑎𝑑𝑗(𝐴) = [
7 −3 −3
−1 1 0
−1 0 1 ]

Because |𝐴| = 1, therefore, 𝐴−1 = 𝑎𝑑𝑗(𝐴) = [
7 −3 −3
−1 1 0
−1 0 1 ].

55. |𝐴| = 2(2 ∗ 2 − 3 ∗ −2)− (−3)(2 ∗ 2 − 3 ∗ 3)+ 3(2 ∗ −2 − 2 ∗ 3) = −25

Matrix of cofactors is [
(2 ∗ 2 − 3 ∗ −2) −(2 ∗ 2 − 3 ∗ 3) (2 ∗ −2 − 2 ∗ 3)

−(−3 ∗ 2 − 3 ∗ −2) (2 ∗ 2 − 3 ∗ 3) −(2 ∗ −2 − (−3) ∗ 3)
(−3 ∗ 3 − 2 ∗ 3) −(2 ∗ 3 − 2 ∗ 3) (2 ∗ 2 − (−3) ∗ 2) ]=

[
10 5 −10
0 −5 −5

−15 0 10 ]
𝑎𝑑𝑗(𝐴) = [

10 0 −15
5 −5 0

−10 −5 10 ]
⇒ 𝐴−1 = 𝑎𝑑𝑗(𝐴)⁄

|𝐴| = 1
⁄

5[
−2 0 3
−1 1 0
2 1 −2].

56. The inverse can be calculated like previous problems and is equal to 1⁄
𝑎𝑑−𝑏𝑐 [

𝑑 −𝑏
−𝑐 𝑎 ].

57. In previous problem we have formula for inverse of a 2 × 2 matrix.

𝐴𝐵 = [ 14 5
16 0 ].

Hence, (𝐴𝐵)−1 = 1
⁄

−80 [
0 −5

−16 −14 ].

𝐴−1 = 1⁄
−4 [

0 −1
−4 3 ] 𝐵−1 = 1
⁄

20 [
5 0
−2 4 ]
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𝐴−1𝐵−1 = 1
⁄

−80 [
0 −5

−16 −14 ].

Hence, (𝐴𝐵)−1 = 𝐴−1𝐵−1.

58. Given 𝐴= [ 1 tan 𝑥
− tan 𝑥 1 ] so 𝐴−1 = cos2 𝑥[ 1 − tan 𝑥

tan 𝑥 1 ]= [ cos2 𝑥 − sin 𝑥 cos 𝑥
sin 𝑥 cos 𝑥 cos2 𝑥

]

∴𝐴′𝐴−1 = [ 1 − tan 𝑥
tan 𝑥 1 ] .[ cos2 𝑥 − sin 𝑥 cos 𝑥

sin 𝑥 cos 𝑥 cos2 𝑥
]

= [ cos 2𝑥 − sin 2𝑥
sin 2𝑥 cos 2𝑥 ].

59. (Hint: (𝐴𝐵)−1 = 𝐵−1𝐴−1)

𝐴−1 = [ 5 −2
−7 3 ] (from formula obtained in third last problem).

𝐵−1 = [−
9
⁄

2 − 7
⁄

2
4 −3

]

(𝐴𝐵)−1 = [−47
39
⁄

2
41 −17

].

60. We can write the given system of equations as 𝐴𝑋 = 𝐵, where 𝐴 = [ 3 −2
5 3 ], 𝑋 = [𝑥𝑦 ],

and 𝐵 = [ 71 ].

|𝐴| = 3 ∗ 3 − (−2) ∗ 5 = 19 ⇒ 𝐴−1 = 1
⁄

19 [
3 2
−5 3 ]

𝑋 = 𝐴−1𝐵. We multiply the matrices and compare elements to get 𝑥 and 𝑦 as 23⁄19 and

−32
⁄

19 respectively.

61. Proceeding like previous problem we represent the given system of equations as

𝐴𝑋 = 𝐵, where 𝐴 = [
2 −3 3
2 2 3
3 −2 2], 𝑋 = [

𝑥
𝑦
𝑧 ], and 𝐵 = [

1
2
3].

|𝐴| = 2(2 ∗ 2 − 3 ∗ −2)− (−3)(2 ∗ 2 − 3 ∗ 3)+ 3(2 ∗ −2 − 2 ∗ 3) = −25

Matrix of cofactors is [
10 5 −10
0 −5 −5

−15 0 10 ].
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⇒ 𝑎𝑑𝑗(𝐴) = [
10 0 −15
5 −5 0

−10 −5 10 ].

𝐴−1 = 𝑎𝑑𝑗(𝐴)⁄
|𝐴| = [−2
⁄

5 0 3
⁄

5

− 1
⁄

5
1
⁄

5 0
2
⁄

5
1
⁄

5 − 2
⁄

5]
𝑋 = 𝐴−1𝐵. We multiply the matrices and compare elements to get solution as
𝑥 = 7
⁄

5 , 𝑦 =
1
⁄

5 and 𝑧 = −2
⁄

5.

62. We represent the gives system of equations as 𝐴𝑋 = 𝐵, where 𝐴 = [ 2 3
6 9 ], 𝑋 = [𝑥𝑦 ]

and 𝐵 = [ 5 10 ]

|𝐴| = 0, which means either it is inconsistent or has infinitely many solutions. However,
we observe that (2𝑥 + 3𝑦 = 5)(3 ∗ 2𝑥 = 6𝑥, 3 ∗ 3𝑦 = 9𝑦, 3 ∗ 5 = 15, and 3 ∗ 10 = 30).
Thus, the given system of equations is inconsistent
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GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<https://fsf.org/>

Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is not allowed.

Preamble
The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as “you”. You
accept the license if you copy, modify or distribute the work in a way requiring permission
under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to
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the Document's overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If
the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used
for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors for
output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the text
near the most prominent appearance of the work's title, preceding the beginning of the body
of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such as
“Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
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the Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you add
no other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document's license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible. You
may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.
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4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers
to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.
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L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version's license notice. These titles must
be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse
ments of your Modified Version by various parties—for example, statements of peer review or
that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by
(or through arrangements made by) any one entity. If the Document already includes a
cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in
the combination all of the Invariant Sections of all of the original documents, unmodified,
and list them all as Invariant Sections of your combined work in its license notice, and that
you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
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“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents
with a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit. When the Document is
included in an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document's Cover Texts
may be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear
on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include the original English
version of this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.
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However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright holder fails to notify
you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first time
you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Doc
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy's public statement of acceptance of a version permanently authorizes you to
choose that version for the Document.

11. RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server.
A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
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incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA
on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

ADDENDUM: How to use this
License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

“ Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the
section entitled “GNU Free Documentation License”.”

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with …
Texts.” line with this:

“ with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being
LIST, and with the Back-Cover Texts being LIST.”

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.
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